WorldWideScience

Sample records for electrical circuit model

  1. Electrical circuit model of ITO/AZO/Ge photodetector.

    Science.gov (United States)

    Patel, Malkeshkumar; Kim, Joondong

    2017-10-01

    In this data article, ITO/AZO/Ge photodetector was investigated for electrical circuit model. Due to the double (ITO and AZO) transparent metal-oxide films (DOI:10.1016/j.mssp.2016.03.007) (Yun et al., 2016) [1], the Ge heterojunction device has a better interface quality due to the AZO layer with a low electrical resistance due to the ITO layer (Yun et al., 2015) [2]. The electrical and interfacial benefitted ITO/AZO/Ge heterojunction shows the quality Schottky junction. In order to investigate the device, the ITO/AZO/Ge heterojunction was analyzed by R-C circuit model using the impedance spectroscopy.

  2. Electrical circuit model of ITO/AZO/Ge photodetector

    Directory of Open Access Journals (Sweden)

    Malkeshkumar Patel

    2017-10-01

    Full Text Available In this data article, ITO/AZO/Ge photodetector was investigated for electrical circuit model. Due to the double (ITO and AZO transparent metal-oxide films (DOI:10.1016/j.mssp.2016.03.007 (Yun et al., 2016 [1], the Ge heterojunction device has a better interface quality due to the AZO layer with a low electrical resistance due to the ITO layer (Yun et al., 2015 [2]. The electrical and interfacial benefitted ITO/AZO/Ge heterojunction shows the quality Schottky junction. In order to investigate the device, the ITO/AZO/Ge heterojunction was analyzed by R–C circuit model using the impedance spectroscopy.

  3. Electric Circuit Model Analogy for Equilibrium Lattice Relaxation in Semiconductor Heterostructures

    Science.gov (United States)

    Kujofsa, Tedi; Ayers, John E.

    2018-01-01

    The design and analysis of semiconductor strained-layer device structures require an understanding of the equilibrium profiles of strain and dislocations associated with mismatched epitaxy. Although it has been shown that the equilibrium configuration for a general semiconductor strained-layer structure may be found numerically by energy minimization using an appropriate partitioning of the structure into sublayers, such an approach is computationally intense and non-intuitive. We have therefore developed a simple electric circuit model approach for the equilibrium analysis of these structures. In it, each sublayer of an epitaxial stack may be represented by an analogous circuit configuration involving an independent current source, a resistor, an independent voltage source, and an ideal diode. A multilayered structure may be built up by the connection of the appropriate number of these building blocks, and the node voltages in the analogous electric circuit correspond to the equilibrium strains in the original epitaxial structure. This enables analysis using widely accessible circuit simulators, and an intuitive understanding of electric circuits can easily be extended to the relaxation of strained-layer structures. Furthermore, the electrical circuit model may be extended to continuously-graded epitaxial layers by considering the limit as the individual sublayer thicknesses are diminished to zero. In this paper, we describe the mathematical foundation of the electrical circuit model, demonstrate its application to several representative structures involving In x Ga1- x As strained layers on GaAs (001) substrates, and develop its extension to continuously-graded layers. This extension allows the development of analytical expressions for the strain, misfit dislocation density, critical layer thickness and widths of misfit dislocation free zones for a continuously-graded layer having an arbitrary compositional profile. It is similar to the transition from circuit

  4. New equivalent-electrical circuit model and a practical measurement method for human body impedance.

    Science.gov (United States)

    Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako

    2015-01-01

    Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.

  5. Variational integrators for electric circuits

    International Nuclear Information System (INIS)

    Ober-Blöbaum, Sina; Tao, Molei; Cheng, Mulin; Owhadi, Houman; Marsden, Jerrold E.

