Sample records for electrical resistivity etude

  1. Electrical Resistivity Measurements: a Review

    Singh, Yadunath

    World-wide interest on the use of ceramic materials for aerospace and other advanced engineering applications, has led to the need for inspection techniques capable of detecting unusually electrical and thermal anomalies in these compounds. Modern ceramic materials offer many attractive physical, electrical and mechanical properties for a wide and rapidly growing range of industrial applications; moreover specific use may be made of their electrical resistance, chemical resistance, and thermal barrier properties. In this review, we report the development and various techniques for the resistivity measurement of solid kind of samples.

  2. Determining the specific electric resistance of rock

    Persad' ko, V.Ia.


    Data are presented on perfecting the method of laboratory determination of the specific electric resistance of a rock formation. The average error in determining the specific electric resistance of the core at various locations is no more than two percent with low resistance values (2-5 ohms).

  3. Quality control based on electrical resistivity measurements

    Ferreira, Rui Miguel; Jalali, Said


    The electrical resistivity of concrete is one of the main parameters controlling the initiation and propagation of reinforcement corrosion. It is common knowledge that concrete electrical resistivity is mainly dependent on the w/c ratio (pore connectivity), volume and type of cement, temperature and the moisture. This research work studies the effect of specimen shape and temperature of measurement on electrical resistivity measurements of concrete using the four-point Werner electrode. In ad...

  4. Coke fouling monitoring by electrical resistivity

    Bombardelli, Clovis; Mari, Livia Assis; Kalinowski, Hypolito Jose [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial (CPGEI)


    An experimental method to simulate the growth of the coke fouling that occurs in the oil processing is proposed relating the thickness of the encrusted coke to its electrical resistivity. The authors suggest the use of the fouling electrical resistivity as a transducer element for determining its thickness. The sensor is basically two electrodes in an electrically isolated device where the inlay can happen in order to compose a purely resistive transducer. Such devices can be easily constructed in a simple and robust form with features capable to face the high temperatures and pressures found in relevant industrial processes. For validation, however, it is needed a relationship between the electrical resistivity and the fouling thickness, information not yet found in the literature. The present work experimentally simulates the growth of a layer of coke on an electrically insulating surface, equipped with electrodes at two extremities to measure the electrical resistivity during thermal cracking essays. The method is realized with a series of consecutive runs. The results correlate the mass of coke deposited and its electrical resistivity, and it can be used to validate the coke depositions monitoring employing the resistivity as a control parameter. (author)

  5. Geological and Electrical Resistivity Sounding of Olokonla Area in ...


    polygon was also constructed based on the radial electrical sounding. The geoelectric ... KEYWORDS: Vertical electrical sounding, aquifer, electrical resistivity, anisotropy polygon, geological mapping, fracture pattern .... Introduction to.

  6. System for measuring electric resistance skin

    V. P. Kutsenko


    Full Text Available Introduction. To measure the electrical resistance of leather frequently used system for applying testing signals from external current sources or voltage. Power testing signals the maximum limit, when they Electro studies still have a negative impact on the human body. Formulation of the problem. To achieve this task the authors conducted research and developed a system, which is based to measure electrical skin resistance (ESR responsible allocation and measurement noise variance bioelectric signal is proportional to the resistance area of research. Main body. The paper studied and developed a system, based on measuring electrical skin resistance on the identification and measurement of the noise variance from the BAP bioelectric signal that is proportional to the resistance of the investigation. A functional block diagram of an automated algorithm for converting the useful and noise signal BAP, whose range does not differ fundamentally from those of the intrinsic noise of the input elements in ESR. The proposed method will improve the accuracy of the measurements ESR without the use of test pacing signal. The simulation results and experimental studies correlate that confirms the adequacy of this method the results of experimental measurements. Conclusions. For noise voltage BAT can measure their electrical resistance without signals tested, external sources of electric current or voltage and thereby completely eliminate the harmful effect of probing. Thanks to one of the Inverting periodic noise voltages multiplied and simultaneous detection variable component switching frequency, provided the allocation and measurement noise voltage acupuncture points, which is proportional to the resistance, and the intensity of the same order or less than the intrinsic noise of the measuring system. Use as medical acupuncture needle electrodes allows to measure not only the skin but also deep resistivity, which reflects the physiological state of internal

  7. Electrical resistivity of thin bismuth films

    Kumar, A.; Katyal, O. P.


    The effect of the film thickness of a bismuth film deposited on glass substrate on its electrical resistivity was investigated for films from 41 to 225 nm thickness, in the temperature range 77-350 K. Results show that the electrical resistivity decreases with increasing temperature and that, for films 98.3 and 225.9 nm thick there exists a minimum (between 260 and 350 K) in resistivity at some temperature, Tc. This minimum shifts toward higher temperature for thinner samples, and lies above 350 K. The thickness dependence of the bismuth film resistivity, obtained at 77, 150, and 300 K, can be explained by a modified Fuchs model, which takes into account the thickness dependence of carrier density.

  8. Electrical resistivity and phase transformation in steels

    Mohanty, O.N.; Bhagat, A.N. [Tata Iron and Steel Company Limited, Jamshedpur (India)


    Changes in electrical resistance accompanying transformations in steels with magnetic change (e.g. {gamma} {yields} martensite/bainite) and without magnetic change (e.g. {gamma} {yields} {alpha}, above Curie temperature) have been examined; the former class affects the resistivity the latter does not. Next, while the efficacy of electrical resistivity measurement in capturing the well-known features of austenite stabilization (e.g. over - ageing, reversibility, and influence of prior martensite amount and so on) in high carbon steels has been reported in an earlier publication, new features (e.g. increase in resistance -increase at very low temperatures, change in temperature co-efficient of resistivity in the stabilized material etc.) are highlighted here. Finally, the work shows that a quantitative estimate of precipitation in the copper bearing, age-hardenable HSLA-100 steel during tempering can be done by continuous electrical resistivity measurement. These data also allow an in-depth kinetic analysis using the Johnson-Mehl-Avrami equation. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  9. electrical resistivity measurements of downscaled homogenous ...

    ES Obe

    Knowledge of electrical resistivity for reservoir rocks is crucial for a number of reservoir ... A better validation of micro-CT technique would be to use the same core size for ... forecasts. Nigerian Journal of Technology. Vol. 30, No. 2, June 2011.

  10. Temperature dependent electrical resistivity of liquid Sn

    Prajapati, A. V.; Sonvane, Y. A.; Patel, H. P.; Thakor, P. B.


    The present paper deals with the effect of temperature variation on the electrical resistivity (ρ) of liquid Sn(Tin). We have used a new parameter free pseudopotential along with screening Taylor et al and Farid et al local field correction functions. The Percus-Yevick Hard Sphere (PYHS) reference system is used to describe structural information. Zeeman formula has been used for finding resistivity with the variation of temperature. The balanced harmonies between present data and experimental data have been achieved with a minimal deviation. So, we concluded that our newly constructed model potential is an effective one to produce the data of electrical resistivity of liquid Sn(Tin) as a function of temperature.

  11. Contribution to the theoretical study of order-disorder phenomena in the electrical properties of alloys (1963); Contribution a l'etude theorique des phenomenes d'ordre dans les proprietes electriques des alliages (1963)

    Beal, M.T. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires


    We have study theoretically the ordering of alloys and its influence an electrical resistivity. We have looked at the cases of concentrated, non magnetic alloys such as Cu Zn {beta} or Cu{sub 3}Au and of diluted, magnetic alloys such as noble matrix with rare earth impurities. In both cases, a simple method of molecular field with nearest neighbour interactions is used. Scattering cross sections are calculated with free electrons and Born approximation. The electrical properties are described with a good accuracy by single diffusions on each center (long range order). But some anomalies near to the ordering temperature are caused by double diffusions on pairs of interacting atoms or spins (local order). (author) [French] On presente une etude theorique des phenomenes d'ordre et de leur influence sur les proprietes electriques des alliages. Deux cas sont envisages: celui des alliages non magnetiques concentres, tels que Cu Zn {beta} ou Cu{sub 3}Au et celui d'alliages magnetiques tres dilues du type matrice noble impuretes de terres rares. Dans les deux cas on utilise une methode simple de champ moleculaire avec interactions entre plus proches voisins seulement. Les sections efficaces de diffusion sont calculees dans un modele d'electrons libres et dans l'approximation de Born. Les proprietes electriques sont decrites en premiere approximation par les diffusions simples sur chaque atome ou spin (ordre a longue distance). Mais elles presentent des anomalies a la temperature d'ordre dues aux diffusions doubles sur des paires d'atomes ou de spins plus proches voisins (ordre local). (auteur)

  12. Electrical resistance tomography for imaging concrete structures

    Buettner, M.; Ramirez, A.; Daily, W.


    Electrical Resistance Tomography (ERT) has been used to non-destructively examine the interior of reinforced concrete pillars in the laboratory during a water infiltration experiment. ERT is a technique for determining the electrical resistivity distribution within a volume from measurement of injected currents and the resulting electrical potential distribution on the surface. The transfer resistance (ratio of potential to injected current) data are inverted using an algorithm based on a finite element forward solution which is iteratively adjusted in a least squares sense until the measured and calculated transfer resistances agree to within some predetermined value. Laboratory specimens of concrete pillars, 61.0 cm (24 in) in length and 20.3 cm (8 in) on a side, were prepared with various combinations of steel reinforcing bars and voids (1.27 cm diameter) which ran along the length of the pillars. An array of electrodes was placed around the pillar to allow for injecting current and measuring the resulting potentials. After the baseline resistivity distribution was determined, water was added to a void near one comer of the pillar. ERT was used to determine the resistivity distribution of the pillar at regular time intervals as water was added. The ERT images show very clearly that the water was gradually imbibed into the concrete pillar during the course of the experiment. The resistivity decreased by nearly an order of magnitude near the point of water addition in the first hour, and by nearly two orders of magnitude by the end of the experiment. Other applications for this technology include monitoring of curing in concrete structures, detecting cracks in concrete structures, detecting rebar location and corrosion state, monitoring slope stability and the stability of footings, detecting and monitoring leaks from storage tanks, monitoring thermal processes during environmental remediation, and for detecting and monitoring contaminants in soil and groundwater.

  13. Estimating soil suction from electrical resistivity

    Piegari, E.; Di Maio, R.


    Soil suction and resistivity strongly depend on the degree of soil saturation and, therefore, both are used for estimating water content variations. The main difference between them is that soil suction is measured using tensiometers, which give point information, while resistivity is obtained by tomography surveys, which provide distributions of resistivity values in large volumes, although with less accuracy. In this paper, we have related soil suction to electrical resistivity with the aim of obtaining information about soil suction changes in large volumes, and not only for small areas around soil suction probes. We derived analytical relationships between soil matric suction and electrical resistivity by combining the empirical laws of van Genuchten and Archie. The obtained relationships were used to evaluate maps of soil suction values in different ashy layers originating in the explosive activity of the Mt Somma-Vesuvius volcano (southern Italy). Our findings provided a further example of the high potential of geophysical methods in contributing to more effective monitoring of soil stress conditions; this is of primary importance in areas where rainfall-induced landslides occur periodically.

  14. Electrical resistance of a capillary endothelium


    The electrical resistance of consecutive segments of capillaries has been determined by a method in which the microvessels were treated as a leaky, infinite cable. A two-dimensional analytical model to describe the potential field in response to intracapillary current injection was formulated. The model allowed determination of the electrical resistance from four sets of data: the capillary radius, the capillary length constant, the length constant in the mesentery perpendicular to the capillary, and the relative potential drop across the capillary wall. Of particular importance were the mesothelial membranes covering the mesenteric capillaries with resistances several times higher than that of the capillary endothelium. 27 frog mesenteric capillaries were characterized. The average resistance of the endothelium was 1.85 omega cm2, which compares well with earlier determinations of the ionic permeability of such capillaries. However, heterogeneity with respect to resistance was observed, that of 10 arterial capillaries being 3.0 omega cm2 as compared with 0.95 omega cm2 for 17 mid- and venous capillaries. The average in situ length constant was 99 micrometers for the arterial capillaries and 57 micrometers for the mid- and venous capillaries. It is likely that the ions that carry the current must move paracellularly, through junctions that are leaky to small solutes. PMID:7241087

  15. Electrical Resistance Tomography of Conductive Thin Films

    Cultrera, Alessandro


    The Electrical Resistance Tomography (ERT) technique is applied to the measurement of sheet conductance maps of both uniform and patterned conductive thin films. Images of the sheet conductance spatial distribution, and local conductivity values are obtained. Test samples are tin oxide films on glass substrates, with electrical contacts on the sample boundary, some samples are deliberately patterned in order to induce null conductivity zones of known geometry while others contain higher conductivity inclusions. Four-terminal resistance measurements among the contacts are performed with a scanning setup. The ERT reconstruction is performed by a numerical algorithm based on the total variation regularization and the L-curve method. ERT correctly images the sheet conductance spatial distribution of the samples. The reconstructed conductance values are in good quantitative agreement with independent measurements performed with the van der Pauw and the four-point probe methods.

  16. Electrical resistance tomography of concrete structures

    Daily, W.; Ramirez, A. [Lawrence Livermore National Lab., CA (United States); Binley, A.; Henry-Poulter, S. [Lancaster Univ. (United Kingdom). Dept. of Environmental Sciences


    The purpose of this work is to determine the feasibility of using Electrical resistance tomography (ERT) to nondestructively examine the interior of concrete structures such as bridge pillars and roadways. We report the results of experiments wherein ERT is used to image the two concrete specimens in the laboratory. Each specimen is 5 inches square and 12 inches long and contained steel reinforcing rods along its length. Twenty electrodes were placed on each sample and an-image of electrical resistivity distribution was generated from current and voltage measurements. We found that the images show the general location of the reinforcing steel and, what`s more important, delineate the absence of the steel. The method may therefore be useful for determining if such steel has been destroyed by corrosion, however to make it useful, the technique must have better resolution so that individual reinforcing steel units are resolved.

  17. Delineation of graves using electrical resistivity tomography

    Nero, Callistus; Aning, Akwasi Acheampong; Danuor, Sylvester K.; Noye, Reginald M.


    A suspected old royal cemetery has been surveyed at the Kwame Nkrumah University of Science and Technology (KNUST) campus, Kumasi, Ghana using Electrical Resistivity Tomography (ERT) with the objective of detecting graves in order to make informed decisions with regard to the future use of the area. The survey was conducted on a 10,000 m2 area. Continuous Vertical Electrical Sounding (CVES) was combined with the roll along technique for 51 profiles with 1 m probe separation separated by 2 m. Inverted data results indicated wide resistivity variations ranging between 9.34 Ωm and 600 Ωm in the near surface. Such heterogeneity suggests a disturbance of the soil at this level. Both high (≥ 600 Ωm) and low resistivity (≤ 74.7 Ωm) anomalies, relative to background levels, were identified within the first 4 m of the subsurface. These were suspected to be burial tombs because of their rectangular geometries and resistivity contrasts. The results were validated with forward numerical modeling results. The study area is therefore an old cemetery and should be preserved as a cultural heritage site.

  18. Electrical resistivity measurements to predict abrasion resistance of rock aggregates

    Sair Kahraman; Mustafa Fener


    The prediction of Los Angeles (LA) abrasion loss from some indirect tests is useful for practical applications. For this purpose, LA abrasion, electrical resistivity, density and porosity tests were carried out on 27 different rock types. LA abrasion loss values were correlated with electrical resistivity and a good correlation between the two parameters was found. To see the effect of rock class on the correlation, regression analysis was repeated for igneous rocks, metamorphic rocks and sedimentary rocks, respectively. It was seen that correlation coefficients were increased for the rock classes. In addition, the data were divided into two groups according to porosity and density, respectively. After repeating regression analysis for these porosity and density groups, stronger correlations were obtained compared to the equation derived for all rocks. The validity of the derived equations was statistically tested and it was shown that all derived equations were significant. Finally, it can be said that all derived equations can alternatively be used for the estimation of LA abrasion loss from electrical resistivity.

  19. Complex Electrical Resistivity for Monitoring DNAPL Contamination

    Stephen R. Brown; David Lesmes; John Fourkas


    Nearly all Department of Energy (DOE) facilities have landfills and buried waste areas. Of the various contaminants present at these sites, dense non-aqueous phase liquids (DNAPL) are particularly hard to locate and remove. There is an increasing need for external or non-invasive sensing techniques to locate DNAPLs in the subsurface and to track their spread and monitor their breakdown or removal by natural or engineered means. G. Olhoeft and colleagues have published several reports based on laboratory studies using the complex resistivity method which indicate that organic solvents, notably toluene, PCE, and TCE, residing in clay-bearing soils have distinctive electrical signatures. These results have suggested to many researchers the basis of an ideal new measurement technique for geophysical characterization of DNAPL pollution. Encouraged by these results we proposed to bring the field measurement of complex resistivity as a means of pollution characterization from the conceptual stage to practice. We planned to document the detectability of clay-organic solvent interactions with geophysical measurements in the laboratory, develop further understanding of the underlying physical and chemical mechanisms, and then apply these observations to develop field techniques. As with any new research endeavor we note the extreme importance of trying to reproduce the work of previous researchers to ensure that any effects observed are due to the physical phenomena occurring in the specimen and not due to the particular experimental apparatus or method used. To this end, we independently designed and built a laboratory system, including a sample holder, electrodes, electronics, and data analysis software, for the measurement of the complex electrical resistivity properties of soil contaminated with organic solvents. The capabilities and reliability of this technique were documented. Using various standards we performed measurement accuracy, repeatability, and noise immunity

  20. Correlation between Wear Resistance and Lifetime of Electrical Contacts

    Jian Song


    Full Text Available Electrical contacts are usually plated in order to prevent corrosion. Platings of detachable electrical contacts experience wear because of the motion between contacts. Once the protecting platings have been worn out, electrical contacts will fail rapidly due to corrosion or fretting corrosion. Therefore the wear resistance of the platings is a very important parameter for the long lifetime of electrical contacts. Many measures which improve the wear resistance can diminish the conductivity of the platings. Due to the fact that platings of electrical contacts must have both a high wear resistance and a high electrical conductivity, the manufacturing of high performance platings of electrical contacts poses a great challenge. Our study shows firstly the correlation between the wear resistance of platings and lifetime of electrical contacts and then the measures, which improve the wear resistance without impairing the electrical performance of the contacts.

  1. Electrical Resistance Tomography imaging of concrete

    Karhunen, Kimmo


    We apply Electrical Resistance Tomography (ERT) for three dimensional imaging of concrete. In ERT, alternating currents are injected into the target using an array of electrodes attached to the target surface, and the resulting voltages are measured using the same electrodes. These boundary measurements are used for reconstructing the internal (3D) conductivity distribution of the target. In reinforced concrete, the metallic phases (reinforcing bars and fibers), cracks and air voids, moisture gradients, and the chloride distribution in the matrix carry contrast with respect to conductivity. While electrical measurements have been widely used to characterize the properties of concrete, only preliminary results of applying ERT to concrete imaging have been published so far. The aim of this paper is to carry out a feasibility evaluation with specifically cast samples. The results indicate that ERT may be a feasible modality for non-destructive evaluation of concrete. © 2009 Elsevier Ltd. All rights reserved.

  2. Folds and Etudes

    Bean, Robert


    In this article, the author talks about "Folds" and "Etudes" which are images derived from anonymous typing exercises that he found in a used copy of "Touch Typing Made Simple". "Etudes" refers to the musical tradition of studies for a solo instrument, which is a typewriter. Typing exercises are repetitive attempts to type words and phrases…

  3. Electrical Resistance Alloys and Low-Expansion Alloys

    Kjer, Torben


    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...

  4. Efficiency of a Marine Towed Electrical Resistivity Method

    Chih-Wen Chiang


    Full Text Available In contrast to marine sediments, because of large electrical resistivity anomalies found in sulfide deposits and methane hydrates, resistivity measurements such as marine towed electrical resistivity (MTER might be a feasible method for discovering those natural minerals. To determine the feasibility of the MTER method we examined arrays consisting of a pole electrical dipole (PED, vertical electrical dipole (VED and horizontal electrical dipole (HED. The VED array showed a maximum difference in electric fields of 36 o/o and 105 o/o in the resistive and conductive models, respectively, while the PED and HED arrays yielded worse results of around 13 o/o to 19 o/o, respectively. The VED array showed a higher difference in electric fields than both the HED and PED arrays in the two models. Therefore, we suggest that a VED array with a large electrical current would be most conducive leading to the discovery of such minerals during MTER surveys.

  5. Sputter-Resistant Materials for Electric Propulsion Project

    National Aeronautics and Space Administration — This SBIR Phase 2 project shall develop sputter-resistant materials for use in electric propulsion test facilities and for plume shields on spacecraft using electric...

  6. Repeatable change in electrical resistance of Si surface by mechanical and electrical nanoprocessing.

    Miyake, Shojiro; Suzuki, Shota


    The properties of mechanically and electrically processed silicon surfaces were evaluated by atomic force microscopy (AFM). Silicon specimens were processed using an electrically conductive diamond tip with and without vibration. After the electrical processing, protuberances were generated and the electric current through the silicon surface decreased because of local anodic oxidation. Grooves were formed by mechanical processing without vibration, and the electric current increased. In contrast, mechanical processing with vibration caused the surface to protuberate and the electrical resistance increased similar to that observed for electrical processing. With sequential processing, the local oxide layer formed by electrical processing can be removed by mechanical processing using the same tip without vibration. Although the electrical resistance is decreased by the mechanical processing without vibration, additional electrical processing on the mechanically processed area further increases the electrical resistance of the surface.

  7. TUTORIAL: Electrical resistance: an atomistic view

    Datta, Supriyo


    This tutorial article presents a 'bottom-up' view of electrical resistance starting from something really small, like a molecule, and then discussing the issues that arise as we move to bigger conductors. Remarkably, no serious quantum mechanics is needed to understand electrical conduction through something really small, except for unusual things like the Kondo effect that are seen only for a special range of parameters. This article starts with energy level diagrams (section 2), shows that the broadening that accompanies coupling limits the conductance to a maximum of q2/h per level (sections 3, 4), describes how a change in the shape of the self-consistent potential profile can turn a symmetric current-voltage characteristic into a rectifying one (sections 5, 6), shows that many interesting effects in molecular electronics can be understood in terms of a simple model (section 7), introduces the non-equilibrium Green function (NEGF) formalism as a sophisticated version of this simple model with ordinary numbers replaced by appropriate matrices (section 8) and ends with a personal view of unsolved problems in the field of nanoscale electron transport (section 9). Appendix A discusses the Coulomb blockade regime of transport, while appendix B presents a formal derivation of the NEGF equations. MATLAB codes for numerical examples are listed in appendix C. (The appendices are available in the online version only.)

  8. The electrical resistivity method in cased boreholes

    Schenkel, C.J.


    The use of downhole current sources in resistivity mapping can greatly enhance the detection and delineation of subsurface features. The purpose of this work is to examine the resistivity method for current sources in wells cased with steel. The resistivity method in cased boreholes with downhole current sources is investigated using the integral equation (IE) technique. The casing and other bodies are characterized as conductivity inhomogeneities in a half-space. For sources located along the casing axis, an axially symmetric Green's function is used to formulate the surface potential and electric field (E-field) volume integral equations. The situations involving off-axis current sources and three-dimensional (3-D) bodies is formulated using the surface potential IE method. The solution of the 3-D Green's function is presented in cylindrical and Cartesian coordinate systems. The methods of moments is used to solve the Fredholm integral equation of the second kind for the response due to the casing and other bodies. The numerical analysis revealed that the current in the casing can be approximated by its vertical component except near the source and the axial symmetric approximation of the casing is valid even for the 3-D problem. The E-field volume IE method is an effective and efficient technique to simulate the response of the casing in a half-space, whereas the surface potential approach is computationally better when multiple bodies are involved. Analyzing several configurations of the current source indicated that the casing response is influenced by four characteristic factors: conduction length, current source depth,casing depth, and casing length. 85 refs., 133 figs., 11 tabs.

  9. Viscosity and electrical resistivity of Al-Li melts

    Kononenko, V. I.; Razhabov, A. A.; Ryabina, A. V.


    The kinematic viscosity and electrical resistivity of Al-Li alloys in the liquid state are studied by a combined electrodeless method. Some theoretical calculations performed to determine the viscosity and electrical resistance by comparing the calculated and experimental data are estimated.

  10. Iron aluminide useful as electrical resistance heating elements

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.


    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {le}1% Cr and either {ge}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {ge}0.1% oxide dispersoid particles. The alloy can contain 14--32% Al, {le}2% Ti, {le}2% Mo, {le}1% Zr, {le}1% C, {le}0.1% B, {le}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {le}1% rare earth metal, {le}1% oxygen, {le}3% Cu, balance Fe.

  11. Iron aluminide useful as electrical resistance heating elements

    Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)


    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  12. Iron aluminide useful as electrical resistance heating elements

    Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)


    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  13. Mapping Contaminant Remediation with Electrical Resistivity Tomography

    Gerhard, J.; Power, C.; Tsourlos, P.; Karaoulis, M.; Giannopoulos, A.; Soupios, P. M.; Simyrdanis, K.


    The remediation of sites contaminated with industrial chemicals - specifically dense non-aqueous phase liquids (DNAPLs) like coal tar and chlorinated solvents - represents a major geoenvironmental challenge. Remediation activities would benefit from a non-destructive technique to map the evolution of DNAPL mass in space and time. Electrical resistivity tomography (ERT) has long-standing potential in this context but has not yet become a common tool at DNAPL sites. This work evaluated the potential of time-lapse ERT for mapping DNAPL mass reduction in real time during remediation. Initially, a coupled DNAPL-ERT numerical model was developed for exploring this potential at the field scale, generating realistic DNAPL scenarios and predicting the response of an ERT survey. Also, new four-dimensional (4D) inversion algorithms were integrated for tracking DNAPL removal over time. 4D ERT applied at the surface for mapping an evolving DNAPL distribution was first demonstrated in a laboratory experiment. Independent simulation of the experiment demonstrated the reliability of the DNAPL-ERT model for simulating real systems. The model was then used to explore the 4D ERT approach at the field scale for a range of realistic DNAPL remediation scenarios. The approach showed excellent potential for mapping shallow DNAPL changes. However, remediation at depth was not as well resolved. To overcome this limitation, a new surface-to-horizontal borehole (S2HB) ERT configuration is proposed. A second laboratory experiment was conducted that demonstrated that S2HB ERT does better resolve changes in DNAPL distribution relative to surface ERT, particularly at depth. The DNAPL-ERT model was also used to demonstrate the improved mapping of S2HB ERT for field scale DNAPL scenarios. Overall, this work demonstrates that, with these innovations, ERT exhibits significant potential as a real time, non-destructive geoenvironmental remediation site monitoring tool.

  14. Electrical Resistivity and Thermodynamic Properties of Iron Under High Pressure

    Hieu, Ho Khac; Hai, Tran Thi; Hong, Nguyen Thi; Sang, Ngo Dinh; Tuyen, Nguyen Viet


    In this work, the electrical resistivity and thermodynamic properties of iron under high pressure have been investigated by using the semi-empirical approach. The recently well-established Grüneisen parameter expressions have been applied to derive the Debye frequency and temperature under compression. Using these results combined with the Bloch-Grüneisen law, the resistivity of iron has also been determined up to Earth's core pressures. We show that the electrical resistivity diminished gradually with pressure and saturates at high pressure. Our model gives low electrical resistivity values which are in agreement with the recent experimental measurements. The low resistivity may be attributed to the well-known resistivity saturation effect at high temperature, which was not considered in earlier models of core conductivity.

  15. State Waste Discharge Permit Application: Electric resistance tomography testing


    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  16. Characterization of electrical properties of resistance welding machines

    Wu Pei; Shao Yingli; Wenqi Zhang; Niels Bay


    Due to the individual electrical and mechanical characteristics of resistance welding machines, choice of the right machine and welding parameters for an optimized production is often difficult. This is especially the case in projection welding of complex joints. In this paper, a new approach of characterizing the electrical properties of AC resistance welding machines is presented, involving testing and mathematical modelling of the weld current, the firing angle and the conduction angle of silicon controlled rectifiers with the aid of a series of proof resistances. The model predicts the weld current and the conduction angle (or heat setting) at each set current, when the workpiece resistance is given.

  17. Detection of sinkholes using 2D electrical resistivity imaging

    Van Schoor, Abraham M


    Full Text Available Sinkholes in dolomitic areas are notoriously difficult geophysical targets, and selecting an appropriate geophysical solution is not straightforward. Electrical resistivity imaging or tomography (RESTOM) is well suited to mapping sinkholes because...

  18. Use of electrical resistivity technique for engineering site ...

    ... of electrical resistivity technique for engineering site investigation: a case study ... The qualitative interpretation of the horizontal profiling delineated the contact ... this area; therefore the use of raft foundation and/or any other foundation that ...

  19. electrical resistivity tomography and magnetic surveys: applications ...

    Vertical Electrical Sounding (VES) and magnetic surveys have been used for the purpose. The ERT and VES results .... engineering and environmental applications cor- responding to ...... Bernard, J. (2003). Short notes on the principles of.

  20. Resistance switching induced by electric fields in manganite thin films

    Villafuerte, M [Facultad de Ciencias Exactas y TecnologIa, Universidad Nacional de Tucuman, S. M. de Tucuman (Argentina); Juarez, G [Facultad de Ciencias Exactas y TecnologIa, Universidad Nacional de Tucuman, S. M. de Tucuman (Argentina); Duhalde, S [Dpto de Fisica, Facultad de IngenierIa, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Golmar, F [Dpto de Fisica, Facultad de IngenierIa, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Degreef, C L [Dpto de Fisica, Facultad de IngenierIa, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Heluani, S P [Facultad de Ciencias Exactas y TecnologIa, Universidad Nacional de Tucuman, S. M. de Tucuman (Argentina)


    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of {sub 0.5}Ca{sub 0.5}MnO{sub 3} (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results.

  1. Electrical Resistance Measurement of an Individual Carbon Nanotube

    LIU Jin-Ping; XIAO Cun-Ying; HUANG Xin-Tang


    @@ Aiming at the difficulty in the electrical resistance measurement, we develop a simple statistical model for the carbon nanotubes adequately dispersed in available insulated liquid and introduce the concept of "the most probability". Based on this model, we obtain the function between macroscopic resistance R and resistance of an individual nanotube, Ro, from which one can calculate the resistance of an individual nanotube by measuring the macroscopic resistance. By computational simulation, we prove the reliability of the model. Then, we analyse the feasibility of the model when applied to experiment.

  2. Study of electrical resistivity of lithium-indium thin films

    Chandra, Gyanesh; Katyal, O. P.


    Experimental results are presented on the electrical resistivity of lithium-indium films. The resistivity has been studied as a function of temperature (150-300 K), thickness of the films (570-3300 Å) and concentration of Li (11.0-58.7 at. %). The resistivity is observed to be minimum for samples having a Li concentration of 25 and 50 at. %. In general, resistivity varies linearly with temperature but resistivity versus temperature plot shows two distinct regions which have different slopes, i.e., dρ/dT. The role of lithium in indium-lithium films is discussed.

  3. Four-terminal electrical testing device. [initiator bridgewire resistance

    Robinson, Robert L. (Inventor); Graves, Thomas J. (Inventor); Hoffman, William C., III (Inventor)


    The invention relates to a four-terminal electrical connector device for testing and measuring unknown resistances of initiators used for starting pyrotechnic events aboard the space shuttle. The testing device minimizes contact resistance degradation effects and so improves the reliability of resistance measurements taken with the device. Separate and independent voltage sensing and current supply circuits each include a pair of socket contacts for mating engagement with the pins of the initiator. The unknown resistance that is measured by the device is the resistance of the bridgewire of the initiator which is required to be between 0.95 and 1.15 ohms.

  4. Electrical resistivity testing for as-built concrete performance assessment of chloride penetration resistance

    Polder, R.B.; Peelen, W.H.A.


    The electrical resistivity of concrete can provide information about its transport properties, which is relevant for durability performance. For example, resistivity is inversely proportional to chloride diffusion, at least within similar concrete compositions. A methodology is proposed for on-site assessment of concrete cover resistance against chloride penetration, based on on-site resistivity testing. As such, resistivity testing can extend existing service life approaches to assessing on ...

  5. Effects of resistive bodies on DC electrical soundings

    L. Alfano


    Full Text Available Some deep DC electrical soundings, performed in alpine and apenninic areas with the continuous polar dipole-dipole spread, show apparent resistivity curves with positive slopes. Measured values of apparent resistivity reach 30000 Wm. Applying the "surface charges" method we developed three dimensional mathematical models, by means of which we can state simple rules for determining the minimum extensions of the deep resistive bodies, fundamental information for a more precise interpretation of the field results.

  6. Slime thickness evaluation of bored piles by electrical resistivity probe

    Chun, Ok-Hyun; Yoon, Hyung-Koo; Park, Min-Chul; Lee, Jong-Sub


    The bottoms of bored piles are generally stacked with soil particles, both while boreholes are being drilled, and afterward. The stacked soils are called slime, and when loads are applied on the pile, increase the pile settlement. Thus to guarantee the end bearing capacity of bored piles, the slime thickness should be precisely detected. The objective of this study is to suggest a new method for evaluating the slime thickness, using temperature compensated electrical resistivity. Laboratory studies are performed in advance, to estimate and compare the resolution of the electrical resistivity probe (ERP) and time domain reflectometry (TDR). The electrical properties of the ERP and TDR are measured using coaxial type electrodes and parallel type two-wire electrodes, respectively. Penetration tests, conducted in the fully saturated sand-clay mixtures, demonstrate that the ERP produces a better resolution of layer detection than TDR. Thus, field application tests using the ERP with a diameter of 35.7 mm are conducted for the investigation of slime thickness in large diameter bored piles. Field tests show that the slime layers are clearly identified by the ERP: the electrical resistivity dramatically increases at the interface between the slurry and slime layer. The electrical resistivity in the slurry layer inversely correlates with the amount of circulated water. This study suggests that the new electrical resistivity method may be a useful method for the investigation of the slime thickness in bored piles.

  7. Chronic lead exposure reduces junctional resistance at an electrical synapse.

    Audesirk, G; Audesirk, T


    Both acute and chronic lead exposure have been found to inhibit transmission at chemical synapses, possibly by interfering with inward calcium current. We have found that chronic lead exposure slightly reduces input resistance and greatly reduces the junctional resistance between two strongly electrically coupled neurons in the pond snail Lymnaea stagnalis. The net effect is to increase the strength of electrical coupling. A reduction in gap junctional resistance would also be expected to increase the flow of small molecules between cells. However, Lucifer Yellow injections did not reveal dye-coupling between the cells. Lead exposure also increases the capacitance of the neurons.

  8. Equivalent Resistance in Pulse Electric Current Sintering


    The sintering resistance for conductive TiB2 and non-conductive Al2O3 as well as empty die during pulse current sintering were investigated in this paper.Equivalent resistances were measured by current and valtage during sintering the conductive and non-conductive materials in the same conditions.It is found that the current paths for conductive are different from those for non-conductive materials.For non-conductive materials,sintering resistances are influenced by powder sizes and heating rates,which indicates that pulse current has some interaction with non-conductive powders.For conductive TiB2,sintering resistances are influenced by heating rates and ball-milling time,which indicates the effect of powders activated by spark.

  9. Electrical resistivity of coal-bearing rocks under high temperature and the detection of coal fires using electrical resistance tomography

    Shao, Zhenlu; Wang, Deming; Wang, Yanming; Zhong, Xiaoxing; Tang, Xiaofei; Xi, Dongdong


    Coal fires are severe hazards to environment, health and safety throughout the world. Efficient and economical extinguishing of these fires requires that the extent of the subsurface coal fires should be delineated. Electrical and electromagnetic methods have been used to detect coal fires in recent years. However, the resistivity change of coal-bearing rocks at high temperature is rarely investigated. The resistivity characteristics of coal fires at different temperatures and depths are seldomly researched as well. In this paper, we present the results of measurements of several coal-bearing rocks' resistivity and permeability under high temperature. Two major causes for the change in resistivity with increasing temperature are recognized, there are the increase of charge carriers and thermal fracturing, of which the first one is probably the dominant cause. A set of 2-D simulations is carried out to compare the relation of resolution and efficiency of coal fires detection to temperature and depth when adopting the electrical resistance tomography. The simulation results show that the resolution and efficiency decrease with the decrease of temperature and the increase of depth. Finally, the electrical resistance tomography is used to delineate coal fires in the Anjialing Open Pit Mine. Most low-resistivity regions are verified as coal-fire areas according to the long-term monitoring of borehole temperature. The results indicate that the electrical resistance tomography can be used as a tool for the detection of coal fires.

  10. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen


    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  11. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    Renjie Ji

    Full Text Available Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR, electrode wear ratio (EWR, and surface roughness (SR. The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical

  12. [Prevalence of transmission of zidovudine-resistant viruses in Switzerland. l'Etude suisse de cohorte VIH].

    Yerly, S; Rakik, A; Kinloch-de-Loes, S; Erb, P; Vernazza, P; Hirschel, B; Perrin, L


    Zidovudine (ZDV) was the most widely used anti-HIV drug between 1987 and 1995, and, as already reported, transmission of ZDV-resistant viruses occurs. Several mutations of the reverse transcriptase gene have been identified; one of them affects the 215 codon and is associated with a high degree of resistance. We have determined, using selective PCR, the prevalence of transmission of 215 mutant isolates in 134 patients with primary HIV infection (PHI) and have identified 8 patients with 215 mutant virus between 1989 and 1995 in Switzerland. Mutant resistant viruses have been isolated from patients treated with most antiviral drugs. A systematic search for mutant viruses may provide useful information for the adaptation of treatment strategies.




    Full Text Available To succeed in artificial insemination and to produce the fecundation in cows it isnecessary to have knowledge about optimal time of ovulation. Such possibilityappears using the values of electrical resistance of cervical mucus. The smallestvalues are obtained during the ovulation due to the pH modification influenced by theestrogens. The purpose of the paper was to determine the electrical resistance of thecervical mucus in cows with clinical signs of estrus, depending on females’ age. Also,the electrical resistance of the cervical mucus in cows in different physiologicalstages (pregnant, no pregnant was measured. The ovulation detector DRAMINSKIwas used. This equipment allows to obtained a quickly and precise rapport on thephysiological stage of the cow. It can be detected the cow with atypical ovulation,irregular ovulation. This method improve the insemination efficiency, allowsdetecting early gestation period or the moment of ovulation. All these have a positiveinfluence on the development strategy of the farm and improve the economicperformances.

  14. Electrical Resistance and Magnetoresistance of Modified Carbon Nanotubes

    T.A. Len


    Full Text Available The paper presents the results of the experimental studies of the magnetoresistance and electrical resistance of carbon nanotubes modified with iron and iron oxide. A comprehensive study of the processes, which act with change in the temperature of modified CNTs, is performed. Joint analysis of the structural studies and electrical transport characteristics is enabled to explain new and interesting results. It is established that modification with iron has little effect on the electrical resistance. On the other hand, modification is strongly reflected on the ferromagnetic resistance anisotropy. It is shown that the localization mechanism and anisotropic magnetoresistance are manifested in magnetoresistance. Anisotropic magnetoresistance arises due to the features of magnetization of ferromagnetic phase in an external magnetic field.

  15. Observations on the electrical resistivity of steel fibre reinforced concrete

    Solgaard, Anders Ole Stubbe; Geiker, Mette Rica; Edvardsen, Carola;


    Steel fibre reinforced concrete (SFRC) is in many ways a well-known construction material, and its use has gradually increased over the last decades. The mechanical properties of SFRC are well described based on the theories of fracture mechanics. However, knowledge on other material properties......, including the electrical resistivity, is sparse. Among others, the electrical resistivity of concrete has an effect on the corrosion process of possible embedded bar reinforcement and transfer of stray current. The present paper provides experimental results concerning the influence of the fibre volume...

  16. Electrical resistance tomography to monitor vadose water movement

    Ramirez, A.; Daily, W. (Lawrence Livermore National Lab., CA (United States)); LaBrecque, D. (Arizona Univ., Tucson, AZ (United States))


    We report results of one test in which Electrical Resistance Tomography (ERT) was used to map the changes in electrical resistivity in the vadose zone as a function of time while water infiltration occurred. The ERT images were used to infer shape and movement of the infiltration plume in the unsaturated soil. We supplied a continuous water source at a point about 10 feet below the surface (at the end of a shallow screened hole) for only a short time -- 2.5 hours. This pulsed source introduced a slug'' of water whose infiltration was followed to about 60 foot depth during a 23 hour period. The ERT images show resistivity decreases as the water content of the vadose zone increased while water was added to the soil; the resistivity of the soil later increased after the supply of water was cut-off and the induced soil moisture began to subside.

  17. Electrical resistance tomography experiments at the Oregon Graduate Institute

    Daily, W.; Ramirez, A.; LaBrecque, D.; Barber, W.


    Three controlled experiments were conducted at the Oregon Graduate Institute (OGI) with the purpose of evaluating electrical resistance tomography for imaging underground processes associated with in-situ site assessment and remediation. The OGI facilities are unique: a double-wall tank 10 m square and 5 m deep, filled with river bottom sediments and instrumented for geophysical and hydrological studies. At this facility, liquid contaminants could be released into the confined soil at a scale sufficiently large to represent real-world physical phenomena. In the first test, images of electrical resistivity were made before and during a controlled spill of gasoline into a sandy soil. The primary purpose was to determine if electrical resistivity images could detect the hydrocarbon in either the vadose or saturated zone. Definite changes in electrical resistivity were observed in both the vadose and saturated soils. The effects were an increase in resistivity of as much as 10% above pre-release values. A single resistive anomaly was imaged, directly below the release point, principally within the vadose zone but extending below the phreatic surface. The anomaly remained identifiable in tomograms taken two days after the release ended with clear indications of lateral spreading along the water table. The second test involved electrical resistance measurements before, during, and after air sparging in a saturated soil. The primary purpose was to determine if the electrical images could be used to detect and delineate the extent of the zone influenced by sparging. The images showed an increase of about 20% in resistivity over background values within the sparged zone and the extent of the imaged zone agreed with that inferred from other information. Electrical resistivity tomography measurements were made under a simulated oil storage tank in the third test. Comparison of images taken before and during separate releases of brine and water showed effects of changes

  18. Invariant electrical resistivity of Co along the melting boundary

    Ezenwa, Innocent C.; Secco, Richard A.


    The Earth's core is comprised mainly of Fe and Ni with some light alloying element(s) and the electrical resistivity behavior of these elements is an important property for characterizing geodynamo action, determining energy sources, and for understanding core thermal evolution. Knowledge of the electrical resistivity of solid and liquid transition metals with electronic structures similar to Fe reinforces our understanding of core properties. The electrical resistivity of high purity Co has been measured at pressures up to 5 GPa in a large volume press and at temperatures up to 100 K above the melting temperature. The results demonstrate that resistivity of Co is invariant along the melting boundary. This is interpreted in terms of the antagonistic effects of P-induced reduction in the amplitude of lattice vibrations tending to decrease resistivity, and the P-induced shift of the Fermi level closer to the d-resonance which tends to increase resistivity. We calculated the electronic thermal conductivity of Co using the Wiedemann-Franz law and show that it increases with pressure both in the solid and liquid states and decreases with temperature in the solid and increases in the liquid state. The pressure dependences of electrical resistivity and electronic thermal conductivity calculated from equations involving bulk modulus and the Gruneisen parameter are in reasonable agreement with values measured in this study. The constant resistivity of Co along its melting boundary found in our study portends similar behavior for its electronic structural analog, Fe. This prediction suggests that the electronic thermal conductivity of Fe at Earth's inner core boundary could be similar to its 1 atm value at the melting point. Using this value of thermal conductivity for the inner core boundary would admit thermal convection as an energy source for the geodynamo prior to the birth of the inner core.

  19. Electrical resistivity of thin metal films

    Wissmann, Peter


    The aim of the book is to give an actual survey on the resistivity of thin metal and semiconductor films interacting with gases. We discuss the influence of the substrate material and the annealing treatment of the films, presenting our experimental data as well as theoretical models to calculate the scattering cross section of the conduction electrons in the frame-work of the scattering hypothesis. Main emphasis is laid on the comparison of gold and silver films which exhibit nearly the same lattice structure but differ in their chemical activity. In conclusion, the most important quantity for the interpretation is the surface charging z while the correlation with the optical data or the frustrated IR vibrations seems the show a more material-specific character. Z can be calculated on the basis of the density functional formalism or the self-consistent field approximation using Mulliken’s population analysis.

  20. Health Monitoring of TPS Structures by Measuring Their Electrical Resistance

    Preci, Arianit; Herdrich, Georg; Steinbeck, Andreas; Auweter-Kurtz, Monika

    Health Monitoring in aerospace applications becomes an emerging technology leading to the development of systems capable of continuously monitoring structures for damage with minimal human intervention. A promising sensing method to be applied on hot structures and thermal protection systems is the electrical resistance measurement technique, which is barely investigated up to now. This method benefits from the advantageous characteristics of self-monitoring materials, such as carbon fiber-reinforced materials. By measuring the variation of the electrical resistance of these materials information on possibly present mechanical damage can be derived. In order to set up a database on electric properties of relevant materials under relevant conditions and to perform a proof-of-concept for this health monitoring method a facility has been laid out, which allows for the measurement of the electrical resistance of thermal protection system relevant materials at temperatures up to 2000°C. First preliminary measurements of the surface resistance of a graphite sample have been performed and are presented. It has been proven necessary to make some modifications to the setup. Therefore, the remaining measurements with graphite and C/C-SiC samples are subject of further investigation which will be performed in the future.

  1. Electrical resistivity testing for as-built concrete performance assessment of chloride penetration resistance

    Polder, R.B.; Peelen, W.H.A.


    The electrical resistivity of concrete can provide information about its transport properties, which is relevant for durability performance. For example, resistivity is inversely proportional to chloride diffusion, at least within similar concrete compositions. A methodology is proposed for on-site

  2. Electric Crosstalk Effect in Valence Change Resistive Random Access Memory

    Sun, Jing; Wang, Hong; Wu, Shiwei; Song, Fang; Wang, Zhan; Gao, Haixia; Ma, Xiaohua


    Electric crosstalk phenomenon in valence change resistive switching memory (VCM) is systematically investigated. When a voltage is applied on the VCM device, an electric field is formed in the isolated region between the devices, which causes the oxygen vacancies in conductive filaments (CFs) to drift apart, leading to a consequent resistance degradation of the neighboring devices. The effects of distance between memory cells, electrodes widths and physical dimensions of CFs on the memory performance are investigated in this work. Furthermore, the strategies to mitigate electric crosstalk effects are developed. According to the simulation results, the crosstalk phenomenon can become more severe as the distance between memory cells or the electrode width decreases. In order to optimize the device performance, it is helpful to control the location of the break points of CFs in the device close to the top electrode. Alternatively, taking the integration density into account, switching materials with a small field accelerated parameter can also contribute to obtaining a stable performance.

  3. Feasibility study for the installation of a small hydro electric power plant; Etude de faisabilite. Petite centrale hydro-electrique au lieu dit 'Sous les Roches' a Sonceboz

    Tissot, N. [MHyLab, Mini-Hydraulics Laboratory, Montcherand (Switzerland); Hausmann, H. [Hans Hausmann, Bevilard (Switzerland)


    This report for the Swiss Federal Office of Energy presents a technical, economical and ecological analysis of the feasibility of a small hydroelectric power plant at Sonceboz, in the Swiss Jura mountains. The power of the planed plant would typically be 500 kW for a water head of about 10 m. The study shows that, compared to one single turbine, a pair of Kaplan type turbines would be operational over a larger range of the river's water flow rate. This solution would be a little bit more costly but offer more flexibility for maintenance. Two maximum water flow rates are considered, 4.5 and 6 m{sup 3}/s respectively. According to the economical study, done with current electric kWh prices, both configurations are viable while the largest flow rate leads to a larger profit. The report is rounded up by a sensitivity analysis considering variations in annual power generation, electro-mechanical and construction cost as well as turbine efficiency. It indicates that this last factor could be crucial for the overall profitability. [French] Ce rapport est le resultat detaille de l'analyse technico-economique et ecologique de faisabilite de la realisation d'une petite centrale hydroelectrique basse chute qui pourrait exploiter une denivellation d'environ 10 m pour une puissance de l'ordre de 500 kW pres de Sonceboz dans le Jura suisse. L'etude montre que le couplage de deux turbines Kaplan offrirait une possibilite de fonctionnement sur une plus grande plage de flux ainsi qu'une plus grande flexibilite de maintenance, ceci pour un cout legerement superieur a l'option a une seule turbine. Les debits de 4.5 et 6 m{sup 3}/s sont consideres. L'etude economique montre que le debit de 6 m{sup 3}/s est plus rentable au prix de vente actuel du kWh. L'article se termine par une analyse de sensibilite sur les incertitudes concernant la production annuelle, les prix de l'electromecanique et du genie civil et le rendement des

  4. Electrical carotid sinus stimulation in treatment resistant arterial hypertension.

    Jordan, Jens; Heusser, Karsten; Brinkmann, Julia; Tank, Jens


    Treatment resistant arterial hypertension is commonly defined as blood pressure that remains above goal in spite of the concurrent use of three antihypertensive agents of different classes. The sympathetic nervous system promotes arterial hypertension and cardiovascular as well as renal damage, thus, providing a logical treatment target in these patients. Recent physiological studies suggest that baroreflex mechanisms contribute to long-term control of sympathetic activity and blood pressure providing an impetus for the development of electrical carotid sinus stimulators. The concept behind electrical stimulation of baroreceptors or baroreflex afferent nerves is that the stimulus is sensed by the brain as blood pressure increase. Then, baroreflex efferent structures are adjusted to counteract the perceived blood pressure increase. Electrical stimulators directly activating afferent baroreflex nerves were developed years earlier but failed for technical reasons. Recently, a novel implantable device was developed that produces an electrical field stimulation of the carotid sinus wall. Carefully conducted experiments in dogs provided important insight in mechanisms mediating the depressor response to electrical carotid sinus stimulation. Moreover, these studies showed that the treatment success may depend on the underlying pathophysiology of the hypertension. Clinical studies suggest that electrical carotid sinus stimulation attenuates sympathetic activation of vasculature, heart, and kidney while augmenting cardiac vagal regulation, thus lowering blood pressure. Yet, not all patients respond to treatment. Additional clinical trials are required. Patients equipped with an electrical carotid sinus stimulator provide a unique opportunity gaining insight in human baroreflex physiology.

  5. Forensic Assessment on Ground Instability Using Electrical Resistivity Imaging (ERI)

    Hazreek, Z. A. M.; Azhar, A. T. S.; Aziman, M.; Fauzan, S. M. S. A.; Ikhwan, J. M.; Aishah, M. A. N.


    Electrical resistivity imaging (ERI) was used to evaluate the ground settlement in local scale at housing areas. ERI and Borehole results were used to interpret the condition of the problematic subsurface profile due to its differential stiffness. Electrical resistivity of the subsurface profile was measured using ABEM SAS4000 equipment set. ERI results using electrical resistivity anomaly on subsurface materials resistivity shows the subsurface profile exhibited low (1 - 100 Ωm) and medium (> 100 Ωm) value (ERV) representing weak to firm materials. The occurrences of soft to medium cohesive material (SPT N value = 2 - 7) and stiff cohesive material (SPT N ≥ 8) in local scale has created inconsistency of the ground stability condition. Moreover, it was found that a layer of organic decayed wood (ERV = 43 ˜ 29 Ωm & SPT N = 15 ˜ 9) has been buried within the subsurface profile thus weaken the ground structure and finally promoting to the ground settlement. The heterogeneous of the subsurface material presented using integrated analysis of ERI and borehole data enabled ground settlement in this area to be evaluated. This is the major factor evaluating ground instability in the local scale. The result was applicable to assist in planning a strategy for sustainable ground improvement of local scale in fast, low cost, and large data coverage.

  6. Recent Advances in Electrical Resistance Preheating of Aluminum Reduction Cells

    Ali, Mohamed Mahmoud; Kvande, Halvor


    There are two mainpreheating methods that are used nowadays for aluminum reduction cells. One is based on electrical resistance preheating with a thin bed of small coke and/or graphite particles between the anodes and the cathode carbon blocks. The other is flame preheating, where two or more gas or oil burners are used. Electrical resistance preheating is the oldest method, but is still frequently used by different aluminum producers. Many improvements have been made to this method by different companies over the last decade. In this paper, important points pertaining to the preparation and preheating of these cells, as well as measurements made during the preheating process and evaluation of the performance of the preheating, are illustrated. The preheating times of these cells were found to be between 36 h and 96 h for cell currents between 176 kA and 406 kA, while the resistance bed thickness was between 13 mm and 60 mm. The average cathode surface temperature at the end of the preheating was usually between 800°C and 950°C. The effect of the preheating methods on cell life is unclear and no quantifiable conclusions can be drawn. Some works carried out in the mathematical modeling area are also discussed. It is concluded that there is a need for more studies with real situations for preheated cells on the basis of actual measurements. The expected development in electrical resistance preheating of aluminum reduction cells is also summarized.

  7. Scenario Evaluator for Electrical Resistivity survey pre-modeling tool

    Terry, Neil; Day-Lewis, Frederick D.; Robinson, Judith L.; Slater, Lee D; Halford, Keith J.; Binley, Andrew; Lane, John; Werkema, Dale


    Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, such as the appropriate depth intervals or resolution of the methods. The relationship between ERI data and resistivity is nonlinear; therefore, these limitations depend on site conditions and survey design and are best assessed through forward and inverse modeling exercises prior to field investigations. In this approach, proposed field surveys are first numerically simulated given the expected electrical properties of the site, and the resulting hypothetical data are then analyzed using inverse models. Performing ERI forward/inverse modeling, however, requires substantial expertise and can take many hours to implement. We present a new spreadsheet-based tool, the Scenario Evaluator for Electrical Resistivity (SEER), which features a graphical user interface that allows users to manipulate a resistivity model and instantly view how that model would likely be interpreted by an ERI survey. The SEER tool is intended for use by those who wish to determine the value of including ERI to achieve project goals, and is designed to have broad utility in industry, teaching, and research.

  8. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects

    Chiodarelli, Nicolo' ; Li, Yunlong; Arstila, Kai; Richard, Olivier; Cott, Daire J; Heyns, Marc; De Gendt, Stefan; Groeseneken, Guido; Vereecken, Philippe M [IMEC, Kapeldreef 75, Leuven, B-3001 (Belgium); Masahito, Sugiura; Kashiwagi, Yusaku, E-mail: [Tokyo Electron Ltd, Technology Development Center, 650 Mitsuzawa, Hosaka-cho, Nirasaki, Yamanashi 407-0192 (Japan)


    Carbon nanotubes (CNT) are known to be materials with potential for manufacturing sub-20 nm high aspect ratio vertical interconnects in future microchips. In order to be successful with respect to contending against established tungsten or copper based interconnects, though, CNT must fulfil their promise of also providing low electrical resistance in integrated structures using scalable integration processes fully compatible with silicon technology. Hence, carefully engineered growth and integration solutions are required before we can fully exploit their potentialities. This work tackles the problem of optimizing a CNT integration process from the electrical perspective. The technique of measuring the CNT resistance as a function of the CNT length is here extended to CNT integrated in vertical contacts. This allows extracting the linear resistivity and the contact resistance of the CNT, two parameters to our knowledge never reported separately for vertical CNT contacts and which are of utmost importance, as they respectively measure the quality of the CNT and that of their metal contacts. The technique proposed allows electrically distinguishing the impact of each processing step individually on the CNT resistivity and the CNT contact resistance. Hence it constitutes a powerful technique for optimizing the process and developing CNT contacts of superior quality. This can be of relevant technological importance not only for interconnects but also for all those applications that rely on the electrical properties of CNT grown with a catalytic chemical vapor deposition method at low temperature.


    郭凤仪; 王其平; 孙鹤旭; 乔和; 张静


    Based on the electrical contact and arc theory, the experiments on contact resistance characteristics of electrical contacts are carried out, by analyzing the experimental results, some conclusions of contact resistance characteristics have been obtained in this paper.

  10. Electric-field effects in resistive oxides: facts and artifacts

    Reisner G. M.


    Full Text Available Striking non-linear conductivity effects induced by surprisingly low electric-fields in charge-ordered oxides, were reported variously as dielectric breakdown, charge-order collapse, depinning of charge-density-waves or other electronic effects. Our pulsed and d.c. I-V measurements on resistive oxides show that non-linear conductivity of electronic origin at low electric-fields is a rare phenomenon. In the majority of cases we detected no deviations from linearity in pulsed I-V characteristics under fields up to E ~ 500 V/cm. Current-controlled negative-differential-resistance (NDR and hysteresis were found in d.c. measurements at fields that decrease with increasing temperatures, a behavior typical of Joule heating in materials with negative temperature coefficient of resistivity. For the d.c. I-V characteristics of our samples exhibiting NDR, we found a rather unexpected correlation between ρ(Em - the resistivity at maximum field (at the onset of NDR and ρ(E=0 – the ohmic resistivity. The data points for ρ(Em versus ρ(E=0 obtained from such characteristics of 13 samples (8 manganites, 4 nickelates and one multiferroic at various ambient temperatures, plotted together on a log-log scale, follow closely a linear dependence with slope one that spans more than five orders of magnitude. This dependence is reproduced by several simple models.

  11. High precision measurement of electrical resistance across endothelial cell monolayers.

    Tschugguel, W; Zhegu, Z; Gajdzik, L; Maier, M; Binder, B R; Graf, J


    Effects of vasoactive agonists on endothelial permeability was assessed by measurement of transendothelial electrical resistance (TEER) of human umbilical vein endothelial cells (HUVECs) grown on porous polycarbonate supports. Because of the low values of TEER obtained in this preparation (< 5 omega cm2) a design of an Ussing type recording chamber was chosen that provided for a homogeneous electric field across the monolayer and for proper correction of series resistances. Precision current pulses and appropriate rates of sampling and averaging of the voltage signal allowed for measurement of < 0.1 omega resistance changes of the endothelium on top of a 21 omega series resistance of the support and bathing fluid layers. Histamine (10 microM) and thrombin (10 U/ml) induced an abrupt and substantial decrease of TEER, bradykinin (1 microM) was less effective, PAF (380 nM) and LTC4 (1 microM) had no effect. TEER was also reduced by the calcium ionophore A-23187 (10 microM). The technique allows for measurements of TEER in low resistance monolayer cultures with high precision and time resolution. The results obtained extend previous observations in providing quantitative data on the increase of permeability of HUVECs in response to vasoactive agonists.

  12. Characterization of fracture aperture field heterogeneity by electrical resistance measurement.

    Boschan, A; Ippolito, I; Chertcoff, R; Hulin, J P; Auradou, H


    We use electrical resistance measurements to characterize the aperture field in a rough fracture. This is done by performing displacement experiments using two miscible fluids of different electrical resistivity and monitoring the time variation of the overall fracture resistance. Two fractures have been used: their complementary rough walls are identical but have different relative shear displacements which create "channel" or "barrier" structures in the aperture field, respectively parallel or perpendicular to the mean flow velocity U(→). In the "channel" geometry, the resistance displays an initial linear variation followed by a tail part which reflects the velocity contrast between slow and fast flow channels. In the "barrier" geometry, a change in the slope between two linear zones suggests the existence of domains of different characteristic aperture along the fracture. These variations are well reproduced analytically and numerically using simple flow models. For each geometry, we present then a data inversion procedure that allows one to extract the key features of the heterogeneity from the resistance measurement. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Electrical Resistivity of an Elasmobranch's Ampullary Jelly in Varying Electric and Magnetic Fields

    Brown, Brandon; Hughes, Mary E.


    The ampullae of Lorenzini are believed to function as the electroreceptive organs in elasmobranch fishes. Though the entire excised organs have been the subject of electrical transport measurements, the jelly that fills the ampullae -- composed primarily of glycoproteins with proteins and dissolved salts -- has received less scrutiny. The specific electromagnetic properties of the jelly contribute to electroreception, and we hope to supply useful parameters to modeling efforts via precise electrical characterization. We report preliminary resistivity measurements from ampullary jelly removed, post mortem, from an adult triaenodon obesus (white-tip reef shark). We present data over a broad range of applied electrical currents. We also present data of the resistivity as a function of applied magnetic field strength.

  14. Electrical resistivity of V-Cr-Ti alloys

    Zinkle, S.J.; Gubbi, A.N.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)


    Room temperature electrical resistivity measurements have been performed on vanadium alloys containing 3-6%Cr and 3-6%Ti in order to evaluate the microstructural stability of these alloys. A nonlinear dependence on Cr and Ti concentration was observed, which suggests that either short range ordering or solute precipitation (perhaps in concert with interstitial solute clustering) has occurred in V-6Cr-6Ti.

  15. Development of a Landslide Monitoring System using Electrical Resistivity Tomography

    Hen-Jones, R. M.; Hughes, P. N.; Glendinning, S.; Gunn, D.; Chambers, J.; Stirling, R.


    Current assessments of slope stability rely on the use of point sensors, the results of which are often difficult to interpret, have relatively high associated installation and maintenance costs, and do not provide large-area coverage. A new system is currently under development, based on the use of integrated geophysical - geotechnical sensors to monitor ground water conditions via electrical resistivity tomography. This study presents the results of an in-situ electrical resistivity tomography survey, gathered over a two year investigation period at a full-scale clay test embankment in Northumberland, UK. The 3D resistivity array comprised 288 electrodes, at 0.7m grid spacing, covering an area of approximately 90 m2. The first year of investigation involved baseline data collection, followed by a second year which saw a series of deliberate interventions targeted at weakening the slope, to determine whether corresponding geotechnical property changes would be reflected in resistivity images derived from ERT. These interventions included the manual extension of four tension cracks already present in the slope, and the installation of a sprinkler system, eight months later. Laboratory methods were employed to derive a system of equations for relating resistivity to geotechnical parameters more directly relevant to slope stability, including moisture content, suction and shear strength. These equations were then applied to resistivity data gathered over the baseline and intervention periods, yielding geotechnical images of the subsurface which compared well with in-situ geotechnical point sensors. During the intervention period, no slope movement was recorded, however, tensiometers at 0.5 m and 1.0 m depths showed elevated pore pressures, with positive pressures being recorded at depths less than 0.5 m. Resistivity images were successful in capturing the extension of the tension cracks, and in identifying the development of a potential shear failure plane as water

  16. Low Temperature Electrical Resistivity Studies in Lead Thin Films

    A.W. Manjunath


    Full Text Available Thin lead films of thickness, 100 nm, 150 nm, 200 nm and 250 nm have been deposited using electron beam evaporation technique at room temperature onto glass substrates under high vacuum conditions. Films were investigated for electrical resistivity at low temperatures from 77 K to 300 K. Resistivity variation with temperature indicates transition from metallic to semiconductor behavior. Transition tem-perature increased with increasing film thickness. Temperature coefficient of resistance in the metallic re-gion has been determined for all the four films. Using Arrhenius relation, activation energy for conduction in metallic region has been determined. Mott’s small polaron hopping model has been employed to deter-mine activation energy in the semiconducting region. In a film of 250 nm thick, deviation from Mott’s small polaron hopping model for below 100 K was noted and that has been considered under Mott’s variable range hopping model. The complete understanding of electrical properties of Pb films has been necessitat-ed by the fact that the band gap in CdS decreases when Pb is incorporated into it, which in turn can be used to fabricated large efficient solar cells. It is for the first time that lead films of the present thickness have been investigated for low temperature resistivity.

  17. 3D electrical resistivity inversion using prior spatial shape constraints

    Li Shu-Cai; Nie Li-Chao; Liu Bin; Song Jie; Liu Zheng-Yu; Su Mao-Xin; Xu Lei


    To minimize the number of solutions in 3D resistivity inversion, an inherent problem in inversion, the amount of data considered have to be large and prior constraints need to be applied. Geological and geophysical data regarding the extent of a geological anomaly are important prior information. We propose the use of shape constraints in 3D electrical resistivity inversion. Three weighted orthogonal vectors (a normal and two tangent vectors) were used to control the resistivity differences at the boundaries of the anomaly. The spatial shape of the anomaly and the constraints on the boundaries of the anomaly are thus established. We incorporated the spatial shape constraints in the objective function of the 3D resistivity inversion and constructed the 3D resistivity inversion equation with spatial shape constraints. Subsequently, we used numerical modeling based on prior spatial shape data to constrain the direction vectors and weights of the 3D resistivity inversion. We established a reasonable range between the direction vectors and weights, and verified the feasibility and effectiveness of using spatial shape prior constraints in reducing excessive structures and the number of solutions. We applied the prior spatially shape-constrained inversion method to locate the aquifer at the Guangzhou subway. The spatial shape constraints were taken from ground penetrating radar data. The inversion results for the location and shape of the aquifer agree well with drilling data, and the number of inversion solutions is significantly reduced.

