WorldWideScience

Sample records for electrically coupled transport

  1. Coupled electric and transport phenomena in porous media

    NARCIS (Netherlands)

    Li, Shuai

    2014-01-01

    The coupled electrical and transport properties of clay-containing porous media are the topics of interest in this study. Both experimental and numerical (pore network modeling) techniques are employed to gain insight into the macro-scale interaction between electrical and solute transport phenomena

  2. Electricity: an indigenous transport fuel

    Energy Technology Data Exchange (ETDEWEB)

    Byers, D J

    1978-12-25

    Potential reserves of hydro and geothermal power are adequate to power all road-transport vehicles should these be converted to electric drives in the future. Conversion of petrol vehicles to electric drives results in a significant increase in energy-utilization efficiency coupled with a decrease in costs, both to the country in overseas funds and to the driver in operating costs. As yet, however, New Zealand has no plan to use these resources in a transport role and is supporting no feasibility research.

  3. Electrical and thermal transport in the quasiatomic limit of coupled Luttinger liquids

    Science.gov (United States)

    Szasz, Aaron; Ilan, Roni; Moore, Joel E.

    2017-02-01

    We introduce a new model for quasi-one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them is the "quasiatomic limit." We find integral expressions for the (interchain) transport coefficients, including the electrical and thermal conductivities and the thermopower, and we extract their power law dependencies on temperature. Luttinger liquid physics is manifested in a violation of the Wiedemann-Franz law; the Lorenz number is larger than the Fermi liquid value by a factor between γ2 and γ4, where γ ≥1 is a measure of the electron-electron interaction strength in the system.

  4. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    vibrational effects have a profound influence on the transport characteristics of a single-molecule contact and play therefore a fundamental role in this transport problem. Our findings demonstrate that vibrationally coupled electron transport through a molecular junction involves two types of processes: (i) transport processes, where an electron tunnels through the molecular bridge from one lead to the other, and (ii) electron-hole pair creation processes, where an electron tunnels from one of the leads onto the molecular bridge and back to the same lead again. Transport processes directly contribute to the electrical current flowing through a molecular contact and involve both excitation and deexcitation processes of the vibrational modes of the junction. Electron-hole pair creation processes do not directly contribute to the electrical current and typically involve only deexcitation processes. Nevertheless, they constitute a cooling mechanism for the vibrational modes of a single-molecule junction that is as important as cooling by transport processes. As the level of vibrational excitation determines the efficiency of electron transport processes, they have an indirect influence on the electrical current flowing through the junction. As we show, however, this influence can be substantial, in particular, if the molecule is coupled asymmetrically to the leads. Accounting for all these processes and their complex interrelationship, we analyze a number of intriguing transport phenomena, including rectification, negative differential resistance, anomalous peak broadening, mode-selective vibrational excitation and vibrationally induced decoherence. Moreover, we show that higher levels of vibrational excitation are obtained for weaker electronic-vibrational coupling. Thus, based on physical grounds, we establish a relation between the weak electronic-vibrational coupling limit and the limit of large bias voltages, where the level of vibrational excitation in a molecular junction

  5. Interactions between Radial Electric Field, Transport and Structure in Helical Plasmas

    International Nuclear Information System (INIS)

    Ida, Katsumi and others

    2006-01-01

    Control of the radial electric field is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. Particle and heat transport, that determines the radial structure of density and electron profiles, sensitive to the structure of radial electric field. On the other hand, the radial electric field itself is determined by the plasma parameters. In general, the sign of the radial electric field is determined by the plasma collisionality, while the magnitude of the radial electric field is determined by the temperature and/or density gradients. Therefore the structure of radial electric field and temperature and density are strongly coupled through the particle and heat transport and formation mechanism of radial electric field. Interactions between radial electric field, transport and structure in helical plasmas is discussed based on the experiments on Large Helical Device

  6. Middle atmosphere electrical energy coupling

    Science.gov (United States)

    Hale, L. C.

    1989-01-01

    The middle atmosphere (MA) has long been known as an absorber of radio waves, and as a region of nonlinear interactions among waves. The region of highest transverse conductivity near the top of the MA provides a common return for global thunderstorm, auroral Birkeland, and ionospheric dynamo currents, with possibilities for coupling among them. Their associated fields and other transverse fields map to lower altitudes depending on scale size. Evidence now exists for motion-driven aerosol generators, and for charge trapped at the base of magnetic field lines, both capable of producing large MA electric fields. Ionospheric Maxwell currents (curl H) parallel to the magnetic field appear to map to lower altitudes, with rapidly time-varying components appearing as displacement currents in the stratosphere. Lightning couples a (primarily ELF and ULF) current transient to the ionosphere and magnetosphere whose wave shape is largely dependent on the MA conductivity profile. Electrical energy is of direct significance mainly in the upper MA, but electrodynamic transport of minor constituents such as smoke particles or CN may be important at other altitudes.

  7. Role of inter-tube coupling and quantum interference on electrical transport in carbon nanotube junctions

    Science.gov (United States)

    Tripathy, Srijeet; Bhattacharyya, Tarun Kanti

    2016-09-01

    Due to excellent transport properties, Carbon nanotubes (CNTs) show a lot of promise in sensor and interconnect technology. However, recent studies indicate that the conductance in CNT/CNT junctions are strongly affected by the morphology and orientation between the tubes. For proper utilization of such junctions in the development of CNT based technology, it is essential to study the electronic properties of such junctions. This work presents a theoretical study of the electrical transport properties of metallic Carbon nanotube homo-junctions. The study focuses on discerning the role of inter-tube interactions, quantum interference and scattering on the transport properties on junctions between identical tubes. The electronic structure and transport calculations are conducted with an Extended Hückel Theory-Non Equilibrium Green's Function based model. The calculations indicate conductance to be varying with a changing crossing angle, with maximum conductance corresponding to lattice registry, i.e. parallel configuration between the two tubes. Further calculations for such parallel configurations indicate onset of short and long range oscillations in conductance with respect to changing overlap length. These oscillations are attributed to inter-tube coupling effects owing to changing π orbital overlap, carrier scattering and quantum interference of the incident, transmitted and reflected waves at the inter-tube junction.

  8. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling.

    Science.gov (United States)

    Mawrie, Alestin; Verma, Sonu; Ghosh, Tarun Kanti

    2017-09-01

    We investigate effect of k-cubic spin-orbit interaction on electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions θ = (2n+1)π/3 with n=1,2,3. We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of k-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant. © 2017 IOP Publishing Ltd.

  9. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling

    Science.gov (United States)

    Mawrie, Alestin; Verma, Sonu; Kanti Ghosh, Tarun

    2017-11-01

    We investigate the effect of k-cubic spin-orbit interaction on the electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions θ^\\prime = (2n+1)π/3 with n=1, 2, 3 . We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of k-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of a quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in the low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant.

  10. Electric current induced forward and anomalous backward mass transport

    International Nuclear Information System (INIS)

    Somaiah, Nalla; Sharma, Deepak; Kumar, Praveen

    2016-01-01

    Multilayered test samples were fabricated in form of standard Blech structure, where W was used as the interlayer between SiO 2 substrate and Cu film. Electromigration test was performed at 250 °C by passing an electric current with a nominal density of 3.9  ×  10 10 A m −2 . In addition to the regular electromigration induced mass transport ensuing from the cathode towards the anode, we also observed anomalous mass transport from the anode to the cathode, depleting Cu from the anode as well. We propose an electromigration-thermomigration coupling based reasoning to explain the observed mass transport. (letter)

  11. Computing and the electrical transport properties of coupled quantum networks

    Science.gov (United States)

    Cain, Casey Andrew

    In this dissertation a number of investigations were conducted on ballistic quantum networks in the mesoscopic range. In this regime, the wave nature of electron transport under the influence of transverse magnetic fields leads to interesting applications for digital logic and computing circuits. The work specifically looks at characterizing a few main areas that would be of interest to experimentalists who are working in nanostructure devices, and is organized as a series of papers. The first paper analyzes scaling relations and normal mode charge distributions for such circuits in both isolated and open (terminals attached) form. The second paper compares the flux-qubit nature of quantum networks to the well-established spintronics theory. The results found exactly contradict the conventional school of thought for what is required for quantum computation. The third paper investigates the requirements and limitations of extending the Thevenin theorem in classic electric circuits to ballistic quantum transport. The fourth paper outlines the optimal functionally complete set of quantum circuits that can completely satisfy all sixteen Boolean logic operations for two variables.

  12. Coupled transport phenomena in a clay from a Callovo-Oxfordian formation; Phenomenes de transport couples dans les argiles du Callovo-Oxfordien

    Energy Technology Data Exchange (ETDEWEB)

    Paszkuta, M

    2005-06-15

    Low permeability materials containing clay play an important role in practical life and natural environment. Indeed, the ability of clay soils to act as semi permeable membranes, that inhibit the passage of electrolytes, is of great interest. The major objective of this thesis is to evaluate the transport properties of natural clays and in particular coupled transports when a pressure gradient, an electrical field, a concentration gradient and a temperature gradient interact. The material is a compact argillite extracted in East France from a Callovo-Oxfordian formation which was supplied to us by ANDRA. NaCl was used as the main solute. Two series of experiments were performed to measure permeability, diffusion, conductivity, the electro-osmotic coefficient and the Soret coefficient. (author)

  13. Vibronic coupling effect on the electron transport through molecules

    Science.gov (United States)

    Tsukada, Masaru; Mitsutake, Kunihiro

    2007-03-01

    Electron transport through molecular bridges or molecular layers connected to nano-electrodes is determined by the combination of coherent and dissipative processes, controlled by the electron-vibron coupling, transfer integrals between the molecular orbitals, applied electric field and temperature. We propose a novel theoretical approach, which combines ab initio molecular orbital method with analytical many-boson model. As a case study, the long chain model of the thiophene oligomer is solved by a variation approach. Mixed states of moderately extended molecular orbital states mediated and localised by dress of vibron cloud are found as eigen-states. All the excited states accompanied by multiple quanta of vibration can be solved, and the overall carrier transport properties including the conductance, mobility, dissipation spectra are analyzed by solving the master equation with the transition rates estimated by the golden rule. We clarify obtained in a uniform systematic way, how the transport mode changes from a dominantly coherent transport to the dissipative hopping transport.

  14. Cation-Coupled Bicarbonate Transporters

    OpenAIRE

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2014-01-01

    Cation-coupled HCO3− transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3− and associated with Na+ and Cl− movement. The first Na+-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 ...

  15. Influence of coupling phenomena on the transport through compacted clays

    Energy Technology Data Exchange (ETDEWEB)

    Rosanne, M.; Koudina, N.; Adler, P.M. [IPGP, Paris (France); Tevissen, E. [ANDRA, Dept. Etude-Experimentation et Calcul, Chatenay Malabry (France)

    2001-07-01

    Our principal motivation was to study the influence of the coupling phenomena on transport through compacted clays. Coupled transports may occur when a pressure gradient {nabla}P, and electrical field E and a concentration gradient {nabla}C interact. These three gradients induce three fluxes. A flow is generated characterized by the seepage velocity U; a solute flux J{sub L} and a current density I are generated. Close to equilibrium, when the gradients are not to large, the problem is linear and the fluxes are linear functions of the gradients. A first series of experiments was performed with argillite to determine the diagonal properties, i.e., permeability, conductivity, and diffusion coefficient. In a second series of experiments, the voltage resulting from an imposed concentration gradient between two reservoirs separated by a clay sample was systematically measured; this corresponds to the coefficient L{sub 13}. (orig.)

  16. Coupled Transport Phenomena in the Opalinus Clay: Implications for Radionuclide Transport

    International Nuclear Information System (INIS)

    Soler, J.M.

    1999-09-01

    Coupled phenomena (thermal and chemical osmosis, hyperfiltration, coupled diffusion, thermal diffusion, thermal filtration, Dufour effect) may play an important role in fluid, solute and heat transport in clay-rich formations, such as the Opalinus Clay (OPA), which are being considered as potential hosts for radioactive waste repositories. In this study, the potential effects of coupled phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), have been addressed. Firstly, estimates of the solute fluxes associated with chemical osmosis, hyperfiltration, thermal diffusion and thermal osmosis have been calculated. Available experimental data concerning coupled transport phenomena in compacted clays, and the hydrogeological and geochemical conditions to which the Opalinus Clay is subject, have been used for these estimates. These estimates suggest that thermal osmosis is the only coupled transport mechanism that could have a strong impact on solute and fluid transport in the vicinity of the repository. Secondly, estimates of the heat fluxes associated with thermal filtration and the Dufour effect in the vicinity of the repository have been calculated. The calculated heat fluxes are absolutely negligible compared to the heat flux caused by thermal conduction. As a further step to obtain additional insight into the effects of coupled phenomena on solute transport, the solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters, shows again that thermal osmosis is the only coupled transport mechanism that could have a strong effect on repository

  17. Coupled Transport Phenomena in the Opalinus Clay: Implications for Radionuclide Transport

    Energy Technology Data Exchange (ETDEWEB)

    Soler, J.M.

    1999-09-01

    Coupled phenomena (thermal and chemical osmosis, hyperfiltration, coupled diffusion, thermal diffusion, thermal filtration, Dufour effect) may play an important role in fluid, solute and heat transport in clay-rich formations, such as the Opalinus Clay (OPA), which are being considered as potential hosts for radioactive waste repositories. In this study, the potential effects of coupled phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), have been addressed. Firstly, estimates of the solute fluxes associated with chemical osmosis, hyperfiltration, thermal diffusion and thermal osmosis have been calculated. Available experimental data concerning coupled transport phenomena in compacted clays, and the hydrogeological and geochemical conditions to which the Opalinus Clay is subject, have been used for these estimates. These estimates suggest that thermal osmosis is the only coupled transport mechanism that could have a strong impact on solute and fluid transport in the vicinity of the repository. Secondly, estimates of the heat fluxes associated with thermal filtration and the Dufour effect in the vicinity of the repository have been calculated. The calculated heat fluxes are absolutely negligible compared to the heat flux caused by thermal conduction. As a further step to obtain additional insight into the effects of coupled phenomena on solute transport, the solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters, shows again that thermal osmosis is the only coupled transport mechanism that could have a strong effect on repository

  18. Simulation of the electric potential and plasma generation coupling in magnetron sputtering discharges

    Science.gov (United States)

    Trieschmann, Jan; Krueger, Dennis; Schmidt, Frederik; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2016-09-01

    Magnetron sputtering typically operated at low pressures below 1 Pa is a widely applied deposition technique. For both, high power impulse magnetron sputtering (HiPIMS) as well as direct current magnetron sputtering (dcMS) the phenomenon of rotating ionization zones (also referred to as spokes) has been observed. A distinct spatial profile of the electric potential has been associated with the latter, giving rise to low, mid, and high energy groups of ions observed at the substrate. The adherent question of which mechanism drives this process is still not fully understood. This query is approached using Monte Carlo simulations of the heavy particle (i.e., ions and neutrals) transport consistently coupled to a pre-specified electron density profile via the intrinsic electric field. The coupling between the plasma generation and the electric potential, which establishes correspondingly, is investigated. While the system is observed to strive towards quasi-neutrality, distinct mechanisms governing the shape of the electric potential profile are identified. This work is supported by the German Research Foundation (DFG) in the frame of the transregional collaborative research centre TRR 87.

  19. Finite-orbit-width effect and the radial electric field in neoclassical transport phenomena

    International Nuclear Information System (INIS)

    Satake, S.; Okamoto, M.; Nakajima, N.; Sugama, H.; Yokoyama, M.; Beidler, C.D.

    2005-01-01

    Modeling and detailed simulation of neoclassical transport phenomena both in 2D and 3D toroidal configurations are shown. The emphasis is put on the effect of finiteness of the drift-orbit width, which brings a non-local nature to neoclassical transport phenomena. Evolution of the self-consistent radial electric field in the framework of neoclassical transport is also investigated. The combination of Monte-Carlo calculation for ion transport and numerical solver of ripple-averaged kinetic equation for electrons makes it possible to calculate neoclassical fluxes and the time evolution of the radial electric field in the whole plasma region, including the finite-orbit-width (FOW) effects and global evolution of geodesic acoustic mode (GAM). The simulation results show that the heat conductivity around the magnetic axis is smaller than that obtained from standard neoclassical theory and that the evolution of GAM oscillation on each flux surface is coupled with other surfaces if the FOW effect is significant. A global simulation of radial electric field evolution in a non-axisymmetric plasma is also shown. (author)

  20. Strongly capacitively coupled double quantum dots in GaAs-AlGaAs heterostructures. Preparation and electrical transport; Kapazitativ stark gekoppelte Doppelquantenpunkte in GaAs-AlGaAs-Heterostrukturen. Herstellung und elektrischer Transport

    Energy Technology Data Exchange (ETDEWEB)

    Huebel, A.

    2007-11-22

    In this work, a double quantum dot system is studied whose two dots are electrically insulated from one another and contacted independently with two leads. The geometry is optimized to maximize the capacitive interaction between the dots. The samples are characterized by electrical transport measurements in a dilution refrigerator. It is then studied at different tunnel couplings how the capacitive interaction influences the electrical transport in equilibrium. Under certain conditions correlated tunnel processes can be observed. A simple model is derived that serves to understand these processes. The double quantum dot system is defined in lateral arrangement by reactive ion etching of a two-dimensional electron system located only 50 nm below the surface of a GaAs-AlGaAs heterostructure. The samples are characterized in a dilution refrigerator at 25 mK near the common pinch-off point of all four tunnel barriers. A measurement of the differential equilibrium conductances of both quantum dots as a function of two gate voltages yields a honeycomb-like charge stability diagram. The most important sample characteristic is the ratio between the interaction capacitance and the total capacitance of a single quantum dot. For the optimized sample, this ratio turns out to be larger than one third near the common pinch-off point, with a single-dot charging energy of up to 800 {mu}eV. At more positive gate voltages, the capacitances between the quantum dots and their leads increase more and more, thereby diminishing the charging energy. It is shown for the optimized sample that all capacitance coefficients except the dot-lead capacitances are constant to within considerable accuracy over several Coulomb blockade oscillations. In order to measure correlated electrical transport in equilibrium, special parameter regions are examined in which the charges of both quantum dots cannot fluctuate independently of each other. An analytical formula is derived that describes the

  1. Electrical coupling between hippocampal astrocytes in rat brain slices.

    Science.gov (United States)

    Meme, William; Vandecasteele, Marie; Giaume, Christian; Venance, Laurent

    2009-04-01

    Gap junctions in astrocytes play a crucial role in intercellular communication by supporting both biochemical and electrical coupling between adjacent cells. Despite the critical role of electrical coupling in the network organization of these glial cells, the electrophysiological properties of gap junctions have been characterized in cultures while no direct evidence has been sought in situ. In the present study, gap-junctional currents were investigated using simultaneous dual whole-cell patch-clamp recordings between astrocytes from rat hippocampal slices. Bidirectional electrotonic coupling was observed in 82% of the cell pairs with an average coupling coefficient of 5.1%. Double patch-clamp analysis indicated that junctional currents were independent of the transjunctional voltage over a range from -100 to +110 mV. Interestingly, astrocytic electrical coupling displayed weak low-pass filtering properties compared to neuronal electrical synapses. Finally, during uncoupling processes triggered by either the gap-junction inhibitor carbenoxolone or endothelin-1, an increase in the input resistance in the injected cell paralleled the decrease in the coupling coefficient. Altogether, these results demonstrate that hippocampal astrocytes are electrically coupled through gap-junction channels characterized by properties that are distinct from those of electrical synapses between neurons. In addition, gap-junctional communication is efficiently regulated by endogenous compounds. This is taken to represent a mode of communication that may have important implications for the functional role of astrocyte networks in situ.

  2. Non-contact magnetic coupled power and data transferring system for an electric vehicle

    International Nuclear Information System (INIS)

    Matsuda, Y.; Sakamoto, H.

    2007-01-01

    We have developed a system which transmits electric power and communication data simultaneously in a non-contact method using a magnetic coupling coil. Already, we are developing the fundamental technology of a non-contact charging system, and this is applied in electric shavers, electric toothbrushes, etc. Moreover, basic experiments are being conducted for applying this non-contact charging system to electric equipments such as an electric vehicle (EV), which is a zero emission vehicle and environmentally excellent and will be the transportation means of the next generation. The technology can also be applied in other electronic equipment, etc. However, since the power supply route for these individual devices is independent, the supply system is complicated. EV also has to perform the transmission of electric power and the transmission of information (data), such as the amount of the charge, in a separate system, and thus is quite complicated. In this study, by performing simultaneously the transmission of electric power and information (data) using magnetic coupling technology in which it does not contact, the basic experiment aimed at attaining and making unification of a system simple was conducted, and the following good results were obtained: (1) Electric power required for load can be transmitted easily by non-contact. (2) A signal can easily be transmitted bidirectionally by non-contact. (3) This system is reliable, and is widely applicable

  3. Tariff structures for the transport of electricity

    International Nuclear Information System (INIS)

    Frenken, R.M.L.; Van de Water, C.J.

    1995-01-01

    Some possible tariff structures for electricity transport are discussed. First, the costs associated with the transport of electricity are explained. The fixed and variable costs of a transport are illustrated with some examples. Furthermore, the most common tariff structures (contract path, megawatt mile, postage stamp) and negotiated Third Party Access are discussed. Finally, the way the tariff structures reflect the costs of electricity transport are reviewed. 3 figs., 1 tab., 7 refs

  4. On the ionospheric coupling of auroral electric fields

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2009-04-01

    Full Text Available The quasi-static coupling of high-altitude potential structures and electric fields to the ionosphere is discussed with particular focus on the downward field-aligned current (FAC region. Results are presented from a preliminary analysis of a selection of electric field events observed by Cluster above the acceleration region. The degree of coupling is here estimated as the ratio between the magnetic field-aligned potential drop, ΔΦII, as inferred from the characteristic energy of upward ion (electron beams for the upward (downward current region and the high-altitude perpendicular (to B potential, ΔΦbot, as calculated by integrating the perpendicular electric field across the structure. For upward currents, the coupling can be expressed analytically, using the linear current-voltage relation, as outlined by Weimer et al. (1985. This gives a scale size dependent coupling where structures are coupled (decoupled above (below a critical scale size. For downward currents, the current-voltage relation is highly non-linear which complicates the understanding of how the coupling works. Results from this experimental study indicate that small-scale structures are decoupled, similar to small-scale structures in the upward current region. There are, however, exceptions to this rule as illustrated by Cluster results of small-scale intense electric fields, correlated with downward currents, indicating a perfect coupling between the ionosphere and Cluster altitude.

  5. Modeling light-duty plug-in electric vehicles for national energy and transportation planning

    International Nuclear Information System (INIS)

    Wu, Di; Aliprantis, Dionysios C.

    2013-01-01

    This paper sets forth a family of models of light-duty plug-in electric vehicle (PEV) fleets, appropriate for conducting long-term national-level planning studies of the energy and transportation sectors in an integrated manner. Using one of the proposed models, three case studies on the evolution of the U.S. energy and transportation infrastructures are performed, where portfolios of optimum investments over a 40-year horizon are identified, and interdependencies between the two sectors are highlighted. The results indicate that with a gradual but aggressive introduction of PEVs coupled with investments in renewable energy, the total cost from the energy and transportation systems can be reduced by 5%, and that overall emissions from electricity generation and light-duty vehicle (LDV) tailpipes can be reduced by 10% over the 40-year horizon. The annual gasoline consumption from LDVs can be reduced by 66% by the end of the planning horizon, but an additional 800 TWh of annual electricity demand will be introduced. In addition, various scenarios of greenhouse gas (GHG) emissions reductions are investigated. It is found that GHG emissions can be significantly reduced with only a marginal cost increment, by shifting electricity generation from coal to renewable sources. - Highlights: • We model plug-in electric vehicles (PEVs) for long-term national planning studies. • Realistic travel patterns are used to estimate the vehicles' energy consumption. • National energy and transportation system interdependencies are considered. • Case studies illustrate optimum investments in energy and transportation sectors. • PEVs synergistically with renewable energy can aggressively reduce GHG emissions

  6. Endocannabinoid release modulates electrical coupling between CCK cells connected via chemical and electrical synapses in CA1

    Directory of Open Access Journals (Sweden)

    Jonathan eIball

    2011-11-01

    Full Text Available Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholesystokinin (CCK interneurons which co-express cannbinoid type-1 (CB1 receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labelling in acute slices of rat hippocampus at P18-20 days. CA1 stratum radiatum CCK Schaffer collateral associated (SCA cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released IPSPs that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5M resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI, maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization.

  7. Dynamical interplay between fluctuations, electric fields and transport in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Goncalves, B.

    2003-01-01

    A view of recent experimental results and progress in the characterization of the statistical properties of electrostatic turbulence in magnetically confined devices is given. An empirical similarity in the scaling properties of the probability distribution function (PDF) of turbulent transport has been observed in the plasma edge region in fusion plasmas. The investigation of the dynamical interplay between fluctuation in gradients, turbulent transport and radial electric fields has shows that these parameters are strongly coupled both in tokamak and stellarator plasmas. The bursty behaviour of turbulent transport is linked with a departure from the most probable radial gradient. The dynamical relation between fluctuations in gradients and transport is strongly affected by the presence of sheared poloidal flows which organized themselves near marginal stability. These results emphasize the importance of the statistical description of transport processes in fusion plasmas as an alternative approach to the traditional way to characterize transport based on the computation of effective transport coefficients. (author)

  8. The role of nano-contacts in electrical transport through a molecular wire

    International Nuclear Information System (INIS)

    Shokri, Ali A.; Mardaani, M.

    2006-01-01

    Theoretical studies on electrical transport in a nano-device which consisting of two semi-infinite cubic leads with finite cross-sections separated by a typical molecular wire (MW) are carried out by including the effect of single and multiple contacts. The calculations are based on the tight-binding model and Green's function method in the coherent regime. In order to calculate the effect of contact coupling on molecular wire transport, we derive a theoretical formula based on the nearest and next nearest neighbor coupling strengths between the MW and the surface atoms in the simple cubic leads. This approach can be generalized to other leads with different lattice structure. The results show small changes in the transport properties with changing next nearest neighbor coupling strength. Some asymmetry is noted in the strong multiple contact limit. Also, we observe that with enlarging the cross-section size of leads, the current density increases and then leads to the quantum unit of conductance. Hence, our derived formalism can be used for devices attached to macroscopic surfaces. The theoretical results obtained, can be a base for developments in designing nano-electronic devices

  9. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  10. Effect of spin rotation coupling on spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2013-12-15

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.

  11. Endocannabinoid Release Modulates Electrical Coupling between CCK Cells Connected via Chemical and Electrical Synapses in CA1

    Science.gov (United States)

    Iball, Jonathan; Ali, Afia B.

    2011-01-01

    Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholecystokinin (CCK) interneurons which co-express cannabinoid type-1 (CB1) receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labeling in acute slices of rat hippocampus at P18–20 days. CA1 stratum radiatum CCK Schaffer collateral-associated cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released inhibitory postsynaptic potential (IPSPs) that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5 μM) resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI), maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization. PMID

  12. Electrical and optical transport properties of single layer WSe2

    Science.gov (United States)

    Tahir, M.

    2018-03-01

    The electronic properties of single layer WSe2 are distinct from the famous graphene due to strong spin orbit coupling, a huge band gap and an anisotropic lifting of the degeneracy of the valley degree of freedom under Zeeman field. In this work, band structure of the monolayer WSe2 is evaluated in the presence of spin and valley Zeeman fields to study the electrical and optical transport properties. Using Kubo formalism, an explicit expression for the electrical Hall conductivity is examined at finite temperatures. The electrical longitudinal conductivity is also evaluated. Further, the longitudinal and Hall optical conductivities are analyzed. It is observed that the contributions of the spin-up and spin-down states to the power absorption spectrum depend on the valley index. The numerical results exhibit absorption peaks as a function of photon energy, ℏ ω, in the range ∼ 1.5 -2 eV. Also, the optical response lies in the visible frequency range in contrast to the conventional two-dimensional electron gas or graphene where the response is limited to terahertz regime. This ability to isolate carriers in spin-valley coupled structures may make WSe2 a promising candidate for future spintronics, valleytronics and optical devices.

  13. Coupled geochemical and solute transport code development

    International Nuclear Information System (INIS)

    Morrey, J.R.; Hostetler, C.J.

    1985-01-01

    A number of coupled geochemical hydrologic codes have been reported in the literature. Some of these codes have directly coupled the source-sink term to the solute transport equation. The current consensus seems to be that directly coupling hydrologic transport and chemical models through a series of interdependent differential equations is not feasible for multicomponent problems with complex geochemical processes (e.g., precipitation/dissolution reactions). A two-step process appears to be the required method of coupling codes for problems where a large suite of chemical reactions must be monitored. Two-step structure requires that the source-sink term in the transport equation is supplied by a geochemical code rather than by an analytical expression. We have developed a one-dimensional two-step coupled model designed to calculate relatively complex geochemical equilibria (CTM1D). Our geochemical module implements a Newton-Raphson algorithm to solve heterogeneous geochemical equilibria, involving up to 40 chemical components and 400 aqueous species. The geochemical module was designed to be efficient and compact. A revised version of the MINTEQ Code is used as a parent geochemical code

  14. Electric Vehicle Grid Integration | Transportation Research | NREL

    Science.gov (United States)

    Electric Vehicle Grid Integration Electric Vehicle Grid Integration Illustration of a house with a in the garage, is connected via a power cord to a household outlet. A sustainable transportation sustainable transportation technologies to increase the capacity, efficiency, and stability of the grid

  15. Electrical railway transportation systems

    CERN Document Server

    Brenna, Morris; Zaninelli, Dario

    2018-01-01

    Allows the reader to deepen their understanding of various technologies for both fixed power supply installations of railway systems and for railway rolling stock. This book explores the electric railway systems that play a crucial role in the mitigation of congestion and pollution caused by road traffic. It is divided into two parts: the first covering fixed power supply systems, and the second concerning the systems for railway rolling stock. In particular, after a historical introduction to the framework of technological solutions in current use, the authors investigate electrification systems for the power supply of rail vehicles, trams, and subways. Electrical Railway Transportation Systems explores the direct current systems used throughout the world for urban and suburban transport, which are also used in various countries for regional transport. It provides a study of alternating current systems, whether for power supply frequency or for special railway frequency, that are used around the world for ...

  16. Coupled transport phenomena in a clay from a Callovo-Oxfordian formation

    International Nuclear Information System (INIS)

    Paszkuta, M.

    2005-06-01

    Low permeability materials containing clay play an important role in practical life and natural environment. Indeed, the ability of clay soils to act as semi permeable membranes, that inhibit the passage of electrolytes, is of great interest. The major objective of this thesis is to evaluate the transport properties of natural clays and in particular coupled transports when a pressure gradient, an electrical field, a concentration gradient and a temperature gradient interact. The material is a compact argillite extracted in East France from a Callovo-Oxfordian formation which was supplied to us by ANDRA. NaCl was used as the main solute. Two series of experiments were performed to measure permeability, diffusion, conductivity, the electro-osmotic coefficient and the Soret coefficient. (author)

  17. Quantifying the resilience of an urban traffic-electric power coupled system

    International Nuclear Information System (INIS)

    Fotouhi, Hossein; Moryadee, Seksun; Miller-Hooks, Elise

    2017-01-01

    Transportation system resilience has been the subject of several recent studies. To assess the resilience of a transportation network, however, it is essential to model its interactions with and reliance on other lifelines. Prior works might consider these interactions implicitly, perhaps in the form of hazard impact scenarios wherein services from a second lifeline (e.g. power) are precluded due to a hazard event. In this paper, a bi-level, mixed-integer, stochastic program is presented for quantifying the resilience of a coupled traffic-power network under a host of potential natural or anthropogenic hazard-impact scenarios. A two-layer network representation is employed that includes details of both systems. Interdependencies between the urban traffic and electric power distribution systems are captured through linking variables and logical constraints. The modeling approach was applied on a case study developed on a portion of the signalized traffic-power distribution system in southern Minneapolis. The results of the case study show the importance of explicitly considering interdependencies between critical infrastructures in transportation resilience estimation. The results also provide insights on lifeline performance from an alternate power perspective. - Highlights: • Model interdependent infrastructure systems. • Provide method for quantifying resilience of coupled traffic and power networks. • Propose bi-level, mixed-integer, stochastic program. • Take a multi-hazard, stochastic futures approach.

  18. Magneto-electrical transport through MBE-grown III-V semiconductor nanostructures. From zero- to one-dimensional type of transport

    International Nuclear Information System (INIS)

    Storace, Eleonora

    2009-01-01

    From the development of the first transistor in 1947, great interest has been directed towards the technological development of semiconducting devices and the investigation of their physical properties. A very vital field within this topic focuses on the electrical transport through low-dimensional structures, where the quantum confinement of charge carriers leads to the observation of a wide variety of phenomena that, in their turn, can give an interesting insight on the fundamental properties of the structures under examination. In the present thesis, we will start analyzing zero-dimensional systems, focusing on how electrons localized onto an island can take part in the transport through the whole system; by precisely tuning the tunnel coupling strength between this island and its surroundings, we will then show how it is possible to move from a zero- to a one-dimensional system. Afterwards, the inverse path will be studied: a one-dimensional system is electrically characterized, proving itself to split up due to disorder into several zero-dimensional structures. (orig.)

  19. Magneto-electrical transport through MBE-grown III-V semiconductor nanostructures. From zero- to one-dimensional type of transport

    Energy Technology Data Exchange (ETDEWEB)

    Storace, Eleonora

    2009-07-08

    From the development of the first transistor in 1947, great interest has been directed towards the technological development of semiconducting devices and the investigation of their physical properties. A very vital field within this topic focuses on the electrical transport through low-dimensional structures, where the quantum confinement of charge carriers leads to the observation of a wide variety of phenomena that, in their turn, can give an interesting insight on the fundamental properties of the structures under examination. In the present thesis, we will start analyzing zero-dimensional systems, focusing on how electrons localized onto an island can take part in the transport through the whole system; by precisely tuning the tunnel coupling strength between this island and its surroundings, we will then show how it is possible to move from a zero- to a one-dimensional system. Afterwards, the inverse path will be studied: a one-dimensional system is electrically characterized, proving itself to split up due to disorder into several zero-dimensional structures. (orig.)

  20. Electrical-thermal coupling of induction machine for improved ...

    African Journals Online (AJOL)

    Electrical-thermal coupling of induction machine for improved thermal performance. ... Nigerian Journal of Technology ... The interaction of its electrical and mechanical parts leads to an increase in temperature which if not properly monitored ...

  1. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-01-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimension transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 refs., 8 figs

  2. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table

  3. The synchronization of asymmetric-structured electric coupling neuronal system

    Science.gov (United States)

    Wang, Guanping; Jin, Wuyin; Liu, Hao; Sun, Wei

    2018-02-01

    Based on the Hindmarsh-Rose (HR) model, the synchronization dynamics of asymmetric-structured electric coupling two neuronal system is investigated in this paper. It is discovered that when the time-delay scope and coupling strength for the synchronization are correlated positively under unequal time delay, the time-delay difference does not make a clear distinction between the two individual inter-spike intervals (ISI) bifurcation diagrams of the two coupled neurons. Therefore, the superficial difference of the system synchronization dynamics is not obvious for the unequal time-delay feedback. In the asymmetrical current incentives under asymmetric electric coupled system, the two neurons can only be almost completely synchronized in specific area of the interval which end-pointed with two discharge modes for a single neuron under different stimuli currents before coupling, but the intervention of time-delay feedback, together with the change of the coupling strength, can make the coupled system not only almost completely synchronized within anywhere in the front area, but also outside of it.

  4. A weakly coupled semiconductor superlattice as a harmonic hypersonic-electrical transducer

    International Nuclear Information System (INIS)

    Poyser, C L; Akimov, A V; Campion, R P; Kent, A J; Balanov, A G

    2015-01-01

    We study experimentally and theoretically the effects of high-frequency strain pulse trains on the charge transport in a weakly coupled semiconductor superlattice. In a frequency range of the order of 100 GHz such excitation may be considered as single harmonic hypersonic excitation. While travelling along the axis of the SL, the hypersonic acoustic wavepacket affects the electron tunnelling, and thus governs the electrical current through the device. We reveal how the change of current depends on the parameters of the hypersonic excitation and on the bias applied to the superlattice. We have found that the changes in the transport properties of the superlattices caused by the acoustic excitation can be largely explained using the current–voltage relation of the unperturbed system. Our experimental measurements show multiple peaks in the dependence of the transferred charge on the repetition rate of the strain pulses in the train. We demonstrate that these resonances can be understood in terms of the spectrum of the applied acoustic perturbation after taking into account the multiple reflections in the metal film serving as a generator of hypersonic excitation. Our findings suggest an application of the semiconductor superlattice as a hypersonic-electrical transducer, which can be used in various microwave devices. (paper)

  5. Coupled electron-photon radiation transport

    International Nuclear Information System (INIS)

    Lorence, L.; Kensek, R.P.; Valdez, G.D.; Drumm, C.R.; Fan, W.C.; Powell, J.L.

    2000-01-01

    Massively-parallel computers allow detailed 3D radiation transport simulations to be performed to analyze the response of complex systems to radiation. This has been recently been demonstrated with the coupled electron-photon Monte Carlo code, ITS. To enable such calculations, the combinatorial geometry capability of ITS was improved. For greater geometrical flexibility, a version of ITS is under development that can track particles in CAD geometries. Deterministic radiation transport codes that utilize an unstructured spatial mesh are also being devised. For electron transport, the authors are investigating second-order forms of the transport equations which, when discretized, yield symmetric positive definite matrices. A novel parallelization strategy, simultaneously solving for spatial and angular unknowns, has been applied to the even- and odd-parity forms of the transport equation on a 2D unstructured spatial mesh. Another second-order form, the self-adjoint angular flux transport equation, also shows promise for electron transport

  6. ITS Version 3.0: The Integrated TIGER Series of coupled electron/photon Monte Carlo transport codes

    International Nuclear Information System (INIS)

    Halbleib, J.A.; Kensek, R.P.; Valdez, G.D.; Mehlhorn, T.A.; Seltzer, S.M.; Berger, M.J.

    1993-01-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields. It combines operational simplicity and physical accuracy in order to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Flexibility of construction permits tailoring of the codes to specific applications and extension of code capabilities to more complex applications through simple update procedures

  7. ITS Version 3.0: The Integrated TIGER Series of coupled electron/photon Monte Carlo transport codes

    Energy Technology Data Exchange (ETDEWEB)

    Halbleib, J.A.; Kensek, R.P.; Valdez, G.D.; Mehlhorn, T.A. [Sandia National Labs., Albuquerque, NM (United States); Seltzer, S.M.; Berger, M.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Ionizing Radiation Div.

    1993-06-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields. It combines operational simplicity and physical accuracy in order to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Flexibility of construction permits tailoring of the codes to specific applications and extension of code capabilities to more complex applications through simple update procedures.

  8. Electricity for road transport, flexible power systems and wind power

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Lars Henrik; Ravn, H.; Meibom, P. (and others)

    2011-12-15

    The aim of the project is to analyse the potential synergistic interplay that may arise between the power sector and the transport sector, if parts of the road transport energy needs are based on electricity via the utilisation of plug-in hybrid electric vehicles and pure electric vehicles. The project focuses on the technical elements in the chain that comprises: 1: The electric vehicle status, potentials and expected development. Electric batteries are in focus in this part of the analysis. 2: Analysis of plug-in hybrid electric vehicle interacting with a local grid. 3: Analysis of grid-vehicle connection systems including technical regulation options and analysis of needs for standardisation. 4: Setting up scenarios covering potential developments for utilizing electric drive trains in road transport. Period: Up to year 2030. 5: Analysis of capacity constraints in the electricity grid (transmission and distribution) as consequence of increasing electricity demand, and new flexible consumption patterns from segments in the transport sector, and as consequence of increasing capacity on wind power in the system. 6: Setting up and analysis of combined scenarios covering both the heat and power system and the transport sector. (Author)

  9. ITS - The integrated TIGER series of coupled electron/photon Monte Carlo transport codes

    International Nuclear Information System (INIS)

    Halbleib, J.A.; Mehlhorn, T.A.

    1985-01-01

    The TIGER series of time-independent coupled electron/photon Monte Carlo transport codes is a group of multimaterial, multidimensional codes designed to provide a state-of-the-art description of the production and transport of the electron/photon cascade. The codes follow both electrons and photons from 1.0 GeV down to 1.0 keV, and the user has the option of combining the collisional transport with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence. Source particles can be either electrons or photons. The most important output data are (a) charge and energy deposition profiles, (b) integral and differential escape coefficients for both electrons and photons, (c) differential electron and photon flux, and (d) pulse-height distributions for selected regions of the problem geometry. The base codes of the series differ from one another primarily in their dimensionality and geometric modeling. They include (a) a one-dimensional multilayer code, (b) a code that describes the transport in two-dimensional axisymmetric cylindrical material geometries with a fully three-dimensional description of particle trajectories, and (c) a general three-dimensional transport code which employs a combinatorial geometry scheme. These base codes were designed primarily for describing radiation transport for those situations in which the detailed atomic structure of the transport medium is not important. For some applications, it is desirable to have a more detailed model of the low energy transport. The system includes three additional codes that contain a more elaborate ionization/relaxation model than the base codes. Finally, the system includes two codes that combine the collisional transport of the multidimensional base codes with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence

  10. Coupling of magnetospheric electrical effects into the global atmospheric electrical circuit

    International Nuclear Information System (INIS)

    Hays, P.B.; Roble, R.G.

    1979-01-01

    A quasi-static model of global atmospheric electricity has been constructed (Hays and Roble, 1978) to study the electrical processes in the lower atmosphere and the coupling between solar- and upper- atmosphere-induced variations superimposed upon the global electrical circuit. The paper reviews the essential features of this model and discusses the results obtained thus far on the effects of magnetospheric convection and substorms on the global atmospheric electrical circuit. A schematic diagram of the global quasi-static model is given. It is assumed that thunderstorms act as dipole generators, each with a positive center at the top of the cloud and a negative center a few kilometers lower than the positive center

  11. Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro

    International Nuclear Information System (INIS)

    Jing, Jin; Hai-Ting, Tian; Xiong, Pan; Ning-Fang, Song

    2010-01-01

    The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted

  12. Coupled transport in field-reversed configurations

    Science.gov (United States)

    Steinhauer, L. C.; Berk, H. L.; TAE Team

    2018-02-01

    Coupled transport is the close interconnection between the cross-field and parallel fluxes in different regions due to topological changes in the magnetic field. This occurs because perpendicular transport is necessary for particles or energy to leave closed field-line regions, while parallel transport strongly affects evolution of open field-line regions. In most toroidal confinement systems, the periphery, namely, the portion with open magnetic surfaces, is small in thickness and volume compared to the core plasma, the portion with closed surfaces. In field-reversed configurations (FRCs), the periphery plays an outsized role in overall confinement. This effect is addressed by an FRC-relevant model of coupled particle transport that is well suited for immediate interpretation of experiments. The focus here is particle confinement rather than energy confinement since the two track together in FRCs. The interpretive tool yields both the particle transport rate χn and the end-loss time τǁ. The results indicate that particle confinement depends on both χn across magnetic surfaces throughout the plasma and τǁ along open surfaces and that they provide roughly equal transport barriers, inhibiting particle loss. The interpretation of traditional FRCs shows Bohm-like χn and inertial (free-streaming) τǁ. However, in recent advanced beam-driven FRC experiments, χn approaches the classical rate and τǁ is comparable to classic empty-loss-cone mirrors.

  13. Proton movement and coupling in the POT family of peptide transporters.

    Science.gov (United States)

    Parker, Joanne L; Li, Chenghan; Brinth, Allete; Wang, Zhi; Vogeley, Lutz; Solcan, Nicolae; Ledderboge-Vucinic, Gregory; Swanson, Jessica M J; Caffrey, Martin; Voth, Gregory A; Newstead, Simon

    2017-12-12

    POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate. Copyright © 2017 the Author(s). Published by PNAS.

  14. Electric-field effects in optically generated spin transport

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  15. Electric-field effects in optically generated spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2009-05-25

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  16. An Electricity-Alcohol Transportation Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Morris, David [Inst. for Local Self-Reliance, Minneapolis (United States)

    2006-07-15

    In the United States, a dual fuel system may be emerging as a consensus strategy for a rapid transition to an oil free transportation system. The energy source for the vehicles will be a combination of electricity and alcohols. The technology will be a plug-in hybrid electric vehicle whose batteries can be charged from the national grid system, and a backup flexible fueled engine, primarily fueled by alcohols.

  17. Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings

    International Nuclear Information System (INIS)

    Karna, S.P.

    1997-01-01

    A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. copyright 1997 The American Physical Society

  18. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)

  19. Modular coupling of transport and chemistry: theory and model applications

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1994-06-01

    For the description of complex processes in the near-field of a radioactive waste repository, the coupling of transport and chemistry is necessary. A reason for the relatively minor use of coupled codes in this area is the high amount of computer time and storage capacity necessary for calculations by conventional codes, and lack of available data. The simple application of the sequentially coupled code MCOTAC, which couples one-dimensional advective, dispersive and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium, shows some promising features with respect to applicability to relevant problems. Transport, described by random walk of multi-species particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term to ensure mass conservation. (For full text of the abstract see 25:072321)

  20. An international perspective on electric transportation. Survey on electric road transport 2012

    Energy Technology Data Exchange (ETDEWEB)

    Weeda, M; Kroon, P [ECN Policy Studies, Petten (Netherlands); Appels, D [Agentschap NL, Utrecht (Netherlands)

    2012-09-15

    To compare the Dutch governmental efforts and developments in the field of electric road transport, the Ministry of Economic Affairs, Agriculture and Innovation has asked ECN Policy Studies and NL Agency to conduct an international assessment on electric mobility. The countries that have been considered are: Austria, Belgium, Denmark, France, Germany, the Netherlands, Norway, Portugal, Spain, UK, China, USA and South Korea. The Netherlands has a high ambition level with regard to the number of electric vehicles and is one of the leaders as for the envisaged number of charging points. In the field of R and D, Germany, South Korea and China take the lead, followed by France, the UK, the USA and Austria. However, the assessment has only looked at specific funds for electric mobility, and has not looked at general R and D and innovation funds. The Netherlands has several electro-mobility field tests, but is not leading in number. Norway and Austria are leading countries when it comes to implementation of public charging infrastructure.

  1. Electrically tunable single-dot nanocavities in the weak and strong coupling regimes

    DEFF Research Database (Denmark)

    Laucht, Arne; Hofbauer, Felix; Angele, Jacob

    2008-01-01

    We report the design, fabrication and optical investigation of electrically tunable single quantum dot - photonic crystal defect nanocavities [1] operating in both the weak and strong coupling regimes of the light matter interaction. Unlike previous studies, where the dot-cavity spectral detuning...... of the emitted photons from a single-dot nanocavity in the weak and strong coupling regimes. New information is obtained on the nature of the dot-cavity coupling in the weak coupling regime and electrical control of zero dimensional polaritons is demonstrated for the first time. Vacuum Rabi splittings up to 2g...... electrical readout of the strongly coupled dot-cavity system using photocurrent methods will be discussed. This work is financially supported by the DFG via SFB 631 and by the German Excellence Initiative via the “Nanosystems Initiative Munich (NIM)”....

  2. City electric transport preferences and motives of the Russian students

    Science.gov (United States)

    Romanova, Elena

    2017-10-01

    The share of electric transport in Russia is very small. Many cities refuse operation of urban electric passenger transportation. Basic reasons of it are high cost value and expensive operation. In Moscow the emphasis is placed on development of rail electric transport. It provides fast movement and pollutes the city environment less. The Moscow students understand that for an urban transportation ecological compatibility and safety are important but they choose buses and individual cars with the internal combustion engine for daily use. The main criteria of the choice are the speed and comfort. Ecological compatibility of the individual transport costs on one of the last places.

  3. Subthreshold electrical transport in amorphous phase-change materials

    International Nuclear Information System (INIS)

    Gallo, Manuel Le; Kaes, Matthias; Sebastian, Abu; Krebs, Daniel

    2015-01-01

    Chalcogenide-based phase-change materials play a prominent role in information technology. In spite of decades of research, the details of electrical transport in these materials are still debated. In this article, we present a unified model based on multiple-trapping transport together with 3D Poole–Frenkel emission from a two-center Coulomb potential. With this model, we are able to explain electrical transport both in as-deposited phase-change material thin films, similar to experimental conditions in early work dating back to the 1970s, and in melt-quenched phase-change materials in nanometer-scale phase-change memory devices typically used in recent studies. Experimental measurements on two widely different device platforms show remarkable agreement with the proposed mechanism over a wide range of temperatures and electric fields. In addition, the proposed model is able to seamlessly capture the temporal evolution of the transport properties of the melt-quenched phase upon structural relaxation. (paper)

  4. Bends in nanotubes allow electric spin control and coupling

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Marcus, Charles Masamed

    2010-01-01

    We investigate combined effects of spin-orbit coupling and magnetic field in carbon nanotubes containing one or more bends along their length. We show how bends can be used to provide electrical control of confined spins, while spins confined in straight segments remain insensitive to electric...

  5. A generalized model for transport of contaminants in soil by electric fields.

    Science.gov (United States)

    Paz-Garcia, Juan Manuel; Baek, Kitae; Alshawabkeh, Iyad D; Alshawabkeh, Akram N

    2012-01-01

    A generalized model applicable to soils contaminated with multiple species under enhanced boundary conditions during treatment by electric fields is presented. The partial differential equations describing species transport are developed by applying the law of mass conservation to their fluxes. Transport, due to migration, advection and diffusion, of each aqueous component and complex species are combined to produce one partial differential equation that describes transport of the total analytical concentrations of component species which are the primary dependent variables. This transport couples with geochemical reactions such as aqueous equilibrium, sorption, precipitation and dissolution. The enhanced model is used to simulate electrokinetic cleanup of lead and copper contaminants at an Army Firing Range. Acid enhancement is achieved by the use of adipic acid to neutralize the basic front produced for the cathode electrochemical reaction. The model is able to simulate enhanced application of the process by modifying the boundary conditions. The model showed that kinetics of geochemical reactions, such as metals dissolution/leaching and redox reactions, may be significant for realistic prediction of enhanced electrokinetic extraction of metals in real-world applications.

  6. Conceptual design of hybrid-electric transport aircraft

    Science.gov (United States)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  7. Electrical Power Systems for NASA's Space Transportation Program

    Science.gov (United States)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  8. Morphology dependent electrical transport behavior in gold nanostructures

    International Nuclear Information System (INIS)

    Alkhatib, A.; Souier, T.; Chiesa, M.

    2011-01-01

    The mechanism of electron transport in ultra-thin gold films is investigated and its dependence on the gold islands size is reported. For gold films of thickness below 38 nm, the electrical transport occurs by tunneling within electrically discontinuous islands of gold. Simmons model for metal-insulator-metal junction describes the non-ohmic experimental current-voltage curves obtained by means of conductive atomic force microscopy. Field emission is the predominant transport for thicknesses below 23 nm while direct tunneling occurs in thicker films. The transition between the two regimes is controlled by the gold islands size and their inter-distance.

  9. Self-recognition: a constraint on the formation of electrical coupling in neurons.

    Science.gov (United States)

    Guthrie, P B; Lee, R E; Rehder, V; Schmidt, M F; Kater, S B

    1994-03-01

    Electrical coupling between specific neurons is important for proper function of many neuronal circuits. Identified cultured neurons from the snail Helisoma show a strong correlation between electrical coupling and presence of gap junction plaques in freeze-fracture replicas. Gap junction plaques, however, were never seen between overlapping neurites from a single neuron, even though those same neurites formed gap junctions with neurites from another essentially identical identified neuron. This observation suggests that a form of self-recognition inhibits reflexive gap junction formation between sibling neurites. When one or both of those growth cones had been physically isolated from the neuronal cell body, both electrical coupling and gap junction plaques, between growth cones from the same neuron, were observed to form rapidly (within 30 min). Thus, inhibition of electrical coupling between sibling neurites apparently depends on cytoplasmic continuity between neurites, and not the molecular composition of neurite membrane. The formation of gap junctions is not likely due to the isolation process; rather, the physical isolation appears to release an inhibition of reflexive gap junction formation. These data demonstrate the existence of a previously unknown constraint on the formation of electrical synapses.