    2013-01-01

    In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electric circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and frequency spectrum preservation can be observed using the developed variational integrator

  6. Mobile Learning Based Worked Example in Electric Circuit (WEIEC) Application to Improve the High School Students' Electric Circuits Interpretation Ability

    Science.gov (United States)

    Yadiannur, Mitra; Supahar

    2017-01-01

    This research aims to determine the feasibility and effectivity of mobile learning based Worked Example in Electric Circuits (WEIEC) application in improving the high school students' electric circuits interpretation ability on Direct Current Circuits materials. The research method used was a combination of Four-D Models and ADDIE model. The…

  7. Structure preserving port-Hamiltonian model reduction of electrical circuits

    NARCIS (Netherlands)

    Polyuga, R.; Schaft, van der A.J.; Benner, P.; Hinze, M.; Maten, ter E.J.W.

    2011-01-01

    This paper discusses model reduction of electrical circuits based on a port-Hamiltonian representation. It is shown that by the use of the Kalman decomposition an uncontrollable and/or unobservable port-Hamiltonian system is reduced to a controllable/observable system that inherits the

  8. Electric circuit theory applied electricity and electronics

    CERN Document Server

    Yorke, R

    1981-01-01

    Electric Circuit Theory provides a concise coverage of the framework of electrical engineering. Comprised of six chapters, this book emphasizes the physical process of electrical engineering rather than abstract mathematics. Chapter 1 deals with files, circuits, and parameters, while Chapter 2 covers the natural and forced response of simple circuit. Chapter 3 talks about the sinusoidal steady state, and Chapter 4 discusses the circuit analysis. The fifth chapter tackles frequency response of networks, and the last chapter covers polyphase systems. This book will be of great help to electrical

  9. Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer.

    Science.gov (United States)

    Sammoura, Firas; Kim, Sang-Gook

    2012-05-01

    An electric circuit model for a circular bimorph piezoelectric micromachined ultrasonic transducer (PMUT) was developed for the first time. The model was made up of an electric mesh, which was coupled to a mechanical mesh via a transformer element. The bimorph PMUT consisted of two piezoelectric layers of the same material, having equal thicknesses, and sandwiched between three thin electrodes. The piezoelectric layers, having the same poling axis, were biased with electric potentials of the same magnitude but opposite polarity. The strain mismatches between the two layers created by the converse piezoelectric effect caused the membrane to vibrate and, hence, transmit a pressure wave. Upon receiving the echo of the acoustic wave, the membrane deformation led to the generation of electric charges as a result of the direct piezoelectric phenomenon. The membrane angular velocity and electric current were related to the applied electric field, the impinging acoustic pressure, and the moment at the edge of the membrane using two canonical equations. The transduction coefficients from the electrical to the mechanical domain and vice-versa were shown to be bilateral and the system was shown to be reversible. The circuit parameters of the derived model were extracted, including the transformer ratio, the clamped electric impedance, the spring-softening impedance, and the open-circuit mechanical impedance. The theoretical model was fully examined by generating the electrical input impedance and average plate displacement curves versus frequency under both air and water loading conditions. A PMUT composed of piezoelectric material with a lossy dielectric was also investigated and the maximum possible electroacoustical conversion efficiency was calculated.

  10. Aging evaluation of electrical circuits using the ECCAD [Electrical Circuit Characterization and Diagnostic] system

    International Nuclear Information System (INIS)

    Edson, J.L.

    1988-01-01

    As a part of the Nuclear Regulatory Commission Nuclear Plant Aging Research Program, an aging assessment of electrical circuits was conducted at the Shippingport Atomic Power Station Decommissioning Project. The objective of this work was to evaluate the effectiveness of the Electrical Circuit Characterization and Diagnostic (ECCAD) system in identifying circuit conditions, to determine the present condition of selected electrical circuits, and correlate the results with aging effects. To accomplish this task, a series of electrical tests was performed on each circuit using the ECCAD system, which is composed of commercially available electronic test equipment under computer control. Test results indicate that the ECCAD system is effective in detecting and identifying aging and service wear in selected electrical circuits. The major area of degradation in the circuits tested was at the termination/connection points, whereas the cables were in generally good condition