  18. Detecting Damage in Ceramic Matrix Composites Using Electrical Resistance

    Smith, Craig E.; Gyekenyesi, Andrew


    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90 deg fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  19. Detecting Cracks in Ceramic Matrix Composites by Electrical Resistance

    Smith, Craig; Gyekenyesi, Andrew


    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90o fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  20. Anomalous temperature dependence of the electrical resistivity of molten Sb


    Using the d.c. four-probe method, the electrical resistivity of high-purity liquid Sb has been accurately measured as functions of temperature. It is observed that the resistivity of liquid Sb changes abnormally with increasing temperature, which is very different from that of simple liquid metals. Based on the reported structure factor at several temperatures, the results obtained in this work have been discussed and interpreted qualitatively according to Ziman theory. The analysis suggests that the existence of shortrange order structure near the melting point can account for the abnormal phenomenon observed in the resistivity of liquid Sb, in which semimetal-metal transaction takes place in the melting process. At the same time, the progress of the structure change of liquid Sb with temperature has also been pointed out.``

  1. Electrical resistivity tomography investigations on a paleoseismological trenching study

    Berge, Meriç Aziz


    Two-dimensional electrical resistivity tomography (ERT) investigation was performed in a paleoseismological trenching study. Data acquisition strategies such as the selection of electrode configuration and electrode intervals of ERT application were investigated in this paper. The ERT results showed that the Wenner and Wenner-Schlumberger arrays yielded similar results for subsurface characteristics whereas the DD array provided slightly different results. The combined usage of these arrays produced satisfactory images of the subsurface resistivity distribution. In addition, the electrode spacing tests revealed that a suitable interpretation of subsurface geology can be obtained from a 5 m electrode interval. However, a suitable trenching location defined by successful 2D resistivity models was obtained for 1 m electrode spacing. Therefore, the comparison of the trench and ERT results was also possible. The results of trenching and ERT studies substantially support each other.

  2. Connection equation and shaly-sand correction for electrical resistivity

    Lee, Myung W.


    Estimating the amount of conductive and nonconductive constituents in the pore space of sediments by using electrical resistivity logs generally loses accuracy where clays are present in the reservoir. Many different methods and clay models have been proposed to account for the conductivity of clay (termed the shaly-sand correction). In this study, the connectivity equation (CE), which is a new approach to model non-Archie rocks, is used to correct for the clay effect and is compared with results using the Waxman and Smits method. The CE presented here requires no parameters other than an adjustable constant, which can be derived from the resistivity of water-saturated sediments. The new approach was applied to estimate water saturation of laboratory data and to estimate gas hydrate saturations at the Mount Elbert well on the Alaska North Slope. Although not as accurate as the Waxman and Smits method to estimate water saturations for the laboratory measurements, gas hydrate saturations estimated at the Mount Elbert well using the proposed CE are comparable to estimates from the Waxman and Smits method. Considering its simplicity, it has high potential to be used to account for the clay effect on electrical resistivity measurement in other systems.

  3. The study of mudrocks resistivity in Northwestern Peninsula Malaysia using electrical resistivity survey

    Hisham, Hazrul; Muztaza, Nordiana Mohd; Jia, Teoh Ying


    Mudrock is a type of sedimentary rock whose original constituents are clays and muds. Mudrocks are fine grained siliciclastic which include mudstone and claystone depending on the grain size. The colour of mudstone is a function of its minerology content and geochemistry processes. One common sedimentary structure of mudrocks is lamination due to variations in grain size and composition changes. The importance of mudrocks is as a mixture for cement and to produce brick used for building structure. This research emphasizes on the resistivity value of mudrocks; claystone and mudstone which exist in northwestern of Peninsula Malaysia. Mudstone of Kubang Pasu Formation, red mudstone and grey mudstone of Chepor Member and claystone of Semanggol Formation were chose as the study area as each of the mudrock was formed in a different environmental condition. Electrical resistivity survey was conducted on top of the outcrops using Wenner - Schlumberger array with 1.5 m and 1 m electrode spacing with respect to localities. The data was processed using Res2Dinv software to get the inversion model resistivity and the results were imported to Surfer10 software for labelling purposes. The mudstone resistivity value of Kubang Pasu Formation formed by depositional of calm water gives resistivity value from 20 - 120 Ωm. The red mudstone of Chepor Member formed at high oxidation environment gives resistivity value of 15 - 100 Ωm contrast to grey mudstone which formed under low oxidizing condition gives 120 - 500 Ωm resistivity value. The claystone of Semanggol Formation formed from shallow depositional environment gives resistivity value from 400 - 1000 Ωm. As a conclusion, electrical resistivity survey was successfully applied in differentiating the type of mudrocks. Also, mudrocks formed from different depositional environment gives different values of resistivity.

  4. Detecting the Resistivity Distribution of Carbon Fiber Reinforced Concrete by Electrical Resistance Tomography Method

    Xu Dongliang; Li Zhuoqiu; Song Xianhui; Lü Yong


    According to the principle of electrical resistance tomography (ERT), the resistivity distribution of the carbon fiber reinforced concrete (CFRC) in the sensing field can be measured by injecting exciting current and measuring the voltage on the sensor electrode arrays installed on the surface of the object Therefore, measurement of the resistivity distribution of CFRC is divided into first measuring the boundary conditions and then inversely computing the resistivity distribution. To reach this goal, an ERT system was constructed, which is composed of a sensor array unit, a data acquisition unit and an image reconstruction unit. Simulations of static ERT was performed on set-ups with many objects spread in a homogeneous background, and a simulation of dynamic ERT was also done on a rectangular board, the resistivity of which was changed within a small domain of it. Then, the resistivity distribution of a CFRC sample with a circlar hole as the target was detected by the ERT system. Simulation and experimental results show that the reconstructed ERT image reflects the resistivity distribution or the resistivity change of CFRC structure well. Especially, a small change in resistivity can be identified from the reconstructed images in the simulation of dynamic ERT images.

  5. Evaluation of the radiation resistance of electrical insulation materials

    Perrin, Sh.; Schönbacher, H.; Tavlet, M.; Widler, R.


    The qualification of insulating materials for electrical cables is often accomplished according to the IEC 60544 standard of the International Electrotechnical Commission. The mechanical properties of the polymeric insulators are tested prior and after irradiation at relatively high dose rates. To assess the ageing of selected materials under realistic service conditions, usually at lower dose rate, an IEC Working Group has proposed extrapolation methods (IEC 61244-2), one of which is applied here for a cable sheathing material from Huber+Suhner. The method is found to be suitable to compare radiation resistance data of different materials irradiated under different conditions.

  6. Improvement of resistance to hydrogen induced cracking in electric resistance welded pipes fabricated with slit coils

    Hong, Hyun Uk; Lee, Jong Bong; Choi, Ho Jin


    The optimization of electric resistance welding (ERW) conditions was studied to improve the resistance to hydrogen induced cracking (HIC) at the bondline in small diameter API X60 ERW pipes fabricated with slit coils. The results show that HIC is initiated preferentially at the elongated Si, Mn and Al-rich oxide inclusions, normally known as a penetrator on the bondline. However, no evidence was found of any centerline segregation effect. The HIC ratio increases with the fraction of penetrators at the bondline, regardless of the degrees of center segregation. Furthermore, for a satisfactory level of HIC resistance, the fraction of penetrators must be less than 0.03 % and most of the penetrators should be circular-shaped. The design of experimental (DOE) method was used to determine the optimum ERW condition for minimization of the penetrator ratio. Finally, guideline is suggested for the optimum ERW condition for achieving excellent HIC resistance.

  7. Fault mechanism analysis and simulation for continuity resistance test of electrical components in aircraft engine

    Shi, Xudong; Yin, Yaping; Wang, Jialin; Sun, Zhaorong


    A large number of electrical components are used in civil aircraft engines, whose electrical circuits are usually intricate and complicated. Continuity resistance is an important parameter for the operating state of electrical components. Electrical continuity fault has serious impact on the reliability of the aircraft engine. In this paper, mathematical models of electrical components are established, and simulation is made by Simulink to analyze the electrical continuity fault.

  8. Monitoring Damage Accumulation in Ceramic Matrix Composites Using Electrical Resistivity

    Smith, Craig E.; Morscher, Gregory N.; Xia, Zhenhai H.


    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection and accurate life prediction for high-temperature ceramic matrix composites. Woven silicon carbide fiber-reinforced silicon carbide (SiC/SiC) ceramic matrix composites (CMC) possess unique properties such as high thermal conductivity, excellent creep resistance, improved toughness, and good environmental stability (oxidation resistance), making them particularly suitable for hot structure applications. In specific, CMCs could be applied to hot section components of gas turbines [1], aerojet engines [2], thermal protection systems [3], and hot control surfaces [4]. The benefits of implementing these materials include reduced cooling air requirements, lower weight, simpler component design, longer service life, and higher thrust [5]. It has been identified in NASA High Speed Research (HSR) program that the SiC/SiC CMC has the most promise for high temperature, high oxidation applications [6]. One of the critical issues in the successful application of CMCs is on-board or insitu assessment of the damage state and an accurate prediction of the remaining service life of a particular component. This is of great concern, since most CMC components envisioned for aerospace applications will be exposed to harsh environments and play a key role in the vehicle s safety. On-line health monitoring can enable prediction of remaining life; thus resulting in improved safety and reliability of structural components. Monitoring can also allow for appropriate corrections to be made in real time, therefore leading to the prevention of catastrophic failures. Most conventional nondestructive

  9. Using Electrical Simulation Software to Understand Electrical Quantities in Resistive Circuits

    André Schwantes


    Full Text Available This paper describes the development and application of a workshop presented for high school physics teachers, in order to apply the use of electrical simulation software for teaching the basics of resistive circuits. The workshop was developed aiming at the use of active learning strategies and the concepts of David Ausubel’s Meaningful Learning theory. These activities workshops were developed in a practical way, using the electrical simulation software to illustrate a scenario where students are encouraged to engage more actively in their learning. As a result of this workshop, an increase in the importance of the use of new technologies in the classroom was evidenced when used in accordance with the teaching-learning methodologies that promote a more active participation of students.


    GONG Lei; WU Jian-kang


    Poisson-Boltzmann equation for EDL (electric double layer) and NavierStokes equation for liquid flows were numerically solved to investigate resistance effect of electric double layer on liquid flow in microchannel. The dimension analysis indicates that the resistance effect of electric double layer can be estimated by an electric resistance number, which is proportional to the square of the liquid dielectric constant and the solid surface zeta potential, and inverse-proportional to the liquid dynamic viscosity, electric conductivity and the square of the channel width. An "electric current density balancing" (ECDB) condition was proposed to evaluate the flow-induced streaming potential,instead of conventional "electric current balancing" (ECB) condition which may induce spurious local backflow in neighborhood of the solid wall of the microchannel. The numerical results of the flow rate loss ratio and velocity profile are also given to demonstrate the resistance effect of electric double layer in microchannel.

  11. Estimating long-term durability parameters based on electrical resistivity measurements

    Silva, Joel; Jalali, Said; Ferreira, Rui Miguel


    Concrete's electrical resistivity is one of the main parameters controlling the initiation and propagation of reinforcement corrosion. It is common knowledge that concrete electrical resistivity is mainly dependent on the porosity, temperature and the moisture content. This research work studies the possible relationship between concrete electrical resistivity and compressive strength of concrete. It is intended to evaluate the possibility of predicting the strength gain of concrete at a give...

  12. Study 5: certification and green electric power market; Etude 5: certification et marche de l'electricite ''Verte''

    Martin, P.E. [Observ' ER, 75 - Paris (France)


    The term green electric power, characterizes today the electric power development, from the renewable energies. Whether this development is governed by the market, the government intervention is always necessary. The fiscality is a preferential way where this complementarity between policy and market may hold. The ADEME asks for a study which presents the californian market of the green electric power, the netherlands system of green certificates and the extension to the european scale. This report deals with these three scopes after a recall and the clarification of the concepts. (A.L.B.)

  13. Public synthesis of the reference costs study of the electric power production; Synthese publique de l'etude des couts de reference de la production electrique



    Every 3 or 5 years, the DGEC published the reference costs study of the electric power production which evaluates, in a theoretical framework, the total cost of an electrical MWh, from different production ways. These studies bring information for the definition of the energy policy and the elaboration of the investments program. because of the great competition of the market, it was decided not to publish the absolute value of the hypothesis and the results but under indexed form. (A.L.B.)

  14. Site Characterization during Bridge Foundation Construction Using Electrical Resistivity Tomography

    Aleksandra V. Varnavina


    Full Text Available A shallow underground water-filled cavity was encountered in limestone bedrock during the construction of a new column footing for the Gasconade River Bridge over Interstate 44. Five electrical resistivity tomography (ERT profiles and borehole control were acquired in immediate proximity to the existing and the new column footings in order to assess the integrity of the rock beneath the foundation columns and characterize the encountered cavity. Two parallel southwest- northeast trending fracture zones were identified on the acquired ERT profiles and competent rock was differentiated from more extensively fractured rock. The volumetric extent of the void was mapped based on the interpretation of the ERT, borehole and injected grout data. A conceptual model for the development of the water-filled cavity was proposed.

  15. A Prototype System for Time-Lapse Electrical Resistivity Tomographies

    Raffaele Luongo


    Full Text Available A prototype system for time-lapse acquisition of 2D electrical resistivity tomography (ERT and time domain reflectometry (TDR measurements was installed in a test site affected by a landslide in Basilicata region (southern Italy. The aim of the system is to monitor in real-time the rainwater infiltration into the soil and obtain information about the variation of the water content in the first layers of the subsoil and the possible influence of this variation on landslide activity. A rain gauge placed in the test site gives information on the rainfall intensity and frequency and suggests the acquisition time interval. The installed system and the preliminary results are presented in this paper.

  16. Soil Moisture Monitoring using Surface Electrical Resistivity measurements

    Calamita, Giuseppe; Perrone, Angela; Brocca, Luca; Straface, Salvatore


    The relevant role played by the soil moisture (SM) for global and local natural processes results in an explicit interest for its spatial and temporal estimation in the vadose zone coming from different scientific areas - i.e. eco-hydrology, hydrogeology, atmospheric research, soil and plant sciences, etc... A deeper understanding of natural processes requires the collection of data on a higher number of points at increasingly higher spatial scales in order to validate hydrological numerical simulations. In order to take the best advantage of the Electrical Resistivity (ER) data with their non-invasive and cost-effective properties, sequential Gaussian geostatistical simulations (sGs) can be applied to monitor the SM distribution into the soil by means of a few SM measurements and a densely regular ER grid of monitoring. With this aim, co-located SM measurements using mobile TDR probes (MiniTrase), and ER measurements, obtained by using a four-electrode device coupled with a geo-resistivimeter (Syscal Junior), were collected during two surveys carried out on a 200 × 60 m2 area. Two time surveys were carried out during which Data were collected at a depth of around 20 cm for more than 800 points adopting a regular grid sampling scheme with steps (5 m) varying according to logistic and soil compaction constrains. The results of this study are robust due to the high number of measurements available for either variables which strengthen the confidence in the covariance function estimated. Moreover, the findings obtained using sGs show that it is possible to estimate soil moisture variations in the pedological zone by means of time-lapse electrical resistivity and a few SM measurements.

  17. Electric potential and apparent resistivity in rocks containing non-uniformly distributed cracks


    In this paper, the formula of electric field distribution and ground apparent resistivity of high resistance rock medi-um containing low resistance crack are deduced and simulated. The result shows that interstitial parameters, such as buried depth, scale, strike, and real resistivity, etc, have influence on observation and computing result of apparent resistivity. This study provided a useful foundation for earthquake prediction using apparent resistivity method.

  18. Applications of electrical resistance tomography to subsurface environmental restoration

    Ramirez, A.L. [Lawrence Livermore National Lab., CA (United States); Daily, W.D.


    We are developing a new imaging technique, Electrical Resistance Tomography (ERT), to map subsurface liquids as flow occurs during natural or clean-up processes and to map geologic structure. Natural processes (such as surface water infiltrating the vadose zone) and man-induced processes (such as tank leaks and clean-up processes such as steam injection), can create changes in a soil`s electrical properties that are readily measured. We have conducted laboratory and a variety of field experiments to investigate the capabilities and limitations of ERT for imaging underground structures and processes. In the last four years we have used ERT to successfully monitor several field processes including: a subsurface steam injection process (for VOC removal), an air injection process (below the water table) for VOC removal, water infiltration through the vadose zone, radio-frequency heating, ohmic heating, and tank and pond leaks. The information derived from ERT can be used by remediation projects to: detect and locate leaks, determine the effectiveness of clean-up processes, select appropriate clean-up alternatives, and to verify the installation and performance of subsurface barriers.

  19. Infiltration front monitoring using 3D Electrical Resistivity Tomography

    Oxarango, Laurent; Audebert, Marine; Guyard, Helene; Clement, Remi


    The electrical resistivity tomography (ERT) geophysical method is commonly used to identify the spatial distribution of electrical resisitivity in the soil at the field scale. Recent progress in commercial acquisition systems allows repeating fast acquisitions (10 min) in order to monitor a 3D dynamic phenomenon. Since the ERT method is sensitive to moisture content variations, it can thus be used to delineate the infiltration shape during water infiltration. In heterogeneous conditions, the 3D infiltration shape is a crucial information because it could differ significantly from the homogeneous behavior. In a first step, the ERT method is validated at small scale ( 10m). Two examples of leachate injection monitoring in municipal solid waste landfills are used to put forward benefits and limitations of the ERT-MICS method. Effective infiltration porosities in a range between 3% and 8% support the assumption of a flow in heterogeneous media. Audebert, M., R. Clément, N. Touze-Foltz, T. Günther, S. Moreau, and C. Duquennoi (2014), Time-lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS), Journal of Applied Geophysics, 111, 320-333. Keywords: ERT, infiltration front, field survey

  20. An experimental study of electrical and dielectric properties of consolidated clayey materials; Etude experimentale des proprietes electriques et dielectriques des materiaux argileux consolides

    Comparon, L


    This study is devoted to the electrical and dielectric properties of consolidated clays. A better understanding of the conduction and polarization phenomena in clays is necessary to better interpret in situ measurements in terms of water saturation and texture. An experimental study was carried out on synthetic clay samples (kaolinite and smectite) compacted with various water contents, porosities and mineralogical compositions, on a large frequency range, using three laboratory setups. The electrical properties of natural argillites (from ANDRA) were then investigated. We found that the response of the synthetic samples is mainly controlled by water content on the whole frequency range; two polarization phenomena were observed, which were related to the Maxwell-Wagner polarization and the electrical double layer polarization around the clay particles. The electrical response of argillites is more complex; it is controlled by water content but also by the microstructure of the rock. In these rocks, the electrical and dielectric anisotropies are high; anisotropy was also measured for the synthetic clays. The existing models explain the high frequency limit of the dielectric permittivity of the clayey materials, but the low frequency part of the spectra ({<=}1 MHz) needs theoretical developments. (author)

  1. Contribution of 3-D electrical resistivity tomography for landmines detection

    M. Metwaly


    Full Text Available Landmines are a type of inexpensive weapons widely used in the pre-conflicted areas in many countries worldwide. The two main types are the metallic and non-metallic (mostly plastic landmines. They are most commonly investigated by magnetic, ground penetrating radar (GPR, and metal detector (MD techniques. These geophysical techniques however have significant limitations in resolving the non-metallic landmines and wherever the host materials are conductive. In this work, the 3-D electric resistivity tomography (ERT technique is evaluated as an alternative and/or confirmation detection system for both landmine types, which are buried in different soil conditions and at different depths. This can be achieved using the capacitive resistivity imaging system, which does not need direct contact with the ground surface. Synthetic models for each case have been introduced using metallic and non-metallic bodies buried in wet and dry environments. The inversion results using the L1 norm least-squares optimization method tend to produce robust blocky models of the landmine body. The dipole axial and the dipole equatorial arrays tend to have the most favorable geometry by applying dynamic capacitive electrode and they show significant signal strength for data sets with up to 5% noise. Increasing the burial depth relative to the electrode spacing as well as the noise percentage in the resistivity data is crucial in resolving the landmines at different environments. The landmine with dimension and burial depth of one electrode separation unit is over estimated while the spatial resolutions decrease as the burial depth and noise percentage increase.

  2. Contribution of 3-D electrical resistivity tomography for landmines detection

    Metwaly, M.; El-Qady, G.; Matsushima, J.; Szalai, S.; Al-Arifi, N. S. N.; Taha, A.


    Landmines are a type of inexpensive weapons widely used in the pre-conflicted areas in many countries worldwide. The two main types are the metallic and non-metallic (mostly plastic) landmines. They are most commonly investigated by magnetic, ground penetrating radar (GPR), and metal detector (MD) techniques. These geophysical techniques however have significant limitations in resolving the non-metallic landmines and wherever the host materials are conductive. In this work, the 3-D electric resistivity tomography (ERT) technique is evaluated as an alternative and/or confirmation detection system for both landmine types, which are buried in different soil conditions and at different depths. This can be achieved using the capacitive resistivity imaging system, which does not need direct contact with the ground surface. Synthetic models for each case have been introduced using metallic and non-metallic bodies buried in wet and dry environments. The inversion results using the L1 norm least-squares optimization method tend to produce robust blocky models of the landmine body. The dipole axial and the dipole equatorial arrays tend to have the most favorable geometry by applying dynamic capacitive electrode and they show significant signal strength for data sets with up to 5% noise. Increasing the burial depth relative to the electrode spacing as well as the noise percentage in the resistivity data is crucial in resolving the landmines at different environments. The landmine with dimension and burial depth of one electrode separation unit is over estimated while the spatial resolutions decrease as the burial depth and noise percentage increase.

  3. Hydro electric scheme on the Forestay river. Communes of Chexbres and Rivaz. Feasibility study; Turbinage du Forestay. Communes de Chexbres et Rivaz. Etude d'avant-projet



    This illustrated final report for the Swiss Federal Office of Energy (SFOE) is a feasibility study of the retrofitting of the small hydro electric scheme located in Rivaz, Switzerland on the shore of the lake of Geneva. Water of the Forestay river, which crosses a steep wine region, is used in a 89 kW Pelton turbine with a water head of 63 m and a maximum flow rate of 180 litre/s, producing about 350,000 kWh/year for now more than 50 years. After retrofitting the maximum electric power produced should be 707 kW, generating 2,500,000 kWh/y by using a water head of 184 m and a maximum flow rate of 500 litre/s. Part of the new equipment would be mounted underground in order to respect the aesthetics of the beautiful site. Electricity production cost is estimated to be 0.109 CHF/kWh.

  4. Retrofitting of the small hydro electric scheme 'Moulin de Bavois' - Feasibility study; Rehabilitation du Moulin de Bavois. Etude d'avant-projet



    This illustrated final report for the Swiss Federal Office of Energy (SFOE) is a feasibility study of the retrofitting of the small hydro electric scheme 'Moulin de Bavois' located in Bavois on the Talent river, Switzerland. The existing scheme uses a 12 m water fall and its power amounts to about 10 kW. After retrofitting, based on a future new water-use concession, the maximum electric power produced should be 172 kW, generating 531 MWh/y, 65% of which in the wintertime. New weir and penstock are foreseen as is an axial Kaplan turbine and a reliable water cleaning device. The Talent river flows in the woods. Electricity production cost is estimated to be 0.214 CHF/kWh.

  5. Estimation of tree root distribution using electrical resistivity tomography

    Schmaltz, Elmar; Uhlemann, Sebastian


    Trees influence soil-mantled slopes mechanically by anchoring in the soil with coarse roots. Forest-stands play an important role in mechanical reinforcement to reduce the susceptibility to slope failures. However, the effect of stabilisation of roots is connected with the distribution of roots in the ground. The architecture and distribution of tree roots is diverse and strongly dependent on species, plant age, stand density, relief, nutrient supply as well as climatic and pedologic conditions. Particularly trees growing on inclined slopes show shape-shifting root systems. Geophysical techniques are commonly used to non-invasively study hydrological and geomorphological subsurface properties, by imaging contrasting physical properties of the ground. This also poses the challenge for geophysical imaging of root systems, as properties, such as electrical resistivity, of dry and wet roots fall within the range of soils. The objective of this study is whether electrical resistivity tomography (ERT) allows a reliable reproduction of root systems of alone-standing trees on diverse inclined slopes. In this regard, we set the focus on the branching of secondary roots of two common walnut trees (Juglans regia L.) that were not disturbed in the adjacencies and thus expected to develop their root systems unhindered. Walnuts show a taproot-cordate root system with a strong tap-root in juvenile age and a rising cordate rooting with increasing age. Hence, mature walnuts can exhibit a root system that appears to be deformed or shifted respectively when growing at hillslope locations. We employed 3D ERT centred on the tree stem, comprising dipole-dipole measurements on a 12-by-41 electrode grid with 0.5 m and 1.0m electrode spacing in x- and y-direction respectively. Data were inverted using a 3D smoothness constrained non-linear least-squares algorithm. First results show that the general root distribution can be estimated from the resistivity models and that shape

  6. Towards a Global Permafrost Electrical Resistivity Survey (GPERS) database

    Lewkowicz, Antoni G.; Douglas, Thomas; Hauck, Christian


    Hundreds, and perhaps thousands, of Electrical Resistivity Tomography (ERT) surveys have been undertaken over the past two decades in permafrost areas in North America, Europe, and Asia. Two main types of ERT configurations have been conducted: galvanic surveys using metallic rods as conductors and capacitive-coupled surveys using towed cable arrays. ERT surveys have been carried out in regions with mountain permafrost, lowland permafrost, and coastal saline permafrost, and in undisturbed, naturally-disturbed (e.g. fire-affected), and anthropogenically-affected sites (e.g. around buildings and infrastructure). Some surveys are associated with local validation of frozen ground conditions, through borehole temperatures, frost probing or creep phenomena. Others are in locations without boreholes or with clast-rich or bedrock active layers which preclude this direct confirmation. Most surveys have been carried out individually on particular dates but there are increasing numbers of repeated ERT measurements being made to detect change, either at intervals using a fixed array of electrodes, or at high frequency with a fixed and automated measurement apparatus. Taken as a group, ERT profiles represent an untapped knowledge base relating to permafrost presence, absence, or partial presence (i.e. discontinuous permafrost), and in some cases to the thickness of permafrost and ice content. When combined with borehole information, ERT measurements can identify massive ice features and provides information on soil stratigraphy. The Global Permafrost Electrical Resistivity Survey (GPERS) database is planned as a freely available on-line repository of data from two-dimensional electrical resistivity surveys undertaken in permafrost regions. Its development is supported by the Permafrost Carbon Network and an application for an International Permafrost Association (IPA) Action Group is also underway. When the future GPERS records are compared with the GTN-P database it will be

  7. Pressure and temperature induced electrical resistance change in nano-carbon/epoxy composites

    Shen, J. T.; Buschhorn, S. T.; De Hosson, J. Th. M.; Schulte, K.; Fiedler, B.


    In this study, we investigate the changes of electrical resistance of the carbon black (CB) and carbon nanotube (CNT) filled epoxy composites upon compression, swelling and temperature variation. For all samples we observe a decrease of electrical resistance under compression, while an increase of

  8. Indications of vigor loss after fire in Caribbean pine (Pinus caribaea) from electrical resistance measurements

    T.E. Paysen; A.L. Koonce; E. Taylor; M.O. Rodriquez


    In May 1993, electrical resistance measurements were performed on trees in burned and unburned stands of Caribbean pine (Pinus caribaea Mor.) in north-eastern Nicaragua to determine whether tree vigor was affected by fire. An Osmose model OZ-67 Shigometer with digital readout was used to collect the sample electrical resistance data. Computer-...

  9. Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder

    Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong


    The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.

  10. Modelling the influence of steel fibres on the electrical resistivity of cementitious composites

    Solgaard, Anders Ole Stubbe; Michel, Alexander; Stang, Henrik


    work concerns the electrical resistivity of cementitious composites and some of the parameters influencing it in order to get a more thorough understanding of the factors governing the overall resistivity. The basis of the present study is an experimental investigation of the electrical resistivity...... the overall resistivity of the material and thereby the corrosion rate of the embedded reinforcement. To the knowledge of the authors, only preliminary studies have been made on the influence of corrosion of the reinforcement bars from the addition of the electrical conductive steel fibres. Thus the present......One of the governing factors on the corrosion of embedded reinforcement is the electrical resistivity of the concrete. The combination of steel fibres and conventional reinforcement bars has been used in a number of structures. However, the addition of electrical con-ductive fibres might influence...

  11. Effect of Metal Oxide on Electrical Resistivity of Conductive Wood Charcoal


    To analyze the effect of metal oxide on electrical resistivity of conductive wood charcoal,wood powder of Masson pine was mixed with ferric oxide (Fe_2O_3) and nickel oxide (NiO), respectively,and then the mixed powders were carbonized at high temperature in a laboratory-scale tube furnace in a nitrogen atmosphere. DCY-3 resistivity tester was used to measure electrical resistivity of conductive wood charcoal. When carbonization temperature was 1200 ℃, the electrical resistivity of controlsamples, Fe_2O_3 (...

  12. Electrical resistivity characteristics of diesel oil-contaminated kaolin clay and a resistivity-based detection method.

    Liu, Zhibin; Liu, Songyu; Cai, Yi; Fang, Wei


    As the dielectric constant and conductivity of petroleum products are different from those of the pore water in soil, the electrical resistivity characteristics of oil-contaminated soil will be changed by the corresponding oil type and content. The contaminated soil specimens were manually prepared by static compaction method in the laboratory with commercial kaolin clay and diesel oil. The water content and dry density of the first group of soil specimens were controlled at 10 % and 1.58 g/cm(3). Corresponding electrical resistivities of the contaminated specimens were measured at the curing periods of 7, 14, and 28 and 90, 120, and 210 days on a modified oedometer cell with an LCR meter. Then, the electrical resistivity characteristics of diesel oil-contaminated kaolin clay were discussed. In order to realize a resistivity-based oil detection method, the other group of oil-contaminated kaolin clay specimens was also made and tested, but the initial water content, oil content, and dry density were controlled at 0~18 %, 0~18 %, 1.30~1.95 g/cm(3), respectively. Based on the test data, a resistivity-based artificial neural network (ANN) was developed. It was found that the electrical resistivity of kaolin clay decreased with the increase of oil content. Moreover, there was a good nonlinear relationship between electrical resistivity and corresponding oil content when the water content and dry density were kept constant. The decreasing velocity of the electrical resistivity of oil-contaminated kaolin clay was higher before the oil content of 12 % than after 12 %, which indicated a transition of the soil from pore water-controlled into oil-controlled electrical resistivity characteristics. Through microstructural analysis, the decrease of electrical resistivity could be explained by the increase of saturation degree together with the collapse of the electrical double layer. Environmental scanning electron microscopy (ESEM) photos indicated that the diesel oil

  13. Electric-field-modulated nonvolatile resistance switching in VO₂/PMN-PT(111) heterostructures.

    Zhi, Bowen; Gao, Guanyin; Xu, Haoran; Chen, Feng; Tan, Xuelian; Chen, Pingfan; Wang, Lingfei; Wu, Wenbin


    The electric-field-modulated resistance switching in VO2 thin films grown on piezoelectric (111)-0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 (PMN-PT) substrates has been investigated. Large relative change in resistance (10.7%) was observed in VO2/PMN-PT(111) hererostructures at room temperature. For a substrate with a given polarization direction, stable resistive states of VO2 films can be realized even when the applied electric fields are removed from the heterostructures. By sweeping electric fields across the heterostructure appropriately, multiple resistive states can be achieved. These stable resistive states result from the different stable remnant strain states of substrate, which is related to the rearrangements of ferroelectric domain structures in PMN-PT(111) substrate. The resistance switching tuned by electric field in our work may have potential applications for novel electronic devices.

  14. Measuring turbulence in a flotation cell using electrical resistance tomography

    Meng, Jun; Xie, Weiguo; Runge, Kym; Bradshaw, Dee


    Measuring turbulence in an industrial flotation environment has long been problematic due to the opaque, aggressive, and abrasive three-phase environment in a flotation cell. One of the promising measurement techniques is electrical resistance tomography (ERT). By measuring the conductivity distribution across a measurement area, ERT has been adopted by many researchers to monitor and investigate many processes involving multiphase flows. In the research outlined in this paper, a compact ERT probe was built and then used to measure the conductivity distribution within a 60 l flotation cell operated with water and air. Two approaches were then developed to process the ERT data and estimate turbulence-related parameters. One is a conductivity variance method and the other is based on the Green-Kubo relations. Both rely on and use the fluctuation in the ERT measurement caused by bubbles moving through the measurement area changing the density of the fluid. The results from both approaches were validated by comparing the results produced by the ERT probe in a 60l flotation cell operated at different air rates and impeller speeds to that measured using an alternative turbulence measurement device. The second approach is considered superior to the first as the first requires the development of auxiliary information which would not usually be known for a new system.

  15. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona

    Adams, E.A.; Monroe, S.A.; Springer, A.E.; Blasch, K.W.; Bills, D.J.


    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration.

  16. Less Invasive Corneal Transepithelial Electrical Resistance Measurement Method.

    Uematsu, Masafumi; Mohamed, Yasser Helmy; Onizuka, Naoko; Ueki, Ryotaro; Inoue, Daisuke; Fujikawa, Azusa; Sasaki, Hitoshi; Kitaoka, Takashi


    To evaluate acute corneal permeability changes after instillation of benzalkonium chloride (BAC) using a newly developed in vivo less invasive corneal transepithelial electrical resistance (TER) measurement method in animals and humans. We previously developed an in vivo method for measuring corneal TER using intraocular electrodes in animals. This method can be used to precisely measure the decline of the corneal barrier function after instillation of BAC. To lessen the invasiveness of that procedure, we further refined the method for measuring the corneal TER by developing electrodes that could be placed on the surface of the cornea and in the conjunctival sac instead of inserting them into the anterior chamber. Corneal TER changes before and after exposure to 0.02% BAC were determined in this study using the new device in both rabbits and humans. There was a significant decrease in the corneal TER after exposure of the cornea to 0.02% BAC solution in both rabbits and humans (Pmeasurement method enables us for the first time to measure TER of the human cornea, allowing safe and reliable investigation of the direct effect of different eye drop treatments on the corneal epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. An ICPSO-RBFNN nonlinear inversion for electrical resistivity imaging

    江沸菠; 戴前伟; 董莉


    To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network (RBFNN) based on information criterion (IC) and particle swarm optimization (PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE’s information criterion (AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks (BPNNs) and traditional least square(LS) inversion.

  18. Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method

    Rouget, G.; Majidi, B.; Picard, D.; Gauvin, G.; Ziegler, D.; Mashreghi, J.; Alamdari, H.


    Carbon anodes used in Hall-Héroult electrolysis cells are involved in both electrical and chemical processes of the cell. Electrical resistivity of anodes depends on electrical properties of its constituents, of which carbon coke aggregates are the most prevalent. Electrical resistivity of coke aggregates is usually characterized according to the ISO 10143 standardized test method, which consists of measuring the voltage drop in the bed of particles between two electrically conducing plungers through which the current is also applied. Estimation of the electrical resistivity of coke particles from the resistivity of particle bed is a challenging task and needs consideration of the contribution of the interparticle void fraction and the particle/particle contact resistances. In this work, the bed resistivity was normalized by subtracting the interparticle void fraction. Then, the contact size was obtained from discrete element method simulation and the contact resistance was calculated using Holm's theory. Finally, the resistivity of the coke particles was obtained from the bed resistivity.

  19. Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method

    Rouget, G.; Majidi, B.; Picard, D.; Gauvin, G.; Ziegler, D.; Mashreghi, J.; Alamdari, H.


    Carbon anodes used in Hall-Héroult electrolysis cells are involved in both electrical and chemical processes of the cell. Electrical resistivity of anodes depends on electrical properties of its constituents, of which carbon coke aggregates are the most prevalent. Electrical resistivity of coke aggregates is usually characterized according to the ISO 10143 standardized test method, which consists of measuring the voltage drop in the bed of particles between two electrically conducing plungers through which the current is also applied. Estimation of the electrical resistivity of coke particles from the resistivity of particle bed is a challenging task and needs consideration of the contribution of the interparticle void fraction and the particle/particle contact resistances. In this work, the bed resistivity was normalized by subtracting the interparticle void fraction. Then, the contact size was obtained from discrete element method simulation and the contact resistance was calculated using Holm's theory. Finally, the resistivity of the coke particles was obtained from the bed resistivity.

  20. Recovery of electrical resistance in copper films on polyethylene terephthalate subjected to a tensile strain

    Glushko, O. [Department Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, 8700 Leoben (Austria); Marx, V.M.; Kirchlechner, C. [Department Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, 8700 Leoben (Austria); Max-Plank-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf (Germany); Zizak, I. [Helmholtz-Zentrum Berlin for Materials and Energy, Albert-Einstein-Str. 15, D-12489 Berlin (Germany); Cordill, M.J. [Department Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, 8700 Leoben (Austria); Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, 8700 Leoben (Austria)


    Substantial recovery (decrease) of electrical resistance during and after unloading is demonstrated for copper films on polyethylene terephthalate substrates subjected to a tensile strain with different peak values. Particularly, the films strained to 5% exhibit full resistance recovery after unloading despite clearly visible plastic deformation of the film. The recovery of electrical resistance in connection with the mechanical behavior of film/substrate couple is discussed with the help of in situ scanning electron microscopy and X-ray diffraction analysis. - Highlights: • Tensile tests on 200 nm Cu films on PET substrate are performed. • Electrical resistance is recorded in-situ during loading and unloading. • Significant recovery (decrease) of resistance is observed during and after unloading. • Films strained to 5% demonstrate full resistance recovery. • Viscoelastic relaxation of PET is responsible for recovery of Cu film resistance.

  1. Method for the formation of cylindrical current and its application to evaluate electrical resistivity

    Li, T.-C.; Chang, C.-S.; Liang, W.-L.; Tsai, W.-F.; Ai, C.-F.; Lin, J.-F.


    A cylindrical current method is developed to obtain a stable and precise electrical resistivity of a specimen with or without a coating film. The electrical resistivity of a standard silicon wafer doped with boron at a concentration can be measured using the proposed method if the experimental results of electrical voltage varying with the distance from the center line of the cylindrical current are available. A comparison of the electrical resistivity obtained using the present method and the theoretical reference value indicates that the proposed method produces reliable and precise measurements. Using four test samples, the experimental results of electrical resistivity measured by the present method are shown to be reproducible and more precise than those measured by the four-terminal sensing method and the van der Pauw method. The electrical voltage and current obtained at various distances from the center line of the cylindrical current are almost independent of the distance and the direction of measurements. The effect of specimen's crystallinity appears to be the governing factor of electrical resistivity. Electrical resistivity decreases with increasing crystallinity generally.

  2. Vertical electrical resistivity sounding (VERS) of tundra and forest tundra soils of Yamal region

    Alekseev, Ivan; Kostecki, Jakub; Abakumov, Evgeny


    The aim of the study was to determine electrical resistivity peculiarities of tundra and forest tundra soils and soil-permafrost layers of the Yamal region. Measurements of electrical resistivity of soil and permafrost strata were performed with a portable device LandMapper (to a depth of 300-500 cm). These measurements allow determination of the values of apparent electrical resistivity of soils and permafrost at different depths and determination of the depths of the permafrost table on each key plot. It was found that there are several trends in vertical distribution of apparent electrical resistivity values. The first trend is a monotonous increase in electrical resistivity values to the depth. It may be explained by the increasing electrical resistivity within the soil depth in relation to the increase in permafrost density. The second trend is a sharp decrease replaced by a gradual increase in electrical resistivity values caused by changing of non-frozen friable debris to frozen massive crystalline rock. These differences were related to the type of landscape: flat lowlands composed of friable grounds underlain by permafrost or friable grounds with permafrost underlain by a rock crystalline layer.

  3. Measurement and modelling of moisture-electrical resistivity relationship of fine-grained unsaturated soils and electrical anisotropy

    Merritt, A. J.; Chambers, J. E.; Wilkinson, P. B.; West, L. J.; Murphy, W.; Gunn, D.; Uhlemann, S.


    A methodology for developing resistivity-moisture content relationships of materials associated with a clayey landslide is presented. Key elements of the methodology include sample selection and preparation, laboratory measurement of resistivity with changing moisture content, and the derivation of models describing the relationship between resistivity and moisture content. Laboratory resistivity measurements show that the techniques utilised (samples and square array) have considerable potential as a means of electropetrophysical calibration of engineering soils and weak rock. Experimental electrical resistivity results show a hierarchy of values dependent on sample lithology, with silty clay exhibiting the lowest resistivities, followed by siltstones and sands, which return the highest resistivities. In addition, finer grained samples show a greater degree of anisotropy between measurement orientations than coarser grained samples. However, suitability of results in light of issues such as sample cracking and electrical conduction must be identified and accounted for if the results are to be accurately up-scaled to inverted model resistivity results. The existence of directional anisotropy makes model calibration curve selection more difficult due to variability in the range of measured laboratory resistances. The use of larger measurement array size means that experimental data will be more representative of bulk lithological properties. In addition, use of electrodes with a relatively high surface area (wide diameter) help maintain low contact resistances and repeat measurement error, relative to narrow electrodes. Variation exists between the fit of experimental data and petrophysical models. Model fit is best for clay-dominated samples but fits less well for sand-dominated samples. Waxman-Smits equation is appropriately applied in this investigation as all samples have considerable clay mineral content, as is shown in non-negligible CEC results. The

  4. Early Age Compressive Strength of Pastes by Electrical Resistivity Method and Maturity Method

    XIAO Lianzhen; WEI Xiaosheng


    The compressive strength development of Portland cement pastes was investigated by the electrical resistivity method and the maturity method.The experiments were carried out on the cement pastes with different water-cement ratios at different curing temperatures.The results show that the application of the maturity method has limitation to obtain the strength.It is found that both of the compressive strength and the electrical resistivity follow hyperbolic trend for all the mixes.The hyperbolic equation of each mix is obtained to estimate the ultimate resistivity value which can probably be reached.The relationship between electrical resistivity and compressive strength of the cement pastes is established based on the test results and interpreted by the empirical Archie equation and a strength-porosity equation.The relationship between the electrical resistivity after temperature correction and the compressive strength was linear and independent of curing temperature and water-cement ratio.

  5. A one-dimensional model of solid-earth electrical resistivity beneath Florida

    Blum, Cletus; Love, Jeffrey J.; Pedrie, Kolby; Bedrosian, Paul A.; Rigler, E. Joshua


    An estimated one-dimensional layered model of electrical resistivity beneath Florida was developed from published geological and geophysical information. The resistivity of each layer is represented by plausible upper and lower bounds as well as a geometric mean resistivity. Corresponding impedance transfer functions, Schmucker-Weidelt transfer functions, apparent resistivity, and phase responses are calculated for inducing geomagnetic frequencies ranging from 10−5 to 100 hertz. The resulting one-dimensional model and response functions can be used to make general estimates of time-varying electric fields associated with geomagnetic storms such as might represent induction hazards for electric-power grid operation. The plausible upper- and lower-bound resistivity structures show the uncertainty, giving a wide range of plausible time-varying electric fields.

  6. The influence of changes in water content on the electrical resistivity of a natural unsaturated loess

    Munoz-Castelblanco, José; Delage, Pierre; Cui, Yu Jun


    Non-destructive methods of measuring water content in soils have been extensively developed in the last decades, especially in soil science. Among these methods, the measurements based on the electrical resistivity are simple and reliable thanks to the clear relationship between the water content and the electrical resistivity of soils. In this work, a new electrical resistivity probe was developed to monitor the change in local water content in the triaxial apparatus. The probe is composed of two-pair of electrodes, and an electrical current is induced through the soil at the vicinity of the contact between the probe and the specimen. Some experimental data on the changes in resistivity with the degree of saturation were obtained in specimens of a natural unsaturated loess from Northern France. Two theoretical models of resistivity were also used to analyze the obtained data. Results are finally discussed with respect to the loess's water retention properties.

  7. Electrical resistivity and piezoresistivity of Ni-CNT filled epoxy-based composites

    Jiang, Jinbao; Xiao, Huigang; Li, Hui


    This paper investigates properties about electrical resistivity and piezoresistivity of multi-wall carbon nanotubes (MWCNTs)-filled epoxy-based composite and its further use for strain sensing. The MWCNTs dispersed epoxy resin, using MWCNTs in the amount of 1.5~3.0 vol.%, was first prepared by combined high-speed stirring and sonication methods. Then, the MWCNTs dispersed epoxy resin was cast into an aluminum mold to form specimens measuring 10×10×36 mm. After curing, DC electrical resistance measurements were performed along the longitudinal axis using the four-probe method, in which copper nets served as electrical contacts. The percolation threshold zone of resistivity was got as MWCNTs in the amount of 2.00-2.50 vol.%. Further compressive testing of these specimens was conducted with four-probe method for resistance measurements at the same time. Testing results show that the electrical resistivity of the composites changes with the strain's development, namely piezoresistivity. While for practical strain sensing use, signals of electric resistance and current in the acquisition circuits were both studied. Results show that the signal of current, compared with that of resistance, had better linear relationship with the compressive strain, better stability and longer effective section to reflect the whole deformation process of the specimens under pressure. Further works about the effects of low magnetic field on the electrical resistivity and piezoresistivity of Ni-CNTs filled epoxy-based composites were presented briefly at the end of the paper.

  8. Resistive memory effects in BiFeO3 single crystals controlled by transverse electric fields

    Kawachi, S.; Kuroe, H.; Ito, T.; Miyake, A.; Tokunaga, M.


    The effects of electric fields perpendicular to the c-axis of the trigonal cell in single crystals of BiFeO3 are investigated through magnetization and resistance measurements. Magnetization and resistance exhibit hysteretic changes under applied electric fields, which can be ascribed to the reorientation of the magnetoelectric domains. Samples are repetitively switched between high- and low-resistance states by changing the polarity of the applied electric fields over 20 000 cycles at room temperature. These results demonstrate the potential of BiFeO3 for use in non-volatile memory devices.

  9. Synthesis and high-pressure electrical resistivity studies of Ti{sub 3}Al

    Vennila, R. Selva [Department of Physics, Anna University, Chennai 600025 (India)]. E-mail:; Porchelvi, E. Elamurugu [Department of Physics, Anna University, Chennai 600025 (India); Joy, K.M. Freny [Department of Physics, Anna University, Chennai 600025 (India); Arun, T.K. Jaya [Department of Physics, Anna University, Chennai 600025 (India); Jaya, N. Victor [Department of Physics, Anna University, Chennai 600025 (India)


    Titanium aluminide (Ti{sub 3}Al) has been synthesized by a powder metallurgical method. X-ray diffraction studies show the formation of a single phase with hexagonal structure. Electrical resistivity studies were carried out by a four-probe technique both at high pressure and high temperature using a Bridgman Opposed Anvil High Pressure Device (OAHPD). The sample was studied up to a pressure and temperature of 10 GPa and 250 deg. C, respectively. The electrical resistivity is found to decrease with increasing pressure. The temperature effect causes an upward shift in the electrical resistivity in the range of pressure considered.

  10. Direct-current vertical electrical-resistivity soundings in the Lower Peninsula of Michigan

    Westjohn, D.B.; Carter, P.J.


    Ninety-three direct-current vertical electrical-resistivity soundings were conducted in the Lower Peninsula of Michigan from June through October 1987. These soundings were made to assist in mapping the depth to brine in areas where borehole resistivity logs and water-quality data are sparse or lacking. The Schlumberger array for placement of current and potential electrodes was used for each sounding. Vertical electrical-resistivity sounding field data, shifted and smoothed sounding data, and electric layers calculated using inverse modeling techniques are presented. Also included is a summary of the near-surface conditions and depths to conductors and resistors for each sounding location.

  11. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    Carter, J David [Bolingbrook, IL; Mawdsley, Jennifer R [Woodridge, IL; Niyogi, Suhas [Woodridge, IL; Wang, Xiaoping [Naperville, IL; Cruse, Terry [Lisle, IL; Santos, Lilia [Lombard, IL


    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  12. Evaluation on electrical resistivity of silicon materials after electron beam melting

    Hafiz Muhammad Noor Ul Huda Khan Asghar; Shuang Shi; Dachuan Jiang; Yi Tan


    This research deals with the study of electron beam melting (EBM) methodology utilized in melting silicon material and subsequently discusses on the effect of oxygen level on electrical resistivity change after EBM process. The oxygen content was reduced from 6.177 to less than 0.0517 ppmw when refining time exceeded 10 min with removal efficiency of more than 99.08%. The average value of electrical resistivity of silicon before EBM processing was recorded to be 2.25 cm but with the increase in melting time that was applied through EBM, the electrical resistivity was recorded to go high in the range of 4–13 cm for different regions. The electrical resistivity values were greater in the top and the bottom regions, whereas lowest in the central region at all conditions of melting time. It is the result of the evaporation of oxygen during melting process and the segregation of metal impurities during solidification.

  13. Pressure Induced Polymorphic Phase Transition of Natural Metamorphic Kalsilite; Electrical Resistivity and Infrared Spectroscopic Investigations

    G. Parthasarathy


    Full Text Available We report here pressure dependence of the electrical resistivity of natural kalsilite (K0.998Na0.002Al0.998Fe0.002SiO4 from a granulite facies terrain in southern India. The electrical resistivity of kalsilite was measured with four probe technique up to 7.5 GPa at room temperature. The electrical resistivity decreases continuously with the increase of pressure up to 3.7 GPa, where there is a discontinuous drop in the electrical resistivity by 14%–16% indicating a first order transition. Further increase of pressure does not induce any phase transition up to 7.5 GPa at room temperature. Fourier transform infrared (FTIR spectroscopy of the kalsilite sample at various pressures indicates that the observed transition is reversible in nature.

  14. Using DC electrical resistivity tomography to quantify preferential flow in fractured rock environments

    May, F


    Full Text Available . This investigation aims to identify preferential flow paths in fractured rock environments. Time-lapse Electrical Resistivity Tomography (TLERT, Lund Imaging System), is regarded as a suitable method for identifying preferential water flow....

  15. Electrical Resistance and Microstructure of Latex Modified Carbon Fiber Reinforced Cement Composites

    WEI Jian; CHENG Feng; YUAN Hudie


    The electrical resistance,flexural strength,and microstructure of carbon fiber reinforced cement composites (CFRC) were improved greatly by adding water-redispersible latex powder.The electrical resistance of CFRC was investigated by two-probe method.The input range of CFRC based strain sensors was therefore increased,whereas electrical resistance was increased and remained in the perfect range of CFRC sensors.The analysis of scanning electron microscopy indicated that elastic latex bridges and a latex layer existed among the interspaces of the adjacent cement hydration products which were responsible for the enhancement of the flexural strength and electrical resistance.The formation mechanism of the elastic latex bridges was also discussed in detail.The continuous moving of two opposite interfaces of the latex solution-air along the interspaces of the adjacent hydrated crystals or colloids was attributed to the formation of the elastic latex bridges.

  16. Evaluation of Microscopic Degradation of Copper and Copper Alloy by Electrical Resistivity Measurement

    Kim, Chung Seok [Hanyang University, Seoul (Korea, Republic of); Nahm, Seung Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Hyun, Chang Young [Seoul National University of Science and Technology, Seoul (Korea, Republic of)


    In the present study, the microscopic degradation of copper and copper and alloy subjected to cyclic deformation has been evaluated by the electrical resistivity measurement using the DC four terminal potential method. The copper (Cu) and copper alloy (Cu-35Zn), whose stacking fault energy is much different each other, were cyclically deformed to investigate the response of the electrical resistivity to different dislocation substructures. Dislocation cell substructure was developed in the Cu, while the planar array of dislocation structure was developed in the Cu-35Zn alloy increasing dislocation density with fatigue cycles. The electrical resistivity increased rapidly in the initial stage of fatigue deformation in both materials. Moreover, after the fatigue test it increased by about 7 % for the Cu and 6.5 % for the Cu-35Zn alloy, respectively. From these consistent results, it may be concluded that the dislocation cell structure responds to the electrical resistivity more sensitively than the planar array dislocation structure evolved during cyclic fatigue

  17. Electron–electron interactions and the electrical resistivity of lithium at low temperatures

    O N Awasthi; V K Pundhir


    The electron–electron interactions in lithium metal have been examined keeping in view the recent developments. The contribution of the electron–electron Umklapp scattering processes in the electrical resistivity of lithium at low temperatures has been evaluated using a simplified spherical Fermi surface model with isotropic transition probability. Our values of the electrical resistivity so obtained compare fairly well with the experimental results for lithium.

  18. Calculation formula for apparent electrical resistivity of high porosity metal materials

    刘培生; 付超; 李铁藩


    A geometrical model has been established based on the structure feature of high porosity metal materials,the mathematical relationship between electrical resistivity and porosity for high porosity materials with even structure has then been deduced conveniently, and the formula for calculating the electrical resistivity of high porosity materials through porosity, which is easy to know, has been acquired further. Besides, the theoretical formula was verified to coincide with the test results well by the application taking nickel foam as an example.

  19. Electrical resistivity measurement to predict uniaxial compressive and tensile strength of igneous rocks

    Sair Kahraman; Tekin Yeken


    Electrical resistivity values of 12 different igneous rocks were measured on core samples using a resistivity meter in the laboratory. The resistivity tests were conducted on the samples fully saturated with brine (NaCl solution) and the uniaxial compressive strength (UCS), Brazilian tensile strength, density and porosity values of the samples were determined in the laboratory. The test results were evaluated using simple and multiple regression analysis. It was seen that the UCS and tensile strength values were linearly correlated with the electrical resistivity. The correlation coefficients are generally higher for the multiple regression models than that of the simple regression models. It was concluded that the UCS and tensile strength of igneous rocks can be estimated from electrical resistivity. However, the derived relations are purely empirical and they should be checked for other igneous rocks. The effect of rock types such as sedimentary and metamorphic rocks on the derived equations also needs to be investigated.

  20. Using different ELECTRE methods in strategic planning in the presence of human behavioral resistance

    A. S. Milani


    Full Text Available In the multicriteria strategic planning of an organization, management should often be aware of employees' resistance to change before making new decisions; otherwise, a chosen strategy, though technologically acceptable, may not be efficient in the long term. This paper, using a sample case study within an organization, shows how different versions of ELECTRE methods can be used in choosing efficient strategies that account for both human behavioral resistance and technical elements. The effect of resistance from each subsystem of the organization is studied to ensure the reliability of the chosen strategy. The comparison of results from a select number of compensatory and noncompensatory models (ELECTRE I, III, IV, IS; TOPSIS; SAW; MaxMin suggests that when employee resistance is a decision factor in the multicriteria strategic planning problem, the models can yield low-resistance strategies; however, ELECTRE seems to show more reasonable sensitivity.

  1. Temperature dependence of the electrical resistance of sound and carious teeth

    Huysmans, MCDNJM; Longbottom, C; Christie, AM; Bruce, PG; Shellis, RP


    Temperature variations are expected to influence measurement error in electrical resistance of teeth. It was the aim of this study to determine the changes in electrical behavior of extracted human teeth due to temperature changes in the range of room temperature to intra-oral temperature. Nine extr

  2. Influence of Ultraviolet/Ozonolysis Treatment of Nanocarbon Filler on the Electrical Resistivity of Epoxy Composites.

    Perets, Yulia; Matzui, Lyudmila; Vovchenko, Lyudmila; Ovsiienko, Irina; Yakovenko, Olena; Lazarenko, Oleksandra; Zhuravkov, Alexander; Brusylovets, Oleksii


    In the present work, we have investigated concentration and temperature dependences of electrical conductivity of graphite nanoplatelets/epoxy resin composites. The content of nanocarbon filler is varied from 0.01 to 0.05 volume fraction. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment at 20-min ultraviolet exposure. The electric resistance of the samples was measured by two- or four-probe method and teraohmmeter E6-13. Several characterization techniques were employed to identify the mechanisms behind the improvements in the electrical properties, including SEM and FTIR spectrum analysis.It is established that the changes of the relative intensities of the bands in FTIR spectra indicate the destruction of the carboxyl group -COOH and group -OH. Electrical conductivity of composites has percolation character and graphite nanoplatelets (ultraviolet ozone treatment for 20 min) addition which leads to a decrease of percolation threshold 0.005 volume fraction and increase values of electrical conductivity (by 2-3 orders of magnitude) above the percolation threshold in comparison with composite materials-graphite nanoplatelets/epoxy resin. The changes of the value and behavior of temperature dependences of the electrical resistivity of epoxy composites with ultraviolet/ozone-treated graphite nanoparticles have been analyzed within the model of effective electrical conductivity. The model takes into account the own electrical conductivity of the filler and the value of contact electric resistance between the filler particles of the formation of continuous conductive pathways.

  3. Simple and stable transendothelial electrical resistance measurement in organs-on-chips

    van der Helm, Marieke Willemijn; Odijk, Mathieu; Frimat, Jean-Philippe; Eijkel, Jan C.T.; van den Berg, Albert; Segerink, Loes Irene


    Measuring transendothelial electrical resistance (TEER) is a popular way to monitor cellular barrier tightness in organs-on-chips. However, in these devices integrated electrodes often block sight on the cells and the measured part often includes fluid-filled channels with variable resistance.

  4. Evaluation of electrical resistivity anisotropy in geological mapping ...


    Full Length Research Paper. Evaluation of ... Average annual rainfall for a thirty year record in the area is about 1270 .... layers; the first layer is the resistivity top soil and has resistivity range ... calculation of the reflection coefficient is the fractured .... J. NAH, 9: 41-50. ... Techniques of water resources investigations of the US.

  5. Direct localised measurement of electrical resistivity profile in rat and embryonic chick retinas using a microprobe

    Harald van Lintel


    Full Text Available We report an alternative technique to perform a direct and local measurement of electrical resistivities in a layered retinal tissue. Information on resistivity changes along the depth in a retina is important for modelling retinal stimulation by retinal prostheses. Existing techniques for resistivity-depth profiling have the drawbacks of a complicated experimental setup, a less localised resistivity probing and/or lower stability for measurements. We employed a flexible microprobe to measure local resistivity with bipolar impedance spectroscopy at various depths in isolated rat and chick embryo retinas for the first time. Small electrode spacing permitted high resolution measurements and the probe flexibility contributed to stable resistivity profiling. The resistivity was directly calculated based on the resistive part of the impedance measured with the Peak Resistance Frequency (PRF methodology. The resistivity-depth profiles for both rat and chick embryo models are in accordance with previous mammalian and avian studies in literature. We demonstrate that the measured resistivity at each depth has its own PRF signature. Resistivity profiles obtained with our setup provide the basis for the construction of an electric model of the retina. This model can be used to predict variations in parameters related to retinal stimulation and especially in the design and optimisation of efficient retinal implants.

  6. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials



    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, Micromega detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  7. Electrical resistance of CNT-PEEK composites under compression at different temperatures

    Mohiuddin Mohammad


    Full Text Available Abstract Electrically conductive polymers reinforced with carbon nanotubes (CNTs have generated a great deal of scientific and industrial interest in the last few years. Advanced thermoplastic composites made of three different weight percentages (8%, 9%, and 10% of multiwalled CNTs and polyether ether ketone (PEEK were prepared by shear mixing process. The temperature- and pressure-dependent electrical resistance of these CNT-PEEK composites have been studied and presented in this paper. It has been found that electrical resistance decreases significantly with the application of heat and pressure.

  8. Application of electrical resistivity imaging on Divaška jama cave

    Andrej Mihevc


    Full Text Available Electrical resistivity imaging (ERI is a widely used tool in geophysical survey of various subsurface structures. To establish its applicability for karst subsurface, ERI was conducted in Divača karst above caves of Trhlovca and Divaška jama and in its continuation as denuded cave on slopes of Radvanj collapse doline. Empty cave passages were not detected with ERI as electrical resistivity difference between voids and highly resistive carbonate bedrock is too small. On the other hand, denuded caves and cave sections, filled with loamy material, can be clearly distinguished.

  9. Electrical properties of deuteron irradiated high resistivity silicon

    Krupka, Jerzy, E-mail: [Insitute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Karcz, Waldemar [H. Niewodniczański Institute of Nuclear Physics Polish Academy of Science, Cracow (Poland); Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russian Federation); Avdeyev, Sergej P. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russian Federation); Kamiński, Paweł; Kozłowski, Roman [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland)


    We have investigated resistivity changes introduced on the high-resistivity p-type silicon wafer by the irradiation with deuteron beam with an energy of 4.4 GeV performed in the NUCLOTRON superconducting accelerator. Two contactless techniques were used for the measurements of resistivity changes: namely the microwave split post dielectric resonator (SPDR) technique and capacitance measurements in the frequency domain. The first technique allows resistivity measurements in the plane of the wafer, while the second one in the direction perpendicular to the wafer. The resistivity map obtained with the SPDR technique enabled us to obtain a permanent fingerprint of the accelerator beam intensity profile. It has been shown that after the irradiation, the material resistivity increased to ∼3.9 × 10{sup 5} Ω cm in the wafer region exposed to the maximum beam intensity. Complementary studies of the properties and concentrations of radiation deep-level defects were performed by the high-resolution photo-induced current transient spectroscopy (HRPITS). These studies have shown that the irradiation of the high resistivity silicon with 4.4-GeV deuterons results in the formation of several types of deep-level defects responsible for the charge compensation.

  10. Thickness effect on electric resistivity on polystyrene and carbon black- based composites

    Hernandez-Lopez, S; Vigueras-Santiago, E [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA) Facultad de Quimica, Paseo Colon Esquina con Paseo Tollocan, s/n, CP 50000, Toluca (Mexico); Mayorga-Rojas, M; Reyes-Contreras, D, E-mail: eviguerass@uaemex.m [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico. Av. Instituto Literario 100 Ote. C. P. 50000, Toluca (Mexico)


    Changes on electrical resistivity were experimentally studied for polystyrene and carbon black-based composites respect to the temperature. 22% w/w carbon black composite films at 30{mu}m, 2mm y 1cm thick were submitted to thermal heating-cooling cycles from room temperature to 100 deg. C, slightly up to T{sub g} of the composite. For each cycle changes on electrical resistivity constituent a hysteresis loop that depends on the sample thickness. The changes during the heating stage could be explained as a consequence of the thermal expansion and mobility of the polymer chains at T{sub g}, producing a disconnecting of the electrical contacts among carbon black particles and an important increasing (200%) of the electrical resistivity. For each cycle, the hysteresis loop was observed in thicker samples, whereas for 30 mu m thickness sample the hysteresis loop was lost after four cycles.

  11. Application of column tests and electrical resistivity methods for leachate transport monitoring

    Wychowaniak Dorota


    Full Text Available Development of the human civilization leads to the pollution of environment. One of the contamination which are a real threat to soil and groundwater are leachates from landfills. In this paper the solute transport through soil was considered. For this purpose, the laboratory column tests of chlorides tracer and leachates transport on two soil samples have been carried out. Furthermore, the electrical resistivity method was applied as auxiliary tool to follow the movements of solute through the soil column what allowed to compare between the results obtained with column test method and electrical resistivity measurements. Breakthrough curves obtained by conductivity and resistivity methods represents similar trends which leads to the conclusion about the suitability of electrical resistivity methods for contamination transport monitoring in soil-water systems.

  12. Evaluation of Impact Damage Tolerance in Carbon Fabric/epoxy-matrix Composites by Electrical Resistance Measurement

    LI Zhipeng; XIE Xiaolin; HONG Zhen; LU Chao; WANG Gaochao


    Impact damage tolerance is provided in intensity design on composites.The compression intensity of impacted composites requires more than 60% of its original intensity.The influence of impact on compressive intensity and electrical resistance of carbon fabric/epoxy-matrix composites was studied in this paper.The experimental results shows that impact can cause damage in composites,degenerate compressive intensity,and increase resistance.The electrical resistance change rate was used as an evaluation indicator of impact damage tolerance of composites.Impact damage,which results from the applying process of composites,can be identified in time by electrical resistance measurement.So,the safety performance of composites can also be improved.

  13. The effect of mechanical stress on electric resistance of nanographite-epoxy composites

    Vovchenko, L.; Lazarenko, A.; Matzui, L.; Zhuravkov, A.


    The in-plane electric resistance Ra of composite materials (CMs) thermoexfoliated graphite(TEG)-epoxy resin(ED) under compression along compacting C-axis has been investigated by four-probe method. TEG content was 5-75 wt%. It was shown that specimens prepared by cold pressing are denser and reveal lower values of electric resistivity in comparison with specimens prepared by pouring. It was found that compression of the specimens leads to plastic deformation of specimens (εpl) and essential irreversible decrease of electric resistance during the first cycle of loading (up to 50 MPa), especially for the poured specimens with low density. Within the proposed model the contact resistance Rk between graphite particles in CM has been evaluated and it was shown that it increased with the decrease in TEG content in CM and depends on compacting method of CMs and the dispersity of graphite filler.

  14. Thermal treatment of low permeability soils using electrical resistance heating

    Udell, K.S. [Univ. of California, Berkeley, CA (United States)


    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies of electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.

  15. Statistical analysis of electrical resistivity as a tool for estimating cement type of 12-year-old concrete specimens

    Polder, R.B.; Morales-Napoles, O.; Pacheco, J.