  10. Electricity for Road Transport, Flexible Power Systems and Wind Power

    DEFF Research Database (Denmark)

    Nielsen, Lars Henrik; Ravn, Hans; Meibom, Peter

    The aim of the project is to analyse the potential synergistic interplay that may arise between the power sector and the transport sector, if parts of the road transport energy needs are based on electricity via the utilisation of plug-in hybrid electric vehicles and pure electric vehicles....... The project focuses on the technical elements in the chain that comprises: 1: The electric vehicle status, potentials and expected development. Electric batteries are in focus in this part of the analysis. 2: Analysis of plug-in hybrid electric vehicle interacting with a local grid. 3: Analysis of grid-vehicle...

  11. Low temperature electrical transport in modified carbon nanotube fibres

    International Nuclear Information System (INIS)

    Lekawa-Raus, Agnieszka; Walczak, Kamil; Kozlowski, Gregory; Hopkins, Simon C.; Wozniak, Mariusz; Glowacki, Bartek A.; Koziol, Krzysztof

    2015-01-01

    Carbon nanotube fibres are a new class of materials highly promising for many electrical/electronic applications. The range of applications could be extended through the modification of their electrical transport properties by inclusions of foreign materials. However, the changes in electrical transport are often difficult to assess. Here, we propose that the analysis of resistance–temperature dependencies of modified fibres supported by a recently developed theoretical model may aid research in this area and accelerate real life applications of the fibres

  12. Ultra-wide bandwidth improvement of piezoelectric energy harvesters through electrical inductance coupling

    Science.gov (United States)

    Abdelmoula, H.; Abdelkefi, A.

    2015-11-01

    The design and analysis of innovative ultra-wide bandwidth piezoelectric energy harvesters are deeply investigated. An electrical inductance is considered in the harvester's circuit to be connected in series or parallel to a load resistance. A lumped-parameter model is used to model the electromechanical response of the harvester when subjected to harmonic excitations. A linear comprehensive analysis is performed to investigate the effects of an electrical inductance on the coupled frequencies and damping of the harvester. It is shown that including an electrical inductance connected in series or in parallel to an electrical load resistance can result in the appearance of a second coupled frequency of electrical type. The results show that the inclusion of an inductance may give the opportunity to tune one of the coupled frequencies of mechanical and electrical types to the available excitation frequency in the environment. Using the gradient method, an optimization analysis is then performed to determine the optimum values of the electrical inductance and load resistance that maximize the harvested power. It is demonstrated that, for each excitation frequency, there is a combination of optimum values of the electrical inductance and resistance in such a way an optimum constant value of the harvested power is found. Numerical analysis is then performed to show the importance of considering an additional inductance in the harvester's circuitry in order to design broadband energy harvesters. The results show that the presence of the second coupled frequency of electrical type due to the inductance gives the possibility to design optimal broadband inductive-resistive piezoelectric energy harvesters with minimum displacement due to shunt damping effect.

  13. First-principles study on band structures and electrical transports of doped-SnTe

    Directory of Open Access Journals (Sweden)

    Xiao Dong

    2016-06-01

    Full Text Available Tin telluride is a thermoelectric material that enables the conversion of thermal energy to electricity. SnTe demonstrates a great potential for large-scale applications due to its lead-free nature and the similar crystal structure to PbTe. In this paper, the effect of dopants (i.e., Mg, Ca, Sr, Ba, Eu, Yb, Zn, Cd, Hg, and In on the band structures and electrical transport properties of SnTe was investigated based on the first-principles density functional theory including spin–orbit coupling. The results show that Zn and Cd have a dominant effect of band convergence, leading to power factor enhancement. Indium induces obvious resonant states, while Hg-doped SnTe exhibits a different behavior with defect states locating slightly above the Fermi level.

  14. Charge and Spin Transport in Spin-orbit Coupled and Topological Systems

    KAUST Repository

    Ndiaye, Papa Birame

    2017-10-31

    In the search for low power operation of microelectronic devices, spin-based solutions have attracted undeniable increasing interest due to their intrinsic magnetic nonvolatility. The ability to electrically manipulate the magnetic order using spin-orbit interaction, associated with the recent emergence of topological spintronics with its promise of highly efficient charge-to-spin conversion in solid state, offer alluring opportunities in terms of system design. Although the related technology is still at its infancy, this thesis intends to contribute to this engaging field by investigating the nature of the charge and spin transport in spin-orbit coupled and topological systems using quantum transport methods. We identified three promising building blocks for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic state). Chapter 2 reviews the basics and essential concepts used throughout the thesis: the spin-orbit coupling, the mathematical notion of topology and its importance in condensed matter physics, then topological magnetism and a zest of magnonics. In Chapter 3, we study the spin-orbit torques at the magnetized interfaces of 3D topological insulators. We demonstrated that their peculiar form, compared to other spin-orbit torques, have important repercussions in terms of magnetization reversal, charge pumping and anisotropic damping. In Chapter 4, we showed that the interplay between magnon current jm and magnetization m in homogeneous ferromagnets with Dzyaloshinskii-Moriya (DM) interaction, produces a field-like torque as well as a damping-like torque. These DM torques mediated by spin wave can tilt the imeaveraged magnetization direction and are similar to Rashba torques for electronic systems. Moreover, the DM torque is more efficient when magnons are

  15. Electrical energy conversion and transport an interactive computer-based approach

    CERN Document Server

    Karady, George G

    2013-01-01

    Provides relevant material for engineering students and practicing engineers who want to learn the basics of electrical power transmission, generation, and usage This Second Edition of Electrical Energy Conversion and Transport is thoroughly updated to address the recent environmental effects of electric power generation and transmission, which have become more important in conjunction with the deregulation of the industry. The maintenance and development of the electrical energy generation and transport industry requires well-trained engineers who are able to use mode

  16. Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nanostructure

    Science.gov (United States)

    Yang, Shi-Peng; Lu, Mao-Wang; Huang, Xin-Hong; Tang, Qiang; Zhou, Yong-Long

    2017-04-01

    A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic-electric barrier nanostructure with both Rashba and Dresselhaus spin-orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin-orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin-orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin-orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

  17. Sealed coupling for an electrical heating conductor with coaxial sheath (pattern 1964)

    International Nuclear Information System (INIS)

    Arragon, Ph.; Aubert-Chevallier, R.; Gentil, J.; Seguin, M.; Vilcot, M.; Villiers, J.

    1965-01-01

    Many irradiation devices call for supplementary electrical heating which can provide a constant temperature. We describe a coupling whose high performance makes it possible for the sheathed electrical resistance to provide maximum power. Since this coupling is sealed and does not require special cooling, it may be placed in any position on the irradiation device. (authors) [fr

  18. Coupled models in porous media: reactive transport and fractures

    International Nuclear Information System (INIS)

    Amir, L.

    2008-12-01

    This thesis deals with numerical simulation of coupled models for flow and transport in porous media. We present a new method for coupling chemical reactions and transport by using a Newton-Krylov method, and we also present a model of flow in fractured media, based on a domain decomposition method that takes into account the case of intersecting fractures. This study is composed of three parts: the first part contains an analysis, and implementation, of various numerical methods for discretizing advection-diffusion problems, in particular by using operator splitting methods. The second part is concerned with a fully coupled method for modeling transport and chemistry problems. The coupled transport-chemistry model is described, after discretization in time, by a system of nonlinear equations. The size of the system, namely the number of grid points times the number a chemical species, precludes a direct solution of the linear system. To alleviate this difficulty, we solve the system by a Newton-Krylov method, so as to avoid forming and factoring the Jacobian matrix. In the last part, we present a model of flow in 3D for intersecting fractures, by using a domain decomposition method. The fractures are treated as interfaces between sub-domains. We show existence and uniqueness of the solution, and we validate the model by numerical tests. (author)

  19. Electricity Generation Characteristics of Energy-Harvesting System with Piezoelectric Element Using Mechanical-Acoustic Coupling

    Directory of Open Access Journals (Sweden)

    Hirotarou Tsuchiya

    2016-01-01

    Full Text Available This paper describes the electricity generation characteristics of a new energy-harvesting system with piezoelectric elements. The proposed system is composed of a rigid cylinder and thin plates at both ends. The piezoelectric elements are installed at the centers of both plates, and one side of each plate is subjected to a harmonic point force. In this system, vibration energy is converted into electrical energy via electromechanical coupling between the plate vibration and piezoelectric effect. In addition, the plate vibration excited by the point force induces a self-sustained vibration at the other plate via mechanical-acoustic coupling between the plate vibrations and an internal sound field into the cylindrical enclosure. Therefore, the electricity generation characteristics should be considered as an electromechanical-acoustic coupling problem. The characteristics are estimated theoretically and experimentally from the electric power in the electricity generation, the mechanical power supplied to the plate, and the electricity generation efficiency that is derived from the ratio of both power. In particular, the electricity generation efficiency is one of the most appropriate factors to evaluate a performance of electricity generation systems. Thus, the effect of mechanical-acoustic coupling is principally evaluated by examining the electricity generation efficiency.

  20. Neoclassical transport and radial electric fields in TJ-K

    International Nuclear Information System (INIS)

    Rahbarnia, K.; Greiner, F.; Ramisch, M.; Stroth, U.; Greiner, F.

    2003-01-01

    The neoclassical transport is investigated in the torsatron TJ-K, which is operated with a low-temperature plasma. In the low-collisionality regime neoclassical losses are not intrinsically ambipolar, leading to the formation of a radial electric field which acts on both neoclassical and turbulent transport. This electric field is measured with a combination of Langmuir and emissive probes. The data are compared with the ambipolar electric field calculated with an analytic model. The experimental fields are positive and larger than the calculated ones. Direct losses of the fast electrons might explain this discrepancy. (orig.)

  1. Room-temperature coupling between electrical current and nuclear spins in OLEDs

    Science.gov (United States)

    Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C.

    2014-09-01

    The effects of external magnetic fields on the electrical conductivity of organic semiconductors have been attributed to hyperfine coupling of the spins of the charge carriers and hydrogen nuclei. We studied this coupling directly by implementation of pulsed electrically detected nuclear magnetic resonance spectroscopy in organic light-emitting diodes (OLEDs). The data revealed a fingerprint of the isotope (protium or deuterium) involved in the coherent spin precession observed in spin-echo envelope modulation. Furthermore, resonant control of the electric current by nuclear spin orientation was achieved with radiofrequency pulses in a double-resonance scheme, implying current control on energy scales one-millionth the magnitude of the thermal energy.

  2. Chapter 11 - Electrical Coupling in the Generation of Vertebrate Motor Rhythms

    DEFF Research Database (Denmark)

    Li, W.C.; Rekling, Jens Christian

    2017-01-01

    Many forms of vertebrate motor activity like chewing, breathing, and locomotion are rhythmic. This requires synchronized discharges of motoneurons controlling different muscle groups in an orchestrated manner. We provide a brief review of the presence and role of electrical coupling in a few well...... of electrical coupling in vertebrate motor rhythms appears to be critically dependent on developmental age, with more crucial functions in the early postnatal period than in the adult.......-studied systems: the pacemaker nucleus in weakly electric fish; mesencephalic trigeminal nucleus involved in chewing rhythms; mammalian spinal motoneurons and excitatory interneurons in the Xenopus tadpole swimming circuit, brainstem circuits underlying breathing rhythm, and central respiratory chemosensitivity...

  3. The path to clean energy: direct coupling of nuclear and renewable technologies for thermal and electrical applications

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States). Nuclear Fuel Performance and Design; Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Process and Decision Systems; Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center

    2015-07-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can significantly reduce environmental impacts in an efficient and economically viable manner while utilizing both clean energy generation sources and hydrocarbon resources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean nuclear and renewable energy generation sources. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing energy (thermal or electrical) where it is needed, when it is needed. For the purposes of this work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. This definition requires coupling of subsystems ‘‘behind’’ the electrical transmission bus, where energy flows are dynamically apportioned as necessary to meet demand and the system has a single connection to the grid that provides dispatchable electricity as required while capital intensive generation assets operate at full capacity. Development of integrated energy systems for an “energy park” must carefully consider the intended location and the associated regional resources, traditional industrial processes, energy delivery infrastructure, and markets to identify viable region-specific system configurations. This paper will provide an overview of the current status of regional hybrid energy system design, development and application of dynamic analysis tools to assess technical and economic performance, and

  4. Electrokinetic transport of aerobic microorganisms under low-strength electric fields.

    Science.gov (United States)

    Maillacheruvu, Krishnanand Y; Chinchoud, Preethi R

    2011-01-01

    To investigate the feasibility of utilizing low strength electric fields to transport commonly available mixed cultures such as those from an activated sludge process, bench scale batch reactor studies were conducted in sand and sandy loam soils. A readily biodegradable substrate, dextrose, was used to test the activity of the transported microorganisms. Electric field strengths of 7V, 10.5V, and 14V were used. Results from this investigation showed that an electric field strength of 0.46 Volts per cm was sufficient to transport activated sludge microorganisms across a sandy loam soil across a distance of about 8 cm in 72 h. More importantly, the electrokinetically transported microbial culture remained active and viable after the transport process and was biodegrade 44% of the dextrose in the soil medium. Electrokinetic treatment without microorganisms resulted in removal of 37% and the absence of any treatment yielded a removal of about 15%.

  5. Some results on the neutron transport and the coupling of equations

    International Nuclear Information System (INIS)

    Bal, G.

    1997-01-01

    Neutron transport in nuclear reactors is well modeled by the linear Boltzmann transport equation. Its resolution is relatively easy but very expensive. To achieve whole core calculations, one has to consider simpler models, such as diffusion or homogeneous transport equations. However, the solutions may become inaccurate in particular situations (as accidents for instance). That is the reason why we wish to solve the equations on small area accurately and more coarsely on the remaining part of the core. It is than necessary to introduce some links between different discretizations or modelizations. In this note, we give some results on the coupling of different discretizations of all degrees of freedom of the integral-differential neutron transport equation (two degrees for the angular variable, on for the energy component, and two or three degrees for spatial position respectively in 2D (cylindrical symmetry) and 3D). Two chapters are devoted to the coupling of discrete ordinates methods (for angular discretization). The first one is theoretical and shows the well posing of the coupled problem, whereas the second one deals with numerical applications of practical interest (the results have been obtained from the neutron transport code developed at the R and D, which has been modified for introducing the coupling). Next, we present the nodal scheme RTN0, used for the spatial discretization. We show well posing results for the non-coupled and the coupled problems. At the end, we deal with the coupling of energy discretizations for the multigroup equations obtained by homogenization. Some theoretical results of the discretization of the velocity variable (well-posing of problems), which do not deal directly with the purposes of coupling, are presented in the annexes. (author)

  6. Top quark electric dipole and Z gamma gamma couplings at a photon collider

    CERN Document Server

    Poulose, P

    2001-01-01

    Effect of the top quark electric dipole coupling and the Z gamma gamma coupling is studied in the pair production of top quark at a photon collider using CP-violating asymmetries. Our results show that with a photon collider of geometrical luminosity of 20 fb sup - sup 1 it is possible to put limits of the order of 0.1 on the Z gamma gamma coupling and about 2.5x10 sup - sup 1 sup 7 e cm on the top quark electric dipole coupling using these asymmetries.

  7. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    International Nuclear Information System (INIS)

    Jin, L.

    2016-01-01

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.

  8. Beyond sustainable transport. Electric car features and services

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, P.; Pirhonen, V.; Giesecke, R. [Aalto Univ. School of Science, Espoo (Finland). BIT Research Centre

    2011-07-01

    The overall aim of the Finnish SIMBe project (www.SIMBe.fi) is to significantly accelerate the introduction of sustainable electric mobility in Finland. SIMBe stands for Smart Infrastructures for Electric Mobility in Built Environments. The fundamental assumption of the project is that electric (e-) mobility is inherently more sustainable than mobility based on fossil fuels. However, as has been widely recognized in the e-mobility field, the currently used batteries are expensive, often more expensive than the rest of the particular electric vehicle (EV) that they propel. There are two opposite schools of thought how to address this problem, which can be summarized as follows: a) Leave the battery in peace, as it is precious. Use it only to propel the EV of which it is an integral part. Use it instead of fuel, and do not use it for any other applications. The EV's sole purpose is that of a transportation device. b) Make as much use of the battery as possible, as it is precious. Involve vehicle to grid (V2G) or vehicle to house charging. Additionally, invent new features, meanings and services for the battery driven EV, which go distinctively beyond transport. The SIMBe project decided to opt for school (b), based on the smart energy production and distribution scenario, in which electric and hybrid vehicles' batteries will deliver energy on demand to the grid. SIMBe aims to prepare key Finnish industrial players and consumers for the transition to this new energy-transportation paradigm. But how can we replace the conservative understanding of the 'transport only' school by a holistic view of what features, meanings and services are actually possible by using a large scale fleet of 'batteries on wheels'? The Nordic Climate Festival (at) Aalto provided the unique opportunity to tap into the knowledge and creativity of students within the Nordic countries. Being properly prepared and facilitated, a workshop may provide some insights and

  9. Beyond sustainable transport. Electric car features and services

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, P; Pirhonen, V; Giesecke, R [Aalto Univ. School of Science, Espoo (Finland). BIT Research Centre

    2011-07-01

    The overall aim of the Finnish SIMBe project (www.SIMBe.fi) is to significantly accelerate the introduction of sustainable electric mobility in Finland. SIMBe stands for Smart Infrastructures for Electric Mobility in Built Environments. The fundamental assumption of the project is that electric (e-) mobility is inherently more sustainable than mobility based on fossil fuels. However, as has been widely recognized in the e-mobility field, the currently used batteries are expensive, often more expensive than the rest of the particular electric vehicle (EV) that they propel. There are two opposite schools of thought how to address this problem, which can be summarized as follows: a) Leave the battery in peace, as it is precious. Use it only to propel the EV of which it is an integral part. Use it instead of fuel, and do not use it for any other applications. The EV's sole purpose is that of a transportation device. b) Make as much use of the battery as possible, as it is precious. Involve vehicle to grid (V2G) or vehicle to house charging. Additionally, invent new features, meanings and services for the battery driven EV, which go distinctively beyond transport. The SIMBe project decided to opt for school (b), based on the smart energy production and distribution scenario, in which electric and hybrid vehicles' batteries will deliver energy on demand to the grid. SIMBe aims to prepare key Finnish industrial players and consumers for the transition to this new energy-transportation paradigm. But how can we replace the conservative understanding of the 'transport only' school by a holistic view of what features, meanings and services are actually possible by using a large scale fleet of 'batteries on wheels'? The Nordic Climate Festival (at) Aalto provided the unique opportunity to tap into the knowledge and creativity of students within the Nordic countries. Being properly prepared and facilitated, a workshop may provide some insights and ideas. In scope of the

  10. Fluid transport with time on peritoneal dialysis: the contribution of free water transport and solute coupled water transport

    NARCIS (Netherlands)

    Coester, Annemieke M.; Smit, Watske; Struijk, Dirk G.; Krediet, Raymond T.

    2009-01-01

    Ultrafiltration in peritoneal dialysis occurs through endothelial water channels (free water transport) and together with solutes across small pores: solute coupled water transport. A review is given of cross-sectional studies and on the results of longitudinal follow-up

  11. Methodology for coupling computational fluid dynamics and integral transport neutronics

    International Nuclear Information System (INIS)

    Thomas, J. W.; Zhong, Z.; Sofu, T.; Downar, T. J.

    2004-01-01

    The CFD code STAR-CD was coupled to the integral transport code DeCART in order to provide high-fidelity, full physics reactor simulations. An interface program was developed to perform the tasks of mapping the STAR-CD mesh to the DeCART mesh, managing all communication between STAR-CD and DeCART, and monitoring the convergence of the coupled calculations. The interface software was validated by comparing coupled calculation results with those obtained using an independently developed interface program. An investigation into the convergence characteristics of coupled calculations was performed using several test models on a multiprocessor LINUX cluster. The results indicate that the optimal convergence of the coupled field calculation depends on several factors, to include the tolerance of the STAR-CD solution and the number of DeCART transport sweeps performed before exchanging data between codes. Results for a 3D, multi-assembly PWR problem on 12 PEs of the LINUX cluster indicate the best performance is achieved when the STAR-CD tolerance and number of DeCART transport sweeps are chosen such that the two fields converge at approximately the same rate. (authors)

  12. Electronic Maxwell demon in the coherent strong-coupling regime

    Science.gov (United States)

    Schaller, Gernot; Cerrillo, Javier; Engelhardt, Georg; Strasberg, Philipp

    2018-05-01

    We consider an external feedback control loop implementing the action of a Maxwell demon. Applying control actions that are conditioned on measurement outcomes, the demon may transport electrons against a bias voltage and thereby effectively converts information into electric power. While the underlying model—a feedback-controlled quantum dot that is coupled to two electronic leads—is well explored in the limit of small tunnel couplings, we can address the strong-coupling regime with a fermionic reaction-coordinate mapping. This exact mapping transforms the setup into a serial triple quantum dot coupled to two leads. We find that a continuous projective measurement of the central dot occupation would lead to a complete suppression of electronic transport due to the quantum Zeno effect. In contrast, by using a microscopic detector model we can implement a weak measurement, which allows for closure of the control loop without transport blockade. Then, in the weak-coupling regime, the energy flows associated with the feedback loop are negligible, and dominantly the information gained in the measurement induces a bound for the generated electric power. In the strong coupling limit, the protocol may require more energy for operating the control loop than electric power produced, such that the whole device is no longer information dominated and can thus not be interpreted as a Maxwell demon.

  13. Modular coupling of transport and chemistry: theory and model applications

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1994-06-01

    For the description of complex processes in the near-field of a radioactive waste repository, the coupling of transport and chemistry is necessary. A reason for the relatively minor use of coupled codes in this area is the high amount of computer time and storage capacity necessary for calculations by conventional codes, and lack of available data. The simple application of the sequentially coupled code MCOTAC, which couples one-dimensional advective, dispersive and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium, shows some promising features with respect to applicability to relevant problems. Transport, described by a random walk of multi-species particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term to ensure mass conservation. The modular-structured code was applied to three problems: a) incongruent dissolution of hydrated silicate gels, b) dissolution of portlandite and c) calcite dissolution and hypothetical dolomite precipitation. This allows for a comparison with other codes and their applications. The incongruent dissolution of cement phases, important for degradation of cementitious materials in a repository, can be included in the model without the problems which occur with a directly coupled code. The handling of a sharp multi-mineral front system showed a much faster calculation time compared to a directly coupled code application. Altogether, the results are in good agreement with other code calculations. Hence, the chosen modular concept of MCOTAC is more open to an easy extension of the code to include additional processes like sorption, kinetically controlled processes, transport in two or three spatial dimensions, and adaptation to new developments in computing (hardware and software), an important factor for applicability. (author) figs., tabs., refs

  14. Electric currents couple spatially separated biogeochemical processes in marine sediment

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik

    2010-01-01

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact 1, 2, 3, 4 . Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can...... be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...

  15. Thermal and electrical transport measurements of low-dimensional correlated electron systems; Thermische und elektrische Transportuntersuchungen an niederdimensionalen korrelierten Elektronensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Steckel, Frank

    2015-10-27

    In this work electrical and thermal transport measurements of a antiferromagnetically ordered iridate and of superconducting FeAs-based high-temperature superconductors are presented and analyzed. The iridates are compounds with strong spin-orbit coupling. In the two-dimensional representative Sr{sub 2}IrO{sub 4} this yields isolating behavior with simultaneous antiferromagnetically ordered spin-orbit moments. Thus, Sr{sub 2}IrO{sub 4} is a model system for studying magnetic excitations in iridates. The analysis of the heat transport yields for the first time clear-cut evidence for magnetic heat conductivity in iridates. The extracted magnetic mean free path uncovers scattering processes of the magnons contributing to the heat transport and draws conclusions about the excitations of the spin-orbit coupled system. The FeAs-superconductors have mainly two-dimensional transport of carriers due to their layered crystal structure. The phase diagrams of these materials consist of ordering phenomena of magnetism, superconductivity and structural distortion. The main focus is on the reaction of the transport coefficients to the developed phases in representatives of the 111- and 122-families upon chemical doping in and out of the two-dimensional plane. With the help of resistivity and magnetic susceptibility phase diagrams are constructed. In selected cases, the Hall coefficient as well as electro-thermal transport coefficients are used to study the phase diagram in detail. The majority of these investigations yield omnipresent electrical ordering phenomena, which are named nematic phase. The measurement of the heat conductivity and the Nernst coefficient in doped BaFe{sub 2}As{sub 2} show that these transport coefficients are dominantly influenced by fluctuations which are preceeding the nematic phase. From the Nernst data conclusions are deduced about the driving mechanisms of the correlated electron system yielding the phase transitions.

  16. URBAN PUBLIC TRANSPORT WITH THE USE OF ELECTRIC BUSES – DEVELOPMENT TENDENCIES

    Directory of Open Access Journals (Sweden)

    Stanisław KRAWIEC

    2016-12-01

    Full Text Available The programing documents of the European Union determine the direction of transport systems development, including large cities and agglomerations. The context of these actions which aim to transform into ecologically clean and sustainable transport system is a significant reduction of greenhouse gas emissions. Assuming that public transport will significantly reduce the use of combustion-powered buses, studies on urban logistic enabling the use of electric buses for public transport are needed. The article presents the variants and scenarios for electric buses implementation in urban public transport, as well as the decision algorithm to support electric bus implementation based on technological, organisational, economic and ecological variables.

  17. Electricity transport regimes: their impact on cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, Erwan [COGEN, Europe (Belgium)

    2000-12-01

    In many cases the main product of cogeneration is heat and the surplus electricity is sold to the grid. However, the economics of cogeneration can be influenced by transport networks (transmission and distribution): the structure of network pricing is relatively new. In a recent note from COGEN Europe it was recommended that cogenerators who use only the local distribution system should not pay for the transmission system and that tariffs should be structured in sufficient detail for the advantages of decentralisation to be realised. The article is presented under the sub-headings of (i) why is this important? (the omission of the transmission element reduces the overall price of cogeneration); (ii) the advantages of decentralised cogeneration; (iv) the theory - the different systems (the European Directive on electricity market liberalization); (v) the options for transport fees; (vi) current regimes in some EU states (vii) the case of transborder transport; impact of each system on cogeneration; recommendations to policymakers; (viii) the Netherlands and (ix) the UK.

  18. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  19. The Coupled Orbit-Attitude Dynamics and Control of Electric Sail in Displaced Solar Orbits

    Directory of Open Access Journals (Sweden)

    Mingying Huo

    2017-01-01

    Full Text Available Displaced solar orbits for spacecraft propelled by electric sails are investigated. Since the propulsive thrust is induced by the sail attitude, the orbital and attitude dynamics of electric-sail-based spacecraft are coupled and required to be investigated together. However, the coupled dynamics and control of electric sails have not been discussed in most published literatures. In this paper, the equilibrium point of the coupled dynamical system in displaced orbit is obtained, and its stability is analyzed through a linearization. The results of stability analysis show that only some of the orbits are marginally stable. For unstable displaced orbits, linear quadratic regulator is employed to control the coupled attitude-orbit system. Numerical simulations show that the proposed strategy can control the coupled system and a small torque can stabilize both the attitude and orbit. In order to generate the control force and torque, the voltage distribution problem is studied in an optimal framework. The numerical results show that the control force and torque of electric sail can be realized by adjusting the voltage distribution of charged tethers.

  20. Characterization of complementary electric field coupled resonant surfaces

    Science.gov (United States)

    Hand, Thomas H.; Gollub, Jonah; Sajuyigbe, Soji; Smith, David R.; Cummer, Steven A.

    2008-11-01

    We present angle-resolved free-space transmission and reflection measurements of a surface composed of complementary electric inductive-capacitive (CELC) resonators. By measuring the reflection and transmission coefficients of a CELC surface with different polarizations and particle orientations, we show that the CELC only responds to in-plane magnetic fields. This confirms the Babinet particle duality between the CELC and its complement, the electric field coupled LC resonator. Characterization of the CELC structure serves to expand the current library of resonant elements metamaterial designers can draw upon to make unique materials and surfaces.

  1. Asymmetry of neoclassical transport by dipole electric field

    International Nuclear Information System (INIS)

    Wang Zhongtian; Wang Long

    2004-01-01

    Effects of dipole electric fields on neoclassical transport are studied. Large asymmetry in transport is created. The dipole fields, which are in a negative R-direction, reduce the ion drift, increase electron drift, and change the steps of excursion due to collisions. It is found that different levels of dipole field intensities have different types of transport. For the lowest level of the dipole field, the transport returns to the neoclassical one. For the highest level of the dipole field, the transport is turned to be the turbulence transport similar to the pseudo-classical transport. Experimental data may be corresponded to a large level of the dipole field intensity. (authors)

  2. Effect of ambient on electrical transport properties of ultra-thin Au nanowires

    Science.gov (United States)

    Amin, Kazi Rafsanjani; Kundu, Subhajit; Biswas, Sangram; Roy, Ahin; Singh, Abhishek Kumar; Ravishankar, N.; Bid, Aveek

    2016-12-01

    In this letter we present systematic studies of the dynamics of surface adsorption of various chemicals on ultra-thin single crystalline gold nanowires (AuNW) through sensitive resistance fluctuation spectroscopy measurements coupled with ab initio simulations. We show that, contrary to expectations, the adsorption of common chemicals like methanol and acetone has a profound impact on the electrical transport properties of the AuNW. Our measurements and subsequent calculations establish conclusively that in AuNW, semiconductor-like sensitivity to the ambient arises because of changes induced in its local density of states by the surface adsorbed molecules. The extreme sensitivity of the resistance fluctuations of the AuNW to ambient suggests their possible use as solid-state sensors.

  3. Research and development of electric vehicles for clean transportation.

    Science.gov (United States)

    Wada, Masayoshi

    2009-01-01

    This article presents the research and development of an electric vehicle (EV) in Department of Human-Robotics Saitama Institute of Technology, Japan. Electric mobile systems developed in our laboratory include a converted electric automobile, electric wheelchair and personal mobile robot. These mobile systems contribute to realize clean transportation since energy sources and devices from all vehicles, i.e., batteries and electric motors, does not deteriorate the environment. To drive motors for vehicle traveling, robotic technologies were applied.

  4. Electrical coupling between A17 cells enhances reciprocal inhibitory feedback to rod bipolar cells.

    Science.gov (United States)

    Elgueta, Claudio; Leroy, Felix; Vielma, Alex H; Schmachtenberg, Oliver; Palacios, Adrian G

    2018-02-15

    A17 amacrine cells are an important part of the scotopic pathway. Their synaptic varicosities receive glutamatergic inputs from rod bipolar cells (RBC) and release GABA onto the same RBC terminal, forming a reciprocal feedback that shapes RBC depolarization. Here, using patch-clamp recordings, we characterized electrical coupling between A17 cells of the rat retina and report the presence of strongly interconnected and non-coupled A17 cells. In coupled A17 cells, evoked currents preferentially flow out of the cell through GJs and cross-synchronization of presynaptic signals in a pair of A17 cells is correlated to their coupling degree. Moreover, we demonstrate that stimulation of one A17 cell can induce electrical and calcium transients in neighboring A17 cells, thus confirming a functional flow of information through electrical synapses in the A17 coupled network. Finally, blocking GJs caused a strong decrease in the amplitude of the inhibitory feedback onto RBCs. We therefore propose that electrical coupling between A17 cells enhances feedback onto RBCs by synchronizing and facilitating GABA release from inhibitory varicosities surrounding each RBC axon terminal. GJs between A17 cells are therefore critical in shaping the visual flow through the scotopic pathway.

  5. The performance of residential micro-cogeneration coupled with thermal and electrical storage

    Science.gov (United States)

    Kopf, John

    Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the

  6. Modeling of coupled geochemical and transport processes: An overview

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1989-10-01

    Early coupled models associated with fluid flow and solute transport have been limited by assumed conditions of constant temperature, fully saturated fluid flow, and constant pore fluid velocity. Developments including coupling of chemical reactions to variable fields of temperature and fluid flow have generated new requirements for experimental data. As the capabilities of coupled models expand, needs are created for experimental data to be used for both input and validation. 25 refs

  7. The lateral intercellular space as osmotic coupling compartment in isotonic transport

    DEFF Research Database (Denmark)

    Larsen, E.H.; Willumsen, N.J.; Mobjerg, N.

    2009-01-01

    coupling of water absorption to ion flow is energized by lateral Na+/K+ pumps. We show that the theory accounts quantitatively for steady- and time dependent states of solute-coupled fluid uptake by toad skin epithelium. Our experimental results exclude definitively three alternative theories of epithelial......Solute-coupled water transport and isotonic transport are basic functions of low- and high-resistance epithelia. These functions are studied with the epithelium bathed on the two sides with physiological saline of similar composition. Hence, at transepithelial equilibrium water enters...... the epithelial cells from both sides, and with the reflection coefficient of tight junction being larger than that of the interspace basement membrane, all of the water leaves the epithelium through the interspace basement membrane. The common design of transporting epithelia leads to the theory that an osmotic...

  8. The Impact of Intermittent Renewable Production and Market Coupling on the Convergence of French and German Electricity Prices

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Le Pen, Yannick; Phan, Sebastien; Boureau, Charlotte

    2014-10-01

    Interconnecting two adjacent areas of electricity production generates benefits in combined consumer surplus and welfare by allowing electricity to flow from the low cost area to the high cost area. It will lower prices in the high cost area, raise them in the low cost area and will thus have prices in the two areas converge. With unconstrained interconnection capacity, price convergence is, of course, complete and the two areas are merged into a single area. With constrained interconnection capacity, the challenge for transport system operators (TSOs) and market operators is using the available capacity in an optimal manner. This was the logic behind the 'market coupling' mechanism installed by European power market operators in November 2009 in the Central Western Europe (CWE) electricity market, of which France and Germany constitute by far the two largest members. Market coupling aims at optimising welfare by ensuring that buyers and sellers exchange electricity at the best possible price taking into account the combined order books all power exchanges involved as well as the available transfer capacities between different bidding zones. By doing so, interconnection capacity is allocated to those who value it most. As predicted by theory and common sense, electricity prices in France and Germany converged substantially in 2010 and 2011 in the wake of market coupling with substantive increases of consumer surplus. These benefits accrued in both areas. In first approximation, France exports base-load power, while Germany exports peak-load power, thus exporting and importing at different times of the day. However since 2012, electricity prices between France and Germany diverged, a process that accelerated during 2013. The hypothesis this paper is exploring is that this divergence is due to the significant production of variable renewables (wind and solar PV) in Germany, which tends to cluster during certain hours. Typically, solar production around noontime

  9. Synchronizing two coupled chaotic neurons in external electrical stimulation using backstepping control

    International Nuclear Information System (INIS)

    Deng Bin; Wang Jiang; Fei Xiangyang

    2006-01-01

    Backstepping design is a recursive procedure that combines the choice of a Lyapunov function with the design of a controller. In this paper, the backstepping control is used to synchronize two coupled chaotic neurons in external electrical stimulation. The coupled model is based on the nonlinear cable model and only one state variable can be controlled in practice. The backstepping design needs only one controller to synchronize two chaotic systems and it can be applied to a variety of chaotic systems whether they contain external excitation or not, so the two coupled chaotic neurons in external electrical stimulation can be synchronized perfectly by backstepping control. Numerical simulations demonstrate the effectiveness of this design

  10. High-electric-field quantum transport theory for semiconductor superlattices

    International Nuclear Information System (INIS)

    Nguyen Hong Shon; Nazareno, H.N.

    1995-12-01

    Based on the Baym-Kadanoff-Keldysh nonequilibrium Green's functions technique, a quantum transport theory for semiconductor superlattices under high-electric field is developed. This theory is capable of considering collisional broadening, intra-collisional field effects and band transport and hopping regimes simultaneously. Numerical calculations for narrow-miniband superlattices in high electric field, when the hopping regime dominates are in reasonable agreement with experimental results and show a significant deviation from the Boltzmann theory. A semiphenomenological formula for current density in hopping regime is proposed. (author). 60 refs, 4 figs

  11. Electric Field-Controlled Ion Transport In TiO2 Nanochannel.

    Science.gov (United States)

    Li, Dan; Jing, Wenheng; Li, Shuaiqiang; Shen, Hao; Xing, Weihong

    2015-06-03

    On the basis of biological ion channels, we constructed TiO2 membranes with rigid channels of 2.3 nm to mimic biomembranes with flexible channels; an external electric field was employed to regulate ion transport in the confined channels at a high ionic strength in the absence of electrical double layer overlap. Results show that transport rates for both Na+ and Mg2+ were decreased irrespective of the direction of the electric field. Furthermore, a voltage-gated selective ion channel was formed, the Mg2+ channel closed at -2 V, and a reversed relative electric field gradient was at the same order of the concentration gradient, whereas the Na+ with smaller Stokes radius and lower valence was less sensitive to the electric field and thus preferentially occupied and passed the channel. Thus, when an external electric field is applied, membranes with larger nanochannels have promising applications in selective separation of mixture salts at a high concentration.

  12. Challenges and Opportunities of Grid Modernization and Electric Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Robert L. [Dept. of Energy (DOE), Washington DC (United States); Francis, Julieta [Allegheny Science and Technology, Bridgeport, WV (United States); Bogacz, Richard J. [Allegheny Science and Technology, Bridgeport, WV (United States)

    2017-03-31

    Grid investments that support electric vehicle deployments as a part of planned modernization efforts can enable a more efficient and cost-effective transition to electric transportation and allow investor-owned electric companies and public power companies to realize new revenue resources in times of flat or declining loads. This paper discusses the challenges and opportunities associated with an increase in plug-in electric vehicle (PEV) adoption and how working together both sectors stand to benefit from closer integration.

  13. Electrical transport properties of calcium and barium aluminates

    NARCIS (Netherlands)

    Metselaar, R.; Hoefsloot, A.M.

    1987-01-01

    Electrical conductivity and ionic transport numbers have been measured of barium and calcium aluminates with composition CaO·nAl2O3 (n=7/12, 1, 2, 6) and 0.82 BaO·6Al2O3. At room temperatures these compounds are insulators, but at high temperatures mixed conductivity is observed. Ionic transport

  14. Energy Coupling Factor-Type ABC Transporters for Vitamin Uptake in Prokaryotes

    NARCIS (Netherlands)

    Erkens, Guus B.; Dosz-Majsnerowska, Maria; ter Beek, Josy; Slotboom, Dirk Jan

    2012-01-01

    Energy coupling factor (ECF) transporters are a subgroup of ATP-binding cassette (ABC) transporters involved in the uptake of vitamins and micronutrients in prokaryotes. In contrast to classical ABC importers, ECF transporters do not make use of water-soluble substrate binding proteins or domains

  15. Electric transport in the Netherlands in an international perspective. Benchmark electric driving 2012

    International Nuclear Information System (INIS)

    Kroon, P.; Weeda, M.; Appels, D.

    2012-07-01

    This international benchmark on electric mobility has been conducted to compare the Dutch governmental efforts and developments in the field of electric road transport. The countries that have been considered in this benchmark are: Austria, Belgium, Denmark, France, Germany, the Netherlands, Norway, Portugal, Spain, UK, China, USA and South Korea. The Netherlands has a high ambition level with regard to the number of electric vehicles compared to other countries without a large car industry. As for the envisaged number of charging points, the Netherlands is one of the prominent leaders. In the field of R and D, Germany, South Korea and China take the lead, followed by France, the UK, the USA and Austria. However, the benchmark has only looked at specific funds for electric mobility, and has not looked at general R and D and innovation funds. The Netherlands has several electro-mobility field tests, but is not leading in number. However, regarding general market penetration, the Netherlands is one of the leading countries, next to Norway, based on the relative number of passenger cars and commercial vehicles on the road. Norway and Austria are leading countries when it comes to implementation of public charging infrastructure, but also in this field the Netherlands has a prominent position in the group of countries that follow. In the current pre-commercial phase, the introduction of electric transportation in the Netherlands is supported by a high-level advisory group, the so-called Formula E-Team. This group consists of representatives and experts from industry and (scientific) society, and acts as a figurehead for electric transport. The group advises on coordination of actions to stimulate not only electro- mobility, but also innovation which should lead to new economic activities. Currently, about two hundred companies are already active in the field of electro-mobility in the Netherlands, including some top players and many SMEs (Small Medium Enterprises). The

  16. Transport Through a Precessing Spin Coupled to Noncollinearly Polarized Ferromagnetic Leads

    International Nuclear Information System (INIS)

    Wang Xianchao; Xin Zihua; Feng Liya

    2010-01-01

    The quantum electronic transport through a precessing magnetic spin coupled to noncollinearly polarized ferromagnetic leads (F-MS-F) has been studied in this paper. The nonequilibrium Green function approach is used to calculate local density of states (LDOS) and current in the presence of external bias. The characters of LDOS and the electronic current are obtained. The tunneling current is investigated for different precessing angle and different configurations of the magnetization of the leads. The investigation reveals that when the precessing angle takes θ < π/2 and negative bias is applied, the resonant tunneling current appears, otherwise, it appears when positive bias is applied. When the leads are totally polarized and the precessing angel takes 0, the tunneling current changes with the configuration of two leads; and it becomes zero when the two leads are antiparallel. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Emissions of greenhouse gases from the use of transportation fuels and electricity

    International Nuclear Information System (INIS)

    DeLuchi, M.A.

    1991-11-01

    This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO 2 ), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO 2 -equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO 2 -equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles

  18. Study on Earthquake Response of High Voltage Electrical Equipment Coupling System with Flexible Busbar

    Science.gov (United States)

    Liu, Chuncheng; Qu, Da; Wang, Chongyang; Lv, Chunlei; Li, Guoqiang

    2017-12-01

    With the rapid development of technology and society, all walks of life in China are becoming more and more dependent on power systems. When earthquake occurs, the electrical equipment of substation is prone to damage because of its own structural features, top-heavy, and brittleness of main body. At the same time, due to the complex coupling of the soft electrical connection of substation electrical equipment, the negative impact can not be estimated. In this paper, the finite element model of the coupling system of the single unit of high voltage electrical equipment with the connecting soft bus is established and the seismic response is analysed. The results showed that there is a significant difference between the simple analysis for the seismic response of electrical equipment monomer and the analytical results of electrical equipment systems, and the impact on different electrical equipment is different. It lays a foundation for the future development of seismic performance analysis of extra high voltage electrical equipment.

  19. Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses.

    Science.gov (United States)

    Smith, Kyle C; Weaver, James C

    2011-08-19

    Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (∼16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Analysis of the coupling coordination between transportation infrastructure investment and economic development in Hubei province

    Directory of Open Access Journals (Sweden)

    Wenxia Zhai

    2017-06-01

    Full Text Available The relationship between transportation infrastructure investment and regional economic growth has been the focus of domestic and foreign academic research. Using the models of coupling degree and coupling coordination degree, this paper calculated the coupling degree and coupling coordination degree between the comprehensive level of transportation infrastructure investment and economic development in Hubei province and its 17 cities, and analyzed its temporal and spatial characteristics. The result showed that, from 2001 to 2013, the coupling and coupling coordination between transportation infrastructure investment and economic development in Hubei province were on a steady rise in the time sequence characteristics. It experienced the upgrade from the uncoordinated – nearly uncoordinated – barely coordinated – intermediately coordinated stages. In the year of 2013, the coupling and coupling coordination of transportation infrastructure investment and economic development in the 17 prefecture-level cities of Hubei Province showed a very uneven spatial difference. Good coordination, primary coordination, barely coordinate, and barely in-coordination are distributed in the province. The average coordination degree of the 17 prefecture-level cities in Hubei is relatively low, and there is a negative tend to expand the difference. This study has confirmed the relationship between transportation infrastructure investment and the economic development to be in an interactive coupling and coordination, but in different regions and different stages, the degree of coordination has obvious spatial and temporal differences.

  1. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  2. ITS, TIGER System of Coupled Electron Photon Transport by Monte-Carlo

    International Nuclear Information System (INIS)

    Halbleib, J.A.; Mehlhorn, T.A.; Young, M.F.

    1996-01-01

    1 - Description of program or function: ITS permits a state-of-the-art Monte Carlo solution of linear time-integrated coupled electron/ photon radiation transport problems with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. 2 - Method of solution: Through a machine-portable utility that emulates the basic features of the CDC UPDATE processor, the user selects one of eight codes for running on a machine of one of four (at least) major vendors. With the ITS-3.0 release the PSR-0245/UPEML package is included to perform these functions. The ease with which this utility is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is maximized by employing the best available cross sections and sampling distributions, and the most complete physical model for describing the production and transport of the electron/ photon cascade from 1.0 GeV down to 1.0 keV. Flexibility of construction permits the codes to be tailored to specific applications and the capabilities of the codes to be extended to more complex applications through update procedures. 3 - Restrictions on the complexity of the problem: - Restrictions and/or limitations for ITS depend upon the local operating system

  3. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Geohegan, David B [Knoxville, TN; Guillorn, Michael [Brooktondale, NY

    2009-02-17

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  4. A Loose Relationship: Incomplete H+/Sugar Coupling in the MFS Sugar Transporter GlcP.

    Science.gov (United States)

    Bazzone, Andre; Zabadne, Annas J; Salisowski, Anastasia; Madej, M Gregor; Fendler, Klaus

    2017-12-19

    The glucose transporter from Staphylococcus epidermidis, GlcP Se , is a homolog of the human GLUT sugar transporters of the major facilitator superfamily. Together with the xylose transporter from Escherichia coli, XylE Ec , the other prominent prokaryotic GLUT homolog, GlcP Se , is equipped with a conserved proton-binding site arguing for an electrogenic transport mode. However, the electrophysiological analysis of GlcP Se presented here reveals important differences between the two GLUT homologs. GlcP Se , unlike XylE Ec , does not perform steady-state electrogenic transport at symmetrical pH conditions. Furthermore, when a pH gradient is applied, partially uncoupled transport modes can be generated. In contrast to other bacterial sugar transporters analyzed so far, in GlcP Se sugar binding, translocation and release are also accomplished by the deprotonated transporter. Based on these experimental results, we conclude that coupling of sugar and H + transport is incomplete in GlcP Se . To verify the viability of the observed partially coupled GlcP Se transport modes, we propose a universal eight-state kinetic model in which any degree of coupling is realized and H + /sugar symport represents only a specific instance. Furthermore, using sequence comparison with strictly coupled XylE Ec and similar sugar transporters, we identify an additional charged residue that may be essential for effective H + /sugar symport. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Indirect Inverse Substructuring Method for Multibody Product Transport System with Rigid and Flexible Coupling

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2015-01-01

    Full Text Available The aim of this paper is to develop a new frequency response function- (FRF- based indirect inverse substructuring method without measuring system-level FRFs in the coupling DOFs for the analysis of the dynamic characteristics of a three-substructure coupled product transport system with rigid and flexible coupling. By enforcing the dynamic equilibrium conditions at the coupling coordinates and the displacement compatibility conditions, a closed-form analytical solution to inverse substructuring analysis of multisubstructure coupled product transport system is derived based on the relationship of easy-to-monitor component-level FRFs and the system-level FRFs at the coupling coordinates. The proposed method is validated by a lumped mass-spring-damper model, and the predicted coupling dynamic stiffness is compared with the direct computation, showing exact agreement. The method developed offers an approach to predict the unknown coupling dynamic stiffness from measured FRFs purely. The suggested method may help to obtain the main controlling factors and contributions from the various structure-borne paths for product transport system.

  6. Electric field-mediated transport of plasmid DNA in tumor interstitium in vivo.

    Science.gov (United States)

    Henshaw, Joshua W; Zaharoff, David A; Mossop, Brian J; Yuan, Fan

    2007-11-01

    Local pulsed electric field application is a method for improving non-viral gene delivery. Mechanisms of the improvement include electroporation and electrophoresis. To understand how electrophoresis affects pDNA delivery in vivo, we quantified the magnitude of electric field-induced interstitial transport of pDNA in 4T1 and B16.F10 tumors implanted in mouse dorsal skin-fold chambers. Four different electric pulse sequences were used in this study, each consisted of 10 identical pulses that were 100 or 400 V/cm in strength and 20 or 50 ms in duration. The interval between consecutive pulses was 1 s. The largest distance of transport was obtained with the 400 V/cm and 50 ms pulse, and was 0.23 and 0.22 microm/pulse in 4T1 and B16.F10 tumors, respectively. There were no significant differences in transport distances between 4T1 and B16.F10 tumors. Results from in vivo mapping and numerical simulations revealed an approximately uniform intratumoral electric field that was predominantly in the direction of the applied field. The data in the study suggested that interstitial transport of pDNA induced by a sequence of ten electric pulses was ineffective for macroscopic delivery of genes in tumors. However, the induced transport was more efficient than passive diffusion.

  7. Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter.

    Science.gov (United States)

    Zhang, Ji-Long; Zheng, Qing-Chuan; Yu, Li-Ying; Li, Zheng-Qiang; Zhang, Hong-Xing

    2016-08-22

    Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs.

  8. Las aplicaciones del comercio electrónico en un contrato de transporte

    Directory of Open Access Journals (Sweden)

    Manuel Guillermo Sarmiento

    2002-01-01

    Full Text Available Colombia es hoy signataria de numerosos convenios internacionales de carácter multilateral sobre el contrato de transporte en sus diversas modalidades; muchos de estos Convenios no admiten la sustitución de los documentos de transporte por medios o sistemas electrónicos de mensaje de datos. Sin embargo, considerando la naturaleza consensual del contrato de transporte, se evidencia que dichos documentos sólo cumplen una función ad-probationem y la nueva ley colombiana de comercio electrónico admite los mensajes de datos como medios de prueba. ¿Cómo armonizar las obligaciones contraídas por el Estado colombiano en virtud de los convenios internacionales antes mencionados con los principios previstos en la ley 527 de 1999 en relación con la admisibilidad y fuerza probatoria de los mensajes de datos? Pueden sustituirse los documentos de transporte por documentos electrónicos? En el presente artículo, un experto en derecho del transporte, responde al interrogante.

  9. Development scheme for the public electricity transport network - 2006-2020

    International Nuclear Information System (INIS)

    2006-01-01

    After having discussed the role of the development scheme and its mains requirements, presented its important components (energy needs, energy transport needs), and described its elaboration mode, this report gives an overview of the present status of the electricity transport network in France: 400.000 volts transport and interconnection networks, 225.000 volts and high voltage networks, development objectives, development context, transport network characteristics in 2006 (country gridding, development dynamics and consumption growth). Then, it presents a set of hypotheses about consumption, production and European exchanges. It identifies different types of constraints (customer connection, supply safety, electric and economic performance, robustness against extreme climate phenomena) and presents a method to assess these constraints (simulation of situations at risk, supply quality analysis, works expertise). The last part present the middle- and long-term constraints for the network

  10. Efficient modeling of reactive transport phenomena by a multispecies random walk coupled to chemical equilibrium

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1996-01-01

    Safety assessments for radioactive waste repositories require a detailed knowledge of physical, chemical, hydrological, and geological processes for long time spans. In the past, individual models for hydraulics, transport, or geochemical processes were developed more or less separately to great sophistication for the individual processes. Such processes are especially important in the near field of a waste repository. Attempts have been made to couple at least two individual processes to get a more adequate description of geochemical systems. These models are called coupled codes; they couple predominantly a multicomponent transport model with a chemical reaction model. Here reactive transport is modeled by the sequentially coupled code MCOTAC that couples one-dimensional advective, dispersive, and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium. Transport, described by a random walk of multispecies particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term. The modular-structured code was applied to incongruent dissolution of hydrated silicate gels, to movement of multiple solid front systems, and to an artificial, numerically difficult heterogeneous redox problem. These applications show promising features with respect to applicability to relevant problems and possibilities of extensions

  11. Metallic electrical transport in inter-graphitic planes of an individual tubular carbon nanocone

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q; Gao, R X; Qu, S L [Department of Optics and Electronics Science, Harbin Institute of Technology at Wei Hai, Weihai 264209 (China); Li, J J; Gu, C Z [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)], E-mail: wq19750505@tom.com

    2009-04-08

    Tubular carbon cones (TCCs) with a herring-bone-like graphitic structure are synthesized on gold wire via the bias-assisted hot filament chemical vapor deposition (HFCVD) method. The electrical transport properties of an individual TCC are studied in the temperature range from 300 to 500 K by using a double probe scanning electron microscopy (DPSEM) in situ electrical measurement system. The high-resistance I-V characteristics of W-TCC-Au back-to-back double junctions show that electrons tunnel through the W-TCC junction, while thermoionic transport through the Au-TCC junction contributes to low-resistance properties. Temperature dependence of the electrical characteristics indicates that inter-graphitic-plane electrical transport in TCC is metallic.