  11. Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices

    CERN Document Server

    Merten, K; Bulirsch, R

    1990-01-01

    Numerical simulation and modelling of electric circuits and semiconductor devices are of primal interest in today's high technology industries. At the Oberwolfach Conference more than forty scientists from around the world, in­ cluding applied mathematicians and electrical engineers from industry and universities, presented new results in this area of growing importance. The contributions to this conference are presented in these proceedings. They include contributions on special topics of current interest in circuit and device simulation, as well as contributions that present an overview of the field. In the semiconductor area special lectures were given on mixed finite element methods and iterative procedures for the solution of large linear systems. For three dimensional models new discretization procedures including software packages were presented. Con­ nections between semiconductor equations and the Boltzmann equation were shown as well as relations to the quantum transport equation. Other issues dis...

  12. Coupling of magnetospheric electrical effects into the global atmospheric electrical circuit

    International Nuclear Information System (INIS)

    Hays, P.B.; Roble, R.G.

    1979-01-01

    A quasi-static model of global atmospheric electricity has been constructed (Hays and Roble, 1978) to study the electrical processes in the lower atmosphere and the coupling between solar- and upper- atmosphere-induced variations superimposed upon the global electrical circuit. The paper reviews the essential features of this model and discusses the results obtained thus far on the effects of magnetospheric convection and substorms on the global atmospheric electrical circuit. A schematic diagram of the global quasi-static model is given. It is assumed that thunderstorms act as dipole generators, each with a positive center at the top of the cloud and a negative center a few kilometers lower than the positive center

  13. Current, voltage and temperature distribution modeling of light-emitting diodes based on electrical and thermal circuit analysis

    International Nuclear Information System (INIS)

    Yun, J; Shim, J-I; Shin, D-S

    2013-01-01

    We demonstrate a modeling method based on the three-dimensional electrical and thermal circuit analysis to extract current, voltage and temperature distributions of light-emitting diodes (LEDs). In our model, the electrical circuit analysis is performed first to extract the current and voltage distributions in the LED. Utilizing the result obtained from the electrical circuit analysis as distributed heat sources, the thermal circuit is set up by using the duality between Fourier's law and Ohm's law. From the analysis of the thermal circuit, the temperature distribution at each epitaxial film is successfully obtained. Comparisons of experimental and simulation results are made by employing an InGaN/GaN multiple-quantum-well blue LED. Validity of the electrical circuit analysis is confirmed by comparing the light distribution at the surface. Since the temperature distribution at each epitaxial film cannot be obtained experimentally, the apparent temperature distribution is compared at the surface of the LED chip. Also, experimentally obtained average junction temperature is compared with the value calculated from the modeling, yielding a very good agreement. The analysis method based on the circuit modeling has an advantage of taking distributed heat sources as inputs, which is essential for high-power devices with significant self-heating. (paper)

  14. A general circuit model for spintronic devices under electric and magnetic fields

    KAUST Repository

    Alawein, Meshal

    2017-10-25

    In this work, we present a circuit model of diffusive spintronic devices capable of capturing the effects of both electric and magnetic fields. Starting from a modified version of the well-established drift-diffusion equations, we derive general equivalent circuit models of semiconducting/metallic nonmagnets and metallic ferromagnets. In contrast to other models that are based on steady-state transport equations which might also neglect certain effects such as thermal fluctuations, spin dissipation in the ferromagnets, and spin precession under magnetic fields, our model incorporates most of the important physics and is based on a time-dependent formulation. An application of our model is shown through simulations of a nonlocal spin-valve under the presence of a magnetic field, where we reproduce experimental results of electrical measurements that demonstrate the phenomena of spin precession and dephasing (“Hanle effect”).

  15. Electric Vehicle Interaction at the Electrical Circuit Level

    Science.gov (United States)

    2018-01-01

    The objective of the Electric Vehicle Interaction at the Electrical Circuit Level project was to investigate electric vehicle (EV) charging as a means of mitigating transient over-voltages (TOVs) on the circuit level electric utility distribution gri...