    Statistical tests on values of concrete resistivity can be used as a fast tool for estimating the cement type of old concrete. Electrical resistivity of concrete is a material property that describes the electrical resistance of concrete in a unit cell. Influences of binder type, water-to-binder rat

  16. Effeet of Strain on the Electrical Resistance of Carbon Nanotube/Silicone Rubber Composites

    ZENG You; LIU Huashi; CHEN Juan; GE Heyi


    Carbon nanotube (CNT) filled silicone rubber (SR) composites were synthesized by in situ polymerization.The effect of strain on the electrical resistance of the CNT/SR composites and the structure evolution of CNT networks during tensile deformation were investigated.The results showed that the CNT/SR composites had high sensitivity of resistance-strain response.In a wide strain range (0-125%),the change of resistivity could reach 107,which was closely associated with the evolution process of the conductive CNTnetwork structure.The volume expansion of the composites in the tensile process led to a gradual decrease in the volume fraction of CNTs with the strain increase.When CNT loading was lower than the percolation threshold,CNT network was in disconnected state with a rapid increase in electrical resistance of the composites.Furthermore,the CNT loading had remarkable effect on the sensitivity of resistance-strain response in the composites.

  17. Modeling Fluid Flow and Electrical Resistivity in Fractured Geothermal Reservoir Rocks

    Detwiler, R L; Roberts, J J; Ralph, W; Bonner, B P


    Phase change of pore fluid (boiling/condensing) in rock cores under conditions representative of geothermal reservoirs results in alterations of the electrical resistivity of the samples. In fractured samples, phase change can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring may provide a useful tool for monitoring the movement of water and steam within fractured geothermal reservoirs. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.

  18. Experimental determination of the electrical resistivity of iron at Earth’s core conditions

    Ohta, Kenji; Kuwayama, Yasuhiro; Hirose, Kei; Shimizu, Katsuya; Ohishi, Yasuo


    Earth continuously generates a dipole magnetic field in its convecting liquid outer core by a self-sustained dynamo action. Metallic iron is a dominant component of the outer core, so its electrical and thermal conductivity controls the dynamics and thermal evolution of Earth’s core. However, in spite of extensive research, the transport properties of iron under core conditions are still controversial. Since free electrons are a primary carrier of both electric current and heat, the electron scattering mechanism in iron under high pressure and temperature holds the key to understanding the transport properties of planetary cores. Here we measure the electrical resistivity (the reciprocal of electrical conductivity) of iron at the high temperatures (up to 4,500 kelvin) and pressures (megabars) of Earth’s core in a laser-heated diamond-anvil cell. The value measured for the resistivity of iron is even lower than the value extrapolated from high-pressure, low-temperature data using the Bloch-Grüneisen law, which considers only the electron-phonon scattering. This shows that the iron resistivity is strongly suppressed by the resistivity saturation effect at high temperatures. The low electrical resistivity of iron indicates the high thermal conductivity of Earth’s core, suggesting rapid core cooling and a young inner core less than 0.7 billion years old. Therefore, an abrupt increase in palaeomagnetic field intensity around 1.3 billion years ago may not be related to the birth of the inner core.

  19. Assessment of groundwater vulnerability to leachate infiltration using electrical resistivity method

    Mosuro, G. O.; Omosanya, K. O.; Bayewu, O. O.; Oloruntola, M. O.; Laniyan, T. A.; Atobi, O.; Okubena, M.; Popoola, E.; Adekoya, F.


    This aim of this work is to assess the degree of leachate infiltration at a dumpsite in Agbara industrial estate, Southwestern Nigeria using electrical resistivity techniques. Around the dumpsite were 45 vertical electrical sounding (VES) stations and 3 electrical resistivity tomography profiles. Current electrode spread varied from 300 to 600 m for the electrical sounding. Electrode configuration includes Schlumberger and Wenner array for sounding and profiling. The state of leachate contamination was tested using parameters such as aquifer vulnerability index, overburden protective capacity and longitudinal unit conductance (Si) derived from the apparent resistivity values. Four principal geoelectric layers inferred from the VES data include the topsoil, sand, clayey sand, and clay/shale. Resistivity values for these layers vary from 3 to 1688, 203 to 3642 123 to 388, and 67 to 2201 Ω m with corresponding thickness of 0.8-2.4, 2.5-140, 3-26 m and infinity, respectively. The leachate plume occurs at a maximum depth of 10 m on the 2-D inverse models of real electrical resistivity with an average depth of infiltration being 6 m in the study area. The correlation between longitudinal conductance and overburden protective capacity show that aquifers around the dumpsite have poor protective capacity and are vulnerable to leachate contamination. Leachate infiltration is favored by the absence of lithological barriers such as clay which in the study area are either mixed with sand or positioned away from the aquifer.

  20. Assessment of groundwater vulnerability to leachate infiltration using electrical resistivity method

    Mosuro, G. O.; Omosanya, K. O.; Bayewu, O. O.; Oloruntola, M. O.; Laniyan, T. A.; Atobi, O.; Okubena, M.; Popoola, E.; Adekoya, F.


    This aim of this work is to assess the degree of leachate infiltration at a dumpsite in Agbara industrial estate, Southwestern Nigeria using electrical resistivity techniques. Around the dumpsite were 45 vertical electrical sounding (VES) stations and 3 electrical resistivity tomography profiles. Current electrode spread varied from 300 to 600 m for the electrical sounding. Electrode configuration includes Schlumberger and Wenner array for sounding and profiling. The state of leachate contamination was tested using parameters such as aquifer vulnerability index, overburden protective capacity and longitudinal unit conductance (S i) derived from the apparent resistivity values. Four principal geoelectric layers inferred from the VES data include the topsoil, sand, clayey sand, and clay/shale. Resistivity values for these layers vary from 3 to 1688, 203 to 3642 123 to 388, and 67 to 2201 Ω m with corresponding thickness of 0.8-2.4, 2.5-140, 3-26 m and infinity, respectively. The leachate plume occurs at a maximum depth of 10 m on the 2-D inverse models of real electrical resistivity with an average depth of infiltration being 6 m in the study area. The correlation between longitudinal conductance and overburden protective capacity show that aquifers around the dumpsite have poor protective capacity and are vulnerable to leachate contamination. Leachate infiltration is favored by the absence of lithological barriers such as clay which in the study area are either mixed with sand or positioned away from the aquifer.

  1. Microscopic histological characteristics of soft tissue sarcomas: analysis of tissue features and electrical resistance.

    Tosi, A L; Campana, L G; Dughiero, F; Forzan, M; Rastrelli, M; Sieni, E; Rossi, C R


    Tissue electrical conductivity is correlated with tissue characteristics. In this work, some soft tissue sarcomas (STS) excised from patients have been evaluated in terms of histological characteristics (cell size and density) and electrical resistance. The electrical resistance has been measured using the ex vivo study on soft tissue tumors electrical characteristics (ESTTE) protocol proposed by the authors in order to study electrical resistance of surgical samples excised by patients in a fixed measurement setup. The measurement setup includes a voltage pulse generator (700 V, 100 µs long at 5 kHz, period 200 µs) and an electrode with 7 needles, 20 mm-long, with the same distance arranged in a fixed hexagonal geometry. In the ESTTE protocol, the same voltage pulse sequence is applied to each different tumor mass and the corresponding resistance has been evaluated from voltage and current recorded by the equipment. For each tumor mass, a histological sample of the volume treated by means of voltage pulses has been taken for histological analysis. Each mass has been studied in order to identify the sarcoma type. For each histological sample, an image at 20× or 40× of magnification was acquired. In this work, the electrical resistance measured for each tumor has been correlated with tissue characteristics like the type, size and density of cells. This work presents a preliminary study to explore possible correlations between tissue characteristics and electrical resistance of STS. These results can be helpful to adjust the pulse voltage intensity in order to improve the electrochemotherapy efficacy on some histotype of STS.

  2. Criticality studies; Etudes de criticite

    Breton, D.; Lecorche, P.; Clouet d' Orval, Ch. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    Criticality studies made at the Commissariat a l'Energie atomique deal on the one hand with experiments on plutonium and uranium solutions, on the other hand with theoretical work on the development and use of computation, methods for the resolution of problems concerning the nuclear safety of chemical and metallurgical plants. I - Since 1958 the experimental studies have dealt with homogeneous media constituted by a fissile salt dissolved in light water. Developed using the reactor Proserpine, the experiments have been carried on at Saclay on the Alecto assemblies where solutions of plutonium or of 90 p.100 - enriched uranium can be made critical. The results already obtained relate to critical masses of cylindrical tanks of diameters from 20 to 50 cm. reflected in several ways (water, concrete, etc. . ) at concentrations up to 100 g/liter. Physical measurements (spectra, reactor noises) and interaction measurements complete the results. Other experiments relating to plutonium solutions were begun in 1963, at the Valduc Center. They deal with the study of critical masses of annular vessels of external diameter 50 cm and internal diameter varying from 10 to 30 cm. These vessels can be water reflected internally, externally, or both. Two of these vessels have been studied in interaction for various geometries. Slabs of various thicknesses were also studied. II - The studies thus undertaken allowed the development of methods of computation which have been tested on several experiments. Particular use has been made of the possibilities of calculations based on transport theory and on Monte Carlo methods. All these theoretical studies are applied to the design and control of industrial plants from the point of view of safety. (authors) [French] Les etudes de criticite effectuees au CEA comportent d'une part des experiences sur des solutions de plutonium et d'uranium enrichi, d'autre part des travaux theoriques portant sur la mise au point et l




    A surface resistivity survey was conducted on the Hanford Site over a waste disposal trench that received a large volume of liquid inorganic waste. The objective of the survey was to map the extent of the plume that resulted from the disposal activities approximately 50 years earlier. The survey included six resistivity transects of at least 200m, where each transect provided two-dimensional profile information of subsurface electrical properties. The results of the survey indicated that a low resistivity plume resides at a depth of approximately 25-44 m below ground surface. The target depth was calibrated with borehole data of pore-water electrical conductivity. Due to the high correlation of the pore-water electrical conductivity to nitrate concentration and the high correlation of measured apparent resistivity to pore-water electrical conductivity, inferences were made that proposed the spatial distribution of the apparent resistivity was due to the distribution of nitrate. Therefore, apparent resistivities were related to nitrate, which was subsequently rendered in three dimensions to show that the nitrate likely did not reach the water table and the bounds of the highest concentrations are directly beneath the collection of waste sites.

  4. On the Modeling of Electrical Effects Experienced by Space Explorers During Extra Vehicular Activities: Intracorporal Currents, Resistances, and Electric Fields

    Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.


    Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.

  5. Permanent electrical resistivity measurements for monitoring water circulation in clayey landslides

    Gance, J.; Malet, J.-P.; Supper, R.; Sailhac, P.; Ottowitz, D.; Jochum, B.


    Landslides developed on clay-rich slopes are controlled by the soil water regime and the groundwater circulation. Spatially-distributed and high frequency observations of these hydrological processes are important for improving our understanding and prediction of landslide triggering. This work presents observed changes in electrical resistivity monitored at the Super-Sauze clayey landslide with the GEOMON 4D resistivity instrument installed permanently on-site for a period of one year. A methodological framework for processing the raw measurement is proposed. It includes the filtering of the resistivity dataset, the correction of the effects of non-hydrological factors (sensitivity of the device, sensitivity to soil temperature and fluid conductivity, presence of fissures in the topsoil) on the filtered resistivity values. The interpretation is based on a statistical analysis to define possible relationships between the rainfall characteristics, the soil hydrological observations and the soil electrical resistivity response. During the monitoring period, no significant relationships between the electrical response and the measured hydrological parameters are evidenced. We discuss the limitations of the method due to the effect of heat exchange between the groundwater, the vadose zone water and the rainwater that hides the variations of resistivity due to variations of the soil water content. We demonstrate that despite the absence of hydrogeophysical information for the vadose zone, the sensitivity of electrical resistivity monitoring to temperature variations allows imaging water fluxes in the saturated zone and highlighting the existence of matrix and preferential flows that does not occur at the same time and for the same duration. We conclude on the necessity to combine electrical resistivity measurements with distributed soil temperature measurements.

  6. Relationship between electrical skin resistance and rectal temperature in man during physical exercise.

    Grucza, R


    Electrical skin resistance (ESR) and rectal temperature (Tre) were examined in 13 unacclimated human subjects performing bicycle exercise at an intensity of 50% VO2max. After the beginning of exercise the electrical skin resistance decreased according to an exponential curve with a delay of 4 min and time constant of 9 min. The dynamic parameters of ESR were shorter than those reported for sweating. Statistical analysis showed a correlation between individual time constants of ESR and increases in rectal temperature of the subjects (r = 0.705, p less than 0.01). It is concluded that measurement of dynamics of the electrical skin resistance may be useful for estimation of thermal effects in exercising subjects.

  7. Understanding Electrical Conduction States in WO3 Thin Films Applied for Resistive Random-Access Memory

    Ta, Thi Kieu Hanh; Pham, Kim Ngoc; Dao, Thi Bang Tam; Tran, Dai Lam; Phan, Bach Thang


    The electrical conduction and associated resistance switching mechanism of top electrode/WO3/bottom electrode devices [top electrode (TE): Ag, Ti; bottom electrode (BE): Pt, fluorine-doped tin oxide] have been investigated. The direction of switching and switching ability depended on both the top and bottom electrode material. Multiple electrical conduction mechanisms control the leakage current of such switching devices, including trap-controlled space-charge, ballistic, Ohmic, and Fowler-Nordheim tunneling effects. The transition between electrical conduction states is also linked to the switching (SET-RESET) process. This is the first report of ballistic conduction in research into resistive random-access memory. The associated resistive switching mechanisms are also discussed.

  8. Hydrogeological characterisation using cross-borehole ground penetration radar and electrical resistivity tomography

    Zibar, Majken Caroline Looms


    . The methods provided estimates of soil moisture content and electrical resistivity variations among 12 m deep boreholes located 5 – 7 m apart. The moisture content change following natural precipitation was observed to be practically negligible, providing minimal information to constrain the dynamic...... was characterized by ~30 m thick unsaturated zone consisting mainly of sands of varying coarseness. Following an instrumentation of 16 boreholes two geophysical methods (cross-borehole ground penetrating radar and electrical resistivity tomography) were applied during natural precipitation and forced infiltration...... properties of the subsurface. On the other hand, volumetric moisture content variations of up to 5% were observed during a 20-day long forced infiltration experiment. The cross-borehole electrical resistance tomography and ground penetrating radar data collected during this experiment were subsequently...

  9. Electrical resistivity of nanoporous gold modified with thiol self-assembled monolayers

    Hakamada, Masataka; Kato, Naoki; Mabuchi, Mamoru


    The electrical resistivity of nanoporous gold (NPG) modified with thiol self-assembled monolayers (SAMs) has been measured at 298 K using a four-probe method. We found that the adsorption of thiol SAMs increases the electrical resistivity of NPG by up to 22.2%. Dependence of the electrical resistivity on the atmosphere (air or water) was also observed in SAMs-modified NPG, suggesting that the electronic states of the tail groups affect the electrons of the binding sulfur and adjacent surface gold atoms. The present results suggest that adsorption of thiol molecules can influence the behavior of the conducting electrons in NPG and that modification of NPG with SAMs may be useful for environmental sensing.

  10. SiC fiber with low electrical resistivity and oxygen content


    A new SiC fiber was prepared by the pyrolysis of polycarbosilane(PCS) fiber cured with unsaturated hydrocarbons.The fiber,with oxygen content of 4-6 wt%,offers high tensile strength of 2.5-2.8 GPa.The electrical resistivity of the fiber is only about 0.5 Ω·cm,much lower than general SiC fiber obtained from traditional air curing process.Degradation of mechanical property in argon and air at high temperature is retarded by 200-300℃ with respect to the Nicalon NL-202 fiber.The low electrical resistivity of the fiber exhibits excellent thermal stability,it almost remains 0.4-0.8 Ω·cm after thermal exposure test from the room temperature to 1600℃ in argon.The low electrical resistivity mainly attribute to an excess carbon layer which is about 50 nm in the circular outer part.

  11. Hydrogeological characterisation using cross-borehole ground penetration radar and electrical resistivity tomography

    Zibar, Majken Caroline Looms


    . The methods provided estimates of soil moisture content and electrical resistivity variations among 12 m deep boreholes located 5 – 7 m apart. The moisture content change following natural precipitation was observed to be practically negligible, providing minimal information to constrain the dynamic...... was characterized by ~30 m thick unsaturated zone consisting mainly of sands of varying coarseness. Following an instrumentation of 16 boreholes two geophysical methods (cross-borehole ground penetrating radar and electrical resistivity tomography) were applied during natural precipitation and forced infiltration...... properties of the subsurface. On the other hand, volumetric moisture content variations of up to 5% were observed during a 20-day long forced infiltration experiment. The cross-borehole electrical resistance tomography and ground penetrating radar data collected during this experiment were subsequently...

  12. Categorical modeling on electrical anomaly of room-and-pillar coal mine fires and application for field electrical resistivity tomography

    Song, Wujun; Wang, Yanming; Shao, Zhenlu


    In order to improve the accuracy of fire area delineation in coalfield with electrical prospecting, the categorical geoelectric models of coal fires are established according to geological and mining conditions. The room-and-pillar coal mine fires are divided into three types which are coal seam fire, goaf fire and subsidence area fire, respectively, and forward electrical simulations and inversion analysis of each type of coal fire are implemented. Simulation results show that the resistance anomalies of goaf fires exist around one and a half to two times higher than background field, in contrast, coal seam and subsidence area fires performance low resistivity response which are roughly half to two-third of background field resistivity, respectively. Identification of different fire types and delineation of coal fire areas are further presented. The inversion results which are validated by borehole survey prove that the presented method could eliminate the omission of coal fires with high resistance anomaly and provide a novel reference for fire extinguishing in the future.

  13. Fully Electrical Modeling of Thermoelectric Generators with Contact Thermal Resistance Under Different Operating Conditions

    Siouane, Saima; Jovanović, Slaviša; Poure, Philippe


    The Seebeck effect is used in thermoelectric generators (TEGs) to supply electronic circuits by converting the waste thermal into electrical energy. This generated electrical power is directly proportional to the temperature difference between the TEG module's hot and cold sides. Depending on the applications, TEGs can be used either under constant temperature gradient between heat reservoirs or constant heat flow conditions. Moreover, the generated electrical power of a TEG depends not only on these operating conditions, but also on the contact thermal resistance. The influence of the contact thermal resistance on the generated electrical power have already been extensively reported in the literature. However, as reported in Park et al. (Energy Convers Manag 86:233, 2014) and Montecucco and Knox (IEEE Trans Power Electron 30:828, 2015), while designing TEG-powered circuit and systems, a TEG module is mostly modeled with a Thévenin equivalent circuit whose resistance is constant and voltage proportional to the temperature gradient applied to the TEG's terminals. This widely used simplified electrical TEG model is inaccurate and not suitable under constant heat flow conditions or when the contact thermal resistance is considered. Moreover, it does not provide realistic behaviour corresponding to the physical phenomena taking place in a TEG. Therefore, from the circuit designer's point of view, faithful and fully electrical TEG models under different operating conditions are needed. Such models are mainly necessary to design and evaluate the power conditioning electronic stages and the maximum power point tracking algorithms of a TEG power supply. In this study, these fully electrical models with the contact thermal resistance taken into account are presented and the analytical expressions of the Thévenin equivalent circuit parameters are provided.

  14. Fully Electrical Modeling of Thermoelectric Generators with Contact Thermal Resistance Under Different Operating Conditions

    Siouane, Saima; Jovanović, Slaviša; Poure, Philippe


    The Seebeck effect is used in thermoelectric generators (TEGs) to supply electronic circuits by converting the waste thermal into electrical energy. This generated electrical power is directly proportional to the temperature difference between the TEG module's hot and cold sides. Depending on the applications, TEGs can be used either under constant temperature gradient between heat reservoirs or constant heat flow conditions. Moreover, the generated electrical power of a TEG depends not only on these operating conditions, but also on the contact thermal resistance. The influence of the contact thermal resistance on the generated electrical power have already been extensively reported in the literature. However, as reported in Park et al. (Energy Convers Manag 86:233, 2014) and Montecucco and Knox (IEEE Trans Power Electron 30:828, 2015), while designing TEG-powered circuit and systems, a TEG module is mostly modeled with a Thévenin equivalent circuit whose resistance is constant and voltage proportional to the temperature gradient applied to the TEG's terminals. This widely used simplified electrical TEG model is inaccurate and not suitable under constant heat flow conditions or when the contact thermal resistance is considered. Moreover, it does not provide realistic behaviour corresponding to the physical phenomena taking place in a TEG. Therefore, from the circuit designer's point of view, faithful and fully electrical TEG models under different operating conditions are needed. Such models are mainly necessary to design and evaluate the power conditioning electronic stages and the maximum power point tracking algorithms of a TEG power supply. In this study, these fully electrical models with the contact thermal resistance taken into account are presented and the analytical expressions of the Thévenin equivalent circuit parameters are provided.

  15. Relationship of electrical resistance end morphological changes thigh rats after modeling of open fracture (experimental study

    Pavlova T.M.


    Full Text Available Background. Due to the development of industry, increasing number of vehicles on the roads rate of traumatic injuries among adult population causing disability and mortality is still high in all countries of the world. Among all fractures of long bones open diaphyseal fractures ranges from 28% to 53%. Objective. To study the relationship of electrical resistance and morphological features of the femur of white male rats after modeling the open fracture. Methods. Studies were conducted on white male rats aged about 3 months. Digital multimeter UT70B was used to measure the electrical resistance of bones in experimental animals after 1 and 3 hours of experimental modeling of opened bone fracture. Histological and electron microscopic studies were performed to evaluate bone structure. Results. 1 hour after modeling an open bone fracture it was detected the presence of empty lacunae or gaps filled with detritus. 3 hours after the experiment cellular density in the first studied area was reduced 4.1 times, in the second area - 3.2 times comparing with the control. Conclusion. These histological examination and study of the electrical resistance of bone fragments after re-fracture (with or without coagulation fragments indicate similar changes in direction of the bone. Electrical resistance after testing in the clinical setting can be used for testing the bone fragments after an open fracture to assess viability. We have developed a technique for evaluation the electrical resistance making it possible to predict the viability of bone tissue with opened diaphyseal fractures of extremities on early stages. Citation: Pavlova TM, Berezka MI. [Relationship of electrical resistance end morphological changes thigh rats after mod-eling of open fracture (experimental study]. Morphologia. 2016;10(2:31-9. Ukrainian.

  16. General Relationship between Field Electrical Resistivity Value (ERV and Basic Geotechnical Properties (BGP

    Mohd Hazreek Zainal Abidin


    Full Text Available Electrical resistivity technique is a popular alternative method used in geotechnical soil investigations. Most past applications have been particularly in the area of subsurface ground investigations such as to locate boulder, bedrock, water table, etc. Traditionally, this method was performed by a geophysicist expert for data acquisition, processing and interpretation. The final outcome from the electrical resistivity technique was an anomaly image which used to describe and conclude the particular soil condition measured. The anomalies highlighted uncertainties on the nature of soil that was often variable and depended on each particular site condition that gave a site dependent soil electrical resistivity value (ERV. Hence, this study demonstrates a relationship between ERV (ρ and some of the basic geotechnical properties (BGP such as soil moisture content (w, grain size of geomaterial (CS or FS, density (ρbulk and ρdry, porosity (η, void ratio (e and Atterberg limit (AL. Different soil samples were collected and tested under field and laboratory conditions to determine basic geotechnical properties immediately after the field electrical resistivity method was performed. It was found that the electrical resistivity value was different for number of soils tested and was relatively subjective to variations in the geotechnical properties. In other words, electrical resistivity value was greatly influenced by the geotechnical properties as the ERV was higher due to the lower moisture content, void ratio and porosity with a higher value of soil density and vice versa. The relationship of ERV and BGP can be described by ρ α 1/w, ρ α CS, ρ α 1/FS, ρ α ρbulk/dry and ρ α 1/AL. Hence, it was shown that behaviour of ERV was significantly influenced by the variation of basic soil properties and thus applicable to support and enhance the conventional stand alone anomaly outcome which is traditionally used for interpretation purposes.

  17. The electrical resistance of PuSb under high pressure

    Link, P. (European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D76125 Karlsruhe (Germany)); Benedict, U. (European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D76125 Karlsruhe (Germany)); Wittig, J. (Institut fuer Festkoerperforschung, Forschungszentrum Juelich, D52425 Juelich (Germany)); Wuehl, H. (Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D76128 Karlsruhe (Germany)); Rebizant, J. (European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D76125 Karlsruhe (Germany)); Spirlet, J.C. (European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D76125 Karlsruhe (Germany))


    A new experimental set-up with a Bridgman-type high pressure cell in a closed containment allows resistance measurements on highly radioactive materials. We present results of high pressure, low temperature studies on PuSb single crystals in the pressure range to 25 GPa and at temperatures between 1.3 K and 300 K. As pressure on PuSb is increased, its Neel temperature and the transition temperature to the ferromagnetic ground state are increased. In the pressure range from 10 to 15 GPa, we observed a strong decrease in the resistance associated with the crystallographic phase transition from the B1 (NaCl) to the B2 (CsCl) structure. The high pressure phase appears to be non-magnetic. ((orig.))

  18. Guanacaste Geothermal Project. Technical prefeasibility report. Annex C. Electric resistivity


    This report is the third of six annexes to the Summary Report on the First Phase of the Guanacaste Geothermal Project. The studies covered an area of 500 km/sup 2/ on the SW flanks of the Rincon de la Vieja and Miravalles volcanoes of the Guanacaste Volcanic Range in NW Costa Rica, and were aimed at locating zones of high geothermal gradient, and reconstruction of the stratigraphic column. The formations in the area under study can be grouped into six resistivity ranges, varying from less than 5 to more than 200 ohm-meters. Values from 200 to as high as 30,000 ohm-meters generally correspond to fractured and porous lavas, their fracturing and porosity, as well as their drainability, increasing with resistivity. The values above 100 ohm-meters were recorded in zones of recent lava flows, in spurs of the volcanoes Rincon de la Vieja and Santa Maria, and in the slopes of the Miravalles volcano, and correspond to shallow formations (maximum depths of 150 meters) which may constitute recharge zones for the underground aquifiers. The values in the 100 to 200 ohm-meter range were generally recorded directly under layers constituted by drained, porous lavas, or under shallow layers where no recent lavas are present. The third group comprises materials with resistivities in the 25 to 100 ohm-meter range, occurring at two different depth levels: a deep one (more than 1000 meters) and a shallow one (less than 400 meters). Resistivities less than 25 ohm-meters were recorded at depths of 250 meters and more, and may correspond to material typical of the Aguacate formation, which probably constitutes the reservoir rock of the geothermal fluids. In order to locate the zones of most geothermal interest, this range was classified into the three remaining of the six groups, viz 10 to 25, 5 to 10, and less than 5 ohm-meters, the last group appearing to be that of greatest geothermal potential.




    By using the charge and current in a quantization resistance-inductance-capacitance (RLC) electric circuit, we construct a pair of canonical variables. Using this pair of variables and the thermal field dynamics, we obtain the fluctuations of charge and current in the RLC electric circuit at finite temperatures. It is shown that the fluctuations increase with increasing temperature and decrease with prolonging of time.

  20. Electron Acceleration by Cascading Reconnection in the Solar Corona. II. Resistive Electric Field Effects

    Zhou, X.; Büchner, J.; Bárta, M.; Gan, W.; Liu, S.


    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics. Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.

  1. Influence of accompanying substances of hemp fibres on their electric resistance

    Pejić Biljana


    Full Text Available Hemp fibres belong to the group of natural, cellulose bast fibres. These fibres have exceptional properties such as: antimicrobial effect, absence of allergy effect, extraordinary sorption properties, good electro-physical properties (small static electricity in regard to other cellulose fibres as well as high values of breaking strength (the natural fibre with the highest strength. However, hemp fibres have some defects: heterogeneous chemical composition, large quantity of accompanying substances (lignin pectins, waxes and unsatisfactory fineness and eveness. It is possible to a great extent to eliminate or reduce, the defects of hemp fibres by of appropriate modification treatments. In order to determine the appropriate modification treatment of hemp fibres, the dependences between the chemical composition, fineness and electric resistance of hemp fibres were presented in this paper. In the experimental part of the paper, by the application of a procedure for the determination of the chemical composition, the accompanying supstances of hemp fibres were gradually removed. After each phase some fibrous substrates were separated. After that the fineness and electric resistance were determined. This experiment was conducted in order to define the influence of each component of hemp fibres on the fineness and electric resistance. In this paper, hemp fibres were modified by an aqueous solution of sodium hydroxide, under different conditions of modification. The influence of modification conditions on the fineness and electric resistance were studied.

  2. Investigations of temperature dependences of electrical resistivity and specific heat capacity of metals

    Eser, Erhan, E-mail: [Department of Physics, Polatlı Faculty of Arts and Sciences, Gazi University, Polatlı, Ankara (Turkey); Koç, Hüseyin [Department of Electrical and Electronics Engineering, Faculty of Engineering, Muş Alparslan University, Muş (Turkey)


    In this study, we calculated the electrical resistivity and heat capacities of some ideal metals (Cu, Pt, and Pd) using a method that it employs the statistical model and Debye functions. The method is used to provide a simple and reliable analytical procedure for wide temperature range. The results obtained for the electrical resistivity and heat capacity have been compared with the results in literature. The results obtained at low temperature are in excellent agreement with experimental and theoretical results. Finally the used approximation and analytical method are a useful approach to calculate thermophysical properties of metals.

  3. Temperature dependent electrical resistivity of gallium and antimony in a liquid form

    Prajapati, A. V.; Sonvane, Y. A.; Thakor, P. B.


    Present paper deals with the effects of temperature variation on the electrical resistivity (Ω) of liquid Gallium (Ga), and Antimony (Sb). We have used a new parameter free pseudopotential with a Zeeman formula for finding it. To see the effects of screening Farid et al local field correction function is used with the Charged Hard Sphere (CHS) reference system. Analysis and comparison between the plotted graphs, based on present computed data and other experimental data defines and conclude that our newly constructed model potential is an effective one to produce the data for the temperature dependent electrical resistivity of some liquid semiconductors.

  4. 3-D time-lapse electrical resistivity monitoring of injected CO2 in a shallow aquifer

    Doetsch, Joseph A. J.A.; Auken, Esben; Christiansen, Anders Vest C A.V.C.;


    Contamination of potable groundwater by leaking CO2 is a potential risk of carbon sequestration. With the help of a field experiment, we investigate if surface electrical resistivity tomography (ERT) can detect dissolved CO2 in a shallow aquifer. For this purpose, we injected CO2 at a depth of 5...... inversion reveals the geology at the site consisting of aeolian sands near the surface and glacial sands below 5 m depth. Time-lapse inversions clearly image the dissolved CO2 plume with decreased electrical resistivity values. We can follow the CO2 plume as it spreads and moves with the groundwater...

  5. Evaluation of atmospheric corrosion on electroplated zinc and zinc nickel coatings by Electrical Resistance (ER) Monitoring

    Møller, Per


    ER (Electrical Resistance) probes provide a measurement of metal loss, measured at any time when a metal is exposed to the real environment. The precise electrical resistance monitoring system can evaluate the corrosion to the level of nanometers, if the conductivity is compensated for temperature...... for the automotive industry, off-shore construction or component and devices used in harsh industrial environments. The ER monitoring makes it possible to study the corrosion rate on-line in remote locations as a function of temperature, relative humidity and changes in the composition of the atmosphere. Different...

  6. Effects of electrical resistance on the spontaneous combustion tendency of coal and the interaction matrix concept


    There have been several developments in determining the spontaneous combustion liability of coal. Most of the methods of concern have purely been based on the internal properties of the coal itself. The relation between the crossing-point method and the electrical resistance of coal was examined here to outline the spontaneous combustion tendency of coal. The electrical resistance property of coal was looked into as a decision-making parameter of the interaction matrix concept for the final decision on the spontaneous combustion tendency.

  7. Developing an artificial neural network model for predicting concrete’s compression strength and electrical resistivity

    Juan Manuel Lizarazo Marriaga


    Full Text Available The present study was conducted for predicting the compressive strength of concrete based on unit weight ultrasonic and pulse velocity (UPV for 41 different concrete mixtures. This research emerged from the need for a rapid test for predicting concrete’s compressive strength. The research was also conducted for predicting concrete’s electrical resistivity based on unit weight ultrasonic, pulse velocity (UPV and compressive strength with the same mixes. The prediction was made using simple regression analysis and artificial neural networks. The results revealed that artificial neural networks can be used for effectively predicting compressive strength and electrical resistivity.

  8. Evaluation of atmospheric corrosion on electroplated zinc and zinc nickel coatings by Electrical Resistance (ER) Monitoring

    Møller, Per


    ER (Electrical Resistance) probes provide a measurement of metal loss, measured at any time when a metal is exposed to the real environment. The precise electrical resistance monitoring system can evaluate the corrosion to the level of nanometers, if the conductivity is compensated for temperature...... and magnetic fields. With this technique very important information about the durability of a new conversion coatings for aluminum, zinc and zinc alloys exposed to unknown atmospheric conditions can be gathered. This is expected to have a major impact on a number of industrial segments, such as test cars...

  9. Multi-Electrode Resistivity Probe for Investigation of Local Temperature Inside Metal Shell Battery Cells via Resistivity: Experiments and Evaluation of Electrical Resistance Tomography

    Xiaobin Hong


    Full Text Available Direct Current (DC electrical resistivity is a material property that is sensitive to temperature changes. In this paper, the relationship between resistivity and local temperature inside steel shell battery cells (two commercial 10 Ah and 4.5 Ah lithium-ion cells is innovatively studied by Electrical Resistance Tomography (ERT. The Schlumberger configuration in ERT is applied to divide the cell body into several blocks distributed in different levels, where the apparent resistivities are measured by multi-electrode surface probes. The investigated temperature ranges from −20 to 80 °C. Experimental results have shown that the resistivities mainly depend on temperature changes in each block of the two cells used and the function of the resistivity and temperature can be fitted to the ERT-measurement results in the logistical-plot. Subsequently, the dependence of resistivity on the state of charge (SOC is investigated, and the SOC range of 70%–100% has a remarkable impact on the resistivity at low temperatures. The proposed approach under a thermal cool down regime is demonstrated to monitor the local transient temperature.

  10. Anomalous behavior of electrical resistivity in NdFe{sub 11}Ti

    Tajabor, N.; Alinejad, M.R. [Department of Physics, Faculty of Science, Ferdowsi University of Mashhad (Iran); Amirabadizadeh, A. [Department of Physics, Faculty of Science, Ferdowsi University of Mashhad (Iran); Department of Physics, Faculty of Science, University of Birjand, Birjand (Iran); Pourarian, F. [Carnegie Mellon Research Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15219 (United States)


    The electrical resistivity, {rho}, and temperature derivative of resistivity (d/dT) of polycrystalline NdFe{sub 11}Ti are investigated. The resistivity exhibits an anomalous behavior at about 160 K and 220 K. These anomalies attributed to spin reorientation phenomena originate from two magnetic phase transition. A modified theoretical model for electrical resistivity, {rho} and d{rho}/dT, behavior in the spin reorientation temperature (T{sub SR}) region is presented. The results suggest that the average magnetic moment at T{sub SR1} {proportional_to}160 K is aligned along a cone angle and at T{sub SR2} {proportional_to}220 K along c-axis. The temperature dependence of ac-susceptibility, {chi}{sub ac}(T), is presented. The results show the existence of the spin reorientation related to a magnetic phase transition. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Elastic and Electrical Properties Evaluation of Low Resistivity Pays in Malay Basin Clastics Reservoirs

    Almanna Lubis, Luluan; Ghosh, Deva P.; Hermana, Maman


    The elastic and electrical properties of low resistivity pays clastics reservoirs in Malay Basin are strongly dependent on the complex nature of the clay content, either dispersed or laminated/layered. Estimating the hydrocarbon pore volume from conventional electrical log, i.e. resistivity log, is quite a challenge. The low elastic impedance contrast also found as one of the challenge thus create a problem to map the distribution of the low resistivity reservoirs. In this paper, we evaluate the electrical properties and elastic rock properties to discriminate the pay from the adjacent cap rock or shale. Forward modeling of well log responses including electrical properties are applied to analyze the nature of the possible pays on laminated reservoir rocks. In the implementation of rock properties analysis, several conventional elastic properties are comparatively analyzed for the sensitivity and feasibility analysis on each elastic parameters. Finally, we discussed the advantages of each elastic parameters in detail. In addition, cross-plots of elastic and electrical properties attributes help us in the clear separation of anomalous zone and lithologic properties of sand and shale facies over conventional elastic parameter crossplots attributes. The possible relationship on electrical and elastic properties are discussed for further studies.

  12. Control of combustion area using electrical resistivity method for underground coal gasification

    Selivanova Tatiana; Grebenyuk Igor; Belov Alexey


    Underground coal gasification (UCG) is one of the clean technologies to collect heat energy and gases (hydrogen,methane,etc.) in an underground coal seam.It is necessary to further developing environmentally friendly UCG system construction.One of the most important UCG's problems is underground control of combustion area for efficient gas production,estimation of subsidence and gas leakage to the surface.For this objective,laboratory experiments were conducted according to the UCG model to identify the process of combustion cavity development by monitoring the electrical resistivity activity on the coal samples to setup fundamental data for the technology engineering to evaluate combustion area.While burning coal specimens,that had been sampled from various coal deposits,electrical resistivity was monitored.Symmetric four electrodes system (ABMN) of direct and low-frequency current electric resistance method was used.for laboratory resistivity measurement of rock samples.Made research and the results suggest that front-end of electro conductivity activity during heating and combusting of coal specimen depended on heating temperature.Combusting coal electro conductivity has complicated multistage type of change.Electrical resistivity method is expected to be a useful geophysical tool to for evaluation of combustion volume and its migration in the coal seam.

  13. Evaluation of physico-mechanical properties of clayey soils using electrical resistivity imaging technique

    Kibria, Golam

    Resistivity imaging (RI) is a promising approach to obtaining continuous profile of soil subsurface. This method offers simple technique to identify moisture variation and heterogeneity of the investigated area. However, at present, only qualitative information of subsurface can be obtained using RI. A study on the quantification of geotechnical properties has become important for rigorous use of this method in the evaluation of geohazard potential and construction quality control of landfill liner system. Several studies have been performed to describe electrical resistivity of soil as a function of pore fluid conductivity and surface conductance. However, characterization tests on pore water and surface charge are not typically performed in a conventional geotechnical investigation. The overall objective of this study is to develop correlations between geotechnical parameters and electrical resistivity of soil, which would provide a mean to estimate geotechnical properties from RI. As a part of the study, multiple regression analyses were conducted to develop practically applicable models correlating resistivity with influential geotechnical parameters. The soil samples considered in this study were classified as highly plastic clay (CH) and low plasticity clay (CL) according to Unified Soil Classification System (USCS). Based on the physical tests, scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) analysis, kaolinite was identified as the dominant mineral with some traces of magnesium, calcium, potassium, and iron. Electrical resistivity tests were conducted on compacted clays and undisturbed samples under varied geotechnical conditions. The experimental results indicated that the degree of saturation substantially influenced electrical resistivity. Electrical resistivity decreased as much as 11 times from initial value for the increase of degree of saturation from 23 to 100% in the laboratory tests on compacted clays. In case of

  14. Acidic Barren Slope Profiling using Electrical Resistivity Imaging (ERI) at Ayer Hitam area Johor, Malaysia

    Azhar, A. T. S.; Hazreek, Z. A. M.; Aziman, M.; Haimi, D. S.; Hafiz, Z. M.


    Recently, non-destructive method such as the electrical resistivity technique has become increasingly popular in engineering, environmental, mining and archeological studies nowadays. This method was popular in subsurface profiling due to its ability to replicate the images of the subsurface indirectly. The soil slope found in Batu Pahat, specifically in Ayer Hitam, is known to be problematic due to its barren condition. This location is believed to contain futile soil due to its difficulty in supporting the growth of vegetations. In the past, acidic barren slope assessment using non-destructive method was rarely being used due to several reasons related to the equipment and knowledge constraints. Hence, this study performed an electrical resistivity imaging using ABEM Terrameter LS in order to investigate the acidic barren slope conditions. Field data acquisition was based on Schlumberger and Wenner arrays while RES2DINV software was used to analyze and generate a 2-D model of the problematic subsurface profile. Based on electrical resistivity results, it was found that the acidic barren slope studied consists of two main zones representing residual soil (electrical resistivity value = 10 - 600 Ωm) and shale (electrical resistivity value = 20 - 2000 Ωm). The results of resistivity value were correlated with the physical mapping and the in situ mackintosh probe test for verification purposes. It was found that the maximum depth of the mackintosh probe test was 1.8 m due to its ground penetration limitation. However, the results of the resistivity section managed to achieve greater depth up to 40 m. Hence, the correlation between electrical resistivity and mackintosh probe results can only be performed at certain depth of the acidic barren slope profile in contrast with the physical mapping which able to define the whole section of the barren soil slope structure. Finally, a good match of electrical resistivity results calibrated with mackintosh and physical

  15. Combined effects of fretting and pollutant particles on the contact resistance of the electrical connectors

    Zhigang Kong


    Full Text Available Usually, when electrical connectors operate in vibration environments, fretting will be produced at the contact interfaces. In addition, serious environmental pollution particles will affect contact resistance of the connectors. The fretting will worsen the reliability of connectors with the pollutant particles. The combined effects of fretting and quartz particles on the contact resistance of the gold plating connectors are studied with a fretting test system. The results show that the frequencies have obvious effect on the contact resistance. The higher the frequency, the higher the contact resistance is. The quartz particles cause serious wear of gold plating, which make the nickel and copper layer exposed quickly to increase the contact resistance. Especially in high humidity environments, water supply certain adhesion function and make quartz particles easy to insert or cover the contact surfaces, and even cause opening resistance.

  16. Estimation of heavy metal-contaminated soils' mechanical characteristics using electrical resistivity.

    Chu, Ya; Liu, Songyu; Wang, Fei; Cai, Guojun; Bian, Hanliang


    Under the process of urbanization in China, more and more attention has been paid to the reuse of heavy metal-contaminated sites. The shear characteristics of heavy metal-contaminated soils are investigated by electrical detection in this paper. Three metal ions (Zn(2+), Cd(2+), and Pb(2+)) were used, the metal concentrations of which are 50, 166.67, 500, 1666.67, and 5000 mg/kg, respectively. Direct shear tests were used to investigate the influence of heavy metal ions on the shear characters of soil samples. It is found that with the addition of heavy metal ions, the shear strength, cohesion, and friction angle of contaminated soils are higher than the control samples. The higher concentration of heavy metal ions penetrated in soils, the higher these engineering characteristics of contaminated soils observed. In addition, an electrical resistivity detection machine is used to evaluate the shear characteristics of contaminated soils. The electrical resistivity test results show that there is a decreasing tendency of resistivity with the increase of heavy metal ion concentrations in soils. Compared with the electrical resistivity and the shear characteristics of metal-contaminated soils, it is found that, under fixed compactness and saturation, shear strength of metal-contaminated soils decreased with the increase of resistivity. A basic linear relationship between C/log(N + 10) and resistivity can be observed, and there is a basic linear relationship between φ/log(N + 10) and resistivity. Besides, a comparison of the measured and predicted shear characteristics shows a high accuracy, indicating that the resistivity can be used to evaluate the shear characteristics of heavy metal contaminated soils.

  17. Electrical test methods for on-line fuel cell ohmic resistance measurement

    Cooper, K. R.; Smith, M.

    The principles and trade-offs of four electrical test methods suitable for on-line measurement of the ohmic resistance (R Ω) of fuel cells is presented: current interrupt, AC resistance, high frequency resistance (HFR), and electrochemical impedance spectroscopy (EIS). The internal resistance of a proton exchange membrane (PEM) fuel cell determined with the current interrupt, HFR and EIS techniques is compared. The influence of the AC amplitude and frequency of the HFR measurement on the observed ohmic resistance is examined, as is the ohmic resistance extracted from the EIS data by modeling the spectra with a transmission line model for porous electrodes. The ohmic resistance of a H 2/O 2 PEM fuel cell determined via the three methods was within 10-30% of each other. The current interrupt technique consistently produced measured cell resistances that exceeded those of the other two techniques. For the HFR technique, the frequency at which the measurement was conducted influenced the measured resistance (i.e., higher frequency providing smaller R Ω), whereas the AC amplitude did not effect the observed value. The difference in measured ohmic resistance between these techniques exceeds that reasonably accounted for by measurement error. The source of the discrepancy between current interrupt and impedance-based methods is attributed to the difference in the response of a non-uniformly polarized electrode, such as a porous electrode with non-negligible ohmic resistance, to a large perturbation (current interrupt event) as compared to a small perturbation (impedance measurement).

  18. Influence of Ultraviolet/Ozonolysis Treatment of Nanocarbon Filler on the Electrical Resistivity of Epoxy Composites

    Perets, Yulia; Matzui, Lyudmila; Vovchenko, Lyudmila; Ovsiienko, Irina; Yakovenko, Olena; Lazarenko, Oleksandra; Zhuravkov, Alexander; Brusylovets, Oleksii


    In the present work, we have investigated concentration and temperature dependences of electrical conductivity of graphite nanoplatelets/epoxy resin composites. The content of nanocarbon filler is varied from 0.01 to 0.05 volume fraction. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment at 20-min ultraviolet exposure. The electric resistance of the samples was measured by two- or four-probe method and teraohmmeter E6-13. Several characterization techniques were employed to identify the mechanisms behind the improvements in the electrical properties, including SEM and FTIR spectrum analysis.

  19. Transient contact resistance in electrical connections with flat pins

    Merlyan S. V.


    Full Text Available On the basis of experimental research, the authors have obtained dependences allowing to find promptly and with a small amount of calculations the optimum pressure value for elastic elements of flat contacts with different coatings (tin-bismuth, nickel, palladium, silver, gold, using the preset value of contact resistance Rпер. Moreover, the obtained results of estimation of quantity and stability of Rпер allow to choose the optimal coating according to the operating conditions of the contacts.

  20. Application of Electrical Resistivity Tomography for Detecting Root Biomass in Coffee Trees

    Carlos Mauricio Paglis


    Full Text Available Roots play an important role in plants and are responsible for several functions; among them are anchorage and nutrient and water absorption. Several methodologies are being tested and used to study plant root systems in order to avoid destructive root sampling. Electrical resistivity tomography is among these methodologies. The aim of this preliminary study was to use electrical resistivity for detecting root biomass in coffee trees. Measurements were performed in a soil transect with an ABM AL 48-b resistivimeter with a pole-dipole configuration. The tomograms indicated variability in soil resistivity values ranging from 120 to 1400 Ω·m−1. At the first 0.30 cm soil layer, these values were between 267 and 952 Ω·m−1. Oriented by this result, root samples were taken at 0.10, 0.20, and 0.30 m depths within 0.50 m intervals along the soil transect to compare soil resistivity with root mass density (RMD. RMD data, up to this depth, varied from 0.000019 to 0.009469 Mg·m−3, showing high spatial variability and significant relationship to the observed values of soil resistivity. These preliminary results showed that the electrical resistivity tomography can contribute to root biomass studies in coffee plants; however, more experiments are necessary to confirm the found results in Brazil coffee plantations.

  1. Electrical Resistivity Tomography in the characterisation of wetting patterns of historical masonry

    López-González, Laura; Gomez-Heras, Miguel; Ortiz de Cosca, Raquel Otero; García-Morales, Soledad


    Electrical Resistivity Tomography (ERT) is a geophysical technique widely used to identify subsurface structures based on electrical resistivity measurements made at the surface. In recent years this technique has been used for surveying historic buildings and characterise the subsurface of walls by using non-invasive EKG electrodes. This methods is used to locate wet areas based on the lower electrical resistivity wet materials have in relation to dry ones. A good knowledge of the wetting patterns of historic buildings during, for example, rainfalls is crucial to understand the decay processes that take place in the building and plan interventions. This paper presents results of transects of Electric Resistivity Tomography of walls of the Monastery of Santa Maria de Mave (Palencia, Spain), a 9th century Romanesque building, during rainfall. ERT transects were performed with a GeoTom device (Geolog2000) in areas with and without buttresses to understand how this architectural detail affected the wetting dynamics of the building. The ERT results were integrated with other resistivity-based techniques and Thermohygrometric survey in a GIS and showed how lower resistivity surface measurements ERT correspond with areas of higher humidity. Resistivity-based techniques measured and evaporation focal points take in the interior of the building mark the outer ground level. The highest moisture content measurements do not always correspond to the visibly most damaged areas of the wall. The consecutive ERT transects show the wall getting wetter as rainfall progresses. The comparison of the measurements obtained of a wall affected by water obtained with GIS mapping, allowed to quickly studying the development of moisture in the wall over time, which is essential for a correct diagnosis of the building. Research funded by Madrid's Regional Government project Geomateriales 2 S2013/MIT-2914

  2. Constraining Water Quality Models With Electrical Resistivity Tomography (ERT)

    Bentley, L. R.; Gharibi, M.; Mrklas, O.; Lunn, S. D.


    Water quality models are difficult to constrain with piezometer data alone because the data are spatially sparse. Since the electrical conductivity (EC) of water is often correlated with water quality, geophysical measurements of electrical conductivity may provide densely sampled secondary data for constraining water quality models. We present a quantitative interpretation protocol for interpreting EC derived from surface ERT results. A standard temperature is selected that is in the range of the in situ field temperatures, and laboratory measurements establish a functional relationship between water EC and temperature. Total meq/l of charge are often strongly correlated with water EC at the standard temperature. Laboratory data is used to develop a correlation model between indicator parameters or water chemistry evolution and total meq/l of charge. Since the solid phase may contain a conductive clay fraction, a site specific calibrated Waxman-Smits rock physics model is used to estimate groundwater EC from bulk EC derived from ERT inversions. The groundwater EC at in situ temperature is converted to EC at the standard temperature, and the total meq/l is estimated using the laboratory-established correlation. The estimated meq/l can be used as soft information to map distribution of water quality or to estimate changes to water chemistry with time. We apply the analysis to a decommissioned sour gas plant undergoing remediation. Background bulk EC is high (50 to 100 mS/m) due to the clay content of tills. The highest values of groundwater EC are mainly due to acetic acid, which is a degradation product of amines and glycols. Acetic acid degrades readily under aerobic conditions, lowering the EC of pore waters. The calibrated Waxman-Smits model predicts that a reduction of groundwater EC from 1600 mS/m to 800mS/m will result in a reduction of bulk EC from 150 mS/m to 110 mS/m. Groundwater EC values both increase and decrease with time due to site heterogeneity, and

  3. Direct quantification of transendothelial electrical resistance in organs-on-chips

    Helm, van der Marinke W.; Odijk, M.; Frimat, Jean-Philippe; Meer, van der Andries D.; Eijkel, Jan C.T.; Berg, van den Albert; Segerink, Loes I.


    Measuring transendothelial or transepithelial electrical resistance (TEER) is a widely used method to monitor cellular barrier tightness in organs-on-chips. Unfortunately, integrated electrodes close to the cellular barrier hamper visual inspection of the cells or require specialized cleanroom proce

  4. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.


    ... 3 feet in length, by removing 5 inches of jacket material and 21/2 inches of conductor insulation... material and 21/2 inches of conductor insulation. The type, amperage, voltage rating, and construction of... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of electric...

  5. Effect of pressure on electrical resistance of WSe2 single crystal

    Rajiv Vaidya; Neha Bhatt; S G Patel; A R Jani; Alka B Garg; V Vijayakumar; B K Godwal


    The results of electrical resistance measurements under pressure on single crystals of WSe2 are reported. Measurements up to 8.5 GPa are carried out using Bridgman anvil set up and beyond it using diamond anvil cell (DAC) up to a pressure of 27 GPa. There is no clear indication of any phase transition till the highest pressure is reached in these measurements.

  6. Procedures and criteria for increasing the earthquake resistance level of electrical substations and special installations

    Couch, R.W.; Deacon, R.J.


    This report defines a procedure and provides basic information needed to determine the modifications required to make electrical substations and special installations of the Bonneville Power Administration (BPA) more resistant to strong earthquake ground motion. It also provides a procedure for developing an effective plan for establishing the sequence, or priority, of providing the required modifications.

  7. Electrical resistance of thin magnesium layers deposited at 4. 2K

    Belzons, M.; Blanc, R.; Payan, R.


    Electrical resistance of thin magnesium layers deposited on a cold substrate under ultra-vacuum conditions has been studied as a function of T. Results are compared with those on bulk and with data obtained by Reale (1975) on films prepared in similar conditions. Behavior reported by Reale was not confirmed.

  8. Ion Permeability of Artificial Membranes Evaluated by Diffusion Potential and Electrical Resistance Measurements

    Shlyonsky, Vadim


    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and "n"-decane. The electrical resistance and potential…

  9. An experimentally validated contactless acoustic energy transfer model with resistive-reactive electrical loading

    Shahab, S.; Gray, M.; Erturk, A.


    This paper investigates analytical modeling and experimental validation of Ultrasonic Acoustic Energy Transfer (UAET) for low-power electricity transfer to exploit in wireless applications ranging from medical implants to underwater sensor systems. A piezoelectric receiver bar is excited by incident acoustic waves originating from a source of known strength located at a specific distance from the receiver. The receiver is a free-free piezoelectric cylinder operating in the 33- mode of piezoelectricity with a fundamental resonance frequency above the audible frequency range. In order to extract the electrical power output, the piezoelectric receiver bar is shunted to a generalized resistive-reactive circuit. The goal is to quantify the electrical power delivered to the load (connected to the receiver) in terms of the source strength. Experimental validations are presented along with parameter optimization studies. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the receiver's underwater resonance frequency, source-to-receiver distance, and source-strength level are reported. Resistive and resistive-reactive electrical loading cases are discussed for performance enhancement and frequency-wise robustness. Simulations and experiments reveal that the presented multiphysics analytical model for UAET can be used to predict the coupled system dynamics with very good accuracy.

  10. Crustal magma pathway beneath Aso caldera inferred from three-dimensional electrical resistivity structure

    Hata, Maki; Takakura, Shinichi; Matsushima, Nobuo; Hashimoto, Takeshi; Utsugi, Mitsuru


    At Naka-dake cone, Aso caldera, Japan, volcanic activity is raised cyclically, an example of which was a phreatomagmatic eruption in September 2015. Using a three-dimensional model of electrical resistivity, we identify a magma pathway from a series of northward dipping conductive anomalies in the upper crust beneath the caldera. Our resistivity model was created from magnetotelluric measurements conducted in November-December 2015; thus, it provides the latest information about magma reservoir geometry beneath the caldera. The center of the conductive anomalies shifts from the north of Naka-dake at depths >10 km toward Naka-dake, along with a decrease in anomaly depths. The melt fraction is estimated at 13-15% at 2 km depth. Moreover, these anomalies are spatially correlated with the locations of earthquake clusters, which are distributed within resistive blocks on the conductive anomalies in the northwest of Naka-dake but distributed at the resistive sides of resistivity boundaries in the northeast.

  11. Monitoring six-phase ohmic heating of contaminated soils using electrical resistance tomography

    Ramirez, A.L.; Daily, W.D.


    Electrical resistance tomography (ERT) was used to monitor six-phase ohmic heating used for the insitu remediation of volatile organic compounds from subsurface water and soil at the Savannah River Site, near Aiken, South Carolina. The changes in electrical conductivity caused by six-phase ohmic-heating in a clay layer located in the vadose zone were monitored during a period of approximately 2 months, before, during and after heating. From an array of electrodes located in 4 boreholes, we collected electrical resistivity data between five pairs of adjacent holes pairs. This data was used to calculate tomographs which showed the electrical conductivity changes along five vertical planes. The difference tomographs show the combined effects of moisture redistribution and heating caused by six-phase heating and vapor extraction. The tomographs show that most of the clay layer increased in electrical conductivity during the first 3 weeks of the 4 week long heating phase. At this time, the electrical conductivities near the center of the heating array were twice as large as the pre-heat conductivities. Then the electrical conductivity started to decrease for portions of the clay layer closest to the vapor extraction well. We propose that the conductivity decreases are due to the removal of moisture by the heating and vacuum extraction. Parts of the clay layer near the extraction well reached electrical conductivities as low as 40% of the pre-heating values. We propose that these regions of lower than ambient electrical conductivities are indicators of regions where the vapor removal by vacuum extraction was most effective. At the end of the heating phase, our estimates suggest that the clay saturation may have dropped to as low as 10% based on the observed conductivity changes.

  12. Geophysical investigation of earth dam using the electrical tomography resistivity technique

    Pedro Lemos Camarero

    Full Text Available Abstract Dams are structures that dam rivers and streams for a variety of purposes. These structures often need to be sturdy to withstand the force of the impoundment and the high values of accumulated water load. The constant maintenance of these structures is essential, since a possible accident can lead to damage of catastrophic proportions. This research presents an alternative cheap and quick application for investigating water seepage in earth dams, through the application of the DC resistivity geophysical method from the electrical resistivity tomography (ERT technique in Wenner array. Three ERT lines were placed parallel to the longitudinal axis of a dam formed by clay soil from the decomposition of diabase. The data are presented in 2D and pseudo-3D geophysical images with electrical resistivity values modeled. Based on the physical principle of electrolytic conduction, that is, decrease in electrical resistance in materials or siliceous minerals in moisture conditions as compared to the material in the dry state, the results revealed low-resistivity zones restricted to some points, associated with water infiltration in the transverse direction of the dam. The absence of evidence as water upwelling on the front of the dam together with geophysical evidence indicate saturation restricted to some points and low probability at the present time, for installation of piping processes.

  13. Evaluation of metal-nanowire electrical contacts by measuring contact end resistance.

    Park, Hongsik; Beresford, Roderic; Ha, Ryong; Choi, Heon-Jin; Shin, Hyunjung; Xu, Jimmy


    It is known, but often unappreciated, that the performance of nanowire (NW)-based electrical devices can be significantly affected by electrical contacts between electrodes and NWs, sometimes to the extent that it is really the contacts that determine the performance. To correctly understand and design NW device operation, it is thus important to carefully measure the contact resistance and evaluate the contact parameters, specific contact resistance and transfer length. A four-terminal pattern or a transmission line model (TLM) pattern has been widely used to measure contact resistance of NW devices and the TLM has been typically used to extract contact parameters of NW devices. However, the conventional method assumes that the electrical properties of semiconducting NW regions covered by a metal are not changed after electrode formation. In this study, we report that the conventional methods for contact evaluation can give rise to considerable errors because of an altered property of the NW under the electrodes. We demonstrate that more correct contact resistance can be measured from the TLM pattern rather than the four-terminal pattern and correct contact parameters including the effects of changed NW properties under electrodes can be evaluated by using the contact end resistance measurement method.

  14. Electrical resistivity and ultrasonic measurements during sequential fracture test of cementitious composite

    V. Veselý


    Full Text Available Cracks in cover of reinforced and pre-stressed concrete structures significantly influence the ingress of deleterious species causing decrease in durability of these structures. The paper is focused on the effect of fracture process on two selected physical parameters of concrete – the electrical resistivity and the ultrasonic pulse passing time – which might be employed as the quality indicator of concrete cover within (nondestructive procedure(s of assessment of the structural durability. The concrete electrical resistivity and ultrasonic passing time were investigated here with respect to two variants of treatment of the test specimens’ surface (the pre-dried surface and the wet surface. Test configuration of three-point bending of notched beam was utilized to control the crack propagation; the fracture process passed through several loading–unloading sequences between which the electrical resistivity and ultrasonic passing time readings over the fractured region were performed. Equivalent elastic crack model was used for estimation of the fracture advance (described via the effective crack length at the loading stages corresponding to the resistivity and ultrasonic measurements. Relationships between changes of both the concrete resistivity and ultrasonic pulse passing time and the effective crack length is determined and discussed.

  15. Hydrogeophysical Characterization of shallow karst using electrical resistivity tomography (ERT) in a limestone mining area

    Sun, H.; Qi, Z.; Li, X., Sr.; Ma, X.; Xue, Y.; Zhang, Q.; Zhang, X.


    Karst is a kind of geological phenomenon under the chemical erosion process from water to soluble rock, such as limestone, gypsum, salt rock etc. Karst is widely distributed around the world and also in southwest of China. The Guangxi area is famous as the highly degree of karstification due to long time groundwater erosion and the development of fracture network. The hydrogeological units become complex involving subsurface karst pipes, caves, eroded groove, etc. Moreover, the complex system is hard to evaluate. The karst collapse may cause many kind of disaster which will influence the human activities. Classical hydrogeological methods, such as pumping tests and tracer tests, to estimate the hydraulic conductivity distribution in an aquifer are hard to finish in some condition with large area and high resolution required. Because a large number of wells are needed, which is uncommon because of the high drilling costs. However, geophysical method is cost-effective in mapping underground structures. And geophysical imaging is highly linked with the subsurface hydrological parameters. Electrical resistivity tomography (ERT) is a widely used geophysical method in environmental and engineering applications. It detect and identify targets with different resistivity to the background by measuring the potential difference between different electric nodes. When the target has lower resistivity than the background, such as water resource, karst, evaluation of marine transgression etc., the acquired data show higher voltage corresponding to low resistivity. While when the target has higher resistivity than the background, such as empty holes, sliding surface for dry landslide and archaeological geophysics etc., the acquired data show opposite phenomenon. One can obtain the real resistivity profile of the subsurface by inverting the acquired data. We study the characterization of shallow karst using electrical resistivity tomography (ERT) which is the most cost effective

  16. Correlation between Electrical Resistivity, Particle Dissolution, Precipitation of Dispersoids, and Recrystallization Behavior of AA7020 Aluminum Alloy

    Eivani, A.R.; Ahmed, H.; Zhou, J.; Duszczyk, J.


    This research concerns the effect of homogenization treatment on the electrical resistivity of AA7020 aluminum alloy variants with different Zr and Cr contents. Small changes in the Zr and Cr contents of the as-cast alloy increase the electrical resistivity significantly. After employing various

  17. Evaluation of sugar yeast consumption by measuring electrical medium resistance

    Martin Lucas Zamora


    Full Text Available The real-time monitoring of alcoholic fermentation (sugar consumption is very important in industrial processes. Several techniques (i.e., using a biosensor have been proposed to realize this goal. In this work, we propose a new method to follow sugar yeast consumption. This novel method is based on the changes in the medium resistance (Rm that are induced by the CO2 bubbles produced during a fermentative process. We applied a 50-mV and 700-Hz signal to 75 ml of a yeast suspension in a tripolar cell. A gold electrode was used as the working electrode, whereas an Ag/AgCl electrode and a stainless-steel electrode served as the reference and counter electrodes, respectively. We then added glucose to the yeast suspension and obtained a 700% increase in the Rm after 8 minutes. The addition of sucrose instead of glucose as the carbon source resulted in a 1200% increase in the Rm. To confirm that these changes are the result of CO2 bubbles in the fermentation medium, we designed a tetrapolar cell in which CO2 gas was insufflated at the bottom of the cell and concluded that the changes were due to CO2 bubbles produced during the fermentation. Consequently, this new method is a low-cost and rapid technology to follow the sugar consumption in yeast.

  18. Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography

    Yang, Xianjin; Lassen, Rune Nørbæk; Jensen, Karsten Høgh;


    Three-dimensional (3D) crosshole electrical resistivity tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, western Denmark. The purpose was to evaluate the effectiveness of the ERT method for detection of small electrical conductivity (EC) changes during the first 2....... The combined HBB and VBB data sets were inverted using a difference inversion algorithm for cancellation of coherent noises and enhanced resolution of small changes. ERT detected the small bulk EC changes (resistive gaseous CO2. The primary factors that control...... bulk EC changes may be caused by limited and variable ERT resolution, low ERT sensitivity to resistive anomalies and uncalibrated CO2 gas saturation. ERT data show a broader CO2 plume while water sample EC had higher fine-scale variability. Our ERT electrode configuration can be optimized for more...

  19. Electrical Resistivity of Na-K Binary Liquid Alloy Using Ab-Initio Pseudopotentials

    Anil Thakur; P. K. Ahluwalia


    @@ The study of electrical resistivity of simple binary liquid alloy Na-K is presented as a function of concentration.Hard sphere diameters of sodium (Na) and potassium (K) are obtained through the inter ionic pair potentials evaluated using Troullier and Martins ab-initio pseudopotentials, which have been used to calculate partial structure factors S(q). The Ziman formula for calculating resistivity of binary liquid alloys has been used. Form factors are calculated using ab-initio pseudopotentials. The results suggest that the first principle approach for calculating pseudopotentials with in the frame work of Ziman formalism is quite successful in explaining the electrical resistivity data of compound forming binary liquid alloys.

  20. Electrical resistivity of NaPb compound-forming liquid alloy using ab initio pseudopotentials

    Anil Thakur; N S Negi; P K Ahluwalla


    The study of electrical resistivity of compound-forming liquid alloy, NaPb, is presented as a function of concentration. Hard sphere diameters of Na and Pb are obtained through the interionic pair potentials evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate the partial structure factors (). Considering the liquid alloy to be a ternary mixture, Ziman formula, modified for complex formation has been used for calculating resistivity of binary liquid alloys. Form factors are calculated using ab initio pseudopotentials. The results suggest that Ziman formalism, when used with ab initio pseudopotentials, are quite successful in explaining the electrical resistivity data of compound-forming binary liquid alloys.