  12. Numerical analysis of coupled water transport in wood with a focus on the coupling parameter sorption

    DEFF Research Database (Denmark)

    Hozjan, T.; Turk, G.; Rodman, U.

    2011-01-01

    This paper presents a study of sorption rate function in a so-called multi-Fickian or multi-phase model. This model describes the complex moisture transport system in wood, which consists of separate water-vapour and bound-water diffusion interacting through sorption. In the numerical example inf...... influence of the sorption rate function on water transport is presented. It can be seen that the sorption rate function has a noticeable influence on coupled water transport in wood....

  13. Vision on Scarcity of Transportation. Policy with regard to scarcity of transportation capacity in the electricity grid

    International Nuclear Information System (INIS)

    Bruin, K.; Fransen, M.; Kranenburg, J.

    2009-01-01

    The Dutch Competitive Authority NMa established increasing problems that are related to the (possible future) scarcity in transportation capacity in the electricity grid. This vision document aims to inform market parties about the general vision of NMa in relation to the scarcity issue. This document first addresses the problems related to scarcity in transport capacity in the electricity grid. Next policy developments in this area are discussed and NMa's vision is elaborated and explained [nl

  14. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field.

    Science.gov (United States)

    Su, Jiaye; Guo, Hongxia

    2011-01-25

    The transport of water molecules through nanopores is not only crucial to biological activities but also useful for designing novel nanofluidic devices. Despite considerable effort and progress that has been made, a controllable and unidirectional water flow is still difficult to achieve and the underlying mechanism is far from being understood. In this paper, using molecular dynamics simulations, we systematically investigate the effects of an external electric field on the transport of single-file water molecules through a carbon nanotube (CNT). We find that the orientation of water molecules inside the CNT can be well-tuned by the electric field and is strongly coupled to the water flux. This orientation-induced water flux is energetically due to the asymmetrical water-water interaction along the CNT axis. The wavelike water density profiles are disturbed under strong field strengths. The frequency of flipping for the water dipoles will decrease as the field strength is increased, and the flipping events vanish completely for the relatively large field strengths. Most importantly, a critical field strength E(c) related to the water flux is found. The water flux is increased as E is increased for E ≤ E(c), while it is almost unchanged for E > E(c). Thus, the electric field offers a level of governing for unidirectional water flow, which may have some biological applications and provides a route for designing efficient nanopumps.

  15. ELECTROMAGNETIC SAFETY OF ELECTRIC TRANSPORT SYSTEMS: MAIN SOURCES AND PARAMETERS OF MAGNETIC FIELDS

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-03-01

    Full Text Available Magnetic fields produced by electric drive vehicles may break electromagnetic safety. For electromagnetic safety and electromagnetic compatibility knowledge about characteristics and sources of magnetic fields in the electric transport is necessary. The article deals with analysis of available data about magnetic fields in electric cars and comparison with results of our measurements carried out in the other types of electrified transport systems.

  16. Laterally coupled circular quantum dots under applied electric field

    Science.gov (United States)

    Duque, C. M.; Correa, J. D.; Morales, A. L.; Mora-Ramos, M. E.; Duque, C. A.

    2016-03-01

    The optical response of a system of two laterally coupled quantum dots with circular cross-sectional shape is investigated within the effective mass approximation, taking into account the effects of the change in the geometrical configuration, the application of an external static electric field, and the presence of a donor impurity center. The first-order dielectric susceptibility is calculated in order to derive the corresponding light absorption and relative refractive index coefficients. The possibility of tuning these optical properties by means of changes in the quantum dot symmetry and the electric field intensity is particularly discussed.

  17. Electric generation and ratcheted transport of contact-charged drops

    Science.gov (United States)

    Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  18. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas.

    Science.gov (United States)

    Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  19. Electrical transport in crystalline phase change materials

    International Nuclear Information System (INIS)

    Woda, Michael

    2012-01-01

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge 2 Sb 2 Te 5 . The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  20. Autaptic effects on synchrony of neurons coupled by electrical synapses

    Science.gov (United States)

    Kim, Youngtae

    2017-07-01

    In this paper, we numerically study the effects of a special synapse known as autapse on synchronization of population of Morris-Lecar (ML) neurons coupled by electrical synapses. Several configurations of the ML neuronal populations such as a pair or a ring or a globally coupled network with and without autapses are examined. While most of the papers on the autaptic effects on synchronization have used networks of neurons of same spiking rate, we use the network of neurons of different spiking rates. We find that the optimal autaptic coupling strength and the autaptic time delay enhance synchronization in our neural networks. We use the phase response curve analysis to explain the enhanced synchronization by autapses. Our findings reveal the important relationship between the intraneuronal feedback loop and the interneuronal coupling.

  1. The electric conductivity of a pion gas

    International Nuclear Information System (INIS)

    Atchison, J.; Rapp, R.

    2017-01-01

    The determination of transport coefficients plays a central role in characterizing hot and dense nuclear matter. In the present work we calculate the electric conductivity of hot hadronic matter by extracting it from the ρ meson spectral function, as its zero-energy limit at vanishing momentum. Using hadronic many-body theory, we calculate the ρ meson self-energy in a pion gas. This requires the dressing of the pion propagators in the ρ self-energy with π - ρ loops, and the inclusion of vertex corrections to maintain gauge invariance. The resulting spectral function is used to calculate the electric conductivity of hot hadronic matter. In particular, we analyze the transport peak of the spectral function and extract its behavior with temperature and coupling strength. Our results suggest that, while obeying lower bounds proposed by conformal field theories in the strong-coupling limit, hot pion matter is a strongly-coupled medium. (paper)

  2. Coupling effect on the electronic transport through dimolecular junctions

    International Nuclear Information System (INIS)

    Long, Meng-Qiu; Wang, Lingling; Chen, Ke-Qiu; Li, Xiao-Fei; Zou, B.S.; Shuai, Z.

    2007-01-01

    Using nonequilibrium Green's function and first-principle calculations, we investigate the transport behaviors of a dimolecule device with two 1,4-Dithiolbenzenes (DTB) sandwiched between two gold electrodes. The results show that the intermolecular coupling effect plays an important role in the conducting behavior of the system. By changing the dihedral angles between the two DTB molecules, namely changing the magnitude of the intermolecular interaction, a different transport behavior can be observed in the system

  3. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    Science.gov (United States)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  4. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    Science.gov (United States)

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  5. Coupled heat transfer in high temperature transporting system with semitransparent/opaque material

    International Nuclear Information System (INIS)

    Du Shenghua; Xia Xinjin

    2010-01-01

    The heat transfer model of the aerodynamic heating coupled with radiative cooling was developed. The thermal protect system includes the higher heat flux region with high temperature semitransparent material, the heat transporting channel and the lower heat flux region with metal. The control volume method was combined with the Monte Carlo method to calculate the coupled heat transfer of the transporting system, and the thermal equilibrium equation for the transporting channel was solved simultaneously. The effect of the aeroheating flux radio, the area ratio of radiative surfaces, the convective heat transfer coefficient of the heat transporting channel on the radiative surface temperature and the fluid temperature in the heat transporting channel were analyzed. The effect of radiation and conduction in the semitransparent material was discussed. The result shows that to increase the convective heat transfer coefficient in heat flux channel can enhance the heat transporting ability of the system, but the main parameter to effect on the temperature of the heat transporting system is the area ratio of radiative surfaces. (authors)

  6. Multiscale Simulations for Coupled Flow and Transport Using the Generalized Multiscale Finite Element Method

    KAUST Repository

    Chung, Eric; Efendiev, Yalchin R.; Leung, Wing; Ren, Jun

    2015-01-01

    In this paper, we develop a mass conservative multiscale method for coupled flow and transport in heterogeneous porous media. We consider a coupled system consisting of a convection-dominated transport equation and a flow equation. We construct a coarse grid solver based on the Generalized Multiscale Finite Element Method (GMsFEM) for a coupled system. In particular, multiscale basis functions are constructed based on some snapshot spaces for the pressure and the concentration equations and some local spectral decompositions in the snapshot spaces. The resulting approach uses a few multiscale basis functions in each coarse block (for both the pressure and the concentration) to solve the coupled system. We use the mixed framework, which allows mass conservation. Our main contributions are: (1) the development of a mass conservative GMsFEM for the coupled flow and transport; (2) the development of a robust multiscale method for convection-dominated transport problems by choosing appropriate test and trial spaces within Petrov-Galerkin mixed formulation. We present numerical results and consider several heterogeneous permeability fields. Our numerical results show that with only a few basis functions per coarse block, we can achieve a good approximation.

  7. Multiscale Simulations for Coupled Flow and Transport Using the Generalized Multiscale Finite Element Method

    KAUST Repository

    Chung, Eric

    2015-12-11

    In this paper, we develop a mass conservative multiscale method for coupled flow and transport in heterogeneous porous media. We consider a coupled system consisting of a convection-dominated transport equation and a flow equation. We construct a coarse grid solver based on the Generalized Multiscale Finite Element Method (GMsFEM) for a coupled system. In particular, multiscale basis functions are constructed based on some snapshot spaces for the pressure and the concentration equations and some local spectral decompositions in the snapshot spaces. The resulting approach uses a few multiscale basis functions in each coarse block (for both the pressure and the concentration) to solve the coupled system. We use the mixed framework, which allows mass conservation. Our main contributions are: (1) the development of a mass conservative GMsFEM for the coupled flow and transport; (2) the development of a robust multiscale method for convection-dominated transport problems by choosing appropriate test and trial spaces within Petrov-Galerkin mixed formulation. We present numerical results and consider several heterogeneous permeability fields. Our numerical results show that with only a few basis functions per coarse block, we can achieve a good approximation.

  8. Electricity as Transportation ``Fuel''

    Science.gov (United States)

    Tamor, Michael

    2013-04-01

    The personal automobile is a surprisingly efficient device, but its place in a sustainable transportation future hinges on its ability use a sustainable fuel. While electricity is widely expected to be such a ``fuel,'' the viability of electric vehicles rests on the validity of three assumptions. First, that the emissions from generation will be significantly lower than those from competing chemical fuels whether `renewable' or fossil. Second, that advances in battery technology will deliver adequate range and durability at an affordable cost. Third, that most customers will accept any functional limitations intrinsic to electrochemical energy storage. While the first two are subjects of active research and vigorous policy debate, the third is treated virtually as a given. Popular statements to the effect that ``because 70% of all daily travel is accomplished in less than 100 miles, mass deployment of 100 mile EVs will electrify 70% of all travel'' are based on collections of one-day travel reports such as the National Household Travel Survey, and so effectively ignore the complexities of individual needs. We have analyzed the day-to-day variations of individual vehicle usage in multiple regions and draw very different conclusions. Most significant is that limited EV range results in a level of inconvenience that is likely to be unacceptable to the vast majority of vehicle owners, and for those who would accept that inconvenience, battery costs must be absurdly low to achieve any economic payback. In contrast, the plug-in hybrid (PHEV) does not suffer range limitations and delivers economic payback for most users at realistic battery costs. More importantly, these findings appear to be universal in developed nations, with labor market population density being a powerful predictor of personal vehicle usage. This ``scalable city'' hypothesis may prove to a powerful predictor of the evolution of transportation in the large cities of the developing world.

  9. Electrical transverse transport in Lorentz plasma with strong magnetic field and collision effect

    International Nuclear Information System (INIS)

    Xie, Baisong; Chong, L.V.; Li, Ziliang

    2015-01-01

    In inertial confinement fusion (ICF), the spontaneous magnetic field formed from laser interacting with the pellet may reach few hundreds of Megagauss (MG) which results in the cyclotron frequency ω at the same order of the collision frequency υ. Electrical transverse transport in this case would become very important so that we study it by the Boltzmann equation for different electron density distribution. For the Maxwell distribution, it is shown that transport coefficients decrease with the increase of Ω (the ratio of ω to υ), which means the electrons would be highly collimated by strong magnetic field. This is attributed to that the electron's gyroradius is smaller than the collisional mean free paths. Moreover, the electrical transverse transport is also studied for quasi-monoenergy distribution with different width ε, which is different from the Maxwell one. It is found that the transport coefficients decrease greatly as quasi-monoenergy degree increases. In particular when ε approaches to zero, i.e. the Delta distribution with almost perfect monoenergy electron density, the electric conductivity doesn't change while the thermal conductivity decreases with Ω. On the other hand the smaller the ε is the less amount the transverse transport exhibits. Our study indicates that they are beneficial to limit the electric transverse transport. (author)

  10. Measuring the impact of market coupling on the Italian electricity market

    International Nuclear Information System (INIS)

    Pellini, Elisabetta

    2012-01-01

    This paper evaluates the impact on the Italian electricity market of replacing the current explicit auction mechanism with market coupling. Maximising the use of the cross-border interconnection capacity, market coupling increases the level of market integration and facilitates the access to low-cost generation by consumers located in high-cost generation countries. Thus, it is expected that a high-priced area such as Italy could greatly benefit from the introduction of this mechanism. In this paper, the welfare benefits are estimated for 2012 under alternative market scenarios, employing the optimal dispatch model ELFO++. The results of the simulations suggest that the improvement in social surplus is likely to be significant, especially when market fundamentals are tight. - Highlights: ► We study the impact on the Italian electricity market of introducing market coupling. ► We estimate welfare benefits under two market scenarios for 2012. ► Scenarios are simulated using the optimal dispatch model ELFO++. ► Welfare gains range between 33 M€/year and 741 M€/year.

  11. Engineering electric and magnetic dipole coupling in arrays of dielectric nanoparticles

    Science.gov (United States)

    Li, Jiaqi; Verellen, Niels; Van Dorpe, Pol

    2018-02-01

    Dielectric nanoparticles with both strong electric and magnetic dipole (ED and MD) resonances offer unique opportunities for efficient manipulation of light-matter interactions. Here, based on numerical simulations, we show far-field diffractive coupling of the ED and MD modes in a periodic rectangular array. By using unequal periodicities in the orthogonal directions, each dipole mode is separately coupled and strongly tuned. With this method, the electric and magnetic response of the dielectric nanoparticles can be deliberately engineered to accomplish various optical functionalities. Remarkably, an ultra-sharp MD resonance with sub-10 nm linewidth is achieved with a large enhancement factor for the magnetic field intensity on the order of ˜103. Our results will find useful applications for the detection of chemical and biological molecules as well as the design of novel photonic metadevices.

  12. Transport analysis of radial electric field in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2004-01-01

    A set of transport equations is analyzed which induces the radial transition of the electric field. A temperature profile which is related with the transport barrier is obtained by use of the theoretical model for the anomalous transport diffusivities. A dependence on the different initial condition is found even if the same values of the control parameters are used in calculations. A study of the temporal evolution of E r is done. We examine the test of the adopted theoretical model for the anomalous transport diffusivities compared with the experimental result in Large Helical Device (LHD). (authors)

  13. Fast Flows in the Magnetotail and Energetic Particle Transport: Multiscale Coupling in the Magnetosphere

    Science.gov (United States)

    Lin, Y.; Wang, X.; Fok, M. C. H.; Buzulukova, N.; Perez, J. D.; Chen, L. J.

    2017-12-01

    The interaction between the Earth's inner and outer magnetospheric regions associated with the tail fast flows is calculated by coupling the Auburn 3-D global hybrid simulation code (ANGIE3D) to the Comprehensive Inner Magnetosphere/Ionosphere (CIMI) model. The global hybrid code solves fully kinetic equations governing the ions and a fluid model for electrons in the self-consistent electromagnetic field of the dayside and night side outer magnetosphere. In the integrated computation model, the hybrid simulation provides the CIMI model with field data in the CIMI 3-D domain and particle data at its boundary, and the transport in the inner magnetosphere is calculated by the CIMI model. By joining the two existing codes, effects of the solar wind on particle transport through the outer magnetosphere into the inner magnetosphere are investigated. Our simulation shows that fast flows and flux ropes are localized transients in the magnetotail plasma sheet and their overall structures have a dawn-dusk asymmetry. Strong perpendicular ion heating is found at the fast flow braking, which affects the earthward transport of entropy-depleted bubbles. We report on the impacts from the temperature anisotropy and non-Maxwellian ion distributions associated with the fast flows on the ring current and the convection electric field.

  14. Decarbonising the Swedish transport sector with electricity or biofuels

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Bo Bramstoft; Skytte, Klaus

    2016-01-01

    Sweden has set long-term energy policy targets which aim at eliminating net greenhouse gas (GHG) emissions by 2050 [1]. Since the production of power and district heating in Sweden is already close to be carbon neutral, a further reduction of GHG emissions have to be seeked in other sectors......, if the ambitious targets of a carbon neutral transport system by 2050 and of being independent from fossil fuels in the vehicle fleet by 2030 have to be achieved [1]. To meet the energy policy targets, radical restructuring of the fuel use and vehicle stock in the transport sector is required. In this context......, this paper develops two alternative scenarios for the transport sector by 2050 – an Electric Vehicles Scenario (EVS) which include a high percentage of electric vehicles and a BIOfuel Scenario (BIOS) with a high percentage of biofuels. The scenario results are compared to the Carbon Neutral Scenario (CNS...

  15. Coupled force-balance and particle-occupation rate equations for high-field electron transport

    International Nuclear Information System (INIS)

    Lei, X. L.

    2008-01-01

    It is pointed out that in the framework of balance-equation approach, the coupled force-balance and particle-occupation rate equations can be used as a complete set of equations to determine the high-field transport of semiconductors in both strong and weak electron-electron interaction limits. We call to attention that the occupation rate equation conserves the total particle number and maintains the energy balance of the relative electron system, and there is no need to introduce any other term in it. The addition of an energy-drift term in the particle-occupation rate equation [Phys. Rev. B 71, 195205 (2005)] is physically inadequate for the violation of the total particle-number conservation and the energy balance. It may lead to a substantial unphysical increase of the total particle number by the application of a dc electric field

  16. Decarbonising the Finnish Transport Sector by 2050: Electricity or Biofuels?

    DEFF Research Database (Denmark)

    Skytte, Klaus; Bramstoft Pedersen, Rasmus

    2018-01-01

    for the transport sector by 2050—one with a high percentage of electric vehicles (EV) and another with a high percentage of biofuels (BIO), and compares the scenario results with a known Carbon-Neutral Scenario (CNS) which is adopted from the Nordic Energy Technology Perspective (IEA in Nordic energy technology...... perspective—pathways to a carbon-neutral energy future, 2013a). The socio-economic value of the total system cost is computed and the system integration of the transport sector with the electricity and heating sectors is simulated with an hourly time resolution. This study finds that a Finnish transport...... of the results is tested through a sensitivity analysis which shows that the costs (investment and maintenance) of biodiesel cars and EV are the most sensitive parameters in the comparative analysis of the scenarios....

  17. Antiresonance and decoupling in electronic transport through parallel-coupled quantum-dot structures with laterally-coupled Majorana zero modes

    Science.gov (United States)

    Zhang, Ya-Jing; Zhang, Lian-Lian; Jiang, Cui; Gong, Wei-Jiang

    2018-02-01

    We theoretically investigate the electronic transport through a parallel-coupled multi-quantum-dot system, in which the terminal dots of a one-dimensional quantum-dot chain are embodied in the two arms of an Aharonov-Bohm interferometer. It is found that in the structures of odd(even) dots, all their even(odd) molecular states have opportunities to decouple from the leads, and in this process antiresonance occurs which are accordant with the odd(even)-numbered eigenenergies of the sub-molecule without terminal dots. Next when Majorana zero modes are introduced to couple laterally to the terminal dots, the antiresonance and decoupling phenomena still co-exist in the quantum transport process. Such a result can be helpful in understanding the special influence of Majorana zero mode on the electronic transport through quantum-dot systems.

  18. Oxygen transport membrane reactor based method and system for generating electric power

    Science.gov (United States)

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  19. Inductively coupled power systems for electric vehicles: a fourth dimension

    Energy Technology Data Exchange (ETDEWEB)

    Bolger, J G

    1980-09-01

    There are three traditional methods of supplying energy to electric vehicles. The inductively coupled roadway power system is a fourth method that adds important new dimensions to electric-vehicle capabilities. It efficiently transfers power to moving vehicles without physical contact, freeing the electric vehicle from most of the applicational constraints imposed by the other three methods. The single power conductor in the roadway carries several hundred amperes of alternating current. The current causes a weak magnetic flux to circulate through the air above it when a vehicle's power pickup is not present. When a vehicle's pickup is suported over the inductor, a more intense flux circulates through the steel cores in the road and in the pickup. Applications, electrical safety, and present status of the technology are discussed in the paper presented at the St. Louis EXPO '80.

  20. Transport of electric charge in insulators

    International Nuclear Information System (INIS)

    Lopez C, E.

    1979-01-01

    In this work a review is made of important concepts in the study of the transport of electric charge in insulators. These concepts are: electrical contacts, transport regimes as viewed in the I-V characteristics, and photoinjection processes by internal photemission of holes or electrons from metals or semiconductors into insulators or by a virtual electrode using strongly absorbed light. Experimental results of photoinjection of holes and electrons into sulfur single crystals are analyzed using these concepts. The observation of the Mott-Gurney transition is reported for the first time. This is the transition between the region of space charge limited currents (SCLC) and the region of saturation of the current as a function of the applied voltage. A modified Mott-Gurney theoretical model is presented that is able to explain the whole I-V characteristic for uv and the internal photoemission of hopes and uv photoinjection of electrons. For the case of internal photoemission of electrons the conventional space charge limited current theory for an exponential distribution of traps is able to explain the experimental data. It is found that the crystals are of high purity since the total density of traps, as calculated from their exponential distribution, is Nsub(t) equals 1.8 X 10 14 cm -3 . (author)

  1. Asymmetry in electrical coupling between neurons alters multistable firing behavior

    Science.gov (United States)

    Pisarchik, A. N.; Jaimes-Reátegui, R.; García-Vellisca, M. A.

    2018-03-01

    The role of asymmetry in electrical synaptic connection between two neuronal oscillators is studied in the Hindmarsh-Rose model. We demonstrate that the asymmetry induces multistability in spiking dynamics of the coupled neuronal oscillators. The coexistence of at least three attractors, one chaotic and two periodic orbits, for certain coupling strengths is demonstrated with time series, phase portraits, bifurcation diagrams, basins of attraction of the coexisting states, Lyapunov exponents, and standard deviations of peak amplitudes and interspike intervals. The experimental results with analog electronic circuits are in good agreement with the results of numerical simulations.

  2. Application of column tests and electrical resistivity methods for leachate transport monitoring

    Directory of Open Access Journals (Sweden)

    Wychowaniak Dorota

    2015-09-01

    Full Text Available Development of the human civilization leads to the pollution of environment. One of the contamination which are a real threat to soil and groundwater are leachates from landfills. In this paper the solute transport through soil was considered. For this purpose, the laboratory column tests of chlorides tracer and leachates transport on two soil samples have been carried out. Furthermore, the electrical resistivity method was applied as auxiliary tool to follow the movements of solute through the soil column what allowed to compare between the results obtained with column test method and electrical resistivity measurements. Breakthrough curves obtained by conductivity and resistivity methods represents similar trends which leads to the conclusion about the suitability of electrical resistivity methods for contamination transport monitoring in soil-water systems.

  3. Some results on the neutron transport and the coupling of equations; Quelques resultats sur le transport neutronique et le couplage d`equations

    Energy Technology Data Exchange (ETDEWEB)

    Bal, G. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    Neutron transport in nuclear reactors is well modeled by the linear Boltzmann transport equation. Its resolution is relatively easy but very expensive. To achieve whole core calculations, one has to consider simpler models, such as diffusion or homogeneous transport equations. However, the solutions may become inaccurate in particular situations (as accidents for instance). That is the reason why we wish to solve the equations on small area accurately and more coarsely on the remaining part of the core. It is than necessary to introduce some links between different discretizations or modelizations. In this note, we give some results on the coupling of different discretizations of all degrees of freedom of the integral-differential neutron transport equation (two degrees for the angular variable, on for the energy component, and two or three degrees for spatial position respectively in 2D (cylindrical symmetry) and 3D). Two chapters are devoted to the coupling of discrete ordinates methods (for angular discretization). The first one is theoretical and shows the well posing of the coupled problem, whereas the second one deals with numerical applications of practical interest (the results have been obtained from the neutron transport code developed at the R and D, which has been modified for introducing the coupling). Next, we present the nodal scheme RTN0, used for the spatial discretization. We show well posing results for the non-coupled and the coupled problems. At the end, we deal with the coupling of energy discretizations for the multigroup equations obtained by homogenization. Some theoretical results of the discretization of the velocity variable (well-posing of problems), which do not deal directly with the purposes of coupling, are presented in the annexes. (author). 34 refs.

  4. Electrical and Quench Performance of the First MICE Coupling Coil

    International Nuclear Information System (INIS)

    Tartaglia, M. A.; Carcagno, R.; Makulski, A.; Nogiec, Jerzy; Orris, D.; Pilipenko, R.; Sylvester, C.; Caspi, S.; Pan, H.; Prestemon, S.; Virostek, S.

    2014-01-01

    The first MICE Coupling Coil has been tested in a conduction-cooled environment in the new Solenoid Test Facility at Fermilab. We present an overview of the power and quench protection scheme, and report on the electrical and quench performance results obtained during cold power tests of the magnet

  5. Intrinsic and extrinsic electrical and thermal transport of bulk black phosphorus

    Science.gov (United States)

    Hu, Sile; Xiang, Junsen; Lv, Meng; Zhang, Jiahao; Zhao, Hengcan; Li, Chunhong; Chen, Genfu; Wang, Wenhong; Sun, Peijie

    2018-01-01

    We report a comprehensive investigation of the electrical, thermal, and thermoelectric transport properties of bulk single-crystalline black phosphorus in wide temperature (2-300 K) and field (0-9 T) ranges. Electrical transport below T ≈ 250 K is found to be dominated by extrinsic hole-type charge carriers with large mobility exceeding 104 cm2/V s at low temperatures. While thermal transport measurements reveal an enhanced in-plane thermal conductivity maximum κ = 180 W/m K at T ≈ 25 K, it appears still to be largely constrained by extrinsic phonon scattering processes, e.g., the electron-phonon process, in addition to intrinsic umklapp scattering. The thermoelectric power and Nernst effect seem to be strongly influenced by ambipolar transport of charge carriers with opposite signs in at least the high-temperature region above 200 K, which diminishes the thermoelectric power factor of this material. Our results provide a timely update to the transport properties of bulk black phosphorus for future fundamental and applied research.

  6. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  7. Spin-dependent electrical transport in Fe-MgO-Fe heterostructures

    Directory of Open Access Journals (Sweden)

    A A Shokri

    2016-09-01

    Full Text Available In this paper, spin-dependent electrical transport properties are investigated in a single-crystal magnetic tunnel junction (MTJ which consists of two ferromagnetic Fe electrodes separated by an MgO insulating barrier. These properties contain electric current, spin polarization and tunnel magnetoresistance (TMR. For this purpose, spin-dependent Hamiltonian is described for Δ1 and Δ5 bands in the transport direction. The transmission is calculated by Green's function formalism based on a single-band tight-binding approximation. The transport properties are investigated as a function of the barrier thickness in the limit of coherent tunneling. We have demonstrated that dependence of the TMR on the applied voltage and barrier thickness. Our numerical results may be useful for designing of spintronic devices. The numerical results may be useful in designing of spintronic devices.

  8. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  9. Coupling between a geochemical model and a transport model of dissolved elements

    International Nuclear Information System (INIS)

    Jacquier, P.

    1988-10-01

    In order to assess the safety analysis of an underground repository, the transport of radioelements in groundwater and their interactions with the geological medium are modelled. The objective of this work is the setting up and experimental validation of the coupling of a geochemical model with a transport model of dissolved elements. A laboratory experiment was developed at the CEA center of Cadarache. Flow-through experiments were carried out on columns filled with crushed limestone, where several inflow conditions were taken into account as the temperature, the presence of a pollutant (strontium chloride) at different concentrations. The results consist of the evolution of the chemical composition of the water at the outlet of the column. The final aim of the study is to explain these results with a coupled model where geochemical and transport phenomena are modelled in a two-step procedure. This code, called STELE, was built by introducing a geochemical code, CHIMERE, into an existing transport code, METIS. At this stage, the code CHIMERE can take into account: any chemical reaction in aqueous phase (complexation, acid-base reaction, redox equilibrium), dissolution-precipitation of minerals and solid phases, dissolution-degassing of gas. The paper intends to describe the whole process leading to the coupling which can be forecasted over the next years between geochemical and transport models

  10. Charge Injection and Transport in Metal/Polymer Chains/Metal Sandwich Structure

    International Nuclear Information System (INIS)

    Hai-Hong, Li; Dong-Mei, Li; Yuan, Li; Kun, Gao; De-Sheng, Liu; Shi-Jie, Xie

    2008-01-01

    Using the tight-binding Su–Schrieffer–Heeger model and a nonadiabatic dynamic evolution method, we study the dynamic processes of the charge injection and transport in a metal/two coupled conjugated polymer chains/metal structure. It is found that the charge interchain transport is determined by the strength of the electric field and the magnitude of the voltage bias applied on the metal electrode. The stronger electric field and the larger voltage bias are both in favour of the charge interchain transport. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Low-frequency transient electric and magnetic fields coupling to child body

    International Nuclear Information System (INIS)

    Ozen, S.

    2008-01-01

    Much of the research related to residential electric and magnetic field exposure focuses on cancer risk for children. But until now only little knowledge about coupling of external transient electric and magnetic fields with the child's body at low frequency transients existed. In this study, current densities, in the frequency range from 50 Hz up to 100 kHz, induced by external electric and magnetic fields to child and adult human body, were investigated, as in residential areas, electric and magnetic fields become denser in this frequency band. For the calculations of induced fields and current density, the ellipsoidal body models are used. Current density induced by the external magnetic field (1 μT) and external electric field (1 V/m) is estimated. The results of this study show that the transient electric and magnetic fields would induce higher current density in the child body than power frequency fields with similar field strength. (authors)

  12. The Predominance of Electric Transport in Synaptic Transmission

    OpenAIRE

    Hamid Reza Noori

    2008-01-01

    The quantitative description of the motion of neurotransmitters in the synaptic cleft appears to be one of the most difficult problems in the modeling of synapses. Here we show in contradiction to the common view, that this process is merely governed by electric transport than diffusion forces.

  13. Single-Wire Electric-Field Coupling Power Transmission Using Nonlinear Parity-Time-Symmetric Model with Coupled-Mode Theory

    Directory of Open Access Journals (Sweden)

    Xujian Shu

    2018-03-01

    Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.

  14. Wentzel-Bardeen singularity in coupled Luttinger liquids: Transport properties

    International Nuclear Information System (INIS)

    Martin, T.

    1994-01-01

    The recent progress on 1 D interacting electrons systems and their applications to study the transport properties of quasi one dimensional wires is reviewed. We focus on strongly correlated elections coupled to low energy acoustic phonons in one dimension. The exponents of various response functions are calculated, and their striking sensitivity to the Wentzel-Bardeen singularity is discussed. For the Hubbard model coupled to phonons the equivalent of a phase diagram is established. By increasing the filling factor towards half filling the WB singularity is approached. This in turn suppresses antiferromagnetic fluctuations and drives the system towards the superconducting regime, via a new intermediate (metallic) phase. The implications of this phenomenon on the transport properties of an ideal wire as well as the properties of a wire with weak or strong scattering are analyzed in a perturbative renormalization group calculation. This allows to recover the three regimes predicted from the divergence criteria of the response functions

  15. Transport spectroscopy of coupled donors in silicon nano-transistors

    Science.gov (United States)

    Moraru, Daniel; Samanta, Arup; Anh, Le The; Mizuno, Takeshi; Mizuta, Hiroshi; Tabe, Michiharu

    2014-01-01

    The impact of dopant atoms in transistor functionality has significantly changed over the past few decades. In downscaled transistors, discrete dopants with uncontrolled positions and number induce fluctuations in device operation. On the other hand, by gaining access to tunneling through individual dopants, a new type of devices is developed: dopant-atom-based transistors. So far, most studies report transport through dopants randomly located in the channel. However, for practical applications, it is critical to control the location of the donors with simple techniques. Here, we fabricate silicon transistors with selectively nanoscale-doped channels using nano-lithography and thermal-diffusion doping processes. Coupled phosphorus donors form a quantum dot with the ground state split into a number of levels practically equal to the number of coupled donors, when the number of donors is small. Tunneling-transport spectroscopy reveals fine features which can be correlated with the different numbers of donors inside the quantum dot, as also suggested by first-principles simulation results. PMID:25164032

  16. Coupling of neutron transport equations. First results; Couplage d`equations en transport neutronique. premiere approche 1D monocinetique

    Energy Technology Data Exchange (ETDEWEB)

    Bal, G.

    1995-07-01

    To achieve whole core calculations of the neutron transport equation, we have to follow this 2 step method: space and energy homogenization of the assemblies; resolution of the homogenized equation on the whole core. However, this is no more valid when accidents occur (for instance depressurization causing locally strong heterogeneous media). One solution consists then in coupling two kinds of resolutions: a fine computation on the damaged cell (fine mesh, high number of energy groups) coupled with a coarse one everywhere else. We only deal here with steady state solutions (which already live in 6D spaces). We present here two such methods: The coupling by transmission of homogenized sections and the coupling by transmission of boundary conditions. To understand what this coupling is, we first restrict ourselves to 1D with respect to space in one energy group. The first two chapters deal with a recall of basic properties of the neutron transport equation. We give at chapter 3 some indications of the behaviour of the flux with respect to the cross sections. We present at chapter 4 some couplings and give some properties. Chapter 5 is devoted to a presentation of some numerical applications. (author). 9 refs., 7 figs.

  17. Hopping transport and electrical conductivity in one-dimensional systems with off-diagonal disorder

    International Nuclear Information System (INIS)

    Ma Songshan; Xu Hui; Li Yanfeng; Song Zhaoquan

    2007-01-01

    In this paper, we present a model to describe hopping transport and electrical conductivity of one-dimensional systems with off-diagonal disorder, in which electrons are transported via hopping between localized states. We find that off-diagonal disorder leads to delocalization and drastically enhances the electrical conductivity of systems. The model also quantitatively explains the temperature and electrical field dependence of the conductivity in one-dimensional systems with off-diagonal disorder. In addition, we also show the dependence of the conductivity on the strength of off-diagonal disorder

  18. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1985-01-01

    This contract stipulated separate pieces of work to consider mass transport in the far-field of a repository, and more detailed geochemical modelling of the groundwater in the near-field. It was envisaged that the far-field problem would be tackled by numerical solutions to the classical advection-diffusion equation obtained by the finite element method. For the near-field problem the feasibility of coupling existing geochemical equilibrium codes to the three dimensional groundwater flow codes was to be investigated. This report is divided into two sections with one part devoted to each aspect of this contract. (author)

  19. Inter-dot coupling effects on transport through correlated parallel

    Indian Academy of Sciences (India)

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states ...

  20. The Research of Regression Method for Forecasting Monthly Electricity Sales Considering Coupled Multi-factor

    Science.gov (United States)

    Wang, Jiangbo; Liu, Junhui; Li, Tiantian; Yin, Shuo; He, Xinhui

    2018-01-01

    The monthly electricity sales forecasting is a basic work to ensure the safety of the power system. This paper presented a monthly electricity sales forecasting method which comprehensively considers the coupled multi-factors of temperature, economic growth, electric power replacement and business expansion. The mathematical model is constructed by using regression method. The simulation results show that the proposed method is accurate and effective.

  1. Transport modelling including radial electric field and plasma rotation

    International Nuclear Information System (INIS)

    Fukuyama, A.; Fuji, Y.; Itoh, S.-I.

    1994-01-01

    Using a simple turbulent transport model with a constant diffusion coefficient and a fixed temperature profile, the density profile in a steady state and the transient behaviour during the co and counter neutral beam injection are studied. More consistent analysis has been initiated with a turbulent transport model based on the current diffusive high-n ballooning mode. The enhancement of the radial electric field due to ion orbit losses and the reduction of the transport due to the poloidal rotation shear are demonstrated. The preliminary calculation indicates a sensitive temperature dependence of the density profile. (author)

  2. Coupled heat-electromagnetic simulation of inductive charging stations for electric vehicles

    NARCIS (Netherlands)

    Kaufmann, C.; Günther, M.; Klagges, D.; Richwin, M.; Schöps, S.; Maten, ter E.J.W.

    2012-01-01

    Coupled electromagnetic-heat problems have been studied for induction or inductive heating, for dielectric heating, for testing of corrosion, for detection of cracks, for hardening of steel, and more recently for inductive charging of electric vehicles. In nearly all cases a simple co-simulation is

  3. Coupled heat-electromagnetic simulation of inductive charging stations for electric vehicles

    NARCIS (Netherlands)

    Kaufmann, C.; Günther, M.; Klagges, D.; Richwin, M.; Schöps, S.; Maten, ter E.J.W.; Fontes, M.; Günther, M.; Marheineke, N.

    2014-01-01

    Coupled electromagnetic-heat problems have been studied for induction or inductive heating, for dielectric heating, for testing of corrosion, for detection of cracks, for hardening of steel, and more recently for inductive charging of electric vehicles. In nearly all cases a simple co-simulation is

  4. Geometry and transport in a model of two coupled quadratic nonlinear waveguides

    DEFF Research Database (Denmark)

    Stirling, James R.; Bang, Ole; Christiansen, Peter Leth

    2008-01-01

    This paper applies geometric methods developed to understand chaos and transport in Hamiltonian systems to the study of power distribution in nonlinear waveguide arrays. The specific case of two linearly coupled X(2) waveguides is modeled and analyzed in terms of transport and geometry in the pha...

  5. 2013 International Conference on Electrical and Information Technologies for Rail Transportation

    CERN Document Server

    Liu, Zhigang; Qin, Yong; Zhao, Minghua; Diao, Lijun

    2014-01-01

    Proceedings of the 2013 International Conference on Electrical and Information Technologies for Rail Transportation (EITRT2013) collects the latest research in this field, including a wealth of state-of-the-art research theories and applications in intelligent computing, information processing, communication technology, automatic control, etc. The objective of the proceedings is to provide a major interdisciplinary forum for researchers, engineers, academics and industrial professionals to present the most innovative research on and developments in the field of rail transportation electrical and information technologies. Contributing authors from academia, industry and the government also offer inside views of new, interdisciplinary solutions.

  6. Coupled full core neutron transport/CFD simulations of pressurized water reactors

    International Nuclear Information System (INIS)

    Kochunas, B.; Stimpson, S.; Collins, B.; Downar, T.; Brewster, R.; Baglietto, E.; Yan, J.

    2012-01-01

    Recently as part of the CASL project, a capability to perform 3D whole-core coupled neutron transport and computational fluid dynamics (CFD) calculations was demonstrated. This work uses the 2D/1D transport code DeCART and the commercial CFD code STAR-CCM+. It builds on previous CASL work demonstrating coupling for smaller spatial domains. The coupling methodology is described along with the problem simulated and results are presented for fresh hot full power conditions. An additional comparison is made to an equivalent model that uses lower order T/H feedback to assess the importance and cost of high fidelity feedback to the neutronics problem. A simulation of a quarter core Combustion Engineering (CE) PWR core was performed with the coupled codes using a Fixed Point Gauss-Seidel iteration technique. The total approximate calculation requirements are nearly 10,000 CPU hours and 1 TB of memory. The problem took 6 coupled iterations to converge. The CFD coupled model and low order T/H feedback model compared well for global solution parameters, with a difference in the critical boron concentration and average outlet temperature of 14 ppm B and 0.94 deg. C, respectively. Differences in the power distribution were more significant with maximum relative differences in the core-wide pin peaking factor (Fq) of 5.37% and average relative differences in flat flux region power of 11.54%. Future work will focus on analyzing problems more relevant to CASL using models with less approximations. (authors)

  7. Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity

    International Nuclear Information System (INIS)

    Wolfram, Paul; Wiedmann, Thomas

    2017-01-01

    Highlights: •This research assesses life-cycle carbon impacts of different powertrains. •We illustrate a transition to low-carbon vehicles in a hybrid IO-LCA model. •Different electricity and transport scenarios are integrated in the model. •With Australia’s current grid-mix, electric vehicles offer no mitigation potential. •Using renewable energy, electric vehicle carbon footprints can be cut by 66%. -- Abstract: Recent life cycle assessments confirmed the greenhouse gas emission reduction potential of renewable electricity and electric vehicle technologies. However, each technology is usually assessed separately and not within a consistent macro-economic, multi-sectoral framework. Here we present a multi-regional input-output based hybrid approach with integrated scenarios to facilitate the carbon footprint assessment of all direct and indirect effects of a transition to low-emission transportation and electricity generation technologies in Australia. The work takes into account on-road energy consumption values that are more realistic than official drive-cycle energy consumption figures used in previous work. Accounting for these factors as well as for Australia’s grid electricity, which heavily relies on coal power, electric vehicles are found to have a higher carbon footprint than conventional vehicles, whereas hybrid electric vehicles have the lowest. This means that – from a carbon footprint perspective – powertrain electrification is beneficial only to a certain degree at the current stage. This situation can be changed by increasing shares of renewable electricity in the grid. In our best-case scenario, where renewable energy accounts for 96% of the electricity mix in 2050, electric vehicle carbon footprints can be cut by 66% by 2050 relative to 2009. In the business-as-usual scenario (36% renewable electricity share by 2050), electric vehicles can reach a 56% reduction if fossil fuel power plants significantly increase their efficiencies

  8. Coupled processes of fluid flow, solute transport, and geochemical reactions in reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongkon; Schwartz, Franklin W.; Xu, Tianfu; Choi, Heechul, and Kim, In S.

    2004-01-02

    A complex pattern of coupling between fluid flow and mass transport develops when heterogeneous reactions occur. For instance, dissolution and precipitation reactions can change a porous medium's physical properties, such as pore geometry and thus permeability. These changes influence fluid flow, which in turn impacts the composition of dissolved constituents and the solid phases, and the rate and direction of advective transport. Two-dimensional modeling studies using TOUGHREACT were conducted to investigate the coupling between flow and transport developed as a consequence of differences in density, dissolution precipitation, and medium heterogeneity. The model includes equilibrium reactions for aqueous species, kinetic reactions between the solid phases and aqueous constituents, and full coupling of porosity and permeability changes resulting from precipitation and dissolution reactions in porous media. In addition, a new permeability relationship is implemented in TOUGHREACT to examine the effects of geochemical reactions and density difference on plume migration in porous media. Generally, the evolutions in the concentrations of the aqueous phase are intimately related to the reaction-front dynamics. Plugging of the medium contributed to significant transients in patterns of flow and mass transport.

  9. Modelling the role of intrinsic electric fields in microtubules as an additional control mechanism of bi-directional intracellular transport.

    Science.gov (United States)

    Sataric, M V; Budinski-Petkovic, L; Loncarevic, I; Tuszynski, J A

    2008-01-01

    Active transport is essential for cellular function, while impaired transport has been linked to diseases such as neuronal degeneration. Much long distance transport in cells uses opposite polarity molecular motors of the kinesin and dynein families to move cargos along microtubules. It is clear that many types of cargo are moved by both sets of motors, and frequently in a reverse direction. The general question of how the direction of transport is regulated is still open. The mechanism of the cell's differential control of diverse cargos within the same cytoplasmic background is still unclear as is the answer to the question how endosomes and mitochondria move to different locations within the same cell. To answer these questions we postulate the existence of a local signaling mechanism used by the cell to specifically control different cargos. In particular, we propose an additional physical mechanism that works through the use of constant and alternating intrinsic (endogenous) electric fields as a means of controlling the speed and direction of microtubule-based transport. A specific model is proposed and analyzed in this paper. The model involves the rotational degrees of freedom of the C-termini of tubulin, their interactions and the coupling between elastic and dielectric degrees of freedom. Viscosity of the solution is also included and the resultant equation of motion is found as a nonlinear elliptic equation with dissipation. A particular analytical solution of this equation is obtained in the form of a kink whose properties are analyzed. It is concluded that this solution can be modulated by the presence of electric fields and hence may correspond to the observed behavior of motor protein transport along microtubules.

  10. Electricity resonance-induced fast transport of water through nanochannels.

    Science.gov (United States)

    Kou, Jianlong; Lu, Hangjun; Wu, Fengmin; Fan, Jintu; Yao, Jun

    2014-09-10

    We performed molecular dynamics simulations to study water permeation through a single-walled carbon nanotube with electrical interference. It was found that the water net flux across the nanochannel is greatly affected by the external electrical interference, with the maximal net flux occurred at an electrical interference frequency of 16670 GHz being about nine times as high as the net flux at the low or high frequency range of (80,000 GHz). The above phenomena can be attributed to the breakage of hydrogen bonds as the electrical interference frequency approaches to the inherent resonant frequency of hydrogen bonds. The new mechanism of regulating water flux across nanochannels revealed in this study provides an insight into the water transportation through biological water channels and has tremendous potential in the design of high-flux nanofluidic systems.

  11. Long term energy and emission implications of a global shift to electricity-based public rail transportation system

    International Nuclear Information System (INIS)

    Chaturvedi, Vaibhav; Kim, Son H.

    2015-01-01

    With high reliance on light-duty vehicles in the present, the future of global transportation system is also geared towards private modes, which has significant energy and emission implications. Public transportation has been argued as an alternative strategy for meeting the rising transportation demands of the growing world, especially the poor, in a sustainable and energy efficient way. The present study analyzes an important yet under-researched question – what are the long-term energy and emission implications of an electric rail based passenger transportation system for meeting both long and short distance passenter transportation needs? We analyze a suite of electric rail share scenarios with and without climate policy. In the reference scenario, the transportation system will evolve towards dominance of fossil based light-duty vehicles. We find that an electric rail policy is more successful than an economy wide climate policy in reducing transport sector energy demand and emissions. Economy wide emissions however can only be reduced through a broader climate policy, the cost of which can be reduced by hundreds of billions of dollars across the century when implemented in combination with the transport sector focused electric rail policy. Moreover, higher share of electric rail enhances energy security for oil importing nations and reduces vehicular congestion and road infrastructure requirement as well. -- Highlights: •Economy wide carbon price policy will have little impact on transportation emissions. •Focused energy and emission mitigation policies required for transportation sector. •Large global shift towards electric rail based public transport is one possible option. •Transport sector focused policy will have marginal impact on total global emissions. •A combined transport sector and economy wide policy can reduce costs significantly

  12. Electrical and thermal transport in the quasi-atomic limit of coupled Luttinger liquids

    OpenAIRE

    Szasz, Aaron; Ilan, Roni; Moore, Joel E.

    2016-01-01

    We introduce a new model for quasi one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them...

  13. Effects of pressure and electrical charge on macromolecular transport across bovine lens basement membrane.

    Science.gov (United States)

    Ferrell, Nicholas; Cameron, Kathleen O; Groszek, Joseph J; Hofmann, Christina L; Li, Lingyan; Smith, Ross A; Bian, Aihua; Shintani, Ayumi; Zydney, Andrew L; Fissell, William H

    2013-04-02

    Molecular transport through the basement membrane is important for a number of physiological functions, and dysregulation of basement membrane architecture can have serious pathological consequences. The structure-function relationships that govern molecular transport in basement membranes are not fully understood. The basement membrane from the lens capsule of the eye is a collagen IV-rich matrix that can easily be extracted and manipulated in vitro. As such, it provides a convenient model for studying the functional relationships that govern molecular transport in basement membranes. Here we investigate the effects of increased transmembrane pressure and solute electrical charge on the transport properties of the lens basement membrane (LBM) from the bovine eye. Pressure-permeability relationships in LBM transport were governed primarily by changes in diffusive and convective contributions to solute flux and not by pressure-dependent changes in intrinsic membrane properties. The solute electrical charge had a minimal but statistically significant effect on solute transport through the LBM that was opposite of the expected electrokinetic behavior. The observed transport characteristics of the LBM are discussed in the context of established membrane transport modeling and previous work on the effects of pressure and electrical charge in other basement membrane systems. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Effects of extracellular potassium diffusion on electrically coupled neuron networks

    Science.gov (United States)

    Wu, Xing-Xing; Shuai, Jianwei

    2015-02-01

    Potassium accumulation and diffusion during neuronal epileptiform activity have been observed experimentally, and potassium lateral diffusion has been suggested to play an important role in nonsynaptic neuron networks. We adopt a hippocampal CA1 pyramidal neuron network in a zero-calcium condition to better understand the influence of extracellular potassium dynamics on the stimulus-induced activity. The potassium concentration in the interstitial space for each neuron is regulated by potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion. In addition to potassium diffusion, nearby neurons are also coupled through gap junctions. Our results reveal that the latency of the first spike responding to stimulus monotonically decreases with increasing gap-junction conductance but is insensitive to potassium diffusive coupling. The duration of network oscillations shows a bell-like shape with increasing potassium diffusive coupling at weak gap-junction coupling. For modest electrical coupling, there is an optimal K+ diffusion strength, at which the flow of potassium ions among the network neurons appropriately modulates interstitial potassium concentrations in a degree that provides the most favorable environment for the generation and continuance of the action potential waves in the network.

  15. Calcium-Mediated Regulation of Proton-Coupled Sodium Transport - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schumaker, Karen S [Professor

    2013-10-24

    The long-term goal of our experiments was to understand mechanisms that regulate energy coupling by ion currents in plants. Activities of living organisms require chemical, mechanical, osmotic or electrical work, the energy for which is supplied by metabolism. Adenosine triphosphate (ATP) has long been recognized as the universal energy currency, with metabolism supporting the synthesis of ATP and the hydrolysis of ATP being used for the subsequent work. However, ATP is not the only energy currency in living organisms. A second and very different energy currency links metabolism to work by the movement of ions passing from one side of a membrane to the other. These ion currents play a major role in energy capture and they support a range of physiological processes from the active transport of nutrients to the spatial control of growth and development. In Arabidopsis thaliana (Arabidopsis), the activity of a plasma membrane Na+/H+ exchanger, SALT OVERLY SENSITIVE1 (SOS1), is essential for regulation of sodium ion homeostasis during plant growth in saline conditions. Mutations in SOS1 result in severely reduced seedling growth in the presence of salt compared to the growth of wild type. SOS1 is a secondary active transporter coupling movement of sodium ions out of the cell using energy stored in the transplasma membrane proton gradient, thereby preventing the build-up of toxic levels of sodium in the cytosol. SOS1 is regulated by complexes containing the SOS2 and CALCINEURIN B-LIKE10 (CBL10) or SOS3 proteins. CBL10 and SOS3 (also identified as CBL4) encode EF-hand calcium sensors that interact physically with and activate SOS2, a serine/threonine protein kinase. The CBL10/SOS2 or SOS3/SOS2 complexes then activate SOS1 Na+/H+ exchange activity. We completed our studies to understand how SOS1 activity is regulated. Specifically, we asked: (1) how does CBL10 regulate SOS1 activity? (2) What role do two putative CBL10-interacting proteins play in SOS1 regulation? (3) Are

  16. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  17. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    International Nuclear Information System (INIS)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO 2 -emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market. The

  18. Hybrid Electric Propulsion Technologies for Commercial Transports

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  19. Electron-vibron coupling effects on electron transport via a single-molecule magnet

    Science.gov (United States)

    McCaskey, Alexander; Yamamoto, Yoh; Warnock, Michael; Burzurí, Enrique; van der Zant, Herre S. J.; Park, Kyungwha

    2015-03-01

    We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters, vibrational energies, and electron-vibron coupling strengths of the Fe4 are computed using DFT. A giant spin model is applied to the Fe4 with only two charge states, specifically a neutral state with a total spin S =5 and a singly charged state with S =9 /2 , which is consistent with our DFT result and experiments on Fe4 single-molecule transistors. In sequential electron tunneling, we find that the magnetic anisotropy gives rise to new features in the conductance peaks arising from vibrational excitations. In particular, the peak height shows a strong, unusual dependence on the direction as well as magnitude of applied B field. The magnetic anisotropy also introduces vibrational satellite peaks whose position and height are modified with the direction and magnitude of applied B field. Furthermore, when multiple vibrational modes with considerable electron-vibron coupling have energies close to one another, a low-bias current is suppressed, independently of gate voltage and applied B field, although that is not the case for a single mode with a similar electron-vibron coupling. In the former case, the conductance peaks reveal a stronger B -field dependence than in the latter case. The new features appear because the magnetic anisotropy barrier is of the same order of magnitude as the energies of vibrational modes with significant electron-vibron coupling. Our findings clearly show the interesting interplay between magnetic anisotropy and electron-vibron coupling in electron transport via the Fe4. Similar behavior can be observed in transport via other anisotropic magnetic molecules.