  16. Electrical circuit models for performance modeling of Lithium-Sulfur batteries

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel Ioan; Teodorescu, Remus

    2015-01-01

    emerging technology for various applications, there is a need for Li-S battery performance model; however, developing such models represents a challenging task due to batteries' complex ongoing chemical reactions. Therefore, the literature review was performed to summarize electrical circuit models (ECMs......) used for modeling the performance behavior of Li-S batteries. The studied Li-S pouch cell was tested in the laboratory in order to parametrize four basic ECM topologies. These topologies were compared by analyzing their voltage estimation accuracy values, which were obtained for different battery...... current profiles. Based on these results, the 3 R-C ECM was chosen and the Li-S battery cell discharging performance model with current dependent parameters was derived and validated....

  17. Effect of a Diagram on Primary Students' Understanding About Electric Circuits

    Science.gov (United States)

    Preston, Christine Margaret

    2017-09-01

    This article reports on the effect of using a diagram to develop primary students' conceptual understanding about electric circuits. Diagrammatic representations of electric circuits are used for teaching and assessment despite the absence of research on their pedagogical effectiveness with young learners. Individual interviews were used to closely analyse Years 3 and 5 (8-11-year-old) students' explanations about electric circuits. Data was collected from 20 students in the same school providing pre-, post- and delayed post-test dialogue. Students' thinking about electric circuits and changes in their explanations provide insights into the role of diagrams in understanding science concepts. Findings indicate that diagram interaction positively enhanced understanding, challenged non-scientific views and promoted scientific models of electric circuits. Differences in students' understanding about electric circuits were influenced by prior knowledge, meta-conceptual awareness and diagram conventions including a stylistic feature of the diagram used. A significant finding that students' conceptual models of electric circuits were energy rather than current based has implications for electricity instruction at the primary level.

  18. Electrical circuit modeling of reversed field pinches

    International Nuclear Information System (INIS)

    Sprott, J.C.

    1988-02-01

    Equations are proposed to describe the radial variation of the magnetic field and current density in a circular, cylindrical RFP. These equations are used to derive the electrical circuit parameters (inductance, resistance, and coupling coefficient) for an RFP discharge. The circuit parameters are used to evaluate the flux and energy consumption for various startup modes and for steady-state operation using oscillating field current drive. The results are applied to the MST device. 32 refs., 14 figs., 1 tab

  19. Electric circuits and signals

    CERN Document Server

    Sabah, Nassir H

    2007-01-01

    Circuit Variables and Elements Overview Learning Objectives Electric Current Voltage Electric Power and Energy Assigned Positive Directions Active and Passive Circuit Elements Voltage and Current Sources The Resistor The Capacitor The Inductor Concluding Remarks Summary of Main Concepts and Results Learning Outcomes Supplementary Topics on CD Problems and Exercises Basic Circuit Connections and Laws Overview Learning Objectives Circuit Terminology Kirchhoff's Laws Voltage Division and Series Connection of Resistors Current Division and Parallel Connection of Resistors D-Y Transformation Source Equivalence and Transformation Reduced-Voltage Supply Summary of Main Concepts and Results Learning Outcomes Supplementary Topics and Examples on CD Problems and Exercises Basic Analysis of Resistive Circuits Overview Learning Objectives Number of Independent Circuit Equations Node-Voltage Analysis Special Considerations in Node-Voltage Analysis Mesh-Current Analysis Special Conside...

  20. An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Dinh An Nguyen

    2012-07-01

    Full Text Available Many of the Proton Exchange Membrane Fuel Cell (PEMFC models proposed in the literature consist of mathematical equations. However, they are not adequately practical for simulating power systems. The proposed model takes into account phenomena such as activation polarization, ohmic polarization, double layer capacitance and mass transport effects present in a PEM fuel cell. Using electrical analogies and a mathematical modeling of PEMFC, the circuit model is established. To evaluate the effectiveness of the circuit model, its static and dynamic performances under load step changes are simulated and compared to the numerical results obtained by solving the mathematical model. Finally, the applicability of our model is demonstrated by simulating a practical system.