  1. Rough surface electrical contact resistance considering scale dependent properties and quantum effects

    Jackson, Robert L., E-mail: [Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849 (United States); Crandall, Erika R.; Bozack, Michael J. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)


    The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness.

  2. Identification of electrical resistance of fresh state concrete for nondestructive setting process monitoring

    Shin, Sung Woo [Dept. of Safety Engineering, Pukyong National University, Busan (Korea, Republic of)


    Concrete undergoes significant phase changes from liquid to solid states as hydration progresses. These phase changes are known as the setting process. A liquid state concrete is electrically conductive because of the presence of water and ions. However, since the conductive elements in the liquid state of concrete are consumed to produce non-conductive hydration products, the electrical conductivity of hydrating concrete decreases during the setting process. Therefore, the electrical properties of hydrating concrete can be used to monitor the setting process of concrete. In this study, a parameter identification method to estimate electrical parameters such as ohmic resistance of concrete is proposed. The effectiveness of the proposed method for monitoring the setting process of concrete is experimentally validated.

  3. Application of the Electrical Resistivity Tomography to the stone content estimation

    Xie, Y.; Chanzy, André; Courdier, Florence; Mariotte, Nicolas; Rachedi, Sabrina


    Electrical Resistivity of the soil is regarded as a proxy for many soil properties as structure, moisture content or bedrock depth. The stone content is important for the trees as a large number of stones in the soil restrict the volume of soil that is available for roots to uptake water and nutrients. The potential of ERT for estimating the stone content is evaluated by regarding the stony soil as a two-exponent mixture with stones, which are less conductive, suspend in a conductive matrix. The resistivity of the two components was obtained separately by 2-electrode and 4-electrode methods. On the basis of the resistivity of the soils and the stones, the stone size effect on the effective resistivity was addressed using numerical modeling by Windows based resistivity modeling program RES2DINV and RES3DINV. The effective resistivity at different stone content was calculated by inverting the simulated potential which reproduces a linear panel experiment. The results demonstrate that stone size effect is not very significant. Field measurements were carried out at Mt-Ventoux and l'Issole, located in south of France in the Provence Region. The sites stand in Karstic terrain with soils having high and variable stone content and lying on a bed rock which can be found very close to the surface. Pits were dug and their stone content (volumetric fraction) was estimated. There is an apparent relation between the effective resistivity values extracted from the ERT inversion results and the stone content, the tendency are in good agreement with theoretical results. However, exceptions are found with relatively higher stone content and lower ER value, it can be explained by 3D effect from soil characteristics surrounding the pit. An error assessment in stone content is given according to the resistivity contrast between phases (stones and soil) and the variability in electric resistivity within each phase.

  4. Time-lapse electrical resistivity anomalies due to contaminant transport around landfills

    J. Yang


    Full Text Available The extent of landfill leachate can be delineated by geo-electrical imaging as a response to the varying electrical resistivity in the contaminated area. This research was based on a combination of hydrogeological numerical simulation followed by geophysical forward and inversion modeling performed to evaluate the migration of a contaminant plume from a landfill. As a first step, groundwater flow and contaminant transport was simulated using the finite elements numerical modeling software FEFLOW. The extent of the contaminant plume was acquired through a hydrogeological model depicting the distributions of leachate concentration in the system. Next, based on the empirical relationship between the concentration and electrical conductivity of the leachate in the porous media, the corresponding geo-electrical structure was derived from the hydrogeological model. Finally, forward and inversion computations of geo-electrical anomalies were performed using the finite difference numerical modeling software DCIP2D/DCIP3D. The image obtained by geophysical inversion of the electric data was expected to be consistent with the initial hydrogeological model, as described by the distribution of leachate concentration. Numerical case studies were conducted for various geological conditions, hydraulic parameters and electrode arrays, from which conclusions were drawn regarding the suitability of the methodology to assess simple to more complex geo-electrical models. Thus, optimal mapping and monitoring configurations were determined.

  5. Correlation of electrical resistivity imaging, push-tool and groundwater electrical conductivity at a heterogeneous field site

    Rayner, S.F.; Bentley, L.R.; Robillard, J.M. [Calgary Univ., AB (Canada)


    This paper describes the collection of data at a decommissioned sour gas plant, located on a topographic high in central Alberta. The information collected included: push-tool electrical conductivity (EC), three-dimensional electrical resistivity imaging (3D-ERI) and groundwater sample electrical conductivity. There was no correlation between the inverted ERI conductivity values and groundwater EC values, despite the existence of strong correlation between the inverted ERI conductivity values and upscaled push-tool EC. The most probable cause for the lack of correlation between the ERI and groundwater EC values is subsurface heterogeneity. There is a possibility that the EC of the mobile groundwater within the fractures and sand lenses are different than that of the relatively immobile matrix pore water, due to remediation activities. The entrance of the groundwater from piezometers is from high permeability zones (like sand lenses and fractures) within the screened interval. The ERI data mostly likely does not specifically identify the conductivity of the groundwater within these fractures and thin sand lenses. As a result, the manner in which ERI and groundwater data are interpreted in terms of subsurface geochemistry is affected. 4 refs., 4 figs.

  6. Early-age Electrical Resistivity and Reactive Capacity of Mineral Admixtures in Mortars

    LIANG Wenquan; HE Zhen; ZHANG Yongchuan; CHEN Meizhu; YANG Huaquan


    A non-contacting electrical resistivity measurement device was used to investigate the effect of different types and contents of mineral admixtures on the hydration performance of mortars during early age. The experimental results show that the changes of measured resistivity with time of hydration can be used to describe the hydration characteristics of cement- based materials, as well as the physical and chemical behavior of fly ash; blast furnace slag and silica fume at the very early ages. With an increasing replacement ratio of mineral admixtures, for the specimens blended with fly ash or slag, the resistivity increases firstly, then the following flatting period extends and after setting the resistivity increasing becomes slow and consequently a lower resistivity value at 24 hours occurs. This is due to the dilution effect and lower pozzolanic/ hydraulic activity of fly ash and slag. However, for the samples incorporated with silica fume, the resistivity value through 24 hours is lower with shorter flatting period and larger slope in the resistivity curves, which is because of its particle size effect and higher pozzolanic activity of silica fume. Moreover, non-contacting resistivity measurement might provide a helpful information to predict the long term performance including the durability of cement-based materials at early ages.

  7. Electrical Resistance of the Solder Connections for the Consolidation of the LHC Main Interconnection Splices

    Lutum, R; Scheuerlein, C


    For the consolidation of the LHC 13 kA main interconnection splices, shunts will be soldered onto each of the 10170 splices. The solder alloy selected for this purpose is Sn60Pb40. In this context the electrical resistance of shunt to busbar lap splices has been measured in the temperature range from RT to 20 K. A cryocooler set-up has been adapted such that a test current of 150 A could be injected for accurate resistance measurements in the low nΩ range. To study the influence of the solder bulk resistivity on the overall splice resistance, connections produced with Sn96Ag4 and Sn77.2In20Ag2.8 have been studied as well. The influence of the Sn60Pb40 solder resistance is negligible when measuring the splice resistance in a longitudinal configuration over a length of 6 cm. In a transverse measurement configuration the splice resistance is significantly influenced by the solder. The connections prepared with Sn77.2In20Ag2.8 show significantly higher resistance values, as expected from the relatively high sol...

  8. Inspection of earthen embankment dams using time lapse electrical resistivity tomography

    Case, Jared S.

    According to the National Inventory of Dams (NID), the number of dams across the United States is approximately 85,000. Many of these dams are more than 50 years old and need vast attention to ensure their safety. It is difficult to obtain a full assessment of the dam just by visual inspections alone. This is because many problems associated with dam failure occur internally, which makes it difficult to be observed by the dam inspectors. Examples of these flaws are piping and seepage (flow of water through or around dam walls). It is in this area where geophysical methods can aid in obtaining a more confident evaluation of a dam's integrity. Electrical resistivity is one geophysical technique that would be useful in detecting internal flaws associated with seepage and piping because it is sensitive to moisture changes. A study is being conducted to examine the feasibility of electrical resistivity tomography (ERT) to map and monitor internal compromised zones within earthen embankment dams. Two quarter-scaled earthen embankment dams were built at the United States Department of Agriculture (USDA) Agriculture Research Service (ARS) Hydraulics and Engineering Research Unit (HERU) in Stillwater, Oklahoma. These two dams were constructed with known internal compromised zones that are susceptible to seepage and piping. Electrical resistivity surveys were conducted on the completed dams using a 56 electrode dipole-dipole array. The collected data was then processed using electrical resistivity tomography (ERT) imaging software and evidence of these two compromised zones was easily visible. Also, additional surveys were conducted in order to monitor the changes in electrical signatures associated with changes in these zones due to filling of the reservoir and environmental/climate changes.

  9. Electrical resistance tomography for imaging the spatial distribution of moisture in pavement sections

    Buettner, M.; Ramirez, A.; Daily, W.


    Electrical Resistance Tomography (ERT) was used to image spatial moisture distribution and movement in pavement sections during an infiltration test. ERT is a technique for determining the electrical resistivity distribution within a volume from measurement of injected currents and the resulting electrical potential distribution on the surface. The transfer resistance (ratio of potential to injected current) data are inverted using an algorithm based on a finite element forward solution which is iteratively adjusted in a least squares sense until the measured and calculated transfer resistances agree to within some predetermined value. Four arrays of ERT electrodes were installed in vertical drill holes 1.22 m (4 ft) placed at the comers of a square 61 cm (2 ft) on a side into a pavement section which is used for a truck scale ramp on U.S. Highway 99 just north of Sacramento, CA. Water was introduced slowly into the pavement through a shallow hole in the center of this pattern and ERT data were collected in various planes as the water infiltrated into the pavement and subgrade materials over a period of several hours. The ERT data were inverted, and the resulting images show (1) the basic structure of the pavement section and (2) the movement of water through the image planes as a function of time during infiltration. An interesting result is that the water does not appear to drain from the section toward the shoulder as had been expected based on the design.

  10. A thermomechanical study of the electrical resistance of Cu lead interconnections

    Liu, D. S.; Chen, C. Y.; Chao, Y. C.


    The choice of liquid crystal display (LCD) driver packaging technology significantly influences the display performance of flat panel displays. Tape automated bonding (TAB) is generally the method of choice for connecting the LCD and the LCD driver circuit in flat panel displays. To achieve a finer pitch, an easier assembly, and a greater connection reliability, the design of the inner Cu lead must not only consider thermomechanical failure aspects, but must also maintain an acceptable joint resistance. This paper proposes an analytical model to predict the unit change in resistance of the copper foils used for TAB inner lead interconnections under various thermal environments and stressstrain states. The analytical model is based on a constitutive equation of the copper foil and the working principle of strain gages. Copper foil specimens are tensile tested at temperatures of 25°C, 50°C, 75°C, and 100°C at strain rates of 0.2/min. and 0.5/min., respectively, to confirm the validity of the developed analytical model. The numerical results and the experimental data are found to be in good agreement. Hence, the analytical method provides the means of predicting the thermal effect on the electrical and mechanical properties of the copper foils. Finally, by implementing finite-element method (FEM) solutions in the developed analytical model, this study constructs electrical resistance design charts to predict the variation in the electrical resistance of the copper foils under different thermal-mechanical conditions.

  11. Surface Morphology and Electrical Resistivity in Polycrystalline Au/Cu/Si(100 System

    T. E. Novelo


    Full Text Available This work describes the analysis of morphology and electrical resistivity (ρ obtained in the Au/Cu/Si system. The Au/Cu bilayers were deposited by thermal evaporation technique with thicknesses from 50 to 250 nm on SiOx/Si(100 substrates. The Au : Cu concentration ratio of the samples was of 25 : 75 at%. The bilayers were annealed into a vacuum oven with argon atmosphere at 660 K for one hour. The crystalline structures of AuCu and CuSi alloys were confirmed by X-ray diffraction analysis. The scanning electron microscopy (SEM, the atomic force microscopy (AFM, and the energy dispersive spectroscopy (EDS were used to study the morphology, final thickness, and the atomic concentration of the alloys formed, respectively. The four-point probe technique was used to measure the electrical resistivity (ρ in the prepared alloys as a function of thickness. The ρ value was measured and it was numerically compared with the Fuchs–Sondheimer (FS and the Mayadas–Shatzkes (MS models of resistivity. Results show values of electrical resistivity between 0.9 and 1.9 μΩ-cm. These values are four times smaller than the values of the AuCu systems reported in literature.

  12. Etude sur les tendons en materiaux composites et leur application aux ancrages postcontraints

    Chennouf, Adil

    L'objectif general de la presente these est d'evaluer le comportement a l'arrachement et au fluage d'ancrages injectes constitues de tendons en materiaux composites afin d'etablir des recommandations plus appropriees et realistes pour le dimensionnement et la conception. Quatre types de tendons en materiaux composites, deux a base de fibres d'aramide et deux a base de fibres de carbone, ont ete utilises dans l'etude. Les travaux de recherche de cette these ont porte notamment sur: (I) Une caracterisation physique et mecanique des tendons en materiaux composites utilises dans l'etude. (II) Une etude en laboratoire sur les coulis de scellement. La premiere etape de cette etude a concerne le developpement d'un coulis de scellement performant adapte aux tendons en materiaux composites et a differentes situations d'injection. La seconde etape a traite des essais de caracterisations physique et mecanique du coulis de scellement developpe comparativement a trois coulis de scellement usuels d'un meme rapport E/L de 0,4. (III) Une etude sur des modeles reduits d'ancrages injectes. (IV) Une etude sur des modeles d'ancrages a grande echelle. La synthese de ces etudes a permis d'enoncer les principales conclusions suivantes: (1) Les valeurs moyennes des charges de rupture des tendons en materiaux composites ont ete de 1% a 29% superieures a celles specifiees par les manufacturiers. (2) L'etude sur les coulis de scellement a permis le developpement de coulis de ciment repondant aux criteres fixes, soient une grande stabilite, une bonne fluidite, une legere expansion et de bonnes caracteristiques mecaniques. (3) Les tendons en materiaux composites ont montre des contraintes d'adherence maximum superieures a celles des tendons en acier. (4) Le type de fibre, la configuration et le fini de surface des tendons en materiaux composites gouvernent leur resistance a l'adherence. (5) L'introduction de sable et d'autres ajouts comme les fines de silice et la poudre d'aluminium au coulis

  13. Investigating preferential flow processes in soils using anisotropy in electrical resistivity

    Al-Hazaimay, S.; Huisman, J. A.; Zimmermann, E.; Kemna, A.; Vereecken, H.


    Macropores occupy a small volume fraction of the pore space in the vadose zone. Water and solutes can quickly bypass the vadose zone through these macropores in a process known as macropore preferential flow. In the last few decades, many efforts were made to improve understanding the macropore preferential flow processes because of their importance in transporting agrochemicals and contaminants to the groundwater. Unfortunately, very few measurement methods provide insights into these preferential flow processes. In this context, the objective of this study is to evaluate whether anisotropy in electrical resistivity can be used to identify the existence of flow in macropores and perhaps even to characterize the exchange between macropores and bulk soil. In a first step, infiltration into a soil column with an artificial macropore was simulated using the HYDRUS software package that solves the pseudo three-dimensional axisymmetric Richards equation. The simulated temporal development of the resistivity anisotropy was obtained by solving the Poisson equation in MATLAB after converting the simulated water content distributions to electrical resistivity distributions. At the beginning of the simulation, a small anisotropy ratio was simulated because of the presence of the empty ('deactivated') macropore in the moist matrix. As soon as the infiltration process started, macropore flow occurred and both the horizontal and vertical resistivity decreased strongly. However, the vertical and horizontal resistivity reacted differently because of the presence of the conductive ('activated') macropore, which led to anisotropy in the resistivity. As soon as infiltration into the macropore stopped, water re-distributed from the macropore to the matrix domain and contrasts in electrical resistivity decreased within the column. To verify the simulation results in the laboratory, we measured the temporal dynamics of the anisotropy in resistivity during water infiltration into a soil

  14. Etude Sedimentologique et Esquisse Paleoenvironnementale des ...

    Etude Sedimentologique et Esquisse Paleoenvironnementale des ... Les analyses sédimentologiques réalisées dans ce travail, sont un prélude d'un projet d'études pluridisciplinaires ... (Crétacé inférieur) à l'océanisation complète (fin.

  15. Influence of plant roots on electrical resistivity measurements of cultivated soil columns

    Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah


    Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m-2s-1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed

  16. Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography

    Yang, Xianjin; Lassen, Rune Nørbæk; Jensen, Karsten Høgh;


    Three-dimensional (3D) crosshole electrical resistivity tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, western Denmark. The purpose was to evaluate the effectiveness of the ERT method for detection of small electrical conductivity (EC) changes during the first 2...... the migration of a CO2 plume consist of buoyancy of gaseous CO2, local heterogeneity, groundwater flow and external pressure exerted by the injector. The CO2 plume at the Vrøgum site migrated mostly upward due to buoyancy and it also skewed toward northeastern region by overcoming local groundwater flow...

  17. Monitoring radio-frequency heating of contaminated soils using electrical resistance tomography

    Ramirez, A.L.; Daily, W.D.


    Electrical resistance tomography (ERT) was used to monitor a radio-frequency heating process for the insitu remediation of volatile organic compounds from subsurface water and soil at the Savannah River Site, near Aiken, South Carolina. A dipole antenna located in a horizontal well in the unsaturated zone was used to heat a contaminated clay layer. The heat-induced changes were tomographically imaged by their effects on the formation electrical resistivity. The resistivity changes observed appear to be related to heating and vaporization of the pore water, formation of steam condensate, and infiltration of rainwater through the heated zones and adjacent areas. There is a clear asymmetry downward in the resistivity decreases associated with the heating process. The resistivity decreases observed in the vicinity of the heating well are believed to be caused by the heating and downward migration of warm water originally located within a radius of a few feet around the heating well; the magnitude of the change is between 10--20%. The decreasing resistivity implies an increasing rate of radio wave attenuation as heating progressed; therefore, the rate of energy deposition around the heating well increased while the penetration distance of the radio waves decreased. Saturation changes in the clay near the antenna during heating were estimated to be 50--55% based on the observed resistivity decreases. Resistivity changes observed at distances greater than 3 meters to one side of the antenna appear to be related to rainwater infiltration. We propose that gaps in near surface clay layers allow rainwater to migrate downward and reach the top of clay rich zone penetrated by the antenna borehole. The water may then accumulate along the top of the clay.




    Highly industrialized areas pose challenges for surface electrical resistivity characterization due to metallic infrastructure. The infrastructure is typically more conductive than the desired targets and will mask the deeper subsurface information. These challenges may be minimized if steel-cased wells are used as long electrodes in the area near the target. We demonstrate a method of using long electrodes to electrically monitor a simulated leak from an underground storage tank with both synthetic examples and a field demonstration. The synthetic examples place a simple target of varying electrical properties beneath a very low resistivity layer. The layer is meant to replicate the effects of infrastructure. Both surface and long electrodes are tested on the synthetic domain. The leak demonstration for the field experiment is simulated by injecting a high conductivity fluid in a perforated well within the S tank farm at Hanford, and the resistivity measurements are made before and after the leak test. All data are processed in four dimensions, where a regularization procedure is applied in both the time and space domains. The synthetic test case shows that the long electrode ERM could detect relative changes in resistivity that are commensurate with the differing target properties. The surface electrodes, on the other hand, had a more difficult time matching the original target's footprint. The field results shows a lowered resistivity feature develop south of the injection site after cessation of the injections. The time lapsed regularization parameter has a strong influence on the differences in inverted resistivity between the pre and post injection datasets, but the interpretation of the target is consistent across all values of the parameter. The long electrode ERM method may provide a tool for near real-time monitoring of leaking underground storage tanks.

  19. Monitoring of olive oil mills' wastes using electrical resistivity tomography techniques

    Simyrdanis, Kleanthis; Papadopoulos, Nikos; Kirkou, Stella; Sarris, Apostolos; Tsourlos, Panagiotis


    Olive oil mills' wastes (OOMW) are one of the byproducts of the oil production that can lead to serious environmental pollution when they are deposited in ponds dug on the ground surface. Electrical Resistivity Tomography (ERT) method can provide a valuable tool in order to monitor through time the physical flow of the wastes into the subsurface. ERT could potentially locate the electrical signature due to lower resistivity values resulting from the leakage of OOMW to the subsurface. For this purpose, two vertical boreholes were installed (12m depth, 9 m apart) in the vicinity of an existing pond which is filled with OOMW during the oil production period. The test site is situated in Saint Andreas village about 15km south of the city of Rethymno (Crete, Greece). Surface ERT measurements were collected along multiple lines in order to reconstruct the subsurface resistivity models. Data acquisition was performed with standard and optimized electrode configuration protocols. The monitoring survey includes the ERT data collection for a period of time. The study was initiated before the OOMW were deposited in the pond, so resistivity fluctuations are expected due to the flow of OOMW in the porous subsurface media through time. Preliminary results show the good correlation of the ERT images with the drilled geological formations and the identification of low resistivity subsurface zone that could be attributed to the flow of the wastes within the porous layers.

  20. Electrical Resistance Behavior of Vinylester Composites Filled with Glass-carbon Hybrid Fibers

    WANG Jun; ZHANG Lianmeng; XU Renxin; DUAN Huajun; YANG Xiaoli; WANG Xiang


    Vinylester (bismethacryloxy derivative of a bisphenol-A type EP resin, VE) composites with glass-carbon hybrid fibers (CF-GF) weight fraction of 50%, were prepared by the compress molding method. The distribution of carbon fiber in the hybrids was observed by stereomicroscope. The electrical resistance behavior of the composites filled with different carbon fiber (CF) weight contents (0.5% to 20%) was studied. The experimental results show that the electrical resistance behaviors of CF-GF/VE composites are different with those of CF/VE composites because carbon fibers' conducting networks are broken by the glass fibers in the CF-GF/VE composites. The carbon fibers distribute uniformly in the networks of glass fibers (GF) like single silk and form the semi-continuous conducting networks. Composite filled with GF-CF hybrid has a higher percolation threshold than that filled with pure CF. At that time, the resistivity of CF-GF/VE composites varies little with the temperature increasing. The temperature coefficient of resistivity in GF-CF/VE composite is less than 317 ppm and the variation of the resistivity after ten thermal cycles from 20 ℃to 240 ℃ is less than 1.96%.

  1. Electrical Resistivity Monitoring of an Active Hydrothermal Degassing Area at Solfatara, Phlegrean Fields.

    Vandemeulebrouck, J.; Byrdina, S.; Grangeon, J.; Lebourg, T.; Bascou, P.; Mangiacapra, A.


    Campi Flegrei caldera (CFc) is an active volcanic complex covering a ~100 km² densely populated area in the western part of Naples (Italy) that is presently showing clear signs of unrest. Solfatara volcano, a tuff cone crater formed ~4000 yrs B.P. ago by phreato-magmatic eruptions represents the main degassing outflow of CFc. Magmatic gases which are exsolved from a ~8 km deep magmatic reservoir mix at 4 km depth with meteoric hydrothermal fluids then reach the surface in the Solfatara area. These hydrothermal and magmatic gases, mainly H2O and CO2, are released through both diffuse degassing structures and fumaroles. In the frame of the MedSuv (Mediterranean Supervolcanoes) FP7 european project , we are performing a time-lapse electrical resistivity monitoring of an active degassing area of Solfatara. Using a 500-m-long cable and 48 electrodes, an electrical resistivity tomography (ERT) is performed on a two-day basis since May 2013. The time-lapse inversion of the ERT gives an image of the temporal variations of resistivity up to 100 m depth that can be compared with the variations of ground deformation, CO2 flux, soil temperature and seismic ambient noise. Resistivity variations can originate from fluid composition, gas ratio and temperature. For example, the abrupt change of resistivity that was observed mid-2014 during a period of uplift and gas flux increase, could be associated with the rise of hydrothermal fluids.

  2. Lembang fault plane identification using electrical resistivity method for disaster mitigation

    Maulinadya, S.; Ramadhan, M. Lutfi; N. Wening, F.; Pinehas, D.; Widodo


    Lembang Fault is an active fault lies from West to East located 10 kilometers in north of Bandung. It is a normal fault that its foot wall raises 40-450 meters above the ground. Its location that is not so far from Bandung, which is densely populated and frequently visited by tourists, makes Lembang Fault a threat if it becomes suddenly active. Its movement can cause earthquakes that can result in fatalities. Therefore, act of mitigation is necessary, such as educating people about Lembang Fault and its potential to cause disaster. The objective of this study is to find Lembang Fault plane below the surface with geo electrical mapping method and vertical elect rical sounding method around Ciwarega and The Peak, Lembang (west side of Lembang Fault). Both of these methods are using electricity current to measure rock resistivity. Currents are injected to the ground and potential differences are measured. According to Ohm's Law, resistivity can be calculated so that resistivity distribution can be obtained. In this study, high resistivity contrast is obtained; it is about 1400-5000 Ohm.m. This resistivity contrast can be caused by lateral lithology difference resulted by fault existence. This proves that there is actually a fault in Lembang that potentially cause disasters like earthquakes.

  3. Effect of decreasing electrical resistance in Characeae cell membranes caused by the flow of alternating current

    Edward Śpiewla


    Full Text Available By means of the techniques of external electrodes and microelectrodes, it was found that evanescent flow of an alternating current through plasmalemma of Characeae cells neutralises oscillatory change in their electrical resistance and reversibly diminishes its value. This effect is particularly significant in the case of "high resistance cells", but it weakens with increasing temperature. The value of the estimated activation energy indicates that, after flow of the alternating current through the membrane, a rapid increase in the conductivity may be caused by an increase in conductivity of potassium channels. This result seems to support the hypothesis of electroconformational feedback.

  4. Study of secondary electronic emission in some piezo-electric materials: application to ultrasonic visualization; Etude de l'emission electronique secondaire de quelques materiaux piezoelectriques: application a la visualisation ultrasonore

    Marini, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    Methods allowing the visualization of acoustic images appear at the moment to be of great interest in the field of non-destructive testing as well as in that of underwater detection. In order to carry out certain calculations on the operation of an ultrasonic camera, it has been necessary to study the secondary electron emission of some piezoelectric materials liable to be incorporated into the equipment. The secondary electron emission of insulators is a rather complex phenomenon; in order to find a rational explanation for the observations made, a theory has been developed for the energy spectrum of the emitted electrons. The experimental results of this work have then been used to build an ultrasonic visualization installation. Some examples of acoustic images which have been visualized are also presented. (author) [French] Les methodes qui permettent de visualiser des images acoustiques trouvent a l'heure actuelle un grand interet dans le domaine du controle non destructif comme dans celui de la detection sous-marine. De maniere a effectuer certains calculs sur le fonctionnement d'une camera ultrasons, il a ete necessaire d'etudier l'emission electronique secondaire de quelques materiaux piezoelectriques susceptibles d'etre utilises dans sa construction. L'emission electronique secondaire des isolants est un phenomene assez complexe et de maniere a trouver des explications coherentes aux observations effectuees, une theorie du spectre energetique des electrons emis a ete elaboree. Une installation de visualisation ultrasonore a alors ete realisee a partir des donnees experimentales de cette etude. Quelques exemples d'images acoustiques visualisees par cette methode sont egalement presentees. (auteur)

  5. Electrical resistivity of rock and its correlation to engineering properties; Ganseki {center{underscore}dot} ganban no hiteiko to sono kogakuteki seishitsu tono kankei ni tsuite

    Nishimaki, Hitoshi; Sekine, Ichiro [Toda Corp., Tokyo (Japan); Saito, Akira [Mitsui Mineral Development Engineering Corp., Tokyo (Japan); Yoshinaka, Ryunoshin [Saitama University, Saitama (Japan). Faculty of Engineering


    In order to interpret resistivity profiles derived from electrical and electromagnetic surveys, it is necessary to study the correlation between electrical resistivity of rock and engineering properties. In this paper, we investigate the electrical resistivity of rock and its correlation to engineering properties. The experiments reveal the importance of electric surface conduction for studying those problems. These results suggest that resistivity measurements can be used as a quantitative guide in evaluating an area as to its engineering properties. (author)

  6. Hyperbolic Method to Analyze the Electrical Resistivity Curve of Portland Cements with Superplasticizer

    WEI Xiaosheng; XIAO Lianzhen; LI Zongjin


    Electrical measurement was employed to investigate the early hydration characteristics of cement pastes with different dosages of superplasticizer in the same W/C ratio. The hyperbolic method was applied to analyze the electrical resistivity development. The peak point (Ph) on the hyperbolic curve could be easily read. The time (th) to reach the point Ph had strong relations with the setting time. th was delayed with the increment of the dosage of superplasticizer. The time th was used to plot the relationship between the initial setting time and final setting time. The hyperbolic equation was established to predict the ultimate resistivity.The retardation effect of the superplasticizer was confirmed in the same W/C ratio by setting time and isothermal heat eyolution.

  7. Estimation of Recharge from Long-Term Monitoring of Saline Tracer Transport Using Electrical Resistivity Tomography

    Haarder, Eline Bojsen; Jensen, Karsten Høgh; Binley, Andrew;


    The movement of a saline tracer added to the soil surface was monitored in the unsaturated zone using cross-borehole electrical resistivity tomography (ERT) and subjected to natural rainfall conditions. The ERT data were inverted and corrected for subsurface temperature changes, and spatial moment...... methods. In September 2011, a saline tracer was added across a 142-m2 area at the surface at an application rate mimicking natural infiltration. The movement of the saline tracer front was monitored using cross-borehole electrical resistivity tomography (ERT); data were collected on a daily to weekly...... basis and continued for 1 yr after tracer application. The ERT data were inverted and corrected for temperature changes in the subsurface, and spatial moment analysis was used to calculate the tracer mass, position of the center of mass, and thereby the downwardly recharging flux. The recovered mass...

  8. Electrical resistance load effect on magnetoelectric coupling of magnetostrictive/piezoelectric laminated composite

    Wang, Yaojin, E-mail: [Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road, Jiading, Shanghai 201800 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Xiangyong [Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road, Jiading, Shanghai 201800 (China); Jiao, Jie; Liu, Linhua [Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road, Jiading, Shanghai 201800 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Di, Wenning; Luo, Haosu [Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road, Jiading, Shanghai 201800 (China); Or, Siu Wing, E-mail: [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)


    The effect of electrical resistance load on the magnetoelectric (ME) coupling of laminated composite of Tb{sub 0.3}Dy{sub 0.7}Fe{sub 1.92} (Terfenol-D) magnetostrictive alloy and 0.7Pb (Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.3PbTiO{sub 3} (PMN-PT) piezoelectric single crystal is investigated at both non-resonance and resonance frequencies. The results show that (i) the ME coefficient and ME resonance frequency increase with the increase in electrical resistance load, and (ii) the maximum ME power occurs in open-circuit condition. The present study provides the basis for the design of ME sensors and their signal-processing and electronic circuits.

  9. Research on Image Reconstruction Algorithms for Tuber Electrical Resistance Tomography System

    Jiang Zili


    Full Text Available The application of electrical resistance tomography (ERT technology has been expanded to the field of agriculture, and the concept of TERT (Tuber Electrical Resistance Tomography is proposed. On the basis of the research on the forward and the inverse problems of the TERT system, a hybrid algorithm based on genetic algorithm is proposed, which can be used in TERT system to monitor the growth status of the plant tubers. The image reconstruction of TERT system is different from the conventional ERT system for two phase-flow measurement. Imaging of TERT needs more precision measurement and the conventional ERT cares more about the image reconstruction speed. A variety of algorithms are analyzed and optimized for the purpose of making them suitable for TERT system. For example: linear back projection, modified Newton-Raphson and genetic algorithm. Experimental results showed that the novel hybrid algorithm is superior to other algorithm and it can effectively improve the image reconstruction quality.

  10. Coupled stress-strain and electrical resistivity measurements on copper based shape memory single crystals

    Gonzalez Cezar Henrique


    Full Text Available Recently, electrical resistivity (ER measurements have been done during some thermomechanical tests in copper based shape memory alloys (SMA's. In this work, single crystals of Cu-based SMA's have been studied at different temperatures to analyse the relationship between stress (s and ER changes as a function of the strain (e. A good consistency between ER change values is observed in different experiments: thermal martensitic transformation, stress induced martensitic transformation and stress induced reorientation of martensite variants. During stress induced martensitic transformation (superelastic behaviour and stress induced reorientation of martensite variants, a linear relationship is obtained between ER and strain as well as the absence of hys teresis. In conclusion, the present results show a direct evidence of martensite electrical resistivity anisotropy.

  11. Electron scattering characteristics of polycrystalline metal transition films by in-situ electrical resistance measurements

    Trindade, I.G. [Faculdade de Ciencias da Universidade do Porto, Physics Department, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); IFIMUP and IN, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)], E-mail:; Leitao, D. [IFIMUP and IN, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Fermento, R. [Instituto de Microelectronica de Madrid, Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Pogorelev, Y.; Sousa, J.B. [Faculdade de Ciencias da Universidade do Porto, Physics Department, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); IFIMUP and IN, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)


    In-situ electrical resistance measurements were performed to obtain the scattering characteristics of very thin polycrystalline metal transition magnetic alloys grown by ion beam deposition (IBD) on specific underlayers. The experimental curves show size effects at small film thicknesses and important differences between Co{sub 85}Fe{sub 15} and Ni{sub 81}Fe{sub 19} thin layers grown on identical underlayers of Ta70 A/Ru13 A. The largest difference was observed in Ni{sub 81}Fe{sub 19} films grown on underlayers of amorphous Ta70 A. The experimental curves of electrical resistivity/conductivity variation with layer thickness were well fit within the Mayadas and Shatzkes (M-S) model, assuming specific formulations for grain growth with layer thickness.

  12. Electrical Resistance and Transport Numbers of Ion-Exchange Membranes Used in Electrodialytic Soil Remediation

    Hansen, Henrik; Ottosen, Lisbeth M.; Villumsen, Arne


    causes damage to the membrane. This work presents the result from transport number and electrical resistance measurements done on four sets of ion-exchange membranes (Ionics, Inc. CR67 HMR412 cation-exchange membranes and Ionics, Inc. AR204 SXZR anion-exchange membranes), which have been used in four......Electrodialytic soil remediation is a recently developed method to decontaminate heavy metal polluted soil using ion-exchange membranes. In this method one side of the ion-exchange membrane is in direct contact with the polluted soil. It is of great importance to know if this contact with the soil...... different electrodialytic soil remediation experiments. The experiments showed that after the use in electrodialytic soil remediation, the ion-exchange membranes had transport numbers in the same magnitude as new membranes. The electrical resistance for six membranes did not differ from that of new...

  13. Electrical resistivity of yttrium single crystals in the range 4. 2--300 K

    Volkenshtein, N.V.; Dyakina, V.P.; Kumin, P.R.; Startsev, V.E.; Volkov, V.T.; Nikiforova, T.V.


    The electrical resistivity of pure yttrium single crystals (rho/sub 273.2//rho/sub 4.2/approx. =700) oriented along the <0001> and <1010> axes has been investigated in the temperature range 4.2--300 K. It was established that the scattering of electrons by phonons is described by the Bloch--Grueneisen function for both orientations over the whole temperature range, with the parameter THETA/sub R/ equal to the Debye temperature THETA/sub D/. It was found that a contribution to rho(T) quadratic in the temperature is two orders of magnitude greater than in other transition metals. It is shown that the anisotropy in the electrical resistivity of yttrium at Tapprox.THETA/sub D/ is completely determined by the anisotropy of its Fermi surface.

  14. Does Changes in the Electrical Resistance of an Acupuncture Meridian Predict Pain Intensity Following Orthopedic Surgery?

    Rezvani, Mehran; Alebouyeh, Mahmoud-Reza; Imani, Farnad; Entezary, Saeid Reza; Mohseni, Masood


    Background Several methods for assessment of severity of pain have been proposed but all of them are subjective. Objectives This study evaluated the association concerning changes in electrical resistance (ER) between two acupuncture points and severity of postoperative pain in order to define an objective measurement of pain. Patients and Methods In a cross-sectional study, 50 patients undergoing lower extremity orthopedic surgery with postoperative moderate to severe pain (VAS > 4,) were co...

  15. High pressure electrical resistivity study on nonlinear bis thiourea cadmium chloride (BTCC) single crystal

    Ariponnammal, S.; Radhika, S. [Department of Physics, Gandhigram Rural Institute, Deemed University, Gandhigram - 624 302, Dindigul District, Tamil Nadu (India); Selva Vennila, R. [Department of Physics, Anna University, Chennai - 600 025 (India); Arumugam, S. [Department of Physics, Bharathidasan University, Trichy (India)


    The Bis Thiourea Cadmium Chloride (BTCC) crystals have been crystallized by slow evaporation technique. The lattice parameters of the grown crystals have been determined by the Energy dispersive x-ray diffraction technique (EDXRD) and the structure has been confirmed. The high pressure electrical resistivity study have been carried out on this crystal and the results have been reported here. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. High temperature static strain measurement with an electrical resistance strain gage

    Lei, Jih-Fen


    An electrical resistance strain gage that can supply accurate static strain measurement for NASP application is being developed both in thin film and fine wire forms. This gage is designed to compensate for temperature effects on substrate materials with a wide range of thermal expansion coefficients. Some experimental results of the wire gage tested on one of the NASP structure materials, i.e., titanium matrix composites, are presented.

  17. Multidimensional electrical resistivity survey for bedrock detection at the Rieti Plain (Central Italy)

    Cardarelli, Ettore; De Donno, Giorgio


    The combined use of 1D, 2D and 3D electrical resistivity methods for estimating bedrock depth is presented with an application to a case study located in Central Italy. The site is a narrow basin where two boreholes were drilled reaching the bedrock, which had the greatest depth in the center of the basin. Six vertical electrical soundings were executed along a basin cross-section in order to have a preliminary 1D reconstruction of the bedrock and the overlying alluvial deposits. Inverted resistivity models, show bedrock depths in accordance with the borehole data and a complex subsurface layering of the overburden deposits to be further investigated with 2D and 3D electrical resistivity tomography. Four additional electrical lines, acquired using a pole-dipole array and directed normally to the alignment of the vertical soundings, confirm the 1D results in regards to the bedrock depths, adding additional information about the continuity of the bedrock within the basin, and giving a high resolution image of the shallower sediments. Through the tomographic inversion of 3D data we were able to reconstruct a volumetric image of the carbonate formation at the study site. Finally, the tomographic models have been validated through the inversion of a synthetic dataset, with the aim to attain a final model, whose synthetic model is comparable with the field one. The final model, estimated using an iterative procedure that minimises the absolute difference between field and synthetic models, has retrieved a bedrock resistivity one order of magnitude higher than that obtained from field data inversion.

  18. Electrical Resistivity Investigations of the Kurşunlu (Manisa/Turkey) Geothermal Area

    Sarı, Coşkun; Timur, Emre


    It is of considerable importance to explore the geological structure around active faults, especially near-surface unconsolidated layers, to estimate the faults' activity. There are numerous case studies to investigate geothermal reservoirs and surrounding active faults using geophysical exploration methods; however, only a few cases have been verified in detail by comparison with other geological information. Electrical resistivity data provide a substantial contribution to the geophysical mapping and monitoring of geothermal reservoirs. We applied electrical methods, which can be effective for exploring to several hundred meters depth, to reveal geological structures covered by thick Quaternary alluvium formations. Geothermal activity around city of Manisa in Gediz Graben (Western Turkey) has been investigated by many researchers and many geothermal boreholes were drilled in order to produce electricity and for heating purposes. The Kurşunlu geothermal area is with the southern side of the Gediz Graben in 2 km west of Salihli, Manisa, Turkey. According to rising demand on thermal water around Salihli, geophysical studies were performed using the Vertical Electrical Sounding (VES) measurements at 16 stations around the area of Kurşunlu hot springs, and they were interpreted using both one and two-dimensional modelling. Vertical and horizontal resistivity sections were mapped, and it was determined that two low-resistivity layers exist both in the North (stations 1,2 and 4) and the South (stations 6 and 10) part of the survey area. As a result of the studies, the boundaries of the low-resistivity layer were mapped and test drilling locations were recommended.

  19. [Testing the electric resistance as an objective diagnostic test in dental pulp diseases].

    Constantin, I; Severineanu, V; Tudose, N


    The authors test by means of a measuring device of high precision the resistence of health or sick human pulpa, comparing it to them of gums, excluding in the same time the sensibility of the patient in question. The authors corroborate the obtained dates with clinical symptomatology and the histopathological photos, discussing the possibility of objective electrical test as an expedient in the diagnosis of pulpa-affections.

  20. Shallow electrical resistivity imaging of the Limón fault, Chagres River Watershed, Panama Canal

    Mojica, Alexis; Pérez, Tatiana; Toral, Jaime; Miranda, Roberto; Franceschi, Pastora; Calderón, Carlos; Vergara, Fidedigna


    The aim of this study was the use of electrical resistivity imaging to investigate the geometry of the southwest portion of one of the most important geologic fault zones of the Panama Canal Watershed: the Limón fault. This fault is characterized by its juxtaposition of pre-Tertiary andesitic basalt (Playa Venado Formation) against late Oligocene Tertiary sediments (Caimito Formation). In this zone, four 2D electrical resistivity tomography profiles were conducted perpendicular to the fault trace: T-1, T-2, T-3 and T-4. The T-1, T-3, and T-4 profiles were long profiles (235 m for the first two and 215 m for the last one), with a goal of determining the depth of the geologic boundary between the sedimentary and andesitic deposits. The T-2 profile was a short profile (23.5 m), with the objective of calibrating the results with data provided by the paleoseismic trenching previously developed in the area of interest. For these tests, two electrode arrays of types Wenner-Schlumberger and Dipole-Dipole, were used. For the inversion routine, two regularized least-squares methods were used: the smoothness-constrained method and robust inversion. The long electrical resistivity tomography profiles were able to identify a set of electrical anomalies associated with the andesitic basalt and the Tertiary sediments and with that, the contact geometry between these formations. In these profiles, fault angle measurements ranged from 60° to 80° with respect to the ground surface. In the T-2 profile, the electrical anomalies showed a good association with the results of the paleoseismic study. This allowed identification of the colluvium and alluvium covering the gravel and sand debris that mark the gradual transition to the soils of the Caimito Formation. Finally, a set of 2D synthetic models was developed for each of the T-1, T-3, and T-4 profiles with the objective of optimizing interpretation of the field results.

  1. Sinop Province, Şahintepesi Region, Bayraktepe Tumulus' Display With Electrical Resistivity Tomography

    Yıldırım, Şahin; Ahmet Yüksel, Fethi; Avcı, Kerim; Ziya Görücü, Mahmut


    Paphlagonia is located on the Boztepe Foreland (Sinop Foreland) and its peninsula, which extends northwards along the coastal lane of the Black Sea. Sinop is at the northernmost tip of Turkey, in the middle of the Black Sea region. Archaeological excavations of the entire Sinop province have uncovered artifacts from the Bronze Age dating back to 3000 BC. Most ancient sources indicate that Mithridates is buried in Sinop. It is alleged that the Tumuli on the crest of the historical peninsula, called Boztepe in Sinop, could be the resting spot of Mithridates. There are three tumuli in this area known as Şahin Tepesi Mevkii (Şahin Hill Site). In order to determine the location of the burial chamber of the tomb, Electrical Resistivity Tomography (ERT) measurement methods were used, which is a geophysical method capable of three dimensional (3D) measurement and evaluation. In the area of the tumulus, measurements were made in a 57 electrode array using a 42 x 36 m (total 1512 m2) spread electrode pattern with 6m spacing. In the study, an AGI brand SuperString R1 Resistivity device and equipment were used. Resistivity data were interpreted using AGI Earthimag 3D software. From the geoelectric resistivity data, 2D and 3D images were obtained as a result of data processing. In the tumulus area smooth geometrical forms and individual high-amplitude anomalies were visualized, that could be attributed to structural remains and the presence of archaeological materials. These anomalies were plotted on the gridded location plan of the excavation area. Within the artificial hill forming the tumulus, with regards to the natural geological units, anomalies such as very high resistivity, linear elongations, angular rotations, curves, etc. (stone wall, hollow room) that are caused by architectural elements were observed. These geometrically shaped, very highly resistive, anomalies should be checked. Keywords: Sinope, Tumulus, Electrical Resistivity Tomography, Archaeo-geophysics

  2. Sensitivity of crumb rubber particle sizes on electrical resistance of rubberised concrete

    Sakdirat Kaewunruen


    Full Text Available Railway track components often suffer from high aggressive loading and vibrating conditions of railway environment, causing high maintenance costs due to impact damage, rail seat abrasion and excessive noise and vibration to surrounding equipment. Thus, it is essential to have novel improvement of material capabilities in order to solve or reduce these problems. A nanoengineered improvement method for concrete material using crumb rubber has been recently introduced to railway applications. However, for modern electrified railway tracks, structural materials will need to provide electrical and signal insulation for effective operations of track circuits and electrification. This paper firstly highlights the importance of the particle sizes of crumb rubbers on the electrical resistivity of the concrete modified by crumbed rubbers. It shows that microscale crumb rubbers induce lesser electrical conduction capacity than nanoscale crumb rubber.

  3. High resistance to sulfur poisoning of Ni with copper skin under electric field

    Xu, Xiaopei; Zhang, Yanxing; Yang, Zongxian


    The effects of sulfur poisoning on the (1 0 0), (1 1 0) and (1 1 1) surfaces of pure Ni and Cu/Ni alloy are studied in consideration of the effect of electric field. The effects of Cu dopants on the S poisoning characteristics are analyzed by the means of the density functional theory results in combination with thermodynamics data using the ab initio atomistic thermodynamic method. When the Cu concentration increases to 50% on the surface layer of the Cu/Ni alloy, the (1 1 0) surface becomes the most vulnerable to the sulfur poisoning. Ni with a copper skin can mostly decrease the sulfur poisoning effect. Especially under the electric field of 1.0 V/Å, the sulfur adsorption and phase transition temperature can be further reduced. We therefore propose that Ni surfaces with copper skin can be very effective to improve the resistance to sulfur poisoning of the Ni anode under high electric field.

  4. Electrical resistance stability of high content carbon fiber reinforced cement composite

    YANG Zai-fu; TANG Zu-quan; LI Zhuo-qiu; QIAN Jue-shi


    The influences of curing time, the content of free evaporable water in cement paste, environmental temperature, and alternative heating and cooling on the electrical resistance of high content carbon fiber reinforced cement (CFRC) paste are studied by experiments with specimens of Portland cement 42.5 with 10 mm PAN-based carbon fiber and methylcellulose. Experimental results indicate that the electrical resistance of CFRC increases relatively by 24% within a hydration time of 90 d and almost keeps constant after 14 d, changes hardly with the mass loss of free evaporable water in the concrete dried at 50℃C, increases relatively by 4% when ambient temperature decreases from 15℃ to-20℃, and decreases relatively by 13% with temperature increasing by 88℃. It is suggested that the electric resistance of the CFRC is stable, which is testified by the stable power output obtained by electrifying the CFRC slab with a given voltage. This implies that such kind of high content carbon fiber reinforced cement composite is potentially a desirable electrothermal material for airfield runways and road surfaces deicing.

  5. Annealing effects on the electrical resistivity of AuAl thin films alloys

    Maldonado, R.D., E-mail: [Centro de Investigacion y de Estudios Avanzados del IPN Unidad Merida, Depto. de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso 97310, Merida, Yucatan (Mexico); Oliva, A.I.; Corona, J.E. [Centro de Investigacion y de Estudios Avanzados del IPN Unidad Merida, Depto. de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso 97310, Merida, Yucatan (Mexico)


    Au/Al bilayer (50-250-nm thickness) thin films were deposited by thermal evaporation on p-type silicon (1 0 0) substrates. The formed Au/Al/Si systems were annealed from room temperature (RT) to 400 deg. C to form AuAl/Si alloys. Two groups of AuAl alloys were analyzed. The first group was prepared as a function of the atomic concentration and the second group was prepared as a function of thickness. The morphology and crystalline structure of the alloys were analyzed by AFM and X-ray diffraction techniques, respectively. The electrical resistivities of the AuAl alloys were measured by the four-probe technique. The first group of thin AuAl alloys presented segregations as a consequence of the annealing treatment and the atomic concentration; meanwhile, the electrical resistivity showed abrupt changes as a consequence of changing the atomic concentration. In the second group a monotonically increment in the grain size was found meanwhile for thickness below 100 nm the electrical resistivity presented important differences as compared with the before annealing process.

  6. Network modelling of wettability and pore geometry effects on electrical resistivity and capillary pressure

    Man, H.N.; Jing, X.D. [Centre for Petroleum Studies, T.H. Huxley School, Imperial College of Science, Technology and Medicine, Prince Consort Road, London (United Kingdom)


    Recent research efforts have focused on using simple non-circular cross-sectional pore shapes to honour the physics observed at the pore scale. For example, there is evidence to suggest variations of wettability occur at this level. These pores can exhibit water-wet and oil-wet regions, depending on the physics of wetting films, and hence the porous medium maybe of mixed-wettability character. For low water saturations, electrical resistivity cannot be physically simulated at the pore scale using cylindrical tubes, even though wetting film thickness' and pore constrictions are taken into account. A three-dimensional network model that investigates the petrophysical characteristics, electrical resistivity and capillary pressure, is presented. The influence of saturation history is also modelled. Key pore geometrical attributes such as pore shape, aspect ratio, pore coordination number (pore connectivity) and pore size distribution are included in the model. In addition, pore constrictions are introduced which may result in phase trapping via snap-off within the tube itself. Analysis of our developing network model starting from representing the pore shape as circular is presented. Using a simple non-circular cross-sectional pore shape we show bulk water retained in the crevices give rise to predictions that are in close agreement with electrical resistivity and capillary pressure trends observed in experiments. Numerical results are presented and compared with experimental data.

  7. Influence of salinity and moisture content in electrical resistivity tomography readings in geomaterials used in construction

    Gomez-Heras, Miguel; Fort, Rafael; Garcia Morales, Soledad


    Wetness and salts are among the main agents hindering the performance of any porous building material. There are a number of techniques based on electrical properties for the detection of these agents in buildings, such as portable moisture meters and electric resistivity tomography (ERT). These methods are used to locate wet areas based on the lower electrical resistivity wet materials have in relation to dry ones. However, as both moisture and salts contribute to low resistivity readings, the ERT readings may have a degree of uncertainty. This research aims to study the contribution of salinity and moisture content on the readings of ERT by testing laminated gypsum boards in the laboratory with solutions with different compositions (i.e. sodium chloride, magnesium sulphate and a mixture of both) and concentrations of salts. An industrial product, such as the laminated gypsum board, was chosen to minimize the effects that heterogeneities in composition and physical properties could have in the ERT readings and facilitate the interpretation of the wetness/salt content difference. Gypsum board was soaked with a fixed amount of the chosen solutions and several ERT transects were performed with a GeoTom device (Geolog2000) while drying. Results show the influence salinity of solutions have in drying process, and how the salt content remaining within the pores of geomaterials impact on ERT results. Research funded by Geomateriales (S2009/MAT-16) and CEI Moncloa (UPM, UCM, CSIC) through a PICATA contract and the equipment from RedLAbPAt Network

  8. Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico

    Dunbar, John


    Electrical methods offer a geophysical approach for determining the sub-bottom distribution of hydrate in deep marine environments. Methane hydrate is essentially non-conductive. Hence, sediments containing hydrate are more resistive than sediments without hydrates. To date, the controlled source electromagnetic (CSEM) method has been used in marine hydrates studies. This project evaluated an alternative electrical method, direct current resistivity (DCR), for detecting marine hydrates. DCR involves the injection of direct current between two source electrodes and the simultaneous measurement of the electric potential (voltage) between multiple receiver electrodes. The DCR method provides subsurface information comparable to that produced by the CSEM method, but with less sophisticated instrumentation. Because the receivers are simple electrodes, large numbers can be deployed to achieve higher spatial resolution. In this project a prototype seafloor DCR system was developed and used to conduct a reconnaissance survey at a site of known hydrate occurrence in Mississippi Canyon Block 118. The resulting images of sub-bottom resistivities indicate that high-concentration hydrates at the site occur only in the upper 50 m, where deep-seated faults intersect the seafloor. Overall, there was evidence for much less hydrate at the site than previously thought based on available seismic and CSEM data alone.

  9. A setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials

    Fu, Qiang; Xiong, Yucheng; Zhang, Wenhua; Xu, Dongyan


    This paper presents a setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials. The sample holder was designed to have a compact structure and can be directly mounted in a standard cryostat system for temperature-dependent measurements. For the Seebeck coefficient measurement, a thin bar-shaped sample is mounted bridging two copper bases; and two ceramic heaters are used to generate a temperature gradient along the sample. Two type T thermocouples are used to determine both temperature and voltage differences between two widely separated points on the sample. The thermocouple junction is flattened into a disk and pressed onto the sample surface by using a spring load. The flexible fixation method we adopted not only simplifies the sample mounting process but also prevents thermal contact deterioration due to the mismatch of thermal expansion coefficients between the sample and other parts. With certain modifications, the sample holder can also be used for four-probe electrical resistivity measurements. High temperature measurements are essential for thermoelectric power generation. The experimental system we developed is capable of measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials in a wide temperature range from 80 to 500 K, which can be further extended to even higher temperatures. Measurements on two standard materials, constantan and nickel, confirmed the accuracy and the reliability of the system.

  10. Spatial filtering of electrical resistivity and slope intensity: Enhancement of spatial estimates of a soil property

    Bourennane, Hocine; Hinschberger, Florent; Chartin, Caroline; Salvador-Blanes, Sébastien


    To best utilize the electrical resistivity data and slope intensity derived from a Digital Elevation Model, the kriging spatial components technique was applied to separate the nuggets and small- and large-scale structures for both resistivity and slope intensity data. The spatial structures in the resistivity and slope intensity data, which are poorly correlated with soil thickness (ST), are then filtered out prior to integrating the resistivity data and slope intensity into soil thickness estimation over a 12 ha area located in the south-western Parisian Basin (France). ST was measured at 650 locations over the study area by manual augering. Twenty percent of the observations (131 points) were randomly selected to constitute the validation dataset. The remaining 80% of the dataset (519 points) was used as the prediction dataset. The resistivity data represent a set of 7394 measurement points for each of the three investigated depths over the study area. The methodology involves successively (1) a principal component analysis (PCA) on the electrical measurements and (2) a geostatistical filtering of the small-scale component and noise in the first component (PC1) of the PCA. The results show that the correlation between ST and PC1 is greatly improved when the small-scale component and noise are filtered out, and similarly, the correlation between ST and slope intensity is greatly improved once the geostatistical filtering is carried out on the slope data. Thus, the large scales of both slope intensity and the electrical resistivity's PC1 were used as external drifts to predict ST over the entire study area. This prediction was compared with ordinary kriging and kriging either with a large scale of slope intensity or with a large scale of the electrical resistivity's PC1 taken as an external drift. The first prediction of ST by ordinary kriging, which was considered as our reference, was also compared to those achieved by kriging using the raw secondary variables

  11. Les Etudes De Langues Aux Pays-Bas

    Zwarts, F.


    Les Etudes de Langues dans l'Enseignement Superieur en Europe: Des Rapports Nationaux Préparés pour une Conference sur les Etudes de Langues en Europe et Cooperation dans le Domaine de l'Enseignement Superieur à l'Univerité de Stockholm.

  12. Delineating The Subsurface Structures Using Electrical Resistivity Sounding In Some Part Of Willeton Perth Western Australia

    Okan Evans Onojasun


    Full Text Available Abstract Geophysical survey using electrical resistivity methods has been carried out within the industrial area of Willeton Perth Western Australia with the view to delineate the geoelectric characteristics of the basement complex and evaluate the groundwater potential in the area. Vertical electrical sounding with ABEM SAS 3000 Terrameter and Schlumberger electrode configuration were employed for data acquisition. Apparent resistivity values obtained from the field measurements were plotted against half current electrodes spacing on a log-log graph while a model was suggested to fit the resistivity distribution presented in the sounding. The results from the modelling were finally iterated to the lowest Root Mean Square RMS percentage error using computer software A 7 point filter derived by Guptasarma to calculate a forward model. Analysis of the results showed that the study area has fairly homogenous subsurface stratification with four distinct subsurface layers above the depth of 37m. The four subsurface layers comprises top soil mainly of unconsolidated and sand containing organic matter unsaturated sand layer with consolidated and highly resistive water saturated sand layer with highly water saturated soil and the sub-stratum layer consisting of clay material. The aquifer performance is best at about 32m hence it is suggested that boreholes for sustainable water supply in this area should be drilled to about 32 m to hit prolific aquifer.

  13. Monitoring crack development in fiber concrete beam by using electrical resistivity imaging

    Wiwattanachang, N.; Giao, P. H.


    Accurate detection of damaged concrete zones plays an important role in selecting the proper remedial technique. This study presents results from an application of the electrical imaging method to monitor the development of cracks in fiber concrete beams. The study showed that resistivity measurements on the concrete specimens were able to detect the increase of concrete resistivity with the curing time that reached about 65 Ωm after 28 days of curing. A similar development trend of concrete compressive strength was also found. Two types of cracks were investigated, i.e., artificial cracks made of plastic sheets inserted in concrete and cracks developed during a four-step loading test. A mini-electric imaging survey with Wenner array was conducted on the tension face of the beams. To deal with the effect of the beam size new procedures to correct resistivity measurements before inversion were proposed and successfully applied in this study. The results indicated that both crack direction and depth could be accurately determined in the inverted resistivity sections.

  14. Interpretation of dipole-dipole electrical resistivity survey, Colado geothermal area, Pershing County, Nevada

    Mackelprang, C. E.


    An electrical resistivity survey in the Colado geothermal area, Pershing County, Nevada has defined areas of low resistivity on each of five lines surveyed. Some of these areas appear to be fault controlled. Thermal fluids encountered in several drill holes support the assumption that the hot fluids may be associated with areas of low resistivity. The evidence of faulting as interpreted from modeling of the observed resistivity data is therefore particularly significant since these structures may be the conduits for the thermal fluids. Sub-alluvial fault zones are interpreted to occur between stations 0-5 NW on Line D and on Line A between stations 4 NW and 4 SE. Fault zones are also interpreted on Line C near stations 1 NW, 1 SE, and 3 SE, and on Line E between stations 2-4 NW and near 1 SE. No faulting is evident under the alluvial cover on the southwest end of Line B. A deep conductive zone is noted within the mountain range on two resistivity lines. There is no definite indication that thermal fluids are associated with this resistivity feature.

  15. Application of 2D electrical resistivity tomography to engineering projects: Three case studies

    Rungroj Arjwech


    Full Text Available Electrical resistivity tomography (ERT is a non-invasive geophysical method of primary interest for addressing subsurface engineering problems. The method is based on the assumption that subsurface geological materials have significant resistivity contrasts that can be identified based on measurements on the surface. This paper presents three different case studies that have been carried out at different sites. The first case study visualizes the contrast between high resistivity zones of hard bedrocks and low resistivity zones of weathered rocks. Similar to the first case study, the second case study shows high resistivity contrasts that clearly distinguishes the shape of a footing located within the surrounding materials. The third case study shows no clear low resistivity zone that can be identified as a leaking zone. The 2D ERT survey method used in these three investigations has been shown to be useful as a cost-effective and rapid method to obtain wide area subsurface information that is relevant for subsurface engineering problems.

  16. Imaging Rainfall Infiltration Processes with the Time-Lapse Electrical Resistivity Imaging Method

    Zhang, Gang; Zhang, Gui-Bin; Chen, Chien-chih; Chang, Ping-Yu; Wang, Tzu-Pin; Yen, Horng-Yuan; Dong, Jia-Jyun; Ni, Chuen-Fa; Chen, Su-Chin; Chen, Chao-Wei; Jia, Zheng-yuan


    Electrical Resistivity Imaging (ERI) was carried out continuously for 10 days to map the subsurface resistivity distribution along a potentially hazardous hillslope at the Jieshou Junior High School in Taoyuan, Taiwan. The reliability of the inverted resistivity structures down to about 25 m depth was examined with synthetic modeling using the same electrode arrangements installed on land surface as in field surveys, together with a DOI (depth-of-investigation) index calculated from the ERI data. The subsurface resistivity distribution is consistent with results from well logging. These ERI recordings were taken daily and provided highly resolved imagery of the resistivity distribution underground and illustrated the dynamical fluid-flow behavior due to heavy rainfall infiltration. Using Archie's law, the resistivity distribution was transformed into a map of relative water saturation (RWS), which is strongly correlated with the rainfall infiltration process. We then found that the averaged RWS is significantly correlated with daily precipitation. Our observations indicate that time-lapse ERI is effective in monitoring subterraneous rainfall infiltration; moreover, the preferential flow paths can be delineated according to the changes in averaged RWS derived from the ERI data.

  17. Test facility for simultaneous measurement of electrical and thermal contact resistance

    Misra, Prashant; Nagaraju, J.


    A test setup has been developed for simultaneously evaluating the electrical contact resistance (ECR) and thermal contact resistance/conductance (TCR/TCC) across meta-metal contacts at different contact pressures and mean interface temperatures. ECR and TCC across brass-brass contacts in vacuum have been measured simultaneously at different contact pressures and mean interface temperatures. The results obtained are found to be in agreement with the theoretical models available in the literature for ECR and TCC, independently from each other. The maximum absolute uncertainties in the measurement of ECR and TCC with the present setup are estimated to be ±0.003% and ±4.4%, respectively. Apart from contact resistance measurements, the setup is also used to determine thermal conductivity of unknown materials viz., oxygen-free high-conductivity copper and brass, at different temperatures.

  18. Preparation and Properties of High Hardness and Oxidation Resisting Coating Using Electric Arc Spray

    LIZhuo-xin; CUILi; WANGJiang-ping; TANGChun-tian


    A coating with high hardness, wear and oxidation resistance was prepared by electric arc spray. The hardness, bonding strength, abrasive wear and values of porosity and oxidation resistance of the coating were investigated. The microstructures and function of Cr3C2 of the coating were analyzed. The results showed surface Rockness Hardness HR30 reached 72.5 and average bond strength reached 49.1Mpa. Also porosity value was less than 2%. In addition, it was found from the comparison between the coating and 45CT coating that, oxidation resistance of the coating was less than that of 45CT, but the abrasive wear of the coating was obvious better than that of 45CT.

  19. Preparation and Properties of High Hardness and Oxidation Resisting Coating Using Electric Arc Spray

    LI Zhuo-xin; CUI Li; WANG Jiang-ping; TANG Chun-tian


    A coating with high hardness, wear and oxidation resistance was prepared by electric arc spray. The hardness,bonding strength, abrasive wear and values of porosity and oxidation resistance of the coating were investigated. The microstructures and function of Cr3C2 of the coating were analyzed. The results showed surface Rockness Hardness HR30 reached 72.5 and average bond strength reached 49.1Mpa. Also porosity value was less than 2%. In addition, it was found from the comparison between the coating and 45CT coating that, oxidation resistance of the coating was less than that of 45CT, but the abrasive wear of the coating was obvious better than that of 45CT.

  20. Evaluation of Cementation of the Loma Blanca Fault Zone Utilizing Electrical Resistivity

    Barnes, H.; Spinelli, G. A.; Mozley, P.; Hinojosa, J. R.


    Fault-zones are an important control on fluid flow, affecting groundwater supply, hydrocarbon/contaminant migration, and waste/carbon storage. However, current models of fault seal are inadequate, primarily focusing on juxtaposition and entrainment effects, despite the recognition that fault-zone cementation is common and can dramatically reduce permeability. We map cementation patterns of the variably cemented Loma Blanca fault from the land surface to 40 m depth, using electrical resistivity and induced polarization (IP) data from 7 parallel two-dimensional transects running orthogonal to the strike of the fault and 4 three-dimensional grids centered on exposures of the fault at the land surface. Inversions of the 3-D resistivity surveys indicate a low resistivity anomaly in the cemented portions of the fault and within the adjacent footwall; these anomalies are present in the unsaturated zone. This low resistivity signature may be an indication of a higher degree of fluid saturation resulting from greater capillary forces, both in the cemented fault (due to reduced pore sizes within the cemented material) and in the footwall (possibly due to smaller grain size). These mechanisms for generating low resistivity anomalies in both the cemented fault zone and in the footwall, suggest that the low resistivity anomalies likely correspond to regions with low permeability. In areas where no cement is exposed at the surface, we use the low resistivity signature to determine the extent of cementation at depth. The ability to characterize spatial variations in the degree of fault zone cementation with resistivity and IP has exciting implications for improving predictive models of the hydrogeologic impacts of cementation within faults.

  1. Three dimensional modeling and inversion of Borehole-surface Electrical Resistivity Data

    Zhang, Y.; Liu, D.; Liu, Y.; Qin, M.