  20. The on-line electric vehicle wireless electric ground transportation systems

    CERN Document Server

    Cho, Dong

    2017-01-01

    This book details the design and technology of the on-line electric vehicle (OLEV) system and its enabling wireless power-transfer technology, the “shaped magnetic field in resonance” (SMFIR). The text shows how OLEV systems can achieve their three linked important goals: reduction of CO2 produced by ground transportation; improved energy efficiency of ground transportation; and contribution to the amelioration or prevention of climate change and global warming. SMFIR provides power to the OLEV by wireless transmission from underground cables using an alternating magnetic field and the reader learns how this is done. This cable network will in future be part of any local smart grid for energy supply and use thereby exploiting local and renewable energy generation to further its aims. In addition to the technical details involved with design and realization of a fleet of vehicles combined with extensive subsurface charging infrastructure, practical issues such as those involved with pedestrian safety are c...

  1. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  2. Lattice Boltzmann based multicomponent reactive transport model coupled with geochemical solver for scale simulations

    NARCIS (Netherlands)

    Patel, R.A.; Perko, J.; Jaques, D.; De Schutter, G.; Ye, G.; Van Breugel, K.

    2013-01-01

    A Lattice Boltzmann (LB) based reactive transport model intended to capture reactions and solid phase changes occurring at the pore scale is presented. The proposed approach uses LB method to compute multi component mass transport. The LB multi-component transport model is then coupled with the

  3. Comparison of all-electric secondary power systems for civil transport

    Science.gov (United States)

    Renz, David D.

    1992-01-01

    Three separate studies have shown operational, weight, and cost advantages for commercial subsonic transport aircraft using an all-electric secondary power system. The first study in 1982 showed that all-electric secondary power systems produced the second largest benefit compared to four other technology upgrades. The second study in 1985 showed a 10 percent weight and fuel savings using an all-electric high frequency (20 kHz) secondary power system. The last study in 1991 showed a 2 percent weight savings using today's technology (400 Hz) in an all-electric secondary power system. This paper will compare the 20 kHz and 400 Hz studies, analyze the 2 to 10 percent difference in weight savings and comment on the common benefits of the all-electric secondary power system.

  4. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering

    KAUST Repository

    El Gharamti, Mohamad; Hoteit, Ibrahim; Valstar, Johan R.

    2013-01-01

    Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data

  5. Transport properties of olivine grain boundaries from electrical conductivity experiments

    Science.gov (United States)

    Pommier, Anne; Kohlstedt, David L.; Hansen, Lars N.; Mackwell, Stephen; Tasaka, Miki; Heidelbach, Florian; Leinenweber, Kurt

    2018-05-01

    Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth's interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo90) samples that had been previously deformed at 1200 °C and 0.3 GPa to shear strains up to γ = 7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700-1400 °C. We observed that (1) the electrical conductivity of samples with a small grain size (3-6 µm) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of 4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.

  6. Coupled Modeling of Flow, Transport, and Deformation during Hydrodynamically Unstable Displacement in Fractured Rocks

    Science.gov (United States)

    Jha, B.; Juanes, R.

    2015-12-01

    Coupled processes of flow, transport, and deformation are important during production of hydrocarbons from oil and gas reservoirs. Effective design and implementation of enhanced recovery techniques such as miscible gas flooding and hydraulic fracturing requires modeling and simulation of these coupled proceses in geologic porous media. We develop a computational framework to model the coupled processes of flow, transport, and deformation in heterogeneous fractured rock. We show that the hydrocarbon recovery efficiency during unstable displacement of a more viscous oil with a less viscous fluid in a fractured medium depends on the mechanical state of the medium, which evolves due to permeability alteration within and around fractures. We show that fully accounting for the coupling between the physical processes results in estimates of the recovery efficiency in agreement with observations in field and lab experiments.

  7. Chemistry-transport coupling and retroactive effects on material properties within the context of a deep geological repository

    International Nuclear Information System (INIS)

    Bildstein, O.

    2010-06-01

    The author gives an overview of his research and teaching activities. His researches first dealt with the development of a simulation of the chemistry/transport coupling and of the retroactive effects on transport parameters, then with the chemistry/transport modelling and its coupling with mechanics, and finally with the multi-scale investigation of porous materials. Perspectives are discussed and publications are indicated

  8. Transport regimes spanning magnetization-coupling phase space

    Science.gov (United States)

    Baalrud, Scott D.; Daligault, Jérôme

    2017-10-01

    The manner in which transport properties vary over the entire parameter-space of coupling and magnetization strength is explored. Four regimes are identified based on the relative size of the gyroradius compared to other fundamental length scales: the collision mean free path, Debye length, distance of closest approach, and interparticle spacing. Molecular dynamics simulations of self-diffusion and temperature anisotropy relaxation spanning the parameter space are found to agree well with the predicted boundaries. Comparison with existing theories reveals regimes where they succeed, where they fail, and where no theory has yet been developed.

  9. Endogenous field feedback promotes the detectability for exogenous electric signal in the hybrid coupled population

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xile; Zhang, Danhong; Wang, Jiang; Yu, Haitao, E-mail: htyu@tju.edu.cn [Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Lu, Meili [School of Informational Technology and Engineering, Tianjin University of Technology and Education, Tianjin 300222 (China); Che, Yanqiu [School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222 (China)

    2015-01-15

    This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance.

  10. Endogenous field feedback promotes the detectability for exogenous electric signal in the hybrid coupled population.

    Science.gov (United States)

    Wei, Xile; Zhang, Danhong; Lu, Meili; Wang, Jiang; Yu, Haitao; Che, Yanqiu

    2015-01-01

    This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance.

  11. Endogenous field feedback promotes the detectability for exogenous electric signal in the hybrid coupled population

    International Nuclear Information System (INIS)

    Wei, Xile; Zhang, Danhong; Wang, Jiang; Yu, Haitao; Lu, Meili; Che, Yanqiu

    2015-01-01

    This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance

  12. Sustainable transport strategy for promoting zero-emission electric scooters in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jenn Jiang [Department of Greenergy, National University of Tainan, Tainan 700 (China)

    2010-06-15

    In Taiwan, the government considers the zero-emission scooters to be a sustainable form of transport like walking, cycling and public transport, which play a vital role to support sustainable urban mobility. Therefore, the development of zero-emission scooters is an important strategy in constructing the sustainable transport network of Taiwan. It is also the government's priorities about the policy of emission-reduction and energy-conservation in the transportation sector. Recently, Taiwan launched a new program for subsidy of purchasing zero-emission scooters, which aimed to shift the petroleum-powered scooters to the electric scooters. The present paper is providing an update review of the promotional programs in developing zero-emission scooters in Taiwan. It introduces the status of the establishment and progress of policy, standards, subsidies to users and manufacturers, practice infrastructure, and technology development. Moreover, the contribution of replacing petrol scooters by zero-emission scooters such as battery-powered electric scooters and fuel cell scooters to reduction in greenhouse gas (GHG) emission and improvement in energy efficiency is evaluated. (author)

  13. Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction

    Science.gov (United States)

    Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing

    2018-06-01

    We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.

  14. Bentonite electrical conductivity: a model based on series–parallel transport

    KAUST Repository

    Lima, Ana T.

    2010-01-30

    Bentonite has significant applications nowadays, among them as landfill liners, in concrete industry as a repairing material, and as drilling mud in oil well construction. The application of an electric field to such perimeters is under wide discussion, and subject of many studies. However, to understand the behaviour of such an expansive and plastic material under the influence of an electric field, the perception of its electrical properties is essential. This work serves to compare existing data of such electrical behaviour with new laboratorial results. Electrical conductivity is a pertinent parameter since it indicates how much a material is prone to conduct electricity. In the current study, total conductivity of a compacted porous medium was established to be dependent upon density of the bentonite plug. Therefore, surface conductivity was addressed and a series-parallel transport model used to quantify/predict the total conductivity of the system. © The Author(s) 2010.

  15. Do Capacity Coupled Electric Fields Accelerate Tibial Stress Fracture Healing

    Science.gov (United States)

    2006-12-01

    MRI confirmed a large coexisting haemangioma which may have confounded perception of stress fracture symptoms. Table 1 is a comprehensive subject...Johnson JR, Light KI, Yuan HA: A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 24...Simmons JW, Jr., Mooney V, Thacker I: Pseudarthrosis after lumbar spine fusion: nonoperative salvage with pulsed electromagnetic fields. Am J

  16. ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2008-04-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.

  17. The effects of Rashba spin-orbit coupling on spin-polarized transport in hexagonal graphene nano-rings and flakes

    Science.gov (United States)

    Laghaei, M.; Heidari Semiromi, E.

    2018-03-01

    Quantum transport properties and spin polarization in hexagonal graphene nanostructures with zigzag edges and different sizes were investigated in the presence of Rashba spin-orbit interaction (RSOI). The nanostructure was considered as a channel to which two semi-infinite armchair graphene nanoribbons were coupled as input and output leads. Spin transmission and spin polarization in x, y, and z directions were calculated through applying Landauer-Buttiker formalism with tight binding model and the Green's function to the system. In these quantum structures it is shown that changing the size of system, induce and control the spin polarized currents. In short, these graphene systems are typical candidates for electrical spintronic devices as spin filtering.

  18. Charge and Spin Transport in Spin-orbit Coupled and Topological Systems

    KAUST Repository

    Ndiaye, Papa Birame

    2017-01-01

    for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic

  19. Coefficient of electrical transport vacuum arc for metals and alloys

    International Nuclear Information System (INIS)

    Markov, G.V.; Ehjzner, B.A.

    1998-01-01

    In this article the authors propose formulas for estimation coefficient of electrical transport vacuum arc for metals and alloys. They also represent results of analysis principal physical processes which take place in cathode spot vacuum arc

  20. Shortest loops are pacemakers in random networks of electrically coupled axons

    Directory of Open Access Journals (Sweden)

    Nikita eVladimirov

    2012-04-01

    Full Text Available High-frequency oscillations (HFOs are an important part of brain activity in health and disease. However, their origins remain obscure and controversial. One possible mechanism depends on the presence of sparsely distributed gap junctions that electrically couple the axons of principal cells. A plexus of electrically coupled axons is modeled as a random network with bidirectional connections between its nodes. Under certain conditions the network can demonstrate one of two types of oscillatory activity. Type I oscillations (100-200 Hz are predicted to be caused by spontaneously spiking axons in a network with strong (high-conductance gap junctions. Type II oscillations (200-300 Hz require no spontaneous spiking and relatively weak (low-conductance gap junctions, across which spike propagation failures occur. The type II oscillations are reentrant and self-sustained. Here we examine what determines the frequency of type II oscillations. Using simulations we show that the distribution of loop lengths is the key factor for determining frequency in type II network oscillations. We first analyze spike failure between two electrically coupled cells using a model of anatomically reconstructed CA1 pyramidal neuron. Then network oscillations are studied by a cellular automaton model with random network connectivity, in which we control loop statistics. We show that oscillation periods can be predicted from the network's loop statistics. The shortest loop, around which a spike can travel, is the most likely pacemaker candidate.The principle of one loop as a pacemaker is remarkable, because random networks contain a large number of loops juxtaposed and superimposed, and their number rapidly grows with network size. This principle allows us to predict the frequency of oscillations from network connectivity and visa versa. We finally propose that type I oscillations may correspond to ripples, while type II oscillations correspond to so-called fast ripples.

  1. Coupling between solute transport and chemical reactions models

    International Nuclear Information System (INIS)

    Samper, J.; Ajora, C.

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs

  2. Electromagnetic Coupling of Ocean Flow with the Earth System

    Directory of Open Access Journals (Sweden)

    Robert Tyler

    2015-01-01

    Full Text Available The ocean is electromagnetically coupled with the Earth System. This results in momentum transfer, as well as a participation by the ocean in the _ observable electric and magnetic fields. The coupling is typically quite weak and quantitative analyses indicate that many of these connections may be discounted when considering the transfer of momentum. But because of systematic effects there are also cases where an immediate discount is not justified and electromagnetic transfer of ocean momentum should remain within the realm of consideration. For practical considerations, even if the coupling is weak these effects are phenomenologically important because the electric and magnetic fields associated with this coupling offer an observational means for inferring the ocean flow. While in situ measurements of the electric field have long been used to measure ocean transport, new opportunities for remote sensing ocean flow through ground and space magnetic observatories are now being considered. In this article a brief update of the status of these observational methods is given. Extending beyond these established elements of the _ electromagnetic involvement, an attempt is made to provide a quantitative discussion of lesser considered elements of the _ electromagnetic coupling with the mantle and fluid core.

  3. The prototypical proton-coupled oligopeptide transporter YdgR from Escherichia coli facilitates chloramphenicol uptake into bacterial cells

    DEFF Research Database (Denmark)

    Prabhala, Bala K; Aduri, Nanda G; Sharma, Neha

    2018-01-01

    . However, to date no report exists on any specific transport protein that facilitates Cam uptake. The proton-coupled oligopeptide transporter (POT) YdgR from Escherichia coli is a prototypical member of the POT family, functioning in proton-coupled uptake of di- and tripeptides. By following bacterial...

  4. Solar-coupled electric vehicles

    International Nuclear Information System (INIS)

    Willer, B.

    1993-01-01

    An electrical drive is an alternative to the present internal combustion engines. The electric car produces no exhaust gas where it is used and drives practically noiselessly. The energy required for driving is usually taken from an electro-chemical battery. The necessary electricity generation generates emission and CO 2 , depending on the primary energy used. An alternative is provided by electricity generation with the aid of regenerative energy. Apart from hydroelectric and wind energy, solar energy can make a considerable contribution in the future. (orig.) [de

  5. Phonon limited electronic transport in Pb

    DEFF Research Database (Denmark)

    Rittweger, Florian; Hinsche, Nicki Frank; Mertig, Ingrid

    2017-01-01

    We present a fully ab initio based scheme to compute electronic transport properties, i.e. the electrical conductivity σ and thermopower S, in the presence of electron-phonon interaction. We explicitly investigate the k-dependent structure of the Éliashberg spectral function, the coupling strength...

  6. The role of fluctuation-induced transport in a toroidal plasma with strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J. Y.; Kim, Y. C.

    1981-01-01

    Previous work employing digitally implemented spectral analysis techniques is extended to demonstrate that radial fluctuation-induced transport is the dominant ion transport mechanism in an electric field dominated toroidal plasma. Such transport can be made to occur against a density gradient, and hence may have a very beneficial effect on confinement in toroidal plasmas of fusion interest. It is shown that Bohm or classical diffusion down a density gradient, the collisional Pedersen-current mechanism, and the collisionless electric field gradient mechanism described by Cole (1976) all played a minor role, if any, in the radial transport of this plasma.

  7. Effects of finite-β and radial electric fields on neoclassical transport in the Large Helical Device

    International Nuclear Information System (INIS)

    Kanno, R.; Nakajima, N.; Sugama, H.; Okamoto, M.; Ogawa, Y.

    1997-01-01

    Effects of finite-β and radial electric fields on the neoclassical transport in the Large Helical Device are investigated with the DKES (Drift Kinetic Equation Solver) code. In the finite-β configuration, even orbits of deeply trapped particles deviate significantly from magnetic flux surfaces. Thus, neoclassical ripple transport coefficients in the finite-β configuration are several times larger than those in the vacuum configuration under the same condition of temperatures and radial electric fields. When the plasma temperature is several keV, a bifurcation of the electric fields appears under the ambipolarity condition, and sufficient large radial electric fields can be generated. As a result, the ExB drift rectifies orbits of particles and improves significantly the transport coefficients in the finite-β configuration. (author)

  8. Role of an ultrathin platinum seed layer in antiferromagnet-based perpendicular exchange coupling and its electrical manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.Y., E-mail: wangyy@buaa.edu.cn [Department of Physics, Beihang University, Beijing 100191 (China); Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Song, C., E-mail: songcheng@mail.tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang, J.Y. [Department of Physics, Beihang University, Beijing 100191 (China); Pan, F. [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-04-15

    The requirement for low-power consumption advances the development of antiferromagnetic (AFM) spintronics manipulated by electric fields. Here we report an electrical manipulation of metallic AFM moments within IrMn/[Co/Pt] by interface engineering, where ultrathin non-magnetic metals are highlighted between IrMn and ferroelectric substrates. Ultrathin Pt seed layers are proved to be vital in elevating the blocking temperature and enhancing the perpendicular exchange coupling through modulating the domain structures of as-prepared IrMn AFM. Further electrical manipulations of perpendicular magnetic anisotropy crucially verify the indispensable role of pre-deposited ultrathin Pt layers in modulating IrMn antiferromagnetic moments, which is confirmed by the intimate correlation between the electrically manipulating AFM and improving its blocking temperature. Instead of immediate contact between IrMn AFM and ferroelectric substrates in a conventional way, interface engineering by adopting ultrathin seed layers here adds a new twist to the electrical modulation of AFM metals. This would provide scientific basis on how to manipulate AFM moments and optimize the design of practical AFM spintronics. - Highlights: • An alternative for manipulating antiferromagnet by interface engineering is provided. • Ultrathin Pt seed layers are vital in elevating the blocking temperature of IrMn. • Perpendicular exchange coupling in IrMn/[Co/Pt] can be modulated by seed layers. • Ultrathin Pt seed layers enable electrical control of perpendicular exchange coupling.

  9. Role of an ultrathin platinum seed layer in antiferromagnet-based perpendicular exchange coupling and its electrical manipulation

    International Nuclear Information System (INIS)

    Wang, Y.Y.; Song, C.; Zhang, J.Y.; Pan, F.

    2017-01-01

    The requirement for low-power consumption advances the development of antiferromagnetic (AFM) spintronics manipulated by electric fields. Here we report an electrical manipulation of metallic AFM moments within IrMn/[Co/Pt] by interface engineering, where ultrathin non-magnetic metals are highlighted between IrMn and ferroelectric substrates. Ultrathin Pt seed layers are proved to be vital in elevating the blocking temperature and enhancing the perpendicular exchange coupling through modulating the domain structures of as-prepared IrMn AFM. Further electrical manipulations of perpendicular magnetic anisotropy crucially verify the indispensable role of pre-deposited ultrathin Pt layers in modulating IrMn antiferromagnetic moments, which is confirmed by the intimate correlation between the electrically manipulating AFM and improving its blocking temperature. Instead of immediate contact between IrMn AFM and ferroelectric substrates in a conventional way, interface engineering by adopting ultrathin seed layers here adds a new twist to the electrical modulation of AFM metals. This would provide scientific basis on how to manipulate AFM moments and optimize the design of practical AFM spintronics. - Highlights: • An alternative for manipulating antiferromagnet by interface engineering is provided. • Ultrathin Pt seed layers are vital in elevating the blocking temperature of IrMn. • Perpendicular exchange coupling in IrMn/[Co/Pt] can be modulated by seed layers. • Ultrathin Pt seed layers enable electrical control of perpendicular exchange coupling.

  10. MW-Class Electric Propulsion System Designs for Mars Cargo Transport

    Science.gov (United States)

    Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee

    2011-01-01

    Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.

  11. Solar electric propulsion for Mars transport vehicles

    Science.gov (United States)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  12. Transport coefficients for electrons in argon in crossed electric and magnetic rf fields

    International Nuclear Information System (INIS)

    Raspopovic, Z M; Dujko, S; Makabe, T; Petrovic, Z Lj

    2005-01-01

    Monte Carlo simulations of electron transport have been performed in crossed electric and magnetic rf fields in argon. It was found that a magnetic field strongly affects electron transport, producing complex behaviour of the transport coefficients that cannot be predicted on the basis of dc field theory. In particular, it is important that a magnetic field, if it has sufficiently high amplitude, allows energy gain from the electric field only over a brief period of time, which leads to a pulse of directed motion and consequently to cyclotron oscillations being imprinted on the transport coefficients. Furthermore, this may lead to negative diffusion. The behaviour of drift velocities is also interesting, with a linear (sawtooth) dependence for the perpendicular drift velocity and bursts of drift for the longitudinal. Non-conservative effects are, on the other hand, reduced by the increasing magnetic field

  13. Railway diagnosis of electric transport

    Directory of Open Access Journals (Sweden)

    Yushkov Vladimir Sergeevich

    2015-01-01

    Full Text Available The increase in noise level at cities is increasing the requirements to functional interaction of road users - pedestrians and drivers - with the parameters of the environment as a leading component of Afferentation synthesis in the complicated complex of locomotive activity. City noise is one of the most widespread factors of unfavorable living and working conditions. The noise of high intensity provokes diseases, lowers labor activity. At present, many large cities pay much attention to electric vehicles. The authors present an analysis of the poor state of tram track in areas of high noise and vibration of car and under-sleeper base design. A negative effect of noise and vibration on the formation of urban areas environment is shown as well as the impact of these conditions on the person. The advantages of the application of electric transport are specified, noise displacement curve of railway and under sleeper base is plotted depending on the frequency of the applied load and the modulus of elasticity, as well as under sleeper base vibroacceleration depending on time. The authors offer a systematic study on the basis of a mathematical model of the sources of noise in the process of a tram motion.

  14. Coupled electron/photon transport in static external magnetic fields

    International Nuclear Information System (INIS)

    Halbleib, J.A. Sr.; Vandevender, W.H.

    A model is presented which describes coupled electron/photon transport in the presence of static magnetic fields of arbitrary spatial dependence. The method combines state-of-the-art condensed-history electron collisional Monte Carlo and single-scattering photon Monte Carlo, including electron energy-loss straggling and the production and transport of all generations of secondaries, with numerical field integration via the best available variable-step-size Runge-Kutta-Fehlberg or variable-order/variable-step-size Adams PECE differential equation solvers. A three-dimensional cartesian system is employed in the description of particle trajectories. Although the present model is limited to multilayer material configurations, extension to more complex material geometries should not be difficult. Among the more important options are (1) a feature which permits the neglect of field effects in regions where transport is collision dominated and (2) a method for describing the transport in variable-density media where electron energies and material densities are sufficiently low that the density effect on electronic stopping powers may be neglected. (U.S.)

  15. Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production

    International Nuclear Information System (INIS)

    Ni, Meng; Leung, Michael K.H.; Leung, Dennis Y.C.

    2007-01-01

    A mathematical model was developed to simulate the coupled transport/electrochemical reaction phenomena in a solid oxide steam electrolyzer (SOSE) at the micro-scale level. Ohm's law, dusty gas model (DGM), Darcy's law, and the generalized Butler Volmer equation were employed to determine the transport of electronic/ionic charges and gas species as well as the electrochemical reactions. Parametric analyses were performed to investigate the effects of operating parameters and micro-structural parameters on SOSE potential. The results substantiated the fact that SOSE potential could be effectively decreased by increasing the operating temperature. In addition, higher steam molar fraction would enhance the operation of SOSE with lower potential. The effect of particle sizes on SOSE potential was studied with due consideration on the SOSE activation and concentration overpotentials. Optimal particle sizes that could minimize the SOSE potential were obtained. It was also found that decreasing electrode porosity could monotonically decrease the SOSE potential. Besides, optimal values of volumetric fraction of electronic particles were found to minimize electrode total overpotentials. In order to optimize electrode microstructure to minimize SOSE electricity consumption, the concept of 'functionally graded materials (FGM)' was introduced to lower the SOSE potential. The advanced design of particle size graded SOSE was found effective for minimizing electrical energy consumption resulting in efficient SOSE hydrogen production. The micro-scale model was capable of predicting SOSE hydrogen production performance and would be a useful tool for design optimization

  16. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

    Science.gov (United States)

    Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P

    2011-04-01

    Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.

  17. Coupled Membrane Transport Parameters for Ionic Species in All-Vanadium Redox Flow Batteries

    International Nuclear Information System (INIS)

    Ashraf Gandomi, Yasser; Aaron, D.S.; Mench, M.M.

    2016-01-01

    Highlights: • Real-time crossover of vanadium species was investigated with a novel system. • Concentration and electrostatic potential gradient-induced crossover was separated. • Interaction coefficients were introduced to account for state of charge dependence. • Electric-field-induced crossover is asymmetric for charge and discharge processes. • Net vanadium crossover is from negative to positive half-cell at open-circuit. - Abstract: One of the major sources of capacity loss in all-vanadium redox flow batteries (VRFBs) is the undesired transport of active vanadium species across the ion-exchange membrane, generically termed crossover. In this work, a novel system has been designed and built to investigate the concentration- and electrostatic potential gradient-driven crossover for all vanadium species through the membrane in real-time. For this study, a perfluorosulphonic acid membrane separator (Nafion ® 117) was used. The test system utilizes ultraviolet/visible (UV/Vis) spectroscopy to differentiate vanadium ion species and separates contributions to crossover stemming from concentration and electrostatic potential gradients. It is shown that the rate of species transport through the ion-exchange membrane is state of charge dependent and, as a result, interaction coefficients have been deduced which can be used to better estimate expected crossover over a range of operating conditions. The electric field was shown to increase the negative-to-positive transport of V(II)/V(III) and suppress the positive-to-negative transport of V(IV)/V(V) during discharge, with an inverse trend during charging conditions. Electric-field-induced transport coefficients were deduced directly from experimental data.

  18. Hydrogen , Hybrid and Electric Propulsion in a Strategy for Sustainable Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1998-01-01

    Analysis of the scope for application of hydrogen and electric propulsion for improvement of the fuel cycle efficiency and introduction of renewable energy in the transport sector. The paper compares these fuels with each other as well as with other fuels (especially bio fuels) and outlines...... their individual roles in a strategy for sustainable transport. Finally, the fuels are compared to the present fuels....

  19. Reactive transport modeling of coupled inorganic and organic processes in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Adam

    1997-12-31

    The main goals of this project are to develop and apply a reactive transport code for simulation of coupled organic and inorganic processes in the pollution plume in the ground water down-gradient from the Vejen landfill, Denmark. The detailed field investigations in this aquifer have previously revealed a complex pattern of strongly interdependent organic and inorganic processes. These processes occur simultaneously in a flow and transport system where the mixing of reactive species is influenced by the rather complex geology in the vicinity of the landfill. The removal of organic matter is influenced by the presence of various electron acceptors that also are involved in various inorganic geochemical reactions. It was concluded from the investigations that degradation of organic matter, complexation, mineral precipitation and dissolution, ion-exchange and inorganic redox reactions, as a minimum, should be included in the formulation of the model. The coupling of the organic and inorganic processes is developed based on a literature study. All inorganic processes are as an approximation described as equilibriumm processes. The organic processes are described by a maximum degradation rate that is decreased according to the availability of the participants in the processes, the actual pH, and the presence of inhibiting species. The reactive transport code consists of three separate codes, a flow and transport code, a geochemical code, and a biodegradation code. An iterative solution scheme couples the three codes. The coupled code was successfully verified for simple problems for which analytical solutions exist. For more complex problems the code was tested on synthetic cases and expected plume behavior was successfully simulated. Application of the code to the Vejen landfill aquifer was successful to the degree that the redox zonation down-gradient from the landfill was simulated correctly and that several of the simulated plumes showed a reasonable agreement with

  20. Value of non-electric applications of nuclear energy beyond market potential

    International Nuclear Information System (INIS)

    Khamis, I.

    2014-01-01

    Providing process steam at different temperatures, Nuclear Power Plants (NPPs) could be coupled to various types of non-electric applications such as seawater desalination, hydrogen production, district heating or cooling, as well as any energy-demanding process heat industrial application. This will not only make nuclear power a more feasible option helping to accelerate its penetration into the the heat and transportation markets, but also helping to improve their overall thermal efficiencies. Typical thermal efficiencies of NPPs are about 33%. All existing reactor types can be coupled to non-electric application based on cogeneration i.e. the production of electricity and process heat. (authors)

  1. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d' Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  2. Application of Mortar Coupling in Multiscale Modelling of Coupled Flow, Transport, and Biofilm Growth in Porous Media

    Science.gov (United States)

    Laleian, A.; Valocchi, A. J.; Werth, C. J.

    2017-12-01

    Multiscale models of reactive transport in porous media are capable of capturing complex pore-scale processes while leveraging the efficiency of continuum-scale models. In particular, porosity changes caused by biofilm development yield complex feedbacks between transport and reaction that are difficult to quantify at the continuum scale. Pore-scale models, needed to accurately resolve these dynamics, are often impractical for applications due to their computational cost. To address this challenge, we are developing a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled with a mortar method providing continuity at interfaces. We explore two decompositions of coupled pore-scale and continuum-scale regions to study biofilm growth in a transverse mixing zone. In the first decomposition, all reaction is confined to a pore-scale region extending the transverse mixing zone length. Only solute transport occurs in the surrounding continuum-scale regions. Relative to a fully pore-scale result, we find the multiscale model with this decomposition has a reduced run time and consistent result in terms of biofilm growth and solute utilization. In the second decomposition, reaction occurs in both an up-gradient pore-scale region and a down-gradient continuum-scale region. To quantify clogging, the continuum-scale model implements empirical relations between porosity and continuum-scale parameters, such as permeability and the transverse dispersion coefficient. Solutes are sufficiently mixed at the end of the pore-scale region, such that the initial reaction rate is accurately computed using averaged concentrations in the continuum-scale region. Relative to a fully pore-scale result, we find accuracy of biomass growth in the multiscale model with this decomposition improves as the interface between pore-scale and continuum-scale regions moves downgradient where transverse mixing is more fully developed. Also, this

  3. Electre III method in assessment of variants of integrated urban public transport system in Cracow

    Directory of Open Access Journals (Sweden)

    Katarzyna SOLECKA

    2014-12-01

    Full Text Available There is a lot of methods which are currently used for assessment of urban public transport system development and operation e.g. economic analysis, mostly Cost-Benefit Analysis – CBA, Cost-Effectiveness Analysis - CEA, hybrid methods, measurement methods (survey e.g. among passengers and measurement of traffic volume, vehicles capacity etc., and multicriteria decision aiding methods (multicriteria analysis. The main aim of multicriteria analysis is the choice of the most desirable solution from among alternative variants according to different criteria which are difficult to compare against one another. There are several multicriteria methods for assessment of urban public transport system development and operation, e.g. AHP, ANP, Electre, Promethee, Oreste. The paper presents an application of one of the most popular variant ranking methods – Electre III method. The algorithm of Electre III method usage is presented in detail and then its application for assessment of variants of urban public transport system integration in Cracow is shown. The final ranking of eight variants of integration of urban public transport system in Cracow (from the best to the worst variant was drawn up with the application of the Electre III method. For assessment purposes 10 criteria were adopted: economical, technical, environmental, and social; they form a consistent criteria family. The problem was analyzed with taking into account different points of view: city authorities, public transport operators, city units responsible for transport management, passengers and others users. Separate models of preferences for all stakeholders were created.

  4. Effects of overlapping electric double layer on mass transport of a macro-solute across porous wall of a micro/nanochannel for power law fluid.

    Science.gov (United States)

    Bhattacharjee, Saikat; Mondal, Mrinmoy; De, Sirshendu

    2017-05-01

    Effects of overlapping electric double layer and high wall potential on transport of a macrosolute for flow of a power law fluid through a microchannel with porous walls are studied in this work. The electric potential distribution is obtained by coupling the Poisson's equation without considering the Debye-Huckel approximation. The numerical solution shows that the center line potential can be 16% of wall potential at pH 8.5, at wall potential -73 mV and scaled Debye length 0.5. Transport phenomena involving mass transport of a neutral macrosolute is formulated by species advective equation. An analytical solution of Sherwood number is obtained for power law fluid. Effects of fluid rheology are studied in detail. Average Sherwood number is more for a pseudoplastic fluid compared to dilatant upto the ratio of Poiseuille to electroosmotic velocity of 5. Beyond that, the Sherwood number is independent of fluid rheology. Effects of fluid rheology and solute size on permeation flux and concentration of neutral solute are also quantified. More solute permeation occurs as the fluid changes from pseudoplastic to dilatant. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Long-range correlations in a simple stochastic model of coupled transport

    International Nuclear Information System (INIS)

    Larralde, Hernan; Sanders, David P

    2009-01-01

    We study coupled transport in the nonequilibrium stationary state of a model consisting of independent random walkers, moving along a one-dimensional channel, which carry a conserved energy-like quantity, with density and temperature gradients imposed by reservoirs at the ends of the channel. In our model, walkers interact with other walkers at the same site by sharing energy at each time step, but the amount of energy carried does not affect the motion of the walkers. We find that already in this simple model long-range correlations arise in the nonequilibrium stationary state which are similar to those observed in more realistic models of coupled transport. We derive an analytical expression for the source of these correlations, which we use to obtain semi-analytical results for the correlations themselves assuming a local-equilibrium hypothesis. These are in very good agreement with results from direct numerical simulations.

  6. ZZ ENDLIB, Coupled Electron and Photon Transport Library in ENDL Format

    International Nuclear Information System (INIS)

    2002-01-01

    Description of program or function: The LLNL Evaluated Nuclear Data Library has existed since 1958 in a succession of forms and formats. The present form is as a machine-independent character file format and contains data for the evaluated atomic relaxation data library (EADL), the evaluated photon interaction data library (EPDL), and the evaluated electron interaction data library (EEDL). The purpose of these libraries is to furnish data for coupled electron-photon transport calculations. In order to perform coupled photon-electron transport calculations, all three libraries are required. The UCRL-ID-117796 report included in the documentation for this package provides information on the contents and formats for all three libraries, which are included in this package. All of these libraries span atomic numbers, Z, from 1 to 100. Additionally the electron and photon interaction libraries cover the incident particle energy range from 10 eV to 100 GeV

  7. Magnetic and Electrical Transport Properties of Dirac Compound BaMnSb2*

    Science.gov (United States)

    Huang, Silu; Kim, Jisun; Shelton, William. A.; Plummer, Ward; Jin, Rongying

    BaMnSb2 is a layered compound containing Sb square nets that is theoretically predicted to host Dirac fermions. We have carried out experimental investigations on electrical transport and magnetic properties of BaMnSb2 single crystals. Both in-plane (ρab) and c-axis (ρc) resistivities show metallic behavior with a small bump in ρc located near 40 K, while there is large anisotropy ρc / ρab ( 100 at 300 K) that increases with decreasing temperature to 1500 at 2 K. Interestingly, Shubnikov-de Hass (SdH) oscillations are observed for both ρab and ρc over a wide temperature and magnetic field range. Quantitative analysis indicates that large amplitude SdH oscillations result from nearly massless Dirac Fermions. Furthermore, our magnetic measurements indicate an A-type antiferromagnetic magnetic ordering below 286 K where ferromagnetic ordering is observed in the ab plane with antiferromagnetic coupling along the c direction. These results indicate that BaMnSb2 is a 2D magnetic Dirac material. This work is supported by NSF through Grant Number DMR-1504226.

  8. Electrical transport in GaN and InN nanowires; Elektrischer Transport in GaN- und InN-Nanodraehten

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Thomas Fabian

    2008-12-19

    This thesis discusses the analysis of the electrical transport in GaN and InN nanowires at room temperature and deep temperatures. From those measurements two different transport models for those two in matter of the band banding completely different materials have been found. In the investigation of the GaN nanowires the main focus was the electrical transport in dependence of the diameter and the n-doping. With the use of IV-measurements on those MBE grown nanowires with different diameters at dark and under UV illumination as well as the decay of the persistent photocurrent, it was possible to find an for GaN untypical behaviour. The electrical transport in those wires is extremely diameter dependent. The dark current shows space charged limited current. With the help of those cognitions a diameter dependent transport model could be found. The transport phenomena in those wires is based on the diameter depending band bending at the edge of the wires caused by the Fermi level pinning inside the forbidden band. This model can be fit to the data with the three parameter doping, fermi level pinning and wire diameter. On the base of those effects a method to determine the doping concentration inside those wires without field effect measurements and contact resistance has been developed. The defect structure inside those wires has been analysed with the help of spectral photoluminescence measurements. Here several defect bands have been found and it was possible with help of several contacts on one single wire to determine different defect regions along the wire and to explain them by the lattice mismatch between nanowire and substrate. Further temperature depending measurements and investigations on Schottky contacted wires as well as on GaN wires with AlN tunnel structures complete the work on GaN. The electrical characterisation on a large scale of undoped and doped InN nanowires shows linear growth of the dark current with the diameter up to wires of around 100 nm

  9. Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model

    Science.gov (United States)

    Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.

    2009-01-01

    Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.

  10. Linking electricity prices and costs in bottom-up top-down coupling under changing market environments

    OpenAIRE

    Maire, Sophie

    2016-01-01

    Electricity market liberalization is altering pricing mechanisms in wholesale electricity markets, which will affect the effectiveness of climate and energy policies. Models used to simulate such policies must be responsive to pricing rules. We show how this can be done and simulate a tightening of climate and energy policies. We use a soft-coupled framework composed of a top-down dynamic computable general equilibrium model and a bottom-up dynamic electricity supply model. The first simulate...

  11. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters.

    Science.gov (United States)

    Penmatsa, Aravind; Gouaux, Eric

    2014-03-01

    Neurotransmitter transporters are ion-coupled symporters that drive the uptake of neurotransmitters from neural synapses. In the past decade, the structure of a bacterial amino acid transporter, leucine transporter (LeuT), has given valuable insights into the understanding of architecture and mechanism of mammalian neurotransmitter transporters. Different conformations of LeuT, including a substrate-free state, inward-open state, and competitive and non-competitive inhibitor-bound states, have revealed a mechanistic framework for the transport and transport inhibition of neurotransmitters. The current review integrates our understanding of the mechanistic and pharmacological properties of eukaryotic neurotransmitter transporters obtained through structural snapshots of LeuT.

  12. Effects of radial electrical field on neoclassical transport in tokamaks

    International Nuclear Information System (INIS)

    Wang Zhongtian; Le Clair, G.

    1996-07-01

    Neoclassical transport theory for tokamaks in presence of a radial electrical field with shear is developed using Hamiltonian formalism. Diffusion coefficients are derived in both plateau regime including a large electric field and banana regime including the squeezing factor which can greatly affect diffusion at the plasma edge. The scaling on squeezing factor is different from the one given by Shaing and Hazeltine. Rotation speeds are calculated in the scrape-off region. They are in good agreement with measurements on TdeV Tokamak. (2 figs.)

  13. Magneto-transport studies of InAs/GaSb short period superlattices

    International Nuclear Information System (INIS)

    Broadley, Victoria Jane

    2002-01-01

    This thesis studies the transport properties of short period semiconducting InAs/GaSb superlattices in the presence of strong electric and magnetic fields applied parallel to the growth axis. Electrical transport parallel to the growth axis occurs through the superlattice miniband, which have widths varying from three to 30meV. Resonant scattering between confined Landau levels and Stark levels is observed at low temperatures (4.2K). In addition LO-phonon assisted scattering between Landau levels is observed in both type-I GaAs/AIAs and type-ll inAs/GaSb superlattices, which are enhanced in the type-ll system due to the strong interband coupling. K·p band structure calculations show that the interband coupling causes the superlattice miniband energy dispersion to be strongly dependent on the in-plane wavevector and the applied magnetic field. For large applied electric fields, where the miniband is split into discrete Stark levels, strong stark-cyclotron resonance (SCR) features are observed, which occur when the Landau level separation equals to the stark level separation. These resonances are enhanced when compared to SCR in type-I superlattices due to the suppression of miniband conduction in higher lying Landau levels. At low electric fields electrical transport through the superlattice miniband yields characteristic miniband transport features, which are modelled using the Esaki-Tsu miniband transport model. Strong electron - LO-phonon scattering is also observed in InAs/GaSb superlattices, where we report the first observation of miniband transport assisted via the emission of LO-phonons between stark levels in adjacent wells. Below 50K thermally activated behaviour is reported and at high magnetic fields (in the quantum limit) complete localisation of carriers is observed. In this regime LO-phonon delocalised transport in also observed. (author)

  14. Nonlinear thermoelectric properties of molecular junctions with vibrational coupling

    DEFF Research Database (Denmark)

    Leijnse, Martin Christian; Wegewijs, M. R.; Flensberg, Karsten

    2010-01-01

    exchange with both electrodes, investigating how these contribute to the heat and charge transports. We calculate the efficiency and power output of the device operated as a heat to electric power converter in the regime of weak tunnel coupling and phonon exchange rate and identify the optimal operating...

  15. Comparison of all-electric secondary power systems for civil subsonic transports

    Science.gov (United States)

    Renz, David D.

    1992-01-01

    Three separate studies have shown operational, weight, and cost advantages for commercial subsonic transport aircraft using an all-electric secondary power system. The first study in 1982 showed that all-electric secondary power systems produced the second largest benefit compared to four other technology upgrades. The second study in 1985 showed a 10 percent weight and fuel savings using an all-electric high frequency (20 kHz) secondary power system. The last study in 1991 showed a 2 percent weight savings using today's technology (400 Hz) in an all-electric secondary power system. This paper will compare the 20 kHz and 400 Hz studies, analyze the 2 to 10 percent difference in weight savings and comment on the common benefits of the all-electric secondary power system.

  16. Inverse engineering for fast transport and spin control of spin-orbit-coupled Bose-Einstein condensates in moving harmonic traps

    Science.gov (United States)

    Chen, Xi; Jiang, Ruan-Lei; Li, Jing; Ban, Yue; Sherman, E. Ya.

    2018-01-01

    We investigate fast transport and spin manipulation of tunable spin-orbit-coupled Bose-Einstein condensates in a moving harmonic trap. Motivated by the concept of shortcuts to adiabaticity, we design inversely the time-dependent trap position and spin-orbit-coupling strength. By choosing appropriate boundary conditions we obtain fast transport and spin flip simultaneously. The nonadiabatic transport and relevant spin dynamics are illustrated with numerical examples and compared with the adiabatic transport with constant spin-orbit-coupling strength and velocity. Moreover, the influence of nonlinearity induced by interatomic interaction is discussed in terms of the Gross-Pitaevskii approach, showing the robustness of the proposed protocols. With the state-of-the-art experiments, such an inverse engineering technique paves the way for coherent control of spin-orbit-coupled Bose-Einstein condensates in harmonic traps.

  17. Proceedings of the Prop'Elec 2000 colloquium. Advances of electric drive in urban transportation systems; Actes du colloque Prop'Elec 2000. Progres de la traction electrique dans les transports urbains

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This document is the proceedings of Prop'Elec 2000 colloquium on the advances in electric power drive in urban transportation systems. The colloquium comprises 5 sessions dealing with: 1 - public collective electric-powered transportation system: synthesis of urban guided systems (C. Soulas, INRETS), the fast travelator (A. Cote, RATP), the power supply system of METEOR automatic underground railway (P. Lagrange, W. Seiler, RATP); 2 - electrical drive in urban transportation systems: start-up of a thermal engine with super-capacitors (D. Bouquain (CREEBEL), H. Gualous, A. Djerdir, A. Berthon, J.M. Kauffmann (L2ES, IGE)), The LEV (light weight electric vehicle) project in Mendrisio (U. Schwegler, LEV/Suisse), prototype of electrical bike that use a wheel-engine (C. Espanet, F. Gustin, J.M. Kauffmann (IGE), S. Robert, M. Karmous (EICN)), TWIL: a new generation of small electrical bikes (E. Escallot, T. Bontems (EPMI)), thermal and magnetic analysis of a rectilinear movement actuator (J.C. Vannier, M. Kadiri (SUPELEC)), torque undulation and vibrations in automobile electrical drives (A.L. Bui-Van (Renault), A. Fonseca (LEG)); 3 - collective electric-powered transportation systems: STARS: autonomous transportation system with flywheel charging at the station (P. Gibard (Alstom Transport), K. Abuda, J.M. Vinassa (IXL Bordeaux)), Translhor tramway: presentation of the drive system (L. Verdier, LHOR); 4 - electric-powered and hybrid vehicles: batteries for electric-powered vehicles (J.F. Fauvarque, CNAM), Li-ion batteries and their application in automotive industry (T. Faugeras, SAFT), optimized drive systems for electric-powered vehicles (J. Saint-Michel, Leroy Somer), the Citroen Xsara Dynactive (S. Derou, PSA), 5 - electric-powered and hybrid vehicles: the electrical car in tomorrows' city (M. Parent, INRIA), the market of electric-powered vehicles in France and Europe (M. Valet, PSA). (J.S.)

  18. Electric-Field Control of Interfering Transport Pathways in a Single-Molecule Anthraquinone Transistor

    NARCIS (Netherlands)

    Koole, Max; Thijssen, Jos M.; Valkenier, Hennie; Hummelen, Jan C.; van der Zant, Herre S. J.

    It is understood that molecular conjugation plays an important role in charge transport through single-molecule junctions. Here, we investigate electron transport through an anthraquinone based single-molecule three-terminal device. With the use of an electric-field induced by a gate electrode, the

  19. Acousto-electric transport in MgO/ZnO-covered graphene on SiC

    Science.gov (United States)

    Liou, Y.-T.; Hernández-Mínguez, A.; Herfort, J.; Lopes, J. M. J.; Tahraoui, A.; Santos, P. V.

    2017-11-01

    We investigate the acousto-electric transport induced by surface acoustic waves (SAWs) in epitaxial graphene (EG) coated by a MgO/ZnO film. The deposition of a thin MgO layer protects the EG during the sputtering of a piezoelectric ZnO film for the efficient generation of SAWs. We demonstrate by Raman and electric measurements that the coating does not harm the EG structural and electronic properties. We report the generation of two SAW modes with frequencies around 2 GHz. For both modes, we measure acousto-electric currents in EG devices placed in the SAW propagation path. The currents increase linearly with the SAW power, reaching values up to almost two orders of magnitude higher than in previous reports for acousto-electric transport in EG on SiC. Our results agree with the predictions from the classical relaxation model of the interaction between SAWs and a two dimensional electron gas.

  20. Novel electrical transport properties in conducting polymers such as polythiophene and Poly(3-Methylthiophene)

    International Nuclear Information System (INIS)

    Kazama, Shigeo; Masubuchi, Shin-ichi; Matsuyama, Tomochika; Matsushita, Rokuji.

    1994-01-01

    Electric transport properties in most of the conducting organic polymers have provided a riddle that prevents a thorough physical understanding of the conduction mechanism. Major difficulties for approaching the most substantial aspect in the electrical transport properties underlie in complicated higher order structure inherent to polymeric materials consisting of crystalline regions entangled with disordered amorphous regions. In order to clearly understand the origin of the metallic nature of conducting polymers, we have to extract the proper transport properties characteristics of the ordered crystalline regions. We have made a series of experimental studies of the transport properties in conductive polythiophene and poly(3-methylthiophene) obtained with the electrochemical polymerization. For polythiophene, we have investigated both the as-grown samples and the ones that contain controlled amount of dopant species exchanged after the neutralization aiming to see the effect of dopant concentration on the transport properties. (author)

  1. Coupled lattice Boltzmann method for numerical simulations of fully coupled heart and torso bidomain system in electrocardiology

    OpenAIRE

    Corre , Samuel; Belmiloudi , Aziz

    2016-01-01

    International audience; In this work, a modified coupling Lattice Boltzmann Model (LBM) in simulation of cardiac electrophysiology is developed in order to capture the detailed activities of macro- to micro-scale transport processes. The propagation of electrical activity in the human heart through torso is mathematically modeled by bidomain type systems. As transmembrane potential evolves, we take into account domain anisotropical properties using intracellular and extracellular conductivity...

  2. Effects of electric field and Coriolis force on electrohydrodynamic stability of poorly conducting couple stress parallel fluid flow in a channel

    International Nuclear Information System (INIS)

    Shankar, B.M.; Rudraiah, N.

    2013-01-01

    The linear stability of electrohydrodynamic poorly conducting couple stress viscous parallel fluid flow in a channel is studied in the presence of a non-uniform transverse electric field and Coriolis force using energy method and supplemented with Galerkin Technique. The sufficient condition for stability is obtained for sufficiently small values of the Reynolds number, R e . From this condition we show that strengthening or weakening of the stability criterion is dictated by the values of the strength of electric field, the coefficient of couple stress fluid and independent of Taylor number. In particular, it is shown that the interaction of electric field with couple stress is more effective in stabilizing the poorly conducting couple stress fluid compared to that in an ordinary Newtonian viscous fluid. (author)

  3. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  4. Changes in electrical transport and density of states of phase change materials upon resistance drift

    International Nuclear Information System (INIS)

    Krebs, Daniel; Bachmann, Tobias; Jonnalagadda, Prasad; Dellmann, Laurent; Raoux, Simone

    2014-01-01

    Phase-change memory technology has become more mature in recent years. But some fundamental problems linked to the electrical transport properties in the amorphous phase of phase-change materials still need to be solved. The increase of resistance over time, called resistance drift, for example, poses a major challenge for the implementation of multilevel storage, which will eventually be necessary to remain competitive in terms of high storage densities. To link structural properties with electrical transport, a broader knowledge of (i) changes in the density of states (DoS) upon structural relaxation and (ii) the influence of defects on electrical transport is required. In this paper, we present temperature-dependent conductivity and photo-conductivity measurements on the archetype phase change material GeTe. It is shown that trap-limited band transport at high temperatures (above 165 K) and variable range hopping at low temperatures are the predominating transport mechanism. Based on measurements of the temperature dependence of the optical band gap, modulated photo-conductivity and photo-thermal deflection spectroscopy, a DoS model for GeTe was proposed. Using this DoS, the temperature dependence of conductivity and photo-conductivity has been simulated. Our work shows how changes in the DoS (band gap and defect distributions) will affect the electrical transport before and after temperature-accelerated drift. The decrease in conductivity upon annealing can be explained entirely by an increase of the band gap by about 12%. However, low-temperature photo-conductivity measurements revealed that a change in the defect density may also play a role

  5. The potential for western Canada to become a leader in electrically powered land transport

    Energy Technology Data Exchange (ETDEWEB)

    Perl, A.; Gilbert, R. [Simon Fraser Univ., Burnaby, BC (Canada)

    2010-07-01

    Canada's western provinces are among the most oil-intensive jurisdictions in the world. Per capita consumption in 2007 was 70 percent higher than that of eastern Canada. While western Canada will be buffered as a producer of oil, predicted swings in oil prices may disrupt the fiscal capacity of producer provinces. The price of crude oil in western Canada is the same price established in world markets. This paper examined some of the opportunities available for western Canada to move away from oil consumption by becoming a leader in electric traction. Methods of replacing oil-based transportation with the use of electric vehicles were discussed. Western Canada's capacity to produce electricity from renewable resources was evaluated. Economic opportunities related to the electrification of land transport were also examined. The report concluded by stating that a clear vision and policy framework for supporting new technologies for surface transport across western Canada are needed. 72 refs., 4 figs.

  6. The potential for western Canada to become a leader in electrically powered land transport

    International Nuclear Information System (INIS)

    Perl, A.; Gilbert, R.

    2010-01-01

    Canada's western provinces are among the most oil-intensive jurisdictions in the world. Per capita consumption in 2007 was 70 percent higher than that of eastern Canada. While western Canada will be buffered as a producer of oil, predicted swings in oil prices may disrupt the fiscal capacity of producer provinces. The price of crude oil in western Canada is the same price established in world markets. This paper examined some of the opportunities available for western Canada to move away from oil consumption by becoming a leader in electric traction. Methods of replacing oil-based transportation with the use of electric vehicles were discussed. Western Canada's capacity to produce electricity from renewable resources was evaluated. Economic opportunities related to the electrification of land transport were also examined. The report concluded by stating that a clear vision and policy framework for supporting new technologies for surface transport across western Canada are needed. 72 refs., 4 figs.