  1. 30 CFR 77.500 - Electric power circuits and electric equipment; deenergization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuits and electric equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.500 Electric power circuits and electric equipment; deenergization. Power circuits and electric equipment shall be deenergized before work is done on...

  2. Factors influencing the renal arterial Doppler waveform: a simulation study using an electrical circuit model (secondary publication)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyu [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Han, Bong Soo [Dept. of Radiological Science, College of Health Science, Yonsei University, Wonju (Korea, Republic of); Kim, Seung Hyup [Dept. of Radiology, Institute of Radiation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-01-15

    The goal of this study was to evaluate the effect of vascular compliance, resistance, and pulse rate on the resistive index (RI) by using an electrical circuit model to simulate renal blood flow. In order to analyze the renal arterial Doppler waveform, we modeled the renal blood-flow circuit with an equivalent simple electrical circuit containing resistance, inductance, and capacitance. The relationships among the impedance, resistance, and compliance of the circuit were derived from well-known equations, including Kirchhoff’s current law for alternating current circuits. Simulated velocity-time profiles for pulsatile flow were generated using Mathematica (Wolfram Research) and the influence of resistance, compliance, and pulse rate on waveforms and the RI was evaluated. Resistance and compliance were found to alter the waveforms independently. The impedance of the circuit increased with increasing proximal compliance, proximal resistance, and distal resistance. The impedance decreased with increasing distal compliance. The RI of the circuit decreased with increasing proximal compliance and resistance. The RI increased with increasing distal compliance and resistance. No positive correlation between impedance and the RI was found. Pulse rate was found to be an extrinsic factor that also influenced the RI. This simulation study using an electrical circuit model led to a better understanding of the renal arterial Doppler waveform and the RI, which may be useful for interpreting Doppler findings in various clinical settings.

  3. Factors influencing the renal arterial Doppler waveform: a simulation study using an electrical circuit model (secondary publication)

    International Nuclear Information System (INIS)

    Sung, Chang Kyu; Han, Bong Soo; Kim, Seung Hyup

    2016-01-01

    The goal of this study was to evaluate the effect of vascular compliance, resistance, and pulse rate on the resistive index (RI) by using an electrical circuit model to simulate renal blood flow. In order to analyze the renal arterial Doppler waveform, we modeled the renal blood-flow circuit with an equivalent simple electrical circuit containing resistance, inductance, and capacitance. The relationships among the impedance, resistance, and compliance of the circuit were derived from well-known equations, including Kirchhoff’s current law for alternating current circuits. Simulated velocity-time profiles for pulsatile flow were generated using Mathematica (Wolfram Research) and the influence of resistance, compliance, and pulse rate on waveforms and the RI was evaluated. Resistance and compliance were found to alter the waveforms independently. The impedance of the circuit increased with increasing proximal compliance, proximal resistance, and distal resistance. The impedance decreased with increasing distal compliance. The RI of the circuit decreased with increasing proximal compliance and resistance. The RI increased with increasing distal compliance and resistance. No positive correlation between impedance and the RI was found. Pulse rate was found to be an extrinsic factor that also influenced the RI. This simulation study using an electrical circuit model led to a better understanding of the renal arterial Doppler waveform and the RI, which may be useful for interpreting Doppler findings in various clinical settings

  4. Project Circuits in a Basic Electric Circuits Course

    Science.gov (United States)

    Becker, James P.; Plumb, Carolyn; Revia, Richard A.

    2014-01-01

    The use of project circuits (a photoplethysmograph circuit and a simple audio amplifier), introduced in a sophomore-level electric circuits course utilizing active learning and inquiry-based methods, is described. The development of the project circuits was initiated to promote enhanced engagement and deeper understanding of course content among…

  5. Electric circuits essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electric Circuits I includes units, notation, resistive circuits, experimental laws, transient circuits, network theorems, techniques of circuit analysis, sinusoidal analysis, polyph

  6. Design of Strain-Compensated Epitaxial Layers Using an Electrical Circuit Model

    Science.gov (United States)

    Kujofsa, Tedi; Ayers, John E.