    After a long time of exploration, many oil fields have stepped into the high water-cut period. It is sorely needed to determining the oil-water distribution and water flooding front. Borehole-surface electrical resistivity tomography (BSERT) system is a low-cost measurement with wide measuring scope and small influence on the reservoir. So it is gaining more and more application in detecting water flooding areas and evaluating residual oil distribution in oil fields. In BSERT system, current is connected with the steel casing of the observation well. The current flows along the long casing and transmits to the surface through inhomogeneous layers. Then received electric potential difference data on the surface can be used to inverse the deep subsurface resistivity distribution. This study presents the 3D modeling and inversion method of electrical resistivity data. In an extensive literature, the steel casing is treated as a transmission line current source with infinite small radius and constant current density. However, in practical multi-layered formations with different resistivity, the current density along the casing is not constant. In this study, the steel casing is modeled by a 2.5e-7 ohm-m physical volume that the casing occupies in the finite element mesh. Radius of the casing can be set to a little bigger than the true radius, and this helps reduce the element number and computation time. The current supply point is set on the center of the top surface of the physical volume. The homogeneous formation modeling result shows the same precision as the transmission line current source model. The multi-layered formation modeling result shows that the current density along the casing is high in the low-resistivity layer, and low in the high-resistivity layer. These results are more reasonable. Moreover, the deviated and horizontal well can be simulated as simple as the vertical well using this modeling method. Based on this forward modeling method, the

  2. The `L' Array, a method to model 3D Electrical Resistivity Tomography (ERT) data

    Chavez Segura, R. E.; Chavez-Hernandez, G.; Delgado, C.; Tejero-Andrade, A.


    The electrical resistivity tomography (ERT) is a method designed to calculate the distribution of apparent electrical resistivities in the subsoil by means of a great number of observations with the aim of determining an electrical image displaying the distribution of true resistivities in the subsoil. Such process can be carried out to define 2D or 3D models of the subsurface. For a 3D ERT, usually, the electrodes are placed in a squared grid keeping the distance between adjacent electrodes constant in the x and y directions. Another design employed, consists of a series of parallel lines whose space inter-lines must be smaller or equal to four times the electrode separation. The most common electrode arrays frequently employed for this type of studies are the pole-pole, pole-dipole and dipole-dipole. Unfortunately, ERT surface sampling schemes are limited by physical conditions or obstacles, like buildings, highly populated urban zones, and geologic/topographic features, where the lines of electrodes cannot be set. However, it is always necessary to characterize the subsoil beneath such anthropogenic or natural features. The ‘L’ shaped array has the main purpose to overcome such difficulties by surrounding the study area with a square of electrode lines. The measurements are obtained by switching automatically current and potential electrodes from one line to the other. Each observation adds a level of information, from one profile to the other. Once the total levels of data are completed, the opposite ‘L’ array can be measured following the same process. The complete square is computed after the parallel profiles are observed as well. At the end, the computed resistivities are combined to form a 3D matrix of observations. Such set of data can be inverted to obtain the true resistivity distribution at depth in the form of a working cube, which can be interpreted. The method was tested with theoretical models, which included a set of two resistive cubes

  3. Electrical Resistance Measurement of Glass Transition and Crystallization Characteristics of Zr-Al-Cu-Ni Metallic Glasses


    In this paper, glass transition and thermal stability of the Zr-Al-Cu-Ni metallic glasses were investigated by using electrical resistance measurement (ERM), DSC and X-ray diffraction techniques. The experimental results show that the ERM is capable of detecting the glass transition of the amorphous alloys and can help to distinguish the crystallization products of the Zr-Al-Cu-Ni metallic glasses owing to the difference of the electrical resistivity between the precipitation phases.

  4. Four-point probe electrical resistivity scanning system for large area conductivity and activation energy mapping.

    Shimanovich, Klimentiy; Bouhadana, Yaniv; Keller, David A; Rühle, Sven; Anderson, Assaf Y; Zaban, Arie


    The electrical properties of metal oxides play a crucial role in the development of new photovoltaic (PV) systems. Here we demonstrate a general approach for the determination and analysis of these properties in thin films of new metal oxide based PV materials. A high throughput electrical scanning system, which facilitates temperature dependent measurements at different atmospheres for highly resistive samples, was designed and constructed. The instrument is capable of determining conductivity and activation energy values for relatively large sample areas, of about 72 × 72 mm(2), with the implementation of geometrical correction factors. The efficiency of our scanning system was tested using two different samples of CuO and commercially available Fluorine doped tin oxide coated glass substrates. Our high throughput tool was able to identify the electrical properties of both resistive metal oxide thin film samples with high precision and accuracy. The scanning system enabled us to gain insight into transport mechanisms with novel compositions and to use those insights to make smart choices when choosing materials for our multilayer thin film all oxide photovoltaic cells.

  5. Stable hole doping of graphene for low electrical resistance and high optical transparency

    Tongay, S; Berke, K; Nasrollahi, Z; Tanner, D B; Hebard, A F [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Lemaitre, M; Appleton, B R, E-mail:, E-mail:, E-mail: [Department of Material Science and Engineering, University of Florida, Gainesville, FL 32611 (United States)


    We report on the p doping of graphene with the polymer TFSA ((CF{sub 3}SO{sub 2}){sub 2}NH). Modification of graphene with TFSA decreases the graphene sheet resistance by 70%. Through such modification, we report sheet resistance values as low as 129 {Omega}, thus attaining values comparable to those of indium-tin oxide (ITO), while displaying superior environmental stability and preserving electrical properties over extended time scales. Electrical transport measurements reveal that, after doping, the carrier density of holes increases, consistent with the acceptor nature of TFSA, and the mobility decreases due to enhanced short-range scattering. The Drude formula predicts that competition between these two effects yields an overall increase in conductivity. We confirm changes in the carrier density and Fermi level of graphene through changes in the Raman G and 2D peak positions. Doped graphene samples display high transmittance in the visible and near-infrared spectrum, preserving graphene's optical properties without any significant reduction in transparency, and are therefore superior to ITO films in the near infrared. The presented results allow integration of doped graphene sheets into optoelectronics, solar cells, and thermoelectric solar cells as well as engineering of the electrical characteristics of various devices by tuning the Fermi level of graphene.

  6. Electrical limit of silver nanowire electrodes: Direct measurement of the nanowire junction resistance

    Selzer, Franz


    We measure basic network parameters of silvernanowire (AgNW) networks commonly used as transparent conductingelectrodes in organic optoelectronic devices. By means of four point probing with nanoprobes, the wire-to-wire junction resistance and the resistance of single nanowires are measured. The resistanceRNW of a single nanowire shows a value of RNW=(4.96±0.18) Ω/μm. The junction resistanceRJ differs for annealed and non-annealed NW networks, exhibiting values of RJ=(25.2±1.9) Ω (annealed) and RJ=(529±239) Ω (non-annealed), respectively. Our simulation achieves a good agreement between the measured network parameters and the sheet resistanceRS of the entire network. Extrapolating RJ to zero, our study show that we are close to the electrical limit of the conductivity of our AgNW system: We obtain a possible RS reduction by only ≈20% (common RS≈10 Ω/sq). Therefore, we expect further performance improvements in AgNW systems mainly by increasing NW length or by utilizing novel network geometries.

  7. Evaluation of the Mechanical Properties of Gray Cast Iron Using Electrical Resistivity Measurement

    Bieroński M.


    Full Text Available In this paper an attempt to determine the relationship between the electrical resistivity and the tensile strength and hardness of cast iron of carbon equivalent in the range from 3.93% to 4.48%. Tests were performed on the gray cast iron for 12 different melts with different chemical composition. From one melt poured 6 samples. Based on the study of mechanical and electro-resistive determined variation characteristics of tensile strength, hardness and resistivity as a function of the carbon equivalent. Then, regression equations were developed as power functions describing the relationship between the resistivity of castings and their tensile strength and hardness. It was found a high level of regression equations to measuring points, particularly with regard to the relationship Rm=f(ρ. The obtained preliminary results indicate the possibility of application of the method of the resistance to rapid diagnostic casts on the production line, when we are dealing with repeatable production, in this case non variable geometry of the product for which it has been determinated before a regression equation.

  8. Temperature and volumetric water content petrophysical relationships in municipal solid waste for the interpretation of bulk electrical resistivity data

    Pilawski, Tamara; Dumont, Gaël; Nguyen, Frédéric


    Landfills pose major environmental issues including long-term methane emissions, and local pollution of soil and aquifers but can also be seen as potential energy resources and mining opportunities. Water content in landfills determine whether solid fractions can be separated and recycled, and controls the existence and efficiency of natural or enhanced biodegradation. Geophysical techniques, such as electrical and electromagnetic methods have proven successful in the detection and qualitative investigation of sanitary landfills. However, their interpretation in terms of quantitative water content estimates makes it more challenging due to the influence of parameters such as temperature, compaction, waste composition or pore fluid. To improve the confidence given to bulk electrical resistivity data and to their interpretation, we established temperature and volumetric water content petrophysical relationships that we tested on field and laboratory electrical resistivity measurements. We carried out two laboratory experiments on leachates and waste samples from a landfill located in Mont-Saint-Guibert, Belgium. We determined a first relationship between temperature and electrical resistivity with pure and diluted leachates by progressively increasing the temperature from 5°C to 65°C, and then cooling down to 5°C. The second relationship was obtained by measuring electrical resistivity on waste samples of different volumetric water contents. First, we used the correlations obtained from the experiments to compare electrical resistivity measurements performed in a landfill borehole and on reworked waste samples excavated at different depths. Electrical resistivities were measured every 20cm with an electromagnetic logging device (EM39) while a temperature profile was acquired with optic fibres. Waste samples were excavated every 2m in the same borehole. We filled experimental columns with these samples and measured electrical resistivities at laboratory temperature

  9. Electrical resistivity of NiFe2O4 ceramic and NiFe2O4 based cermets

    田忠良; 赖延清; 李劼; 张刚; 刘业翔


    NiFe2O4 ceramic and NiFe2O4 based cermets, expected to be used as the inert anodes in aluminum electrolysis, were prepared and their electrical resistivities were measured at different temperatures. The effects of temperature and composition on their electrical resistivities were investigated. The results indicate that the electrical resistivities of NiFe2O4 based cermets mainly depend on temperature, resistivity of ceramic matrix, composition and dispersion of the metal phase among ceramic matrix. The electrical resistivity of NiFe2O4 ceramic decreases from 10. 094 Ω · cm to 0. 475 Ω · em with increasing temperature from 573 K to 1 233 K. The electrical resistivities of NiFe2O4 based cermets are greatly lowered, but decrease with increasing the temperature with similar trend compared to that of NiFe2O4 ceramic. The resistivities of NiFe2O4 based cermets containing 5 % Ni, 5 % Cu and 5 % CuNi alloy are 0. 046 8, 0.066 8 and 0. 0532 Ω · cm at 1 233 K, respectively, which are all acceptable as inert anode materials compared to that of the current carbon anode used for aluminum electrolysis.

  10. Time-Lapse Electrical Resistivity Investigations for Imaging the Grouting Injection in Shallow Subsurface Cavities

    Muhammad Farooq


    Full Text Available The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway.

  11. Electrical Resistivity Imaging of Seawater Intrusion into the Monterey Bay Aquifer System.

    Pidlisecky, A; Moran, T; Hansen, B; Knight, R


    We use electrical resistivity tomography to obtain a 6.8-km electrical resistivity image to a depth of approximately 150 m.b.s.l. along the coast of Monterey Bay. The resulting image is used to determine the subsurface distribution of saltwater- and freshwater-saturated sediments and the geologic controls on fluid distributions in the region. Data acquisition took place over two field seasons in 2011 and 2012. To maximize our ability to image both vertical and horizontal variations in the subsurface, a combination of dipole-dipole, Wenner, Wenner-gamma, and gradient measurements were made, resulting in a large final dataset of approximately 139,000 data points. The resulting resistivity section extends to a depth of 150 m.b.s.l., and is used, in conjunction with the gamma logs from four coastal monitoring wells to identify four dominant lithologic units. From these data, we are able to infer the existence of a contiguous clay layer in the southern portion of our transect, which prevents downward migration of the saltwater observed in the upper 25 m of the subsurface to the underlying freshwater aquifer. The saltwater and brackish water in the northern portion of the transect introduce the potential for seawater intrusion into the hydraulically connected freshwater aquifer to the south, not just from the ocean, but also laterally from north to south.

  12. Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography

    Robinson, Judith; Slater, Lee; Johnson, Timothy B.; Shapiro, Allen M.; Tiedeman, Claire R.; Ntlargiannis, Dimitrios; Johnson, Carole D.; Day-Lewis, Frederick D.; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, Jr., John W.


    Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.

  13. Electrical Resistivity Tomography (ERT) Applied to Karst Carbonate Aquifers: Case Study from Amdoun, Northwestern Tunisia

    Redhaounia, Belgacem; Ilondo, Batobo Ountsche; Gabtni, Hakim; Sami, Khomsi; Bédir, Mourad


    The Amdoun region is characterized by a high degree of karstification due to the climate impact (±1500 mm year-1) and the development of fracture network. Survey using electrical resistivity tomography (ERT) is deployed to provide a cost-effective characterization of the subsurface karst environments. A total of seven ERT profiles with lengths of 315 m were evaluated at the Béja governorate (NW Tunisia). The area represents a small syncline of Boudabbous limestone rocks (Lower Eocene), which is covered by a thin layer of clay. In this study, an ERT survey was conducted to examine the spatial distribution and shape of underground cavities in the karst area in Jebel Sabah anticline and Aïn Sallem-Zahret Medien syncline. In this study, geological, hydro-geological and electrical resistivity tomography (ERT) methods were applied to determine the geometry of the perched aquifer in the Amdoun region (NW Tunisia). The area is characterized by fractured and karstic limestone aquifer of Late Cretaceous (Abiod Fm.) and Lower Eocene (Boudabbous Fm.). The aquifers have a karstic functioning and drain aquifers of economical interest, despite some wells exploiting them. Seven resistivity profiles were conducted along the survey area at three sites. The orientation, extension and the degree of inclination of those profiles are shown in the location map. The correct resistivity data were interpreted using Earth Imager 2D software. The results of the interpreted geo-electrical sections showed that the resistivity of the carbonate aquifer varied between 2.5 to over 5794 Ωm. The thickness of the perched aquifer ranged from 15 to 50 m, while its depth from the surface lies between 10 and 60 m. The ERT not only provided precise near surface information, but was also very useful for establishing the 3D geometry and the position of several potential cavities and karts. The results show the presence of small to large isolated cavities at various depths. The low resistivity of cavities

  14. A method to improve tree water use estimates by distinguishing sapwood from heartwood using Electrical Resistivity Tomography

    Guyot, A.; Ostergaard, K.; Lenkopane, M.; Fan, J.; Lockington, D. A.


    Estimating whole-plant water use in trees requires reliable and accurate methods. Measuring sap velocity and extrapolating to tree water use is seen as the most commonly used. However, deducing the tree water use from sap velocity requires an estimate of the sapwood area. This estimate is the highest cause of uncertainty, and can reach more than 50 % of the uncertainty in the estimate of water use per day. Here, we investigate the possibility of using Electrical Resistivity Tomography to evaluate the sapwood area distribution in a plantation of Pinus elliottii. Electric resistivity tomographs of Pinus elliottii show a very typical pattern of electrical resistivity, which is highly correlated to sapwood and heartwood distribution. To identify the key factors controlling the variation of electrical resistivity, cross sections at breast height for ten trees have been monitored with electrical resistivity tomography. Trees have been cut down after the experiment to identify the heartwood/sapwood boundaries and to extract wood and sap samples. pH, electrolyte concentration and wood moisture content have then been analysed for these samples. Results show that the heartwood/sapwood patterns are highly correlated with electrical resistivity, and that the wood moisture content is the most influencing factor controlling the variability of the patterns. These results show that electric resistivity tomography could be used as a powerful tool to identify the sapwood area, and thus be used in combination with sapflow sensors to map tree water use at stand scale. However, if Pinus elliottii shows typical patterns, further work is needed to identify to see if there are species - specific characterictics as shown in previous works (, electrolyte gradients from the bark to the heartwood). Also, patterns of high resistivity in between needles positions, which are not correlated with either wood moisture content or sapwood, appear to be artifacts. Thus, inversion methods have also to

  15. Characterizing root system characteristics with Electrical resistivity Tomography: a virtual rhizotron simulation

    Rao, Sathyanarayan; Ehosioke, Solomon; Lesparre, Nolwenn; Nguyen, Frédéric; Javaux, Mathieu


    Electrical Resistivity Tomography (ERT) is more and more used for monitoring soil water content in a cropped soil. Yet, the impact of roots on the signal is often neglected and a topic of controversy. In several studies related to soil-root system, it has been showed that the measured root mass density statistically correlates with the electrical conductivity (EC) data obtained from ERT. In addition, some studies suggest that some roots are more electrically conductive than soil for most water content. Thus, higher EC of roots suggest that it might have a measurable impact on ERT signals. In this work, virtual rhizotrons are simulated using the software package called R-SWMS that solves water and solute transport in plant root-soil system, including root growth. The distribution of water content obtained from R-SWMS simulation is converted into EC data using pedo-physical models. The electrical properties of roots and rhizosphere are explicitly included in the EC data to form a conductivity map (CM) with a very detailed spatial resolution. Forward ERT simulations is then carried out for CM generated for various root architectures and soil conditions to study the impact of roots on ERT forward (current and voltage patterns) and inverse solutions. It is demonstrated that under typical injection schemes with lateral electrodes, root system is hardly measurable. However, it is showed that adding electrodes and constraints on the ERT inversion based on root architecture help quantifying root system mass and extent.

  16. Surface and subsurface damage detection in cement-based materials using electrical resistance tomography

    Ruan, T.; Poursaee, A.


    Cement-based materials are widely used in infrastructure facilities. However, often the degradation of structures leads to the failures earlier than designed service life. Thus, non-destructive testing techniques are urgently needed to evaluate the health information of the structures. In this paper, the implementation of Electrical Resistance Tomography (ERT) was investigated. This low cost, radiation free and easy to perform modality is based on measuring the electrical properties of the material under test and using that to evaluate the existence of defects in that material. It uses a set of boundary potentials and injected current to reconstruct the conductivity distribution. An automatic measurement system was developed and surface damages as well as subsurface damages on mortar specimens were investigated. The reconstructed images were capable to show the presence and the location of the damages.

  17. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.

    Kehagia, Fotini


    Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented.

  18. Optical Absorption and Electric Resistivity of an l-Cysteine Film

    Kamada, Masao; Hideshima, Takuya; Azuma, Junpei; Yamamoto, Isamu; Imamura, Masaki; Takahashi, Kazutoshi


    The optical and electric properties of an l-cysteine film have been investigated to understand its applicability to bioelectronics. The fundamental absorption is the allowed transition having the threshold at 5.8 eV and the absorption is due to the charge-transfer type transition from sulfur-3sp to oxygen-2p and/or carbon-2p states, while absorptions more than 9 eV can be explained with intra-atomic transitions in the functional groups. The electric resistivity is 2.0 × 104 Ω m at room temperature and increases as the sample temperature decreases. The results indicate that the l-cysteine film is a p-type semiconductor showing the hole conduction caused by the sulfur-3sp occupied states and unknown impurity or defect states as acceptors. The electron affinity of the l-cysteine film is derived as ≦-0.3 eV.

  19. Electrical resistivity imaging in transmission between surface and underground tunnel for fault characterization

    Lesparre, N.; Boyle, A.; Grychtol, B.; Cabrera, J.; Marteau, J.; Adler, A.


    Electrical resistivity images supply information on sub-surface structures and are classically performed to characterize faults geometry. Here we use the presence of a tunnel intersecting a regional fault to inject electrical currents between surface and the tunnel to improve the image resolution at depth. We apply an original methodology for defining the inversion parametrization based on pilot points to better deal with the heterogeneous sounding of the medium. An increased region of high spatial resolution is shown by analysis of point spread functions as well as inversion of synthetics. Such evaluations highlight the advantages of using transmission measurements by transferring a few electrodes from the main profile to increase the sounding depth. Based on the resulting image we propose a revised structure for the medium surrounding the Cernon fault supported by geological observations and muon flux measurements.

  20. The electric properties and the current-controlled differential negative resistance of cBN crystal


    The electric properties of nonintentionally doped n-cubic boron nitride(cBN) crystal are investigated.The cBN crystal was transformed from hexagonal-boron nitride(h-BN) under high pressure(HP) and high temperature(HT) using magnesium powder as catalyst.At room temperature,the current-voltage(I-V) characteristics of cBN crystal are measured and found to be nonlinear.When the electric field is in the range of(1―1.5)×105 V/cm,the avalanche breakdown occurs inside the whole cBN crystal.At this same time,the bright blue-violet with the wavelength of 380―400 nm from the cBN crystal is observed.When measuring the I-V curve after breakdown of cBN crystal,the current-controlled differential negative resistance phenomenon is observed.The breakdown is repeatable.

  1. Electrical nanocharacterization of copper tetracyanoquinodimethane layers dedicated to resistive random access memories

    Deleruyelle, Damien; Muller, Christophe; Amouroux, Julien; Müller, Robert


    The local electrical properties of copper tetracyanoquinodimethane (CuTCNQ)/HfO2/Pt stacks were investigated thanks to conductive-atomic force microscopy (AFM) measurements. Local I-V and I-t spectroscopy evidenced repeatable and reversible bipolar electrical switching (SET and RESET operations) at the nanometer scale beneath the AFM tip. Experimental results suggest that resistive switching is due to the creation/dissolution of conductive filaments bridging the CuTCNQ surface to the AFM tip. A physical model based on the migration of Cu+ ions within a nanogap and the growth of a conductive filament shows an excellent agreement with the experimental results during SET operation achieved at nanoscale.

  2. Electrical resistivity of TiH/sub x/ and TiH/sub x//KC10/sub 4/

    White, K.; Reed, J.W.; Love, C.M.; Glaub, J.E.; Holy, J.A.


    Various factors affecting the electrical resistivity of the pyrotechnic pressed powder TiH/sub x//KC10/sub 4/, which is sensitive to hot wire ignition yet quite spark insensitive, were evaluated. The electrical resistivity of the TiH/sub x/ and TiH/sub x//KC10/sub 4/ were correlated with their pressing pressure, stoichiometry, powder surface area, and temperature (from below liquid nitrogen temperature to 500 K). Data show resistivity increasing with x and surface area, and decreasing non-linearly with pressing pressure. It was concluded that temperature coefficient of resistivity depends upon powder surface features. In addition, it was found that electrostatic discharge lowers TiH/sub x/ and TiH/sub x//KC10/sub 4/ pellet resistivity and that the effect is larger for pellets with higher initial resistivity.

  3. Electrical resistivity tomography (ERT surveys on glacial deposits in Romanian Carpathians



    Full Text Available The study presents preliminary results regarding the use of electrical resistivity surveys in the assessment of the internal structure of the glacial deposits from the Romanian Carpathians.ERT is a geophysical method used to quantify changes in electrical resistivity of the ground towards passing electric current across an array of electrodes and simultaneous measurement of the induced potential gradient. Using specific software the measurements are further processed and correlated with the topography in order to obtain bedrock resistivity features. Therefore, the method is useful to evaluate the characteristics of geological strata and is widely used for mapping shallow subsurface geological structures. In the mountain regions ERT studies have been applied in different glacial and periglacial geomorphological studies - for permafrost detection (in Romanian Carpathians - Urdea et. al., 2008; Vespremeanu-Stroe et al., 2012, slope deformation analysis, the assessment of slip surface depths, sediment thickness, groundwater levels etc. One of the most commonly 2-D array used is the Wenner electrode configuration, which is moderately sensitive to both horizontal and vertical ground structures.Due to their elevations and Pleistocene’s climatic conditions, the Romanian Carpathians have been partially affected by Quaternary glaciations. The glaciers descended to about 1050-1200 m a.s.l. (Urdea and Reurther, 2009 in the Transylvanian Alps and Rodna Mountains (Eastern Carpathians carving a large number of U-shaped valleys and glacial cirques (Mîndrescu, 2006 and forming accumulations of unconsolidated glacial debris (moraines. Our study areas are two sites located in the northern (Rodna Mts. and southern (Iezer Păpuşa Mts. part of the mountain range.

  4. Modelling of snowmelt infiltration in heterogeneous seasonally-frozen soil monitored by electrical resistivity measurements

    French, H. K.; Binley, A. M.; Voss, C.


    Infiltration during snowmelt can be highly heterogeneous due to the formation of ice on the ground surface below the snow cover. In situations where snow is contaminated, such as along highways and airports due to de-icing agents, it is important to predict the zone of infiltration, because this will determine the retention time and potential for degradation in the unsaturated zone. In 2001, infiltration during snowmelt was monitored over a small area (4m2) using time-lapse electrical resistivity monitoring at Gardermoen, Norway. Data revealed a spatio-temporal variable infiltration pattern related to micro topography of the ground surface (French and Binley, 2004). In this study, we want to test the suitability of a newly developed numerical model for water and heat transport including phase change in a variably saturated soil against field observations. Monitored weather and snow data defined the boundary conditions of a simulated unsaturated profile with seasonal freezing. The dependency of capillary pressure and permeability on water saturation is taken from van Genuchten equation with the addition of a scaling parameter, to account for the heterogeneity of the hydraulic permeability. Soil physical data and heterogeneity (variance and correlation structure of the permeability) was based on local soil measurements. The available amount of meltwater for infiltration over the area was based on average snowmelt measurements at the site. Different infiltration scenarios were tested. Soil temperatures, TDR measurements of soil moisture, a tracer experiment conducted at an adjacent site and changes in electrical resistivity were used to validate the model of infiltration and thawing. The model was successful in reproducing the thawing and soil moisture patterns observed in the soil, and hence looks like a promising tool for predicting snowmelt infiltration and melting of ground frost in a sandy unsaturated soil. ReferencesFrench, H.K. and Binley, A. (2004) Snowmelt

  5. A novel in vivo corneal trans-epithelial electrical resistance measurement device.

    Uematsu, Masafumi; Mohamed, Yasser Helmy; Onizuka, Naoko; Ueki, Ryotaro; Inoue, Daisuke; Fujikawa, Azusa; Kitaoka, Takashi


    To develop a device that is capable of easily measuring corneal transepithelial electrical resistance (TER) and changes in the corneal barrier function. We had previously developed an in vivo method for measuring corneal TER using intraocular electrode. This method can be used to precisely measure the decline of the corneal barrier function after instillation of benzalkonium chloride (BAC). In order to lessen the invasiveness of that procedure, we further refined the method for measuring the corneal TER by developing electrodes that could be placed on the cornea and in the conjunctival sac instead of inserting them into the anterior chamber. TER was then calculated by subtracting the electrical resistance, which lacked the corneal epithelial input, from the whole electrical resistance that was measured between the electrodes. Slit lamp examination and scanning electron microscopy (SEM) were used to determine safety of the new device. Corneal TER changes after exposure to 0.02% BAC were determined using the new device as well as SEM and transmission electron microscopy (TEM). Slit lamp examination before and after exposure of rabbits' corneas to the sensor confirmed safety of the device. SEM examination revealed no difference of the corneal epithelium which exposed to the new device with normal corneas. SEM and TEM pictures revealed damaged microvilli and tight junctions after instillation of 0.02% BAC. TER change after treatment with 0.02%BAC was similar to those determined by the established anterior chamber method. We succeeded to develop a less invasive device for corneal TER measurement in vivo in animals. This new device may be applicable in the future for clinical use in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Epikarstic storage and doline structural characterization with time-lapse geophysics (seismic refraction & electrical resistivity)

    Valois, R.; Galibert, P.; Guérin, R.; Mendes, M.; Plagnes, V.


    Karst formations are one of the most challenging environments in terms of groundwater, engineering and environmental issues. Geophysical methods can provide useful subsurface information in karst regions concerning groundwater vulnerability assessment, exploitation or hazard estimation. First, dolines are studied as preferential pathways for the protection of karstic aquifer in south France. Geophysics helps to characterize lateral and underground morphologies of such objects and is able to detect doline hidden by the soil cover too. Electrical resistivity and seismic refraction tomographies provide information about dolines filling and could help to propose a genesis scenario. Time-lapse resistivity measurements show that the studied doline is more vulnerable to infiltration on its sides than at its centre. The epikarst could be defined as a perched aquifer above the massive carbonate rocks; it constitutes a highly fractured zone, which water stock capacities. So, the epikarst was investigated with 3D seismic refraction and results show an important velocity anisotropy linked to the fracturing and weathering of the dolostone. The 3D model presents also some large heterogeneities: a corridor with highly weathered dolostone and an unweathered pinnacle. The corridor is probably situated on vertical joints, which have conducted aggressive water. The associated weathering with residual weathered-rock keeping its initial volume could create a "ghost-rock" corridor. So, the epikarst in the dolostones of the Causse du Larzac (France) seems to be composed by "ghost-rock" developed around a specific direction of fractures. Time-lapse electrical resistivity and seismic refraction velocity were carried out on this epikarst to observe the influence of water saturation on the measurements. The results show important variations for both seismic and electrical methods and are localized in the first 6 m: in the weathered zone. So, time-lapse measurements could more easily identify

  7. Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial moment analysis

    Singha, Kamini; Gorelick, Steven M.


    Cross-well electrical resistivity tomography (ERT) was used to monitor the migration of a saline tracer in a two-well pumping-injection experiment conducted at the Massachusetts Military Reservation in Cape Cod, Massachusetts. After injecting 2200 mg/L of sodium chloride for 9 hours, ERT data sets were collected from four wells every 6 hours for 20 days. More than 180,000 resistance measurements were collected during the tracer test. Each ERT data set was inverted to produce a sequence of 3-D snapshot maps that track the plume. In addition to the ERT experiment a pumping test and an infiltration test were conducted to estimate horizontal and vertical hydraulic conductivity values. Using modified moment analysis of the electrical conductivity tomograms, the mass, center of mass, and spatial variance of the imaged tracer plume were estimated. Although the tomograms provide valuable insights into field-scale tracer migration behavior and aquifer heterogeneity, standard tomographic inversion and application of Archie's law to convert electrical conductivities to solute concentration results in underestimation of tracer mass. Such underestimation is attributed to (1) reduced measurement sensitivity to electrical conductivity values with distance from the electrodes and (2) spatial smoothing (regularization) from tomographic inversion. The center of mass estimated from the ERT inversions coincided with that given by migration of the tracer plume using 3-D advective-dispersion simulation. The 3-D plumes seen using ERT exhibit greater apparent dispersion than the simulated plumes and greater temporal spreading than observed in field data of concentration breakthrough at the pumping well.

  8. Comparing spatial series of soil bulk electrical conductivity as obtained by Time Domain Reflectometry and Electrical Resistivity Tomography

    Saeed, Ali; Dragonetti, Giovanna; Comegna, Allessandro; Garre, Sarah; Lamaddalena, Nicola; Coppola, Antonio


    Conventional ground survey of soil root zone salinity by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity, σb, in the field. This approach is faster and cheaper, and allows a more intensive surveying. Measurements of σb can be made either in situ or with remote devices. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on the Electrical Resistivity Tomography (ERT) techniques represent an alternative in respect to those traditional for soil salinity characterization. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from ERT sensors. The latter, in turn, depends on the specific depth distribution of the σb, as well as on the electrical configuration of the sensor used. With these premises, the main aim of this study is to estimate the vertical σb distribution starting from resistivity data series measured using the ERT method under different salinity conditions and using TDR data as ground-truth data for calibration and validation of the ERT sensor. This way, limited measured TDR data may be used for translating extensive ERT apparent electrical conductivity, σa, measurements to estimate depth

  9. Electrical Resistivity Peculiarities of the Nanograined Bi2Te3 Material

    O.N. Ivanov


    Full Text Available The hot quasiisostaic pressure method was applied to sinter the nanograined Bi2Te3 material. The samples with various mean grain size of 64, 61, 56 and 51 nm were prepared by changing the pressure of sintering. It was found that the specific electrical resistivity of the material under study increases when the mean grain size decreases. The Hall effect was measured to extract the concentration and mobility values of the charge carries. It was found that the electron concentration decreases as the mean grain size decreases while the electron mobility has extreme dependence on the grain size.

  10. Advanced design of conductive polymeric arrays with controlled electrical resistance using direct laser interference patterning

    Lasagni, A.F. [Saarland University, Department of Materials Science, Chair of Functional Materials, Building C 6.3, 7. Stock, P.O. Box 15 11 50, Saarbruecken (Germany); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Acevedo, D.F. [Saarland University, Department of Materials Science, Chair of Functional Materials, Building C 6.3, 7. Stock, P.O. Box 15 11 50, Saarbruecken (Germany); Universidad Nacional de Rio Cuarto, Departamento de Quimica, Cordoba (Argentina); Barbero, C.A. [Universidad Nacional de Rio Cuarto, Departamento de Quimica, Cordoba (Argentina); Muecklich, F. [Saarland University, Department of Materials Science, Chair of Functional Materials, Building C 6.3, 7. Stock, P.O. Box 15 11 50, Saarbruecken (Germany)


    In this work, we report a simple method for the fabrication of regular conducting polyaniline periodic arrays on large areas of glass or gold substrates using direct laser interference patterning. Additionally, by controlling the laser intensity it is possible to precisely tune the width of the periodic arrays and consequently the electrical resistance of the polyaniline strips. The periodic arrays were characterized using scanning electron microscopy, white light interferometry and cyclic voltametry. The great importance of the method reported lies both in its versatility and the ability to control the properties of the modified polymer electrodes with high precision. This is important for prospective applications such as electrochemical sensors. (orig.)

  11. Study of filled dolines by using 3D stereo image processing and electrical resistivity imaging

    Mateja Breg Valjavec


    Full Text Available This article deals with doline degradation due to uncontrolled waste dumping in the past in the Logatec Polje in Slovenia. It introduces a concept for determining 3D geometric characteristics (shape, depth, radius, area, and volume of formerly concave landforms (i.e., recently filled dolines by using a combination of two methods: (1 photogrammetric stereo processing of archival aerial photographs and (2 electrical resistivity imaging (ERI. To represent, visualize, and study the characteristics of the former surface morphology (i.e., the dolines before they were filled, a digital terrain model (DTM for 1972 (DTM1972 was made using digital photogrammetry processing of five sequential archival aerial photographs (1972, © GURS. DTM1972 was visually and quantitatively compared with the DTM5 of the recent surface morfology (DTM5, © GURS, 2006 in order to define areas of manmade terrain differences. In general, a circular area with a higher terrain difference is an indicator of a filled doline. The calculated terrain differences also indicate the thickness of buried waste material. Three case-study dolines were selected for 3D geometric analysis and tested in the field using ERI. ERI was used to determine the genetic type of the original doline, to confirm that the buried material in the doline is actually waste, and to ascertain opportunities for further study of water pollution due to waste leakage. Based on a comparison among the ERI sections obtained using various electrode arrays, it was concluded that the basins are actually past concave landforms (i.e., dolines filled with mixed waste material having the lowest resistivity value (bellow 100 ohm-m, which differs measurably from the surrounding natural materials. The resistivity of hard stacked limestone is higher (above 1,000 ohm-m than resistivity of cracked carbonate rocks with cracks filled with loamy clay sediments while in loamy alluvial sediment resistivity falls below 150 ohm

  12. Eradication of multidrug-resistant A. baumannii in burn wounds by antiseptic pulsed electric field.

    Golberg, Alexander; Broelsch, G Felix; Vecchio, Daniela; Khan, Saiqa; Hamblin, Michael R; Austen, William G; Sheridan, Robert L; Yarmush, Martin L


    Emerging bacterial resistance to multiple drugs is an increasing problem in burn wound management. New non-pharmacologic interventions are needed for burn wound disinfection. Here we report on a novel physical method for disinfection: antiseptic pulsed electric field (PEF) applied externally to the infected burns. In a mice model, we show that PEF can reduce the load of multidrug resistant Acinetobacter baumannii present in a full thickness burn wound by more than four orders of magnitude, as detected by bioluminescence imaging. Furthermore, using a finite element numerical model, we demonstrate that PEF provides non-thermal, homogeneous, full thickness treatment for the burn wound, thus, overcoming the limitation of treatment depth for many topical antimicrobials. These modeling tools and our in vivo results will be extremely useful for further translation of the PEF technology to the clinical setting, as they provide the essential elements for planning of electrode design and treatment protocol.

  13. Electric Field Control of the Resistance of Multiferroic Tunnel Junctions with Magnetoelectric Antiferromagnetic Barriers

    Merodio, P.; Kalitsov, A.; Chshiev, M.; Velev, J.


    Based on model calculations, we predict a magnetoelectric tunneling electroresistance effect in multiferroic tunnel junctions consisting of ferromagnetic electrodes and magnetoelectric antiferromagnetic barriers. Switching of the antiferromagnetic order parameter in the barrier in applied electric field by means of the magnetoelectric coupling leads to a substantial change of the resistance of the junction. The effect is explained in terms of the switching of the orientations of local magnetizations at the barrier interfaces affecting the spin-dependent interface transmission probabilities. Magnetoelectric multiferroic materials with finite ferroelectric polarization exhibit an enhanced resistive change due to polarization-induced spin-dependent screening. These results suggest that devices with active barriers based on single-phase magnetoelectric antiferromagnets represent an alternative nonvolatile memory concept.

  14. Critical behavior of electrical resistivity in amorphous Fe–Zr alloys

    A Perumal


    Electrical resistivity (ρ) of the amorphous (a-)Fe100-Zr ( = 8.5, 9.5 and 10) alloys has been measured in the temperature range 77 to 300 K, which embraces the second-order magnetic phase transition at the Curie temperature point . Analysis of the resistivity data particularly in the critical region reveals that these systems have a much wider range of critical region compared to other crystalline ferromagnetic materials. The value of and specific heat critical exponent, has the same values as those determined from our earlier magnetic measurements. The value of for all the present investigated alloys are in close agreement with the values predicted for three-dimensional (3D) Heisenberg ferromagnet systems, which gives contradiction to the earlier results on similar alloys. It is observed from the analysis that the presence of quenched disorder does not have any influence on critical behavior.

  15. Research on temperature control with numerical regulators in electric resistance furnaces with indirect heating

    Diniş, C. M.; Popa, G. N.; Iagăr, A.


    The paper is an analysis of two-positions (hysteresis) regulators, self-tuned PID controller and PID controller for temperature control used for indirect heat resistance furnaces. For PID controller was used three methods of tuning: Ziegler-Nichols step response model, Cohen-Coon tuning rules and Ziegler-Nichols tuning rules. In experiments it used an electric furnace with indirect heating with active power of resistance of 1 kW/230V AC and a numerical temperature regulator AT-503 type (ANLY). It got a much better temperature control when using the Cohen-Coon tuning rules method than those of Ziegler-Nichols step response method and Ziegler-Nichols tuning rules method.

  16. Effect of atomic order on the electrical resistivity of CoxFe100-x alloys

    Freitas, P. P.; Berger, L.


    We measured the electrical resistivity at 4.2 K of a series of CoxFe100-x alloys in the ordered and disordered state. For 30dTQ has a strong negative anomaly at To. At high temperatures and in equilibrium, ρ(T) decreases upon ordering and dρ/dT has a positive anomaly at To. This crossover from a gap-dominated to a relaxation-time-dominated critical behavior is induced by increasing the measuring temperature T, therefore exciting electrons across the energy gap. From the dependence of ρ(TQ,T) on T we estimate the gap width to be around 45 meV. For x=50 at.% Co both ρ(TQ,4.2 K) and ρ(T) decrease upon ordering. Here the gapless behavior of the resistivity is due to the particular topology of the Fermi surface.

  17. Improved measurements of the apparent resistivity for small depths in Vertical Electrical Soundings

    Faleiro, E.; Asensio, G.; Moreno, J.


    In this work, a full simulation of a Vertical Electrical Sounding of a multilayer soil using a Wenner array is performed when both the active and the measurement electrodes consist of bare rod length L buried vertically at ground level. The apparent resistivity is calculated for a wide range of values of the separation between the electrodes using the values of the potential between the measuring electrode and a proposed function that characterizes the behavior of the electrodes used which substantially improves the measurements for small depths. The results allow comparing the values of apparent resistivity obtained by known calculation expressions with the results found by using a characteristic function of the electrodes, which is proposed in this paper. In order to obtain a complete vertical sounding of the soil, the convenience of using adapted methods to the type of electrode used in the sounding is discussed.

  18. Electrical resistivity and geotechnical assessment of subgrade soils in southwestern part of Nigeria

    Adebisi, N. O.; Ariyo, S. O.; Sotikare, P. B.


    The subgrade soils in areas underlain by the slightly Migmatized to Non-migmatized Metasedimentary and Metaigneous rocks of Southwestern Nigeria have been considerably investigated. However, a serious research which employs electrical resistivity method for insight into the profile development, as well as estimation of resistance to deformation for predicting the stability of flexible highway pavements is yet to be carried out. In this study, Vertical Electrical Sounding (VES) were carried out after a reconnaissance survey based on stable and unstable locations on the road. Index and strength tests related to road construction were also carried out on bulk samples obtained from stable and failed (unstable) locations of the Ago-Iwoye/Ishara highway. Results show mostly three (3) layers in the profiles with H, HK, and HKH curve types. The subgrade soils below the stable locations have better vertical and interval variations in the resistivities (89-1095 Ωm) to a depth of 3.4 m as against those from the failed portions. Those from the stable locations also have higher specific gravity (2.72), low-medium plasticity and A-2-6 kaolinitic clayey soils with higher compacted density (2090 kg/m3) compared to subgrade soils from the failed locations. On the basis of Califonia Bearing Ratio (CBR), subgrade soils at stable locations have greater strength than those obtained from failed locations. Estimated resistance to deformation (R-value) and resilient modulus (MR) proved to be the overriding parameters for predicting the stability of the flexible highway pavements.

  19. High resolution electrical resistivity tomography of golf course greens irrigated with reclaimed wastewater: Hydrological approach

    Tapias, Josefina C.; Lovera, Raúl; Himi, Mahjoub; Gallardo, Helena; Sendrós, Alexandre; Marguí, Eva; Queralt, Ignasi; Casas, Albert


    Actually, there are over 300 golf courses and more than three thousand licensed players in Spain. For this reason golf cannot be considered simply a hobby or a sport, but a very significant economic activity. Considered as one of the most rapidly expanding land-use and water demanding business in the Mediterranean, golf course development generates controversy. In the recent years there has been a considerable demand for golf courses to adopt environmentally sustainable strategies and particularly water authorities are forcing by law golf managers to irrigate with alternative water resources, mainly reclaimed wastewater. Watering practices must be based on soil properties that are characterized by samples removed from the different zones of the golf course and submitted to an accredited physical soil testing laboratory. Watering schedules are critical on greens with poor drainage or on greens with excessively high infiltration rates. The geophysical survey was conducted over the greens of the Girona Golf Club. Eighteen electrical resistivity tomographies were acquired using a mixed Wenner-Schlumberger configuration with electrodes placed 0.5 meter apart. Small stainless-steel nails were used as electrodes to avoid any damage in the fine turfgrass of greens The resistivity meter was set for systematically and automatically selects current electrodes and measurement electrodes to sample apparent resistivity values. Particle size analysis (PSA) has been performed on soil materials of any putting green. The PSA analysis has been composed of two distinct phases. The first has been the textural analysis of the soils for determining the content of sand, silt, and clay fraction via the use of a stack of sieves with decreasing sized openings from the top sieve to the bottom. Subsequently, the hydraulic conductivity of the substrates has been evaluated by means of Bredding and Hazen empirical relationships. The results of this research show that the electrical resistivity

  20. Static resistivity image of a cubic saline phantom in magnetic resonance electrical impedance tomography (MREIT).

    Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyeong; Kwon, Ohin; Seo, Jin Keun; Baek, Woon Sik


    In magnetic resonance electrical impedance tomography (MREIT) we inject currents through electrodes placed on the surface of a subject and try to reconstruct cross-sectional resistivity (or conductivity) images using internal magnetic flux density as well as boundary voltage measurements. In this paper we present a static resistivity image of a cubic saline phantom (50 x 50 x 50 mm3) containing a cylindrical sausage object with an average resistivity value of 123.7 ohms cm. Our current MREIT system is based on an experimental 0.3 T MRI scanner and a current injection apparatus. We captured MR phase images of the phantom while injecting currents of 28 mA through two pairs of surface electrodes. We computed current density images from magnetic flux density images that are proportional to the MR phase images. From the current density images and boundary voltage data we reconstructed a cross-sectional resistivity image within a central region of 38.5 x 38.5 mm2 at the middle of the phantom using the J-substitution algorithm. The spatial resolution of the reconstructed image was 64 x 64 and the reconstructed average resistivity of the sausage was 117.7 ohms cm. Even though the error in the reconstructed average resistivity value was small, the relative L2-error of the reconstructed image was 25.5% due to the noise in measured MR phase images. We expect improvements in the accuracy by utilizing an MRI scanner with higher SNR and increasing the size of voxels scarifying the spatial resolution.

  1. Trilogy possible meteorite impact crater at Bukit Bunuh, Malaysia using 2-D electrical resistivity imaging

    Jinmin, M.; Rosli, S.; Nordiana, M. M.; Mokhtar, S.


    Bukit Bunuh situated in Lenggong (Perak) is one of Malaysia's most important areas for archeology that revealed many traces of Malaysia's prehistory. Geophysical method especially 2-D electrical resistivity imaging method is non-destructive which is applied in geo-subsurface study for meteorite impact. The study consists of two stages which are regional and detail study with a total of fourteen survey lines. The survey lines were conducted using Pole-dipole array with 5 m minimum electrode spacing. The results of each stage are correlated and combined to produce detail subsurface resistivity distribution of the study area. It shows that the area consists of two main layers which are overburden and granitic bedrock. The first layer is overburden mix with boulders with resistivity value of 10-800 Ωm while the second layer is granitic bedrock with resistivity value of >1500 Ωm. This study also shows few spotted possibility of uplift (rebound) due to the high impact which suspected from meteorite. A lot of fracture were found within the survey area which could be one of the effect of meteorite impact. The result suggest that Bukit Bunuh is under layer by a complex crater with diameter of crater rim is approximately 5-6 km.

  2. Investigation of the Interaction between Perovskite Films with Moisture via in Situ Electrical Resistance Measurement.

    Hu, Long; Shao, Gang; Jiang, Tao; Li, Dengbing; Lv, Xinlin; Wang, Hongya; Liu, Xinsheng; Song, Haisheng; Tang, Jiang; Liu, Huan


    Organometal halide perovskites have recently emerged as outstanding semiconductors for solid-state optoelectronic devices. Their sensitivity to moisture is one of the biggest barriers to commercialization. In order to identify the effect of moisture in the degradation process, here we combined the in situ electrical resistance measurement with time-resolved X-ray diffraction analysis to investigate the interaction of CH3NH3PbI(3-x)Cl(x) perovskite films with moisture. Upon short-time exposure, the resistance of the perovskite films decreased and it could be fully recovered, which were ascribed to a mere chemisorption of water molecules, followed by the reversible hydration into CH3NH3PbI(3-x)Cl(x)·H2O. Upon long-time exposure, however, the resistance became irreversible due to the decomposition into PbI2. The results demonstrated the formation of monohydrated intermediate phase when the perovskites interacted with moisture. The role of moisture in accelerating the thermal degradation at 85 °C was also demonstrated. Furthermore, our study suggested that the perovskite films with fewer defects may be more inherently resistant to moisture.

  3. Urban archaeological investigations using surface 3D Ground Penetrating Radar and Electrical Resistivity Tomography methods

    Papadopoulos, Nikos; Sarris, Apostolos; Yi, Myeong-Jong; Kim, Jung-Ho


    Ongoing and extensive urbanisation, which is frequently accompanied with careless construction works, may threaten important archaeological structures that are still buried in the urban areas. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) methods are most promising alternatives for resolving buried archaeological structures in urban territories. In this work, three case studies are presented, each of which involves an integrated geophysical survey employing the surface three-dimensional (3D) ERT and GPR techniques, in order to archaeologically characterise the investigated areas. The test field sites are located at the historical centres of two of the most populated cities of the island of Crete, in Greece. The ERT and GPR data were collected along a dense network of parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way, applying specific filters to the data in order to enhance their information content. Finally, horizontal depth slices representing the 3D variation of the physical properties were created. The GPR and ERT images significantly contributed in reconstructing the complex subsurface properties in these urban areas. Strong GPR reflections and high-resistivity anomalies were correlated with possible archaeological structures. Subsequent excavations in specific places at both sites verified the geophysical results. The specific case studies demonstrated the applicability of ERT and GPR techniques during the design and construction stages of urban infrastructure works, indicating areas of archaeological significance and guiding archaeological excavations before construction work.




    Highly industrialized areas pose significant challenges for surface based electrical resistivity characterization and monitoring due to the high degree of metallic infrastructure. The infrastructure is typically several orders of magnitude more conductive than the desired targets, preventing the geophysicist from obtaining a clear picture of the subsurface. These challenges may be minimized if steel-cased wells are used as long electrodes. We demonstrate a method of using long electrodes in a complex nuclear waste facility to monitor a simulated leak from an underground storage tank. The leak was simulated by injecting high conductivity fluid in a perforated well and the resistivity measurements were made before and after the leak test. The data were processed in four dimensions, where a regularization procedure was applied in both the time and space domains. The results showed a lowered resistivity feature develop south of the injection site. The time lapsed regularization parameter had a strong influence on the differences in inverted resistivity between the pre and post datasets, potentially making calibration of the results to specific hydrogeologic parameters difficult.

  5. Saturation of electrical resistivity of solid iron at Earth's core conditions.

    Pozzo, Monica; Alfè, Dario


    We report on the temperature dependence of the electrical resistivity of solid iron at high pressure, up to and including conditions likely to be found at the centre of the Earth. We have extended some of the calculations of the resistivities of pure solid iron we recently performed at Earth's core conditions (Pozzo et al. in Earth Planet Sci Lett 393:159-164, 2014) to lower temperature. We show that at low temperature the resistivity increases linearly with temperature, and saturates at high temperature. This saturation effect is well known as the Mott-Ioffe-Regel limit in metals, but has been largely ignored to estimate the resistivity of iron at Earth's core conditions. Recent experiments (Gomi et al. in Phys Earth Planet Int 224:88-103, 2013) coupled new high pressure data and saturation to predict the resitivity of iron and iron alloys at Earth's core conditions, and reported values up to three times lower than previous estimates, confirming recent first principles calculations (de Koker et al. in Proc Natl Acad Sci 109:4070-4073, 2012; Pozzo et al. in Nature 485:355-358, 2012, Phys Rev B 87:014110-10, 2013, Earth Planet Sci Lett 393:159-164, 2014; Davies et al. in Nat Geosci 8:678-685, 2015). The present results support the saturation effect idea.

  6. Electrical resistivity dip in Sb x V y Mo z O t phases

    Groń, T.; Filipek, E.; Mazur, S.; Duda, H.; Pacyna, A. W.; Mydlarz, T.; Bärner, K.


    Electrical resistivity dips have been discovered in the temperature range 100-500 K both in the SbVO4.96 matrix and the Sb x V y Mo z O t phases for 10 mol% solubility of MoO3 in SbVO5. As the Sb content increases and simultaneously the V content decreases, the value of the resistivity at the dip, ρ d, decreases and shifts the dip to higher temperatures. The magnetic measurements showed a spontaneous magnetization and parasitic magnetism of the solid solutions under study. Characteristic for parasitic magnetism is a small value of the magnetic moment, here 0.014 μ B/f.u. at 4.2 K and at a magnetic field of 14 T as well as a small value of the mass susceptibility, here 10-5 cm3/g. The value of the Néel temperature, T N ≤ 8 K, and the Curie-Weiss temperature, θ CW ≤ -208 K, indicate a collinear antiferromagnetic (AFM) order. We suggest that neither the magnetism nor the Mo-content can be correlated with the resistivity anomalies. Therefore, these effects may rather be interpreted in terms of a small-polaron gas in the resistivity dip area. Alternatively, they could mark a lattice/electronic entropy-driven incomplete metal-insulator transition.

  7. Modelling the electrical resistivity response to CO2 plumes generated in a laboratory, cylindrical sandbox

    Kremer, T.; Maineult, A. J.; Binley, A.; Vieira, C.; Zamora, M.


    CO2 capture and storage into deep geological formations is one of the main solutions proposed to reduce the concentration of anthropic CO2 in the atmosphere. The monitoring of injection sites is a crucial issue to assess for the long term viability of CO2 storage. With the intention of detecting potential leakages, we are investigating the possibility of using electrical resistivity tomography (ERT) techniques to detect CO2 transfers in the shallow sub-surface. ERT measurements were performed during a CO2 injection in a cylindrical tank filled with Fontainebleau sand and saturated with water. Several measurements protocols were tested. The inversion of the resistances measured with the software R3T (Binley and Kemna (2005)) clearly showed that the CO2 injection induces significant changes in the resistivity distribution of the medium, and that ERT has a promising potential for the detection and survey of CO2 transfers through unconsolidated saturated media. We modeled this experiment using Matlab by building a 3D cellular automaton that describes the CO2 spreading, following the geometric and stochastic approach described by Selker et al. (2007). The CO2 circulation is described as independents, circular and continuous gas channels whose horizontal spread depends on a Gaussian probability law. From the channel distribution we define the corresponding gas concentration distribution and calculate the resistivity of the medium by applying Archie's law for unsaturated conditions. The forward modelling was performed with the software R3T to convert the resistivity distribution into resistances values, each corresponding to one of the electrode arrays used in the experimental measurements. Modelled and measured resistances show a good correlation, except for the electrode arrays located at the top or the bottom of the tank. We improved the precision of the model by considering the effects due to CO2 dissolution in the water which increases the conductivity of the

  8. Bill project for a new organisation of the electricity market (NOME): impact study; Projet de loi portant nouvelle organisation du marche de l'electricite (NOME) Etude d'impact. Avril 2010



    This document reports a study of the impact of the implementation of regulated access to electricity, of a capacity obligation, and of the evolution of regulated selling prices. It outlines that the progressive opening to concurrence of electricity in European markets did not reach in France the expected objectives: to let consumers get the benefit of investment in nuclear energy, incentives for innovation and demand reduction, promotion of investments within the frame of the electricity European market, etc. The authors describe the electricity market new organisation which is defined in the bill project, and the expected impacts on the different actors, macro-economical impacts, impacts on public finance and employment, environmental impacts, social impacts, and legal impacts.

  9. Carbon fiber polymer-matrix structural composites for electrical-resistance-based sensing

    Wang, Daojun

    This dissertation has advanced the science and technology of electrical-resistance-based sensing of strain/stress and damage using continuous carbon fiber epoxy-matrix composites, which are widely used for aircraft structures. In particular, it has extended the technology of self-sensing of carbon fiber polymer-matrix composites from uniaxial longitudinal loading and flexural loading to uniaxial through-thickness loading and has extended the technology from structural composite self-sensing to the use of the composite (specifically a one-lamina composite) as an attached sensor. Through-thickness compression is encountered in the joining of composite components by fastening. Uniaxial through-thickness compression results in strain-induced reversible decreases in the through-thickness and longitudinal volume resistivities, due to increase in the fiber-fiber contact in the through-thickness direction, and minor-damage-induced irreversible changes in these resistivities. The Poisson effect plays a minor role. The effects in the longitudinal resistivity are small compared to those in the through-thickness direction, but longitudinal resistance measurement is more amenable to practical implementation in structures than through-thickness resistance measurement. The irreversible effects are associated with an increase in the through-thickness resistivity and a decrease in the longitudinal resistivity. The through-thickness gage factor is up to 5.1 and decreases with increasing compressive strain above 0.2%. The reversible fractional change in through-thickness resistivity per through-thickness strain is up to 4.0 and decreases with increasing compressive strain. The irreversible fractional change in through-thickness resistivity per unit through-thickness strain is around -1.1 and is independent of the strain. The sensing is feasible by measuring the resistance away from the stressed region, though the effectiveness is less than that at the stressed region. A one

  10. Multiple pulse-heating experiments with different current to determine total emissivity, heat capacity, and electrical resistivity of electrically conductive materials at high temperatures.

    Watanabe, Hiromichi; Yamashita, Yuichiro


    A modified pulse-heating method is proposed to improve the accuracy of measurement of the hemispherical total emissivity, specific heat capacity, and electrical resistivity of electrically conductive materials at high temperatures. The proposed method is based on the analysis of a series of rapid resistive self-heating experiments on a sample heated at different temperature rates. The method is used to measure the three properties of the IG-110 grade of isotropic graphite at temperatures from 850 to 1800 K. The problem of the extrinsic heating-rate effect, which reduces the accuracy of the measurements, is successfully mitigated by compensating for the generally neglected experimental error associated with the electrical measurands (current and voltage). The results obtained by the proposed method can be validated by the linearity of measured quantities used in the property determinations. The results are in reasonably good agreement with previously published data, which demonstrate the suitability of the proposed method, in particular, to the resistivity and total emissivity measurements. An interesting result is the existence of a minimum in the emissivity of the isotropic graphite at around 1120 K, consistent with the electrical resistivity results.

  11. The (RH+t) aging correlation. Electrical resistivity of PVB at various temperatures and relative humidities

    Cuddihy, E. F.


    Electrical products having organic materials functioning as pottants, encapsulants, and insulation coatings are commonly exposed to elevated conditions of temperature and humidity. In order to assess service life potential from this method of accelerated aging, it was empirically observed that service life seems proportional to an aging correlation which is the sum of temperature in degrees Celsius (t), and the relative humidity (RH) expressed in percent. Specifically, the correlation involves a plot of time-to-failure on a log scale versus the variable RH + T plotted on a linear scale. A theoretical foundation is provided for this empirically observed correlation by pointing out that the correlation actually involves a relationship between the electrical resistivity (or conductivity) of the organic material, and the variable RH + t. If time-to-failure is a result of total number of coulombs conducted through the organic material, then the correlation of resistivity versus RH + t is synonymous with the empirical correlation of time-to-failure versus RH + t.

  12. Enhanced Strain-Dependent Electrical Resistance of Polyurethane Composites with Embedded Oxidized Multiwalled Carbon Nanotube Networks

    R. Benlikaya


    Full Text Available The effect of different chemical oxidation of multiwalled carbon nanotubes with H2O2, HNO3, and KMnO4 on the change of electrical resistance of polyurethane composites with embedded oxidized nanotube networks subjected to elongation and bending has been studied. The testing has shown about twenty-fold increase in the electrical resistance for the composite prepared from KMnO4 oxidized nanotubes in comparison to the composites prepared from the pristine and other oxidized nanotubes. The evaluated sensitivity of KMnO4 treated composite in terms of the gauge factor increases with strain to nearly 175 at the strain 11%. This is a substantial increase, which ranks the composite prepared from KMnO4 oxidized nanotubes among materials as strain gauges with the highest electromechanical sensitivity. The observed differences in electromechanical properties of the composites are discussed on basis of their structure which is examined by the measurements of Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscope. The possible practical use of the composites is demonstrated by monitoring of elbow joint flexion during two different physical exercises.

  13. Diagnosis of the heating effect on the electrical resistivity of Ouargla (Algeria) dunes sand using XRD patterns and FTIR spectra

    Mechri, Mohammed Laïd; Chihi, Smaïl; Mahdadi, Naouia; Beddiaf, Samiha


    XRD patterns and FTIR spectra have shown that dunes sand of Ouargla's region, in its natural state, is formed of a high percentage of quartz, gypsum and very low percentage of kaolinite and hematite, in addition to some organic compounds. The electrical resistivity of the natural sand has been measured, it was 6 × 1014 Ω cm. Six samples of the sand were heated separately at 200, 400, 600, 800, 1000 and 1200 °C. The XRD patterns and FTIR spectra of these samples were carried out. On the other hand, the electrical resistivities of these samples have been measured. The change of the electrical resistivity with heat shows a nonlinear behavior. The heated sample of sand at 200 °C has lost some water. Most of the gypsum in the 200 °C heated sample has transformed into anhydrite, and the rest has transformed into bassanite, and its electrical resistivity has fallen down to 3.5 × 1014 Ω cm. By heating at 400 °C, the gypsum has lost all its water and it has transformed entirely to anhydrite, and its electrical resistivity became 6.75 × 1012 Ω cm, it has the lowest measured resistivity. At 600 °C and 800 °C, in addition to anhydrite, the kaolinite transformed to meta-kaolin due to the continuous breaking of OH bond and formation of water vapor, and the electrical resistivity increased to (1.5-1.9) × 1014 Ω cm. Heating at 1000 °C leads to the initiation of the interaction between anhydrite and quartz, the wollastonite appears, and the meta-kaolin transforms to aluminum-silicon and cristobalite. The wollastonite is a good electrical insulator. It raises the electrical resistivity of sand to 2.6 × 1014 Ω cm. The heating at 1200 °C makes all anhydrite to interact with quartz due to the increasing of volume of wollastonite, the anhydrite disappears completely, the quartz transforms into cristobalite. The cristobalite increases due to the dissociation of aluminium-silicon into mullite and cristobalite, as well as the transformation of quartz into cristobalite at

  14. Electrical Resistance and Acoustic Emission Measurements for Monitoring the Structural Behavior of CFRP Laminate

    Zhou, Wei


    Electrical resistance and acoustic emission (AE) measurement are jointly used to monitor the degradation in CFRP laminates subjected to tensile tests. The objective of this thesis is to perform a synergertic analysis between a passive and an active methods to better access how these perform when used for Structural Health Moni- toring (SHM). Laminates with three different stacking sequences: [0]4, [02/902]s and [+45/ − 45]2s are subjected to monotonic and cyclic tensile tests. In each laminate, we carefully investigate which mechanisms of degradation can or cannot be detect- ed by each technique. It is shown that most often, that acoustic emission signals start before any electrical detection is possible. This is is explained based on the redundance of the electrical network that makes it less sensitive to localized damages. Based on in depth study of AE signals clustering, a new classification is proposed to recognize the different damage mechanims based on only two parameters: the RA (rise time/amplitude) and the duration of the signal.

  15. Monitoring solute fluxes: Integrating electrical resistivity with multi-compartment sampler techniques

    Bloem, Esther; Fernandez, Perrine; French, Helen K.


    The impact of agriculture, industry, airport activities on soil and water quality is strongly influenced by soil heterogeneity. To improve risk assessment, monitoring, and treatment strategies, we require a better understanding of the effect of soil heterogeneity on contaminant movement and better methods for monitoring heterogeneous contaminated transport. Sufficient characterization of spatial and temporal distribution of contaminant transport requires measurements of water and solute fluxes at multiple locations with a high temporal resolution. During this presentation, we will show a newly developed instrument, which combines multi-compartment sampling with electrical resistivity measurements, to observe spatial and temporal fluxes of contaminants. Solute monitoring is often limited to observations of resident concentrations, while flux concentrations govern the movement of solutes in soils. Bloem et al. (2010) developed a multi-compartment sampler (MCS) which is capable of measuring fluxes at a high spatial resolution under natural conditions. The sampler is divided into 100 separate compartments of 31 by 31 mm. Flux data can be recorded at a high time resolution (every 5 minutes). Tracer leaching can be monitored by frequently sampling the collected leachate while leaving the sampler buried in situ. To optimize the monitoring of tracer leaching and measure real solute fluxes the multi-compartment sampler has been extended with 121 electrodes. The electrodes are mounted at each corner of each compartment to measure the electrical conductivity above each compartment while water percolates through the compartments. By using different electrode couples, the setup can also be used to image above the multi-compartment sampler. The instrument can be used for detailed studies both in the laboratory and in the field. For laboratory experiments a transparent column is used which fits perfect on top of the MCS. We present a selection of the integrated electrical

  16. Study on the electrical resistance of the sleeper-fastening elements system in railway tracks

    Barroso, F. J.


    Full Text Available The electrical resistance of the sleeper-fastening elements system in a wet railway track is a very important parameter. This is because the rails are electric conductors in the circuit of signaling and traction systems. This electrical resistance, defined as a characteristic value of the sleeper-fastening elements-water system is a measurand obtained with reference measurement procedures as described in international standards. But it is subject to many kinds of undefinitions that result in a very high dispersion. In this work the dependence of this parameter on variables such as the water conductivity, the temperature and the relative humidity is shown, and several ways to reduce it to minimum values are also established.En vías de ferrocarril sometidas a condiciones medioambientales desfavorables la resistencia eléctrica del conjunto formado por una traviesa y el sistema de sujeción del raíl es un parámetro muy importante. Esto se debe a que los raíles actúan como conductores eléctricos en los sistemas de señalización y tracción. Esta resistencia eléctrica, definida como un valor característico del sistema traviesa-elementos de sujeción-agua se mide con procedimientos normalizados. Sin embargo estos procedimientos están sujetos a ciertas indefiniciones que provocan una elevada dispersión. En este trabajo se estudia la dependencia de este parámetro en variables tales como la conductividad del agua, la temperatura y la humedad relativa, y se establecen estrategias para reducir dicha dispersión a valores mínimos.