  7. Coupled particle–fluid transport and magnetic separation in microfluidic systems with passive magnetic functionality

    International Nuclear Information System (INIS)

    Khashan, Saud A; Furlani, Edward P

    2013-01-01

    A study is presented of coupled particle–fluid transport and field-directed particle capture in microfluidic systems with passive magnetic functionality. These systems consist of a microfluidic flow cell on a substrate that contains embedded magnetic elements. Two systems are considered that utilize soft- and hard-magnetic elements, respectively. In the former, an external field is applied to magnetize the elements, and in the latter, they are permanently magnetized. The field produced by the magnetized elements permeates into the flow cell giving rise to an attractive force on magnetic particles that flow through it. The systems are studied using a novel numerical/closed-form modelling approach that combines numerical transport analysis with closed-form field analysis. Particle–fluid transport is computed using computational fluid dynamics (CFD), while the magnetic force that governs particle capture is obtained in closed form. The CFD analysis takes into account dominant particle forces and two-way momentum transfer between the particles and the fluid. The two-way particle–fluid coupling capability is an important feature of the model that distinguishes it from more commonly used and simplified one-way coupling analysis. The model is used to quantify the impact of two-way particle–fluid coupling on both the capture efficiency and the flow pattern in the systems considered. Many effects such as particle-induced flow-enhanced capture efficiency and flow circulation are studied that cannot be predicted using one-way coupling analysis. In addition, dilute particle dispersions are shown to exhibit significant localized particle–fluid coupling near the capture regions, which contradicts the commonly held view that two-way coupling can be ignored when analysing high-gradient magnetic separation involving such particle systems. Overall, the model demonstrates that two-way coupling needs to be taken into account for rigorous predictions of capture efficiency

  8. Transport properties of a Kondo dot with a larger side-coupled noninteracting quantum dot

    International Nuclear Information System (INIS)

    Liu, Y S; Fan, X H; Xia, Y J; Yang, X F

    2008-01-01

    We investigate theoretically linear and nonlinear quantum transport through a smaller quantum dot in a Kondo regime connected to two leads in the presence of a larger side-coupled noninteracting quantum dot, without tunneling coupling to the leads. To do this we employ the slave boson mean field theory with the help of the Keldysh Green's function at zero temperature. The numerical results show that the Kondo conductance peak may develop multiple resonance peaks and multiple zero points in the conductance spectrum owing to constructive and destructive quantum interference effects when the energy levels of the large side-coupled noninteracting dot are located in the vicinity of the Fermi level in the leads. As the coupling strength between two quantum dots increases, the tunneling current through the quantum device as a function of gate voltage applied across the two leads is suppressed. The spin-dependent transport properties of two parallel coupled quantum dots connected to two ferromagnetic leads are also investigated. The numerical results show that, for the parallel configuration, the spin current or linear spin differential conductance are enhanced when the polarization strength in the two leads is increased

  9. Electronic transport through a quantum dot chain with strong dot-lead coupling

    International Nuclear Information System (INIS)

    Liu, Yu; Zheng, Yisong; Gong, Weijiang; Gao, Wenzhu; Lue, Tianquan

    2007-01-01

    By means of the non-equilibrium Green function technique, the electronic transport through an N-quantum-dot chain is theoretically studied. By calculating the linear conductance spectrum and the local density of states in quantum dots, we find the resonant peaks in the spectra coincides with the eigen-energies of the N-quantum-dot chain when the dot-lead coupling is relatively weak. With the increase of the dot-lead coupling, such a correspondence becomes inaccurate. When the dot-lead coupling exceeds twice the interdot coupling, such a mapping collapses completely. The linear conductance turn to reflect the eigen-energies of the (N-2)- or (N-1)-quantum dot chain instead. The two peripheral quantum dots do not manifest themselves in the linear conductance spectrum. More interestingly, with the further increase of the dot-lead coupling, the system behaves just like an (N-2)- or (N-1)-quantum dot chain in weak dot-lead coupling limit, since the resonant peaks becomes narrower with the increase of dot-lead coupling

  10. Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes.

    Science.gov (United States)

    Kulbacka, Julita; Choromańska, Anna; Rossowska, Joanna; Weżgowiec, Joanna; Saczko, Jolanta; Rols, Marie-Pierre

    2017-01-01

    Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.

  11. A novel approach for in vitro studies applying electrical fields to cell cultures by transformer-like coupling.

    Science.gov (United States)

    Hess, R; Neubert, H; Seifert, A; Bierbaum, S; Hart, D A; Scharnweber, D

    2012-12-01

    The purpose of this study was to develop a new apparatus for in vitro studies applying low frequency electrical fields to cells without interfering side effects like biochemical reactions or magnetic fields which occur in currently available systems. We developed a non-invasive method by means of the principle of transformer-like coupling where the magnetic field is concentrated in a toroid and, therefore, does not affect the cell culture. Next to an extensive characterization of the electrical field parameters, initial cell culture studies have focused on examining the response of bone marrow-derived human mesenchymal stem cells (MSCs) to pulsed electrical fields. While no significant differences in the proliferation of human MSCs could be detected, significant increases in ALP activity as well as in gene expression of other osteogenic markers were observed. The results indicate that transformer-like coupled electrical fields can be used to influence osteogenic differentiation of human MSCs in vitro and can pose a useful tool in understanding the influence of electrical fields on the cellular and molecular level.

  12. A Calderón multiplicative preconditioner for coupled surface-volume electric field integral equations

    KAUST Repository

    Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric

    2010-01-01

    A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well

  13. Importance of gradients in membrane properties and electrical coupling in sinoatrial node pacing.

    Directory of Open Access Journals (Sweden)

    Shin Inada

    Full Text Available The sinoatrial node (SAN is heterogeneous in terms of cell size, ion channels, current densities, connexins and electrical coupling. For example, Nav1.5 (responsible for INa and Cx43 (responsible for electrical coupling are absent from the centre of the SAN (normally the leading pacemaker site, but present in the periphery (at SAN-atrial muscle junction. To test whether the heterogeneity is important for the functioning of the SAN, one- and two-dimensional models of the SAN and surrounding atrial muscle were created. Normal functioning of the SAN (in terms of cycle length, position of leading pacemaker site, conduction times, activation and repolarization sequences and space constants was observed when, from the centre to the periphery, (i cell characteristics (cell size and ionic current densities were changed in a gradient fashion from a central-type (lacking INa to a peripheral-type (possessing INa and (ii coupling conductance was increased in a gradient fashion. We conclude that the heterogeneous nature of the node is important for its normal functioning. The presence of Nav1.5 and Cx43 in the periphery may be essential for the node to be able to drive the atrial muscle: Nav1.5 provides the necessary depolarizing current and Cx43 delivers it to the atrial muscle.

  14. A regime-switching copula approach to modeling day-ahead prices in coupled electricity markets

    DEFF Research Database (Denmark)

    Pircalabu, Anca; Benth, Fred Espen

    2017-01-01

    significant evidence of tail dependence in all pairs of interconnected areas we consider. As a first application of the proposed model, we consider the pricing of financial transmission rights, and highlight how the choice of marginal distributions and copula impacts prices. As a second application we......The recent price coupling of many European electricity markets has triggered a fundamental change in the interaction of day-ahead prices, challenging additionally the modeling of the joint behavior of prices in interconnected markets. In this paper we propose a regime-switching AR–GARCH copula...... to model pairs of day-ahead electricity prices in coupled European markets. While capturing key stylized facts empirically substantiated in the literature, this model easily allows us to 1) deviate from the assumption of normal margins and 2) include a more detailed description of the dependence between...

  15. Core radial electric field and transport in Wendelstein 7-X plasmas

    Science.gov (United States)

    Pablant, N. A.; Langenberg, A.; Alonso, A.; Beidler, C. D.; Bitter, M.; Bozhenkov, S.; Burhenn, R.; Beurskens, M.; Delgado-Aparicio, L.; Dinklage, A.; Fuchert, G.; Gates, D.; Geiger, J.; Hill, K. W.; Höfel, U.; Hirsch, M.; Knauer, J.; Krämer-Flecken, A.; Landreman, M.; Lazerson, S.; Maaßberg, H.; Marchuk, O.; Massidda, S.; Neilson, G. H.; Pasch, E.; Satake, S.; Svennson, J.; Traverso, P.; Turkin, Y.; Valson, P.; Velasco, J. L.; Weir, G.; Windisch, T.; Wolf, R. C.; Yokoyama, M.; Zhang, D.; W7-X Team

    2018-02-01

    The results from the investigation of neoclassical core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥˜ 5 km/s (ΔEr ˜ 12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred Er profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. These comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.

  16. Field distribution and DNA transport in solid tumors during electric field-mediated gene delivery.

    Science.gov (United States)

    Henshaw, Joshua W; Yuan, Fan

    2008-02-01

    Gene therapy has a great potential in cancer treatment. However, the efficacy of cancer gene therapy is currently limited by the lack of a safe and efficient means to deliver therapeutic genes into the nucleus of tumor cells. One method under investigation for improving local gene delivery is based on the use of pulsed electric field. Despite repeated demonstration of its effectiveness in vivo, the underlying mechanisms behind electric field-mediated gene delivery remain largely unknown. Without a thorough understanding of these mechanisms, it will be difficult to further advance the gene delivery. In this review, the electric field-mediated gene delivery in solid tumors will be examined by following individual transport processes that must occur in vivo for a successful gene transfer. The topics of examination include: (i) major barriers for gene delivery in the body, (ii) distribution of electric fields at both cell and tissue levels during the application of external fields, and (iii) electric field-induced transport of genes across each of the barriers. Through this approach, the review summarizes what is known about the mechanisms behind electric field-mediated gene delivery and what require further investigations in future studies.

  17. Introduction to the determination of transport numbers in electrolytic solutions. Effect of the activity coefficient in the coupled scattering and self-scattering processes. Electric mobility of the Na+ ion in water-THF mixture - Measurements of transport numbers by means of radio-tracers

    International Nuclear Information System (INIS)

    M'Malla

    1976-01-01

    Within the frame of a study of ion preferential solvation in hydro-organic media, the author reports some measurements of ionic conductivities of the Na + ion in mixtures of different proportions of water and THF (tetrahydrofuran), and more specifically the use of a recently developed method of transport number measurement. The author explains the general definition of the transport number, recalls usual measurement methods (Hittorf method, moving boundary method), describes the method principle, the measurement process, reports the assessment of corrective terms in the calculation of the transport number, and presents and comments the obtained results. A second part addresses the influence of activity coefficient gradient on the couple scattering and self-scattering phenomenon: self-scattering measurement with a tracer, theoretical aspects of coupled scattering, experimental results and discussion

  18. Analysis of induced electrical currents from magnetic field coupling inside implantable neurostimulator leads

    Directory of Open Access Journals (Sweden)

    Seidman Seth J

    2011-10-01

    Full Text Available Abstract Background Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. Methods To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. Results The electric current induced by low frequency RFID emitter

  19. Hybrid-Electric and Distributed Propulsion Technologies for Large Commercial Transports: A NASA Perspective

    Science.gov (United States)

    Madavan, Nateri K.; Del Rosario, Ruben; Jankovsky, Amy L.

    2015-01-01

    Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures. Enable radically different propulsion systems that can meet national environmental and fuel burn reduction goals for subsonic commercial aircraft. Focus on future large regional jets and single-aisle twin (Boeing 737- class) aircraft for greatest impact on fuel burn, noise and emissions. Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures. Research aligned with new NASA Aeronautics strategic R&T thrusts in areas of transition to low-carbon propulsion and ultra-efficient commercial transports.

  20. Possibility of internal transport barrier formation and electric field bifurcation in LHD plasma

    International Nuclear Information System (INIS)

    Sanuki, H.; Itoh, K.; Yokoyama, M.; Fujisawa, A.; Ida, K.; Toda, S.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.

    1999-05-01

    Theoretical analysis of the electric field bifurcation is made for the LHD plasma. For given shapes of plasma profiles, a region of bifurcation is obtained in a space of the plasma parameters. In this region of plasma parameters, the electric field domain interface is predicted to appear in the plasma column. The reduction of turbulent transport is expected to occur in the vicinity of the interface, inducing a internal transport barrier. Within this simple model, the plasma with internal barriers is predicted to be realized for the parameters of T e (0) ∼ 2 keV and n(0) ≅ 10 18 m -3 . (author)

  1. A Comparative Assessment of Life-Cycle Greenhouse Gas Emissions from Hypothetical Electric Airport Transportation Services in Thailand

    Science.gov (United States)

    Koiwanit, J.

    2018-05-01

    Global warming is an increase of average temperature in the atmosphere, which causes adverse effects on the environment. Carbon dioxide (CO2) from transportation sector is one of the main contributors of the overall greenhouse gases (GHG). To cope with this issue, electric car services are increasingly seen as popular alternative modes of green transportation especially for urban cities as it is more flexible, more environmentally-friendly, and less expensive than the use of conventional vehicles. The study analyses and compare the hypothetical electric car systems from airport transportation services. Center of Environmental Science of Leiden University (CML) 2001, the Life Cycle Impact Assessment (LCIA) method, is applied to convert life cycle inventory data into environmental impacts. The observed results showed that the electric shuttle bus had the highest impact in global warming potential (GWP) compared to other transportation types. Alternatively, this Life Cycle Assessment (LCA) study that evaluated different transportations provided important information for decision makers on quantifying the differences between each scenario.

  2. A time-dependent neutron transport model and its coupling to thermal-hydraulics

    International Nuclear Information System (INIS)

    Pautz, A.

    2001-01-01

    A new neutron transport code for time-dependent analyses of nuclear systems has been developed. The code system is based on the well-known Discrete Ordinates code DORT, which solves the steady-state neutron/photon transport equation in two dimensions for an arbitrary number of energy groups and the most common regular geometries. For the implementation of time-dependence a fully implicit first-order scheme was employed to minimize errors due to temporal discretization. This requires various modifications to the transport equation as well as the extensive use of elaborated acceleration mechanisms. The convergence criteria for fluxes, fission rates etc. had to be strongly tightened to ensure the reliability of results. To perform coupled analyses, an interface to the GRS system code ATHLET has been developed. The nodal power densities from the neutron transport code are passed to ATHLET to calculate thermal-hydraulic system parameters, e.g. fuel and coolant temperatures. These are in turn used to generate appropriate nuclear cross sections by interpolation of pre-calculated data sets for each time step. Finally, to demonstrate the transient capabilities of the coupled code system, the research reactor FRM-II has been analysed. Several design basis accidents were modelled, like the loss of off site power, loss of secondary heat sink and unintended control rod withdrawal. (author)

  3. Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field

    Science.gov (United States)

    Zhang, Zhong-Qiang; Dong, Xin; Ye, Hong-Fei; Cheng, Guang-Gui; Ding, Jian-Ning; Ling, Zhi-Yong

    2015-02-01

    Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on the electric field intensity. Concretely, the water droplet on graphene moves from the low temperature region to the high temperature region for the relatively weak electric field intensity. The motion acceleration increases with the electric field intensity on graphene, whereas the moving direction switches when the electric field intensity increases up to a threshold. The essence is the change from hydrophilic to hydrophobic for the water droplet on graphene at a threshold of the electric field intensity. Moreover, the driven force of the water droplet caused by the overall oscillation of graphene has important influence on the motion behaviors. The results are helpful to control the wettability of graphene and further develop the graphene-based fluidic nanodevices.

  4. Effects of transportation during the hot season, breed and electrical stimulation on histochemical and meat quality characteristics of goat longissimus muscle.

    Science.gov (United States)

    Kadim, Isam T; Mahgoub, Osman; Al-Marzooqi, Waleed; Khalaf, Samera; Al-Sinawi, Shadia S H; Al-Amri, Issa

    2010-06-01

    The effects of transportation and electrical stimulation (90 V) on physiological, histochemical and meat quality characteristics of two breeds of Omani goats were assessed. Twenty 1-year-old male goats from each breed (Batina and Dhofari) were divided into two groups: 3 h transported during the hot season (42 degrees C day time temperature) and non-transported. Animals were blood-sampled before loading and prior to slaughter. Electrical stimulation was applied 20 min postmortem to 50% randomly selected carcasses of both breeds. Temperature and pH decline of the Longissimus was monitored. Ultimate pH, shear force, sarcomere length, myofibrillar fragmentation index, expressed juice, cooking loss and colour were measured from samples of Longissimus dorsi muscles. Electrical stimulation and transportation had a significant effect on most biochemical and meat quality characteristics of Longissimus dorsi. The transported goats had higher plasma cortisol (P goats. Electrical stimulation resulted in a significantly (P Meat from transported goats had significantly higher pH, expressed juice and shear force, but contained significantly lower sarcomere length and L* values than non-transported goats. The proportion of the myosin ATPase staining did not change as a function of stimulation, transportation or breed. These results indicated that subjecting goats to transportation for 3 h under high ambient temperatures can generate major physiological and muscle metabolism responses. Electrical stimulation improved quality characteristics of meat from both groups. This indicates that electrical stimulation may reduce detrimental effects of transportation on meat quality of Omani goats.

  5. Porous media fluid flow, heat, and mass transport model with rock stress coupling

    International Nuclear Information System (INIS)

    Runchal, A.K.

    1980-01-01

    This paper describes the physical and mathematical basis of a general purpose porous media flow model, GWTHERM. The mathematical basis of the model is obtained from the coupled set of the classical governing equations for the mass, momentum and energy balance. These equations are embodied in a computational model which is then coupled externally to a linearly elastic rock-stress model. This coupling is rather exploratory and based upon empirical correlations. The coupled model is able to take account of time-dependent, inhomogeneous and anisotropic features of the hydrogeologic, thermal and transport phenomena. A number of applications of the model have been made. Illustrations from the application of the model to nuclear waste repositories are included

  6. Intense heavy-ion beam transport with electric and magnetic quadrupoles

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Hopkins, H.S.

    1995-08-01

    As part of the small induction recirculator development at LLNL, the authors are testing an injector and transport line that delivers 4 micros beams of potassium with repetition rates up to 10 Hz at a nominal current of 2 mA. The normalized K-V equivalent emittance of the beams is near 0.02 π mm-mrad and is mostly determined by the temperature of the source (0.1 eV). K + ions generated at 80 keV in a Pierce diode are matched to an alternating gradient transport line by seven electric quadrupoles. Two additional quads have been modified to serve as two-axis steerers. The matching section is followed by a transport section comprised of seven permanent magnet quadrupoles. Matching to this section is achieved by adjusting the voltages on the electric quadrupoles to voltages calculated by an envelope matching code. Measurements of beam envelope parameters are made at the matching section entrance and exit as well as at the end of the permanent magnet transport section. Beam current waveforms along the experiment are compared with results from a one-dimension longitudinal dynamics code. Initial experiments show particle loss occurring at the beam head as a result of overtaking. The apparatus is also being used for the development of non or minimally intercepting diagnostics for future recirculator experiments. These include capacitive monitors for determining beam line-charge density and position in the recirculator; flying wire scanners for beam position; and gated TV scanners for measuring beam profiles and emittance

  7. Electric power generating plant having direct-coupled steam and compressed-air cycles

    Science.gov (United States)

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  8. Electric power generating plant having direct coupled steam and compressed air cycles

    Science.gov (United States)

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  9. Electron-vibron coupling effects on electron transport via a single-molecule magnet

    NARCIS (Netherlands)

    McCaskey, A.; Yamamoto, Y.; Warnock, M.; Burzuri, E.; Van der Zant, H.S.J.; Park, K.

    2015-01-01

    We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters,

  10. Proceedings of the Prop'Elec 2000 colloquium. Advances of electric drive in urban transportation systems; Actes du colloque Prop'Elec 2000. Progres de la traction electrique dans les transports urbains

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This document is the proceedings of Prop'Elec 2000 colloquium on the advances in electric power drive in urban transportation systems. The colloquium comprises 5 sessions dealing with: 1 - public collective electric-powered transportation system: synthesis of urban guided systems (C. Soulas, INRETS), the fast travelator (A. Cote, RATP), the power supply system of METEOR automatic underground railway (P. Lagrange, W. Seiler, RATP); 2 - electrical drive in urban transportation systems: start-up of a thermal engine with super-capacitors (D. Bouquain (CREEBEL), H. Gualous, A. Djerdir, A. Berthon, J.M. Kauffmann (L2ES, IGE)), The LEV (light weight electric vehicle) project in Mendrisio (U. Schwegler, LEV/Suisse), prototype of electrical bike that use a wheel-engine (C. Espanet, F. Gustin, J.M. Kauffmann (IGE), S. Robert, M. Karmous (EICN)), TWIL: a new generation of small electrical bikes (E. Escallot, T. Bontems (EPMI)), thermal and magnetic analysis of a rectilinear movement actuator (J.C. Vannier, M. Kadiri (SUPELEC)), torque undulation and vibrations in automobile electrical drives (A.L. Bui-Van (Renault), A. Fonseca (LEG)); 3 - collective electric-powered transportation systems: STARS: autonomous transportation system with flywheel charging at the station (P. Gibard (Alstom Transport), K. Abuda, J.M. Vinassa (IXL Bordeaux)), Translhor tramway: presentation of the drive system (L. Verdier, LHOR); 4 - electric-powered and hybrid vehicles: batteries for electric-powered vehicles (J.F. Fauvarque, CNAM), Li-ion batteries and their application in automotive industry (T. Faugeras, SAFT), optimized drive systems for electric-powered vehicles (J. Saint-Michel, Leroy Somer), the Citroen Xsara Dynactive (S. Derou, PSA), 5 - electric-powered and hybrid vehicles: the electrical car in tomorrows' city (M. Parent, INRIA), the market of electric-powered vehicles in France and Europe (M. Valet, PSA). (J.S.)

  11. Cellular automaton model of coupled mass transport and chemical reactions

    International Nuclear Information System (INIS)

    Karapiperis, T.

    1994-01-01

    Mass transport, coupled with chemical reactions, is modelled as a cellular automaton in which solute molecules perform a random walk on a lattice and react according to a local probabilistic rule. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. The model is applied to the reactions a + b ↔c and a + b →c, where we observe interesting macroscopic effects resulting from microscopic fluctuations and spatial correlations between molecules. We also simulate autocatalytic reaction schemes displaying spontaneous formation of spatial concentration patterns. Finally, we propose and discuss the limitations of a simple model for mineral-solute interaction. (author) 5 figs., 20 refs

  12. Transport zonation limits coupled nitrification-denitrification in permeable sediments

    DEFF Research Database (Denmark)

    Kessler, Adam John; Glud, R.N.; Cardenas, M.B.

    2013-01-01

    - and N-15-N-2 gas. The measured two-dimensional profiles correlate with computational model simulations, showing a deep pool of N-2 gas forming, and being advected to the surface below ripple peaks. Further isotope pairing calculations on these data indicate that coupled nitrification......-denitrification is severely limited in permeable sediments because the flow and transport field limits interaction between oxic and anoxic pore water. The approach allowed for new detailed insight into subsurface denitrification zones in complex permeable sediments....

  13. Integration of a Folding Electric two-wheeler vehicle for a future commuting transportation

    DEFF Research Database (Denmark)

    Gudmundsson, Bjami Freyr; Larsen, Esben

    2012-01-01

    The paper issues the development, building and testing of a Folding Electric Motorbike, a lightweight, low cost and all-electric two-wheeler vehicle taking full advantage on today's city infrastructure. The technology offers drivers to combine transportation methods, lowering cost, and greenhouse......-electric two-wheeler vehicle taking full advantage on today's city infrastructure is very prospective. The alpha-prototype was successfully constructed and is considered to be ready for further laboratory testing and test driving before continuations on a fully designed beta-prototype....

  14. Spin transport, magnetoresistance, and electrically detected magnetic resonance in amorphous hydrogenated silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, Michael J. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Lenahan, Patrick M. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2016-08-08

    We report on a study of spin transport via electrically detected magnetic resonance (EDMR) and near-zero field magnetoresistance (MR) in silicon nitride films. Silicon nitrides have long been important materials in solid state electronics. Although electronic transport in these materials is not well understood, electron paramagnetic resonance studies have identified a single dominating paramagnetic defect and have also provided physical and chemical descriptions of the defects, called K centers. Our EDMR and MR measurements clearly link the near-zero field MR response to the K centers and also indicate that K center energy levels are approximately 3.1 eV above the a-SiN:H valence band edge. In addition, our results suggest an approach for the study of defect mediated spin-transport in inorganic amorphous insulators via variable electric field and variable frequency EDMR and MR which may be widely applicable.

  15. Aircraft Electric Propulsion Systems Applied Research at NASA

    Science.gov (United States)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  16. Electric-field effects on electronic tunneling transport in magnetic barrier structures

    International Nuclear Information System (INIS)

    Guo Yong; Wang Hao; Gu Binglin; Kawazoe, Yoshiyuki

    2000-01-01

    Electronic transport properties in magnetic barrier structures under the influence of an electric field have been investigated. The results indicate that the characteristics of transmission resonance are determined not only by the structure and the incident wave vector but also strongly by the electric field. It is shown that the transmission coefficient at resonance in the low-energy range is suppressed by applying the electric field for electron tunneling through the magnetic barrier structure, arranged with identical magnetic barriers and wells. It is also shown that the transmission resonance is first enhanced up to optimal resonance, and then suppressed with further increased electric field for electron tunneling through the magnetic barrier structure, arranged with unidentical building blocks. Strong suppression of the current density is also found in the magnetic barrier structure, arranged with two different building blocks

  17. Isogeometric analysis and harmonic stator-rotor coupling for simulating electric machines

    Science.gov (United States)

    Bontinck, Zeger; Corno, Jacopo; Schöps, Sebastian; De Gersem, Herbert

    2018-06-01

    This work proposes Isogeometric Analysis as an alternative to classical finite elements for simulating electric machines. Through the spline-based Isogeometric discretization it is possible to parametrize the circular arcs exactly, thereby avoiding any geometrical error in the representation of the air gap where a high accuracy is mandatory. To increase the generality of the method, and to allow rotation, the rotor and the stator computational domains are constructed independently as multipatch entities. The two subdomains are then coupled using harmonic basis functions at the interface which gives rise to a saddle-point problem. The properties of Isogeometric Analysis combined with harmonic stator-rotor coupling are presented. The results and performance of the new approach are compared to the ones for a classical finite element method using a permanent magnet synchronous machine as an example.

  18. Effects of applied dc radial electric fields on particle transport in a bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1978-01-01

    The influence of applied dc radial electric fields on particle transport in a bumpy torus plasma is studied. The plasma, magnetic field, and ion heating mechanism are operated in steady state. Ion kinetic temperature is more than a factor of ten higher than electron temperature. The electric fields raise the ions to energies on the order of kilovolts and then point radially inward or outward. Plasma number density profiles are flat or triangular across the plasma diameter. It is suggested that the radial transport processes are nondiffusional and dominated by strong radial electric fields. These characteristics are caused by the absence of a second derivative in the density profile and the flat electron temperature profiles. If the electric field acting on the minor radius of the toroidal plasma points inward, plasma number density and confinement time are increased.

  19. Radial electric field and transport near the rational surface and the magnetic island in LHD

    International Nuclear Information System (INIS)

    Ida, K.; Inagaki, S.; Tamura, N.

    2002-10-01

    The structure of the radial electric field and heat transport at the magnetic island in the Large Helical Device is investigated by measuring the radial profile of poloidal flow with charge exchange spectroscopy. The convective poloidal flow inside the island is observed when the n/m=1/1 external perturbation field becomes large enough to increase the magnetic island width above a critical value (15-20% of minor radius) in LHD. This convective poloidal flow results in a non-flat space potential inside the magnetic island. The sign of the curvature of the space potential depends on the radial electric field at the boundary of the magnetic island. The heat transport inside the magnetic island is studied with a cold pulse propagation technique. The experimental results show the existence of the radial electric field shear at the boundary of the magnetic island and a reduction of heat transport inside the magnetic island. (author)

  20. Separation of some metal ions using coupled transport supported liquid membranes

    International Nuclear Information System (INIS)

    Chaudhary, M.A.

    1993-01-01

    Liquid membrane extraction processes has become very popular due to their superiority in many ways over other separation techniques. In coupled transport membranes the metal ions can be transported across the membrane against their concentration gradient under the influence of chemical potential difference. Liquid membranes consisting of a carrier-cum-diluent, supported in microporous polymeric hydrophobic films have been studied for transport of metal ions like U(VI), Cr(VI), Be(II), V(V), Ti(IV), Zn(II), Cd(II), Hf(IV), W(VI), and Co(II). The present paper presents basic data with respect to flux and permeabilities of these metal ions across membranes based on experimental results and theoretical equations, using different carriers and diluents and provides a brief reference to possibility of such membranes for large scale applications. (author)

  1. Effect of Transportation and Low Voltage Electrical Stimulation on Meat Quality Characteristics of Omani Sheep

    Directory of Open Access Journals (Sweden)

    Isam T. Kadim

    2010-01-01

    Full Text Available The aim of this study was to determine the effects of road transportation during the hot season (36 oC and low voltage electrical stimulation on meat quality characteristics of Omani sheep. Twenty intact male sheep (1-year old were divided into two equal groups: 3 hrs transported or non-transported. The transported group was transferred to the slaughterhouse the day of slaughter in an open truck covering a distance of approximately 300 km. The non-transported group was kept in a lairage of a commercial slaughterhouse with ad libitum feed and water for 3 days prior to slaughter. Blood samples were collected from the animals before loading and prior to slaughter in order to assess their physiological response to stress in terms of hormonal levels. Fifty percent of the carcasses from each group were randomly assigned to low voltage (90 V at 20 min postmortem. Muscle ultimate pH, expressed juice, cooking loss percentage, WB-shear force value, sarcomere length, myofibrillar fragmentation index and colour L*, a*, b* were measured on samples from Longissimus dorsi muscles collected 24 hrs postmortem at 2-4 oC. The transported sheep had significantly (P<0.05 higher cortisol adrenaline, nor-adrenaline, and dopamine levels than the non-transported group. Muscles from electrically-stimulated carcasses had significantly (P<0.05 lower pH values, longer sarcomere length, lower shear force value, higher expressed juice, myofibrillar fragmentation index and L* values than those from non-stimulated ones. Transportation significantly influenced meat quality characteristics of the Longissimus dorsi muscle. Muscle ultimate pH and shear force values were significantly higher, while CIE L*, a*, b*, expressed juice and cooking loss were lower in transported than non-transported sheep. This study indicated that pre-slaughter transportation at high ambient temperatures can cause noticeable changes in muscle physiology in sheep. Nevertheless, meat quality of transported

  2. Experimental validation of GADRAS's coupled neutron-photon inverse radiation transport solver

    International Nuclear Information System (INIS)

    Mattingly, John K.; Mitchell, Dean James; Harding, Lee T.

    2010-01-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  3. COMPLEX EVALUATION OF ELECTRIC RAIL TRANSPORT IMPLEMENTATION IN VILNIUS CITY

    Directory of Open Access Journals (Sweden)

    Gintautas BUREIKA

    2016-03-01

    Full Text Available The article analyses the current problems of Vilnius city public transportation. The possible solutions (options and the technical means to improve the attractiveness of public transportation and accessibility are considered. Two main alternatives of means of electric transport (underground and tram have been singled out for Vilnius city. The suitability of these rail transport means have been substantiated. The nature and density of the work and residence places (areas of Vilnius city residents have been analysed. The scheme of tram and underground lines projected in Vilnius city are evaluated, which have been composed according to the current and forecasted flows of passengers, the nature of their changes and critical points. The technical economic indicators of the tram routes and underground lines in Vilnius city are analysed: average driving speed, average distance between the stations, the duration of the trip, the capacity of a single means of transport, the costs of line support and the size of investment. The accident rate of urban rail transportation is estimated. Comparative criteria of tram and underground lines are selected. The effectiveness of both rail means of transport in Vilnius city are compared according to three multi-criteria evaluation methods: the sum of ratings, simple additive weighting and geometrical means. The final conclusions and recommendations are provided.

  4. Numerical modelling of coupled fluid, heat, and solute transport in deformable fractured rock

    International Nuclear Information System (INIS)

    Chan, T.; Reid, J.A.K.

    1987-01-01

    This paper reports on a three-dimensional (3D) finite-element code, MOTIF (model of transport in fractured/porous media), developed to model the coupled processes of groundwater flow, heat transport, brine transport, and one-species radionuclide transport in geological media. Three types of elements are available: a 3D continuum element, a planar fracture element that can be oriented in any arbitrary direction in 3D space or pipe flow in 3D space, and a line element for simulating fracture flow in 2D space or pipe flow in 3D space. As a quality-assurance measure, the MOTIF code was verified by comparison of its results with analytical solutions and other published numerical solutions

  5. Coupled Eulerian-Lagrangian transport of large debris by tsunamis

    Science.gov (United States)

    Conde, Daniel A. S.; Ferreira, Rui M. L.; Sousa Oliveira, Carlos

    2016-04-01

    Tsunamis are notorious for the large disruption they can cause on coastal environments, not only due to the imparted momentum of the incoming wave but also due to its capacity to transport large quantities of solid debris, either from natural or human-made sources, over great distances. A 2DH numerical model under development at CERIS-IST (Ferreira et al., 2009; Conde, 2013) - STAV2D - capable of simulating solid transport in both Eulerian and Lagrangian paradigms will be used to assess the relevance of Lagrangian-Eulerian coupling when modelling the transport of solid debris by tsunamis. The model has been previously validated and applied to tsunami scenarios (Conde, 2013), being well-suited for overland tsunami propagation and capable of handling morphodynamic changes in estuaries and seashores. The discretization scheme is an explicit Finite Volume technique employing flux-vector splitting and a reviewed Roe-Riemann solver. Source term formulations are employed in a semi-implicit way, including the two-way coupling of the Lagrangian and Eulerian solvers by means of conservative mass and momentum transfers between fluid and solid phases. The model was applied to Sines Port, a major commercial port in Portugal, where two tsunamigenic scenarios are considered: an 8.5 Mw scenario, consistent with the Great Lisbon Earthquake and Tsunami of the 1st November 1755 (Baptista, 2009), and an hypothetical 9.5 Mw worst-case scenario based on the same historical event. Open-ocean propagation of these scenarios were simulated with GeoClaw model from ClawPack (Leveque, 2011). Following previous efforts on the modelling of debris transport by tsunamis in seaports (Conde, 2015), this work discusses the sensitivity of the obtained results with respect to the phenomenological detail of the employed Eulerian-Lagrangian formulation and the resolution of the mesh used in the Eulerian solver. The results have shown that the fluid to debris mass ratio is the key parameter regarding the

  6. Formation of electron-root radial electric field and its effect on thermal transport in LHD high Te plasma

    International Nuclear Information System (INIS)

    Matsuoka, Seikichi; Satake, Shinsuke; Takahashi, Hiromi; Yokoyama, Masayuki; Ido, Takeshi; Shimizu, Akihiro; Shimozuma, Takashi; Wakasa, Arimitsu; Murakami, Sadayoshi

    2013-01-01

    Neoclassical transport analyses have been performed for a high electron temperature LHD plasma with steep temperature gradient using a neoclassical transport simulation code, FORTEC-3D. It is shown that the large positive radial electric field is spontaneously formed at the core along with the increase in the electron temperature, while the neoclassical heat diffusivity remains almost unchanged. This indicates that the 1/ν-type increase expected in the neoclassical transport in helical plasmas can be avoided by the spontaneous formation of the radial electric field. At the same time, it is found that the experimentally estimated heat diffusivity is significantly reduced. This suggests that the formation process of the transport barrier in the high electron temperature plasma can be caused by the spontaneous formation of the radial electric field. (author)

  7. Electrical characterization of non‐Fickian transport in groundwater and hyporheic systems

    Science.gov (United States)

    Singha, Kamini; Pidlisecky, Adam; Day-Lewis, Frederick D.; Gooseff, Michael N.

    2008-01-01

    Recent work indicates that processes controlling solute mass transfer between mobile and less mobile domains in porous media may be quantified by combining electrical geophysical methods and electrically conductive tracers. Whereas direct geochemical measurements of solute preferentially sample the mobile domain, electrical geophysical methods are sensitive to changes in bulk electrical conductivity (bulk EC) and therefore sample EC in both the mobile and immobile domains. Consequently, the conductivity difference between direct geochemical samples and remotely sensed electrical geophysical measurements may provide an indication of mass transfer rates and mobile and immobile porosities in situ. Here we present (1) an overview of a theoretical framework for determining parameters controlling mass transfer with electrical resistivity in situ; (2) a review of a case study estimating mass transfer processes in a pilot‐scale aquifer storage recovery test; and (3) an example application of this method for estimating mass transfer in watershed settings between streams and the hyporheic corridor. We demonstrate that numerical simulations of electrical resistivity studies of the stream/hyporheic boundary can help constrain volumes and rates of mobile‐immobile mass transfer. We conclude with directions for future research applying electrical geophysics to understand field‐scale transport in aquifer and fluvial systems subject to rate‐limited mass transfer.

  8. Electric two wheelers, zero emission solution for urban door to door transportation

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Jensen, Bogi Bech

    The noise and exhaust pollution coupled with increasing congestion faced by urban centres demands new personal mobility solution for faster door to door connectivity. The advancement in electric power train and lowering cost of Li-ion battery is made it possible to develop light weight fully...

  9. Electric-Field Control of Interfering Transport Pathways in a Single-Molecule Anthraquinone Transistor

    Science.gov (United States)

    Koole, Max; Thijssen, Jos M.; Valkenier, Hennie; Hummelen, Jan C.; Zant, Herre S. J. van der

    2015-08-01

    It is understood that molecular conjugation plays an important role in charge transport through single-molecule junctions. Here, we investigate electron transport through an anthraquinone based single-molecule three-terminal device. With the use of an electric-field induced by a gate electrode, the molecule is reduced resulting into a ten-fold increase in the off-resonant differential conductance. Theoretical calculations link the change in differential conductance to a reduction-induced change in conjugation, thereby lifting destructive interference of transport pathways.

  10. Solar-coupled electric vehicles

    International Nuclear Information System (INIS)

    Buchheim, R.

    1993-01-01

    Electric cars must have the same safety standards as those which are now state of the art for the compact class of car. Electric vehicles should substitute for conventional vehicles and should not lead to an increase in the stock of vehicles. The current subject of 'side impact protection' shows that design measures are necessary for this, which cannot be achieved in the smallest vehicles. (orig.) [de

  11. Visualizing Carrier Transport in Metal Halide Perovskite Nanoplates via Electric Field Modulated Photoluminescence Imaging.

    Science.gov (United States)

    Hu, Xuelu; Wang, Xiao; Fan, Peng; Li, Yunyun; Zhang, Xuehong; Liu, Qingbo; Zheng, Weihao; Xu, Gengzhao; Wang, Xiaoxia; Zhu, Xiaoli; Pan, Anlian

    2018-05-09

    Metal halide perovskite nanostructures have recently been the focus of intense research due to their exceptional optoelectronic properties and potential applications in integrated photonics devices. Charge transport in perovskite nanostructure is a crucial process that defines efficiency of optoelectronic devices but still requires a deep understanding. Herein, we report the study of the charge transport, particularly the drift of minority carrier in both all-inorganic CsPbBr 3 and organic-inorganic hybrid CH 3 NH 3 PbBr 3 perovskite nanoplates by electric field modulated photoluminescence (PL) imaging. Bias voltage dependent elongated PL emission patterns were observed due to the carrier drift at external electric fields. By fitting the drift length as a function of electric field, we obtained the carrier mobility of about 28 cm 2 V -1 S -1 in the CsPbBr 3 perovskite nanoplate. The result is consistent with the spatially resolved PL dynamics measurement, confirming the feasibility of the method. Furthermore, the electric field modulated PL imaging is successfully applied to the study of temperature-dependent carrier mobility in CsPbBr 3 nanoplates. This work not only offers insights for the mobile carrier in metal halide perovskite nanostructures, which is essential for optimizing device design and performance prediction, but also provides a novel and simple method to investigate charge transport in many other optoelectronic materials.

  12. Mass transport in low permeability rocks under the influence of coupled thermomechanical and hydrochemical effects - an overview

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1984-10-01

    The present paper gives a general overview of mass transport in low permeability rocks under the coupled thermomechanical and hydrochemical effects associated with a nuclear waste repository. A classification of coupled processes is given. Then an ess is presented. example of a coupled process is presented. Discussions of coupled processes based on a recent LBL Panel meeting are summarized. 5 references, 3 figures, 4 tables

  13. Probing electrical transport in individual carbon nanotubes and junctions

    International Nuclear Information System (INIS)

    Kim, Tae-Hwan; Wendelken, John F; Li Anping; Du Gaohui; Li Wenzhi

    2008-01-01

    The electrical transport properties of individual carbon nanotubes (CNTs) and multi-terminal junctions of CNTs are investigated with a quadraprobe scanning tunneling microscope. The CNTs used in this study are made of stacked herringbone-type conical graphite sheets with a cone angle of ∼20 deg. to the tube axis, and the CNT junctions have no catalytic particles in the junction areas. The CNTs have a significantly higher resistivity than conventional CNTs with concentric walls. The straight CNTs display linear current-voltage (I-V) characteristics, indicating diffusive transport rather than ballistic transport. The structural deformation in CNTs with bends substantially increases the resistivity in comparison with that for the straight segments on the same CNTs, and the I-V curve departs slightly from linearity in curved segments. The junction area of the CNT junctions behaves like an ohmic-type scattering center with linear I-V characteristics. In addition, a gating effect has not been observed, in contrast to the case for conventional multi-walled CNT junctions. These unusual transport properties can be attributed to the enhanced inter-layer interaction in the herringbone-type CNTs.

  14. Electric field and transport in W7-AS

    International Nuclear Information System (INIS)

    Kick, M.; Maassberg, H.; Anton, M.; Baldzuhn, J.; Endler, M.; Goerner, C.; Hirsch, M.; Weller, A.; Zoletnik, S.

    1999-01-01

    At W7-AS, confinement properties are analysed and compared mainly with neoclassical predictions for quite different conditions. Low-density electron cyclotron resonance heating (ECRH) discharges allow access to the very-long-mean-free-path regime for electrons (T e up to 6 keV) whereas pure neutral beam injections (NBI) and combined NBI/ECRH discharges at high density (T i approx. T e ≥ 1 keV at n e approx. 10 20 m -3 ) lead to high performance (τ B up to 50 ms). Depending on the achieved temperatures, the experimental transport analysis in the plasma core is consistent with the neoclassical predictions. The experimentally observed 'electron root' feature with strong E r >0 is driven by the convective flux of ripple-trapped suprathermal electrons generated by the ECRH absorption. 'Optimum' confinement is obtained in discharges with narrow density, but broad temperature profiles with steep gradients in the region of low densities and strong E r <0 close to the plasma edge. The large radial electric fields, both positive and negative, strongly reduce neoclassical transport. The achieved temperatures, however, are limited by the strong temperature dependence of the neoclassical transport. (author)

  15. How single node dynamics enhances synchronization in neural networks with electrical coupling

    International Nuclear Information System (INIS)

    Bonacini, E.; Burioni, R.; Di Volo, M.; Groppi, M.; Soresina, C.; Vezzani, A.

    2016-01-01

    The stability of the completely synchronous state in neural networks with electrical coupling is analytically investigated applying both the Master Stability Function approach (MSF), developed by Pecora and Carroll (1998), and the Connection Graph Stability method (CGS) proposed by Belykh et al. (2004). The local dynamics is described by Morris–Lecar model for spiking neurons and by Hindmarsh–Rose model in spike, burst, irregular spike and irregular burst regimes. The combined application of both CGS and MSF methods provides an efficient estimate of the synchronization thresholds, namely bounds for the coupling strength ranges in which the synchronous state is stable. In all the considered cases, we observe that high values of coupling strength tend to synchronize the system. Furthermore, we observe a correlation between the single node attractor and the local stability properties given by MSF. The analytical results are compared with numerical simulations on a sample network, with excellent agreement.

  16. Electrical coupling and excitatory synaptic transmission between rhythmogenic respiratory neurons in the preBötzinger complex

    DEFF Research Database (Denmark)

    Rekling, J C; Shao, X M; Feldman, J L

    2000-01-01

    Breathing pattern is postulated to be generated by brainstem neurons. However, determination of the underlying cellular mechanisms, and in particular the synaptic interactions between respiratory neurons, has been difficult. Here we used dual recordings from two distinct populations of brainstem...... respiratory neurons, hypoglossal (XII) motoneurons, and rhythmogenic (type-1) neurons in the preBötzinger complex (preBötC), the hypothesized site for respiratory rhythm generation, to determine whether electrical and chemical transmission is present. Using an in vitro brainstem slice preparation from newborn...... mice, we found that intracellularly recorded pairs of XII motoneurons and pairs of preBötC inspiratory type-1 neurons showed bidirectional electrical coupling. Coupling strength was low (neurons was heavily filtered (corner frequency,

  17. Disorder controlled electrical transport properties of NdCo1−xNiO3

    International Nuclear Information System (INIS)

    Kumar, Vinod; Kumar, Rajesh; Shukla, D.K.; Kumar, Ravi

    2013-01-01

    Highlights: •Single phase NdCo 1−x Ni x O 3 were prepared using solid state reaction method. •Drastic improvement in room temperature conductivity for substituted samples. •Arrhenius and VRH conduction models employed to explain electrical transport. •Disorder induced charge carrier localization dominates in the substituted samples. -- Abstract: The effect of Ni substitution on structural and electrical transport has been investigated in NdCo 1−x Ni x O 3 system for 0 ⩽ x ⩽ 0.5. The Rietveld refinement of XRD data confirms orthorhombic, Pbnm symmetry for all the samples. The lattice parameters and hence unit cell volume is found to increase linearly with increase in Ni concentration. Substitution of Ni leads to the increase in conductivity and samples have been found to display semiconducting behavior in measured range of temperature. The explanation for the variation of resistivity with substitution and temperature has been provided on the basis of substitutional disorder and spin state related effects. Arrhenius and variable range hopping conduction approaches have been used to explain the temperature variation of resistivity. These results suggest that disorder-induced localization of charge carriers dominate the electrical transport in the substituted samples

  18. Poloidal spin up and electric-field generation related to displacement current and neoclassical transport

    International Nuclear Information System (INIS)

    Gervasini, G.; Lazzaro, E.; Minardi, E.

    1996-01-01

    In accordance with the conventional ordering of neoclassical theory, poloidal and toroidal accelerations with constant parallel flow can be driven by heat transport in the absence of external momentum input and with vanishing parallel viscous stress. In a transient phase in which the heat transport is the primary source of the time dependence, the torque generating the rotation is provided at third order in the adiabatic expansion by the surface-averaged (non ambipolar) displacement current, which in also responsible for charge build-up and for the radial electric field. The heat transport equation has been solved in a narrow layer interfaced with the intensely heated plasma core through heat flux continuity, assuming neoclassical multi collisional coefficients with self-consistent suppression mechanism of anomalous transport. Starting from low temperature in the edge layer, a strong temperature gradient, a mass poloidal rotation in the ion direction and a strongly negative sheared radial electric field can be generated, in agreement with the observations, and reach a stationary state after a displacement current-dominated triggering phase (intrinsically non-ambipolar) lasting few milliseconds. Momentum input becomes important on longer time scale and is responsible for the toroidal rotation, decoupled from temperature gradient and for a further development of the radial electric field. The results show the ability of edge transport processes to adapt flexibly to a high temperature imposed on the inner side of the edge layer and support the view that the edge processes are a integral part of a more fundamental global process involving possibly an internal bifurcation of state

  19. Problems of power-heat-coupling in industry

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-01

    The coupled heat and electric power supply from counter-pressure and partly also from extraction-condensing plants theoretically offers the best possibilities for saving energy in comparison to other measures which reduce the primary energy employed at equal useful energy. A basic requirement for the use of this principle of power-heat coupling is a somewhat simultaneous need of heat and electrical energy as well as a relatively short distance between production point and consumption point, since the transfer ability of the heat is limited due to the considerable cost of the transportation system. Numerous industrial enterprises offer favorable conditions for the use of power-heat coupling. Because of the existing legal and contract rights restraints, the incentive for a free development of industrial power-heat coupling with the aim of saving energy is strongly weakened. Therefore a new order to road rights is nececessary, which would make possible the construction and operation of common plants for several industrial operations and which would insure the right to lay industrial energy lines in public roads where reasonably possible. It has been proven necessary to make it the duty of the cartel authorities to orient their examinations of price regulations for auxiliary and reserve electric power supply solely on the objective electricity economy facts, but not on so-called advantageous points of view. Ultimately the regulation for common use of the utilities own piping system for the purpose of saving and piping free energy and free power from its own plants can be reasonably necessary in the utilities realm, if free agreements between the utility and the industry are not enough in this question.

  20. The role of Rashba spin-orbit coupling in valley-dependent transport of Dirac fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hasanirok, Kobra; Mohammadpour, Hakimeh

    2017-01-01

    At this work, spin- and valley-dependent electron transport through graphene and silicene layers are studied in the presence of Rashba spin- orbit coupling. We find that the transport properties of the related ferromagnetic/normal/ferromagnetic structure depend on the relevant parameters. A fully valley- and spin- polarized current is obtained. As another result, Rashba spin-orbit interaction plays important role in controlling the transmission characteristics.

  1. Influence of the electric polarization on carrier transport and recombinaton dynamics in ZnO-based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Matthias

    2010-08-16

    The present thesis deals with the influence of the electric polarization on properties of free carriers in ZnO-based semiconductor heterostructures. Thereby especially transport properties of free carriers as well as their recombination dynamics are studied. The thesis treats four main topics. The first main topic lies on the phsical properties of the applied materials, here the connection of the band gap and the lattice constant of thin Mg{sub x}Zn{sub 1-x}O films and their magnesium content is described. Furthermore the morphology of such films is discussed. Different substrates and deposition conditions are thereby detailedly considered. The second main topic treats the properties of undoped and phosphorus doped thin ZnO and Mg{sub x}Zn{sub 1-x}O films. The structural, transport, and luminescence properties are here compared and conclusions drawn on the growth conditions. In the third main topic quantum effects on ZnO/Mg{sub x}Zn{sub 1-x}O interfaces are treated. Hereby especially the influence of the electric polarization is considered. The presence of a two-dimensional electron gas is proved, and the necessary conditions for the generation of the so-called confined Stark effect are explained. Especially the growth-relevant parameters are considered. The fourth main topic represent coupling phenomena in ZnO/BaTiO{sub 3} heterostructures. Thereby first the experimentally observed properties of different heterostructures are shown, which were grown on different substrates. Here structural and transport properties hold the spotlight. A model for the description of the formation of space-charge zones in such heterostructures is introduced and applied for the description of the experimental results. The usefulness of the ferroelectric properties of the material BaTiO{sub 3} in combination with semiconducting ZnO were studied. For this ferroelectric field effect transistors were fabricated under application of both materials. The principle suitedness of the

  2. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Energy Technology Data Exchange (ETDEWEB)

    Kocharian, Armen N. [Department of Physics, California State University, Los Angeles, CA 90032 (United States); Fernando, Gayanath W.; Fang, Kun [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Palandage, Kalum [Department of Physics, Trinity College, Hartford, Connecticut 06106 (United States); Balatsky, Alexander V. [AlbaNova University Center Nordita, SE-106 91 Stockholm (Sweden)

    2016-05-15

    Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  3. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Directory of Open Access Journals (Sweden)

    Armen N. Kocharian

    2016-05-01

    Full Text Available Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  4. A Hybrid Dynamic System Assessment Methodology for Multi-Modal Transportation-Electrification

    Directory of Open Access Journals (Sweden)

    Thomas J.T. van der Wardt

    2017-05-01

    Full Text Available In recent years, electrified transportation, be it in the form of buses, trains, or cars have become an emerging form of mobility. Electric vehicles (EVs, especially, are set to expand the amount of electric miles driven and energy consumed. Nevertheless, the question remains as to whether EVs will be technically feasible within infrastructure systems. Fundamentally, EVs interact with three interconnected systems: the (physical transportation system, the electric power grid, and their supporting information systems. Coupling of the two physical systems essentially forms a nexus, the transportation-electricity nexus (TEN. This paper presents a hybrid dynamic system assessment methodology for multi-modal transportation-electrification. At its core, it utilizes a mathematical model which consists of a marked Petri-net model superimposed on the continuous time microscopic traffic dynamics and the electrical state evolution. The methodology consists of four steps: (1 establish the TEN structure; (2 establish the TEN behavior; (3 establish the TEN Intelligent Transportation-Energy System (ITES decision-making; and (4 assess the TEN performance. In the presentation of the methodology, the Symmetrica test case is used throughout as an illustrative example. Consequently, values for several measures of performance are provided. This methodology is presented generically and may be used to assess the effects of transportation-electrification in any city or area; opening up possibilities for many future studies.

  5. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials.