  17. Investigating Algal Reefs in Xinwu, Taiwan, by using Electrical Resistivity Tomography Method

    Wu, Ping-Yun; Chen, Chien-Chih


    The Guanxin algal reef, which is locating along the coastal line of Guanyin and Xinwu districts in the Taoyuan city, is the biggest and most complete algal reef in Taiwan. It is consisted of the calcified crustose coralline algae and is one of the most important ecosystems on the northwestern coast. Algal reefs grow extremely slow and expand only 0.1 to 80 mm annually; as a result, any investigation in the algal reef area must be implemented very carefully to reduce potential influence on the environment. Reefs have special electrical property; therefore, it is suitable for applications of electrical exploration methods. The Electrical Resistivity Tomography (ERT) is a fast, non-destructive, and inexpensive surficial geophysical survey method, and therefore it is widely used to investigate reefs. In this study, we used ERT method to investigate the location, distribution area and depth of algal reefs in order to provide a reliable reference of coastal engineering and the establishment of ecosystem refuge. The study area is from the south coast of Fulin river to the south coast of Guanyin river. There are four ERT survey lines, three of them are 960m long and parallel to the shoreline, and the other one is 240m long and perpendicular to others. According to the Archie's Law, we calculated the porosity from the resistivity profile to estimate the depth of reefs beneath each survey line and verified the estimates with the data obtained from drilling well. The results show that the upper boundary of the algal reefs is 0-1.5m deep (there are sands above), and the lower boundary is 4-6m deep (there are gravels below) in the study area. In addition, all profiles obtained from the north-south survey lines show that the depth of the algal reef becomes shallower in the range of 100m in the southernmost end, which indicate the southern boundary of the reef distribution.

  18. An experimental and computational investigation of electrical resistivity imaging for prediction ahead of tunnel boring machines

    Schaeffer, Kevin P.

    Tunnel boring machines (TBMs) are routinely used for the excavation of tunnels across a range of ground conditions, from hard rock to soft ground. In complex ground conditions and in urban environments, the TBM susceptible to damage due to uncertainty of what lies ahead of the tunnel face. The research presented here explores the application of electrical resistivity theory for use in the TBM tunneling environment to detect changing conditions ahead of the machine. Electrical resistivity offers a real-time and continuous imaging solution to increase the resolution of information along the tunnel alignment and may even unveil previously unknown geologic or man-made features ahead of the TBM. The studies presented herein, break down the tunneling environment and the electrical system to understand how its fundamental parameters can be isolated and tested, identifying how they influence the ability to predict changes ahead of the tunnel face. A proof-of-concept, scaled experimental model was constructed in order assess the ability of the model to predict a metal pipe (or rod) ahead of face as the TBM excavates through a saturated sand. The model shows that a prediction of up to three tunnel diameters could be achieved, but the unique presence of the pipe (or rod) could not be concluded with certainty. Full scale finite element models were developed in order evaluate the various influences on the ability to detect changing conditions ahead of the face. Results show that TBM/tunnel geometry, TBM type, and electrode geometry can drastically influence prediction ahead of the face by tens of meters. In certain conditions (i.e., small TBM diameter, low cover depth, large material contrasts), changes can be detected over 100 meters in front of the TBM. Various electrode arrays were considered and show that in order to better detect more finite differences (e.g., boulder, lens, pipe), the use of individual cutting tools as electrodes is highly advantageous to increase spatial

  19. Resistance modulation in VO2 nanowires induced by an electric field via air-gap gates

    Kanki, Teruo; Chikanari, Masashi; Wei, Tingting; Tanaka, Hidekazu; The Institute of Scientific; Industrial Research Team

    Vanadium dioxide (VO2) shows huge resistance change with metal-insulator transition (MIT) at around room temperature. Controlling of the MIT by applying an electric field is a topical ongoing research toward the realization of Mott transistor. In this study, we have successfully switched channel resistance of VO2 nano-wire channels by a pure electrostatic field effect using a side-gate-type field-effect transistor (SG-FET) viaair gap and found that single crystalline VO2 nanowires and the channels with narrower width enhance transport modulation rate. The rate of change in resistance ((R0-R)/R, where R0 and R is the resistance of VO2 channel with off state and on state gate voltage (VG) , respectively) was 0.42 % at VG = 30 V in in-plane poly-crystalline VO2 channels on Al2O3(0001) substrates, while the rate in single crystalline channels on TiO2 (001) substrates was 3.84 %, which was 9 times higher than that using the poly-crystalline channels. With reducing wire width from 3000 nm to 400 nm of VO2 on TiO2 (001) substrate, furthermore, resistance modulation ratio enhanced from 0.67 % to 3.84 %. This change can not be explained by a simple free-electron model. In this presentation, we will compare the electronic properties between in-plane polycrystalline VO2 on Al2O3 (0001) and single crystalline VO2 on TiO2 (001) substrates, and show experimental data in detail..

  20. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe


    The study of volcanic domes growth (e.g. St. Helens, Unzen, Montserrat) shows that it is often characterized by a succession of extrusion phases, dome explosions and collapse events. Lava dome eruptive activity may last from days to decades. Therefore, their internal structure, at the end of the eruption, is complex and includes massive extrusions and lava lobes, talus and pyroclastic deposits as well as hydrothermal alteration. The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for volcano structure imaging. Because a large range of resistivity values is often observed in volcanic environments, the method is well suited to study the internal structure of volcanic edifices. We performed an ERT survey on an 11ka years old trachytic lava dome, the Puy de Dôme volcano (French Massif Central). The analysis of a recent high resolution DEM (LiDAR 0.5 m), as well as other geophysical data, strongly suggest that the Puy de Dôme is a composite dome. 11 ERT profiles have been carried out, both at the scale of the entire dome (base diameter of ~2 km and height of 400 m) on the one hand, and at a smaller scale on the summit part on the other hand. Each profile is composed of 64 electrodes. Three different electrode spacing have been used depending on the study area (35 m for the entire dome, 10 m and 5 m for its summit part). Some profiles were performed with half-length roll-along acquisitions, in order to keep a good trade-off between depth of investigation and resolution. Both Wenner-alpha and Wenner-Schlumberger protocols were used. 2-D models of the electrical resistivity distribution were computed using RES2DINV software. In order to constrain inversion models interpretation, the depth of investigation (DOI) method was applied to those results. It aims to compute a sensitivity index on inversion results, illustrating how the data influence the model and constraining models

  1. Analysis of Printing Substrate, Ink Age and Number of IR Drying Influence on Electrical Resistance of Conductive Inks

    Josip Jerić


    Full Text Available As a result of availability of new technologies, functional printing as a segment has become one of the most interesting directions of research and development in graphic technology. Conductive inks are not a novelty and they already have broad possibilities in production of everyday products. There is still a big market for the broadening of their use, as well as a possibility of further enhancing their properties. This paper analyzes the influence of printing substrate, age of ink and the number of IR drying on the electrical resistance of the conductive inks. In the paper, subject of analysis was the change of electrical resistance in the line that was 9 cm long and 10 typographic points wide. The semi-automated screen-printing machine was used for printing. Three types of printing substrates were used; uncoated, coated and recycled paper. Two types of inks were used; newly opened ink and ink that was out of date for half year. After the printing, prints were dried using the IR dryer. Prints were dried once, and then additional three times. After the first and last drying, multimeter was used to measure electrical resistance of the lines. Analysis of the data shows that the older ink produces prints with higher electrical resistance. There are also notable differences in the electrical resistance based on the printing substrate.

  2. Imaging Saltwater Intrusion Along the Coast of Monterey Bay Using Long-Offset Electrical Resistivity Tomography

    Goebel, M.; Knight, R. J.; Pidlisecky, A.


    Coastal regions represent a complex dynamic interface where saltwater intrusion moves seawater landward and groundwater discharge moves freshwater seaward. These processes can have a dramatic impact on water quality, affecting both humans and coastal ecosystems. The ability to map the subsurface distribution of fresh and salt water is a critical step in predicting and managing water quality in coastal regions. This is commonly accomplished using wells, which are expensive and provide point information, which may fail to capture the spatial complexity in subsurface conditions. We present an alternate method for acquiring data, long-offset Electrical Resistivity Tomography (ERT), which is non-invasive, cost effective, and can address the problem of poor spatial sampling. This geophysical method can produce continuous profiles of subsurface electrical resistivity to a depth of 300 m, with spatial resolution on the order of tens of meters. Our research focuses on the Monterey Bay region, where sustained groundwater extraction over the past century has led to significant saltwater intrusion. ERT was acquired along 40 kilometers of the coast using the roll along method, allowing for continuous overlap in data acquisition. Electrodes were spaced every 22.2 m, with a total of 81 electrodes along the 1.8 km active cable length. The data show a complex distribution of fresh and salt water, influenced by geology, groundwater pumping, recharge, and land-use. While the inverted ERT resistivity profiles correspond well with existing data sets and geologic interpretations in the region, the spatial complexity revealed through the ERT data goes beyond what is known from traditional data sources alone. This leads us to conclude that this form of data can be extremely useful in informing and calibrating groundwater flow models, making targeted management decisions, and monitoring changes in subsurface salinities over time.

  3. Near-Surface Fault Structures of the Seulimuem Segment Based on Electrical Resistivity Model

    Ismail, Nazli; Yanis, Muhammad; Idris, Syafrizal; Abdullah, Faisal; Hanafiah, Bukhari


    The Great Sumatran Fault (GSF) system is arc-parallel strike-slip fault system along the volcanic front related to the oblique subduction of the oceanic Indo-Australian plate. Large earthquakes along the southern GSF since 1892 have been reported, but the Seulimuem segment at the northernmost Sumatran has not produced large earthquakes in the past 100 years. The 200-km-long segment is considered to be a seismic gap. Detailed geological study of the fault and thus its surface trace locations, late Quaternary slip rate, and rupture history are urgently needed for earthquake disaster mitigation in the future. However, finding a suitable area for paleoseismic trenching is an obstacle when the fault traces are not clearly shown on the surface. We have conducted geoelectrical measurement in Lamtamot area of Aceh Besar District in order to locate the fault line for paleoseismic excavation. Apparent resistivity data were collected along 40 m profile parallel to the planned trenching site. The 2D electrical resistivity model provided evidence of some resistivity anomalies by high lateral contrast. This anomaly almost coincides with the topographic scarp which is modified by agriculture on the surface at the northern part of Lamtamot. The steep dipping electrical contrast may correspond to a fault. However, the model does not resolve well evidences from minor faults that can be related to the presence of surface ruptures. A near fault paleoseismic investigation requires trenching across the fault in order to detect and analyze the geological record of the past large earthquakes along the Seulimuem segment.

  4. Acute Response to Unilateral Unipolar Electrical Carotid Sinus Stimulation in Patients With Resistant Arterial Hypertension.

    Heusser, Karsten; Tank, Jens; Brinkmann, Julia; Menne, Jan; Kaufeld, Jessica; Linnenweber-Held, Silvia; Beige, Joachim; Wilhelmi, Mathias; Diedrich, André; Haller, Hermann; Jordan, Jens


    Bilateral bipolar electric carotid sinus stimulation acutely reduced muscle sympathetic nerve activity (MSNA) and blood pressure (BP) in patients with resistant arterial hypertension but is no longer available. The second-generation device uses a smaller unilateral unipolar disk electrode to reduce invasiveness while saving battery life. We hypothesized that the second-generation device acutely lowers BP and MSNA in treatment-resistant hypertensive patients. Eighteen treatment-resistant hypertensive patients (9 women/9 men; 53±11 years; 33±5 kg/m(2)) on stable medications have been included in the study. We monitored finger and brachial BP, heart rate, and MSNA. Without stimulation, BP was 165±31/91±18 mm Hg, heart rate was 75±17 bpm, and MSNA was 48±14 bursts per minute. Acute stimulation with intensities producing side effects that were tolerable in the short term elicited interindividually variable changes in systolic BP (-16.9±15.0 mm Hg; range, 0.0 to -40.8 mm Hg; P=0.002), heart rate (-3.6±3.6 bpm; P=0.004), and MSNA (-2.0±5.8 bursts per minute; P=0.375). Stimulation intensities had to be lowered in 12 patients to avoid side effects at the expense of efficacy (systolic BP, -6.3±7.0 mm Hg; range, 2.8 to -14.5 mm Hg; P=0.028 and heart rate, -1.5±2.3 bpm; P=0.078; comparison against responses with side effects). Reductions in diastolic BP and MSNA (total activity) were correlated (r(2)=0.329; P=0.025). In our patient cohort, unilateral unipolar electric baroreflex stimulation acutely lowered BP. However, side effects may limit efficacy. The approach should be tested in a controlled comparative study.

  5. Effects of Soil Moisture Content on Groundwater Electrical Resistivity Values in Irrigation Paddy Scheme, Tanjong Karang, Malaysia

    Nurmala Sari


    Full Text Available Electrical Resistivity Tomography (ERT analyses have been conducted in Irrigation Paddy Scheme, Tanjong Karang, Malaysia as part of investigation on groundwater potential aquifer to provide an alternative water resource for paddy irrigation. Based on recent studies on groundwater resistivity in paddy field, irrigation system mentioned as soil moisture content was observed to affect the value of electrical resistivity and subsurface geological profile resulted from ERT analysis. The objective of this study was to proof any correlation between soil moisture content and electrical resistivity values and to determine at what level of soil moisture content which will be the best condition to conduct ERT survey. ERT analysis was conducted by using ABEM Terrameter SAS 4000 of Wenner-Schlumberger array with 5.0 meter and 10.0 meter for minimum and maximum electrode spacing. Visually, based on subsurface geological profile resulted from ERT analysis soil moisture content affected (changed electrical resistivity values. With all different treatments of soil moisture ranged from 16.96% to 27.50%, electrical resistivity values decreased in certain points and in certain depth along with the increase of soil moisture content. This was proofed by ANOVA and Duncan’s multiple range tests showing that Pr > F value was less than 0.0001. Further on Chi-square test showed that at soil moisture level of 22.54%, it was the best condition which gave more correct counts of electrical resistivity values compared to well lithology. This was assumed to be the best condition to conduct ERT survey.

  6. In situ measurement system of electric resistivity for outcrop investigation; Roto de shiyodekiru denkihi teiko keisoku system

    Nakagawa, K.; Tamura, T. [Osaka City Univ., Osaka (Japan). Faculty of Science; Morikawa, T. [Osaka Prefectural Government, Osaka (Japan)


    A simplified electrical resistivity measuring device has been developed as a trial for field and laboratory uses, and some measurements were conducted. For this device, four probe electrodes are penetrated in the clay specimen, to calculate the resistivity from the voltage between both ends of the reference resistance connected with current electrodes in a series and the voltage between intermediate two voltage electrodes. It can be used in the field measurements. For the measurements, specimens of marine and lacustrine clayey sediments with clear stratigraphic levels in southern Osaka Group were used. In the laboratory, in addition to basic physical tests, diatom analysis and measurements of conductivity of clay suspension were also conducted. As a result of the experiments, the electric resistivity of marine clay obtained at the outcrop was lower than lacustrine clay as expected. The value of the former was a half of that of the latter. The frequency dependence in the high frequency region above 1 MHz was the reverse. The difference in electrical resistivity values between non-agitated specimens was about four times. The electrical resistivity of clay suspensions varied in two orders. 3 refs., 9 figs.

  7. Electrical Resistance of SiC/SiC Ceramic Matrix Composites for Damage Detection and Life-Prediction

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai


    Ceramic matrix composites (CMC) are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems due to their low density high thermal conductivity. The employment of these materials in such applications is limited by the ability to accurately monitor and predict damage evolution. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. CMC is a multifunctional material in which the damage is coupled with the material s electrical resistance, providing the possibility of real-time information about the damage state through monitoring of resistance. Here, resistance measurement of SiC/SiC composites under mechanical load at both room temperature monotonic and high temperature creep conditions, coupled with a modal acoustic emission technique, can relate the effects of temperature, strain, matrix cracks, fiber breaks, and oxidation to the change in electrical resistance. A multiscale model can in turn be developed for life prediction of in-service composites, based on electrical resistance methods. Results of tensile mechanical testing of SiC/SiC composites at room and high temperatures will be discussed. Data relating electrical resistivity to composite constituent content, fiber architecture, temperature, matrix crack formation, and oxidation will be explained, along with progress in modeling such properties.

  8. Landslide Monitoring in Southwestern China via Time-lapse Electrical Resistivity Tomography

    Xu, D.; Hu, X.; Shan, C.


    The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability, rainwater infiltration, and subsurface hydrogeology. However, the understanding of this complicated correlation is still poor and inadequate. Thus, in this study, we investigated a typical landslide in southwestern China via time-lapse electrical resistivity tomography (TLERT) in November 2013, August 2014 and May 2016. From the data, shallow sediments showed short-term resistivity variability due to evaporation and rainfall, whereas deep zone exhibited seasonal fluctuations related to dry season, rainy season and snow melting during springtime. We also studied landslide mechanisms based on the spatiotemporal characteristics of surface water infiltration and flow within the landslide body. Combined with borehole data, inverted resistivity models accurately defined the interface between Quaternary sediments and bedrock. Preferential flow pathways attributed to fracture zones and fissures were also delineated. In addition, we found that surface water permeates through these pathways into the slipping mass and drains away as fissure water in the fractured bedrock, probably causing the weakly weathered layer to gradually soften and erode, eventually leading to a landslide. Clearly, TLERT dynamic monitoring can provide precursory information of critical sliding and can be used in landslide stability analysis and prediction.

  9. An analytical model and parametric study of electrical contact resistance in proton exchange membrane fuel cells

    Wu, Zhiliang; Wang, Shuxin; Zhang, Lianhong; Hu, S. Jack

    This paper presents an analytical model of the electrical contact resistance between the carbon paper gas diffusion layers (GDLs) and the graphite bipolar plates (BPPs) in a proton exchange membrane (PEM) fuel cell. The model is developed based on the classical statistical contact theory for a PEM fuel cell, using the same probability distributions of the GDL structure and BPP surface profile as previously described in Wu et al. [Z. Wu, Y. Zhou, G. Lin, S. Wang, S.J. Hu, J. Power Sources 182 (2008) 265-269] and Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Results show that estimates of the contact resistance compare favorably with experimental data by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Factors affecting the contact behavior are systematically studied using the analytical model, including the material properties of the two contact bodies and factors arising from the manufacturing processes. The transverse Young's modulus of chopped carbon fibers in the GDL and the surface profile of the BPP are found to be significant to the contact resistance. The factor study also sheds light on the manufacturing requirements of carbon fiber GDLs for a better contact performance in PEM fuel cells.

  10. An analytical model and parametric study of electrical contact resistance in proton exchange membrane fuel cells

    Wu, Zhiliang; Wang, Shuxin; Zhang, Lianhong [School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Hu, S. Jack [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)


    This paper presents an analytical model of the electrical contact resistance between the carbon paper gas diffusion layers (GDLs) and the graphite bipolar plates (BPPs) in a proton exchange membrane (PEM) fuel cell. The model is developed based on the classical statistical contact theory for a PEM fuel cell, using the same probability distributions of the GDL structure and BPP surface profile as previously described in Wu et al. [Z. Wu, Y. Zhou, G. Lin, S. Wang, S.J. Hu, J. Power Sources 182 (2008) 265-269] and Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Results show that estimates of the contact resistance compare favorably with experimental data by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Factors affecting the contact behavior are systematically studied using the analytical model, including the material properties of the two contact bodies and factors arising from the manufacturing processes. The transverse Young's modulus of chopped carbon fibers in the GDL and the surface profile of the BPP are found to be significant to the contact resistance. The factor study also sheds light on the manufacturing requirements of carbon fiber GDLs for a better contact performance in PEM fuel cells. (author)

  11. Fabrication of pixilated architecture large panel organic flexible solar cell by reducing bulk electrical resistance

    Panag, Jasmeet Singh

    This study investigates experimentally the photovoltaic behavior and performance of a new pixilated architecture of large organic photovoltaic panels made of a large array of high-aspect ratio three-dimensional pillars surrounded by a matrix of polymer photoactive material. A least addressed problem in organic and thin-film solar cells is the high bulk resistance of cathodic and anodic layers that result in drastic reduction of currents and power conversion efficiency (PCE). For such panels to be practical and commercially competitive, this huge bulk-resistance has to be minimized as much as possible. In this study, therefore, we introduce a new novel architecture that essentially compartmentalizes large panels into smaller modules that are connected to each other in a parallel fashion. In this architecture, the metal cathode layer is applied on the top as a series of lines whereas the anodic layer is independently connected to the pixilated cells at the bottom. As a result, these modules act like independent pixel cells wherein the damage from process and operation is limited individual pixel cells. The factors considered in validating the pixilated architecture presented here consisted of effect of number of pixels on efficiency and bulk electrical resistance. In addition, the study shows that pixilated architecture offers more uniform photoactive layers, and hence better photovoltaic performance because of the compartmentalization.

  12. Small scale monitoring of a bioremediation barrier using miniature electrical resistivity tomography

    Sentenac, Philippe; Hogson, Tom; Keenan, Helen; Kulessa, Bernd


    The aim of this study was to assess, in the laboratory, the efficiency of a barrier of oxygen release compound (ORC) to block and divert a diesel plume migration in a scaled aquifer model using miniature electrical resistivity tomography (ERT) as the monitoring system. Two plumes of contaminant (diesel) were injected in a soil model made of local sand and clay. The diesel plumes migration was imaged and monitored using a miniature resistivity array system that has proved to be accurate in soil resistivity variations in small-scaled models of soil. ERT results reflected the lateral spreading and diversion of the diesel plumes in the unsaturated zone. One of the contaminant plumes was partially blocked by the ORC barrier and a diversion and reorganisation of the diesel in the soil matrix was observed. The technique of time-lapse ERT imaging showed that a dense non-aqueous phase liquid (DNAPL) contaminant like diesel can be monitored through a bioremediation barrier and the technique is well suited to monitor the efficiency of the barrier. Therefore, miniature ERT as a small-scale modelling tool could complement conventional techniques, which require more expensive and intrusive site investigation prior to remediation.

  13. Electrical resistivity of substitutionally disordered hcp Fe-Si and Fe-Ni alloys: Chemically-induced resistivity saturation in the Earth's core

    Gomi, Hitoshi; Hirose, Kei; Akai, Hisazumi; Fei, Yingwei


    The thermal conductivity of the Earth's core can be estimated from its electrical resistivity via the Wiedemann-Franz law. However, previously reported resistivity values are rather scattered, mainly due to the lack of knowledge with regard to resistivity saturation (violations of the Bloch-Grüneisen law and the Matthiessen's rule). Here we conducted high-pressure experiments and first-principles calculations in order to clarify the relationship between the resistivity saturation and the impurity resistivity of substitutional silicon in hexagonal-close-packed (hcp) iron. We measured the electrical resistivity of Fe-Si alloys (iron with 1, 2, 4, 6.5, and 9 wt.% silicon) using four-terminal method in a diamond-anvil cell up to 90 GPa at 300 K. We also computed the electronic band structure of substitutionally disordered hcp Fe-Si and Fe-Ni alloy systems by means of Korringa-Kohn-Rostoker method with coherent potential approximation (KKR-CPA). The electrical resistivity was then calculated from the Kubo-Greenwood formula. These experimental and theoretical results show excellent agreement with each other, and the first principles results show the saturation behavior at high silicon concentration. We further calculated the resistivity of Fe-Ni-Si ternary alloys and found the violation of the Matthiessen's rule as a consequence of the resistivity saturation. Such resistivity saturation has important implications for core dynamics. The saturation effect places the upper limit of the resistivity, resulting in that the total resistivity value has almost no temperature dependence. As a consequence, the core thermal conductivity has a lower bound and exhibits a linear temperature dependence. We predict the electrical resistivity at the top of the Earth's core to be 1.12 ×10-6 Ωm, which corresponds to the thermal conductivity of 87.1 W/m/K. Such high thermal conductivity suggests high isentropic heat flow, leading to young inner core age (<0.85 Gyr old) and high initial

  14. Sensitivity of Deep-Towed Marine Electrical Resistivity Imaging Using Two-Dimensional Inversion: A Case Study on Methane Hydrate

    Chih-Wen Chiang


    Full Text Available Uncertain physical properties of methane hydrate (MH above a bottom simulating reflector should be estimated for detecting MH-bearing formations. In contrast to general marine sediments, MH-bearing formations have a relatively high electrical resistivity. Therefore, marine electrical resistivity imaging (MERI is a well-suited method for MH exploration. The authors conducted sensitivity testing of sub-seafloor MH exploration using a two-dimensional (2D inversion algorithm with the Wenner, Pole-Dipole (PD and Dipole-Dipole (DD arrays. The results of the Wenner electrode array show the poorest resolution in comparison to the PD and DD arrays. The results of the study indicate that MERI is an effective geophysical method for exploring the sub-seafloor electrical structure and specifically for delineating resistive anomalies that may be present because of MH-bearing formations at a shallow depth beneath the seafloor.

  15. Electrical Resistance of Nb3Sn/Cu Splices Produced by Electromagnetic Pulse Technology and Soft Soldering

    Schoerling, D; Scheuerlein, C; Atieh, S; Schaefer, R


    The electrical interconnection of Nb3Sn/Cu strands is a key issue for the construction of Nb3Sn based damping ring wigglers and insertion devices for third generation light sources. We compare the electrical resistance of Nb3Sn/Cu splices manufactured by solid state welding using Electromagnetic Pulse Technology (EMPT) with that of splices produced by soft soldering with two different solders. The resistance of splices produced by soft soldering depends strongly on the resistivity of the solder alloy at the operating temperature. By solid state welding splice resistances below 10 nOhm can be achieved with 1 cm strand overlap length only, which is about 4 times lower than the resistance of Sn96Ag4 soldered splices with the same overlap length. The comparison of experimental results with Finite Element simulations shows that the electrical resistance of EMPT welded splices is determined by the resistance of the stabilizing copper between the superconducting filaments and confirms that welding of the strand matr...

  16. Microgravity and Electrical Resistivity Techniques for Detection of Caves and Clandestine Tunnels

    Crawford, N. C.; Croft, L. A.; Cesin, G. L.; Wilson, S.


    The Center for Cave and Karst Studies, CCKS, has been using microgravity to locate caves from the ground's surface since 1985. The geophysical subsurface investigations began during a period when explosive and toxic vapors were rising from the karst aquifer under Bowling Green into homes, businesses, and schools. The USEPA provided the funding for this Superfund Emergency, and the CCKS was able to drill numerous wells into low-gravity anomalies to confirm and even map the route of caves in the underlying limestone bedrock. In every case, a low-gravity anomaly indicated a bedrock cave, a cave with a collapsed roof or locations where a bedrock cave had collapsed and filled with alluvium. At numerous locations, several wells were cored into microgravity anomalies and in every case, additional wells were drilled on both sides of the anomalies to confirm that the technique was in fact reliable. The wells cored on both sides of the anomalies did not intersect caves but instead intersected virtually solid limestone. Microgravity also easily detected storm sewers and even sanitary sewers, sometimes six meters (twenty feet) beneath the surface. Microgravity has also been used on many occasions to investigate sinkhole collapses. It identified potential collapse areas by detecting voids in the unconsolidated material above bedrock. The system will soon be tested over known tunnels and then during a blind test along a section of the U.S. border at Nogales, Arizona. The CCKS has experimented with other geophysical techniques, particularly ground penetrating radar, seismic and electrical resistivity. In the late 1990s the CCKS started using the Swift/Sting resistivity meter to perform karst geophysical subsurface investigations. The system provides good depth to bedrock data, but it is often difficult to interpret bedrock caves from the modeled data. The system typically used now by the CCKS to perform karst subsurface investigations is to use electrical resistivity traverses

  17. On the computation of a retina resistivity profile for applications in multi-scale modeling of electrical stimulation and absorption

    Loizos, Kyle; RamRakhyani, Anil Kumar; Anderson, James; Marc, Robert; Lazzi, Gianluca


    This study proposes a methodology for computationally estimating resistive properties of tissue in multi-scale computational models, used for studying the interaction of electromagnetic fields with neural tissue, with applications to both dosimetry and neuroprosthetics. Traditionally, models at bulk tissue- and cellular-level scales are solved independently, linking resulting voltage from existing resistive tissue-scale models as extracellular sources to cellular models. This allows for solving the effects that external electric fields have on cellular activity. There are two major limitations to this approach: first, the resistive properties of the tissue need to be chosen, of which there are contradicting measurements in literature; second, the measurements of resistivity themselves may be inaccurate, leading to the mentioned contradicting results found across different studies. Our proposed methodology allows for constructing computed resistivity profiles using knowledge of only the neural morphology within the multi-scale model, resulting in a practical implementation of the effective medium theory; this bypasses concerns regarding the choice of resistive properties and accuracy of measurement setups. A multi-scale model of retina is constructed with an external electrode to serve as a test bench for analyzing existing and resulting resistivity profiles, and validation is presented through the reconstruction of a published resistivity profile of retina tissue. Results include a computed resistivity profile of retina tissue for use with a retina multi-scale model used to analyze effects of external electric fields on neural activity.

  18. Exploration of resistive targets within shallow marine environments using the circular electrical dipole and the differential electrical dipole methods: a time-domain modelling study

    Haroon, Amir; Mogilatov, Vladimir; Goldman, Mark; Bergers, Rainer; Tezkan, Bülent


    Two novel transient controlled source electromagnetic methods called circular electrical dipole (CED) and differential electrical dipole (DED) are theoretically analysed for applications in shallow marine environments. 1-D and 3-D time-domain modelling studies are used to investigate the detectability and applicability of the methods when investigating resistive layers/targets representing hydrocarbon-saturated formations. The results are compared to the conventional time-domain horizontal electrical dipole (HED) and vertical electrical dipole (VED) sources. The applied theoretical modelling studies demonstrate that CED and DED have higher signal detectability towards resistive targets compared to TD-CSEM, but demonstrate significantly poorer signal amplitudes. Future CED/DED applications will have to solve this issue prior to measuring. Furthermore, the two novel methods have very similar detectability characteristics towards 3-D resistive targets embedded in marine sediments as VED while being less susceptible towards non-verticality. Due to the complex transmitter design of CED/DED the systems are prone to geometrical errors. Modelling studies show that even small transmitter inaccuracies have strong effects on the signal characteristics of CED making an actual marine application difficult at the present time. In contrast, the DED signal is less affected by geometrical errors in comparison to CED and may therefore be more adequate for marine applications.

  19. Consolidation of iron powder by electrical resistance sintering; Consolidacion de polvo de hierro mediante sinterizacion por resistencia electrica

    Montes, J. M.; Rodriguez, J. A.; Herrera, E. J.


    A particular kind of hot pressing, in which the powder mass, subjected to pressure, is simultaneously heated by passing through a high-intensity electrical current is described and analysed. Commercial iron powder was used for the experimental work. Special emphasis is given to the densification kinetics. A qualitative microscopic interpretation of densification rate is suggested, based on the hypothesis of partial formation and rapid solidification of liquid phase. This interpretation is supported by the evolution of global porosity and electrical resistance of specimens during the electrical sintering process. The microstructural characteristics of compacts consolidated in the conventional way (cold pressing and furnace sintering) and by electrical resistance sintering are compared. (Author) 18 refs.

  20. Novel experimental design for high pressure-high temperature electrical resistance measurements in a "Paris-Edinburgh" large volume press

    Matityahu, Shlomi; Emuna, Moran; Yahel, Eyal; Makov, Guy; Greenberg, Yaron


    We present a novel experimental design for high sensitivity measurements of the electrical resistance of samples at high pressures (0-6 GPa) and high temperatures (300-1000 K) in a "Paris-Edinburgh" type large volume press. Uniquely, the electrical measurements are carried out directly on a small sample, thus greatly increasing the sensitivity of the measurement. The sensitivity to even minor changes in electrical resistance can be used to clearly identify phase transitions in material samples. Electrical resistance measurements are relatively simple and rapid to execute and the efficacy of the present experimental design is demonstrated by measuring the electrical resistance of Pb, Sn, and Bi across a wide domain of temperature-pressure phase space and employing it to identify the loci of phase transitions. Based on these results, the phase diagrams of these elements are reconstructed to high accuracy and found to be in excellent agreement with previous studies. In particular, by mapping the locations of several well-studied reference points in the phase diagram of Sn and Bi, it is demonstrated that a standard calibration exists for the temperature and pressure, thus eliminating the need for direct or indirect temperature and pressure measurements. The present technique will allow simple and accurate mapping of phase diagrams under extreme conditions and may be of particular importance in advancing studies of liquid state anomalies.

  1. Electrical Resistivity and Seismic Surveys at the Nevada Test Site, Nevada, April 2007

    Seth S. Haines; Bethany L. Burton; Donald S. Sweetkind; Theodore H. Asch


    In April 2007, the USGS collected direct-current (DC) electrical resistivity data and shear- (S) and compressional- (P) wave seismic data to provide new detail of previously mapped, overlapping fault splays at two administrative areas in the Nevada Test Site (NTS). In NTS Area 7, we collected two-dimensional DC resistivity data along a transect crossing the Yucca Fault parallel to, and between, two transects along which resistivity data were collected in a previous study in 2006. In addition, we collected three-dimensional DC resistivity data in a grid that overlies part of the 2007 transect. The DC resistivity data show that the fault has a footwall that is more conductive than the hanging wall and an along-strike progression of the fault in a location where overlapping splays are present. Co-located with the northernmost of the two 2006 DC resistivity transects, we acquired S- and P-wave seismic data for both reflection and refraction processing. The S-wave data are corrupted by large amounts of converted (P-wave) energy likely due to the abundance of fractured caliche in the shallow subsurface. The P-wave data show minimal reflected energy, but they show clear refracted first arrivals. We have inverted these first arrival times to determine P-wave seismic velocity models. The seismic model for the transect in Area 7 shows low velocities extending to the base of the model at the location of the Yucca Fault, as well as low velocities at the eastern end of the transect, in the vicinity of the adjacent crater. These new surveys provide further detail about the geometry of the Yucca Fault in this location where it shows two overlapping splays. We collected P- and S-wave seismic data along a transect in the southern part of NTS Area 2, corresponding with the location of a 2006 DC resistivity transect that targeted a set of small faults identified with field mapping. Again, the S-wave data are difficult to interpret. The P-wave data show clear first arrivals that we

  2. Electrical Resistivity and Seismic Surveys at the Nevada Test Site, Nevada, April 2007

    Haines, Seth S.; Burton, Bethany L.; Sweetkind, Donald S.; Asch, Theodore H.


    In April 2007, the USGS collected direct-current (DC) electrical resistivity data and shear- (S) and compressional- (P) wave seismic data to provide new detail of previously mapped, overlapping fault splays at two administrative areas in the Nevada Test Site (NTS). In NTS Area 7, we collected two-dimensional DC resistivity data along a transect crossing the Yucca Fault parallel to, and between, two transects along which resistivity data were collected in a previous study in 2006. In addition, we collected three-dimensional DC resistivity data in a grid that overlies part of the 2007 transect. The DC resistivity data show that the fault has a footwall that is more conductive than the hanging wall and an along-strike progression of the fault in a location where overlapping splays are present. Co-located with the northernmost of the two 2006 DC resistivity transects, we acquired S- and P-wave seismic data for both reflection and refraction processing. The S-wave data are corrupted by large amounts of converted (P-wave) energy likely due to the abundance of fractured caliche in the shallow subsurface. The P-wave data show minimal reflected energy, but they show clear refracted first arrivals. We have inverted these first arrival times to determine P-wave seismic velocity models. The seismic model for the transect in Area 7 shows low velocities extending to the base of the model at the location of the Yucca Fault, as well as low velocities at the eastern end of the transect, in the vicinity of the adjacent crater. These new surveys provide further detail about the geometry of the Yucca Fault in this location where it shows two overlapping splays. We collected P- and S-wave seismic data along a transect in the southern part of NTS Area 2, corresponding with the location of a 2006 DC resistivity transect that targeted a set of small faults identified with field mapping. Again, the S-wave data are difficult to interpret. The P-wave data show clear first arrivals that we

  3. Coexistence of electric field controlled ferromagnetism and resistive switching for TiO{sub 2} film at room temperature

    Ren, Shaoqing; Qin, Hongwei; Bu, Jianpei; Zhu, Gengchang; Xie, Jihao; Hu, Jifan, E-mail:, E-mail: [School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100 (China)


    The Ag/TiO{sub 2}/Nb:SrTiO{sub 3}/Ag device exhibits the coexistence of electric field controlled ferromagnetism and resistive switching at room temperature. The bipolar resistive switching in Ag/TiO{sub 2}/Nb:SrTiO{sub 3}/Ag device may be dominated by the modulation of Schottky-like barrier with the electron injection-trapped/detrapped process at the interface of TiO{sub 2}/Nb:SrTiO{sub 3}. We suggest that the electric field-induced magnetization modulation originates mainly from the creation/annihilation of lots of oxygen vacancies in TiO{sub 2}.

  4. Ez-response as a monitor of a Baikal rift fault electrical resistivity: 3D modelling studies

    I. L. Trofimov


    Full Text Available 3D numerical studies have shown that the vertical voltage above the Baikal deep-water fault is detectable and that respective transfer functions, Ez-responses, are sensitive to the electrical resistivity changes of the fault, i.e. these functions appear actually informative with respect to the resistivity «breath» of the fault. It means that if the fault resistivity changed, conventional electromagnetic instruments would be able to detect this fact by measurement of the vertical electric field, Ez, or the vertical electric voltage just above the fault as well as horizontal magnetic field on the shore. Other electromagnetic field components (Ex, Ey, Hz do not seem to be sensitive to the resistivity changes in such a thin fault (as wide as 500 m. On the other hand, such changes are thought to be able to indicate a change of a stress state in the earthquake preparation zone. Besides, the vertical profile at the bottom of Lake Baikal is suitable for electromagnetic monitoring of the fault electrical resistivity changes. Altogether, the vertical voltage above the deep-water fault might be one of earthquake precursors.

  5. Crack density and electrical resistance in indium-tin-oxide/polymer thin films under cyclic loading

    Mora Cordova, Angel


    Here, we propose a damage model that describes the degradation of the material properties of indium-tin-oxide (ITO) thin films deposited on polymer substrates under cyclic loading. We base this model on our earlier tensile test model and show that the new model is suitable for cyclic loading. After calibration with experimental data, we are able to capture the stress-strain behavior and changes in electrical resistance of ITO thin films. We are also able to predict the crack density using calibrations from our previous model. Finally, we demonstrate the capabilities of our model based on simulations using material properties reported in the literature. Our model is implemented in the commercially available finite element software ABAQUS using a user subroutine UMAT.[Figure not available: see fulltext.].

  6. Estimating the Condition of the Heat Resistant Lining in an Electrical Reduction Furnace

    Jan G. Waalmann


    Full Text Available This paper presents a system for estimating the condition of the heat resistant lining in an electrical reduction furnace for ferrosilicon. The system uses temperature measured with thermocouples placed on the outside of the furnace-pot. These measurements are used together with a mathematical model of the temperature distribution in the lining in a recursive least squares algorithm to estimate the position of 'the transformation front'. The system is part of a monitoring system which is being developed in the AIP-project: 'Condition monitoring of strongly exposed process equipment in thc ferroalloy industry'. The estimator runs on-line, and results arc presented in colour-graphics on a display unit. The goal is to locate the transformation front with an accuracy of +- 5cm.

  7. Electrical resistivity and structural heredity of hypereutectic Al-Si alloy melt

    李培杰; 熊玉华; 张燕飞; 曾大本


    The variation rule of the sensitive physical properties of Al-16%Si alloy melt was studied. The results show that within a certain temperature range, the electrical resistivity of Al-16%Si alloy melt changes abruptly in the forms of inflection points or platforms, which is ascribed to the changes in the internal microstructure of the melt. Based on this rule, the variation characteristics of microstructure can be revealed. When remelting and overheating Al-16%Si alloy to 1050℃, the hereditary effects of different original structure on solidification structure after remelting can be eliminated, which can provide scientific foundation for properly controlling the hereditary factors transmitting the structural information of melt.

  8. Temperature dependencies of electrical resistivity and thermoelectric power of SnTe thin films

    Rogacheva, Elena I.; Nashchekina, Olga N.; Korzh, Irina A.; Voinova, Lidiya G.; Krivulkin, Igor M.


    The temperature dependences of electrical resistivity (rho) and thermoelectric power S for the SnTe polycrystalline thin films with charge carrier concentration of (3 - 5)(DOT)1021 cm-3 have been obtained in the range of 80 - 300 K. It was established that the (rho) (T) and S (T) dependences had non-monotonous character. In the temperature range of (80 - 150) K series of peculiarities in the form of steps and plateaux were observed most distinctly. Assumptions about the nature of these anomalies were made. The possible reasons for appearance of numerous temperature peculiarities are system's passing through different quantum states; the processes of self-organization taking place in an open system (heated thin film) at definite levels of excitation (certain temperatures); microdomain structure of thin films; relaxation processes. The pronounced anomalies observed in the temperature ranges of 135 - 150 and 190 - 200 K were attributed to phase transitions caused by redistribution of non-stoichiometric defects.

  9. Magnetic Properties and Electrical Resistivity of Zr4+ Substituted Li-Zn Ferrite

    A. A. Sattar


    Full Text Available The effect of Zr-substitution on the physical and magnetic properties of Li0.3+0.5xZn0.4ZrxFe2.3-1.5xO4 ferrites (x=0.0, 0.01, 0.02, 0.03 and 0.05, prepared by the standard ceramic method, has been studied. It is found that the saturation magnetization increases up to x=0.02 and then it decreases. On the other hand, the initial permeability increased while the Curie temperature remained almost constant with increasing x. The behavior of coercivity and remanence ratio was discussed. The composition dependence of the dc electrical resistivity is found to support the hopping conduction mechanism.

  10. Technique for anisotropic extension of organic crystals: Application to temperature dependence of electrical resistance

    Yamamoto, Takashi; Kato, Reizo; Yamamoto, Hiroshi M.; Fukaya, Atsuko; Yamasawa, Kenji; Takahashi, Ichiro; Akutsu, Hiroki; Akutsu-Sato, Akane; Day, Peter


    We have developed a technique for the anisotropic extension of fragile molecular crystals. The pressure medium and the instrument, which extends the pressure medium, are both made from epoxy resin. Since the thermal contraction of our instrument is identical to that of the pressure medium, the strain applied to the pressure medium has no temperature dependence down to 2K. Therefore, the degree of extension applied to the single crystal at low temperatures is uniquely determined from the degree of extension in the pressure medium and thermal contractions of the epoxy resin and the single crystal at ambient pressure. Using this novel instrument, we have measured the temperature dependence of the electrical resistance of metallic, superconducting, and insulating materials. The experimental results are discussed from the viewpoint of the extension (compression) of the lattice constants along the parallel (perpendicular) direction.

  11. Method for reducing formation of electrically resistive layer on ferritic stainless steels

    Rakowski, James M.


    A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surface region that has been depleted of silicon relative to a remainder of the steel.

  12. Forward problem studies of electrical resistance tomography system on concrete materials

    Ang, Vernoon; Rahiman, M. H. F.; Rahim, R. A.; Aw, S. R.; Wahab, Y. A.; Thomas W. K., T.; Siow, L. T.


    Electrical resistance tomography (ERT) is well known as non-invasive imaging technique, inexpensive, radiation free, visualization measurements of the multiphase flows and frequently applied in geophysical, medical and Industrial Process Tomography (IPT) applications. Application of ERT in concrete is a new exploration field, which can be used in monitoring and detecting the health and condition of concrete without destroying it. In this paper, ERT model under the condition of concrete is studied in which the sensitivity field model is produced and simulated by using COMSOL software. The affects brought by different current injection values with different concrete conductivity are studied in detail. This study able to provide the important direction for the further study of inverse problem in ERT system. Besides, the results of this technique hopefully can open a new exploration in inspection method of concrete structures in order to maintain the health of the concrete structure for civilian safety.

  13. Microstructural characterization and hardness properties of electric resistance welding titanium joints for dental applications.

    Ceschini, Lorella; Boromei, Iuri; Morri, Alessandro; Nardi, Diego; Sighinolfi, Gianluca; Degidi, Marco


    The electric resistance welding procedure is used to join a titanium bar with specific implant abutments in order to produce a framework directly in the oral cavity of the patient. This investigation studied the effects of the welding process on microstructure and hardness properties of commercially pure (CP2 and CP4) Ti components. Different welding powers and cooling procedures were applied to bars and abutments, normally used to produce the framework, in order to simulate the clinical intraoral welding procedure. The analyses highlighted that the joining process did not induce appreciable changes in the geometry of the abutments. However, because of unavoidable microstructural modifications in the welded zones, the hardness decreased to values lower than those of the unwelded CP2 and CP4 Ti grades, irrespective of the welding environments and parameters.

  14. An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq-1)

    Maniyara, Rinu Abraham; Mkhitaryan, Vahagn K.; Chen, Tong Lai; Ghosh, Dhriti Sundar; Pruneri, Valerio


    Transparent conductors are essential in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and solar cells. Here we demonstrate a transparent conductor with optical loss of ~1.6%, that is, even lower than that of single-layer graphene (2.3%), and transmission higher than 98% over the visible wavelength range. This was possible by an optimized antireflection design consisting in applying Al-doped ZnO and TiO2 layers with precise thicknesses to a highly conductive Ag ultrathin film. The proposed multilayer structure also possesses a low electrical resistance (5.75 Ω sq-1), a figure of merit four times larger than that of indium tin oxide, the most widely used transparent conductor today, and, contrary to it, is mechanically flexible and room temperature deposited. To assess the application potentials, transparent shielding of radiofrequency and microwave interference signals with ~30 dB attenuation up to 18 GHz was achieved.

  15. Crystallization Study of Cu56Zr7Ti37 Metallic Glass by Electrical Resistivity Measurement

    Ansu J. Kailath; Kalpalata Dutta; Thomas C.Alex; Amitava Mitra


    In this paper, the crystallization behaviour of amorphous Cu56Zr7Ti37alloy using thermal electrical resistivity (TER) and differential scanning calorimetry (DSC) studies has been described. Isochronal TER and DSC measurements indicate that crystallization occurs in two stages. Isothermal crystallization studies of the alloy by TER show that the kinetics conforms to Johnson-Mehl-Avrami model. Avrami exponents derived from kinetics, between 1.1 and 1.2, imply that the crystallization processes are diffusion controlled with near zero nucleation. Activation energy has been found to increase with the transformed volume fraction. A plausible explanation has been presented by separating the contributions due to nucleation and crystal growth towards total activation energy.

  16. Application of Electrical Resistivity Tomography Technique for Characterizing Leakage Problem in Abu Baara Earth Dam, Syria

    Walid Al-Fares


    Full Text Available Electrical Resistivity Tomography (ERT survey was carried out at Abu Baara earth dam in northwestern Syria, in order to delineate potential pathways of leakage occurring through the subsurface structure close to the dam body. The survey was performed along two straight measuring profiles of 715 and 430 m length in up- and downstream sides of the dam’s embankment. The analysis of the inverted ERT sections revealed the presence of fractured and karstified limestone rocks which constitute the shallow bedrock of the dam reservoir. Several subsurface structural anomalies were identified within the fractured bedrock, most of which are associated with probable karstic cavities, voids, and discontinuity features developed within the carbonates rocks. Moreover, results also showed the occurrence of a distinguished subsiding structure coinciding with main valley course. Accordingly, it is believed that the bedrock and the other detected features are the main potential causes of water leakage from the dam’s reservoir.

  17. Demonstration of combined zero-valent iron and electrical resistance heating for in situ trichloroethene remediation.

    Truex, M J; Macbeth, T W; Vermeul, V R; Fritz, B G; Mendoza, D P; Mackley, R D; Wietsma, T W; Sandberg, G; Powell, T; Powers, J; Pitre, E; Michalsen, M; Ballock-Dixon, S J; Zhong, L; Oostrom, M


    The effectiveness of in situ treatment using zero-valent iron (ZVI) for nonaqueous phase or significant sediment-associated contaminant mass can be limited by relatively low rates of mass transfer to bring contaminants in contact with the reactive media. For a field test in a trichloroethene (TCE) source area, combining moderate-temperature subsurface electrical resistance heating with in situ ZVI treatment was shown to accelerate TCE treatment by a factor of about 4 based on organic daughter products and a factor about 8 based on chloride concentrations. A mass-discharge-based analysis was used to evaluate reaction, dissolution, and volatilization processes at ambient groundwater temperature (~10 °C) and as temperature was increased up to about 50 °C. Increased reaction and contaminant dissolution were observed with increased temperature, but vapor- or aqueous-phase migration of TCE out of the treatment zone was minimal during the test because reactions maintained low aqueous-phase TCE concentrations.

  18. Low electrical resistivity polycrystalline SiGe films obtained by vertical LPCVD for MOS devices

    Teixeira, Ricardo Cotrin [State University of Campinas (UNICAMP), Center for Semiconductor Components (CCS), School of Electrical and Computer Engineering - FEEC, Rua Joao Pandia Calogeras, 90 Caixa Postal 6061, CEP 13083-870 Campinas-SP (Brazil); Doi, Ioshiaki [State University of Campinas (UNICAMP), Center for Semiconductor Components (CCS), School of Electrical and Computer Engineering - FEEC, Rua Joao Pandia Calogeras, 90 Caixa Postal 6061, CEP 13083-870 Campinas-SP (Brazil)]. E-mail:; Zakia, Maria Beny Pinto [State University of Campinas (UNICAMP), Center for Semiconductor Components (CCS), School of Electrical and Computer Engineering - FEEC, Rua Joao Pandia Calogeras, 90 Caixa Postal 6061, CEP 13083-870 Campinas-SP (Brazil); Diniz, Jose Alexandre [State University of Campinas (UNICAMP), Center for Semiconductor Components (CCS), School of Electrical and Computer Engineering - FEEC, Rua Joao Pandia Calogeras, 90 Caixa Postal 6061, CEP 13083-870 Campinas-SP (Brazil); Swart, Jacobus Willibrordus [State University of Campinas (UNICAMP), Center for Semiconductor Components (CCS), School of Electrical and Computer Engineering - FEEC, Rua Joao Pandia Calogeras, 90 Caixa Postal 6061, CEP 13083-870 Campinas-SP (Brazil)


    In this study, authors present some morphological and electrical characterization of polycrystalline SiGe thin films (poly-SiGe) deposited by vertical LPCVD using SiH{sub 4}, GeH{sub 4} and H{sub 2} mixture in different deposition parameters aiming for MOS gate electrodes. The obtained thin films are very uniform and smooth, with small grain size, feasible to deep submicrom fabrication. The SiGe samples presented resistivity values as low as 0.42 m{omega} cm, one order of magnitude lower than poly-Si reference samples. CV and IV measurements points this poly-SiGe as a suitable material for MOS gate electrodes.

  19. Retrofitting of the small hydro electric scheme 'Moulin d'en Bas' in Cronay, Switzerland - Preliminary project; Rehabilitation du Moulin d'en Bas, commune de Cronay. Etude d'avant-projet



    This illustrated final report for the Swiss Federal Office of Energy (SFOE) is a feasibility study for the retrofitting of the small hydro electric scheme 'Moulin d'en Bas' located in Cronay on the Mentue river, Switzerland. Two variants are considered. In the first one the existing scheme uses a 4.72 m water fall and its power amounts to about 25 kW. A 4-blades Kaplan turbine is foreseen to generate 160,000 kWh/y. In the second variant, weir and penstock have to be adapted in order to take advantage of the full 6.74 m water fall indicated in the water-use concession granted in 1952. A new fish pass has to be built as well. The resulting electric power is in this case 80 kW and the power generation by the turbo group 353,000 kWh/y, about 60% of which in the wintertime. Electricity production cost is estimated to be 0.282 CHF/kWh in the second variant.

  20. Eradication of multidrug-resistant pseudomonas biofilm with pulsed electric fields.

    Khan, Saiqa I; Blumrosen, Gaddi; Vecchio, Daniela; Golberg, Alexander; McCormack, Michael C; Yarmush, Martin L; Hamblin, Michael R; Austen, William G


    Biofilm formation is a significant problem, accounting for over eighty percent of microbial infections in the body. Biofilm eradication is problematic due to increased resistance to antibiotics and antimicrobials as compared to planktonic cells. The purpose of this study was to investigate the effect of Pulsed Electric Fields (PEF) on biofilm-infected mesh. Prolene mesh was infected with bioluminescent Pseudomonas aeruginosa and treated with PEF using a concentric electrode system to derive, in a single experiment, the critical electric field strength needed to kill bacteria. The effect of the electric field strength and the number of pulses (with a fixed pulse length duration and frequency) on bacterial eradication was investigated. For all experiments, biofilm formation and disruption were confirmed with bioluminescent imaging and Scanning Electron Microscopy (SEM). Computation and statistical methods were used to analyze treatment efficiency and to compare it to existing theoretical models. In all experiments 1500 V are applied through a central electrode, with pulse duration of 50 μs, and pulse delivery frequency of 2 Hz. We found that the critical electric field strength (Ecr) needed to eradicate 100-80% of bacteria in the treated area was 121 ± 14 V/mm when 300 pulses were applied, and 235 ± 6.1 V/mm when 150 pulses were applied. The area at which 100-80% of bacteria were eradicated was 50.5 ± 9.9 mm(2) for 300 pulses, and 13.4 ± 0.65 mm(2) for 150 pulses. 80% threshold eradication was not achieved with 100 pulses. The results indicate that increased efficacy of treatment is due to increased number of pulses delivered. In addition, we that showed the bacterial death rate as a function of the electrical field follows the statistical Weibull model for 150 and 300 pulses. We hypothesize that in the clinical setting, combining systemic antibacterial therapy with PEF will yield a synergistic effect leading to improved

  1. In vitro toxicity evaluation of silver soldering, electrical resistance, and laser welding of orthodontic wires.

    Sestini, Silvia; Notarantonio, Laura; Cerboni, Barbara; Alessandrini, Carlo; Fimiani, Michele; Nannelli, Pietro; Pelagalli, Antonio; Giorgetti, Roberto


    The long-term effects of orthodontic appliances in the oral environment and the subsequent leaching of metals are relatively unknown. A method for determining the effects of various types of soldering and welding, both of which in turn could lead to leaching of metal ions, on the growth of osteoblasts, fibroblasts, and oral keratinocytes in vitro, is proposed. The effects of cell behaviour of metal wires on osteoblast differentiation, expressed by alkaline phosphatase (ALP) activity; on fibroblast proliferation, assayed by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenil)-2H-tetrazolium-phenazine ethosulphate method; and on keratinocyte viability and migration on the wires, observed by scanning electron microscopy (SEM), were tested. Two types of commercially available wires normally used for orthodontic appliances, with a similar chemical composition (iron, carbon, silicon, chromium, molybdenum, phosphorus, sulphur, vanadium, and nitrogen) but differing in nickel and manganese content, were examined, as well as the joints obtained by electrical resistance welding, traditional soldering, and laser welding. Nickel and chromium, known as possible toxic metals, were also examined using pure nickel- and chromium-plated titanium wires. Segments of each wire, cut into different lengths, were added to each well in which the cells were grown to confluence. The high nickel and chromium content of orthodontic wires damaged both osteoblasts and fibroblasts, but did not affect keratinocytes. Chromium strongly affected fibroblast growth. The joint produced by electrical resistance welding was well tolerated by both osteoblasts and fibroblasts, whereas traditional soldering caused a significant (P < 0.05) decrease in both osteoblast ALP activity and fibroblast viability, and prevented the growth of keratinocytes in vitro. Laser welding was the only joining process well tolerated by all tested cells.

  2. Electrical resistivity and dielectric properties of helical microorganism cells coated with silver by electroless plating

    Cai, Jun, E-mail: [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Lan, Mingming; Zhang, Deyuan; Zhang, Wenqiang [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)


    Highlights: Black-Right-Pointing-Pointer We use the microorganism cells as forming templates to fabricate the bio-based conductive particles. Black-Right-Pointing-Pointer The microorganism cells selected as forming templates are Spirulina platens, which are of natural helical shape and high aspect ratio. Black-Right-Pointing-Pointer The sliver-coated Spirulina cells are a kind of lightweight conductive particles. Black-Right-Pointing-Pointer The composites containing sliver-coated Spirulina cells exhibit a lower percolation value. - Abstract: In this paper, microorganism cells (Spirulina platens) were used as forming templates for the fabrication of the helical functional particles by electroless silver plating process. The morphologies and ingredients of the coated Spirulina cells were analyzed with scanning electron microscopy and energy dispersive spectrometer. The crystal structures were characterized by employing the X-ray diffraction. The electrical resistivity and dielectric properties of samples containing different volume faction of sliver-coated Spirulina cells were measured and investigated by four-probe meter and vector network analyzer. The results showed that the Spirulina cells were successfully coated with a uniform silver coating and their initial helical shapes were perfectly kept. The electrical resistivity and dielectric properties of the samples had a strong dependence on the volume content of sliver-coated Spirulina cells and the samples could achieve a low percolation value owing to high aspect ratio and preferable helical shape of Spirulina cells. Furthermore, the conductive mechanism was analyzed with the classic percolation theory, and the values of {phi}{sub c} and t were obtained.

  3. In-situ contact electrical resistance technique for investigating corrosion inhibitor adsorption on copper electrodes

    Moretti, G.; Quartarone, G.; Zingales, A. [Univ. of Venice (Italy). Dept. of Chemistry; Molokanov, V.V. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry


    Traditional electrochemical tests and the contact electrical resistance technique (CER) were used to investigate the effect on corrosion of pure copper (99.999 wt%) of adding benzotriazole (BTA) and 1-hydroxybenzotriazone (1-OH-BTA) to acidic solutions (sulfuric acid [H{sub 2}SO{sub 4}], pH = 1.7, and sodium sulfate [Na{sub 2}SO{sub 4}] until total sulfate [SO{sub 4}{sup 2{minus}}] concentration = 0.1 M). This technique permitted growth of oxide and/or salt films as well as adsorption of the organic inhibitors on the copper surface to be evaluated. Formation of copper oxide ([Cu{sub 2}O]{sub 2})., sulfate (CuSo{sub 4}{center_dot}5H{sub 2}O), thiocyanate (CuSCN), and halogenyde (CuI, CuBr, and CuCl) films on copper electrodes was followed in situ in sulfate solutions at various pH values under low overpotentials. Effects of pH, solution anion content, and/or the amount of BTA or 1-OH-BTA on electrical resistance (R) of the surface films formed on pure copper electrodes were treated. BTA acted as a more efficient corrosion inhibitor than 1-OH-BTA, reaching inhibition percentages (IP) of {approximately}90% compared to those of 1-OH-BTA, which reached a maximum of {approximately}76% in 2 {times} 10{sup {minus}3} M solutions. It was possible to distinguish between maximum R of the surface film, found in solutions containing BTA, associated with the adsorption of neutral inhibitor molecules, and the sharp rise in R attributable to [Cu(BTA)]{sub n} complex formation.

  4. Shallow Stratigraphy of Valsequillo Basin From Electrical Resistivity Soundings, Gravity and Magnetics

    Trigo-Huesca, A.; Tellez-Garcia, E.; Ortega-Nieto, A.; Mayo-Reyes, J.; Lopez-Aguirre, D.; Perez-Cruz, L.; Gogichaishvili, A.; Urrutia-Fucugauchi, J.


    The recent study by Gonzalez et al. (2006) on the occurrence of apparent human and animal footprints on the Xalnene ash that outcrops in the Valsequillo Basin has attracted attention to the region of central Mexico, within the context of the early human migration in the Americas. OSL dating of interlayered baked lake sediments gave dates around 40 ka, supporting an early human presence in central Mexico. Xalnene ash was dated by Renne et al. (2005) giving an Ar/Ar date of 1.3 Ma, questioning a human origin for the footprints. Paleomagnetic and rock magnetic data on the Xalnene ash and Toluquilla volcano lavas have been discussed in terms of the correlation to the C1r.2r chron (about 1.07 to 1.77 Ma) and the old Ar/Ar date or the Laschamp geomagnetic excursion and the younger OSL dates. These studies have highlighted the interest on the stratigraphy of the volcanic and sedimentary sequence of the Valsequillo Basin. Here, we present initial results from electrical resistivity soundings, gravity and magnetics in the areas covered by the Xalnene ash and the nearby Toluquilla volcano. The geophysical models are interpreted in terms of the shallow stratigraphy of the volcanic and lacustrine sediment units. The electrical resistivity soundings identify several layers in the shallow 8-20 m, beneath the area with the apparent footprints and the slope of Toluquilla volcano, and permit imaging of these shallow units. Geophysical models for the Toluquilla volcano and surrounding zones allow deeper investigation and incorporate several units mapped in past studies, particularly the Xalnene ash, upper/lower lacustrine sequences, lahars, Caulapan tuffs and sediments, and Balsas Group sedimentary rocks.

  5. Examining diel patterns of soil and xylem moisture using electrical resistivity imaging

    Mares, Rachel; Barnard, Holly R.; Mao, Deqiang; Revil, André; Singha, Kamini


    The feedbacks among forest transpiration, soil moisture, and subsurface flowpaths are poorly understood. We investigate how soil moisture is affected by daily transpiration using time-lapse electrical resistivity imaging (ERI) on a highly instrumented ponderosa pine and the surrounding soil throughout the growing season. By comparing sap flow measurements to the ERI data, we find that periods of high sap flow within the diel cycle are aligned with decreases in ground electrical conductivity and soil moisture due to drying of the soil during moisture uptake. As sap flow decreases during the night, the ground conductivity increases as the soil moisture is replenished. The mean and variance of the ground conductivity decreases into the summer dry season, indicating drier soil and smaller diel fluctuations in soil moisture as the summer progresses. Sap flow did not significantly decrease through the summer suggesting use of a water source deeper than 60 cm to maintain transpiration during times of shallow soil moisture depletion. ERI captured spatiotemporal variability of soil moisture on daily and seasonal timescales. ERI data on the tree showed a diel cycle of conductivity, interpreted as changes in water content due to transpiration, but changes in sap flow throughout the season could not be interpreted from ERI inversions alone due to daily temperature changes.

  6. The Use of Electrical Resistivity Method to Mapping The Migration of Heavy Metals by Electrokinetic

    Azhar, A. T. S.; Ayuni, S. A.; Ezree, A. M.; Nizam, Z. M.; Aziman, M.; Hazreek, Z. A. M.; Norshuhaila, M. S.; Zaidi, E.


    The presence of heavy metals contamination in soil environment highly needs innovative remediation. Basically, this contamination was resulted from ex-mining sites, motor workshop, petrol station, landfill and industrial sites. Therefore, soil treatment is very important due to metal ions are characterized as non-biodegradable material that may be harmful to ecological system, food chain, human health and groundwater sources. There are various techniques that have been proposed to eliminate the heavy metal contamination from the soil such as bioremediation, phytoremediation, electrokinetic remediation, solidification and stabilization. The selection of treatment needs to fulfill some criteria such as cost-effective, easy to apply, green approach and high remediation efficiency. Electrokinetic remediation technique (EKR) offers those solutions in certain area where other methods are impractical. While, electrical resistivity method offers an alternative geophysical technique for soil subsurface profiling to mapping the heavy metals migration by the influece of electrical gradient. Consequently, this paper presents an overview of the use of EKR to treat contaminated soil by using ERM method to verify their effectiveness to remove heavy metals.

  7. Late Quaternary activity along the Scorciabuoi Fault (Southern Italy as inferred from electrical resistivity tomographies

    A. Loperte


    Full Text Available The Scorciabuoi Fault is one of the major tectonic structures affecting the Southern Apennines, Italy. Across its central sector, we performed several electrical resistivity tomographies with different electrode spacing (5 and 10 m and using a multielectrode system with 32 electrodes. All tomographies were acquired with two different arrays, the dipole-dipole and the Wenner-Schlumberger. We also tested the different sensitivity of the two arrays with respect to the specific geological conditions and research goals. Detailed geological mapping and two boreholes were used to calibrate the electrical stratigraphy. In all but one tomography (purposely performed off the fault trace, we could recognise an abrupt subvertical lateral variation of the main sedimentary bodies showing the displacement and sharp thickening of the two youngest alluvial bodies in the hanging-wall block. These features are interpreted as evidence of synsedimentary activity of the Scorciabuoi Fault during Late Pleistocene and possibly as recently as Holocene and allow accurate location of the fault trace within the Sauro alluvial plain.

  8. Instrument for evaluating the electrical resistance and wavelength-resolved transparency of stretchable electronics during strain

    Azar, A. D.; Finley, E.; Harris, K. D.


    A complete analysis of strain tolerance in a stretchable transparent conductor (TC) should include tracking of both electrical conductivity and transparency during strain; however, transparency is generally neglected in contemporary analyses. In this paper, we describe an apparatus that tracks both parameters while TCs of arbitrary composition are deformed under stretching-mode strain. We demonstrate the tool by recording the electrical resistance and light transmission spectra for indium tin oxide-coated plastic substrates under both linearly increasing strain and complex cyclic strain processes. The optics are sensitive across the visible spectrum and into the near-infrared region (˜400-900 nm), and without specifically optimizing for sampling speed, we achieve a time resolution of ˜200 ms. In our automated analysis routine, we include a calculation of a common TC figure of merit (FOM), and because solar cell electrodes represent a key TC application, we also weigh both our transparency and FOM results against the solar power spectrum to determine "solar transparency" and "solar FOM." Finally, we demonstrate how the apparatus may be adapted to measure the basic performance metrics for complete solar cells under uniaxial strain.

  9. Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities.

    Maoz, Ben M; Herland, Anna; Henry, Olivier Y F; Leineweber, William D; Yadid, Moran; Doyle, John; Mannix, Robert; Kujala, Ville J; FitzGerald, Edward A; Parker, Kevin Kit; Ingber, Donald E


    Here we demonstrate that microfluidic cell culture devices, known as Organs-on-a-Chips can be fabricated with multifunctional, real-time, sensing capabilities by integrating both multi-electrode arrays (MEAs) and electrodes for transepithelial electrical resistance (TEER) measurements into the chips during their fabrication. To prove proof-of-concept, simultaneous measurements of cellular electrical activity and tissue barrier function were carried out in a dual channel, endothelialized, heart-on-a-chip device containing human cardiomyocytes and a channel-separating porous membrane covered with a primary human endothelial cell monolayer. These studies confirmed that the TEER-MEA chip can be used to simultaneously detect dynamic alterations of vascular permeability and cardiac function in the same chip when challenged with the inflammatory stimulus tumor necrosis factor alpha (TNF-α) or the cardiac targeting drug isoproterenol. Thus, this Organ Chip with integrated sensing capability may prove useful for real-time assessment of biological functions, as well as response to therapeutics.

  10. Combined DC Resistivity Survey and Electric Conductivity- Dielectric Permittivity Measurement at Sag Pond near Lembang Fault, West Java, Indonesia

    Iryanti, Mimin; Srigutomo, Wahyu; Bijaksana, Satria; Setiawan, Tedy


    Lembang Fault is a normal fault situated at the southern flank of Tangkuban Parahu Volcano in West Java Indonesia. The fault's movement may have caused the formation of sag pond in the vicinity of its which is characterized by the soil layers of the sag pond. The characteristics of the soil can be examined based on its electrical properties such as conductivity (the inverse of resistivity) and dielectric permittivity. Direct field measurement was conducted using DC-resistivity Wenner-Schlumberger method on the sag pond as well as laboratory resistivity measurement of cores taken from the sag pond. Two resistivity crosssections were obtained after performing 2D inversion of the data which reveal that the resistivity distribution consist of a resistive layer (40-60 ohm.m) overlying a medium resistive layer (30-35 ohm.m). The third layer has relatively low resistivity of 16-25 ohm.m. At the intersection of these two lines we took coring samples down to depth of 5 m below surface and measured the electrical conductivity and dielectric permittivity for each 1 cm of sample using EM-50 data logger. Results from both field and laboratory measurement were analysed to get a better understanding of the sag pond.

  11. Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene.

    Hegele, P R; Mumford, K G


    The effective remediation of chlorinated solvent source zones using in situ thermal treatment requires successful capture of gas that is produced. Replicate electrical resistance heating experiments were performed in a thin bench-scale apparatus, where water was boiled and pooled dense non-aqueous phase liquid (DNAPL) trichloroethene (TCE) and water were co-boiled in unconsolidated silica sand. Quantitative light transmission visualization was used to assess gas production and transport mechanisms. In the water boiling experiments, nucleation, growth and coalescence of the gas phase into connected channels were observed at critical gas saturations of Sgc=0.233±0.017, which allowed for continuous gas transport out of the sand. In experiments containing a colder region above a target heated zone, condensation prevented the formation of steam channels and discrete gas clusters that mobilized into colder regions were trapped soon after discontinuous transport began. In the TCE-water experiments, co-boiling at immiscible fluid interfaces resulted in discontinuous gas transport above the DNAPL pool. Redistribution of DNAPL was also observed above the pool and at the edge of the vapor front that propagated upwards through colder regions. These results suggest that the subsurface should be heated to water boiling temperatures to facilitate gas transport from specific locations of DNAPL to extraction points and reduce the potential for DNAPL redistribution. Decreases in electric current were observed at the onset of gas phase production, which suggests that coupled electrical current and temperature measurements may provide a reliable metric to assess gas phase development.

  12. Designing Predictive Diagnose Method for Insulation Resistance Degradation of the Electrical Power Cables from Neutral Insulated Power Networks

    Dobra, R.; Pasculescu, D.; Risteiu, M.; Buica, G.; Jevremović, V.


    This paper describe some possibilities to minimize voltages switching-off risks from the mining power networks, in case of insulated resistance faults by using a predictive diagnose method. The cables from the neutral insulated power networks (underground mining) are designed to provide a flexible electrical connection between portable or mobile equipment and a point of supply, including main feeder cable for continuous miners, pump cable, and power supply cable. An electronic protection for insulated resistance of mining power cables can be made using this predictive strategy. The main role of electronic relays for insulation resistance degradation of the electrical power cables, from neutral insulated power networks, is to provide a permanent measurement of the insulated resistance between phases and ground, in order to switch-off voltage when the resistance value is below a standard value. The automat system of protection is able to signalize the failure and the human operator will be early informed about the switch-off power and will have time to take proper measures to fix the failure. This logic for fast and automat switch-off voltage without aprioristic announcement is suitable for the electrical installations, realizing so a protection against fires and explosion. It is presented an algorithm and an anticipative relay for insulated resistance control from three-phase low voltage installations with insulated neutral connection.

  13. Microstructural characteristics and electrical resistivity of rapidly solidified Co-Sn alloys

    XU Jinfeng; WANG Nan; WEI Bingbo


    The rapid solidification behavior of Co-Sn alloys was investigated by melt spinning method. The growth morphology of αCo phase in Co-20%Sn hypoeutectic alloy changes sensitively with cooling rate. A layer of columnar αCo dendrite forms near the roller side at low cooling rates. This region becomes small and disappears as the cooling rate increases and a kind of very fine homogeneous microstructure characterized by the distribution of equiaxed αCo dendrites in αCo3Sn matrix is subsequently produced. For Co-34.2%Sn eutectic alloy, anomalous eutectic forms within the whole range of cooling rates. The increase of cooling rate has two obvious effects on both alloys: one is the microstructure refinement, and the other is that it produces more crystal defects to intensify the scattering of free electrons, leading to a remarkable increase of electrical resistivity. Under the condition that the grain boundary reflection coefficient r approaches 1, the resistivity of rapidly solidified Co-Sn alloys can be predicted theoretically.

  14. Behavior of the electrical resistivity of MnSi at the ferromagnetic phase transition

    Petrova, Alla E.; Bauer, E. D.; Krasnorussky, Vladimir; Stishov, Sergei M.


    The itinerant helical ferromagnet MnSi reveals a number of remarkable features, which include tricritical phenomena at the phase transition line, Fermi-liquid breakdown, and so-called partial spin order in the paramagnetic state at high pressures. These features, probably interconnected, so far have no satisfactory explanations though several ideas have been suggested. Some current ideas focus on specifics of the spin fluctuations in the paramagnetic phase of MnSi close to the phase transition line. We report here the results of electrical resistivity measurements of a single crystal of MnSi across its ferromagnetic phase transition line at ambient and high pressures. Contrary to previous work in the field we made use of compressed helium as a pressure medium. Sharp peaks of the temperature coefficient of resistivity characterize the transition line. Analysis of these data shows that at pressures to ˜0.35GPa these peaks have fine structure, revealing a shoulder at ˜0.5K above the peak. That confirms the “abnormal” spin behavior in the narrow region above the Curie point and indicates the existence of a nontrivial fluctuation mode in the paramagnetic phase of MnSi . It is symptomatic that this structure disappears at pressures higher than ˜0.35GPa , which was identified earlier as a tricritical point.

  15. Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography

    Xu Dong; Hu Xiang-Yun; Shan Chun-Ling; Li Rui-Heng


    The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability, rainwater infiltration, and subsurface hydrogeology. However, the understanding of this complicated correlation is still poor and inadequate. Thus, in this study, we investigated a typical landslide in southwestern China via time-lapse electrical resistivity tomography (TLERT) in November 2013 and August 2014. We studied landslide mechanisms based on the spatiotemporal characteristics of surface water infi ltration andfl ow within the landslide body. Combined with borehole data, inverted resistivity models accurately defined the interface between Quaternary sediments and bedrock. Preferential fl ow pathways attributed to fracture zones andfi ssures were also delineated. In addition, we found that surface water permeates through these pathways into the slipping mass and drains away asfi ssure water in the fractured bedrock, probably causing the weakly weathered layer to gradually soften and erode, eventually leading to a landslide. Clearly, TLERT dynamic monitoring can provide precursory information of critical sliding and can be used in landslide stability analysis and prediction.

  16. Advanced electric-field scanning probe lithography on molecular resist using active cantilever

    Kaestner, Marcus; Aydogan, Cemal; Lipowicz, Hubert-Seweryn; Ivanov, Tzvetan; Lenk, Steve; Ahmad, Ahmad; Angelov, Tihomir; Reum, Alexander; Ishchuk, Valentyn; Atanasov, Ivaylo; Krivoshapkina, Yana; Hofer, Manuel; Holz, Mathias; Rangelow, Ivo W.


    The routine "on demand" fabrication of features smaller than 10 nm opens up new possibilities for the realization of many novel nanoelectronic, NEMS, optical and bio-nanotechnology-based devices. Based on the thermally actuated, piezoresistive cantilever technology we have developed a first prototype of a scanning probe lithography (SPL) platform able to image, inspect, align and pattern features down to single digit nano regime. The direct, mask-less patterning of molecular resists using active scanning probes represents a promising path circumventing the problems in today's radiation-based lithography. Here, we present examples of practical applications of the previously published electric field based, current-controlled scanning probe lithography on molecular glass resist calixarene by using the developed tabletop SPL system. We demonstrate the application of a step-and-repeat scanning probe lithography scheme including optical as well as AFM based alignment and navigation. In addition, sequential read-write cycle patterning combining positive and negative tone lithography is shown. We are presenting patterning over larger areas (80 x 80 μm) and feature the practical applicability of the lithographic processes.

  17. Low-temperature electrical resistivity in paramagnetic spinel LiV2O4

    Yushankhai, V.; Takimoto, T.; Thalmeier, P.


    The 3d -electron spinel compound LiV2O4 exhibits heavy fermion behavior below 30 K which is related to antiferromagnetic spin fluctuations strongly enhanced in an extended region of momentum space. This mechanism explains enhanced thermodynamic quantities and nearly critical NMR relaxation in the framework of the self-consistent renormalization (SCR) theory. Here we show that the low- T Fermi-liquid behavior of the resistivity and a deviation from this behavior for higher T may also be understood within that context. We calculate the temperature dependence of the electrical resistivity ρ(T) assuming that two basic mechanisms of the quasiparticle scattering, resulting from impurities and spin fluctuations, operate simultaneously at low temperature. The calculation is based on the variational principle in the form of a perturbative series expansion for ρ(T) . A peculiar behavior of ρ(T) in LiV2O4 is related to properties of low-energy spin fluctuations whose T dependence is obtained from SCR theory.

  18. An integration of aeromagnetic and electrical resistivity methods in dam site investigation

    Aina, A. [Univ. of Lagos (Nigeria). Dept. of Physics; Olorunfemi, M.O. [Obafemi Awolowo Univ., Ile-Ife (Nigeria). Dept. of Geology; Ojo, J.S. [Federal Univ. of Technology, Akure (Nigeria). Dept. of Applied Geophysics


    Aeromagnetic map and electrical resistivity sounding data obtained along eight traverses were examined at two sites across the Katsina-Ala River. The principal goals of this exercise were to define depths to the bedrock, bedrock relief, geologic structures, define the nature of the superficial deposit, and select probable minor and major axes for hydroelectric power dams. The aeromagnetic map shows that the basement rocks trend roughly northeast-southwest, which correlates with the strike of foliation measurements made on rock outcrops along the river channel. A network of cross cutting lineaments, suspected to be faults/fractures that trend approximately northeast/southwest and northwest/southeast, was also delineated from the magnetic map. The depths to the bedrock estimated from resistivity depth sounding data at site 1 generally vary from 1--53.1 m. Depths to the bedrock estimated at site 2 range from 1.9--19.5 m. The superficial deposit varies from clay to sandy clay, to clayey sand (with boulders in places), and to sand and laterite. The bedrock relief is relatively flat and gently undulates along most of the traverses, with an overall dip towards the river channel. Traverses E-F or I-J at site 1 and K-L at site 2 are probable dame axes. These traverses are characterized by relatively thin overburden thicknesses and rock heads dipping toward the river channel, thereby reducing the likelihood of water seepages from the flanks of the proposed dam axes.

  19. Electrical Resistivity Tomography monitoring reveals groundwater storage in a karst vadose zone

    Watlet, A.; Kaufmann, O.; Van Camp, M. J.; Triantafyllou, A.; Cisse, M. F.; Quinif, Y.; Meldrum, P.; Wilkinson, P. B.; Chambers, J. E.


    Karst systems are among the most difficult aquifers to characterize, due to their high heterogeneity. In particular, temporary groundwater storage that occurs in the unsaturated zone and the discharge to deeper layers are difficult processes to identify and estimate with in-situ measurements. Electrical Resistivity Tomography (ERT) monitoring is meant to track changes in the electrical properties of the subsurface and has proved to be applicable to evidence and quantify hydrological processes in several types of environments. Applied to karst systems, it has particularly highlighted the challenges in linking electrical resistivity changes to groundwater content with usual approaches of petrophysical relationships, given the high heterogeneity of the subsurface. However, taking up the challenge, we undertook an ERT monitoring at the Rochefort Cave Laboratory (Belgium) lasting from Spring 2014 to Winter 2016. This includes 3 main periods of several months with daily measurements, from which seasonal groundwater content changes in the first meters of the vadose zone were successfully imaged. The monitoring concentrates on a 48 electrodes profile that goes from a limestone plateau to the bottom of a sinkhole. 3D UAV photoscans of the surveyed sinkhole and of the main chamber of the nearby cave were performed. Combined with lithological observations from a borehole drilled next to the ERT profile, the 3D information made it possible to project karstified layers visible in the cave to the surface and assess their potential locations along the ERT profile. Overall, this helped determining more realistic local petrophysical properties in the surveyed area, and improving the ERT data inversion by adding structural constraints. Given a strong air temperature gradient in the sinkhole, we also developed a new approach of temperature correction of the raw ERT data. This goes through the solving (using pyGIMLI package) of the 2D ground temperature field and its temporal

  20. Study of hydrogenated amorphous silicon devices under intense electric field: application to nuclear detection; Etude de dispositifs electroniques en silicium amorphe hydrogene sous fort champ electrique: application a la detection nucleaire

    Ilie, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Technologies Avancees]|[Paris-11 Univ., 91 - Orsay (France)


    The goal of this work was the study, development and optimization of hydrogenated amorphous silicon (a-Si:H) devices for use in detection of ionizing radiation. Thick p-i-n devices, capable of withstanding large electric fields (up to 10{sup 6} V/cm) with small currents (nA/cm{sup 2}), were developed. To decrease fabrication time, films were made using the `He diluted` PECVD process and compared to standard a-Si:H films. Aspects connected to specific detector applications as well as to the fundamental physics of a-Si:H were considered: the internal electric field technique, in which the depletion charge was measured as a function of the applied bias voltage; study of the leakage current of p-i-n devices permitted us to demonstrate different regimes: depletion, field-enhanced thermal generation and electronic injection across the p layer. The effect of the electric field on the thermal generation of the carriers was studied considering the Poole-Frenkel and tunneling mechanisms. A model was developed taking under consideration the statistics of the correlated states and electron-phonon coupling. The results suggest that mechanisms not included in the `standard model` of a Si:h need to be considered, such as defect relaxation, a filed-dependent mobility edge etc...; a new metastable phenomenon, induced by prolonged exposure to a strong electric field, was observed and studied. It is characterized by marked decrease of the leakage current and the detector noise, and increase in the breakdown voltage, as well as an improvement of carrier collection efficiency. This forming process appears to be principally due to an activation of the dopants in the p layer; finally, the capacity of thick p-i-n a Si:H devices to detect ionizing radiation has been evaluated. We show that it is possible, with 20-50 micron thick p-i-n devices, to detect the full spectrum of alpha and beta particles. With an appropriate converter, neutron detection then becomes possible. (author). 137 refs.

  1. Aquifer Characterization using 2D Electrical Resistivity Imaging in Kidangpananjung, Cililin District, West Java

    Marsan, Dery; Azimmah, Azizatun; Patera Adli, Dida; Muthi'a, J. M.; Yuantoro, Ethis; Fatkhan


    Water shortage is a big problem for those who live in the region with unsustainable water resource like in Kidangpananjung - a village in Cililin district West Java. With elevation of 1070 m above mean sea level, Kidangpananjung stands on crest of a hill with the geographical coordinate of 113.5° BT, 6.97° LS. Based on geological survey, the outcrop which found in Kidangpananjung indicates that this region consists of pyroclastic rock such as fresh tuff and andesitic breccia. Four springs are found in the foothills with elevation of ± 1040 m above mean sea level which indicates the location of water table. To map the groundwater distribution more precisely and understand the aquifer rock more accurately, geo-electrical approach was conducted. This method is chosen based on the principle that the survey target, the water saturated rock, would give a relatively low resistivity contrast than its surrounding rocks. The target aquifer is considered as confined aquifer at 30m - 40m beneath Kidangpananjung. The data acquisition was designed with two lines of wenner-alpha arrays with 235 meters length each. Two lines of profiling were chosen in order to map the underground layer and its resistivity and thicknesses. The resistivity measurements were carefully interpreted by using least-square inversion technique by using RES2DINV program. The purpose of this research is to understand the characteristics and depth of Kidangpananjung aquifer. Therefore, it can be used to be a reference in groundwater drilling in order to improve the living of the inhabitants of Kidangpananjung

  2. Thermo-chemical properties and electrical resistivity of Zr-based arsenide chalcogenides

    A. Schlechte, R. Niewa, M. Schmidt, G. Auffermann, Yu. Prots, W. Schnelle, D. Gnida, T. Cichorek, F. Steglich and R. Kniep


    Full Text Available Ternary phases in the systems Zr–As–Se and Zr–As–Te were studied using single crystals of ZrAs1.40(1Se0.50(1 and ZrAs1.60(2Te0.40(1 (PbFCl-type of structure, space group P4/nmm as well as ZrAs0.70(1Se1.30(1 and ZrAs0.75(1Te1.25(1 (NbPS-type of structure, space group Immm. The characterization covers chemical compositions, crystal structures, homogeneity ranges and electrical resistivities. At 1223 K, the Te-containing phases can be described with the general formula ZrAsxTe2−x, with 1.53(1≤x≤1.65(1 (As-rich and 0.58(1≤x≤0.75(1 (Te-rich. Both phases are located directly on the tie-line between ZrAs2 and ZrTe2, with no indication for any deviation. Similar is true for the Se-rich phase ZrAsxSe2−x with 0.70(1≤x≤0.75(1. However, the compositional range of the respective As-rich phase ZrAsx−ySe2−x (0.03(1≤y≤0.10(1; 1.42(1≤x≤1.70(1 is not located on the tie-line ZrAs2–ZrSe2, and exhibits a triangular region of existence with intrinsic deviation of the composition towards lower non-metal contents. Except for ZrAs0.75Se1.25, from the homogeneity range of the Se-rich phase, all compounds under investigation show metallic characteristics of electrical resistivity at temperatures >20 K. Related uranium and thorium arsenide selenides display a typical magnetic field-independent rise of the resistivity towards lower temperatures, which has been explained by a non-magnetic Kondo effect. However, a similar observation has been made for ZrAs1.40Se0.50, which, among the Zr-based arsenide chalcogenides, is the only system with a large concentration of intrinsic defects in the anionic substructure.

  3. Time-lapse electrical resistivity tomography: a powerful tool for landslide monitoring?

    Perrone, A.


    The extreme rainfall events and the quick snowmelt occurrences play an important role in the triggering of the landslides. The occurrence of one of these factors can determine the variation of water content in the first layers of the subsoil and as a consequence a quick soil saturation inducing both an increase in pore-water pressures and the overloaded of the slopes progressively collapsing. The electrical resistivity, self-potential, electromagnetic induction and GPR methods can be considered as the most appropriate for assessing the presence of water in the underground. Such methods allow us to study the behavior of water content over much wider and deeper areas than those offered by traditional methods (thermo-gravimetric, tensiometric, TDR, etc) based on spot measures and concerning small volumes. In particular, the Electrical Resistivity Tomography (ERT), which has already proved to be a powerful tool both for the geometrical reconstruction of a landslide body (location of sliding surface, estimation of the thickness of the slide material) and the individuation of high water content areas, can be considered as an alternative tool to be employed for a qualitative and quantitative water content monitoring in the first layers of the subsoil. Indeed, time-lapse 2D ERT can be tested in order to gather information on the temporal and spatial patterns of water infiltration processes and water content variation. This work reports the preliminary results from a new prototype system planned to obtain time-lapse 2D ERTs, TDR and precipitation measurements in two landslide areas located in the Southern Apennine chain (Italy). The system was planned with the aim to estimate the variation of the resistivity parameter on a long period considering the water content variation, the rain water infiltration and the seasonal changes. The prototype system, linked to a pc used for storing data and managing the time interval acquisition, consists of: a resistivimeter connected to a

  4. Characterizing a shallow groundwater system beneath irrigated sugarcane with electrical resistivity and radon (Rn-222), Puunene, Hawaii

    In this study, we use a combination of electrical resistivity profiling and radon (222Rn) measurements to characterize a shallow groundwater system beneath the last remaining, large-scale sugarcane plantation on Maui, Hawaii. Hawaiian Commercial & Sugar Company has continuously operated a sugarcane...

  5. Emissivity and specific electrical resistivity of compositions in the LaB/sub 6/-ZrB/sub 2/ system

    Zapadaeva, T.E.; Nikolaeva, E.E.; Ordan' yan, S.S.; Petrov, V.A.


    The authors investigate the thermionic emissivity and specific electrical resistivity of several lanthanum boride-zirconium boride systems and the dependence of these properties on the sintering regime, temperature, and structural considerations such as porosity and grain size. Emissivity was determined by calorimetry in an argon atmosphere. Results are tabulated.

  6. The electrical resistance of enamel-dentine cylinders. Influence of NaCl content in storage solutions

    Gente, M; Pieper, K; Arends, J


    Objectives. To investigate the influence of different electrolyte concentrations on the electrical resistance of sound human enamel-dentine cylinders in vitro. Methods: Forty cylinders of 3-mm diameter and 2-mm length were drilled from 40 extracted caries-free third molar teeth. For ease of handling

  7. Electrical Resistivity Modeling of a Permeable Reactive Barrier for Vista Engineering Technologies: Summary

    Ramirez, A L; Daily, W D


    We have performed a numerical modeling study that evaluated the capacity of electrical resistance tomography (ERT) to detect flaws in a passive reactive barrier (PRB). The model barrier is based on a real barrier described in the literature Slater and Binley (2003). It consists of highly conducting, granular iron emplaced within a trench. We assumed that the barrier was filled with a mixture of iron and sand, and that vertical electrode arrays were embedded within the barrier. We have considered (a) characterization and (b) monitoring scenarios. For (a), the objective is to use tomographs of absolute resistivity to detect construction flaws and inhomogeneities in iron distribution shortly after installation. For (b), the objective is to use resistivity change tomographs to detect iron oxidation and barrier plugging as a function of time. The study considered varying PRB hole sizes and locations. For any given model, a hole was located right next to and near the center of an electrode array (maximum sensitivity and resolution expected), at the center between two electrode arrays (moderate sensitivity and resolution), or near the bottom centered between the two arrays (minimum sensitivity and resolution). We also considered various hole sizes. The smallest hole considered had a height and a width of 0.33 m (0.11 m{sup 2}), or 1/2 of the electrode spacing within an array; the depth of the hole was always equal to the thickness of the barrier (0.66m). The largest hole had a height and a width of 1.22 m (1.74 m{sup 2}). We also modeled a medium sized hole with a height and a width of 0.66 m (0.44 m{sup 2}). The PRB material had an electrical resistivity of 0.3 ohm-m (sand/iron mix) while the hole's resistivity was 3.0 ohm-m. The study also considered various array aspect ratios because it is well known that aspect ratio controls sensitivity and resolution when line arrays of electrodes are used (Ramirez et al., 1993). Aspect ratio is defined as the distance between

  8. Electric power trading. The first study on stakes and consequences of power trading; Le trading d'electricite. La premiere etude sur les enjeux et consequences du negoce de l'electricite



    Power trading (purchase/sale of electricity on a stock exchange) is an emerging activity in continental Europe while it already came to maturity in the US, in the UK and in Scandinavia. Several stock exchanges have opened since 1988, in particular in Germany, Spain and in The Netherlands. New projects of creation are under study, except in France where public authorities remain reticent with respect to this evolution. Power trade is deeply overturning the organization of power markets with offering an alternative to the direct supply from producers and distributors. This study presents the functioning modes of the main stock exchanges in operation today. It analyzes the stakes of power trade for all intervening parties of the market (historical actors, newcomers and consumers). The situation and the strategic behaviour of 12 key-actors of the power sector are also examined. (J.S.)

  9. Study of the mechanical properties of the electric power station components: the punch test; Etude des proprietes mecaniques des composants de centrales thermiques: l'essai punch test

    Isselin, J


    The aging of the electric production park implies an increasing need of knowledge concerning the evolution of the mechanical properties of its components. With regard to this problem, the availability in material is more and more small. This work proposes to characterize these properties through a mechanical test called Punch test. The main characteristic of this test is to use very small volume samples. The development of this test has been carried out by the study of a 15 MDV 4-05 steel coming from a steam drum of a thermal power plant after 145000 hours of service. At first, we have measured the influence of the parameters of this test. Then, the study has dealt more particularly on the transition temperature of the material. With the finite element simulation method, the strain hardening coefficient of the material has been determined. (O.M.)

  10. In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides.

    Gao, Peng; Wang, Zhenzhong; Fu, Wangyang; Liao, Zhaoliang; Liu, Kaihui; Wang, Wenlong; Bai, Xuedong; Wang, Enge


    Oxide materials with resistance hysteresis are very promising for next generation memory devices. However, the microscopic dynamic process of the resistance change is still elusive. Here, we use in situ transmission electron microscopy method to study the role of oxygen vacancies for the resistance switching effect in cerium oxides. The structure change during oxygen vacancy migration in CeO(2) induced by electric field was in situ imaged inside high-resolution transmission electron microscope, which gives a direct evidence for oxygen migration mechanism for the microscopic origin of resistance change effect in CeO(2). Our results have implications for understanding the nature of resistance change in metal oxides with mixed valence cations, such as fluorite, rutile and perovskite oxides. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. The influence of temperature on the electrical resistivity of the cellular polypropylene and the effect of activation energy.

    Vila, Floran; Dhima, Pranvera; Mandija, Florian


    In this paper, we determine the surface and volume electrical resistivity of the 50 μm thick cellular polypropylen (VHD50), for the temperature range 393-453 K. For this we use a contemporary methodology, which consist of a voltage measurement across the sample, with a known current flowing through it. This methodology includes a three-electrode system, which allows us to estimate the resistivity of the samples, based on their corresponding total resistances. The electric fields applied for a time interval of 1 min are of the order of 200 kVm (-1). The order of magnitude of surface and volume electrical resistivity is 10(13) Ω and 10(11) Ωm, respectively. For both types of the resistivity, the temperature dependence is an increasing or decreasing exponential function, depending on the type of the activation energy, (its average value for the temperature range mentioned above is 41,20 kJmol (-1)), totally confirmed by the corresponding theoretical interpretation, conditioned by the ionic conduction. The methodology and equipment used, as well as the satisfying accordance with the results, found out directly or indirectly with the consulted literature, confirm the high accuracy of experimental measurements.

  12. Capacitively-Coupled Resistivity measurements to determine frequency dependent electrical parameters in periglacial environment - theoretical considerations and first field tests.

    Przyklenk, A.; Hördt, A.; Radić, T.


    Capacitively-Coupled Resistivity (CCR) is conventionally used to emulate DC resistivity measurements and may provide important information about the ice content of material in periglacial areas. The application of CCR theoretically enables the determination of both electrical parameters, i.e. the resistivity and the electrical permittivity, by analyzing magnitude and phase shift spectra. The electrical permittivity may dominate the impedance, especially in periglacial areas or regions of hydrogeological interest. However, previous theoretical work suggested that the phase shift may strongly depend on electrode height above ground, implying that electrode height must be known with great accuracy to determine electrical permittivity. Here, we demonstrate with laboratory test measurements, theoretical modelling and by analysing the Jacobian matrix of the inversion, that the sensitivity towards electrode height is drastically reduced if the electrical permittivity is frequency dependent in a way that is typical for ice. For the fist time, we used a novel broadband CCR device "Chameleon" for a field test located in one of the ridge galleries beneath the crest of Mount Zugspitze. A permanently ice covered bottom of a tunnel was examined. For the inversion of the measured spectra, the frequency dependance of the electrical parameters was parameterized in 3 different ways. A Debye Model for pure ices, a Cole-Cole Model for pure ices and a dual Cole-Cole Model including interfacial water additionally. The frequency-dependent resistivity and permittivity spectra obtained from the inversion, including low and high frequency limits, agree reasonably well with laboratory and field measurements reported in the literature.

  13. Joint 3D seismic travel time and full channel electrical resistivity inversion with cross gradient structure constraint

    Gao, J.; Zhang, H.


    Near surface geophysical exploration for the purpose of engineering design or construction For this reason, geophysical imaging demands a higher resolution and a better quantitative interpretation. Seismic travel time tomography and direct current resistivity tomography are two main methods for the near surface survey. Because of the limited coverage of observation system and the complex physical relationship between physical parameters and observations, individual geophysical method suffers issues of non-uniqueness and resolution limitation to some degree. We have developed a joint inversion method to combine seismic travel time tomography and full channel resistivity tomography. For the full channel resistivity survey, it uses two electrodes for power supply and all the other electrodes for recording. Compared with the traditional resistivity method, it collects more data and has a better model converge. Our joint inversion strategy relies on the structure constraint enforced through minimizing cross gradients between seismic velocity and resistivity models (Gallardo, 2003). For resistivity tomography, sensitivity kernels are obtained through the adjoint method by solving the electrostatic field equation with the finite-difference method. For seismic travel time tomography, ray paths and travel times are calculated using the fast marching method. We have tested our joint inversion method for a 2D cross-hole problem where two small zones with high and low velocity/resistivity anomalies. Seismic/electrical sources/receivers are installed in two boreholes. For separate seismic inversion, the smearing effect is evident and two anomaly zones are distorted and misplaced. For separate electric resistivity inversion, although two anomaly zones are positioned correctly their values are not accurate. By joint inversion, two velocity anomaly zones are clearly imaged and the smearing effect is greatly reduced. In comparison, for the resistivity model, the two anomaly zones

  14. Electrical-thermal interaction simulation for resistance spot welding nugget process of mild steel and stainless steel

    王春生; 韩凤武; 陆培德; 赵熹华; 陈勇; 邱冬生


    A three-dimensional finite difference electrical-thermal model for resistance spot welding nugget process of mild steel and stainless steel is introduced. A simulation method of the interaction of electrical and thermal factors is presented. Meanwhile, calculation method of contact resistance and treatment method of heater structure is provided. The influence of the temperature dependent material properties and various cooling boundary conditions on welding process was also taken into account in the model. A method for improving the mild steel and stainless steel joint was analyzed in numerical simulation process. Experimental verification shows that the model prediction agrees well with the practice. The model provides a useful theoretic tool for the analysis of the process of resistance spot welding of mild steel and stainless steel.

  15. The Use Of Electromagnetic And Electrical Resistivity Methods In Assessing Groundwater Resource Potentials In Adoe Sunyani Ghana.

    Alfred K. Bienibuor


    Full Text Available Electromagnetic and electrical resistivity geophysical methods were used to map out potential groundwater sites for boreholes drilling in the Adoe community in the Sunyani west district of Ghana. The electromagnetic data was taken with the Geonics EM-34 conductivity meter while the electrical resistivity data was taken with the ABEM SAS 1000 C Terrameter using the Schlumberger electrode configuration. Results from the measurements revealed four subsurface geological layers of the following resistivity and thickness ranges quartzitic sandstone with clay 42-118 amp937m 1-2.2 m sandy clay with silt 27-487 amp937m 9-12 m lateritic sandstone 13-728 amp937m 6-14 m and clayey shale 20-29 amp937m 6-14 m The overburden ranged in thickness from 14 m to 24 m. Sites selected for borehole drilling had a groundwater yield range of 0.94 -12 m3h.

  16. Significance of steel electrical resistance method in the evaluation of reinforcement corrosion in cementitious systems

    Krajci, L.


    Full Text Available The suitable detection system of steel reinforcement corrosion in concrete structures contributes to the reduction of their maintenance costs. Method of steel electrical resistance represents non-destructive monitoring of steel in cementitious systems. Specially prepared and arranged test specimen of steel as a corrosion sensor is embedded in mortar specimen. Verification tests of this method based on chloride corrosion of steel in mortars as well as its visual inspection are introduced. Significance of steel electrical resistance method lies in the expression of steel corrosion by these quantitative parameters: reduction of cross-section of steel, thickness of corroded layer and loss of weight of steel material. This method is an integral method that allows the indirect determination of mentioned corrosion characteristics. The comparison of verified method with gravimetric evaluation of steel corrosion gives a good correspondence. Test results on mortars with calcium chloride dosages between 0.5% and 4.0% by weight of cement prove high sensitiveness and reliability of steel electrical resistance method.

    La utilización de un sistema de detección de la corrosión de las armaduras en estructuras de hormigón puede contribuir a la reducción de sus costes de mantenimiento. El método de la resistencia eléctrica del acero consiste en la monitorización no-destructiva realizada sobre el acero en sistemas cementantes. Dentro de la muestra de mortero se coloca el sistema de detección, especialmente preparado y fijado, actuando como un sensor de la corrosión. En este trabajo se presentan ensayos de verificación de este método, junto con inspecciones visuales, en morteros sometidos a corrosión de armaduras por efecto de los cloruros. La efectividad de este método de la resistencia eléctrica del acero se expresa, en la corrosión de armaduras, de acuerdo a los siguientes parámetros cuantitativos: reducción de la sección transversal del

  17. Monitoring a shallow geothermal experiment in a sandy aquifer using electrical resistivity tomography: a feasibility study

    Hermans, Thomas; Vandenbohede, Alexander; Nguyen, Frederic; Lebbe, Luc


    The use of low-enthalpy geothermal ressources is increasingly growing in Europe and around the world. This domain constitutes an essential field of research and development in the diversification of energy ressources to hinder global warming. The advantages of very low temperature systems are, first, that they are much more available than the geothermal high temperature, since the underground often contains important shallow aquifers (e.g. alluvial plains), and second, that their exploitation involve relatively low costs of implementation. Very low energy systems exhibit underground fluid with a temperature ranging from 5 to 30 ° C, which may be used for cooling or heating. The two main modes of exploitation of geothermal energy rely on the extraction of the hydrothermal fluid in the aquifer from wells and on the circulation of a heat transfer fluid in a closed and buried geothermal circuit. Underground heat exchange and overall exploitation system design may be undertaken in an optimized and sustainable fashion if the parameters governing the coupled heat transport and flow equations are know to a certain degree. As for many underground reservoir problems, sufficient knowledge on the distribution of the parameters of interests (e.g. thermal conductivity, thermal diffusivity, thermomechanic dispersitivity, effective porosity) must be obtained to perform reliable predictions. Designing novel experiments to estimate those parameters in-situ is therefore essential. In this framework, we examine the feasibility of a thermal tracer experiment similar to the ones performed in hydrogeology or hydrogeophysics. The test consists in following the evolution of a heat plume through the underground as it is injected in one well and pumped to another one. The thermal tracer evolution is followed by gathering electrical resistivity (ERT) images in a time-lapse framework over 10 days. In this contribution, we examine the potential of ERT to image such thermal plume and its

  18. The Electric Mechanism of Surface Pretreatments for Dye-Sensitized Solar Cells Based on Internal Equivalent Resistance Analysis

    xu Wei-Wei; HU Lin-Hua; LUO Xiang-Dong; LIU Pei-Sheng; DAI Song-Yuan


    Based on the optimization of dye-sensitized solar cell (DSC) photoelectrodes pretreated with different methods such as electrodeposition,spin-coating and TiCl4 pretreatment,theoretical calculations are carried out to interpret the internal electric mechanism.The numerical values,including the series resistance Rs and the shunt resistance Rsh corresponding to the equivalent circuit model,are well evaluated and confirm that the DSC has good performance with a high Rsh and a low Rs due to good electrical contact and a low charge recombination after the different modifications.The Ⅰ-Ⅴ curves are fifted in the case without series resistance,and account for the role of Rs in the output characteristics.It is found that when Rs tends to the infinitesimal,the short-circuit current Isc,the open-circuit voltage Voc and the fill factor can be improved by almost 0.8-1.4,2.9 and 2.1-6.8%,respectively.%Based on the optimization of dye-sensitized solar cell (DSC) photoelectrodes pretreated with different methods such as electrodeposition, spin-coating and TiCCl pretreatment, theoretical calculations are carried out to interpret the internal electric mechanism. The numerical values, including the series resistance Re and the shunt resistance Rsh corresponding to the equivalent circuit model, are well evaluated and confirm that the DSC has good performance with a high Rgh and a low Re due to good electrical contact and a low charge recombination after the different modifications. The I-V curves are fitted in the case without series resistance, and account for the role of Rs in the output characteristics. It is found that when Re tends to te infinitesimal, the short-circuit current Isc, the open-circuit voltage Voc and the fill factor can be improved by almost 0.8-1.4, 2.9 and 2.1-6.8%, respectively.

  19. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations

    Day-Lewis, F. D.; Singha, K.; Binley, A.M.


    Geophysical imaging has traditionally provided qualitative information about geologic structure; however, there is increasing interest in using petrophysical models to convert tomograms to quantitative estimates of hydrogeologic, mechanical, or geochemical parameters of interest (e.g., permeability, porosity, water content, and salinity). Unfortunately, petrophysical estimation based on tomograms is complicated by limited and variable image resolution, which depends on (1) measurement physics (e.g., electrical conduction or electromagnetic wave propagation), (2) parameterization and regularization, (3) measurement error, and (4) spatial variability. We present a framework to predict how core-scale relations between geophysical properties and hydrologic parameters are altered by the inversion, which produces smoothly varying pixel-scale estimates. We refer to this loss of information as "correlation loss." Our approach upscales the core-scale relation to the pixel scale using the model resolution matrix from the inversion, random field averaging, and spatial statistics of the geophysical property. Synthetic examples evaluate the utility of radar travel time tomography (RTT) and electrical-resistivity tomography (ERT) for estimating water content. This work provides (1) a framework to assess tomograms for geologic parameter estimation and (2) insights into the different patterns of correlation loss for ERT and RTT. Whereas ERT generally performs better near boreholes, RTT performs better in the interwell region. Application of petrophysical models to the tomograms in our examples would yield misleading estimates of water content. Although the examples presented illustrate the problem of correlation loss in the context of near-surface geophysical imaging, our results have clear implications for quantitative analysis of tomograms for diverse geoscience applications. Copyright 2005 by the American Geophysical Union.

  20. Challenges and opportunities for fractured rock imaging using 3D cross-borehole electrical resistivity

    Robinson, Judith; Johnson, Timothy C.; Slater, Lee D.


    There is an increasing need to characterize discrete fractures away from boreholes to better define fracture distributions and monitor solute transport. We performed a 3D evaluation of static and time-lapse cross-borehole electrical resistivity tomography (ERT) data sets from a limestone quarry in which flow and transport are controlled by a bedding-plane feature. Ten boreholes were discretized using an unstructured tetrahedral mesh, and 2D panel measurements were inverted for a 3D distribution of conductivity. We evaluated the benefits of 3D versus 2.5D inversion of ERT data in fractured rock while including the use of borehole regularization disconnects (BRDs) and borehole conductivity constraints. High-conductivity halos (inversion artifacts) surrounding boreholes were removed in static images when BRDs and borehole conductivity constraints were implemented. Furthermore, applying these constraints focused transient changes in conductivity resulting from solute transport on the bedding plane, providing a more physically reasonable model for conductivity changes associated with solute transport at this fractured rock site. Assuming bedding-plane continuity between fractures identified in borehole televiewer data, we discretized a planar region between six boreholes and applied a fracture regularization disconnect (FRD). Although the FRD appropriately focused conductivity changes on the bedding plane, the conductivity distribution within the discretized fracture was nonunique and dependent on the starting homogeneous model conductivity. Synthetic studies performed to better explain field observations showed that inaccurate electrode locations in boreholes resulted in low-conductivity halos surrounding borehole locations. These synthetic studies also showed that the recovery of the true conductivity within an FRD depended on the conductivity contrast between the host rock and fractures. Our findings revealed that the potential exists to improve imaging of fractured

  1. Optical and electrical characterization of high resistivity semiconductors for constant-bias microbolometer devices

    Saint John, David B.

    The commercial market for uncooled infrared imaging devices has expanded in the last several decades, following the declassification of pulse-biased microbolometer-based focal plane arrays (FPAs) using vanadium oxide as the sensing material. In addition to uncooled imaging platforms based on vanadium oxide, several constant-bias microbolometer FPAs have been developed using doped hydrogenated amorphous silicon (a-Si:H) as the active sensing material. While a-Si:H and the broader Si1-xGex:H system have been studied within the context of photovoltaic (PV) devices, only recently have these materials been studied with the purpose of qualifying and optimizing them for potential use in microbolometer applications, which demand thinner films deposited onto substrates different than those used in PV. The behavior of Ge:H is of particular interest for microbolometers due to its intrinsically low resistivity without the introduction of dopants, which alter the growth behavior and frustrate any attempt to address the merits of protocrystalline a-Ge:H. This work reports the optical, microstructural, and electrical characterization and qualification of a variety of Si:H, Si1-xGex:H, and Ge:H films deposited using a plasma enhanced chemical vapor deposition (PECVD) process, including a-Ge:H films which exhibit high TCR (4-6 -%/K) and low 1/f noise at resistivities of interest for microbolometers (4000 -- 6000 O cm). Thin film deposition has been performed simultaneously with real-time optical characterization of the growth evolution dynamics, providing measurement of optical properties and surface roughness evolutions relevant to controlling the growth process for deliberate variations in film microstructure. Infrared spectroscopic ellipsometry has been used to characterize the Si-H and Ge-H absorption modes allowing assessment of the hydrogen content and local bonding behavior in thinner films than measured traditionally. This method allows IR absorption analysis of hydrogen

  2. Direct quantification of transendothelial electrical resistance in organs-on-chips.

    van der Helm, Marinke W; Odijk, Mathieu; Frimat, Jean-Philippe; van der Meer, Andries D; Eijkel, Jan C T; van den Berg, Albert; Segerink, Loes I


    Measuring transendothelial or transepithelial electrical resistance (TEER) is a widely used method to monitor cellular barrier tightness in organs-on-chips. Unfortunately, integrated electrodes close to the cellular barrier hamper visual inspection of the cells or require specialized cleanroom processes to fabricate see-through electrodes. Out-of-view electrodes inserted into the chip's outlets are influenced by the fluid-filled microchannels with relatively high resistance. In this case, small changes in temperature or medium composition strongly affect the apparent TEER. To solve this, we propose a simple and universally applicable method to directly determine the TEER in microfluidic organs-on-chips without the need for integrated electrodes close to the cellular barrier. Using four electrodes inserted into two channels - two on each side of the porous membrane - and six different measurement configurations we can directly derive the isolated TEER independent of channel properties. We show that this method removes large variation of non-biological origin in chips filled with culture medium. Furthermore, we demonstrate the use of our method by quantifying the TEER of a monolayer of human hCMEC/D3 cerebral endothelial cells, mimicking the blood-brain barrier inside our microfluidic organ-on-chip device. We found stable TEER values of 22 Ω cm(2)±1.3 Ω cm(2) (average ± standard error of the mean of 4 chips), comparable to other TEER values reported for hCMEC/D3 cells in well-established Transwell systems. In conclusion, we demonstrate a simple and robust way to directly determine TEER that is applicable to any organ-on-chip device with two channels separated by a membrane. This enables stable and easily applicable TEER measurements without the need for specialized cleanroom processes and with visibility on the measured cell layer.

  3. Effects of Neuromuscular Electrical Stimulation and Resistance Training on Knee Extensor/Flexor Muscles.

    Pantović, Milan; Popović, Boris; Madić, Dejan; Obradović, Jelena


    Neuromuscular electrical stimulation (NMES) has recently drawn a lot of attention as means for strengthening of voluntary muscle contraction both in sport and rehabilitation. NMES training increases maximal voluntary contraction (MVC) force output through neural adaptations. On the other hand, positive effects of resistance training (RT) on muscle strength are well known. The aim of this study was to investigate effects of a 5-week program of NMES compared to RT program of same duration. Sample of 15 students' of faculty of sport and physical education (age 22 ± 2) were randomized in two groups: NMES (N = 7) and RT (N = 8). NMES group performed NMES superimposed over voluntary muscle contraction, RT group performed resistance training with submaximal loads. Subjects were evaluated for knee isokinetic dynamometry on both sides (60° and 180° s). After intervention no significant difference between groups were observed in isokinetic dynamometry (p = 0.177). However, applying pair sample t test within each group revealed that peak torque increased in NMES-group (p = 0.002 for right knee extensors muscles, p = 0.003 for left, respectively, at 60° and p = 0.004 for left knee extensors muscles, at angular velocity 180°). In RT group (p = 0.033 for right knee extensors muscles, p = 0.029 for right knee flexor muscles, at angular velocity 60°). Our results indicate that NMES has equal potential if not in some way better than classical RT having in mind that overload on locomotor apparatus during NMES is minimal and force of muscle contraction is equal on both sides, for enhancement of knee muscles concentric peak torque.

  4. Improved characterisation of measurement errors in electrical resistivity tomography (ERT) surveys

    Tso, C. H. M.; Binley, A. M.; Kuras, O.; Graham, J.


    Measurement errors can play a pivotal role in geophysical inversion. Most inverse models require users to prescribe a statistical model of data errors before inversion. Wrongly prescribed error levels can lead to over- or under-fitting of data, yet commonly used models of measurement error are relatively simplistic. With the heightening interests in uncertainty estimation across hydrogeophysics, better characterisation and treatment of measurement errors is needed to provide more reliable estimates of uncertainty. We have analysed two time-lapse electrical resistivity tomography (ERT) datasets; one contains 96 sets of direct and reciprocal data collected from a surface ERT line within a 24h timeframe, while the other is a year-long cross-borehole survey at a UK nuclear site with over 50,000 daily measurements. Our study included the characterisation of the spatial and temporal behaviour of measurement errors using autocorrelation and covariance analysis. We find that, in addition to well-known proportionality effects, ERT measurements can also be sensitive to the combination of electrodes used. This agrees with reported speculation in previous literature that ERT errors could be somewhat correlated. Based on these findings, we develop a new error model that allows grouping based on electrode number in additional to fitting a linear model to transfer resistance. The new model fits the observed measurement errors better and shows superior inversion and uncertainty estimates in synthetic examples. It is robust, because it groups errors together based on the number of the four electrodes used to make each measurement. The new model can be readily applied to the diagonal data weighting matrix commonly used in classical inversion methods, as well as to the data covariance matrix in the Bayesian inversion framework. We demonstrate its application using extensive ERT monitoring datasets from the two aforementioned sites.

  5. Application of electrical resistivity for groundwater exploration in Wadi Rahaba, Shalateen, Egypt

    Mohamaden, Mahmoud I. I.; Ehab, Dina


    Shalateen area is located on the Red Sea coast at the southeastern part of the Eastern Desert. It is suffering from shortage in fresh water, where the main source of water is the rain water. Desalinated water is another source but it is more expensive. So, groundwater is the alternative solution to face the gap between the water demand and available water in this area. Vertical electrical sounding (VES) is considered as one of the most common methods in groundwater exploration. Twenty Schlumberger VES's with maximum current electrode spacing of 400 m were carried out in the coastal zone of Shalateen area at the alluvial fan of Wadi Rahaba. The obtained data were processed and interpreted qualitatively and quantitatively. The geoelectric layers that were detected in the study area are Quaternary dry alluvial sediments, Quaternary alluvial deposits and Miocene sandstone aquifer, clay lens, sill, fractured basement, non-fractured basement. The Quaternary alluvial deposits and Miocene sandstone represent the main shallow aquifer in the study area. The salt water appears at the eastern part while fresh water is concentrated at the western part. Resistivity values of the fresh to slightly brackish water ranges between 38.6 and 98.4 Ω·m with thickness varies from 1.18 to 24.4 m and depth range between 1.31 and 19 m. Clay lenses appear in the alluvial fan channel with resistivity values ranges between 1.3 and 9.1 Ω·m and thickness varies from 2.1 to 13.7 m. The fresh coastal aquifers are affected by set of faults. These faults appear in all profiles distributed orthogonally through the study area. In the study area, a fractured sill intrusion is intruding the groundwater aquifer. It is located near a granodiorite-tonalite exposure with resistivity values (230-315 Ω·m) at (5.6-16.4 m) depth. Basement is also detected at shallow depths especially in the western part of the study area.

  6. Electrical Resistivity Imaging of Tidal Fluctuations in the Water Table at Inwood Hill Park, Manhattan

    Kenyon, P. M.; Kassem, D.; Olin, A.; Nunez, J.; Smalling, A.


    Inwood Hill Park is located on the northern tip of Manhattan and has been extensively modified over the years by human activities. In its current form, it has a backbone of exposed or lightly covered bedrock along the Hudson River, adjacent to a flat area with two tidal inlets along the northern shore of Manhattan. The tidal motions in the inlets are expected to drive corresponding fluctuations in the water table along the borders of the inlets. In the Fall of 2002, a group of students from the Department of Earth and Atmospheric Sciences at the City College of New York studied these fluctuations. Electrical resistivity cross sections were obtained with a Syscal Kid Switch 24 resistivity meter during the course of a tidal cycle at three locations surrounding the westernmost inlet in the park. No change was seen over a tidal cycle at Site 1, possibly due to the effect of concrete erosion barriers which were located between the land and the water surrounding this site. Measurements at Site 2 revealed a small, regular change in the water table elevation of approximately 5 cm over the course of a tidal cycle. This site is inferred to rest on alluvial sediments deposited by a small creek. The cross sections taken at different times during a tidal cycle at Site 3 were the most interesting. They show a very heterogeneous subsurface, with water spurting between blocks of high resistivity materials during the rising portion of the cycle. A small sinkhole was observed on the surface of the ground directly above an obvious plume of water in the cross section. Park personnel confirmed that this sinkhole, like others scattered around this site, is natural and not due to recent construction activity. They also indicated that debris from the construction of the New York City subways may have been dumped in the area in the past. Our conclusion is that the tidal fluctuations at Site 3 are being channeled by solid blocks in the construction debris, and that the sinkholes currently

  7. Application of electrical resistivity for groundwater exploration in Wadi Rahaba, Shalateen, Egypt

    Mahmoud I.I. Mohamaden


    Full Text Available Shalateen area is located on the Red Sea coast at the southeastern part of the Eastern Desert. It is suffering from shortage in fresh water, where the main source of water is the rain water. Desalinated water is another source but it is more expensive. So, groundwater is the alternative solution to face the gap between the water demand and available water in this area. Vertical electrical sounding (VES is considered as one of the most common methods in groundwater exploration. Twenty Schlumberger VES’s with maximum current electrode spacing of 400 m were carried out in the coastal zone of Shalateen area at the alluvial fan of Wadi Rahaba. The obtained data were processed and interpreted qualitatively and quantitatively. The geoelectric layers that were detected in the study area are Quaternary dry alluvial sediments, Quaternary alluvial deposits and Miocene sandstone aquifer, clay lens, sill, fractured basement, non-fractured basement. The Quaternary alluvial deposits and Miocene sandstone represent the main shallow aquifer in the study area. The salt water appears at the eastern part while fresh water is concentrated at the western part. Resistivity values of the fresh to slightly brackish water ranges between 38.6 and 98.4 Ω·m with thickness varies from 1.18 to 24.4 m and depth range between 1.31 and 19 m. Clay lenses appear in the alluvial fan channel with resistivity values ranges between 1.3 and 9.1 Ω·m and thickness varies from 2.1 to 13.7 m. The fresh coastal aquifers are affected by set of faults. These faults appear in all profiles distributed orthogonally through the study area. In the study area, a fractured sill intrusion is intruding the groundwater aquifer. It is located near a granodiorite-tonalite exposure with resistivity values (230–315 Ω·m at (5.6–16.4 m depth. Basement is also detected at shallow depths especially in the western part of the study area.

  8. Relative permeability of fractured wellbore cement: an experimental investigation using electrical resistivity monitoring for moisture content

    Um, W.; Rod, K. A.; Strickland, C. E.


    Permeability is a critical parameter needed to understand flow in subsurface environments; it is particularly important in deep subsurface reservoirs where multiphase fluid flow is common, such as carbon sequestration and geothermal reservoirs. Cement is used in the annulus of wellbores due to its low permeable properties to seal aquifers, reducing leaks to adjacent strata. Extreme subsurface environments of CO2 storage and geothermal production conditions will eventually reduce the cement integrity, propagating fracture networks and increasing the permeability for air and/or water. To date, there have been no reproducible experimental investigations of relative permeability in fractured wellbore cement published. To address this gap, we conducted a series of experiments using fractured Portland cement monoliths with increasing fracture networks. The monolith cylinder sides were jacketed with heavy-duty moisture-seal heat-shrink tubing, then fractured using shear force applied via a hydraulic press. Fractures were generated with different severity for each of three monoliths. Stainless steel endcaps were fixed to the monoliths using the same shrink-wrapped jacket. Fracture characteristics were determined using X-ray microtomography and image analysis. Flow controllers were used to control flow of water and air to supply continuous water or water plus air, both of which were delivered through the influent end cap. Effluent air flow was monitored using a flow meter, and water flow was measured gravimetrically. To monitor the effective saturation of the fractures, a RCON2 concrete bulk electrical resistivity test device was attached across both endcaps and a 0.1M NaNO3 brine was used as the transport fluid to improve resistivity measurements. Water content correlated to resistivity measurements with a r2 > 0.96. Data from the experiments was evaluated using two relative permeability models, the Corey-curve, often used for modeling relative permeability in porous media

  9. Superconductivity and electrical resistivity in alkali metal doped fullerides: Phonon mechanism

    Dinesh Varshney; A Dube; K K Choudhary; R K Singh


    We consider a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. We first study the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. Electronic parameter as repulsive parameter and the attractive coupling strength are obtained within the random phase approximation. Transition temperature, c, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported c (≈ 20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. To illustrate the usefulness of the above approach, the carbon isotope exponent and the pressure effect are also estimated. Temperature dependence of electrical resistivity is then analysed within the same model phonon spectrum. It is inferred from the two-peak model for phonon density of states that high frequency intramolecular phonon modes play a major role in pairing mechanism with possibly some contribution from alkali-C60 phonon to describe most of the superconducting and normal state properties of doped fullerides.

  10. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing


    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a "segmented" thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed "segmented" model shows more precise than the "non-segmented" model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the "segmented" model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  11. Students' reasoning when tackling electric field and potential in explanation of dc resistive circuits

    Leniz, Ane; Zuza, Kristina; Guisasola, Jenaro


    This study examines the causal reasoning that university students use to explain how dc circuits work. We analyze how students use the concepts of electric field and potential difference in their explanatory models of dc circuits, and what kinds of reasoning they use at the macroscopic and microscopic levels in their explanations. This knowledge is essential to help instructors design and implement new teaching approaches that encourage students to articulate the macroscopic and microscopic levels of description. A questionnaire with an emphasis on explanations was used to analyze students' reasoning. In this analysis of students' reasoning in the microscopic and macroscopic modeling processes in a dc circuit, we refer to epistemological studies of scientific explanations. We conclude that the student explanations fall into three main categories of reasoning. The vast majority of students employ an explanatory model based on simple or linear causality and on relational reasoning. Moreover, around a third of students use a relational reasoning that relates two magnitudes current and resistance or conductivity of the material, which is included in a macroscopic explanatory model based on Ohm's law and the conservation of the current. In addition, few students situate the explanations at the microscopic level (charges or electrons) with unidirectional cause-effect reasoning. This study looks at a number of aspects that have been little mentioned in previous research at the university level, about the reasoning types students use when establishing macro-micro relationships and some possible difficulties with complex reasoning.

  12. Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks

    Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li


    Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.

  13. Design of Parallel Electrical Resistance Tomography System for Measuring Multiphase Flow

    董峰; 许聪; 张志强; 任尚杰


    ERT(electrical resistance tomography) is effective method for visualization of multiphase flows,offering some advantages of rapid response and low cost,so as to explore the transient hydrodynamics.Aiming at this target,a fully programmable and reconfigurable FPGA(field programmable gate array)-based Compact PCI(peripheral component interconnect) bus linked sixteen-channel ERT system has been presented.The data acquisition system is carefully designed with function modules of signal generator module;Compact PCI transmission module and data processing module(including data sampling,filtering and demodulating).The processing module incorporates a powerful FPGA with Compact PCI bus for communication,and the measurement process management is conducted in FPGA.Image reconstruction algorithms with different speed and accuracy are also coded for this system.The system has been demonstrated in real time(1400 frames per second for 50 kHz excitation) with signal-noise-ratio above 62 dB and repeatability error below 0.7%.Static experiments have been conducted and the images manifested good resolution relative to the actual object distribution.The parallel ERT system has provided alternative experimental platform for the multiphase flow measurements by the dynamic experiments in terms of concentration and velocity.

  14. In-situ Study of Nanostructure and Electrical Resistance of Nanocluster Films Irradiated with Ion Beams

    Jiang, Weilin; Sundararajan, Jennifer A.; Varga, Tamas; Bowden, Mark E.; Qiang, You; McCloy, John S.; Henager, Charles H.; Montgomery, Robert O.


    An in-situ study is reported on the structural evolution in nanocluster films under He+ ion irradiation using an advanced helium ion microscope. The films consist of loosely interconnected nanoclusters of magnetite or iron-magnetite (Fe-Fe3O4) core-shells. The nanostructure is observed to undergo dramatic changes under ion-beam irradiation, featuring grain growth, phase transition, particle aggregation, and formation of nanowire-like network and nano-pores. Studies based on ion irradiation, thermal annealing and election irradiation have indicated that the major structural evolution is activated by elastic nuclear collisions, while both electronic and thermal processes can play a significant role once the evolution starts. The electrical resistance of the Fe-Fe3O4 films measured in situ exhibits a super-exponential decay with dose. The behavior suggests that the nanocluster films possess an intrinsic merit for development of an advanced online monitor for neutron radiation with both high detection sensitivity and long-term applicability, which can enhance safety measures in many nuclear operations.

  15. Core-scale electrical resistivity tomography (ERT) monitoring of CO2-brine mixture in Fontainebleau sandstone

    Bosch, David; Ledo, Juanjo; Queralt, Pilar; Bellmunt, Fabian; Luquot, Linda; Gouze, Philippe


    The main goal of the monitoring stage of Carbon Capture and Storage (CCS) is to obtain an accurate estimation of the subsurface CO2 accumulation and to detect any possible leakage. Laboratory experiments are necessary to investigate the small scale processes governing the CO2-brine-rock interaction. They also provide a means to calibrate the results coming from field scale geophysical methods. In this work we set up an experimental system which is able to perform Electrical Resistivity Tomography (ERT) measurements on centimeter-scale rock samples at various P-T conditions. We present the results of two new experiments related to CO2 monitoring, performed on a cylindrical (4 × 8 cm) Fontainebleau rock sample. In the first one, we have quantified the CO2 saturation at different volume fractions, representing zones from a deep saline aquifer with varying degrees of saturation. In the second one, we have monitored and quantified the effect of CO2 dissolution in the brine at a pressure of 40 bar during eight days, emulating the invasion of CO2 into a shallow aquifer. Results highlight the importance of accounting for the contribution of surface conductivity in highly CO2-saturated regions, even in clay-free rocks, and also for brine conductivity variation due to CO2 dissolution. Ignoring any of these effects will end up in a CO2 saturation underestimation. We present a modified CO2 saturation equation to account for these two influences.

  16. Demonstration of Combined Zero-Valent Iron and Electrical Resistance Heating for In Situ Trichloroethene Remediation

    Truex, Michael J.; Macbeth, Tamzen; Vermeul, Vincent R.; Fritz, Brad G.; Mendoza, Donaldo P.; Mackley, Rob D.; Wietsma, Thomas W.; Sandberg, Greg; Powell, Thomas; Powers, Jeff; Pitre, Emile; Michalsen, Mandy M.; Ballock-Dixon, Sage; Zhong, Lirong; Oostrom, Martinus


    The effectiveness of in situ treatment using zero-valent iron to remediate sites with non-aqueous phase or significant sediment-associated contaminant mass can be limited by relatively low rates of mass transfer to bring contaminants in contact with the reactive media. For a field test in a trichloroethene source area, combining moderate-temperature (maximum 50oC) subsurface electrical resistance heating with in situ ZVI treatment was shown to accelerate dechlorination and dissolution rates by a factor of 4 to 6 based on organic daughter products and a factor 8-16 using a chloride concentrations. A mass-discharge-based analysis was used to evaluate reaction, dissolution, and volatilization at ambient groundwater temperature (~10oC) and as temperature was increased up to about 50oC. Increased reaction and contaminant dissolution were observed with increased temperature, but volatilization was minimal during the test because in situ reactions maintained low aqueous-phase TCE concentrations.

  17. Geometric correction factor for transepithelial electrical resistance measurements in transwell and microfluidic cell cultures

    Yeste, J.; Illa, X.; Gutiérrez, C.; Solé, M.; Guimerà, A.; Villa, R.


    Transepithelial electrical resistance (TEER) measurements are regularly used in in vitro models to quantitatively evaluate the cell barrier function. Although it would be expected that TEER values obtained with the same cell type and experimental setup were comparable, values reported in the literature show a large dispersion for unclear reasons. This work highlights a possible error in a widely used formula to calculate the TEER, in which it may be erroneously assumed that the entire cell culture area contributes equally to the measurement. In this study, we have numerically calculated this error in some cell cultures previously reported. In particular, we evidence that some TEER measurements resulted in errors when measuring low TEERs, especially when using Transwell inserts 12 mm in diameter or microfluidic systems that have small chamber heights. To correct this error, we propose the use of a geometric correction factor (GCF) for calculating the TEER. In addition, we describe a simple method to determine the GCF of a particular measurement system, so that it can be applied retrospectively. We have also experimentally validated an interdigitated electrodes (IDE) configuration where the entire cell culture area contributes equally to the measurement, and it also implements minimal electrode coverage so that the cells can be visualized alongside TEER analysis.

  18. The implanted electrical resistance strain gauge: in vitro studies on data integrity.

    Crawshaw, A H; Hastings, G W; Dove, J


    The aim of this research is to investigate, and thus counter, the adverse effects of tissue fluid ingress on the performance of the electrical resistance strain gauge when used in ascertaining in vivo loading on a spinal implant. Moisture absorption has been minimized by adopting maximum metallic coverage in a package comprising stainless steel foil on vacuum-injected pacemaker grade epoxide. In a simulation of the implanted environment, cyclic strain wet endurance testing in saline suggests that, in the body, the fall in indicated quasi-dynamic strain would be less than 1.5% at 24 weeks post-operation (the longevity needed to span adequately the bony fusion phase). This implies that stiffening of the fusion mass will be deducible to a similar accuracy (from stepped-load exercises), in which creep is a secondary effect. However, crucial information (from quasi-static (passive) studies) regarding remodelling and load-sharing processes would be subject to a total signal error (primarily due to grid corrosion) in excess of 16% by 24 weeks, since long-term drifts are not inherently cancelled. Signal compensation is therefore additionally required, and an approximate empirical characterization of total error versus time has been derived.

  19. High temperature electrical resistivity and Seebeck coefficient of Ge2Sb2Te5 thin films

    Adnane, L.; Dirisaglik, F.; Cywar, A.; Cil, K.; Zhu, Y.; Lam, C.; Anwar, A. F. M.; Gokirmak, A.; Silva, H.


    High-temperature characterization of the thermoelectric properties of chalcogenide Ge2Sb2Te5 (GST) is critical for phase change memory devices, which utilize self-heating to quickly switch between amorphous and crystalline states and experience significant thermoelectric effects. In this work, the electrical resistivity and Seebeck coefficient are measured simultaneously as a function of temperature, from room temperature to 600 °C, on 50 nm and 200 nm GST thin films deposited on silicon dioxide. Multiple heating and cooling cycles with increasingly maximum temperature allow temperature-dependent characterization of the material at each crystalline state; this is in contrast to continuous measurements which return the combined effects of the temperature dependence and changes in the material. The results show p-type conduction (S > 0), linear S(T), and a positive Thomson coefficient (dS/dT) up to melting temperature. The results also reveal an interesting linearity between dS/dT and the conduction activation energy for mixed amorphous-fcc GST, which can be used to estimate one parameter from the other. A percolation model, together with effective medium theory, is adopted to correlate the conductivity of the material with average grain sizes obtained from XRD measurements. XRD diffraction measurements show plane-dependent thermal expansion for the cubic and hexagonal phases.