    Science.gov (United States)

    Kim, Teun-Teun; Oh, Sang Soon; Kim, Hyeon-Don; Park, Hyun Sung; Hess, Ortwin; Min, Bumki; Zhang, Shuang

    2017-09-01

    Active control of polarization states of electromagnetic waves is highly desirable because of its diverse applications in information processing, telecommunications, and spectroscopy. However, despite the recent advances using artificial materials, most active polarization control schemes require optical stimuli necessitating complex optical setups. We experimentally demonstrate an alternative-direct electrical tuning of the polarization state of terahertz waves. Combining a chiral metamaterial with a gated single-layer sheet of graphene, we show that transmission of a terahertz wave with one circular polarization can be electrically controlled without affecting that of the other circular polarization, leading to large-intensity modulation depths (>99%) with a low gate voltage. This effective control of polarization is made possible by the full accessibility of three coupling regimes, that is, underdamped, critically damped, and overdamped regimes by electrical control of the graphene properties.

  6. Performance enhancement using power beaming for electric propulsion earth orbital transporters

    International Nuclear Information System (INIS)

    Dagle, J.E.

    1991-01-01

    An electric propulsion Earth orbital transport vehicle (EOTV) can effectively deliver large payloads using much less propellant than chemical transfer methods. By using an EOTV instead of a chemical upper stage, either a smaller launch vehicle can be used for the same satellite mass or a larger satellite can be deployed using the same launch vehicle. However, the propellant mass savings from using the higher specific impulse of electric propulsion may not be enough to overcome the disadvantage of the added mass and cost of the electric propulsion power source. Power system limitations have been a major factor delaying the acceptance and use of electric propulsion. This paper outlines the power requirements of electric propulsion technology being developed today, including arcjets, magnetoplasmadynamic (MPD) thrusters, and ion engines. Power supply characteristics are discussed for nuclear, solar, and power-beaming systems. Operational characteristics are given for each, as are the impacts of the power supply alternative on the overall craft performance. Because of its modular nature, the power-beaming approach is able to meet the power requirements of all three electric propulsion types. Also, commonality of approach allows different electric propulsion approaches to be powered by a single power supply approach. Power beaming exhibits better flexibility and performance than on-board nuclear or solar power systems

  7. The transport of electric power between the auto producer and the consumer

    International Nuclear Information System (INIS)

    Dastre, L.D.; Arantes, R.L.; Amoroso, L.A.M.; Sebusiani, L.R.

    1992-01-01

    The practice of 'energy transport' in the experimental process of surplus acquisition from cogeneration established new ways for the large use of auto production potential of electric power in industrial processes. The creation of rules for this practice can help the consolidation of the insertion process of private enterprise in the energy supply system by the use of the existent electric systems. These aspects are discussed and others associated to the use by the energy concessionaire from the cogeneration processes. (C.G.C.)

  8. Phosphoenolpyruvate-dependent fructose phosphotransferase system in Rhodopseudomonas sphaeroides : The coupling between transport and phosphorylation in inside-out vesicles

    NARCIS (Netherlands)

    Lolkema, Juke S.; Robillard, George T.

    The bacterial phosphotransferase systems are believed to catalyze the concomitant transport and phosphorylation of hexoses and hexitols. The transport is from the outside to the inside of the cell. An absolute coupling between transport and phosphorylation has however been questioned in the

  9. An immersed body method for coupled neutron transport and thermal hydraulic simulations of PWR assemblies

    International Nuclear Information System (INIS)

    Jewer, S.; Buchan, A.G.; Pain, C.C.; Cacuci, D.G.

    2014-01-01

    Highlights: • A new method of coupled radiation transport, heat and momentum exchanges on fluids, and heat transfer simulations. • Simulation of the thermal hydraulics and radiative properties within whole PWR assemblies. • An immersed body method for modelling complex solid domains on practical computational meshes. - Abstract: A recently developed immersed body method is adapted and used to model a typical pressurised water reactor (PWR) fuel assembly. The approach is implemented with the numerical framework of the finite element, transient criticality code, FETCH which is composed of the neutron transport code, EVENT, and the CFD code, FLUIDITY. Within this framework the neutron transport equation, Navier–Stokes equations and a fluid energy conservation equation are solved in a coupled manner on a coincident structured or unstructured mesh. The immersed body method has been used to model the solid fuel pins. The key feature of this method is that the fluid/neutronic domain and the solid domain are represented by overlapping and non-conforming meshes. The main difficulty of this approach, for which a solution is proposed in this work, is the conservative mapping of the energy and momentum exchange between the fluid/neutronic mesh and the solid fuel pin mesh. Three numerical examples are presented which include a validation of the fuel pin submodel against an analytical solution; an uncoupled (no neutron transport solution) PWR fuel assembly model with a specified power distribution which was validated against the COBRA-EN subchannel analysis code; and finally a coupled model of a PWR fuel assembly with reflective neutron boundary conditions. Coupling between the fluid and neutron transport solutions is through the nuclear cross sections dependence on Doppler fuel temperature, coolant density and temperature, which was taken into account by using pre-calculated cross-section lookup tables generated using WIMS9a. The method was found to show good agreement

  10. Modeling multicomponent ionic transport in groundwater with IPhreeqc coupling: Electrostatic interactions and geochemical reactions in homogeneous and heterogeneous domains

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-01-01

    is coupled with the geochemical code PHREEQC-3 by utilizing the IPhreeqc module, thus enabling to perform the geochemical calculations included in the PHREEQC's reaction package. The multicomponent reactive transport code is benchmarked with different 1-D and 2-D transport problems. Successively...... the electrostatic interactions during transport of charged ions in physically and chemically heterogeneous porous media. The modeling approach is based on the local charge balance and on the description of compound-specific and spatially variable diffusive/dispersive fluxes. The multicomponent ionic transport code......, conservative and reactive transport examples are presented to demonstrate the capability of the proposed model to simulate transport of charged species in heterogeneous porous media with spatially variable physical and chemical properties. The results reveal that the Coulombic cross-coupling between dispersive...

  11. Techniques to reduce memory requirements for coupled photon-electron transport

    International Nuclear Information System (INIS)

    Turcksin, Bruno; Ragusa, Jean; Morel, Jim

    2011-01-01

    In this work, we present two methods to decrease memory needs while solving the photon- electron transport equation. The coupled transport of electrons and photons is of importance in radiotherapy because it describes the interactions of X-rays with matter. One of the issues of discretized electron transport is that the electron scattering is highly forward peaked. A common approximation is to represent the peak in the scattering cross section by a Dirac distribution. This is convenient, but the integration over all angles of this distribution requires the use of Galerkin quadratures. By construction these quadratures impose that the number of flux moments be equal to the number of directions (number of angular fluxes), which is very demanding in terms of memory. In this study, we show that even if the number of moments is not as large as the number of directions, an accurate solution can be obtained when using Galerkin quadratures. Another method to decrease the memory needs involves choosing an appropriate reordering of the energy groups. We show in this paper that an appropriate alternation of photons/electrons groups allows to rewrite one transport problem of n groups as gcd successive transport problems of n/gcd groups where gcd is the greatest common divisor between the number of photon groups and the number of electron groups. (author)

  12. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2-4) in agreement with experiments. The virtual solute......A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing...... increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux...

  13. Spin-polarized transport in manganite-based magnetic nano structures

    International Nuclear Information System (INIS)

    Granada, Mara

    2007-01-01

    Giant magnetoresistance (G M R) and tunnel magnetoresistance are spin polarized transport phenomena which are observed in magnetic multilayers.They consist in a large variation of the electrical resistivity of the system depending on whether the magnetizations of the magnetic layers are aligned parallel or anti-parallel to each other. In order to be able to align the magnetic layers by means of an external magnetic field, they must not be strongly ferromagnetically coupled.The extrinsic magnetoresistance effects in magnetic multilayers, either G M R in the case of a metallic spacer, or T M R in the case of an insulating spacer, are observed at low magnetic fields, which makes these phenomena interesting for technological applications.We studied the possibility of using the ferromagnetic manganite La 0 ,75Sr 0 ,25MnO 3 (L S M O) in magneto resistive devices, with different materials as a spacer layer.As the main result of this work, we report G M R and T M R measurements in L S M O/LaNiO 3 /L S M O and L S M O/CaMnO 3 /L S M O tri layers, respectively, observed for the first time in these systems.This work included the deposition of films and multilayers by sputtering, the structural characterization of the samples and the study of their magnetic and electric transport properties.Our main interest was the study of G M R in L S M O/LaNiO 3 /L S M O tri layers.It was necessary to firstly characterize the magnetic coupling of L S M O layers through the L N O spacer. After that, we performed electric transport measurements with the current in the plane of the samples.We measured a G M R contribution of ∼ 0,55 % at T = 83 K.We designed a procedure for patterning the samples by e-beam lithography for electric transport measurements with the current perpendicular to the plane. We also performed the study of L S M O/CaMnO 3 /L S M O tri layers with an insulating spacer.We studied the magnetic coupling, as in the previous case.Then we fabricated a tunnel junction for

  14. Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach.

    Science.gov (United States)

    Taghavy, Amir; Pennell, Kurt D; Abriola, Linda M

    2015-01-01

    Changes in nanoparticle size and shape due to particle-particle interactions (i.e., aggregation or agglomeration) may significantly alter particle mobility and retention in porous media. To date, however, few modeling studies have considered the coupling of transport and particle aggregation processes. The majority of particle transport models employ an Eulerian modeling framework and are, consequently, limited in the types of collisions and aggregate sizes that can be considered. In this work, a more general Lagrangian modeling framework is developed and implemented to explore coupled nanoparticle aggregation and transport processes. The model was verified through comparison of model simulations to published results of an experimental and Eulerian modeling study (Raychoudhury et al., 2012) of carboxymethyl cellulose (CMC)-modified nano-sized zero-valent iron particle (nZVI) transport and retention in water-saturated sand columns. A model sensitivity analysis reveals the influence of influent particle concentration (ca. 70 to 700 mg/L), primary particle size (10-100 nm) and pore water velocity (ca. 1-6 m/day) on particle-particle, and, consequently, particle-collector interactions. Model simulations demonstrate that, when environmental conditions promote particle-particle interactions, neglecting aggregation effects can lead to under- or over-estimation of nanoparticle mobility. Results also suggest that the extent to which higher order particle-particle collisions influence aggregation kinetics will increase with the fraction of primary particles. This work demonstrates the potential importance of time-dependent aggregation processes on nanoparticle mobility and provides a numerical model capable of capturing/describing these interactions in water-saturated porous media. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Electric Vehicles in Logistics and Transportation: A Survey on Emerging Environmental, Strategic, and Operational Challenges

    OpenAIRE

    Juan, Angel Alejandro; Mendez, Carlos Alberto; Faulin, Javier; de Armas, Jesica; Grasman, Scott

    2017-01-01

    Current logistics and transportation (L&T) systems include heterogeneous fleets consisting of common internal combustion engine vehicles as well as other types of vehicles using ?green? technologies, e.g., plug-in hybrid electric vehicles and electric vehicles (EVs). However, the incorporation of EVs in L&T activities also raise some additional challenges from the strategic, planning, and operational perspectives. For instance, smart cities are required to provide recharge stations for electr...

  16. EMERGING TECHNOLOGY SUMMARY: THEORETICAL AND EXPERIMENTAL MODELING OF MULTI-SPECIES TRANSPORT IN SOILS UNDER ELECTRIC FIELDS

    Science.gov (United States)

    This project investigated an innovative approach for transport of inorganic species under the influence of electric fields. This process, commonly known as electrokinetics uses low-level direct current (dc) electrical potential difference across a soil mass applied through inert...

  17. Thermoelectric transport in two-dimensional giant Rashba systems

    Science.gov (United States)

    Xiao, Cong; Li, Dingping; Ma, Zhongshui; Niu, Qian

    Thermoelectric transport in strongly spin-orbit coupled two-dimensional Rashba systems is studied using the analytical solution of the linearized Boltzmann equation. To highlight the effects of inter-band scattering, we assume point-like potential impurities, and obtain the band-and energy-dependent transport relaxation times. Unconventional transport behaviors arise when the Fermi level lies near or below the band crossing point (BCP), such as the non-Drude electrical conducivity below the BCP, the failure of the standard Mott relation linking the Peltier coefficient to the electrical conductivity near the BCP, the enhancement of diffusion thermopower and figure of merit below the BCP, the zero-field Hall coefficient which is not inversely proportional to and not a monotonic function of the carrier density, the enhanced Nernst coefficient below the BCP, and the enhanced current-induced spin-polarization efficiency.

  18. Electrical transport and optical band gap of NiFe2Ox thin films

    Science.gov (United States)

    Bougiatioti, Panagiota; Manos, Orestis; Klewe, Christoph; Meier, Daniel; Teichert, Niclas; Schmalhorst, Jan-Michael; Kuschel, Timo; Reiss, Günter

    2017-12-01

    We fabricated NiFe2Ox thin films on MgAl2O4(001) by reactive dc magnetron co-sputtering varying the oxygen partial pressure. The fabrication of a material with a variable oxygen deficiency leads to controllable electrical and optical properties which are beneficial for the investigations of the transport phenomena and could, therefore, promote the use of such materials in spintronic and spin caloritronic applications. We used several characterization techniques to investigate the film properties, focusing on their structural, magnetic, electrical, and optical properties. From the electrical resistivity, we obtained the conduction mechanisms that govern the systems in the high and low temperature regimes. We further extracted low thermal activation energies which unveil extrinsic transport mechanisms. The thermal activation energy decreases in the less oxidized samples revealing the pronounced contribution of a large amount of electronic states localized in the band gap to the electrical conductivity. The Hall coefficient is negative and decreases with increasing conductivity as expected for n-type conduction, while the Hall- and the drift mobilities show a large difference. The optical band gaps were determined via ultraviolet-visible spectroscopy. They follow a similar trend as the thermal activation energies, with lower band gap values in the less oxidized samples.

  19. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  20. Self-Adjoint Angular Flux Equation for Coupled Electron-Photon Transport

    International Nuclear Information System (INIS)

    Liscum-Powell, J.L.; Lorence, L.J. Jr.; Morel, J.E.; Prinja, A.K.

    1999-01-01

    Recently, Morel and McGhee described an alternate second-order form of the transport equation called the self adjoint angular flux (SAAF) equation that has the angular flux as its unknown. The SAAF formulation has all the advantages of the traditional even- and odd-parity self-adjoint equations, with the added advantages that it yields the full angular flux when it is numerically solved, it is significantly easier to implement reflective and reflective-like boundary conditions, and in the appropriate form it can be solved in void regions. The SAAF equation has the disadvantage that the angular domain is the full unit sphere and, like the even- and odd- parity form, S n source iteration cannot be implemented using the standard sweeping algorithm. Also, problems arise in pure scattering media. Morel and McGhee demonstrated the efficacy of the SAAF formulation for neutral particle transport. Here we apply the SAAF formulation to coupled electron-photon transport problems using multigroup cross-sections from the CEPXS code and S n discretization

  1. Self-adjoint angular flux equation for coupled electron-photon transport

    International Nuclear Information System (INIS)

    Liscum-Powell, J.L.; Prinja, A.K.; Morel, J.E.; Lorence, L.J. Jr.

    1999-01-01

    Recently, Morel and McGhee described an alternate second-order form of the transport equation called the self-adjoint angular flux (SAAF) equation that has the angular flux as its unknown. The SAAF formulation has all the advantages of the traditional even- and odd-parity self-adjoint equations, with the added advantages that it yields the full angular flux when it is numerically solved, it is significantly easier to implement reflective and reflective-like boundary conditions, and in the appropriate form it can be solved in void regions. The SAAF equation has the disadvantage that the angular domain is the full unit sphere, and, like the even- and odd-parity form, S n source iteration cannot be implemented using the standard sweeping algorithm. Also, problems arise in pure scattering media. Morel and McGhee demonstrated the efficacy of the SAAF formulation for neutral particle transport. Here, the authors apply the SAAF formulation to coupled electron-photon transport problems using multigroup cross sections from the CEPXS code and S n discretization

  2. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  3. Electric bus migration in Bengaluru with dynamic charging technologies

    Directory of Open Access Journals (Sweden)

    Ankit Kumar Begwani

    2017-12-01

    Full Text Available Rapid but unplanned urban development coupled with economic growth has resulted in congestion and pollution concerns in Indian cities. This forced India consider taking concrete steps towards design policies that would help stir the nation towards a more sustainable future. India, along with other bigger Asian economies like China, needs to address the growing global concerns over climate change and design their framework and policies to help cut down the greenhouse gas emissions. Transportation is a major source of pollution. A shift towards a pro-public transport policy would solve the traffic congestion problems and address the emission concerns. India has a significantly higher modal share of public transportation in its major cities. Public bus transport system acts as a lifeline to the India’s poor and middle class citizens. The following study focuses on the need for a replacement of conventional fossil fuel dependent buses with Electric buses in the existing public transport bus fleet in the city of Bengaluru. A design has been developed to utilize wireless charging technologies to realize electric bus migration in Bengaluru.

  4. Evaluating policy-relevant emission inventories for transportation and electricity (Invited)

    Science.gov (United States)

    Holloway, T.; Meier, P.; Bickford, E. E.

    2013-12-01

    We explore the challenges and opportunities in evaluating bottom-up emission inventories for transportation and electricity. These anthropogenic emissions respond in complex ways to technology and activity changes. Thus, it is essential that inventories capture historic emissions consistent with observations, as well as future emissions consistent with policy scenarios. For transportation, we focus on freight-related trucking emissions, represented by the Wisconsin Inventory for Freight Emissions (WIFE), developed with activity data from the U.S. Federal Highway Administration Freight Analysis Framework and emission factors from the EPA MOVES model. Because WIFE is linked to commodity flows and roadway speeds, it offers a useful data set to evaluate policy changes such as truck-to-rail modal shifts and alternative fuel choices. However, the value of the inventory in assessing these scenarios depends on its skill in calculating frieght-related emissions. Satellite data of nitrogen dioxide (NO2) from the OMI instrument aboard the NASA Aura satellite is used to evaluate truck and rail NOx emissions, especially on rural highways away from ground-based monitors. For electricity, we use the MyPower electricity dispatch model to calculate emissions and power generation in response to policy and technology changes. These include renewable portfolio standards, conservation, increased natural gas, and response to building demand. To evaluate MyPower, we compare with the Clean Air Markets database, and 2007 calculated daily afternoon emissions with satellite-derived NO2 from OMI. Drawing on the results of these studies, we discuss strategies to meet the information demands of both historically correct air quality inputs and future-relevant policy scenarios.

  5. Structural basis for polyspecificity in the POT family of proton-coupled oligopeptide transporters

    DEFF Research Database (Denmark)

    Lyons, Joseph A.; Parker, Joanne L.; Solcan, Nicolae

    2014-01-01

    An enigma in the field of peptide transport is the structural basis for ligand promiscuity, as exemplified by PepT1, the mammalian plasma membrane peptide transporter. Here, we present crystal structures of di‐ and tripeptide‐bound complexes of a bacterial homologue of PepT1, which reveal at least...... two mechanisms for peptide recognition that operate within a single, centrally located binding site. The dipeptide was orientated laterally in the binding site, whereas the tripeptide revealed an alternative vertical binding mode. The co‐crystal structures combined with functional studies reveal...... that biochemically distinct peptide‐binding sites likely operate within the POT/PTR family of proton‐coupled symporters and suggest that transport promiscuity has arisen in part through the ability of the binding site to accommodate peptides in multiple orientations for transport...

  6. Strong dopant dependence of electric transport in ion-gated MoS2

    NARCIS (Netherlands)

    Piatti, Erik; Chen, Qihong; Ye, Jianting

    2017-01-01

    We report modifications of the temperature-dependent transport properties of MoS2 thin flakes via field-driven ion intercalation in an electric double layer transistor. We find that intercalation with Li+ ions induces the onset of an inhomogeneous superconducting state. Intercalation with K+ leads

  7. A turbulent transport network model in MULTIFLUX coupled with TOUGH2

    International Nuclear Information System (INIS)

    Danko, G.; Bahrami, D.; Birkholzer, J.T.

    2011-01-01

    A new numerical method is described for the fully iterated, conjugate solution of two discrete submodels, involving (a) a transport network model for heat, moisture, and airflows in a high-permeability, air-filled cavity; and (b) a variably saturated fractured porous medium. The transport network submodel is an integrated-parameter, computational fluid dynamics solver, describing the thermal-hydrologic transport processes in the flow channel system of the cavity with laminar or turbulent flow and convective heat and mass transport, using MULTIFLUX. The porous medium submodel, using TOUGH2, is a solver for the heat and mass transport in the fractured rock mass. The new model solution extends the application fields of TOUGH2 by integrating it with turbulent flow and transport in a discrete flow network system. We present demonstrational results for a nuclear waste repository application at Yucca Mountain with the most realistic model assumptions and input parameters including the geometrical layout of the nuclear spent fuel and waste with variable heat load for the individual containers. The MULTIFLUX and TOUGH2 model elements are fully iterated, applying a programmed reprocessing of the Numerical Transport Code Functionalization model-element in an automated Outside Balance Iteration loop. The natural, convective airflow field and the heat and mass transport in a representative emplacement drift during postclosure are explicitly solved in the new model. The results demonstrate that the direction and magnitude of the air circulation patterns and all transport modes are strongly affected by the heat and moisture transport processes in the surrounding rock, justifying the need for a coupled, fully iterated model solution such as the one presented in the paper.

  8. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].

    Science.gov (United States)

    Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin

    2013-01-01

    Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles

  9. Electrical transport properties of V2O5 thin films obtained by thermal annealing of layers grown by RF magnetron sputtering at room temperature

    International Nuclear Information System (INIS)

    Giannetta, H.M.R.; Calaza, C.; Lamas, D.G.; Fonseca, L.; Fraigi, L.

    2015-01-01

    The present study investigates the main electrical transport mechanism in V 2 O 5 thin films deposited by RF magnetron sputtering on the basis of the Mott's small polaron hopping model. The material under test was obtained at room temperature from a V 2 O 5 target and then oxidized at high temperature under air atmosphere to obtain the desired V 2 O 5 phase. The dependence of the electrical conductivity of the V 2 O 5 thin films with temperature was analyzed using the Mott's small polarons hopping transport model under the Schnakenberg form. Model results suggest a polaron binding energy W H = 0.1682 eV, with a structural disorder energy W D = 0.2241 eV and an optical phonon frequency ν 0 = 0.468 × 10 13 s −1 . These results are in agreement with data reported in literature for single crystal V 2 O 5 . However, the carrier mobility μ = 1.5019 × 10 −5 cm 2 /Vs computed in the non-adiabatic regime is significantly smaller than that of the single crystal, suggesting a strong electron–phonon coupling in the V 2 O 5 thin films obtained with the proposed deposition method. - Highlights: • A two-stage deposition method compatible with lift-off patterning is proposed. • V 2 O 5 films are deposited by RF magnetron sputtering and then annealed in air. • Films are analyzed by SEM and its pure phase nature is confirmed by XRD. • Electrical conductivity was fitted using Mott's model for small polarons. • Fit derived parameters confirm charge transport through small-polarons hopping

  10. A Calderón multiplicative preconditioner for coupled surface-volume electric field integral equations

    KAUST Repository

    Bagci, Hakan

    2010-08-01

    A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well-posed even when applied to densely discretized volumes, a classically formulated S-EFIE operator is ill-posed when applied to densely discretized surfaces. This renders the discretized coupled S-EFIE and V-EFIE system ill-conditioned, and its iterative solution inefficient or even impossible. The proposed scheme regularizes the coupled set of S-EFIE and V-EFIE using a Calderón multiplicative preconditioner (CMP)-based technique. The resulting scheme enables the efficient analysis of electromagnetic interactions with composite structures containing fine/subwavelength geometric features. Numerical examples demonstrate the efficiency of the proposed scheme. © 2006 IEEE.

  11. Transport equations, Level Set and Eulerian mechanics. Application to fluid-structure coupling

    International Nuclear Information System (INIS)

    Maitre, E.

    2008-11-01

    My works were devoted to numerical analysis of non-linear elliptic-parabolic equations, to neutron transport equation and to the simulation of fabrics draping. More recently I developed an Eulerian method based on a level set formulation of the immersed boundary method to deal with fluid-structure coupling problems arising in bio-mechanics. Some of the more efficient algorithms to solve the neutron transport equation make use of the splitting of the transport operator taking into account its characteristics. In the present work we introduced a new algorithm based on this splitting and an adaptation of minimal residual methods to infinite dimensional case. We present the case where the velocity space is of dimension 1 (slab geometry) and 2 (plane geometry) because the splitting is simpler in the former

  12. Time-lapse electrical resistivity anomalies due to contaminant transport around landfills

    Directory of Open Access Journals (Sweden)

    J. Yang

    2007-06-01

    Full Text Available The extent of landfill leachate can be delineated by geo-electrical imaging as a response to the varying electrical resistivity in the contaminated area. This research was based on a combination of hydrogeological numerical simulation followed by geophysical forward and inversion modeling performed to evaluate the migration of a contaminant plume from a landfill. As a first step, groundwater flow and contaminant transport was simulated using the finite elements numerical modeling software FEFLOW. The extent of the contaminant plume was acquired through a hydrogeological model depicting the distributions of leachate concentration in the system. Next, based on the empirical relationship between the concentration and electrical conductivity of the leachate in the porous media, the corresponding geo-electrical structure was derived from the hydrogeological model. Finally, forward and inversion computations of geo-electrical anomalies were performed using the finite difference numerical modeling software DCIP2D/DCIP3D. The image obtained by geophysical inversion of the electric data was expected to be consistent with the initial hydrogeological model, as described by the distribution of leachate concentration. Numerical case studies were conducted for various geological conditions, hydraulic parameters and electrode arrays, from which conclusions were drawn regarding the suitability of the methodology to assess simple to more complex geo-electrical models. Thus, optimal mapping and monitoring configurations were determined.

  13. Simultaneous effects of hydrostatic pressure and electric field on impurity binding energy and polarizability in coupled InAs/GaAs quantum wires

    International Nuclear Information System (INIS)

    Tangarife, E.; Duque, C.A.

    2011-01-01

    This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. Calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a non-linear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum-well wires. -- Research highlights: → Binding energy for donor impurity in coupled wires strongly depends on the confinement potential. → Polarizability for donor impurity in coupled wires strongly depends on the confinement potential. → Binding energy strongly depends on the direction of the applied electric field. → Polarizability strongly depends on the direction of the applied electric field. → The coupling between the two parallel wires increases with the hydrostatic pressure.

  14. Evaluation of all-electric secondary power for transport aircraft

    Science.gov (United States)

    Murray, W. E.; Feiner, L. J.; Flores, R. R.

    1992-01-01

    This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E; $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.

  15. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model

    Science.gov (United States)

    Zambon, Joseph B.; He, Ruoying; Warner, John C.

    2014-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).

  16. Transepithelial transport of flavanone in intestinal Caco-2 cell monolayers

    International Nuclear Information System (INIS)

    Kobayashi, Shoko; Konishi, Yutaka

    2008-01-01

    Our recent study [S. Kobayashi, S. Tanabe, M. Sugiyama, Y. Konishi, Transepithelial transport of hesperetin and hesperidin in intestinal Caco-2 cell monolayers, Biochim. Biophys. Acta, 1778 (2008) 33-41] shows that the mechanism of absorption of hesperetin involves both proton-coupled active transport and transcellular passive diffusion. Here, as well as analyzing the cell permeability of hesperetin, we also study the transport of other flavanones, naringenin and eriodictyol, using Caco-2 cell monolayers. Similar to hesperetin mentioned, naringenin and eriodictyol showed proton-coupled polarized transport in apical-to-basolateral direction in non-saturable manner, constant permeation in the apical-to-basolateral direction (J ap→bl ) irrespective of the transepithelial electrical resistance (TER), and preferable distribution into the basolateral side after apical loading in the presence of a proton gradient. Furthermore, the proton-coupled J ap→bl of hesperetin, naringenin and eriodictyol, were inhibited by substrates of the monocarboxylic acid transporter (MCT), such as benzoic acid, but not by ferulic acid. In contrast, both benzoic and ferulic acids have no stimulatory effect on J ap→bl of each flavanone by trans-stimulation analysis. These results indicates that proton-driven active transport is commonly participated in the absorption of flavanone in general, and that its transport is presumed to be unique other than MCT-mediated transport for absorption of phenolic acids (PAs), sodium-dependent MCT (SMCT) nor anion exchanger-mediated transport

  17. Analysis of Electrical Coupling Parameters in Superconducting Cables

    CERN Document Server

    Bottura, L; Rosso, C

    2003-01-01

    The analysis of current distribution and redistribution in superconducting cables requires the knowledge of the electric coupling among strands, and in particular the interstrand resistance and inductance values. In practice both parameters can have wide variations in cables commonly used such as Rutherford cables for accelerators or Cable-in-Conduits for fusion and SMES magnets. In this paper we describe a model of a multi-stage twisted cable with arbitrary geometry that can be used to study the range of interstrand resistances and inductances that is associated with variations of geometry. These variations can be due to cabling or compaction effects. To describe the variations from the nominal geometry we have adopted a cable model that resembles to the physical process of cabling and compaction. The inductance calculation part of the model is validated by comparison to semi-analytical results, showing excellent accuracy and execution speed.

  18. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  19. Thermal transport of carbon nanotubes and graphene under optical and electrical heating measured by Raman spectroscopy

    Science.gov (United States)

    Hsu, I.-Kai

    addition, the temperature gradient from the heating location to both ends of the suspended CNT, together with absorbed power and diameter of the CNT can be used to solve for the thermal conductivity of the CNT, which is found to span the range from 0.51nW/K to 2.28nW/K. We also conduct Raman measurements to explore the effect of gas molecules on thermal transport in electrically- or optically-heated suspended carbon nanotubes. Under the same electric heating power, the temperature increase of the CNT in gaseous environments is found to be considerably less than in vacuum, indicating non-negligible heat dissipation to the surrounding gas molecules. The result shows the approximately 50 to 60% of the heat is taken away by the surrounding gas molecules in a 5 microm long electrically-heated CNT. Following the electrical heating technique, a two-laser, purely optical measurement technique is utilized to observe heat dissipation in an ultra-long suspended CNT. Exponentially decaying temperature profiles with the heat decay lengths shorter than 7 microm are found in all samples measured. These relatively short heat decay lengths are attributed to the strong thermal coupling of carbon nanotubes' surface to air molecules. Moreover, the previously unmeasured heat transfer coefficient between CNT and air molecules is determined to be on the order of 104 W/m2·K.

  20. Coupling behaviors of graphene/SiO2/Si structure with external electric field

    Science.gov (United States)

    Onishi, Koichi; Kirimoto, Kenta; Sun, Yong

    2017-02-01

    A traveling electric field in surface acoustic wave was introduced into the graphene/SiO2/Si sample in the temperature range of 15 K to 300 K. The coupling behaviors between the sample and the electric field were analyzed using two parameters, the intensity attenuation and time delay of the traveling-wave. The attenuation originates from Joule heat of the moving carriers, and the delay of the traveling-wave was due to electrical resistances of the fixed charge and the moving carriers with low mobility in the sample. The attenuation of the external electric field was observed in both Si crystal and graphene films in the temperature range. A large attenuation around 190 K, which depends on the strength of external electric field, was confirmed for the Si crystal. But, no significant temperature and field dependences of the attenuation in the graphene films were detected. On the other hand, the delay of the traveling-wave due to ionic scattering at low temperature side was observed in the Si crystal, but cannot be detected in the films of the mono-, bi- and penta-layer graphene with high conductivities. Also, it was indicated in this study that skin depth of the graphene film was less than thickness of two graphene atomic layers in the temperature range.

  1. Electrical transport properties of large, individual NiCo{sub 2}O{sub 4} nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Linfeng; Wu, Limin; Hu, Xinhua; Fang, Xiaosheng [Department of Materials Science, Fudan University, Shanghai (China); Liao, Meiyong [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), Namiki, Tsukuba, Ibaraki (Japan)

    2012-03-07

    Understanding the electrical transport properties of individual semiconductor nanostructures is crucial to advancing their practical applications in high-performance nanodevices. Large-sized individual nanostructures with smooth surfaces are preferred because they can be easily made into nanodevices using conventional photolithography procedures rather than having to rely on costly and complex electron-beam lithography techniques. In this study, micrometer-sized NiCo{sub 2}O{sub 4} nanoplates are successfully prepared from their corresponding hydroxide precursor using a quasi-topotactic transformation. The Co/Ni atomic arrangement shows no changes during the transformation from the rhombohedral LDH precursor (space group R anti 3 m) to the cubic NiCo{sub 2}O{sub 4} spinel (space group Fd anti 3 m), and the nanoplate retains its initial morphology during the conversion process. In particular, electrical transport within an individual NiCo{sub 2}O{sub 4} nanoplate is further investigated. The mechanisms of electrical conduction in the low-temperature range (T < 100 K) can be explained in terms of the Mott's variable-range hopping model. At high temperatures (T > 100 K), both the variable-range hopping and nearest-neighbor hopping mechanisms contribute to the electrical transport properties of the NiCo{sub 2}O{sub 4} nanoplate. These initial results will be useful to understanding the fundamental characteristics of these nanoplates and to designing functional nanodevices from NiCo{sub 2}O{sub 4} nanostructures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Effects of electric field and Coriolis force on electrohydrodynamic stability of poorly conducting couple stress parallel fluid flow in a channel

    International Nuclear Information System (INIS)

    Shankar, B.M.; Rudraiah, N.

    2013-01-01

    The effective functioning of microfluidic devices in chemical, electrical and mechanical engineering involving fluidics particularly those having vibrations and petroleum products containing organic, inorganic and other microfluidics require understanding and control of stability of poorly conducting parallel fluid flows. The electrical conductivity, σ, of a poorly conducting fluidics, increases with the temperature and the concentration of freely suspended particles like RBC, WBC and so on in the blood, the hylauronic acid (HA) and nutrients of synovial fluid in synovial joints will spin producing microrotation, forming micropolar fluid of Eringen. The presence of Deuterium - Tritium (DT) in inertial fusion target (IFT) may also be modeled using micropolar fluid theory of Eringen. A particular case of micropolar fluid theory when microrotation balances with the natural vorticity of a poorly conducting fluidics in the presence of an electric field is called ‘electrohydrodynamic couple stress fluid’ (EHDCF). These EHDCFs exhibit a variation of electrical conductivity, ∇ σ, increasing with temperature and concentration of freely suspended particles, releases the charges from the nuclei forming distribution of charge density, ρ e . These charges induce an electric field, 1 E i . If need be, we can apply an electric field, 1 E a , by embedding electrodes of different potentials at the boundaries. The total electric field, 1 E = 1 E i + 1 E a , produces a current density, 1 J = ρ σ 1 E, according to Ohm’s law and also produces an electric force, 1 F σ = σ 1 E. This current 1 J acts as sensing and the force, 1 F σ acts as actuation. These two properties make the poorly conducting couple stress fluid to act as a smart material. The objective of this paper is to show that EHDCV in presence of coriolis force plays a significant role in controlling the stability of parallel flows which is essential for an effective functioning of machineries that occur in

  3. Transport, atom blockade, and output coupling in a Tonks-Girardeau gas

    International Nuclear Information System (INIS)

    Rutherford, L.; McCann, J. F.; Goold, J.; Busch, Th.

    2011-01-01

    Recent experiments have demonstrated how quantum-mechanical impurities can be created within strongly correlated quantum gases and used to probe the coherence properties of these systems [S. Palzer, C. Zipkes, C. Sias, and M. Koehl, Phys. Rev. Lett. 103, 150601 (2009).]. Here we present a phenomenological model to simulate such an output coupler for a Tonks-Girardeau gas that shows qualitative agreement with the experimental results for atom transport and output coupling. Our model allows us to explore nonequilibrium transport phenomena in ultracold quantum gases and leads us to predict a regime of atom blockade, where the impurity component becomes localized in the parent cloud despite the presence of gravity. We show that this provides a stable mixed-species quantum gas in the strongly correlated limit.

  4. ITS version 5.0 :the integrated TIGER series of coupled electron/Photon monte carlo transport codes with CAD geometry.

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2005-09-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.

  5. Wireless Battery Management System of Electric Transport

    Science.gov (United States)

    Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur

    2017-11-01

    Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.

  6. Electric and Plug-In Hybrid Electric Fleet Vehicle Testing | Transportation

    Science.gov (United States)

    Research | NREL Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations How Electric and Plug-In Hybrid Electric Vehicles plugging the vehicle into an electric power source. PHEVs are powered by an internal combustion engine that

  7. Comparative clinical evaluation of a prototype non-electric transport incubator and an electrical infant incubator in a neonatal unit.

    Science.gov (United States)

    Khodadadeh, Y; Nili, F; Nayeri, F; Wickramasinghe, Y

    2001-09-01

    A new non-electric transport incubator has been developed for transferring babies between health facilities in developing countries. The temperature performance of this prototype was compared with a commercial electric incubator. The warm-up time for the prototype was 51.8 min, compared with 48.1 min for the electric incubator. Forty-five non-distressed premature babies, aged 24-72 h, with a gestational age of less than 37 weeks, were continuously evaluated for a 2 h period. Twenty-five babies, with a mean weight of 2073 g (range 1500-2500 g), were studied in the prototype, and 20 babies, with a mean weight of 2076g (range 1550-2500 g), were studied in the electrical incubator. The rectal and abdominal skin temperature, heart rate, oxygen saturation and respiratory rate of the babies were recorded. The temperature, oxygen and humidity level of the canopy and the room temperature were also measured. The SaO2, heart rate and respiratory rate were within the normal range (in the prototype: 96.5%, 130.5 beats min(-1) and 43 breaths min(-1), respectively; and, in the electric incubator: 96.5%, 128.5 beats min(-1) and 40 breaths min(-1), respectively). No evidence of carbon dioxide narcosis, hypoxia, acidosis or adverse thermoregulatory behaviour were observed in the two groups. The mean rectal temperature for both groups was within the range 36.5 degrees C-37.5 degrees C. There was no significant difference between the measurements of the two groups. The level of oxygen inside the canopy was 21%, and no decrease was observed. The new nonelectric transport incubator confirmed its safety and efficiency in providing a warm environment for non-distressed premature babies over a 2 h period.

  8. Electrical control of spontaneous emission and strong coupling for a single quantum dot

    DEFF Research Database (Denmark)

    Laucht, A.; Hofbauer, F.; Hauke, N.

    2009-01-01

    We report the design, fabrication and optical investigation of electrically tunable single quantum dots—photonic crystal defect nanocavities operating in both the weak and strong coupling regimes of the light–matter interaction. Unlike previous studies where the dot–cavity spectral detuning...... switchable optical nonlinearity at the single photon level, paving the way towards on-chip dot-based nano-photonic devices that can be integrated with passive optical components....

  9. Development of plasma diagnostics technologies - Measurement of transport= parameters in tokamak edge plasma by using electric transport probes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyu Sun; Chang, Do Hee; Sim, Yeon Gun; Kim, Jin Hee [Hanyang University, Seoul (Korea, Republic of)

    1995-08-01

    Electric transport probe system is developed for the measurement of electron temperature, floating potential, plasma density and flow velocity of= edge plasmas in the KT-2 medium size tokamak. Experiments have been performed in KT-1 small size tokamak. Electric transport probe is composed of a single probe(SP) and a Mach probe (MP). SP is used for the measurements of electron density, floating potential, and plasma density and measured values are {approx} 3*10{sup 11}/cm{sup -3}, -20 volts, 15 {approx} 25 eV. For the most discharges, respectively. MP is for the measurements of toroidal(M{sub T}) and poloidal(M{sub P}) flow velocities, and density, which are M{sub T} {approx_equal} .0.85, M{sub P} {approx_equal}. 0.17, n. {approx_equal} 2.1*10{sup 11} cm{sup -3}, respectively. A triple probe is also developed for the direct reading of T{sub e} and n{sub e}, and is used for DC, RF, and RF+DC plasma in APL of Hanyang university. 38 refs., 36 figs. (author)

  10. CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1.

    Science.gov (United States)

    Huynh, Kevin W; Jiang, Jiansen; Abuladze, Natalia; Tsirulnikov, Kirill; Kao, Liyo; Shao, Xuesi; Newman, Debra; Azimov, Rustam; Pushkin, Alexander; Zhou, Z Hong; Kurtz, Ira

    2018-03-02

    Na + -coupled acid-base transporters play essential roles in human biology. Their dysfunction has been linked to cancer, heart, and brain disease. High-resolution structures of mammalian Na + -coupled acid-base transporters are not available. The sodium-bicarbonate cotransporter NBCe1 functions in multiple organs and its mutations cause blindness, abnormal growth and blood chemistry, migraines, and impaired cognitive function. Here, we have determined the structure of the membrane domain dimer of human NBCe1 at 3.9 Å resolution by cryo electron microscopy. Our atomic model and functional mutagenesis revealed the ion accessibility pathway and the ion coordination site, the latter containing residues involved in human disease-causing mutations. We identified a small number of residues within the ion coordination site whose modification transformed NBCe1 into an anion exchanger. Our data suggest that symporters and exchangers utilize comparable transport machinery and that subtle differences in their substrate-binding regions have very significant effects on their transport mode.

  11. Effect of electric charge on the transperitoneal transport of plasma proteins during CAPD

    NARCIS (Netherlands)

    Buis, B.; Koomen, G. C.; Imholz, A. L.; Struijk, D. G.; Reddingius, R. E.; Arisz, L.; Krediet, R. T.

    1996-01-01

    BACKGROUND: Controversy exists as to whether electric charges of plasma proteins influence their transport across the peritoneal membrane during CAPD. Fixed negative charges in the peritoneal membrane are diminished during peritonitis in rats. METHODS: Peritoneal clearances of 10 proteins and their

  12. Three-Dimensional Network Model for Coupling of Fracture and Mass Transport in Quasi-Brittle Geomaterials

    Directory of Open Access Journals (Sweden)

    Peter Grassl

    2016-09-01

    Full Text Available Dual three-dimensional networks of structural and transport elements were combined to model the effect of fracture on mass transport in quasi-brittle geomaterials. Element connectivity of the structural network, representing elasticity and fracture, was defined by the Delaunay tessellation of a random set of points. The connectivity of transport elements within the transport network was defined by the Voronoi tessellation of the same set of points. A new discretisation strategy for domain boundaries was developed to apply boundary conditions for the coupled analyses. The properties of transport elements were chosen to evolve with the crack opening values of neighbouring structural elements. Through benchmark comparisons involving non-stationary transport and fracture, the proposed dual network approach was shown to be objective with respect to element size and orientation.

  13. Analysis of the Sodium Recirculation Theory of Solute Coupled Water Transport in Small Intestine

    DEFF Research Database (Denmark)

    Larsen, E. H.; Sørensen, Jens Nørkær; Sørensen, J. B.

    2002-01-01

    Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+-2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translateral......, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions....... The computed sodium recirculation flux that is required for isotonic transport corresponds to that estimated in experiments on toad small intestine. This result is shown to be robust and independent of whether the apical entrance mechanism for the sodium ion is a channel, a SGLT1 transporter driving inward...

  14. Phosphorylation states of the (Na+ + K+)-transporting ATPase in preparations from lamb kidney and electric-eel (Electophorus electricus) electric organ.

    Science.gov (United States)

    Harris, W E; Stahl, W L

    1984-01-01

    Phosphorylation states of the (Na+ + K+)-transporting ATPase were studied in highly purified preparations isolated from electric-eel electric organ and from lamb kidney. The steady-state level of phosphorylated lamb kidney enzyme, obtained by reaction with [gamma-32P]ATP, was not appreciably reduced in the presence of ADP unless oligomycin was present. The phosphorylated form of the electric-eel electric-organ enzyme was reduced by at least 95% under the same conditions, suggesting that the E1P state in the kidney enzyme is more transitory than that in electric organ. The level of phosphorylation from [32P]Pi was higher in the lamb kidney preparation than in the electric-organ preparation, and the difference in stimulation of phosphorylation by ouabain in the two preparations was striking. Ouabain increased the level of phosphorylation by 35% in the kidney preparation and 734% in the electric-organ preparation. The E2P state seems to be stabilized by ouabain in the latter preparation. These findings, as well as the different reactivities of the thiol groups to blocking reagents in these preparations, suggest that the tertiary structure in the enzyme isolated from these two sources is different. PMID:6324756

  15. The thermal stability of magnetically exchange coupled MnBi/FeCo composites at electric motor working temperature

    Science.gov (United States)

    Cheng, Ye; Wang, Hongying; Li, Zhigang; Liu, Wanhui; Bao, Ilian

    2018-04-01

    The magnetically exchange coupled MnBi/FeCo composites were synthesized through a magnetic self-assembly process. The MnBi/FeCo composites were then hot pressed in a magnetic field to form magnets. The thermal stability of the magnets were tested by annealing at electric motor working temperature of 200 °C for 20, 40 and 60 h, respectively. It was found that after heating for 20 h, there was negligible change in its hysteresis loop. However, when the heating time was increased 40 and 60 h, the magnetic hysteresis loops presented two-phase magnetic behaviors, and the maximum energy products of the magnet were decreased. This research showed that the magnetically exchange coupled MnBi/FeCo composites had low thermal stability at electric motor working temperature.

  16. Implications of Lagrangian transport for coupled chemistry-climate simulations

    Science.gov (United States)

    Stenke, A.; Dameris, M.; Grewe, V.; Garny, H.

    2008-10-01

    For the first time a purely Lagrangian transport algorithm is applied in a fully coupled chemistry-climate model (CCM). We use the Lagrangian scheme ATTILA for the transport of water vapour, cloud water and chemical trace species in the ECHAM4.L39(DLR)/CHEM (E39C) CCM. The advantage of the Lagrangian approach is that it is numerically non-diffusive and therefore maintains steeper and more realistic gradients than the operational semi-Lagrangian transport scheme. In case of radiatively active species changes in the simulated distributions feed back to model dynamics which in turn affect the modelled transport. The implications of the Lagrangian transport scheme for stratospheric model dynamics and tracer distributions in the upgraded model version E39C-ATTILA (E39C-A) are evaluated by comparison with observations and results of the E39C model with the operational semi-Lagrangian advection scheme. We find that several deficiencies in stratospheric dynamics in E39C seem to originate from a pronounced modelled wet bias and an associated cold bias in the extra-tropical lowermost stratosphere. The reduction of the simulated moisture and temperature bias in E39C-A leads to a significant advancement of stratospheric dynamics in terms of the mean state as well as annual and interannual variability. As a consequence of the favourable numerical characteristics of the Lagrangian transport scheme and the improved model dynamics, E39C-A generally shows more realistic stratospheric tracer distributions: Compared to E39C high stratospheric chlorine (Cly) concentrations extend further downward and agree now well with analyses derived from observations. Therefore E39C-A realistically covers the altitude of maximum ozone depletion in the stratosphere. The location of the ozonopause, i.e. the transition from low tropospheric to high stratospheric ozone values, is also clearly improved in E39C-A. Furthermore, the simulated temporal evolution of stratospheric Cly in the past is

  17. Optimal Operation of Interdependent Power Systems and Electrified Transportation Networks

    Directory of Open Access Journals (Sweden)

    M. Hadi Amini

    2018-01-01

    Full Text Available Electrified transportation and power systems are mutually coupled networks. In this paper, a novel framework is developed for interdependent power and transportation networks. Our approach constitutes solving an iterative least cost vehicle routing process, which utilizes the communication of electrified vehicles (EVs with competing charging stations, to exchange data such as electricity price, energy demand, and time of arrival. The EV routing problem is solved to minimize the total cost of travel using the Dijkstra algorithm with the input from EVs battery management system, electricity price from charging stations, powertrain component efficiencies and transportation network traffic conditions. Through the bidirectional communication of EVs with competing charging stations, EVs’ charging demand estimation is done much more accurately. Then the optimal power flow problem is solved for the power system, to find the locational marginal price at load buses where charging stations are connected. Finally, the electricity prices were communicated from the charging stations to the EVs, and the loop is closed. Locational electricity price acts as the shared parameter between the two optimization problems, i.e., optimal power flow and optimal routing problem. Electricity price depends on the power demand, which is affected by the charging of EVs. On the other hand, location of EV charging stations and their different pricing strategies might affect the routing decisions of the EVs. Our novel approach that combines the electrified transportation with power system operation, holds tremendous potential for solving electrified transportation issues and reducing energy costs. The effectiveness of the proposed approach is demonstrated using Shanghai transportation network and IEEE 9-bus test system. The results verify the cost-savings for both power system and transportation networks.

  18. Na+-coupled bicarbonate transporters in duodenum, collecting ducts and choroid plexus.

    Science.gov (United States)

    Praetorius, Jeppe

    2010-01-01

    Epithelia cover the internal and external surfaces of the organism and form barriers between the various compartments. Some of these epithelia are specialized for effective transmembrane or even transepithelial movement of acid-base equivalents. Certain epithelia with a high rate of HCO3- transport express a few potent Na+-coupled acid-base transporters to gain a net HCO3- movement across the epithelium. Examples of such epithelia are renal proximal tubules and pancreatic ducts. In contrast, multiple Na+-coupled HCO3- transporters are expressed in other HCO3- secreting epithelia, such as the duodenal mucosa or the choroid plexus, which maintain suitable intracellular pH despite a variable demand for secreting HCO3-. In the duodenum, the epithelial cells must secrete HCO3- for neutralization of the gastric acid, and at the same time prevent cellular acidification. During the neutralization, large quantities of CO2 are formed in the duodenal lumen, which enter the epithelial cells. This would tend to lower intracellular pH and require effective counteracting mechanisms to avoid cell death and to maintain HCO3- secretion. The choroid plexus secretes the cerebrospinal fluid (CSF) and controls the pH of the otherwise poorly buffered CSF. The pCO2 of CSF fluctuates with plasma pCO2, and the choroid plexus must regulate the HCO3- secretion to minimize the effects of these fluctuations on CSF pH. This is done while maintaining pH neutrality in the epithelial cells. Thus, the Na+-HCO3- cotransporters appear to be involved in HCO3- import in more epithelia, where Na+/H+ exchangers were until recently thought to be sufficient for maintaining intracellular pH.

  19. Comparative study of chemo-electro-mechanical transport models for an electrically stimulated hydrogel

    International Nuclear Information System (INIS)

    Elshaer, S E; Moussa, W A

    2014-01-01

    The main objective of this work is to introduce a new expression for the hydrogel’s hydration for use within the Poisson Nernst–Planck chemo electro mechanical (PNP CEM) transport models. This new contribution to the models support large deformation by considering the higher order terms in the Green–Lagrangian strain tensor. A detailed discussion of the CEM transport models using Poisson Nernst–Planck (PNP) and Poisson logarithmic Nernst–Planck (PLNP) equations for chemically and electrically stimulated hydrogels will be presented. The assumptions made to simplify both CEM transport models for electric field application in the order of 0.833 kV m −1 and a highly diluted electrolyte solution (97% is water) will be explained. This PNP CEM model has been verified accurately against experimental and numerical results. In addition, different definitions for normalizing the parameters are used to derive the dimensionless forms of both the PNP and PLNP CEM. Four models, PNP CEM, PLNP CEM, dimensionless PNP CEM and dimensionless PNLP CEM transport models were employed on an axially symmetric cylindrical hydrogel problem with an aspect ratio (diameter to thickness) of 175:3. The displacement and osmotic pressure obtained for the four models are compared against the variation of the number of elements for finite element analysis, simulation duration and solution rate when using the direct numerical solver. (papers)

  20. Unconventional quantized edge transport in the presence of inter-edge coupling in intercalated graphene

    OpenAIRE

    Li, Yuanchang

    2016-01-01

    It is generally believed that the inter-edge coupling destroys the quantum spin Hall (QSH) effect along with the gap opening at the Dirac points. Using first-principles calculations, we find that the quantized edge transport persists in the presence of inter-edge coupling in Ta intercalated epitaxial graphene on SiC(0001), being a QSH insulator with the non-trivial gap of 81 meV. In this case, the band is characterized by two perfect Dirac cones with different Fermi velocities, yet only one m...