  20. Mechanism of selective corrosion in electrical resistance seam welded carbon steel pipe

    Lopez Fajardo, Pedro; Godinez Salcedo, Jesus; Gonzalez Velasquez, Jorge L. [Instituto Politecnico Nacional, Mexico D.F., (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas. Dept. de Ingenieria Metalurgica


    In this investigation the studies of the mechanism of selective corrosion in electrical resistance welded (ERW) carbon steel pipe was started. Metallographic characterizations and evaluations for inclusions were performed. The susceptibility of ERW pipe to selective corrosion in sea water (NACE 1D182, with O{sub 2} or CO{sub 2} + H{sub 2}S) was studied by the stepped potential Potentiostatic electrochemical test method in samples of 1 cm{sup 3} (ASTM G5) internal surface of the pipe (metal base-weld). The tests were looking for means for predicting the susceptibility of ERW pipe to selective corrosion, prior to placing the pipeline in service. Manganese sulfide inclusions are observed deformed by the welding process and they are close to the weld centerline. A slight decarburization at the weld line is observed, and a distinct out bent fiber pattern remains despite the post-weld seam annealing. The microstructure of the weld region consists of primarily polygonal ferrite grains mixed with small islands of pearlite. It is possible to observe the differences of sizes of grain of the present phases in the different zones. Finally, scanning electron microscopic observation revealed that the corrosion initiates with the dissolution of MnS inclusions and with small crack between the base metal and ZAC. (author)

  1. Improving Indonesian peatland C stock estimates using ground penetrating radar (GPR) and electrical resistivity imaging (ERI)

    Terry, N.; Comas, X.; Slater, L. D.; Warren, M.; Kolka, R. K.; Kristijono, A.; Sudiana, N.; Nurjaman, D.; Darusman, T.


    Tropical peatlands sequester an estimated 15% of the carbon pool from peatlands worldwide. Indonesian peatlands account for approximately 65% of all tropical peat, and are believed to be the largest global source of carbon dioxide emissions to the atmosphere from degrading peat. However, there is great uncertainty in these estimates due to insufficient data regarding the thickness of organic peat soils and their carbon content. Meanwhile, Indonesian peatlands are threatened by heightening pressure to drain and develop. Indirect geophysical methods have garnered interest for their potential to non-invasively estimate peat depth and gas content in boreal peatlands. Drawing from these techniques, we employed ground penetrating radar (GPR) and electrical resistivity imaging (ERI) in tandem with direct methods (core sampling) to evaluate the potential of these methods for tropical peatland mapping at 2 distinct study sites on West Kalimantan (Indonesia). We find that: [1] West Kalimantan peatland thicknesses estimated from GPR and ERI in intermediate/shallow peat can vary substantially over short distances (for example, > 2% over less than 0.02° surface topography gradient), [2] despite having less vertical resolution, ERI is able to better resolve peatland thickness in deep peat, and [3] GPR provides useful data regarding peat matrix attributes (such as the presence of wood layers). These results indicate GPR and ERI could help reduce uncertainty in carbon stocks and aid in responsible land management decisions in Indonesia.

  2. Electrical resistivity and XRD measurements on YBCO-PbS HTS system

    Tyagi, A.K. (Dept. of Applied Physics, GND Univ., Amritsar (India)); Shahi, K. (Advanced Centre for Materials Science, IIT Kanpur (India))


    Electrical resistivity and XRD measurements are reported for HTS samples with starting composition Y[sub 1]Ba[sub 2](Cu[sub 1] [sub -] [sub x]Pb[sub x])[sub 3]S[sub 3x]O[sub y](0 [<=] x [<=] 0.20). It is elucidated that the substituted compounds (0 < x [<=] 0.05) have improved processibility and normal state properties (e.g., better intergrain linkage) and a peculiar characteristic trend of variation in superconducting properties like transition temperature (T[sub c]) and transition width ([Delta]T[sub c]), at the cost of lowering T[sub c] by hardly a few K. For x > 0.05 samples, however, the evolution of impurity phases like Y[sub 2]Ba[sub 1]Cu[sub 1]O[sub 5] and BaPbO[sub 3] suppresses the superconducting properties. The probable explanation of these results is also discussed. It is found that perhaps the sulphur of PbS substitutes for oxygen in the YBCO-lattice, however, Pb does not, it mainly forms the impurity phase BaPbO[sub 3].

  3. Low resistance silver contacts to indium phosphide - Electrical and metallurgical considerations

    Weizer, Victor G.; Fatemi, Navid S.


    The electrical and metallurgical behavior of the Ag-InP contact system has been investigated. Specific contact resistivity (Rc) values in the low 10 exp -6 Ohm sq cm range are readily achieved on n-InP (Si: 1.7 x 10 exp 18/cu cm) after sintering at 400 C for several minutes. The low Rc values, however, are shown to be accompanied by dissolution of InP into the metallization, resulting in device degradation. An analysis of the sinter-induced metallurgical interactions shows this system to be similar to the well-characterized Au-InP system, albeit with fundamental differences. The similarities include the dissociative diffusion of In, the reaction-suppressing effect of SiO2 capping, and especially, the formation of a phosphide layer at the metal-InP interface. The low post-sinter Rc values in the Ag-InP system may be due to the presence of a AgP2 layer at the metal-InP interface; low values of Rc can be achieved without incurring device degrading metallurgical interactions by introducing a thin AgP2 layer between the InP and the current carrying metallization.

  4. Three-dimensional electrical resistivity image of the South-Central Chilean subduction zone

    Kapinos, Gerhard; Montahaei, Mansoureh; Meqbel, Naser; Brasse, Heinrich


    Based on isotropic 3-D inversion, we re-interpret long-period magnetotelluric data collected across the geotectonic structures of the South-Central Chilean continental margin at latitudes 38°-41°S and summarize results of long-period magnetotelluric (MT) investigations performed between 2000 and 2005. The new 3-D conductivity image of the South-Central Chilean subduction zone basically confirms former 2-D inversion models along three profiles and complete the previous results. The models show good electrical conductors in the tip of the continental crustal beneath the Pacific Ocean, the frequently observed forearc conductor at mid-crustal levels, a highly-conductive zone at similar levels slightly offset from the volcanic arc and a - not well-resolved - conductor in the Argentinian backarc. The subducted Nazca Plate generally appears as a resistive but discontinuous feature. Unlike before, we are now able to resolve upper crustal conductors (interpreted as magma reservoirs) beneath active Lonquimay, Villarrica, and Llaima volcanoes which were obscured in 2-D inversion. Data fit is rather satisfactory but not perfect; we attribute this to large-scale crustal anisotropy particularly beneath the Coastal Cordillera, which we cannot include into our solution for the time being.

  5. Evaluation of cambial electrical resistance for the appraisal of tree vitality on reclaimed coal lands

    Keith Plamping; Martin Haigh; Michael J. Cullis; Rhian E. Jenkins [Earthwatch Europe, Oxford (United Kingdom)


    Cambium electrical resistance (CER) is explored as a rapid-assessment method of measuring of forest vitality and disease damage. A five year study in a 10-year-old mixed plantation of Alder (Alnus glutinosa, L.) and Oak (Quercus petraea (Mattuschka) Liebl.) created for the reclamation of surface-coal mined land in South Wales found a negative correlation between CER and tree maturity and no correlation between CER and fertiliser treatment levels. However, it detected strong significant correlations between CER and both a tree vitality index and diameter breast height (DBH) after five years. In fact, CER shows very strong and significant negative correlations with DBH recorded in 2007 and 2002, while tree vitality correlates more strongly with DBH than CER. Partial correlation of the data finds that when these data are controlled for the effect of DBH-the correlation between CER and vitality is no longer significant, while partial correlations between vitality and DBH in both 2002 and 2007-controlled for CER-remain highly significant. The conclusion is that while CER may act as a useful measure and predictor of tree vitality-DBH is better.

  6. The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards

    Brillante, L.; Mathieu, O.; Bois, B.; van Leeuwen, C.; Lévêque, J.


    Soil water availability deeply affects plant physiology. In viticulture it is considered a major contributor to the "terroir" effect. The assessment of soil water in field conditions is a difficult task, especially over large surfaces. New techniques are therefore required in order to better explore variations of soil water content in space and time with low disturbance and with great precision. Electrical resistivity tomography (ERT) meets these requirements for applications in plant sciences, agriculture and ecology. In this paper, possible techniques to develop models that allow the use of ERT to spatialise soil water available to plants are reviewed. An application of soil water monitoring using ERT in a grapevine plot in Burgundy (north-east France) during the vintage 2013 is presented. We observed the lateral heterogeneity of ERT-derived fraction of transpirable soil water (FTSW) variations, and differences in water uptake depend on grapevine water status (leaf water potentials measured both at predawn and at solar noon and contemporary to ERT monitoring). Active zones in soils for water movements were identified. The use of ERT in ecophysiological studies, with parallel monitoring of plant water status, is still rare. These methods are promising because they have the potential to reveal a hidden part of a major function of plant development: the capacity to extract water from the soil.

  7. Electrical resistivity of a novel oxadiazole derivative as a function of pressure and temperature using a diamond anvil cell

    Luo Ji-Feng; Han Yong-Hao; Tang Ben-Chen; Gao Chun-Xiao; Li Min; Zou Guang-Tian


    The in-situ electrical resistance measurement on the microcrystal of 1,4-bis[(4-methyloxyphenyl)-1,3,4-oxadiazolyl]-2,5-bisheptyloxyphenylene (OXD-2) has been carried out under conditions of high pressure and temperatures higher than room temperature by using the diamond anvil cell (DAC). The sample's resistivity was calculated with a finite element analysis method. The temperature and pressure dependencies of the resistivity of OXD-2 microcrystal were measured up to 150℃ and 16GPa. The resistivity of OXD-2 decreases with increasing temperature, indicating that OXD-2 exhibits organic-semiconductor conducting property in the region of experimental pressure. Between 90-100℃,the resistivity drops with the temperature, which reveals a temperature-induced phase transition. As the pressure increases, the resistivity of OXD-2 increases and reaches a maximum at about 6 GPa, and then begins to decrease at higher pressures. Combining the in-situ x-ray diffraction data with the resistivity measurement under pressure, the anomaly resistivity drop after 6 GPa is confirmed to be due to the pressure-induced amorphous phase transition of OXD-2.

  8. In situ TEM imaging of defect dynamics under electrical bias in resistive switching rutile-TiO₂.

    Kamaladasa, Ranga J; Sharma, Abhishek A; Lai, Yu-Ting; Chen, Wenhao; Salvador, Paul A; Bain, James A; Skowronski, Marek; Picard, Yoosuf N


    In this study, in situ electrical biasing was combined with transmission electron microscopy (TEM) in order to study the formation and evolution of Wadsley defects and Magnéli phases during electrical biasing and resistive switching in titanium dioxide (TiO2). Resistive switching devices were fabricated from single-crystal rutile TiO2 substrates through focused ion beam milling and lift-out techniques. Defect evolution and phase transformations in rutile TiO2 were monitored by diffraction contrast imaging inside the TEM during electrical biasing. Reversible bipolar resistive switching behavior was observed in these single-crystal TiO2 devices. Biased induced reduction reactions created increased oxygen vacancy concentrations to such an extent that shear faults (Wadsley defects) and oxygen-deficient phases (Magnéli phases) formed over large volumes within the TiO2 TEM specimen. Nevertheless, the observed reversible formation/dissociation of Wadsley defects does not appear to correlate to resistive switching phenomena at these length scales. These defect zones were found to reversibly reconfigure in a manner consistent with charged oxygen vacancy migration responding to the applied bias polarity.

  9. Temperature Dependence of Electrical Resistance of Woven Melt-Infiltrated SiCf/SiC Ceramic Matrix Composites

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming


    Recent studies have successfully shown the use of electrical resistance (ER)measurements to monitor room temperature damage accumulation in SiC fiber reinforced SiC matrix composites (SiCf/SiC) Ceramic Matrix Composites (CMCs). In order to determine the feasibility of resistance monitoring at elevated temperatures, the present work investigates the temperature dependent electrical response of various MI (Melt Infiltrated)-CVI (Chemical Vapor Infiltrated) SiC/SiC composites containing Hi-Nicalon Type S, Tyranno ZMI and SA reinforcing fibers. Test were conducted using a commercially available isothermal testing apparatus as well as a novel, laser-based heating approach developed to more accurately simulate thermomechanical testing of CMCs. Secondly, a post-test inspection technique is demonstrated to show the effect of high-temperature exposure on electrical properties. Analysis was performed to determine the respective contribution of the fiber and matrix to the overall composite conductivity at elevated temperatures. It was concluded that because the silicon-rich matrix material dominates the electrical response at high temperature, ER monitoring would continue to be a feasible method for monitoring stress dependent matrix cracking of melt-infiltrated SiC/SiC composites under high temperature mechanical testing conditions. Finally, the effect of thermal gradients generated during localized heating of tensile coupons on overall electrical response of the composite is determined.

  10. Structure and electrical resistivity of Gd{sub 1-x}Pr{sub x}Co{sub 5} compounds

    Amirabadizadeh, A. [Department of Physics, Faculty of Science, University of Birjand, Birjand (Iran); Department of Physics, Faculty of Science, Ferdowsi University of Mashhad (Iran); Tajabor, N.; Alinejad, M.R. [Department of Physics, Faculty of Science, University of Birjand, Birjand (Iran); Pourarian, F. [Carnegie Mellon Research Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15219 (United States)


    The effect of partial substitution of Pr for Gd in Gd{sub 1-x}Pr{sub x}Co{sub 5} (x=0, 0.1 and 0.3) on structural and resistivity properties are investigated. For GdCo{sub 5}, the temperature dependence of resistivity (from 80 K to 300 K) shows a negative curvature towards the temperature axis as one goes from low to high temperatures. For samples with x=0.1 and 0.3 composition electrical resistivity curves show anomalies at certain temperatures. It is suggested that the anomalies of the resistivity are attributed to the triggered spin reorientation transition temperature. These anomalies were also observed in the temperature dependence of ac-susceptibility curves, which confirm the observed spin reorientation transition. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Electrical and microstructure analysis of nickel-based low-resistance ohmic contacts to n-GaSb

    Nassim Rahimi


    Full Text Available Ultra low resistance ohmic contacts are fabricated on n-GaSb grown by molecular beam epitaxy. Different doping concentrations and n-GaSb thicknesses are studied to understand the tunneling transport mechanism between the metal contacts and the semiconductor. Different contact metallization and anneal process windows are investigated to achieve optimal penetration depth of Au in GaSb for low resistances. The fabrication, electrical characterization, and microstructure analysis of the metal-semiconductor interfaces created during ohmic contact formation are discussed. The characterization techniques include cross-sectional transmission electron microscopy and energy dispersive spectroscopy. Specific transfer resistances down to 0.1 Ω mm and specific contact resistances of 1 × 10−6 Ω cm2 are observed.

  12. Application of Electrical Resistivity Imaging for Engineering Site Investigation. A Case Study on Prospective Hospital Site, Varamin, Iran

    Amini Amin


    Full Text Available The article addresses the application of electrical resistivity imaging for engineering site investigation in Pishva Hospital, Varamin, Iran. Some aqueduct shafts exist in the study area backfilled by loose materials. The goals of this study are to detect probable aqueduct tunnels and their depth, investigate filling quality in the shafts as well as connection(s between them. Therefore, three profiles were surveyed by dipoledipole electrode array. Also, to investigate the potentially anomalous areas more accurately, five additional resistivity profiles were measured by a Combined Resistivity Sounding-Profiling array (CRSP. According to the results of 2-D inversion modelling, a main aqueduct tunnel was detected beneath the central part of the site. Finally, the resistivity pattern of the detected aqueduct system passing the investigated area was provided using the obtained results.

  13. Application of Electrical Resistivity Imaging for Engineering Site Investigation. A Case Study on Prospective Hospital Site, Varamin, Iran

    Amini, Amin; Ramazi, Hamidreza


    The article addresses the application of electrical resistivity imaging for engineering site investigation in Pishva Hospital, Varamin, Iran. Some aqueduct shafts exist in the study area backfilled by loose materials. The goals of this study are to detect probable aqueduct tunnels and their depth, investigate filling quality in the shafts as well as connection(s) between them. Therefore, three profiles were surveyed by dipoledipole electrode array. Also, to investigate the potentially anomalous areas more accurately, five additional resistivity profiles were measured by a Combined Resistivity Sounding-Profiling array (CRSP). According to the results of 2-D inversion modelling, a main aqueduct tunnel was detected beneath the central part of the site. Finally, the resistivity pattern of the detected aqueduct system passing the investigated area was provided using the obtained results.

  14. An integrated deep electrical resistivity model of the Larderello geothermal field (Italy)

    Rizzo, Enzo; Capozzoli, Luigi; De martino, Gregory; Godio, Alberto; Manzella, Adele; Perciante, Felice; Santilano, Alessandro


    A new deep electrical resistivity acquisition was carried out in Larderello geothermal area (Tuscania Region, Italy) by 3D Deep Electrical Resistivity Tomography (3D-DERT) and Magnetotelluric (M) acquisition. The investigated area is located close the Venelle2 well in the southern part of Larderello site, where there is the oldest field in the world under exploitation for power production (actual installed capacity is about 795 MWe). A vapour-dominated system is exploited to depth over 3500 m, with temperatures exceeding 350°C, from two different reservoirs. The Larderello area has been investigated by many geological and geophysical data of previous exploration projects but nowadays several critical issues on deep features of the field are still matter of debate, e.g., permeability distribution in the hydrothermal reservoir and the presence of fluids at supercritical condition at depth. The 3D-DERT system was designed by Surface-Surface and Surface-Hole electrode distributions in the area around Venelle2 well covering an area around 16km2. The well (kindly provided by Enel GP) was accessible down to 1.6 km with a temperature up to 250°C and a metallic casing down to 1 km. The in-hole thermal cable is characterized by n.12 flexible metallic electrodes with an electrodes space of 50m covering the open-hole portion (1050m-1600m). The surface electrodes are located around the Venelle2 hole on n.23 different positions connected to automatic dataloger to acquire the drop of potential and to transmitter device to inject the current (5-10A). The crucial task was the data processing, considering the large distance between the Tx and Rx systems that strongly reduces the signal to-noise ratio. To overcome this drawback, for each quadripole position the corresponding voltage signal was filtered, stored and processed with advanced statistical packages. The new 22 station were installed in the studied area and the data were carried out taking in account a permanent remote

  15. Reversible electrical resistance switching in GeSbTe thin films : An electrolytic approach without amorphous-crystalline phase-change

    Pandian, Ramanathaswamy; Kooi, Bart J.; Palasantzas, George; De Hosson, Jeff Th. M.; Wouters, DJ; Hong, S; Soss, S; Auciello, O


    Besides the well-known resistance switching originating from the amorphous-crystalline phase-change in GeSbTe thin films, we demonstrate another switching mechanism named 'polarity-dependent resistance (PDR) switching'. 'Me electrical resistance of the film switches between a low- and high-state whe

  16. Re-Inversion of Surface Electrical Resistivity Tomography Data from the Hanford Site B-Complex

    Johnson, Timothy C.; Wellman, Dawn M.


    This report documents the three-dimensional (3D) inversion results of surface electrical resistivity tomography (ERT) data collected over the Hanford Site B-Complex. The data were collected in order to image the subsurface distribution of electrically conductive vadose zone contamination resulting from both planned releases of contamination into subsurface infiltration galleries (cribs, trenches, and tile fields), as well as unplanned releases from the B, BX, and BY tank farms and/or associated facilities. Electrically conductive contaminants are those which increase the ionic strength of pore fluids compared to native conditions, which comprise most types of solutes released into the subsurface B-Complex. The ERT data were collected and originally inverted as described in detail in report RPP-34690 Rev 0., 2007, which readers should refer to for a detailed description of data collection and waste disposal history. Although the ERT imaging results presented in that report successfully delineated the footprint of vadose zone contamination in areas outside of the tank farms, imaging resolution was not optimized due to the inability of available inversion codes to optimally process the massive ERT data set collected at the site. Recognizing these limitations and the potential for enhanced ERT characterization and time-lapse imaging at contaminated sites, a joint effort was initiated in 2007 by the U.S. Department of Energy – Office of Science (DOE-SC), with later support by the Office of Environmental Management (DOE-EM), and the U.S. Department of Defense (DOD), to develop a high-performance distributed memory parallel 3D ERT inversion code capable of optimally processing large ERT data sets. The culmination of this effort was the development of E4D (Johnson et al., 2010,2012) In 2012, under the Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI), the U.S. Department of Energy – Richland Operations Office (DOE-RL) and CH2M Hill Plateau Remediation

  17. Do clinical examination gloves provide adequate electrical insulation for safe hands-on defibrillation? I: Resistive properties of nitrile gloves.

    Deakin, Charles D; Lee-Shrewsbury, Victoria; Hogg, Kitwani; Petley, Graham W


    Uninterrupted chest compressions are a key factor in determining resuscitation success. Interruptions to chest compression are often associated with defibrillation, particularly the need to stand clear from the patient during defibrillation. It has been suggested that clinical examination gloves may provide adequate electrical resistance to enable safe hands-on defibrillation in order to minimise interruptions. We therefore examined whether commonly used nitrile clinical examination gloves provide adequate resistance to current flow to enable safe hands-on defibrillation. Clinical examination gloves (Kimberly Clark KC300 Sterling nitrile) worn by members of hospital cardiac arrest teams were collected immediately following termination of resuscitation. To determine the level of protection afforded by visually intact gloves, electrical resistance across the glove was measured by applying a DC voltage across the glove and measuring subsequent resistance. Forty new unused gloves (control) were compared with 28 clinical (non-CPR) gloves and 128 clinical (CPR) gloves. One glove in each group had a visible tear and was excluded from analysis. Control gloves had a minimum resistance of 120 kΩ (median 190 kΩ) compared with 60 kΩ in clinical gloves (both CPR (median 140 kΩ) and non-CPR groups (median 160 kΩ)). Nitrile clinical examination gloves do not provide adequate electrical insulation for the rescuer to safely undertake 'hands-on' defibrillation and when exposed to the physical forces of external chest compression, even greater resistive degradation occurs. Further work is required to identify gloves suitable for safe use for 'hands-on' defibrillation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Challenges of using electrical resistivity method to locate karst conduits-A field case in the Inner Bluegrass Region, Kentucky

    Zhu, J.; Currens, J.C.; Dinger, J.S.


    Conduits serve as major pathways for groundwater flow in karst aquifers. Locating them from the surface, however, is one of the most challenging tasks in karst research. Geophysical methods are often deployed to help locate voids by mapping variations of physical properties of the subsurface. Conduits can cause significant contrasts of some physical properties that can be detected; other subsurface features such as water-bearing fractures often yield similar contrasts, which are difficult to distinguish from the effects of the conduits. This study used electrical resistivity method to search for an unmapped karst conduit that recharges Royal Spring in the Inner Bluegrass karst region, Kentucky, USA. Three types of resistivity techniques (surface 2D survey, quasi-3D survey, and time-lapse survey) were used to map and characterize resistivity anomalies. Some of the major anomalies were selected as drilling targets to verify the existence of the conduits. Drilling near an anomaly identified by an electrical resistivity profile resulted in successful penetration of a major water-filled conduit. The drilling results also suggest that, in this study area, low resistivity anomalies in general are associated with water-bearing features. However, differences in the anomaly signals between the water-filled conduit and other water-bearing features such as water-filled fracture zones were undistinguishable. The electrical resistivity method is useful in conduit detection by providing potential drilling targets. Knowledge of geology and hydrogeology about the site and professional judgment also played important roles in locating the major conduit. ?? 2011 Elsevier B.V.

  19. Imaging subsurface migration of dissolved CO2 in a shallow aquifer using 3-D time-lapse electrical resistivity tomography

    Auken, Esben; Doetsch, Joseph; Fiandaca, Gianluca


    of aeolian and glacial sands near the surface and marine sands below 10m depth. 3-D time-lapse ERT inversions clearly image the dissolved CO2 plume with decreased electrical resistivity values. We can image the geochemical changes induced by the dissolved CO2 until the end of the acquisition, 120days after......Contamination of groundwater by leaking CO2 is a potential risk of carbon sequestration. With the help of a field experiment in western Denmark, we investigate to what extent surface electrical resistivity tomography (ERT) can detect and image dissolved CO2 in a shallow aquifer. For this purpose......, we injected CO2 at a depth of 5 and 10m and monitored its migration using 320 electrodes on a 126m×25m surface grid. A fully automated acquisition system continuously collected data and uploaded it into an online database. The large amount of data allows for time-series analysis using geostatistical...

  20. Prediction of crack density and electrical resistance changes in indium tin oxide/polymer thin films under tensile loading

    Mora Cordova, Angel


    We present unified predictions for the crack onset strain, evolution of crack density, and changes in electrical resistance in indium tin oxide/polymer thin films under tensile loading. We propose a damage mechanics model to quantify and predict such changes as an alternative to fracture mechanics formulations. Our predictions are obtained by assuming that there are no flaws at the onset of loading as opposed to the assumptions of fracture mechanics approaches. We calibrate the crack onset strain and the damage model based on experimental data reported in the literature. We predict crack density and changes in electrical resistance as a function of the damage induced in the films. We implement our model in the commercial finite element software ABAQUS using a user subroutine UMAT. We obtain fair to good agreement with experiments. © The Author(s) 2014 Reprints and permissions:

  1. Anisotropic electrical resistivity and oxygen annealing effect on it in La2- xCaxCuO4 single crystals

    Khan, M. K. R.; Mori, Yoshihiro; Tanaka, Isao; Kojima, Hironao


    The oxygen annealing effect on the temperature-dependent electrical resistivity has been studied in La 1.91Ca 0.09CuO 4- y single crystals grown by the TSFZ method. In as-grown crystals, semiconducting-like electrical conduction has been observed, both in the ab-plane and the c-axis at the non-superconducting state. The onset transition temperature Tc-onset was about 17.5 K. After annealing in oxygen, ϱ ab( T) becomes metallic and shows a resistivity minimum at a certain temperature Tmin that separates regions of metallic behavior at T> Tmin from semiconducting behavior at Thopping law (VRH) in non-metallic samples.

  2. Mapping a Pristine Glaciofluvial Aquifer on the Canadian Shield Using Ground-Penetrating Radar and Electrical Resistivity Tomography

    Graves, L. W.; Shirokova, V.; Bank, C.


    Our study aims to construct a 3D structural model of an unconfined pristine aquifer in Laurentian Hills, Ontario, Canada. The stratigraphy of the study site, which covers about 5400 square meters, features reworked glaciofluvial sands and glacial till on top of Canadian Shield bedrock. A network of 25 existing piezometers provides ground-truth. We used two types of geophysical surveys to map the water table and the aquifer basin. Ground-penetrating radar (GPR) collected 40 profiles over distances up to 140 meters using 200MHz and 400MHz antennas with a survey wheel. The collected radargrams show a distinct reflective layer, which can be mapped to outcrops of glacial till within the area. This impermeable interface forms the aquitard. Depths of the subsurface features were calculated using hyperbolic fits on the radargrams in Matlab by determining wave velocity then converting measured two-way-time to depth. Electrical resistivity was used to determine the water table elevations because the unconfined water table did not reflect the radar waves. 20 resistivity profiles were collected in the same area using Wenner-Alpha and dipole-dipole arrays with both 24 and 48 electrodes and for 0.5, 0.75, 1.0 and 2.0 meter spacing. The inverted resistivity models show low resistivity values (resistivity values (2000-6000 Ohm.m) above 1 to 2 meter depths. These contrasting resistivity values correspond to saturated and wet sand (lower resistivity) to dry sand (higher resistivity); a correlation we could verify with several bore-hole logs. The water table is marked on the resistivity profiles as a steep resistivity gradient, and the depth can be added to the comprehensive 3D model. This model also incorporates hydrogeological characteristics and geochemical anomalies found within the aquifer. Ongoing seasonal and annual monitoring of the aquifer using geophysical methods will bring a fourth dimension to our understanding of this dynamic system. GPR Profile with Glacial Till

  3. Contribution of 3D inversion of Electrical Resistivity Tomography data applied to volcanic structures

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe


    The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out

  4. Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater-surface water exchange

    Steelman, Colby M.; Kennedy, Celia S.; Capes, Donovan C.; Parker, Beth L.


    Bedrock rivers occur where surface water flows along an exposed rock surface. Fractured sedimentary bedrock can exhibit variable groundwater residence times, anisotropic flow paths, and heterogeneity, along with diffusive exchange between fractures and rock matrix. These properties of the rock will affect thermal transients in the riverbed and groundwater-surface water exchange. In this study, surface electrical methods were used as a non-invasive technique to assess the scale and temporal variability of riverbed temperature and groundwater-surface water interaction beneath a sedimentary bedrock riverbed. Conditions were monitored at a semi-daily to semi-weekly interval over a full annual period that included a seasonal freeze-thaw cycle. Surface electromagnetic induction (EMI) and electrical resistivity tomography (ERT) methods captured conditions beneath the riverbed along a pool-riffle sequence of the Eramosa River in Canada. Geophysical datasets were accompanied by continuous measurements of aqueous specific conductance, temperature, and river stage. Time-lapse vertical temperature trolling within a lined borehole adjacent to the river revealed active groundwater flow zones along fracture networks within the upper 10 m of rock. EMI measurements collected during cooler high-flow and warmer low-flow periods identified a spatiotemporal riverbed response that was largely dependent upon riverbed morphology and seasonal groundwater temperature. Time-lapse ERT profiles across the pool and riffle sequence identified seasonal transients within the upper 2 and 3 m of rock, respectively, with spatial variations controlled by riverbed morphology (pool versus riffle) and dominant surficial rock properties (competent versus weathered rock rubble surface). While the pool and riffle both exhibited a dynamic resistivity through seasonal cooling and warming cycles, conditions beneath the pool were more variable, largely due to the formation of river ice during the winter season

  5. Increasing wear resistance of copper friction pair with electrically-conductive tribological Cu-Mo-S coatings

    Zharkov, S. Yu.; Sergeev, V. P.; Fedorischeva, M. V.; Sergeev, O. V.; Kalashnikov, M. P.


    The composite solid lubricant Cu-Mo-S coating was produced by pulse magnetron sputtering system. The electrical resistivity of deposited Cu-Mo-S coatings was (22.8±3) × 10-8 Ohm×m. Cu-Mo-S coatings decrease the wear rate of the copper friction pair by 38 times. The decrease in the wear rate occurs owing to the formation of a transferred film on the counterface.

  6. Extraction of temperature dependent electrical resistivity and thermal conductivity from silicon microwires self-heated to melting temperature

    Bakan, Gokhan; Adnane, Lhacene; Gokirmak, Ali; Silva, Helena


    Temperature-dependent electrical resistivity, ρ(T), and thermal conductivity, k(T), of nanocrystalline silicon microwires self-heated to melt are extracted by matching simulated current-voltage (I-V) characteristics to experimental I-V characteristics. Electrical resistivity is extracted from highly doped p-type wires on silicon dioxide in which the heat losses are predominantly to the substrate and the self-heating depends mainly on ρ(T) of the wires. The extracted ρ(T) decreases from 11.8 mΩ cm at room-temperature to 5.2 mΩ cm at 1690 K, in reasonable agreement with the values measured up to ˜650 K. Electrical resistivity and thermal conductivity are extracted from suspended highly doped n-type silicon wires in which the heat losses are predominantly through the wires. In this case, measured ρ(T) (decreasing from 20.5 mΩ cm at room temperature to 12 mΩ cm at 620 K) is used to extract ρ(T) at higher temperatures (decreasing to 1 mΩ cm at 1690 K) and k(T) (decreasing from 30 W m-1 K-1 at room temperature to 20 W m-1 K-1 at 1690 K). The method is tested by using the extracted parameters to model wires with different dimensions. The experimental and simulated I-V curves for these wires show good agreement up to high voltage and temperature levels. This technique allows extraction of the electrical resistivity and thermal conductivity up to very high temperatures from self-heated microstructures.

  7. Electrical resistivity tomography investigations along the planned dykes of the HPP Brežice water accumulation basin

    Gorazd Rajh


    Full Text Available Geophysical investigations were conducted using electrical resistivity tomography (ERT along planned dykes of the HPP Brežice water accumulation basin. The ERT profile is 7.3 km long and is located on the right riverbank of the Sava River on the Kr{ko-Brežice field (E Slovenia. A purpose of the investigations was to determine a boundary between semipermeable Miocene and permeable Plio-Quaternary (Pl-Q and Quaternary (Q sediments for the proper design of the jet grouting sealing curtain, which will prevent lateral outflow of water from the accumulation basin. In this paper we present processing of the section between 5100 and 6100 m of the profile line. In this section the measurement template was set to 25 depth levels, because a significant increase in a thickness of the Pl-Q sediments was expected. Modelling of the measured apparent electrical resistivity data was carried out with RES2DINV and RESIX 2DI inversion software. Different inversion parameters were used to create 15 geoelectrical models for each program, which were then compared and evaluated based on borehole data and on previous geological investigations of the area. With the final geoelectrical models it was possible to successfully determine areas of three expected stratigraphic members and limit an electrical resistivity range for each one of them. The boundary is well defined between Q and Pl-Q and also between Q and Miocene sediments with sharp contrast in electrical resistivity between them. A boundary between Pl-Q and Miocene sediments was not that obvious, but it was possible to determine its shape by the use of different inversion parameters. We propose a simplified geological cross section based on the interpreted geoelectrical models and borehole data.


    Blundy, R; Michael Morgenstern, M; Joseph Amari, J; Annamarie MacMurray, A; Mark Farrar, M; Terry Killeen, T


    Chlorinated solvent contamination of soils and groundwater is an endemic problem at the Savannah River Site (SRS), and originated as by-products from the nuclear materials manufacturing process. Five nuclear reactors at the SRS produced special nuclear materials for the nation's defense program throughout the cold war era. An important step in the process was thorough degreasing of the fuel and target assemblies prior to irradiation. Discharges from this degreasing process resulted in significant groundwater contamination that would continue well into the future unless a soil remediation action was performed. The largest reactor contamination plume originated from C-Reactor and an interim action was selected in 2004 to remove the residual trichloroethylene (TCE) source material by electrical resistance heating (ERH) technology. This would be followed by monitoring to determine the rate of decrease in concentration in the contaminant plume. Because of the existence of numerous chlorinated solvent sources around SRS, it was elected to generate in-house expertise in the design and operation of ERH, together with the construction of a portable ERH/SVE system that could be deployed at multiple locations around the site. This paper describes the waste unit characteristics, the ERH system design and operation, together with extensive data accumulated from the first deployment adjacent to the C-Reactor building. The installation heated the vadose zone down to 62 feet bgs over a 60 day period during the summer of 2006 and raised soil temperatures to over 200 F. A total of 730 lbs of trichloroethylene (TCE) were removed over this period, and subsequent sampling indicated a removal efficiency of 99.4%.

  9. Characterization of reactive transport by 3-D electrical resistivity tomography (ERT) under unsaturated conditions

    Wehrer, Markus; Binley, Andrew; Slater, Lee D.


    The leaching of nitrate from intensively used arable soil is of major concern in many countries. In this study, we show how time lapse electrical resistivity tomography (ERT) can be used to characterize spatially heterogeneous processes of ion production, consumption, and transport in soils. A controlled release fertilizer was introduced into an undisturbed soil core in a laboratory lysimeter and subjected to infiltration events. The production of ions resulting from processes associated with nitrification and their transport through the soil core was observed by time lapse ERT and analysis of seepage water samples from a multicompartment sampler. ERT images show development and propagation of a high-conductivity plume from the fertilizer source zone. Molar amounts of nitrate produced in and exported from the soil core could be well reproduced by time lapse ERT using a spatial moment analysis. Furthermore, we observed that several shape measures of local breakthrough-curves (BTCs) of seepage water conductivity and nitrate derived by effluent analyses and BTCs of bulk conductivity derived by ERT are highly correlated, indicating the preservation of spatial differences of the plume breakthrough in the ERT data. Also differences between nitrate breakthrough and a conservative tracer breakthrough can be observed by ERT. However, the estimation of target ion concentrations by ERT is error bound and the smoothing algorithm of the inversion masks spatial conductivity differences. This results in difficulties reproducing spatial differences of ion source functions and variances of travel times. Despite the observed limitations, we conclude that time lapse ERT can be qualitatively and quantitatively informative with respect to processes affecting the fate of nitrate in arable soils.

  10. Optical Constant and Electrical Resistivity of Annealed Sn3Sb2S6 Thin Films

    Y.Fadhli; A.Rabhi; M.Kanzari


    In this study,we report the annealing effects on the physical properties of Sn3Sb2S6 thin films.Sn3Sb2S6 thin films were prepared onto non-heated glass substrates via thermal evaporation technique.The as-deposited films were annealed in air for 1 h in the temperature range from 100 to 300 ℃.X-ray diffraction results show that the crystallinity of the thin films increased after annealing.The microstructure parameters crystallite size,dislocation density,lattice strain and stacking fault probability were calculated.The optical properties were obtained from the analysis of the experimental recorded transmittance and reflectance spectral data over the wavelength range 300-1800 nm.High absorption coefficient (105 cm-1) reached to thevisible and near-IR spectral range.A decrease in optical band gap from 1.92 to 1.71 eV by increasing the air annealing temperature was observed.Oscillator energy Eo and dispersion energy Ed of the films after annealing were estimated according to the model of Wemple-DiDomenico single oscillator.Spitzer-Fan model was applied to determine the electron free carrier susceptibility and the ratio of carrier concentration to the effective mass.The layers annealed at temperatures >150 ℃ undergo abrupt changes in their electrical properties and exhibit a resistive hysteresis behavior.These properties confer to the material interest perspectives for its application in diverse advanced technologies such as photovoltaic applications and optical storage.




    Field validation for the long electrode electrical resistivity tomography (LE-ERT) method was attempted in order to demonstrate the performance of the technique in imaging a simple buried target. The experiment was an approximately 1/17 scale mock-up of a region encompassing a buried nuclear waste tank on the Hanford site. The target of focus was constructed by manually forming a simulated plume within the vadose zone using a tank waste simulant. The LE-ERT results were compared to ERT using conventional point electrodes on the surface and buried within the survey domain. Using a pole-pole array, both point and long electrode imaging techniques identified the lateral extents of the pre-formed plume with reasonable fidelity, but the LE-ERT was handicapped in reconstructing the vertical boundaries. The pole-dipole and dipole-dipole arrays were also tested with the LE-ERT method and were shown to have the least favorable target properties, including the position of the reconstructed plume relative to the known plume and the intensity of false positive targets. The poor performance of the pole-dipole and dipole-dipole arrays was attributed to an inexhaustive and non-optimal coverage of data at key electrodes, as well as an increased noise for electrode combinations with high geometric factors. However, when comparing the model resolution matrix among the different acquisition strategies, the pole-dipole and dipole-dipole arrays using long electrodes were shown to have significantly higher average and maximum values than any pole-pole array. The model resolution describes how well the inversion model resolves the subsurface. Given the model resolution performance of the pole-dipole and dipole-dipole arrays, it may be worth investing in tools to understand the optimum subset of randomly distributed electrode pairs to produce maximum performance from the inversion model.

  12. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating.

    Munholland, Jonah L; Mumford, Kevin G; Kueper, Bernard H


    A series of intermediate-scale laboratory experiments were completed in a two-dimensional flow cell to investigate gas production and migration during the application of electrical resistance heating (ERH) for the removal of dense non-aqueous phase liquids (DNAPLs). Experiments consisted of heating water in homogeneous silica sand and heating 270 mL of trichloroethene (TCE) and chloroform (CF) DNAPL pools in heterogeneous silica sands, both under flowing groundwater conditions. Spatial and temporal distributions of temperature were measured using thermocouples and observations of gas production and migration were collected using front-face image capture throughout the experiments. Post-treatment soil samples were collected and analyzed to assess DNAPL removal. Results of experiments performed in homogeneous sand subject to different groundwater flow rates showed that high groundwater velocities can limit subsurface heating rates. In the DNAPL pool experiments, temperatures increased to achieve DNAPL-water co-boiling, creating estimated gas volumes of 131 and 114 L that originated from the TCE and CF pools, respectively. Produced gas migrated vertically, entered a coarse sand lens and subsequently migrated laterally beneath an overlying capillary barrier to outside the heated treatment zone where 31-56% of the original DNAPL condensed back into a DNAPL phase. These findings demonstrate that layered heterogeneity can potentially facilitate the transport of contaminants outside the treatment zone by mobilization and condensation of gas phases during ERH applications. This underscores the need for vapor phase recovery and/or control mechanisms below the water table during application of ERH in heterogeneous porous media during the co-boiling stage, which occurs prior to reaching the boiling point of water. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Existence and Stability of Viscous Shock Profiles for 2-D Isentropic MHD with Infinite Electrical Resistivity

    Blake, B.; Zumbrun, K. [Indiana Univ, Dept Math, Bloomington, IN 47402 (United States); Lafitte, O. [CEA Saclay, DM2S DIR, F-91191 Gif Sur Yvette (France); Univ Paris 13, Inst Galilee, LAGA, F-93430 Villetaneuse, (France)


    For the two-dimensional Navier Stokes equations of isentropic magnetohydrodynamics (MHD) with {gamma}-law gas equation of state, {gamma}{>=}1, and infinite electrical resistivity, we carry out a global analysis categorizing all possible viscous shock profiles. Precisely, we show that the phase portrait of the Crave ling-wave ODE generically consists of either two rest points connected by a viscous Lax profile, or else four rest points, two saddles and two nodes. In the latter configuration, which rest points are connected by profiles depends on the ratio of viscosities, and can involve Lax, over-compressive, or under-compressive shock profiles. Considered as three-dimensional solutions, under-compressive shocks are Lax-type (Alfven) waves. For the monatomic and diatomic cases {gamma}=5/3 and {gamma}=7/5, with standard viscosity ratio for a nonmagnetic gas, we find numerically that the the nodes are connected by a family of over-compressive profiles bounded by Lax profiles connecting saddles to nodes, with no under-compressive shocks occurring. We carry out a systematic numerical Evans function analysis indicating that all of these two-dimensional shock profiles are linearly and nonlinearly stable, both with respect to two- and three-dimensional perturbations. For the same gas constants, but different viscosity ratios, we investigate also cases for which under-compressive shocks appear; these are seen numerically to be stable as well, both with respect to two-dimensional and (in the neutral sense of convergence to nearby Riemann solutions) three-dimensional perturbations. (authors)

  14. An extended L-curve method for choosing a regularization parameter in electrical resistance tomography

    Xu, Yanbin; Pei, Yang; Dong, Feng


    The L-curve method is a popular regularization parameter choice method for the ill-posed inverse problem of electrical resistance tomography (ERT). However the method cannot always determine a proper parameter for all situations. An investigation into those situations where the L-curve method failed show that a new corner point appears on the L-curve and the parameter corresponding to the new corner point can obtain a satisfactory reconstructed solution. Thus an extended L-curve method, which determines the regularization parameter associated with either global corner or the new corner, is proposed. Furthermore, two strategies are provided to determine the new corner-one is based on the second-order differential of L-curve, and the other is based on the curvature of L-curve. The proposed method is examined by both numerical simulations and experimental tests. And the results indicate that the extended method can handle the parameter choice problem even in the case where the typical L-curve method fails. Finally, in order to reduce the running time of the method, the extended method is combined with a projection method based on the Krylov subspace, which was able to boost the extended L-curve method. The results verify that the speed of the extended L-curve method is distinctly improved. The proposed method extends the application of the L-curve in the field of choosing regularization parameter with an acceptable running time and can also be used in other kinds of tomography.

  15. Effects of irradiation induced Cu clustering on Vickers hardness and electrical resistivity of Fe–Cu model alloys

    Tobita, Tohru, E-mail: [Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki-prefecture 319-1195 (Japan); Nakagawa, Shou [Department of Materials Science, Osaka Prefecture University, Sakai-shi, Osaka 599-8531 (Japan); Takeuchi, Tomoaki; Suzuki, Masahide [Neutron Irradiation and Testing Reactor Center, Japan Atomic Energy Agency, Narita, Oarai, Higashiibaraki-gun, Ibaraki-prefecture 311-1393 (Japan); Ishikawa, Norito [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki-prefecture 319-1195 (Japan); Chimi, Yasuhiro [Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki-prefecture 319-1195 (Japan); Saitoh, Yuichi [Department of Advanced Radiation Technology, Japan Atomic Energy Agency, Watanuki, Takasaki-shi, Gunma-prefecture 370-1292 (Japan); Soneda, Naoki; Nishida, Kenji; Ishino, Siori [Central Research Institute of Electric Power Industry, Komae-shi, Tokyo 201-8511 (Japan); Iwase, Akihiro [Department of Materials Science, Osaka Prefecture University, Sakai-shi, Osaka 599-8531 (Japan)


    Three kinds of Fe-based model alloys, Fe–0.018 atomic percent (at.%) Cu, Fe–0.53at.%Cu, and Fe–1.06at.%Cu were irradiated with 2 MeV electrons up to the dose of 2 × 10{sup −5} dpa at 250 °C. After the irradiation, the increase in Vickers hardness and the decrease in electrical resistivity were observed. The increase in hardness by electron irradiation is proportional to the product of the Cu contents and the square root of the electron dose. The decrease in electrical resistivity is proportional to the product of the square of Cu contents and the electron dose. Cu clustering in the materials with electron irradiation and thermal aging was observed by means of the Atom Probe Tomography (APT). The change in Vickers hardness and electrical resistivity is well correlated with micro-structure evolution related to the Cu clustering process. The irradiation hardening was proportional to the square root of volume fraction of the Cu clusters from early stage of irradiation.

  16. Application of Electrical Resistivity Imaging and Land Surveying in the Analysis of Underground Construction Impact on the Warsaw Scarp

    Kaczmarek Łukasz


    Full Text Available The paper presents the analysis of the II Underground Line construction’s impact on the Warsaw Scarp with the use of the electrical resistivity imaging (ERI, also known as the electrical resistivity tomography and further total station position measurements.The underground passes under the scarp perpendicular in the area of Dynasy Street 6, in Down-town district.The electrical resistivity imaging was performed for recognition of the geological structure and a potential land slide surface or zone.The gradient system was used during the prospection. In these analyses, the longitudinal section was 40 m long, and the depth of survey amounted to 6 m. In the case of the 200 m long transverse section, the resulted depth of survey was 30 m.The geophysical image of the longitudinal section,does not contain loosening soil zones,which could indicates lip surface.Next, total station measurements, which were tied to the archival geodetic observations’ results, were carried out. The aim of the measurements was to verify the activity of the horizontal and vertical displacements. The TBM excavation process led to summary vertical displacements up to approx. 24 mm and horizontal displacements amounting to approx. 13 mm. To sum up, the current land surveys reveals minor under ground line’ s construction impact on the scarp displacement. Nevertheless, the sensitive urban environment requires further monitoring, especially that the operation loads can result in displacement rate change.

  17. Electric field induced structural modifications in metal/SrTiO{sub 3} junctions and their resistive properties

    Stoecker, Hartmut [TU Dresden (Germany). Institut fuer Strukturphysik; TU Bergakademie Freiberg (Germany). Institut fuer Experimentelle Physik; Seibt, Juliane; Hanzig, Florian; Wintz, Susi; Meyer, Dirk C. [TU Bergakademie Freiberg (Germany). Institut fuer Experimentelle Physik; Zschornak, Matthias [TU Dresden (Germany). Institut fuer Strukturphysik


    In oxides with perovskite-type of structure, mobile oxygen can cause the formation of non-stoichiometric regions when an electric field of sufficient strength ({proportional_to}1000 V/mm) is applied. Our in-situ investigations of metal/SrTiO{sub 3} junctions revealed reversible structural changes at room temperature caused by a systematic field-induced redistribution of oxygen. The investigations were carried out using wide-angle X-ray scattering, X-ray absorption spectroscopy, photoluminescence, nanoindentation and time-dependent electric I-U measurements. Motivated by the successful use of SrTiO{sub 3} with different doping metals for memory cells on the basis of resistive switching combined with the findings on the major importance of oxygen vacancy redistribution, we show the possibility of realizing a resistance change memory based on vacancy-doped SrTiO{sub 3}. The formation of corresponding metal/SrTiO{sub 3} junctions in an electric field is discussed as well as the switching between ohmic and Schottky-type resistive properties. A notable hysteresis in the I-U characteristics can be used to carry out Write, Read and Erase operations to test the memory cell properties of such junctions.

  18. Investigating fluvial features with electrical resistivity imaging and ground-penetrating radar: The Guadalquivir River terrace (Jaen, Southern Spain)

    Rey, J.; Martínez, J.; Hidalgo, M. C.


    A geophysical survey has been conducted on the lowest terrace levels and the present day floodplain of the current course of the Guadalquivir River, passing through the province of Jaen (Spain), using two techniques: electrical resistivity imaging (ERI) and ground-penetrating radar (GPR). Three areas have been selected. In one of these sectors (Los Barrios) there is an old quarry where there are excellent outcrops that allow for the calibration of the survey techniques. Facies associations on these outcrops are typical of meandering rivers with sequences of channel fills, lateral accretion of point-bars and floodplain facies. The usefulness of the two methods is analysed and compared as a support for stratigraphic and sedimentological studies. The geometry and lithofacies of subsurface deposits were characterised using ERI and compared with field observations. A total of 5 electrical resistivity imaging profiles were obtained. The changes in electric resistivity highlight granulometric differences in terrace sediments. This technique can thus be used to identify the morphology of these bodies, the lithofacies (silt, sand or gravel) and buried channel pattern. In addition, 16 GPR profiles using 100 and 250 MHz antennas were acquired, indicating terrace morphology and the filling of the sedimentary bodies in a more detailed manner than in ERI. The study thus allows for inferring the existence of channel migration, the lateral accretion of point bars and the presence of vertical accretion deposits attributable to the floodplains.

  19. Geomorphology of the Alluvial Sediments and Bedrock in an Intermontane Basin: Application of Variogram Modeling to Electrical Resistivity Soundings

    Khan, Adnan Ahmad; Farid, Asam; Akhter, Gulraiz; Munir, Khyzer; Small, James; Ahmad, Zulfiqar


    The study describes a methodology used to integrate legacy resistivity data with limited geological data in order to build three-dimensional models of the near subsurface. Variogram analysis and inversion techniques more typically found in the petroleum industry are applied to a set of 1D resistivity data taken from electrical surveys conducted in the 1980s. Through careful integration with limited geological data collected from boreholes and outcrops, the resultant model can be visualized in three dimensions to depict alluvium layers as lithological and structural units within the bedrock. By tuning the variogram parameters to account for directionality, it is possible to visualize the individual lithofacies and geomorphological features in the subsurface. In this study, an electrical resistivity data set collected as part of a groundwater study in an area of the Peshawar basin in Pakistan has been re-examined. Additional lithological logs from boreholes throughout the area have been combined with local outcrop information to calibrate the data. Tectonic activity during the Himalayan orogeny has caused uplift in the area and generated significant faulting in the bedrock resulting in the formation of depressions which are identified by low resistivity values representing clays. Paleo-streams have reworked these clays which have been eroded and replaced by gravel-sand facies along paleo-channels. It is concluded that the sediments have been deposited as prograding fan-shaped bodies and lacustrine deposits with interlayered gravel-sand and clay-silt facies. The Naranji area aquifer system has thus been formed as a result of local tectonic activity with fluvial erosion and deposition and is characterized by coarse sediments with high electrical resistivities.

  20. A study of the effect of seasonal climatic factors on the electrical resistivity response of three experimental graves

    Jervis, John R.; Pringle, Jamie K.


    Electrical resistivity surveys have proven useful for locating clandestine graves in a number of forensic searches. However, some aspects of grave detection with resistivity surveys remain imperfectly understood. One such aspect is the effect of seasonal changes in climate on the resistivity response of graves. In this study, resistivity survey data collected over three years over three simulated graves were analysed in order to assess how the graves' resistivity anomalies varied seasonally and when they could most easily be detected. Thresholds were used to identify anomalies, and the ‘residual volume' of grave-related anomalies was calculated as the area bounded by the relevant thresholds multiplied by the anomaly's average value above the threshold. The residual volume of a resistivity anomaly associated with a buried pig cadaver showed evidence of repeating annual patterns and was moderately correlated with the soil moisture budget. This anomaly was easiest to detect between January and April each year, after prolonged periods of high net gain in soil moisture. The resistivity response of a wrapped cadaver was more complex, although it also showed evidence of seasonal variation during the third year after burial. We suggest that the observed variation in the graves' resistivity anomalies was caused by seasonal change in survey data noise levels, which was in turn influenced by the soil moisture budget. It is possible that similar variations occur elsewhere for sites with seasonal climate variations and this could affect successful detection of other subsurface features. Further research to investigate how different climates and soil types affect seasonal variation in grave-related resistivity anomalies would be useful.

  1. Technical and harmonic analysis of Carl Czerny op. 299 number 34 etude

    Mehmet Serkan Umuzdas


    Full Text Available In this study, the 34th etude of the book Czerny Op. 299 that is one of the commonly employed books in the piano training was analysed in terms of technique and harmony. The etude was examined in terms of its technical features and contributions to technical development. If an etude is analysed before it is played, time and effort can be amanged much more efficiently. In turn, it may contribute to play the etude or work in accordance with its objectives and to produce outcomes. The aims of this study are to make the students aware of the goals and methods of etudes and to provide them with the suggestions for studying. It is suggested that any etude written with the 2/4 rhythm pattern should be played very vividly and energytically. Any etude written in the octave width of 5.5 is made up of 43 scales in two section. The etude is composed of two sections, each with four sentences and two periods. It also involves 43 scales. Of them, 16 scales are in the first section and the remaining 27 scales are in the second section. The etude has very regular system in terms of harmonic continuity and motives. It has a homogenious pattern in terms of the order of the sentences with half-decsion and those with full-decision.

  2. Modeling of the Channel Thickness Influence on Electrical Characteristics and Series Resistance in Gate-Recessed Nanoscale SOI MOSFETs

    A. Karsenty


    Full Text Available Ultrathin body (UTB and nanoscale body (NSB SOI-MOSFET devices, sharing a similar W/L but with a channel thickness of 46 nm and lower than 5 nm, respectively, were fabricated using a selective “gate-recessed” process on the same silicon wafer. Their current-voltage characteristics measured at room temperature were found to be surprisingly different by several orders of magnitude. We analyzed this result by considering the severe mobility degradation and the influence of a huge series resistance and found that the last one seems more coherent. Then the electrical characteristics of the NSB can be analytically derived by integrating a gate voltage-dependent drain source series resistance. In this paper, the influence of the channel thickness on the series resistance is reported for the first time. This influence is integrated to the analytical model in order to describe the trends of the saturation current with the channel thickness. This modeling approach may be useful to interpret anomalous electrical behavior of other nanodevices in which series resistance and/or mobility degradation is of a great concern.

  3. In-plane anisotropy of electrical resistivity in strain-detwinned SrFe[subscript 2]As[subscript 2

    Blomberg, E.C.; Tanatar, M.A.; Kreyssig, A.; Ni, N.; Thaler, A.; Hu, Rongwei; Bud’ko, S.L.; Canfield, P.C.; Goldman, A.I.; Prozorov, R. (Ames)


    Intrinsic, in-plane anisotropy of electrical resistivity was studied on mechanically detwinned single crystals of SrFe{sub 2}As{sub 2} above and below the temperature of the coupled structural/magnetic transition, T{sub TO}. Resistivity is smaller for electrical current flow along the orthorhombic a{sub o} direction (direction of antiferromagnetically alternating magnetic moments) and is larger for transport along the b{sub o} direction (direction of ferromagnetic chains), which is similar to CaFe{sub 2}As{sub 2} and BaFe{sub 2}As{sub 2} compounds. A strongly first-order structural transition in SrFe{sub 2}As{sub 2} was confirmed by high-energy x-ray measurements, with the transition temperature and character unaffected by moderate strain. For small strain levels, which are just sufficient to detwin the sample, we find a negligible effect on the resistivity above T{sub TO}. With the increase of strain, the resistivity anisotropy starts to develop above T{sub TO}, clearly showing the relation of anisotropy to an anomalously strong response to strain. Our study suggests that electronic nematicity cannot be observed in the FeAs-based compounds in which the structural transition is strongly first order.

  4. Electrical resistivity tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia

    Uhlemann, Sebastian; Kuras, Oliver; Richards, Laura A.; Naden, Emma; Polya, David A.


    Despite being rich in water resources, many areas of South East Asia face difficulties in securing clean water supply. This is particularly problematic in regions with a rapidly growing population. In this study, the spatial variability of the thickness of a clay layer, controlling surface - groundwater interactions that affect aquifer vulnerability, was investigated using electrical resistivity tomography (ERT). Data were acquired along two transects, showing significant differences in the imaged resistivities. Borehole samples were analyzed regarding particle density and composition, and linked to their resistivity. The obtained relationships were used to translate the field electrical resistivities into lithologies. Those revealed considerable variations in the thickness of the clay layer, ranging from 0 m up to 25 m. Geochemical data, highlighting zones of increased ingress of surface water into the groundwater, confirmed areas of discontinuities in the clay layer, which act as preferential flow paths. The results may guide urban planning of the Phnom Penh city expansion, in order to supply the growing population with safe water. The presented approach of using geophysics to estimate groundwater availability, accessibility, and vulnerability is not only applicable to Kandal Province, Cambodia, but also to many other areas of fast urbanization in South East Asia and beyond.

  5. Electrical Resistivity Tomography and Induced Polarization for Mapping the Subsurface of Alluvial Fans: A Case Study in Punata (Bolivia

    Andres Gonzales Amaya


    Full Text Available Conceptual models of aquifer systems can be refined and complemented with geophysical data, and they can assist in understanding hydrogeological properties such as groundwater storage capacity. This research attempts to use geoelectrical methods, Electrical Resistivity Tomography and Induced Polarization parameters, for mapping the subsurface in alluvial fans and to demonstrate its applicability; the Punata alluvial fan was used as a case study. The resistivity measurements proved to be a good tool for mapping the subsurface in the fan, especially when used in combination with Induced Polarization parameters (i.e., Normalized Chargeability. The Punata alluvial fan characterization indicated that the top part of the subsurface is composed of boulders in a matrix of finer particles and that the grain size decreases with depth; the electrical resistivity of these deposits ranged from 200 to 1000 Ωm, while the values of normalized chargeability were lower than 0.05 mS/m. The bottom of the aquifer system consisted of a layer with high clay content, and the resistivity ranged from 10 to 100 Ωm, while the normalized chargeability is higher than 0.07 mS/m. With the integration of these results and lithological information, a refined conceptual model is proposed; this model gives a more detailed description of the local aquifer system. It can be concluded that geoelectrical methods are useful for mapping aquifer systems in alluvial fans.

  6. Anomalous electrical resistivity of the Kondo system Ce(Rh1-xCox)3B2

    Ku, H. C.; Yu, H.


    Electrical resistivity measurements have been carried out on the high-Curie-temperature ferromagnetic compound CeRh3B2 (TC=110-115 K). The temperature dependence of the electrical resistivity ρ(T) during the initial cooldown above TC gives the first solid indication of the Kondo-like behavior in this system. However, the resisitivity is irreversible above TC when warming up from low temperature and ρ(T) approaches the previous reported form. This irreversibility is closely related to microscopic cracks created by the strong internal magnetic field of the ferromagnetic state and was not observed in the nonmagnetic compound CeCo3B2 with the same hexagonal structure. Further proof of this Kondo state can be obtained in the study of the pseudoternary system Ce(Rh1-xCox)3B2 where the resistivity increases with decreasing temperature during the initial cooldown and a local minimum Kondo anomaly was observed. The magnetic state is rapidly broken up with the replacement of Rh by Co and the resistivity anomaly disappears after the disappearance of ferromagnetic order.

  7. Changes in Work Function and Electrical Resistance of Pt Thin Films in the Presence of Hydrogen Gas

    Tsukada, Keiji; Inoue, Hirotsugu; Katayama, Fumiya; Sakai, Kenji; Kiwa, Toshihiko


    The changes in the electrical properties, such as work function and resistance, of Pt thin films in the presence of hydrogen gas were studied. They were simultaneously measured with a flow-through cell at different concentrations of hydrogen gas in atmosphere containing gaseous nitrogen and that containing air. The resistance was measured by a four-terminal sensing method and the relative work function changes were measured using a field effect transistor. In both atmospheres, the resistance decreased as the concentration of hydrogen gas increased. This result was repeatable only in air because of the differences in the dynamic mechanism of increased density of electrical carriers inside the Pt film as a result of diffused H atoms. In the nitrogen atmosphere, the diffused H atoms were not easily released because of the surface barrier. On the other hand, oxygen gas reacted with H atoms at the surface and this reaction accelerated atom release into air. The work function showed repeatable responses in both atmospheres, but the response characteristics were different. The equilibrium reaction between the adsorption and desorption of hydrogen occurred at the surface in the nitrogen atmosphere, whereas the equilibrium reaction of hydrogen and oxygen to form water molecules occurred in air. The changes in work function and resistance in the presence of hydrogen were due to changes in dissociated hydrogen intensity in the bulk, as well as to the surface reactions.

  8. PENULISAN ETUDE-ETUDE MUSIK TALEMPONG UNGGAN (Sebuah Usaha Pembelajaran Musik Tradisi Berbasis Literatur

    Asri MK


    Full Text Available “Talempong unggan”, a traditional music from Minangkabau community particularly in Unggan, Sumpur Kudus, Sijunjung Regency, West Sumatera Indonesia is classified into genre of “talempong duduak” (rea. Due to its special musical concept and the playing technics, this traditional music is selected as a practising course in the Karawitan Department of Indonesian Institute of Art (ISI Padang Panjang since 1993 till now. In a system of class learning with many students, Talempong Unggan definitely needs supporting methods and learning technics suitable for the course where the students can reach their maximum skills. All the melody of “talempong unggan” that has been made as a material of practice is transcribed to the system of numeric notation and rhythm motive of “gendang” and “aguang” which is written into signs and special notation. All of qualitative data is formulated into finding methods, technics and etude of learning ensamble of Talempong Unggan the traditional music that learned in Karawitan Department of ISI Padang Panjang. Key words: Talempong Unggan, Methods, Technics, Etude

  9. PFLOTRAN-E4D: A parallel open source PFLOTRAN module for simulating time-lapse electrical resistivity data

    Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan


    Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processes receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of changes subsurface electrical conductivity, in both the saturated and unsaturated zones, arising from water table changes and from river water intrusion into the aquifer. The results also demonstrate the sensitivity of surface based ERT measurements to those changes over time. PFLOTRAN-E4D is available with the PFLOTRAN development version with an open-source license at .

  10. PFLOTRAN-E4D: A parallel open source PFLOTRAN module for simulating time-lapse electrical resistivity data

    Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan


    Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface flow and reactive transport simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processes receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of subsurface electrical conductivity changes, in both the saturated and unsaturated zones, arising from river stage fluctuations and associated river water intrusion into the aquifer. The results also demonstrate the sensitivity of surface based ERT measurements to those changes over time. PFLOTRAN-E4D is available with the PFLOTRAN development version with an open-source license at

  11. Extremely high resolution 3D electrical resistivity tomography to depict archaeological subsurface structures

    Al-Saadi, Osamah; Schmidt, Volkmar; Becken, Michael; Fritsch, Thomas


    Electrical resistivity tomography (ERT) methods have been increasingly used in various shallow depth archaeological prospections in the last few decades. These non-invasive techniques are very useful in saving time, costs, and efforts. Both 2D and 3D ERT techniques are used to obtain detailed images of subsurface anomalies. In two surveyed areas near Nonnweiler (Germany), we present the results of the full 3D setup with a roll-along technique and of the quasi-3D setup (parallel and orthogonal profiles in dipole-dipole configuration). In area A, a dipole-dipole array with 96 electrodes in a uniform rectangular survey grid has been used in full 3D to investigate a presumed Roman building. A roll-along technique has been utilized to cover a large part of the archaeological site with an electrode spacing of 1 meter and with 0.5 meter for a more detailed image. Additional dense parallel 2D profiles have been carried out in dipole-dipole array with 0.25 meter electrode spacing and 0.25 meter between adjacent profiles in both direction for higher- resolution subsurface images. We have designed a new field procedure, which used an electrode array fixed in a frame. This facilitates efficient field operation, which comprised 2376 electrode positions. With the quasi 3D imaging, we confirmed the full 3D inversion model but at a much better resolution. In area B, dense parallel 2D profiles were directly used to survey the second target with also 0.25 meter electrode spacing and profiles separation respectively. The same field measurement design has been utilized and comprised 9648 electrode positions in total. The quasi-3D inversion results clearly revealed the main structures of the Roman construction. These ERT inversion results coincided well with the archaeological excavation, which has been done in some parts of this area. The ERT result successfully images parts from the walls and also smaller internal structures of the Roman building.

  12. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    Rosborg, Bo [Division of Surface and Corrosion Science, KTH, Stockholm (Sweden); Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz [Slovenian National Building and Civil Engineering Institute, Ljubljana (Slovenia)</