  1. Superconductivity and low temperature electrical transport in B-doped CVD nanocrystalline diamond

    Czech Academy of Sciences Publication Activity Database

    Nesládek, M.; Mareš, Jiří J.; Tromson, D.; Mer, Ch.; Bergonzo, P.; Hubík, Pavel; Krištofik, Jozef

    2006-01-01

    Roč. 7, Suppl. 1 (2006), S41-S44 ISSN 1468-6996 R&D Projects: GA ČR(CZ) GA202/06/0040 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * electrical transport * doping * CVD diamond Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.124, year: 2006

  2. Electrical Transport and Magnetoresistance Properties of Tensile-Strained CaMnO3 Thin Films

    Science.gov (United States)

    Ullery, Dustin; Lawson, Bridget; Zimmerman, William; Neubauer, Samuel; Chaudhry, Adeel; Hart, Cacie; Yong, Grace; Smolyaninova, Vera; Kolagani, Rajeswari

    We will present our studies of the electrical transport and magnetoresistance properties of tensile strained CaMnO3 thin films. We observe that the resistivity decreases significantly as the film thickness decreases which is opposite to what is observed in thin films of hole doped manganites. The decrease in resistivity is more pronounced in the films on (100) SrTiO3, with resistivity of the thinnest films being about 3 orders of magnitude lower than that of bulk CaMnO3. Structural changes accompanying resistivity changes cannot be fully explained as due to tensile strain, and indicate the presence of oxygen vacancies. These results also suggest a coupling between tensile strain and oxygen deficiency, consistent with predictions from models based on density functional theory calculations. We observe a change in resistance under the application of moderate magnetic field. Experiments are underway to understand the origin of the magnetoresistance and its possible relation to the tensile strain effects. We acknowledge support from: Towson Office of University Undergraduate Research, Fisher Endowment Grant and Undergraduate Research Grants from the Fisher College of Science and Mathematics, and Seed Funding Grant from the School of Emerging technologies.

  3. Electrical transport of SiNWs array after covalent attachment of new organic functionalities

    Directory of Open Access Journals (Sweden)

    Marianna Ambrico

    2012-05-01

    Full Text Available Modification of the electrical transport of a random network of silicon nanowires assembled on n‐ silicon support, after silicon nanowires functionalization by chlorination/alkylation procedure , is here described and discussed. We show that the organic functionalities induce charge transfer at single SiNW and produce doping‐like effect that is kept in the random network too. The\tSiNWs\tnetwork\talso\tpresents\ta\tsurface recombination velocity lower than that of bulk silicon. Interestingly, the functionalized silicon nanowires/n‐Si junctions display photo‐yield and open circuit voltages higher than those including oxidized silicon nanowire networks. Electrical properties stability in time of junctions embedding propenyl terminated silicon nanowires network and transport modification after secondary functionalization is also shown. These results suggest a possible route for the integration of functionalized\tSi\tnanowires,\talthough\trandomly distributed, in stable large area photovoltaic or molecule sensitive based devices.

  4. Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport

    DEFF Research Database (Denmark)

    Larsen, E.H.; Møbjerg, N.; Sørensen, Jens Nørkær

    2006-01-01

    transport similar to rat proximal tubule. Na+ recirculation is required for truly isotonic transport. The tonicity of the absorbate and the recirculation flux depend critically on ion permeabilities of interspace basement membrane. Conclusion: Our model based on solute-solvent coupling in lateral space......Aim: By mathematical modelling, we analyse conditions for near-isotonic and isotonic transport by mammalian kidney proximal tubule. Methods: The model comprises compliant lateral intercellular space (lis) and cells, and infinitely large luminal and peritubular compartments with diffusible species......: Na+, K+, Cl and an intracellular non-diffusible anion. Unknown model variables are solute concentrations, electrical potentials, volumes and hydrostatic pressures in cell and lis, and transepithelial potential. We used data mainly from rat proximal tubule to model epithelial cells and interspace...

  5. Use of electric vehicles or hydrogen in the Danish transport sector in 2050?

    DEFF Research Database (Denmark)

    Skytte, Klaus; Pizarro Alonso, Amalia Rosa; Karlsson, Kenneth Bernard

    2017-01-01

    of electric vehicles (EV) or with a high percentage of hydrogen use for transportation. The STREAM model—an energy scenario simulating tool—is used to model the different scenarios and their integration with the electricity and heating systems. The major findings are that an increased share of EV can reduce...... the socioeconomic cost of the energy system in 2050. However, electricity demand for H2 generation via electrolysis is more flexible than EV charging and the production can therefore, to a larger degree be used to out-balance variable electricity surplus from a high share of wind energy in the power system......, reducing the investments in backup capacity. Whether the hydrogen scenario (H2S) is more costly to implement than the EV scenario (EVS) mainly depends on the technological development—especially the improvement on the efficiency of the conversion from electricity to H2 and the cost of the hydrogen fuel...

  6. A coupled hydrodynamic-hydrochemical modeling for predicting mineral transport in a natural acid drainage system.

    Science.gov (United States)

    Zegers Risopatron, G., Sr.; Navarro, L.; Montserrat, S., Sr.; McPhee, J. P.; Niño, Y.

    2017-12-01

    The geochemistry of water and sediments, coupled with hydrodynamic transport in mountainous channels, is of particular interest in central Chilean Andes due to natural occurrence of acid waters. In this paper, we present a coupled transport and geochemical model to estimate and understand transport processes and fate of minerals at the Yerba Loca Basin, located near Santiago, Chile. In the upper zone, water presentes low pH ( 3) and high concentrations of iron, aluminum, copper, manganese and zinc. Acidity and minerals are the consequence of water-rock interactions in hydrothermal alteration zones, rich in sulphides and sulphates, covered by seasonal snow and glaciers. Downstream, as a consequence of neutral to alkaline lateral water contributions (pH >7) along the river, pH increases and concentration of solutes decreases. The mineral transport model has three components: (i) a hydrodynamic model, where we use HEC-RAS to solve 1D Saint-Venant equations, (ii) a sediment transport model to estimate erosion and sedimentation rates, which quantify minerals transference between water and riverbed and (iii) a solute transport model, based on the 1D OTIS model which takes into account the temporal delay in solutes transport that typically is observed in natural channels (transient storage). Hydrochemistry is solved using PHREEQC, a software for speciation and batch reaction. Our results show that correlation between mineral precipitation and dissolution according to pH values changes along the river. Based on pH measurements (and according to literature) we inferred that main minerals in the water system are brochantite, ferrihydrite, hydrobasaluminite and schwertmannite. Results show that our model can predict the transport and fate of minerals and metals in the Yerba Loca Basin. Mineral dissolution and precipitation process occur for limited ranges of pH values. When pH values are increased, iron minerals (schwertmannite) are the first to precipitate ( 2.5

  7. Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes

    Science.gov (United States)

    Rashidi, A.; Nami, M.; Monavarian, M.; Aragon, A.; DaVico, K.; Ayoub, F.; Mishkat-Ul-Masabih, S.; Rishinaramangalam, A.; Feezell, D.

    2017-07-01

    This work describes a small-signal microwave method for determining the differential carrier lifetime and transport effects in electrically injected InGaN/GaN light-emitting diodes (LEDs). By considering the carrier diffusion, capture, thermionic escape, and recombination, the rate equations are used to derive an equivalent small-signal electrical circuit for the LEDs, from which expressions for the input impedance and modulation response are obtained. The expressions are simultaneously fit to the experimental data for the input impedance and modulation response for nonpolar InGaN/GaN micro-LEDs on free-standing GaN substrates. The fittings are used to extract the transport related circuit parameters and differential carrier lifetimes. The dependence of the parameters on the device diameter and current density is reported. We also derive approximations for the modulation response under low and high injection levels and show that the transport of carriers affects the modulation response of the device, especially at low injection levels. The methods presented are relevant to the design of high-speed LEDs for visible-light communication.

  8. Crystal structural, magnetic and electrical transport properties of CeKFeMoO6 double perovskite

    International Nuclear Information System (INIS)

    Huo Guoyan; Ren Minghui; Wang Xiaoqing; Zhang Hongrui; Shi Pengfei

    2010-01-01

    The crystal structural, magnetic and electrical transport properties of double perovskite CeKFeMoO 6 have been investigated. The crystal structure of the compound is assigned to the monoclinic system with space group P2 1 /n and its lattice parameters are a=0.55345(3) nm, b=0.56068(2) nm, c=0.78390(1) nm, β=89.874(2). The divergence between zero-field-cooling and field-cooling M-T curves demonstrates the anisotropic behavior. The Curie temperature measured from C p -T curve is about 340 K. Isothermal magnetization curve shows that the saturation and spontaneous magnetization are 1.90 and 1.43 μ B /f.u. at 300 K, respectively. The electrical behavior of the sample shows a semiconductor. The electrical transport behavior can be described by variable range hopping model. Large magnetoresistance, -0.88 and -0.18, can be observed under low magnetic field, 0.5 T, at low and room temperature, respectively.

  9. Integration of renewable energy into the transport and electricity sectors through V2G

    International Nuclear Information System (INIS)

    Lund, Henrik; Kempton, Willett

    2008-01-01

    Large-scale sustainable energy systems will be necessary for substantial reduction of CO 2 . However, large-scale implementation faces two major problems: (1) we must replace oil in the transportation sector, and (2) since today's inexpensive and abundant renewable energy resources have fluctuating output, to increase the fraction of electricity from them, we must learn to maintain a balance between demand and supply. Plug-in electric vehicles (EVs) could reduce or eliminate oil for the light vehicle fleet. Adding 'vehicle-to-grid' (V2G) technology to EVs can provide storage, matching the time of generation to time of load. Two national energy systems are modelled, one for Denmark, including combined heat and power (CHP) and the other a similarly sized country without CHP (the latter being more typical of other industrialized countries). The model (EnergyPLAN) integrates energy for electricity, transport and heat, includes hourly fluctuations in human needs and the environment (wind resource and weather-driven need for heat). Four types of vehicle fleets are modelled, under levels of wind penetration varying from 0% to 100%. EVs were assumed to have high power (10 kW) connections, which provide important flexibility in time and duration of charging. We find that adding EVs and V2G to these national energy systems allows integration of much higher levels of wind electricity without excess electric production, and also greatly reduces national CO 2 emissions

  10. Use of electric vehicles or hydrogen in the Danish transport sector

    DEFF Research Database (Denmark)

    Skytte, Klaus; Pizarro Alonso, Amalia Rosa; Karlsson, Kenneth Bernard

    2015-01-01

    of the energy system in 2050. Electricity demand for H2 generation via electrolysis is more flexible than EV charging and the production can therefore, to a larger degree be used to out-balance variable electricity surplus from a high share of wind and solar energy in the power system. H2 production may...... compares a likely scenario with two alternative ways to achieve the goal - either with a high percentage of electric vehicles (EV) or with a high percentage of hydrogen (H2) use in the transport sector. The STREAM model - an energy scenario simulating tool - provides insight into different potential energy...... cost of the energy system than a lower level of electrolyser capital cost. Therefore, the major driver of a successful H2 scenario is a high efficient and flexible H2 production in 2050. In other words, from a socio-economic view point this paper International Conference on Energy, Environment...

  11. Testing of a benchscale Reverse Osmosis/Coupled Transport system for treating contaminated groundwater

    International Nuclear Information System (INIS)

    Hodgson, K.M.; Lunsford, T.R.; Panjabi, G.

    1994-01-01

    The Reverse Osmosis/Coupled Transport process is a innovative means of removing radionuclides from contaminated groundwater at the Hanford Site. Specifically, groundwater in the 200 West Area of the Hanford Site has been contaminated with uranium, technetium, and nitrate. Investigations are proceeding to determine the most cost effective method to remove these contaminants. The process described in this paper combines three different membrane technologies (reverse osmosis, coupled transport, and nanofiltration to purify the groundwater while extracting and concentrating uranium, technetium, and nitrate into separate solutions. This separation allows for the future use of the radionuclides, if needed, and reduces the amount of waste that will need to be disposed of. This process has the potential to concentrate the contaminants into solutions with volumes in a ratio of 1/10,000 of the feed volume. This compares to traditional volume reductions of 10 to 100 for ion exchange and stand-alone reverse osmosis. The successful demonstration of this technology could result in significant savings in the overall cost of decontaminating the groundwater

  12. Fluctuation-enhanced electric conductivity in electrolyte solutions.

    Science.gov (United States)

    Péraud, Jean-Philippe; Nonaka, Andrew J; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L

    2017-10-10

    We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.

  13. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    Energy Technology Data Exchange (ETDEWEB)

    DeLuchi, M.A. [Argonne National Lab., IL (United States)]|[Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  14. Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for Electric Vehicles

    DEFF Research Database (Denmark)

    Andersen, Poul Houman; Mathews, John A.; Rask, Morten

    2009-01-01

    A new business model for accelerating the introduction of Electric Vehicles into private transport systems involves the provision by an Electric Recharge Grid Operator (ERGO) of an intelligent rechargeable network in advance of the vehicles themselves. The ERGO business model creates a market...... (as witnessed in the Danish case with wind energy) and managing the resulting fluctuating supply efficiently. The other problem concerns finding ways to reduce CO2 emissions in the transport sector. The ERGO business model effectively solves both problems, by transforming EVs into distributed storage...

  15. “Green” fuel tax on private transportation services and subsidies to electric energy. A model-based assessment for the main European countries

    International Nuclear Information System (INIS)

    Bartocci, Anna; Pisani, Massimiliano

    2013-01-01

    This paper evaluates the environmental and macroeconomic implications for France, Germany, Italy and Spain of taxing motor vehicle fuels for private transportation, a sector not subject to the Emissions Trading System, so as to reduce taxes on electricity consumption and increase subsidies to renewable sources of electricity generation. The assessment is based on a dynamic general equilibrium model calibrated for each of the four countries. The results suggest that the measures posited will reduce carbon dioxide emissions in the transportation sector and favor the development of electricity generation from renewable sources, thus limiting the growth of emissions from electricity generation. The measures do not jeopardize economic activity. The results are robust whether implementation is unilateral in one country or simultaneous throughout the EU. - Highlights: • The European Union's Agenda 2020 calls for member countries to reduce greenhouse gas emissions and increase renewable energy. • We evaluate implications in the EU of taxing fuels for private transportation, reducing taxes on electricity and increase subsidies to renewable sources of electricity. • The assessment is based on a dynamic general equilibrium model. • The measures reduce emissions, in particular in the transportation sector, favor electricity generation from renewable sources and do not jeopardize economic activity

  16. Electrical Transport and Magnetoresistance in Single-Wall Carbon Nanotubes Films

    Directory of Open Access Journals (Sweden)

    Vitaly KSENEVICH

    2014-06-01

    Full Text Available Electrical transport properties and magnetoresistance of single-wall carbon nanotubes (SWCNT films were investigated within temperature range (2 – 300 K and in magnetic fields up to 8 T. A crossover between metallic (dR/dT > 0 and non-metallic (dR/dT < 0 temperature dependence of the resistance as well as low-temperature saturation of the resistance in high bias regime indicated on the diminishing of role of the contact barriers between individual nanotubes essential for the charge transport in SWCNT arrays. The magnetoresistance (MR data demonstrated influence of weak localization and electron-electron interactions on charge transport properties in SWCNT films. The low-field negative MR with positive upturn was observed at low temperatures. At T > 10 K only negative MR was observed in the whole range of available magnetic fields. The negative MR can be approximated using 1D weak localization (WL model. The low temperature positive MR is induced by contribution from electron-electron interactions. DOI: http://dx.doi.org/10.5755/j01.ms.20.2.6311

  17. Integrated planning of electric vehicles routing and charging stations location considering transportation networks and power distribution systems

    Directory of Open Access Journals (Sweden)

    Andrés Arias

    2018-09-01

    Full Text Available Electric Vehicles (EVs represent a significant option that contributes to improve the mobility and reduce the pollution, leaving a future expectation in the merchandise transportation sector, which has been demonstrated with pilot projects of companies operating EVs for products delivering. In this work a new approach of EVs for merchandise transportation considering the location of Electric Vehicle Charging Stations (EVCSs and the impact on the Power Distribution System (PDS is addressed. This integrated planning is formulated through a mixed integer non-linear mathematical model. Test systems of different sizes are designed to evaluate the model performance, considering the transportation network and PDS. The results show a trade-off between EVs routing, PDS energy losses and EVCSs location.

  18. Perturbation theory for the bloch electrons on strongly coupled chains in both uniform electric and magnetic fields

    International Nuclear Information System (INIS)

    Zhao, X.G.; Chen, S.G.

    1992-01-01

    In this paper, the energy spectrum and the wave functions for a tight-binding Bloch electron on coupled chains under the action of both uniform electric and magnetic fields are studied in detail. Exact results are obtained for the case when the coupling between chains is large by using the perturbation theory, from which it is found that the spectrum is that of two interspaced Stark ladders. The magnetic field dependence of the energy spectrum is also discussed

  19. Spectroscopic and electric properties of the LiCs molecule: a coupled cluster study including higher excitations

    Science.gov (United States)

    Sørensen, L. K.; Fleig, T.; Olsen, J.

    2009-08-01

    Aimed at obtaining complete and highly accurate potential energy surfaces for molecules containing heavy elements, we present a new general-order coupled cluster method which can be applied in the framework of the spin-free Dirac formalism. As an initial application we present a systematic study of electron correlation and relativistic effects on the spectroscopic and electric properties of the LiCs molecule in its electronic ground state. In particular, we closely investigate the importance of excitations higher than coupled cluster doubles, spin-free and spin-dependent relativistic effects and the correlation of outer-core electrons on the equilibrium bond length, the harmonic vibrational frequency, the dissociation energy, the dipole moment and the static electric dipole polarizability. We demonstrate that our new implementation allows for highly accurate calculations not only in the bonding region but also along the complete potential curve. The quality of our results is demonstrated by a vibrational analysis where an almost complete set of vibrational levels has been calculated accurately.

  20. Spectroscopic and electric properties of the LiCs molecule: a coupled cluster study including higher excitations

    International Nuclear Information System (INIS)

    Soerensen, L K; Fleig, T; Olsen, J

    2009-01-01

    Aimed at obtaining complete and highly accurate potential energy surfaces for molecules containing heavy elements, we present a new general-order coupled cluster method which can be applied in the framework of the spin-free Dirac formalism. As an initial application we present a systematic study of electron correlation and relativistic effects on the spectroscopic and electric properties of the LiCs molecule in its electronic ground state. In particular, we closely investigate the importance of excitations higher than coupled cluster doubles, spin-free and spin-dependent relativistic effects and the correlation of outer-core electrons on the equilibrium bond length, the harmonic vibrational frequency, the dissociation energy, the dipole moment and the static electric dipole polarizability. We demonstrate that our new implementation allows for highly accurate calculations not only in the bonding region but also along the complete potential curve. The quality of our results is demonstrated by a vibrational analysis where an almost complete set of vibrational levels has been calculated accurately.

  1. Electrical transport properties of an isolated CdS microrope composed of twisted nanowires

    OpenAIRE

    Yu, Gui-Feng; Yu, Miao; Pan, Wei; Han, Wen-Peng; Yan, Xu; Zhang, Jun-Cheng; Zhang, Hong-Di; Long, Yun-Ze

    2015-01-01

    CdS is one of the important II-VI group semiconductors. In this paper, the electrical transport behavior of an individual CdS microrope composed of twisted nanowires is studied. It is found that the current?voltage (I-V) characteristics show two distinct power law regions from 360 down to 60?K. Space-charge-limited current (SCLC) theory is used to explain these temperature- and electric-field-dependent I-V curves. The I-V data can be well fitted by this theory above 100?K, and the correspondi...

  2. Long distance electron transport in marine sediments: Microbial and geochemical implications

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Larsen, Steffen; Pfeffer, Christian

    and promotes the formation of Mg-calcite and iron oxides in the oxic zone. Oxygen seems to be the major electron acceptor, and more than 40% of the oxygen consumption in sediments can be driven by long distance electron transfer from distant electron donors. The major e-donor is sulfide, which is oxidized......Anaerobic oxidation of organic matter in marine sediment is traditionally considered to be coupled to oxygen reduction via a cascade of redox processes and transport of intermittent electron donors and acceptors. Electric currents have been found to shortcut this cascade and directly couple...... oxidation of sulphide centimeters down in marine sediment to the reduction of oxygen at the very surface1 . This electric coupling of spatially separated redox half-reactions seems to be mediated by centimeter long filamentous Desulfubulbus affiliated bacteria with morphological and ultra...

  3. Lightning Burns and Electrical Trauma in a Couple Simultaneously Struck by Lightning

    Directory of Open Access Journals (Sweden)

    Stephanie A. Eyerly-Webb

    2017-07-01

    Full Text Available More people are struck and killed by lightning each year in Florida than any other state in the United States. This report discusses a couple that was simultaneously struck by lightning while walking arm-in-arm. Both patients presented with characteristic lightning burns and were admitted for hemodynamic monitoring, serum labs, and observation and were subsequently discharged home. Despite the superficial appearance of lightning burns, serious internal electrical injuries are common. Therefore, lightning strike victims should be admitted and evaluated for cardiac arrhythmias, renal injury, and neurological sequelae.

  4. Assessing the potential of different charging strategies for electric vehicle fleets in closed transport systems

    International Nuclear Information System (INIS)

    Schmidt, Johannes; Eisel, Matthias; Kolbe, Lutz M.

    2014-01-01

    A key reason for the low sales volumes of electric vehicles is their significantly higher purchasing price in comparison to conventional vehicles. However, various charging strategies can be applied to make these vehicles more profitable. In this paper, controlled charging concepts are transferred to commercial fleets operating in closed transport systems, as we found this field of application particularly well suited for the implementation of charging strategies. We analyzed data gathered in a field experiment conducted in a European port using electric vehicles in combination with a battery-swapping station to calculate the economic potentials of three charging scenarios: (1) optimizing energy procurement (2) trading load-shifting potential on control markets, and (3) a combination of the two. The findings indicate that all approaches are appropriate for reducing economic disadvantages of electric transport vehicles. Furthermore, we find that adjusting charging processes to avoid price peaks is more profitable than offering control reserve. Finally, focusing on the combination of both strategies seems to be most promising from an economic perspective. In this context, operational cost savings of more than 65% can be achieved compared to a similar dieselpowered vehicle when applying this strategy. - Highlights: • We model various charging strategies for electric transport vehicles. • The economic assessment is based on a field experiment with a port operator. • We consider the special market design of spot and ancillary service markets. • All charging strategies presented provide substantial cost-saving potentials. • Optimizing energy procurement is more profitable than offering control reserve

  5. Efficiency evaluation of gas fuelled and electric driven buses in the public transport sector

    Energy Technology Data Exchange (ETDEWEB)

    Aigner, Tobias Alexander

    2013-07-01

    The following report evaluates the efficiency of gas fuelled and electric driven buses in the public transport sector on a theoretical basis. The results indicate that the combination of CHP power plants and electric driven buses reach an overall efficiency of about 51% throughout the production chain (Well-to-Wheel), including heat distribution losses. The overall Well-to-Wheel efficiency for conventional gas turbines without heat recovery decreases to around 28%. For gas fuelled buses the Well-to-Wheel efficiency is about 30%. The Co2-emissions are evaluated based on the example of a #Left Double Quotation Mark#Volvo B10L CNG#Right Double Quotation Mark# gas bus and the electric driven #Left Double Quotation Mark#Eurabus 600#Right Double Quotation Mark#. The low energy consumption of the electric driven bus results in Co2-emissions of only 181.4 g Co2/km (Grid-to-Wheel). Depending on the utilised power plant technology the overall Co2-emissions (Well-to-Wheel) amount to 307.5 g Co2/km for a CHP power plant and 553.5 g Co2/km for a conventional gas turbine. On the other hand, gas fuelled buses emit about 1.25 kg Co2/km (Tank-to-Wheel), which is eightfold the emissions of an electrical bus. The Well-to-Tank emissions further increase to about 1.32 kg Co2/km. The emission calculation is based on real gas consumption data from a Norwegian public transport utility. The results indicate that the combination of CHP plants and electrical buses provide a much higher efficiency while reducing Co2-emissions. (author)

  6. Influences of a Side-Coupled Triple Quantum Dot on Kondo Transport Through a Quantum Dot

    International Nuclear Information System (INIS)

    Jiang Zhaotan; Yang Yannan; Qin Zhijie

    2010-01-01

    Kondo transport properties through a Kondo-type quantum dot (QD) with a side-coupled triple-QD structure are systematically investigated by using the non-equilibrium Green's function method. We firstly derive the formulae of the current, the linear conductance, the transmission coefficient, and the local density of states. Then we carry out the analytical and numerical studies and some universal conductance properties are obtained. It is shown that the number of the conductance valleys is intrinsically determined by the side-coupled QDs and at most equal to the number of the QDs included in the side-coupled structure in the asymmetric limit. In the process of forming the conductance valleys, the side-coupled QD system plays the dominant role while the couplings between the Kondo-type QD and the side-coupled structure play the subsidiary and indispensable roles. To testify the validity of the universal conductance properties, another different kinds of side-coupled triple-QD structures are considered. It should be emphasized that these universal properties are applicable in understanding this kind of systems with arbitrary many-QD side structures.

  7. Unconventional low-field magnetic response of a diffusive ring with spin–orbit coupling

    International Nuclear Information System (INIS)

    Patra, Moumita; Maiti, Santanu K.

    2017-01-01

    We report an unconventional behavior of electron transport in the limit of zero magnetic flux in a one-dimensional disordered ring, be it completely random or any correlated one, subjected to Rashba spin–orbit (SO) coupling. It exhibits much higher circulating current compared to a fully perfect ring for a wide range of SO coupling yielding larger electrical conductivity which is clearly verified from our Drude weight analysis. - Highlights: • Unconventional behavior of electron transport in a 1D disordered ring is reported. • Interplay between Rashba So interaction and disorder is discussed. • Disordered ring provides much higher current compared to a perfect one. • Results are independent with disorderness, be it correlated or random. • MI transition and selective switching effects are discussed.

  8. Unconventional low-field magnetic response of a diffusive ring with spin–orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Moumita; Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in

    2017-01-30

    We report an unconventional behavior of electron transport in the limit of zero magnetic flux in a one-dimensional disordered ring, be it completely random or any correlated one, subjected to Rashba spin–orbit (SO) coupling. It exhibits much higher circulating current compared to a fully perfect ring for a wide range of SO coupling yielding larger electrical conductivity which is clearly verified from our Drude weight analysis. - Highlights: • Unconventional behavior of electron transport in a 1D disordered ring is reported. • Interplay between Rashba So interaction and disorder is discussed. • Disordered ring provides much higher current compared to a perfect one. • Results are independent with disorderness, be it correlated or random. • MI transition and selective switching effects are discussed.

  9. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering

    KAUST Repository

    El Gharamti, Mohamad

    2013-10-01

    Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kalman updates of the contaminant model with the data. The problem is better handled when both flow and contaminant states are concurrently estimated using the traditional joint state augmentation approach. In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct EnKFs, one for each model. The presented strategy only deals with the estimation of state variables but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint approach. We conducted synthetic numerical experiments based on various time stepping and observation strategies to evaluate the dual EnKF approach and compare its performance with the joint state augmentation approach. Experimental results show that on average, the dual strategy could reduce the estimation error of the coupled states by 15% compared with the

  10. Structural, magnetic and electrical transport properties in cold-drawn thin Fe-rich wires

    International Nuclear Information System (INIS)

    Garcia, C.; Chizhik, A.; Val, J.J. del; Zhukov, A.; Blanco, J.M.; Gonzalez, J.

    2005-01-01

    Microstructural (X-ray diffraction), magnetic properties (hysteresis loop), electrical resistivity, magneto-impedance and stress impedance effects have been investigated in cold-drawn Fe 77.5 B 15 Si 7.5 amorphous wire. Initial amorphous wire (obtained by the in-rotating-water technique) with diameter of 125 μm was submitted to cold-drawn process decreasing the diameter to 50 μm. Such cold-drawn wire was treated by current annealing (currents of 190, 210, 220 and 230 mA during times between 1 and 45 min) for tailoring the magnetic and electrical transport properties. A qualitative analysis of the magnetoimpedance and stress impedance effects is given by considering the influence of the magnetoelastic anisotropy and frequency of the AC driving electrical current on the circular permeability

  11. Low-temperature electrical transport in B-doped ultrananocrystalline diamond film

    International Nuclear Information System (INIS)

    Li, Lin; Zhao, Jing; Hu, Zhaosheng; Quan, Baogang; Li, Junjie; Gu, Changzhi

    2014-01-01

    B-doped ultrananocrystalline diamond (UNCD) films are grown using hot-filament chemical vapor deposition method, and their electrical transport properties varying with temperature are investigated. When the B-doped concentration of UNCD film is low, a step-like increase feature of the resistance is observed with decreasing temperature, reflecting at least three temperature-modified electronic state densities at the Fermi level according to three-dimensional Mott's variable range hopping transport mechanism, which is very different from that of reported B-doped nanodiamond. With increasing B-doped concentration, a superconductive transformation occurs in the UNCD film and the highest transformation temperature of 5.3 K is observed, which is higher than that reported for superconducting nanodiamond films. In addition, the superconducting coherence length is about 0.63 nm, which breaks a reported theoretical and experimental prediction about ultra-nanoscale diamond's superconductivity

  12. Event-driven simulation of neural population synchronization facilitated by electrical coupling.

    Science.gov (United States)

    Carrillo, Richard R; Ros, Eduardo; Barbour, Boris; Boucheny, Christian; Coenen, Olivier

    2007-02-01

    Most neural communication and processing tasks are driven by spikes. This has enabled the application of the event-driven simulation schemes. However the simulation of spiking neural networks based on complex models that cannot be simplified to analytical expressions (requiring numerical calculation) is very time consuming. Here we describe briefly an event-driven simulation scheme that uses pre-calculated table-based neuron characterizations to avoid numerical calculations during a network simulation, allowing the simulation of large-scale neural systems. More concretely we explain how electrical coupling can be simulated efficiently within this computation scheme, reproducing synchronization processes observed in detailed simulations of neural populations.

  13. An analytical model for predicting transport in a coupled vadose/phreatic system

    International Nuclear Information System (INIS)

    Tomasko, D.

    1997-05-01

    A simple analytical model is presented for predicting the transport of a contaminant in both the unsaturated (vadose) and saturated (phreatic) zones following a surficial spill. The model incorporates advection, dispersion, adsorption, and first-order decay in both zones and couples the transport processes at the water table. The governing equation is solved by using the method of Laplace transforms, with numerical inversion of the Laplace space equation for concentration. Because of the complexity of the functional form for the Laplace space solution, a numerical methodology using the real and imaginary parts of a Fourier series was implemented. To reduce conservatism in the model, dilution at the water table was also included. Verification of the model is demonstrated by its ability to reproduce the source history at the surface and to replicate appropriate one-dimensional transport through either the vadose or phreatic zone. Because of its simplicity and lack of detailed input data requirements, the model is recommended for scoping calculations

  14. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    OpenAIRE

    Delucchi, Mark

    2003-01-01

    This report documents changes to the methods and data in a recently revised version of the greenhouse-gas emissions model originally documented in Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity, ANL/ESD/TM-22, Volumes 1 and 2, Center for Transportation Research, Argonne National Laboratory, Argonne (ANL), Illinois (DeLuchi, 1991, 1993). The revised Lifecycle Emissions Model (LEM) calculates energy use, air-pollutant emissions, and CO2-equivalent emissions o...

  15. Modeling of Interfilament Coupling Currents and Their Effect on Magnet Quench Protection

    CERN Document Server

    Ravaioli, E; Chlachidze, G; Maciejewski, M; Sabbi, G; Stoynev, S E; Verweij, A

    2017-01-01

    Variations in the transport current of a superconducting magnet cause several types of transitory losses. Due to its relatively short time constant, usually of the order of a few tens of milliseconds, interfilament coupling loss can have a significant effect on the coil protection against overheating after a quench. This loss is deposited in the strands and can facilitate a more homogeneous transition to the normal state of the coil turns. Furthermore, the presence of local interfilament coupling currents reduces the magnet's differential inductance, which in turn provokes a faster discharge of the transport current. The lumped-element dynamic electrothermal model of a superconducting magnet has been developed to reproduce these effects. Simulations are compared to experimental electrical transients and found in good agreement. After its validation, the model can be used for predicting the performance of quench protection systems based on energy extraction, quench heaters, the newly developed coupling-loss-in...

  16. Transition metal modified bulk BiFeO3 with improved magnetization and linear magneto-electric coupling

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Kumar, A.; Panwar, N.; Panwar, I.C.; Katiyar, R.S.

    2011-01-01

    Highlights: → Present composition (Bi 0.9 Sm 0.10 Fe 0.95 Co 0.05 O 3 (BSFCO) have shown very high magnetization compared to parent BFO. → The magnetic hysteresis loops are well saturated with high saturation magnetization 2.89 emu/gm (unpoled and unleached) and 2.18 emu/gm (poled and unleached) respectively. → Converse ME coupling were found 0.8e-10 s m -1 (H||E) and 0.6-0.8 x 10 -10 s m -1 (H-perpendicular E) which are better than the single phase multiferroic obeying linear ME coupling. - Abstract: At present BiFeO 3 (BFO) is the most attractive and sole example, which possesses low magnetization value, high leakage current and low polarization in ceramic form. Single-phase room temperature multiferroics are rare in nature. This paper deals with the improved magnetic and observed linear magneto-electric coupling in Co and Sm co-doped BiFeO 3 ceramics synthesized by sol-gel process at low temperature ∼600 deg. C. As synthesized Bi 0.9 Sm 0.10 Fe 0.95 Co 0.05 O 3 (BSFCO) showed high impurities phases (20%) over wide range of calcination temperatures. Impurity phases reduced drastically from 20% to 5% after leaching with nitric acid. However the electrical and the magnetic properties were almost the same for both phases. Well-defined magnetic hysteresis with high magnetic moment was found at room temperature. Ferroelectric polarization studies demonstrated similar values and shape as reported in literature for the pure bulk BFO. Linear magneto-electric (ME) coupling and weak ME coefficient (α) ∼ 0.6 e-10 s m -1 were observed in the co-doped BFO. The origin of the strong ferromagnetic property in our samples may be due to the presence of rare earth and transition metal ions at the lattice sites of BFO or due to impurity phase, since we have not seen any change in magnetization with reduction of impurity phase the later effect is more unlikely.

  17. Spin-orbit coupling and electric-dipole spin resonance in a nanowire double quantum dot.

    Science.gov (United States)

    Liu, Zhi-Hai; Li, Rui; Hu, Xuedong; You, J Q

    2018-02-02

    We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mechanisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large g-factor of strong SOC materials such as InSb.

  18. Neoclassical transport, poloidal rotation and radial electric field at the L-H transition

    International Nuclear Information System (INIS)

    Minardi, E.; Gervasini, G.; Lazzaro, E.

    1993-01-01

    The transition to a high confinement regime in tokamaks operating with a magnetic divertor configuration is accompanied by the strong steepening of the edge temperature profile and the onset of a large positive poloidal mass rotation associated with a negative radial electric field. The latter phenomena are signatures of a neoclassical transport mechanism. We address the question of establishing whether neoclassical transport is indeed sufficient to establish high edge gradients and drive poloidal rotation under strong auxiliary heating. The heat transport equation is solved numerically in a narrow edge layer interfaced to the plasma body through heat flux continuity, but allowing for heat conductivity discontinuity. The results compared with recent experimental measurements support the assumption that a highly sheared neoclassical poloidal velocity profile can suppress the anomalous part of the heat transport, and that the neoclassical residual transport, characterizes the plasma behaviour at the edge during H modes. (author) 3 refs., 4 figs

  19. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    International Nuclear Information System (INIS)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-01-01

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  20. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  1. From on-road trial evaluation of electric and conventional bicycles to comparison with other urban transport modes: Case study in the city of Lisbon, Portugal

    International Nuclear Information System (INIS)

    Baptista, Patrícia; Pina, André; Duarte, Gonçalo; Rolim, Catarina; Pereira, Gonçalo; Silva, Carlos; Farias, Tiago

    2015-01-01

    Highlights: • Five transportation alternatives were compared in Lisbon, Portugal. • Electric bicycles allowed increasing average speed from 8% to 26%, mainly in positive slopes. • WTW energy consumption of electric bicycle was 1–11% of the other transport options impacts. • Alternatives’ low energy needs and zero local emissions contributes to improve urban air quality. - Abstract: Increasing energy costs, energy consumption and emissions profiles prompted the promotion of different transportation alternatives. This research work addresses the comparison of trip dynamics, energy consumption, CO 2 and NO x Well-to-Wheel impacts of 5 transportation alternatives (conventional and electric bicycles, conventional and electric vehicles and an urban bus) in Lisbon, Portugal. On-road monitoring of a specific route in Lisbon revealed that bikers using electric bicycles increased their average speed between 8% and 26% compared to their use of the conventional bicycle, especially in the route sections with positive slopes (up to 49% increases). Electric bicycles result in a Tank-to-Wheel energy consumption of 0.028 MJ/km, allowing an average autonomy of 46 km between recharging. When comparing the 5 transportation alternatives, the electric bicycles presented a higher travel time of 13.5%, 1.9% and 7.8% over the bus, low powered electric vehicle, and standard electric vehicle/conventional technologies, respectively. Regarding the Well-to-Wheel energy consumption analysis, the results indicated that, when compared to the other transportation solutions, the electric bicycle only uses 11%, 3%, 1%, 2% and 4% of the energy required when using the low powered electric vehicle, standard electric vehicle, conventional gasoline and diesel technologies and bus, respectively. Furthermore, the analysis of Well-to-Wheel emissions reveals that the electric bicycle has 13% and 4% lower CO 2 emissions and 12% and 4% lower NO x emissions when compared to the low powered and

  2. Transport of ions through a (6,6) carbon nanotube under electric fields

    Science.gov (United States)

    Shen, Li; Xu, Zhen; Zhou, Zhe-Wei; Hu, Guo-Hui

    2014-11-01

    The transport of water and ions through carbon nanotubes (CNTs) is crucial in nanotechnology and biotechnology. Previous investigation indicated that the ions can hardly pass through (6,6) CNTs due to their hydrated shells. In the present study, utilizing molecular dynamics simulation, it is shown that the energy barrier mainly originating from the hydrated water molecules could be overcome by applying an electric field large enough in the CNT axis direction. Potential of mean force is calculated to show the reduction of energy barrier when the electric field is present for (Na+, K+, Cl-) ions. Consequently, ionic flux through (6,6) CNTs can be found once the electric field becomes larger than a threshold value. The variation of the coordination numbers of ions at different locations from the bulk to the center of the CNT is also explored to elaborate this dynamic process. The thresholds of the electric field are different for Na+, K+, and Cl- due to their characteristics. This consequence might be potentially applied in ion selectivity in the future.

  3. The Effects of Different Electron-Phonon Couplings on the Spectral and Transport Properties of Small Molecule Single-Crystal Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Carmine Antonio Perroni

    2014-03-01

    Full Text Available Spectral and transport properties of small molecule single-crystal organic semiconductors have been theoretically analyzed focusing on oligoacenes, in particular on the series from naphthalene to rubrene and pentacene, aiming to show that the inclusion of different electron-phonon couplings is of paramount importance to interpret accurately the properties of prototype organic semiconductors. While in the case of rubrene, the coupling between charge carriers and low frequency inter-molecular modes is sufficient for a satisfactory description of spectral and transport properties, the inclusion of electron coupling to both low-frequency inter-molecular and high-frequency intra-molecular vibrational modes is needed to account for the temperature dependence of transport properties in smaller oligoacenes. For rubrene, a very accurate analysis in the relevant experimental configuration has allowed for the clarification of the origin of the temperature-dependent mobility observed in these organic semiconductors. With increasing temperature, the chemical potential moves into the tail of the density of states corresponding to localized states, but this is not enough to drive the system into an insulating state. The mobility along different crystallographic directions has been calculated, including vertex corrections that give rise to a transport lifetime one order of magnitude smaller than the spectral lifetime of the states involved in the transport mechanism. The mobility always exhibits a power-law behavior as a function of temperature, in agreement with experiments in rubrene. In systems gated with polarizable dielectrics, the electron coupling to interface vibrational modes of the gate has to be included in addition to the intrinsic electron-phonon interaction. While the intrinsic bulk electron-phonon interaction affects the behavior of mobility in the coherent regime below room temperature, the coupling with interface modes is dominant for the

  4. Electrical and thermal transport properties of uranium and plutonium carbides

    International Nuclear Information System (INIS)

    Lewis, H.D.; Kerrisk, J.F.

    1976-09-01

    Contributions of many authors are outlined with respect to the experimental measurement methods used and characteristics of the sample materials. Discussions treat the qualitative effects of sample material composition; oxygen, nitrogen, and nickel concentrations; porosity; microstructural variations; and the variability in transport property values obtained by the various investigators. Temperature-dependent values are suggested for the electrical resistivities and thermal conductivities of selected carbide compositions based on a comparative evaluation of the available data and the effects of variation in the characteristics of sample materials

  5. Numerical modeling of coupled water flow and heat transport in soil and snow

    Science.gov (United States)

    Thijs J. Kelleners; Jeremy Koonce; Rose Shillito; Jelle Dijkema; Markus Berli; Michael H. Young; John M. Frank; William Massman

    2016-01-01

    A one-dimensional vertical numerical model for coupled water flow and heat transport in soil and snow was modified to include all three phases of water: vapor, liquid, and ice. The top boundary condition in the model is driven by incoming precipitation and the surface energy balance. The model was applied to three different terrestrial systems: A warm desert bare...

  6. Study of light-absorbing crystal birefringence and electrical modulation mechanisms for coupled thermal-optical effects.

    Science.gov (United States)

    Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui

    2014-09-20

    This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.

  7. Time-domain electric field enhancement on micrometer scale in coupled split ring resonator upon terahertz radiation

    DEFF Research Database (Denmark)

    Lange, Simon Lehnskov; Iwaszczuk, Krzysztof; Hoffmann, Matthias

    2016-01-01

    We present here a novel design for a coupled split ring resonator antenna optimized for time-domain electric field enhancement in the 0.1 to 1 terahertz (THz) range. The antenna is designed to be sensitive to the incident field polarization and seeks to avoid metal damage due to electron bombardm...

  8. Influence of lattice vibrations on the field driven electronic transport in chains with correlated disorder

    Science.gov (United States)

    da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.

    2016-12-01

    We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.

  9. RTE - Electricity transport network operator. Energy is our future: let's save it

    International Nuclear Information System (INIS)

    2014-01-01

    Managing and developing the French electricity transport network is essential to provide quality electricity on a continuous basis to all consumers. Since it was founded in 2000, and since it was made into a public service company (2005), RTE has proven its ability to fulfil its public interest mission in complete security. In an open European electricity market, RTE is recognised for offering all of its customers fair access to its network, which is the first condition for healthy competition. Based on this and thanks to its investments and operating quality, RTE is constantly improving its performances to meet its customers', public authorities' and the Energy Regulation Committee's requirements. This public service action is focused on four strategic priorities: performance of industrial facilities; a human and managerial policy focused on skills and efficiency; sustainable development; professionalism and innovation. This brochure presents RTE's missions, company overview and European cooperation

  10. Modeling Coupled Water and Heat Transport in the Root Zone of Winter Wheat under Non-Isothermal Conditions

    Directory of Open Access Journals (Sweden)

    Rong Ren

    2017-04-01

    Full Text Available Temperature is an integral part of soil quality in terms of moisture content; coupling between water and heat can render a soil fertile, and plays a role in water conservation. Although it is widely recognized that both water and heat transport are fundamental factors in the quantification of soil mass and energy balance, their computation is still limited in most models or practical applications in the root zone under non-isothermal conditions. This research was conducted to: (a implement a fully coupled mathematical model that contains the full coupled process of soil water and heat transport with plants focused on the influence of temperature gradient on soil water redistribution and on the influence of change in soil water movement on soil heat flux transport; (b verify the mathematical model with detailed field monitoring data; and (c analyze the accuracy of the model. Results show the high accuracy of the model in predicting the actual changes in soil water content and temperature as a function of time and soil depth. Moreover, the model can accurately reflect changes in soil moisture and heat transfer in different periods. With only a few empirical parameters, the proposed model will serve as guide in the field of surface irrigation.

  11. RoadRail: An economically viable infrastructure which facilitates the transition from oil to electricity for all forms of road transport

    DEFF Research Database (Denmark)

    Connolly, David

    2012-01-01

    to convert road transport from oil to electricity. This involves the electrification of major roads so that electric cars, vans, busses, and trucks can use electricity as their primary fuel over long distance, which in this study is referred to as ‘RoadRail’. This is a new and radical alternative......In recent decades, economic renewable energy technologies have been developed for the electricity and heat sectors. Although there has been some development in the transport sector, there is still no well-establish sustainable alternatives to oil. In this study, a new alternative is proposed...... and electricity/oil costs, Denmark is presented as a case study for the installation of RoadRail. The results indicate that based on 2020 cost assumptions, RoadRail is a more socio-economic alternative than a business-as-usual using oil. This is primarily due to decreasing electric vehicle costs, decreasing...

  12. Electrical conductivity and shear viscosity of quark gluon plasma in a quasiparticle model

    International Nuclear Information System (INIS)

    Srivastava, P.K.; Mohanty, B.

    2014-01-01

    Relativistic heavy-ion collisions (HIC) have reported the formation of a strongly coupled quark gluon plasma (sQGP). To study the properties of this sQGP is the main focus nowadays. Among these the shear viscosity (η) and electrical conductivity (σ el ) could reflect the transport properties of the medium. By studying the shear viscosity or more specifically shear viscosity to entropy density ratio (η/s), one can understand the nature of interactions among the constituents of the produced medium, it gives a measure of the fluidity. Electrical conductivity represents the linear response of the system to an applied external electric field. The basic question one could ask is that whether the matter created at heavy ion collision experiment is an electrical conductor or an insulator. Recent lattice QCD as well as phenomenological studies have shown that these transport quantities show some kind of minimum in its variation with respect to temperature near the temperature corresponding to the transition from hadronic phase to quark-gluon phase

  13. Analysis of influence of the radial electric field on turbulent transport in tandem mirror plasma

    International Nuclear Information System (INIS)

    Khvesyuk, Vladimir I.; Chirkov, Alexei Yu.; Pshenichnikov, Anton A.

    2000-01-01

    The model of anomalous transport in cylindrical non-uniform steady state plasma in uniform magnetic field under the influence of many mode drift wave oscillations is suggested. The effect of anomalous transport suppression due to radial electric field is studied, and physical picture of H mode in plasma of GAMMA-10 tandem mirror device is considered. Presented theoretical and numerical results agree with the experimental data obtained on GAMMA-10. (author)

  14. Concatenating algorithms for parallel numerical simulations coupling radiation hydrodynamics with neutron transport

    International Nuclear Information System (INIS)

    Mo Zeyao

    2004-11-01

    Multiphysics parallel numerical simulations are usually essential to simplify researches on complex physical phenomena in which several physics are tightly coupled. It is very important on how to concatenate those coupled physics for fully scalable parallel simulation. Meanwhile, three objectives should be balanced, the first is efficient data transfer among simulations, the second and the third are efficient parallel executions and simultaneously developments of those simulation codes. Two concatenating algorithms for multiphysics parallel numerical simulations coupling radiation hydrodynamics with neutron transport on unstructured grid are presented. The first algorithm, Fully Loosely Concatenation (FLC), focuses on the independence of code development and the independence running with optimal performance of code. The second algorithm. Two Level Tightly Concatenation (TLTC), focuses on the optimal tradeoffs among above three objectives. Theoretical analyses for communicational complexity and parallel numerical experiments on hundreds of processors on two parallel machines have showed that these two algorithms are efficient and can be generalized to other multiphysics parallel numerical simulations. In especial, algorithm TLTC is linearly scalable and has achieved the optimal parallel performance. (authors)

  15. Integral transport theory for charged particles in electric and magnetic fields

    International Nuclear Information System (INIS)

    Boffi, V.C.; Molinari, V.G.

    1979-01-01

    An integral transport theory for charged particles which, in the presence of electric and magnetic fields, diffuse by collisions against the atoms (or molecules) of a host medium is proposed. The combined effects of both the external fields and the mechanisms of scattering, removal and creation in building up the distribution function of the charged particles considered are investigated. The eigenvalue problem associated with the sourceless case of the given physical situation is also commented. Applications of the theory to a purely velocity-dependent problem and to a space-dependent problem, respectively, are illustrated for the case of a separable isotropic scattering kernel of synthetic type. Calculations of the distribution function, of the total current density and of relevant electrical conductivity are then carried out for different specializations of the external fields. (author)

  16. Modeling transport and reaction in an electric DC field

    Energy Technology Data Exchange (ETDEWEB)

    Arnerdal, K.; Neretnieks, I. [Dept. of Chemical Engineering and Technology, Royal Inst. of Tech. (Sweden)

    2001-07-01

    Remediation of contaminated soils from heavy metals can be accomplished by subjecting the soil to an electric DC field. In an electric field dissolved metals will move to either the cathode or the anode depending on their charges. During the course of remediation, precipitated and sorbed species will dissolve as the solute is depleted. Our previous remediation experiments on kaolinite soil and sandy loam show high remediation efficiency. In new experiments we studied the reaction and transport of copper in sand and sand/bentonite mixtures with a constant applied potential. For clays with high pH buffer capacity and cation exchange capacity the results were not satisfying, because of insufficient desorption of the metals from the clay. The parameters measured at different time intervals were potential gradient, current density, pH and metal concentration. We present a mathematical and numerical model that is used for interpretation of the results from the remediation experiments. The model uses electromigration and diffusion to describe the transport of heavy metals and other ions. The remediation experiments are supplemented by batch experiments used to assess the acid neutralisation capacity and sorption distribution coefficients at different pH's for the heavy metal ions. These are essential data needed for the modelling and can be used to assess if a remediation could be accomplished within reasonable time. The results show that the reaction data used to explain acid neutralisation capacity estimated in batch experiments can be used to model the main trends of the development of the current density and the potential profile. However the pH profile and the free copper concentration can not be modelled with this equilibrium description. (orig.)

  17. Measurements of energy distribution and thrust for microwave plasma coupling of electrical energy to hydrogen for propulsion

    Science.gov (United States)

    Morin, T.; Chapman, R.; Filpus, J.; Hawley, M.; Kerber, R.; Asmussen, J.; Nakanishi, S.

    1982-01-01

    A microwave plasma system for transfer of electrical energy to hydrogen flowing through the system has potential application for coupling energy to a flowing gas in the electrothermal propulsion concept. Experimental systems have been designed and built for determination of the energy inputs and outputs and thrust for the microwave coupling of energy to hydrogen. Results for experiments with pressure in the range 100 microns-6 torr, hydrogen flow rate up to 1000 micronmoles/s, and total absorbed power to 700 w are presented.

  18. Electric vehicles or use of hydrogen in the Danish transport sector in 2050?

    DEFF Research Database (Denmark)

    Skytte, Klaus; Pizarro Alonso, Amalia Rosa; Karlsson, Kenneth Bernard

    and calculates socio economic costs. It is used to model the different transport scenarios and their system integration with the electricity and heating sectors. The major findings of this paper are that an increased share of electric vehicles could significantly reduce the socio-economic cost of the system...... in 2050. Compared to the EV scenario, H2 generation from electrolysis is more flexible and the production can therefore to a larger degree be used to out-balance fluctuating electricity surplus from a high share of wind energy in the power system. H2 production may generate heat that can be used...... as district heating - replacing traditional heating plants, heat pumps and in some cases combined heat and power plants. Therefore the energy generation mix (electricity and heat) is more affected in the H2 scenario than in the EV scenario. Whether the H2 scenario is more costly to implement than the EV...

  19. Mass-corrections for the conservative coupling of flow and transport on collocated meshes

    Energy Technology Data Exchange (ETDEWEB)

    Waluga, Christian, E-mail: waluga@ma.tum.de [Institute for Numerical Mathematics (M2), Technische Universität München, Boltzmannstraße 3, D-85748 Garching bei München (Germany); Wohlmuth, Barbara [Institute for Numerical Mathematics (M2), Technische Universität München, Boltzmannstraße 3, D-85748 Garching bei München (Germany); Rüde, Ulrich [Department of Computer Science 10, University Erlangen–Nuremberg, Cauerstr. 11, D-91058 Erlangen (Germany)

    2016-01-15

    Buoyancy-driven flow models demand a careful treatment of the mass-balance equation to avoid spurious source and sink terms in the non-linear coupling between flow and transport. In the context of finite-elements, it is therefore commonly proposed to employ sufficiently rich pressure spaces, containing piecewise constant shape functions to obtain local or even strong mass-conservation. In three-dimensional computations, this usually requires nonconforming approaches, special meshes or higher order velocities, which make these schemes prohibitively expensive for some applications and complicate the implementation into legacy code. In this paper, we therefore propose a lean and conservatively coupled scheme based on standard stabilized linear equal-order finite elements for the Stokes part and vertex-centered finite volumes for the energy equation. We show that in a weak mass-balance it is possible to recover exact conservation properties by a local flux-correction which can be computed efficiently on the control volume boundaries of the transport mesh. We discuss implementation aspects and demonstrate the effectiveness of the flux-correction by different two- and three-dimensional examples which are motivated by geophysical applications.

  20. Transport properties of finite carbon nanotubes under electric and magnetic fields

    International Nuclear Information System (INIS)

    Li, T S; Lin, M F

    2006-01-01

    Electronic and transport properties of finite carbon nanotubes subject to the influences of a transverse electric field and a magnetic field with varying polar angles are studied by the tight-binding model. The external fields will modify the state energies, destroy the state degeneracy, and modulate the energy gap. Both the state energy and the energy gap exhibit rich dependence on the field strength, the magnetic field direction, and the types of carbon nanotubes. The semiconductor-metal transition would be allowed for certain field strengths and magnetic field directions. The variations of state energies with the external fields will also be reflected in the electrical and thermal conductance. The number, the heights, and the positions of the conductance peaks are strongly dependent on the external fields. The heights of the electrical and thermal conductance peaks display a quantized behaviour, while that of the Peltier coefficient does not. Finally, it is found that the validity of the Wiedemann-Franz law depends upon the temperature, the field strength, the electronic structure, and the chemical potential

  1. Coupled hydrogeological and reactive transport modelling of the Simpevarp area (Sweden)

    International Nuclear Information System (INIS)

    Molinero, Jorge; Raposo, Juan R.; Galindez, Juan M.; Arcos, David; Guimera, Jordi

    2008-01-01

    The Simpevarp area is one of the alternative sites being considered for the deep geological disposal of high level radioactive waste in Sweden. In this paper, a coupled regional groundwater flow and reactive solute transport model of the Simpevarp area is presented that integrates current hydrogeological and hydrochemical data of the area. The model simulates the current hydrochemical pattern of the groundwater system in the area. To that aim, a conceptual hydrochemical model was developed in order to represent the dominant chemical processes. Groundwater flow conditions were reproduced by taking into account fluid-density-dependent groundwater flow and regional hydrogeologic boundary conditions. Reactive solute transport calculations were performed on the basis of the velocity field so obtained. The model was calibrated and sensitivity analyses were carried out in order to investigate the effects of heterogeneities of hydraulic conductivity in the subsurface medium. Results provided by the reactive transport model are in good agreement with much of the measured hydrochemical data. This paper emphasizes the appropriateness of the use of reactive solute transport models when water-rock interaction reactions are involved, and demonstrates what powerful tools they are for the interpretation of hydrogeological and hydrochemical data from site geological repository characterization programs, by providing a qualitative framework for data analysis and testing of conceptual assumptions in a process-oriented approach

  2. Non-canonical spectral decomposition of random functions of the traction voltage and current in electric transportation systems

    Directory of Open Access Journals (Sweden)

    N.A. Kostin

    2015-03-01

    Full Text Available The paper proposes the non-canonical spectral decomposition of random functions of the traction voltages and currents. This decomposition is adapted for the electric transportation systems. The numerical representation is carried out for the random function of voltage on the pantograph of electric locomotives VL8 and DE1.

  3. Direct-coupled-ray method for design-oriented three-dimensional transport analysis

    International Nuclear Information System (INIS)

    Bucholz, J.A.; Poncelet, C.G.

    1977-01-01

    A fast three-dimensional design-oriented transport method has been developed for the solution of both neutron and gamma transport problems. It combines a nodal approach with analytic integral transport to achieve relative speed and accuracy. An analytic solution is obtained for the angular flux in each of the 14 directions defined by the six faces and eight corners of a cubic mesh block. The scheme used to accommodate high-order anisotropic scattering is based on the formulation of ray-to-ray scattering probabilities in an integral sense. A variable mesh approximation has also been introduced to provide greater flexibility. The details of a direct-coupled-ray (DCR) → P 1 conversion technique have been developed but not yet implemented. The DCR method, as implemented in the TRANS3 code, has been used in a number of liquid-metal fast breeder reactor shielding applications. These included a one-dimensional deep penetration configuration and one-, two-, and three dimensional representations of the lower axial shield of the Clinch River Breeder Reactor. Comparisons with ANISN and DOT-III solutions indicated good to excellent agreement in most situations

  4. Discovery of Enhanced Magnetoelectric Coupling through Electric Field Control of Two-Magnon Scattering within Distorted Nanostructures.

    Science.gov (United States)

    Xue, Xu; Zhou, Ziyao; Dong, Guohua; Feng, Mengmeng; Zhang, Yijun; Zhao, Shishun; Hu, Zhongqiang; Ren, Wei; Ye, Zuo-Guang; Liu, Yaohua; Liu, Ming

    2017-09-26

    Electric field control of dynamic spin interactions is promising to break through the limitation of the magnetostatic interaction based magnetoelectric (ME) effect. In this work, electric field control of the two-magnon scattering (TMS) effect excited by in-plane lattice rotation has been demonstrated in a La 0.7 Sr 0.3 MnO 3 (LSMO)/Pb(Mn 2/3 Nb 1/3 )-PbTiO 3 (PMN-PT) (011) multiferroic heterostructure. Compared with the conventional strain-mediated ME effect, a giant enhancement of ME effect up to 950% at the TMS critical angle is precisely determined by angular resolution of the ferromagnetic resonance (FMR) measurement. Particularly, a large electric field modulation of magnetic anisotropy (464 Oe) and FMR line width (401 Oe) is achieved at 173 K. The electric-field-controllable TMS effect and its correlated ME effect have been explained by electric field modulation of the planar spin interactions triggered by spin-lattice coupling. The enhancement of the ME effect at various temperatures and spin dynamics control are promising paradigms for next-generation voltage-tunable spintronic devices.

  5. Controlling the transport of cations through permselective mesoporous alumina layers by manipulation of electric field and ionic strength

    NARCIS (Netherlands)

    Schmuhl, R.; Keizer, Klaas; van den Berg, Albert; ten Elshof, Johan E.; Blank, David H.A.

    2004-01-01

    The electric field-driven transport of ions through supported mesoporous γ-alumina membranes was investigated. The influence of ion concentration, ion valency, pH, ionic strength, and electrolyte composition on transport behavior was determined. The permselectivity of the membrane was found to be

  6. The safety and reliability of the electricity transportation network, and the opening of markets

    International Nuclear Information System (INIS)

    Merlin, A.

    2003-01-01

    Following a decade in which the electricity sector was concerned by the opening of markets the world over, the year 2003 highlighted the challenges of secure supply and of the safety of electrical systems. Major incidents are nothing new throughout history, and occurred well before the trend towards opening the markets dot underway. However, it is necessary to verify that the rules for the organisation, clarification of responsibilities and regulation make it possible to control the growing complexity of interconnected systems related to opening the market up to competition. Faced with such situations, changes are necessary in Europe. Firstly, it is important to have the second European directive on the internal electricity market introduced everywhere, this directive providing common rules to be met by all key players to ensure greater safety within the electricity system, and strengthening the role of the electricity transport network manager, who is separate from the other players in the market. It is also necessary to draft a third directive, focusing on both security of supply and the operational safety of the European electricity system. (authors)

  7. Coupled transport and chemistry in clay stone studied by advective displacement: experiments and model

    International Nuclear Information System (INIS)

    Landesman, C.; Grambow, B.; Bailly, C.; Ribet, S.; Perrigaud, K.; Baty, V.; Giffaut, E.

    2010-01-01

    porosity relations for anions and neutral species are determined. Strong effects of clay/calcite ratios on hydrodynamic properties were observed. Thereafter stable iodine and Se(VI) were injected to study radionuclide migration. No retention of iodine but strong retention of Se were observed. After test termination the clay core was sliced and elemental profiles were obtained. From anion analysis in the slices porosity distribution was obtained. The experimental results were modeled using a 1D coupled geochemical/transport code PHREEQC considering activity coefficients, electrical double layers, mineral solubility, ion exchange properties, transport in micropores linked to interlayer space, limited mineral inventories (Celestite) and hydrodynamic properties. Good agreement of model and data from out flowing water and slices was obtained simultaneously for anions, HTO, major (Na, K, Ca, Mg, Cl, SO 4 ) and minor (Sr) element concentration and pH evolution. (authors)

  8. High-field transport of electrons and radiative effects using coupled force-balance and Fokker-Planck equations beyond the relaxation-time approximation

    International Nuclear Information System (INIS)

    Huang, Danhong; Apostolova, T.; Alsing, P.M.; Cardimona, D.A.

    2004-01-01

    The dynamics of a many-electron system under both dc and infrared fields is separated into a center-of-mass and a relative motion. The first-order force-balance equation is employed for the slow center-of-mass motion of electrons, and the Fokker-Planck equation is used for the ultrafast relative scattering motion of degenerate electrons. This approach allows us to include the anisotropic energy-relaxation process which has been neglected in the energy-balance equation in the past. It also leads us to include the anisotropic coupling to the incident infrared field with different polarizations. Based on this model, the transport of electrons is explored under strong dc and infrared fields by going beyond the relaxation-time approximation. The anisotropic dependence of the electron distribution function on the parallel and perpendicular kinetic energies of electrons is displayed with respect to the dc field direction, and the effect of anisotropic coupling to an incident infrared field with polarizations parallel and perpendicular to the applied dc electric field is shown. The heating of electrons is more accurately described beyond the energy-balance equation with the inclusion of an anisotropic coupling to the infrared field. The drift velocity of electrons is found to increase with the amplitude of the infrared field due to a suppressed momentum-relaxation process (or frictional force) under parallel polarization but decreases with the amplitude due to an enhanced momentum-relaxation process under perpendicular polarization

  9. Continuous energy adjoint Monte Carlo for coupled neutron-photon transport

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    2001-07-01

    Although the theory for adjoint Monte Carlo calculations with continuous energy treatment for neutrons as well as for photons is known, coupled neutron-photon transport problems present fundamental difficulties because of the discrete energies of the photons produced by neutron reactions. This problem was solved by forcing the energy of the adjoint photon to the required discrete value by an adjoint Compton scattering reaction or an adjoint pair production reaction. A mathematical derivation shows the exact procedures to follow for the generation of an adjoint neutron and its statistical weight. A numerical example demonstrates that correct detector responses are obtained compared to a standard forward Monte Carlo calculation. (orig.)

  10. Efficient emission fees in the US electricity sector

    International Nuclear Information System (INIS)

    Spencer Banzhaf, H.; Burtraw, Dallas; Palmer, Karen

    2004-01-01

    This paper provides new estimates of efficient emission fees for sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) emissions in the US electricity sector. The estimates are obtained by coupling a detailed simulation model of the US electricity markets with an integrated assessment model that links changes in emissions with atmospheric transport, environmental endpoints, and valuation of impacts. Efficient fees are found by comparing incremental benefits with emission fee levels. National quantity caps that are equivalent to these fees also are computed, and found to approximate caps under consideration in the current multi-pollutant debate in the US Congress and the recent proposals from the Bush administration for the electricity industry. We also explore whether regional differentiation of caps on different pollutants is likely to enhance efficiency

  11. Electrical transport properties of V{sub 2}O{sub 5} thin films obtained by thermal annealing of layers grown by RF magnetron sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Giannetta, H.M.R., E-mail: hgiann@inti.gov.ar [Centro de Micro y Nano Electrónica del Bicentenario (CMNB), Instituto Nacional de Tecnología Industrial (INTI), San Martín, Buenos Aires (Argentina); Universidad Tecnológica Nacional (UTN) — Facultad Regional Buenos Aires (FRBA) (Argentina); Calaza, C. [Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193 Barcelona (Spain); Lamas, D.G. [Universidad Nacional del Comahue CONICET-CITEFA — Laboratorio de Caracterización de Materiales, Facultad de Ingeniería, Neuquen (Argentina); Fonseca, L. [Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193 Barcelona (Spain); Fraigi, L. [Centro de Micro y Nano Electrónica del Bicentenario (CMNB), Instituto Nacional de Tecnología Industrial (INTI), San Martín, Buenos Aires (Argentina); Universidad Tecnológica Nacional (UTN) — Facultad Regional Buenos Aires (FRBA) (Argentina)

    2015-08-31

    The present study investigates the main electrical transport mechanism in V{sub 2}O{sub 5} thin films deposited by RF magnetron sputtering on the basis of the Mott's small polaron hopping model. The material under test was obtained at room temperature from a V{sub 2}O{sub 5} target and then oxidized at high temperature under air atmosphere to obtain the desired V{sub 2}O{sub 5} phase. The dependence of the electrical conductivity of the V{sub 2}O{sub 5} thin films with temperature was analyzed using the Mott's small polarons hopping transport model under the Schnakenberg form. Model results suggest a polaron binding energy W{sub H} = 0.1682 eV, with a structural disorder energy W{sub D} = 0.2241 eV and an optical phonon frequency ν{sub 0} = 0.468 × 10{sup 13}s{sup −1}. These results are in agreement with data reported in literature for single crystal V{sub 2}O{sub 5}. However, the carrier mobility μ = 1.5019 × 10{sup −5} cm{sup 2}/Vs computed in the non-adiabatic regime is significantly smaller than that of the single crystal, suggesting a strong electron–phonon coupling in the V{sub 2}O{sub 5} thin films obtained with the proposed deposition method. - Highlights: • A two-stage deposition method compatible with lift-off patterning is proposed. • V{sub 2}O{sub 5} films are deposited by RF magnetron sputtering and then annealed in air. • Films are analyzed by SEM and its pure phase nature is confirmed by XRD. • Electrical conductivity was fitted using Mott's model for small polarons. • Fit derived parameters confirm charge transport through small-polarons hopping.

  12. Relativistic Coupled Cluster (RCC) Computation of the Electric Dipole Moment Enhancement Factor of Francium Due to the Violation of Time Reversal Symmetry

    NARCIS (Netherlands)

    Mukherjee, Debashis; Sahoo, B. K.; Nataraj, H. S.; Das, B. P.

    2009-01-01

    A relativistic many-body theory for the electric dipole moment (EDM) of paramagnetic atoms arising from the electric dipole moment of the electron is presented and implemented. The relativistic coupled-cluster method with single and double excitations (RCCSD) using the Dirac-Coulomb Hamiltonian and

  13. Electrical bistability and charge-transport mechanisms in cuprous sulfide nanosphere-poly(N-vinylcarbazole) composite films

    International Nuclear Information System (INIS)

    Tang Aiwei; Teng Feng; Liu Jie; Wang Yichao; Peng Hongshang; Hou Yanbing; Wang Yongsheng

    2011-01-01

    In this study, electrically bistable devices were fabricated by incorporating cuprous sulfide (Cu 2 S) nanospheres with mean size less than 10 nm into a poly(N-vinylcarbazole) (PVK) matrix. A remarkable electrical bistability was clearly observed in the current–voltage curves of the devices due to an electric-field-induced charge transfer between the dodecanethiol-capped Cu 2 S nanospheres and PVK. The maximum ON/OFF current ratio reached up to value as large as 10 4 , which was dependent on the mass ratios of Cu 2 S nanospheres to PVK, the amplitude of the scanning voltages, and the film thickness. The charge-transport mechanisms of the electrically bistable devices were described on the basis of the experimental results using different theoretical models of organic electronics.

  14. Algorithm for Public Electric Transport Schedule Control for Intelligent Embedded Devices

    Science.gov (United States)

    Alps, Ivars; Potapov, Andrey; Gorobetz, Mikhail; Levchenkov, Anatoly

    2010-01-01

    In this paper authors present heuristics algorithm for precise schedule fulfilment in city traffic conditions taking in account traffic lights. The algorithm is proposed for programmable controller. PLC is proposed to be installed in electric vehicle to control its motion speed and signals of traffic lights. Algorithm is tested using real controller connected to virtual devices and real functional models of real tram devices. Results of experiments show high precision of public transport schedule fulfilment using proposed algorithm.

  15. Scalar field as an intrinsic time measure in coupled dynamical matter-geometry systems. II. Electrically charged gravitational collapse

    Science.gov (United States)

    Nakonieczna, Anna; Yeom, Dong-han

    2016-05-01

    Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which measures the amount of electric charge within a sphere of a given radius can be used to quantify time nearby the singularity in the dynamical spacetime part, in which the apparent horizon surrounding the singularity is spacelike. Using them in this respect in the asymptotic spacetime region is possible only when both fields are present in the system and, moreover, they are coupled to each other. The only nonzero component of the Maxwell field four-potential cannot be used to quantify time during the considered process in the neighborhood of the whole central singularity. None of the investigated dynamical quantities is a good candidate for measuring time nearby the Cauchy horizon, which is also singular due to the mass inflation phenomenon.

  16. Electronic and magnetic phase separation in EuB{sub 6}. Fluctuation spectroscopy and nonlinear transport; Elektronische und magnetische Phasenseparation in EuB{sub 6}. Fluktuationsspektroskopie und nichtlinearer Transport

    Energy Technology Data Exchange (ETDEWEB)

    Amyan, Adham

    2013-07-09

    The main topics of this thesis are electrical, stationary, and time-resolved transport measurements on EuB{sub 6} as well as the further development of measuring methods and analysis procedures of the fluctuation spectroscopy. The first part of this thesis was dedicated to the further development of the already known measuring methods under application of a fast data-acquisition card. The second part deals with the electrical transport properties of EuB{sub 6} and the understanding of the coupling between charge and magnetic degrees of freedom. By means of resistance and nonlinear-transport measurements as well as fluctuation spectroscopy hypotheses of other scientists were systematically verified as well as new knowledge obtained. The magnetoresistance was studied as function of the temperature in small external magnetic fields between 1 mT and 700 mT. Measurements of the third harmonic resistance as function of the temperature show maxima at T{sub MI} and T{sub C}. Electrical-resistance fluctuations were measured without external magnetic field between 5 and 100 K as well in presence of a magnetic field between 18 K and 32 K. At constant temperature measurements of the spectral power density in external magnetic fields were performed in the temperature range from 18 K to 32 K. Highly resolving measurements of the thermal expansion coefficient showed a very strong coupling of the magnetic (polaronic) degrees of freedom to the crystal lattice.

  17. The effect of driven electron-phonon coupling on the electronic conductance of a polar nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Mardaani, Mohammad, E-mail: mohammad-m@sci.sku.ac.ir; Rabani, Hassan, E-mail: rabani-h@sci.sku.ac.ir [Department of Physics, Faculty of Science, Shahrekord University, P. O. Box 115, Shahrekord (Iran, Islamic Republic of); Nanotechnology Research Center, Shahrekord University, 8818634141 Shahrekord (Iran, Islamic Republic of); Esmaili, Esmat; Shariati, Ashrafalsadat [Department of Physics, Faculty of Science, Shahrekord University, P. O. Box 115, Shahrekord (Iran, Islamic Republic of)

    2015-08-07

    A semi-classical model is proposed to explore the effect of electron-phonon coupling on the coherent electronic transport of a polar chain which is confined between two rigid leads in the presence of an external electric field. To this end, we construct the model by means of Green's function technique within the nearest neighbor tight-binding and harmonic approximations. For a time-periodic electric field, the atomic displacements from the equilibrium positions are obtained precisely. The result is then used to compute the electronic transport properties of the chain within the Peierls-type model. The numerical results indicate that the conductance of the system shows interesting behavior in some special frequencies. For each special frequency, there is an electronic quasi-state in which the scattering of electrons by vibrating atoms reaches maximum. The system electronic conductance decreases dramatically at the strong electron-phonon couplings and low electron energies. In the presence of damping forces, the electron-phonon interaction has a less significant effect on the conductance.

  18. The effect of driven electron-phonon coupling on the electronic conductance of a polar nanowire

    International Nuclear Information System (INIS)

    Mardaani, Mohammad; Rabani, Hassan; Esmaili, Esmat; Shariati, Ashrafalsadat

    2015-01-01

    A semi-classical model is proposed to explore the effect of electron-phonon coupling on the coherent electronic transport of a polar chain which is confined between two rigid leads in the presence of an external electric field. To this end, we construct the model by means of Green's function technique within the nearest neighbor tight-binding and harmonic approximations. For a time-periodic electric field, the atomic displacements from the equilibrium positions are obtained precisely. The result is then used to compute the electronic transport properties of the chain within the Peierls-type model. The numerical results indicate that the conductance of the system shows interesting behavior in some special frequencies. For each special frequency, there is an electronic quasi-state in which the scattering of electrons by vibrating atoms reaches maximum. The system electronic conductance decreases dramatically at the strong electron-phonon couplings and low electron energies. In the presence of damping forces, the electron-phonon interaction has a less significant effect on the conductance

  19. Structural determinants of electric vehicle market growth : a National Center for Sustainable Transportation research report.

    Science.gov (United States)

    2017-02-01

    Zero emission vehicles (ZEV) and plug-in electric vehicles (PEV) are critical technologies to attain deep reductions in greenhouse gases from transportation. PEV markets, however, have grown more slowly than anticipated by many observers. In this stu...

  20. Dual continuum models of fully coupled non-isothermal multiphase flow and reactive transport in porous media

    International Nuclear Information System (INIS)

    Zheng, L.; Samper, J.

    2005-01-01

    Full text of publication follows: Double porosity, double permeability and dual continuum models (DCM) are widely used for modeling preferential water flow and mass transport in unsaturated and fractured media. Here we present a DCM of fully coupled non-isothermal multiphase flow and reactive transport model for the FEBEX compacted bentonite, a material which exhibits a double porosity behavior.. FEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of a high level radioactive waste repository. Our DCM considers inter-aggregate macro-pores, and intra-aggregate and interlayer micro-pores. Two types of DCMs are tested: the dual continuum connected matrix (DCCM) and the dual continuum dis connected matrix (DCDM). Liquid flow in macro-pores is described with a mass conservation equation accounting for Darcian flow, chemical and thermal osmosis. In DCCM, water flux in micropores is calculated with a modified Darcy's law by adding a chemical osmosis term. A simple mass balance equation is used for DCDM which contains a storage and a water exchange term for water in micropores. A mixed type of water exchange term is adopted which includes a second order term accounting for water transfer due to the difference in liquid pressure and a first order term accounting for the gradient in chemical osmosis pressure. Equations of mass conservation for liquid, gas and heat in macro-pores and liquid mass conservation in micropores are solved by using a Newton-Raphson method. Two transport equations with a coupling interaction term are used to describe solute transport in macro- and micro-pores. The coupling term contains a first order diffusion term and a convection term (solute exchange due to water exchange). Transport equations as well as chemical reactions in the two domains are solved by means of a sequential iteration method. All these feature have been

  1. Ab initio theories of electric transport in solid systems with reduced dimensions

    International Nuclear Information System (INIS)

    Weinberger, Peter

    2003-01-01

    Ab initio theories of electric transport in solid systems with reduced dimensions, i.e., systems that at best are characterized by two-dimensional translational invariance, are reviewed in terms of a fully relativistic description of the Kubo-Greenwood equation. As the use of this equation requires concepts such as collinearity and non-collinearity in order to properly define resistivities or resistances corresponding to particular magnetic configurations, respective consequences of the (local) density functional theory are recalled in quite a detailed manner. Furthermore, since theoretical descriptions of solid systems with reduced dimensions require quantum mechanical methods different from bulk systems (three-dimensional periodicity), the so-called Screened Korringa-Kohn-Rostoker (SKKR-) method for layered systems is introduced together with a matching coherent potential approximation (inhomogeneous CPA). The applications shown are mainly meant to illustrate various aspects of electric transport in solid systems with reduced dimensions and comprise not only current-in-plane (CIP) experiments, but also current perpendicular to the planes of atoms geometries, consequences of tunneling, and finite nanostructures at or on metallic substrates. In order to give a more complete view of available ab initio methods also a non-relativistic approach based on the Tight Binding Linear Combination of muffin tin orbitals (TB-LMTO-) method and the so-called Kubo-Landauer equation in terms of transmission and reflection matrices is presented. A compilation of references with respect to ab-initio type approaches not explicitly discussed in here finally concludes the discussion of electric properties in solid systems with reduced dimensions

  2. Coupled Fluid, Energy, and Solute Transport (CFEST) model: Formulation and user's manual

    International Nuclear Information System (INIS)

    Gupta, S.K.; Cole, C.R.; Kincaid, C.T.; Monti, A.M.

    1987-10-01

    The CFEST (Coupled Fluid, Energy, and Solute Transport) code has been developed to analyze coupled hydrologic, thermal, and solute transport processes. It treats single-pahse Darcy ground-water flow in a horizontal or vertical plane, or in fully three-dimensional space under nonisothermal conditions. The code has the capability to model discontinuous and continuous layering, time-dependent and constant sources/sinks, and transient as well as steady-stae ground-water flow. The code offers a wide choice of boundary conditions such as precsribed heads, nodal injection or withdrawal, constant or spatially varying infiltration rates, and welemental source/sink. Initial conditions for the flow analysis can be prescribed pressure or hydraulic head. The heterogeneity in aquifer permeability and porosity can be described by geologic unit or explicity for given elements. Three-dimensional elelments are generated from user-defined well logs at each surface node. To facilitate interaction between disciplines, support programs are provided to plot the finite element grid, well logs, contour maps of input and output parameters, and vertical cross sections. Ground-water travel paths and times and volumetric rates from a specified point can be determined from support programs. This report includes governing partial differential equations, finite element formulation, a use's manual, verification test examples, sample problems, and source listings. 36 refs., 121 figs., 36 tabs

  3. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the Vadose Zone

    Science.gov (United States)

    To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...

  4. Analytic first derivatives for a spin-adapted open-shell coupled cluster theory: Evaluation of first-order electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Dipayan, E-mail: datta@uni-mainz.de; Gauss, Jürgen, E-mail: gauss@uni-mainz.de [Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz (Germany)

    2014-09-14

    An analytic scheme is presented for the evaluation of first derivatives of the energy for a unitary group based spin-adapted coupled cluster (CC) theory, namely, the combinatoric open-shell CC (COSCC) approach within the singles and doubles approximation. The widely used Lagrange multiplier approach is employed for the derivation of an analytical expression for the first derivative of the energy, which in combination with the well-established density-matrix formulation, is used for the computation of first-order electrical properties. Derivations of the spin-adapted lambda equations for determining the Lagrange multipliers and the expressions for the spin-free effective density matrices for the COSCC approach are presented. Orbital-relaxation effects due to the electric-field perturbation are treated via the Z-vector technique. We present calculations of the dipole moments for a number of doublet radicals in their ground states using restricted open-shell Hartree-Fock (ROHF) and quasi-restricted HF (QRHF) orbitals in order to demonstrate the applicability of our analytic scheme for computing energy derivatives. We also report calculations of the chlorine electric-field gradients and nuclear quadrupole-coupling constants for the CCl, CH{sub 2}Cl, ClO{sub 2}, and SiCl radicals.

  5. Electronic and magnetic phase separation in EuB6. Fluctuation spectroscopy and nonlinear transport

    International Nuclear Information System (INIS)

    Amyan, Adham

    2013-01-01

    The main topics of this thesis are electrical, stationary, and time-resolved transport measurements on EuB 6 as well as the further development of measuring methods and analysis procedures of the fluctuation spectroscopy. The first part of this thesis was dedicated to the further development of the already known measuring methods under application of a fast data-acquisition card. The second part deals with the electrical transport properties of EuB 6 and the understanding of the coupling between charge and magnetic degrees of freedom. By means of resistance and nonlinear-transport measurements as well as fluctuation spectroscopy hypotheses of other scientists were systematically verified as well as new knowledge obtained. The magnetoresistance was studied as function of the temperature in small external magnetic fields between 1 mT and 700 mT. Measurements of the third harmonic resistance as function of the temperature show maxima at T MI and T C . Electrical-resistance fluctuations were measured without external magnetic field between 5 and 100 K as well in presence of a magnetic field between 18 K and 32 K. At constant temperature measurements of the spectral power density in external magnetic fields were performed in the temperature range from 18 K to 32 K. Highly resolving measurements of the thermal expansion coefficient showed a very strong coupling of the magnetic (polaronic) degrees of freedom to the crystal lattice.

  6. Coupling of WRF and Building-resolved CFD Simulations for Greenhouse Gas Transport and Dispersion

    Science.gov (United States)

    Prasad, K.; Hu, H.; McDermott, R.; Lopez-Coto, I.; Davis, K. J.; Whetstone, J. R.; Lauvaux, T.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. WRF is used extensively in the atmospheric community to simulate mesoscale atmospheric transport. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics that are generated by the flow around buildings and communities that are part of a large city. Since the model domain includes the city of Indianapolis, much of the flow of interest is over an urban topography. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model to perform large eddy simulations of flow around buildings, but it has not been nested within a larger-scale atmospheric transport model such as WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing that cannot be simulated with a mesoscale atmospheric model, and which may be important to determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards the one computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 2-10 m. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in an urban domain and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Predicted mixing ratios will be compared with tower measurements and WRF simulations

  7. Electrical method for the measurements of volume averaged electron density and effective coupled power to the plasma bulk

    Science.gov (United States)

    Henault, M.; Wattieaux, G.; Lecas, T.; Renouard, J. P.; Boufendi, L.

    2016-02-01

    Nanoparticles growing or injected in a low pressure cold plasma generated by a radiofrequency capacitively coupled capacitive discharge induce strong modifications in the electrical parameters of both plasma and discharge. In this paper, a non-intrusive method, based on the measurement of the plasma impedance, is used to determine the volume averaged electron density and effective coupled power to the plasma bulk. Good agreements are found when the results are compared to those given by other well-known and established methods.

  8. Coupled Modeling of Rhizosphere and Reactive Transport Processes

    Science.gov (United States)

    Roque-Malo, S.; Kumar, P.

    2017-12-01

    The rhizosphere, as a bio-diverse plant root-soil interface, hosts many hydrologic and biochemical processes, including nutrient cycling, hydraulic redistribution, and soil carbon dynamics among others. The biogeochemical function of root networks, including the facilitation of nutrient cycling through absorption and rhizodeposition, interaction with micro-organisms and fungi, contribution to biomass, etc., plays an important role in myriad Critical Zone processes. Despite this knowledge, the role of the rhizosphere on watershed-scale ecohydrologic functions in the Critical Zone has not been fully characterized, and specifically, the extensive capabilities of reactive transport models (RTMs) have not been applied to these hydrobiogeochemical dynamics. This study uniquely links rhizospheric processes with reactive transport modeling to couple soil biogeochemistry, biological processes, hydrologic flow, hydraulic redistribution, and vegetation dynamics. Key factors in the novel modeling approach are: (i) bi-directional effects of root-soil interaction, such as simultaneous root exudation and nutrient absorption; (ii) multi-state biomass fractions in soil (i.e. living, dormant, and dead biological and root materials); (iii) expression of three-dimensional fluxes to represent both vertical and lateral interconnected flows and processes; and (iv) the potential to include the influence of non-stationary external forcing and climatic factors. We anticipate that the resulting model will demonstrate the extensive effects of plant root dynamics on ecohydrologic functions at the watershed scale and will ultimately contribute to a better characterization of efflux from both agricultural and natural systems.

  9. Quantum Transmission Conditions for Diffusive Transport in Graphene with Steep Potentials

    Science.gov (United States)

    Barletti, Luigi; Negulescu, Claudia

    2018-05-01

    We present a formal derivation of a drift-diffusion model for stationary electron transport in graphene, in presence of sharp potential profiles, such as barriers and steps. Assuming the electric potential to have steep variations within a strip of vanishing width on a macroscopic scale, such strip is viewed as a quantum interface that couples the classical regions at its left and right sides. In the two classical regions, where the potential is assumed to be smooth, electron and hole transport is described in terms of semiclassical kinetic equations. The diffusive limit of the kinetic model is derived by means of a Hilbert expansion and a boundary layer analysis, and consists of drift-diffusion equations in the classical regions, coupled by quantum diffusive transmission conditions through the interface. The boundary layer analysis leads to the discussion of a four-fold Milne (half-space, half-range) transport problem.

  10. An incident flux expansion transport theory method suitable for coupling to diffusion theory methods in hexagonal geometry

    International Nuclear Information System (INIS)

    Hayward, Robert M.; Rahnema, Farzad; Zhang, Dingkang

    2013-01-01

    Highlights: ► A new hybrid stochastic–deterministic transport theory method to couple with diffusion theory. ► The method is implemented in 2D hexagonal geometry. ► The new method produces excellent results when compared with Monte Carlo reference solutions. ► The method is fast, solving all test cases in less than 12 s. - Abstract: A new hybrid stochastic–deterministic transport theory method, which is designed to couple with diffusion theory, is presented. The new method is an extension of the incident flux response expansion method, and it combines the speed of diffusion theory with the accuracy of transport theory. With ease of use in mind, the new method is derived in such a way that it can be implemented with only minimal modifications to an existing diffusion theory method. A new angular expansion, which is necessary for the diffusion theory coupling, is developed in 2D and 3D. The method is implemented in 2D hexagonal geometry, and an HTTR benchmark problem is used to test its accuracy in a standalone configuration. It is found that the new method produces excellent results (with average relative error in partial current less than 0.033%) when compared with Monte Carlo reference solutions. Furthermore, the method is fast, solving all test cases in less than 12 s

  11. Exploiting Flexibility in Coupled Electricity and Natural Gas Markets: A Price-Based Approach

    DEFF Research Database (Denmark)

    Ordoudis, Christos; Delikaraoglou, Stefanos; Pinson, Pierre

    2017-01-01

    Natural gas-fired power plants (NGFPPs) are considered a highly flexible component of the energy system and can facilitate the large-scale integration of intermittent renewable generation. Therefore, it is necessary to improve the coordination between electric power and natural gas systems....... Considering a market-based coupling of these systems, we introduce a decision support tool that increases market efficiency in the current setup where day-ahead and balancing markets are cleared sequentially. The proposed approach relies on the optimal adjustment of natural gas price to modify the scheduling...

  12. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family.

    Science.gov (United States)

    Mackenzie, Bryan; Erickson, Jeffrey D

    2004-02-01

    The sodium-coupled neutral amino acid transporters (SNAT) of the SLC38 gene family resemble the classically-described System A and System N transport activities in terms of their functional properties and patterns of regulation. Transport of small, aliphatic amino acids by System A subtypes (SNAT1, SNAT2, and SNAT4) is rheogenic and pH sensitive. The System N subtypes SNAT3 and SNAT5 also countertransport H(+), which may be key to their operation in reverse, and have narrower substrate profiles than do the System A subtypes. Glutamine emerges as a favored substrate throughout the family, except for SNAT4. The SLC38 transporters undoubtedly play many physiological roles including the transfer of glutamine from astrocyte to neuron in the CNS, ammonia detoxification and gluconeogenesis in the liver, and the renal response to acidosis. Probing their regulation has revealed additional roles, and recent work has considered SLC38 transporters as therapeutic targets in neoplasia.

  13. POLINOTEN Project - Efficiency of development and diffusion of innovative energy technologies policies: the concept of the 'electric vehicle coupled with building-integrated solar photovoltaic electricity' by 2030

    International Nuclear Information System (INIS)

    Popiolek, Nathalie; Bodineau, Luc; Wiss, Olivier; Bougrain, Frederic; Gruson, Jean-Francois; Poix, Michel; Quevarec, Marine; Thais, Francoise; Bodiguel, Aude; Grenier, Anne

    2014-06-01

    Building and transportation sectors are the biggest consumers of energy and therefore the main source of CO 2 emissions. Furthermore, private cars are responsible for more than half of CO 2 emissions from transportation sector. In order to reduce greenhouse gases by 75% by 2050, compared to 1990, as set out by the 'Grenelle de l'environnement' laws (2009, 2010), the French government could exploit a promising solution: fostering the integration of building and transport, by installing, on new positive energy buildings, photovoltaic systems for recharging electric vehicles. The batteries of these vehicles could be a way for stocking intermittent solar electricity for later use. This is what we call solar mobility. However, to succeed in installing a system which would lead to optimal coupling between the photovoltaic production and the electric vehicle, a change in our relationship to buildings, transport and energy, is necessary. This also relies strongly on technological progress, high performing industrial supply and appropriate public action. The objective of this work is to help the State propose public actions to promote solar mobility by 2030, integrating political objectives in energy, climate and industry, while respecting budgetary constraints, as well as social and territorial cohesion. family living in a positive energy house in 2030. Several cases have been studied, varying sun exposition, timetables of battery recharging and mobility needs. Then, with a multi-criteria analysis, mainly studying the carbon saving advantages and the cost for society, we tested the relative performance of a set of public actions aimed at introducing this innovation on a large scale by 2030. To reach these objectives, we worked on: - a deep analysis of the instruments of public policies able to take up the challenge; policies of demand, supply policies, with or without carbon tax, etc. - the construction of a Multi-criteria Decision Aid Model integrating the

  14. Electrical resistivity tomography as monitoring tool for unsaturated zone transport: an example of preferential transport of deicing chemicals.

    Science.gov (United States)

    Wehrer, Markus; Lissner, Heidi; Bloem, Esther; French, Helen; Totsche, Kai Uwe

    2014-01-01

    Non-invasive spatially resolved monitoring techniques may hold the key to observe heterogeneous flow and transport behavior of contaminants in soils. In this study, time-lapse electrical resistivity tomography (ERT) was employed during an infiltration experiment with deicing chemical in a small field lysimeter. Deicing chemicals like potassium formate, which frequently impact soils on airport sites, were infiltrated during snow melt. Chemical composition of seepage water and the electrical response was recorded over the spring period 2010. Time-lapse electrical resistivity tomographs are able to show the infiltration of the melt water loaded with ionic constituents of deicing chemicals and their degradation product hydrogen carbonate. The tomographs indicate early breakthrough behavior in parts of the profile. Groundtruthing with pore fluid conductivity and water content variations shows disagreement between expected and observed bulk conductivity. This was attributed to the different sampling volume of traditional methods and ERT due to a considerable fraction of immobile water in the soil. The results show that ERT can be used as a soil monitoring tool on airport sites if assisted by common soil monitoring techniques.

  15. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    Science.gov (United States)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  16. Pioneering driverless electric vehicles in Europe: the City Automated Transport System (CATS)

    OpenAIRE

    Christie , Derek; Koymans , Anne; Chanard , Thierry; Lasgouttes , Jean-Marc; Kaufmann , Vincent

    2016-01-01

    International audience; The City Automated Transport System (CATS) was a collaborative FP7 European project that lasted from 2010 to 2014. Its objective was to evaluate the feasibility and acceptability of driverless electric vehicles in European cities. This contribution explains how the project was implemented by 11 teams in five countries, culminating with practical trials of driverless vehicles in Strasbourg, France; Ploiesti, Romania; and Lausanne, Switzerland. The Navya vehicles used we...

  17. Water-transporting proteins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas

    2010-01-01

    . In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water...... transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support...... to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity...

  18. Charge transport in poly(p-phenylene vinylene) at low temperature and high electric field

    NARCIS (Netherlands)

    Katsouras, I.; Najafi, A.; Asadi, K.; Kronemeijer, A. J.; Oostra, A. J.; Koster, L. J. A.; de Leeuw, D. M.; Blom, P. W. M.

    Charge transport in poly(2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV)-based hole-only diodes is investigated at high electric fields and low temperatures using a novel diode architecture. Charge carrier densities that are in the range of those in a field-effect transistor are

  19. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  20. Modelling of coupled heat and electric field distribution during ohmic heating of solid foods with varying sizes

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Bøknæs, Niels; Nielsen, P.L.

    factors leading to variations and uncertainties in prediction of the right process parameters. The current work is focused on modelling of OH of solid food pieces of varying sizes cooked in one batch. A 3D mathematical model of coupled heat transfer and electric field during OH of shrimps has been...

  1. Transcutaneous electrical nerve stimulation reduces acute low back pain during emergency transport.

    Science.gov (United States)

    Bertalanffy, Alexander; Kober, Alexander; Bertalanffy, Petra; Gustorff, Burkhard; Gore, Odette; Adel, Sharam; Hoerauf, Klaus

    2005-07-01

    Patients with acute low back pain may require emergency transport because of pain and immobilization. Transcutaneous electrical nerve stimulation (TENS) is a nonpharmaceutical therapy for patients with low back pain. To evaluate the efficacy of paramedic-administered TENS in patients with acute low back pain during emergency transport. This was a prospective, randomized study involving 74 patients transported to hospital. The patients were randomly assigned to two groups: group 1 (n = 36) was treated with true TENS, while group 2 (n = 36) was treated with sham TENS. The authors recorded pain and anxiety as the main outcome variables using a visual analog scale (VAS). The authors recorded a significant (p pain reduction (mean +/- standard deviation) during transport in group 1 (79.2 +/- 6.5 mm VAS to 48.9 +/- 8.2 mm VAS), whereas pain scores remained unchanged in group 2 (75.9 +/- 16.4 mm VAS and 77.1 +/- 11.2 mm VAS). Similarly, the scores for anxiety were significantly reduced (p TENS was found to be effective and rapid in reducing pain during emergency transport of patients with acute low back pain and should be considered due to its ease of use and lack of side effects in the study population.

  2. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement.

    Science.gov (United States)

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2015-05-01

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface.

  3. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua, E-mail: canhualiu@sjtu.edu.cn, E-mail: jfjia@sjtu.edu.cn; Jia, Jin-Feng, E-mail: canhualiu@sjtu.edu.cn, E-mail: jfjia@sjtu.edu.cn [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2015-05-15

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO{sub 3} surface.

  4. Discrete and continuum links to a nonlinear coupled transport problem of interacting populations

    Science.gov (United States)

    Duong, M. H.; Muntean, A.; Richardson, O. M.

    2017-07-01

    We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.

  5. Theoretical transport analysis of density limit with radial electric field in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2010-11-01

    The confinement property in helical toroidal plasmas is clarified. The analysis is performed by use of the one-dimensional transport equations with the effect of the radiative loss and the radial profile of the electric field. The analytical results in the edge region show the steep gradient in the electron temperature, which indicates the transport barrier formation. Because of the rapid increase of the radiative loss at the low electron temperature, the anomalous heat diffusivity is reduced near the edge. Next, the efficiency of the heating power input in the presence of the radiative loss is studied. The scaling of the critical density in helical devices is also derived. (author)

  6. Using Multiscale Modeling to Study Coupled Flow, Transport, Reaction and Biofilm Growth Processes in Porous Media

    Science.gov (United States)

    Valocchi, A. J.; Laleian, A.; Werth, C. J.

    2017-12-01

    Perturbation of natural subsurface systems by fluid inputs may induce geochemical or microbiological reactions that change porosity and permeability, leading to complex coupled feedbacks between reaction and transport processes. Some examples are precipitation/dissolution processes associated with carbon capture and storage and biofilm growth associated with contaminant transport and remediation. We study biofilm growth due to mixing controlled reaction of multiple substrates. As biofilms grow, pore clogging occurs which alters pore-scale flow paths thus changing the mixing and reaction. These interactions are challenging to quantify using conventional continuum-scale porosity-permeability relations. Pore-scale models can accurately resolve coupled reaction, biofilm growth and transport processes, but modeling at this scale is not feasible for practical applications. There are two approaches to address this challenge. Results from pore-scale models in generic pore structures can be used to develop empirical relations between porosity and continuum-scale parameters, such as permeability and dispersion coefficients. The other approach is to develop a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled by a suitable method that ensures continuity of flux across the interface. Thus, regions of high reactivity where flow alteration occurs are resolved at the pore scale for accuracy while regions of low reactivity are resolved at the continuum scale for efficiency. This approach thus avoids the need for empirical upscaling relations in regions with strong feedbacks between reaction and porosity change. We explore and compare these approaches for several two-dimensional cases.

  7. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  8. Two-color Fermi-liquid theory for transport through a multilevel Kondo impurity

    Science.gov (United States)

    Karki, D. B.; Mora, Christophe; von Delft, Jan; Kiselev, Mikhail N.

    2018-05-01

    We consider a quantum dot with K ≥2 orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multilevel Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric point is governed by a two-channel S =1 Kondo model characterized by intrinsic channels asymmetry. Based on a conformal field theory approach we derived an effective Hamiltonian at a strong-coupling fixed point. The Hamiltonian capturing the low-energy physics of a two-stage Kondo screening represents the quantum impurity by a two-color local Fermi liquid. Using nonequilibrium (Keldysh) perturbation theory around the strong-coupling fixed point we analyze the transport properties of the model at finite temperature, Zeeman magnetic field, and source-drain voltage applied across the quantum dot. We compute the Fermi-liquid transport constants and discuss different universality classes associated with emergent symmetries.

  9. Fluid transportation mechanisms by a coupled system of elastic membranes and magnetic fluids

    International Nuclear Information System (INIS)

    Ido, Y.; Tanaka, K.; Sugiura, Y.

    2002-01-01

    The basic properties of the fluid transportation mechanism that is produced by the coupled waves propagating along a thin elastic membrane covering a magnetic fluid layer in a shallow and long rectangular vessel are investigated. It is shown that the progressive magnetic field induced by the rectangular pulses generates sinusoidal vibration of the displacement of elastic membrane and makes the system work more efficiently than the magnetic field induced by the pulse-width-modulation method

  10. BALTORO a general purpose code for coupling discrete ordinates and Monte-Carlo radiation transport calculations

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1983-01-01

    The general purpose code BALTORO was written for coupling the three-dimensional Monte-Carlo /MC/ with the one-dimensional Discrete Ordinates /DO/ radiation transport calculations. The quantity of a radiation-induced /neutrons or gamma-rays/ nuclear effect or the score from a radiation-yielding nuclear effect can be analysed in this way. (author)

  11. Coupled plasma-neutral transport model for the scrape-off region

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.; Heifetz, D.

    1985-03-01

    Analysis of the scrape-off region requires treatment of the plasma transport along and across the field lines and inclusion of the neutral transport effects. A method for modeling the scrape-off region that is presented here uses separate models for each of these aspects that are coupled together through an iteration procedure that requires only minimal numerical effort. The method is applied here to estimate the neutral pumping rates in the pump-limiter and divertor options for a proposed deuterium-tritium (D-T) ignition experiment. High neutral recycling in the vicinity of the neutralizer plate dramatically affects pumping rates for both the pump-limiter and divertor. In both cases, the plasma flow into the channel surrounding the neutralizer plate is greatly reduced by the neutral recycling. The fraction of this flow that is pumped can be large (> 50%), but in general it is dependent on the particular geometry and plasma conditions. It is estimated that pumping speeds approximately greater than 10 5 L/s are adequate for the exhaust requirements in the pump-limiter and the divertor cases. Also, high neutral recycling on the front surface of the limiter tends to increase the neutral pumping rate

  12. Description of a neutron field perturbed by a probe using coupled Monte Carlo and discrete ordinates radiation transport calculations

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1984-01-01

    This work concerns calculation of a neutron response, caused by a neutron field perturbed by materials surrounding the source or the detector. Solution of a problem is obtained using coupling of the Monte Carlo radiation transport computation for the perturbed region and the discrete ordinates transport computation for the unperturbed system. (author). 62 refs

  13. Towards sustainable urban transportation: Test, demonstration and development of fuel cell and hybrid-electric buses

    International Nuclear Information System (INIS)

    Folkesson, Anders

    2008-05-01

    Several aspects make today's transport system non-sustainable: - Production, transport and combustion of fossil fuels lead to global and local environmental problems. - Oil dependency in the transport sector may lead to economical and political instability. - Air pollution, noise, congestion and land-use may jeopardise public health and quality of life, especially in urban areas. In a sustainable urban transport system most trips are made with public transport because high convenience and comfort makes travelling with public transport attractive. In terms of emissions, including noise, the vehicles are environmentally sustainable, locally as well as globally. Vehicles are energy-efficient and the primary energy stems from renewable sources. Costs are reasonable for all involved, from passengers, bus operators and transport authorities to vehicle manufacturers. The system is thus commercially viable on its own merits. This thesis presents the results from three projects involving different concept buses, all with different powertrains. The first two projects included technical evaluations, including tests, of two different fuel cell buses. The third project focussed on development of a series hybrid-bus with internal combustion engine intended for production around 2010. The research on the fuel cell buses included evaluations of the energy efficiency improvement potential using energy mapping and vehicle simulations. Attitudes to hydrogen fuel cell buses among passengers, bus drivers and bus operators were investigated. Safety aspects of hydrogen as a vehicle fuel were analysed and the use of hydrogen compared to electrical energy storage were also investigated. One main conclusion is that a city bus should be considered as one energy system, because auxiliaries contribute largely to the energy use. Focussing only on the powertrain is not sufficient. The importance of mitigating losses far down an energy conversion chain is emphasised. The Scania hybrid fuel cell

  14. Mixed electrical-chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36

    Directory of Open Access Journals (Sweden)

    Farid eHamzei-Sichani

    2012-05-01

    Full Text Available Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in the mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for mixed (electrical/chemical synapses in adult rat hippocampus on both principal cells and interneurons. Thin-section electron microscopic images of small gap junction-like appositions were found at mossy fiber (MF terminals on thorny excrescences of CA3 pyramidal neurons (CA3pyr, apparently forming glutamatergic mixed synapses. Lucifer Yellow injected into four weakly-fixed CA3pyr was detected in MF axons that contacted the injected CA3pyr, supporting gap junction-mediated coupling between those two types of principal cells. Freeze-fracture replica immunogold-labeling revealed diverse sizes and morphologies of connexin36-containing gap junctions throughout hippocampus. Of 20 immunogold-labeled gap junctions, seven were large (328-1140 connexons, three of which were consistent with electrical synapses between interneurons; but nine were at axon terminal synapses, three of which were immediately adjacent to distinctive glutamate receptor-containing postsynaptic densities, forming mixed glutamatergic synapses. Four others were adjacent to small clusters of immunogold-labeled 10-nm E-face intramembrane particles, apparently representing extrasynaptic glutamate receptor particles. Gap junctions also were on spines in stratum lucidum, stratum oriens, dentate gyrus, and hilus, on both interneurons and unidentified neurons. In addition, one putative GABAergic mixed synapse was found in thin section images of a CA3pyr, but none found by immunogold-labeling were at GABAergic mixed synapses, suggesting their rarity. Cx36-containing gap junctions throughout hippocampus suggest the possibility of reciprocal modulation of electrical and chemical signals in diverse hippocampal

  15. Electrical transport properties of an isolated CdS microrope composed of twisted nanowires

    Science.gov (United States)

    Yu, Gui-Feng; Yu, Miao; Pan, Wei; Han, Wen-Peng; Yan, Xu; Zhang, Jun-Cheng; Zhang, Hong-Di; Long, Yun-Ze

    2015-01-01

    CdS is one of the important II-VI group semiconductors. In this paper, the electrical transport behavior of an individual CdS microrope composed of twisted nanowires is studied. It is found that the current-voltage ( I- V) characteristics show two distinct power law regions from 360 down to 60 K. Space-charge-limited current (SCLC) theory is used to explain these temperature- and electric-field-dependent I-V curves. The I-V data can be well fitted by this theory above 100 K, and the corresponding carrier mobility, trap energy, and trap concentration are also obtained. However, the I-V data exhibit some features of the Coulomb blockade effect below 80 K.

  16. Electrical transport properties of an isolated CdS microrope composed of twisted nanowires.

    Science.gov (United States)

    Yu, Gui-Feng; Yu, Miao; Pan, Wei; Han, Wen-Peng; Yan, Xu; Zhang, Jun-Cheng; Zhang, Hong-Di; Long, Yun-Ze

    2015-01-01

    CdS is one of the important II-VI group semiconductors. In this paper, the electrical transport behavior of an individual CdS microrope composed of twisted nanowires is studied. It is found that the current-voltage (I-V) characteristics show two distinct power law regions from 360 down to 60 K. Space-charge-limited current (SCLC) theory is used to explain these temperature- and electric-field-dependent I-V curves. The I-V data can be well fitted by this theory above 100 K, and the corresponding carrier mobility, trap energy, and trap concentration are also obtained. However, the I-V data exhibit some features of the Coulomb blockade effect below 80 K.

  17. Role of interlayer coupling for the power factor of CuSbS2 and CuSbSe2

    KAUST Repository

    Alsaleh, Najebah Mohammed Abdullah; Singh, Nirpendra; Schwingenschlö gl, Udo

    2016-01-01

    The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2, even though it is weak.

  18. Role of interlayer coupling for the power factor of CuSbS2 and CuSbSe2

    KAUST Repository

    Alsaleh, Najebah Mohammed Abdullah

    2017-01-08

    The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2, even though it is weak.

  19. Role of interlayer coupling for the power factor of CuSbS2 and CuSbSe2

    KAUST Repository

    Alsaleh, Najebah M.

    2016-09-26

    The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2, even though it is weak.

  20. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    Science.gov (United States)

    Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-01-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.