    2017-12-01

    The design of heterostructures that exhibit desired strain characteristics is critical for the realization of semiconductor devices with improved performance and reliability. The control of strain and dislocation dynamics requires an understanding of the relaxation processes associated with mismatched epitaxy, and the starting point for this analysis is the equilibrium strain profile, because the difference between the actual strain and the equilibrium value determines the driving force for dislocation glide and relaxation. Previously, we developed an electrical circuit model approach for the equilibrium analysis of semiconductor heterostructures, in which an epitaxial layer may be represented by a stack of subcircuits, each of which involves an independent current source, a resistor, an independent voltage source, and an ideal diode. In this work, we have applied the electrical circuit model to study the strain compensation mechanism and show that, for a given compositionally uniform device layer with fixed mismatch and layer thickness, a buffer layer may be designed (in terms of thickness and mismatch) to tailor the strain in the device layer. A special case is that in which the device layer will exhibit zero residual strain in equilibrium (complete strain compensation). In addition, the application of the electrical circuit analogy enables the determination of exact expressions for the residual strain characteristics of both the buffer and device layers in the general case where the device layer may exhibit partial strain compensation. On the basis of this framework, it is possible to develop design equations for the tailoring of the strain in a device layer grown on a uniform composition buffer.

  7. Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.

    Science.gov (United States)

    Gao, Fei; Zheng, Qian; Zheng, Yuanjin

    2014-05-01

    Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatible with hardware development requiring circuit simulator such as SPICE. In this paper, instead of conventional FDTD numerical simulation, an equivalent electrical circuit model is proposed to model the microwave acoustic interaction with biological tissues for fast simulation and quantitative analysis in both one and two dimensions (2D). The equivalent circuit of ideal point-like tissue for microwave-acoustic interaction is proposed including transmission line, voltage-controlled current source, envelop detector, and resistor-inductor-capacitor (RLC) network, to model the microwave scattering, thermal expansion, and acoustic generation. Based on which, two-port network of the point-like tissue is built and characterized using pseudo S-parameters and transducer gain. Two dimensional circuit network including acoustic scatterer and acoustic channel is also constructed to model the 2D spatial information and acoustic scattering effect in heterogeneous medium. Both FDTD simulation, circuit simulation, and experimental measurement are performed to compare the results in terms of time domain, frequency domain, and pseudo S-parameters characterization. 2D circuit network simulation is also performed under different scenarios including different sizes of tumors and the effect of acoustic scatterer. The proposed circuit model of microwave acoustic interaction with biological tissue could give good agreement with FDTD simulated and experimental measured results. The pseudo S-parameters and characteristic gain could globally evaluate the performance of tumor detection. The 2D circuit network

  8. An improved electrical and thermal model of a microbolometer for electronic circuit simulation

    Science.gov (United States)

    Würfel, D.; Vogt, H.

    2012-09-01

    The need for uncooled infrared focal plane arrays (IRFPA) for imaging systems has increased since the beginning of the nineties. Examples for the application of IRFPAs are thermography, pedestrian detection for automotives, fire fighting, and infrared spectroscopy. It is very important to have a correct electro-optical model for the simulation of the microbolometer during the development of the readout integrated circuit (ROIC) used for IRFPAs. The microbolometer as the sensing element absorbs infrared radiation which leads to a change of its temperature due to a very good thermal insulation. In conjunction with a high temperature coefficient of resistance (TCR) of the sensing material (typical vanadium oxide or amorphous silicon) this temperature change results in a change of the electrical resistance. During readout, electrical power is dissipated in the microbolometer, which increases the temperature continuously. The standard model for the electro-optical simulation of a microbolometer includes the radiation emitted by an observed blackbody, radiation emitted by the substrate, radiation emitted by the microbolometer itself to the surrounding, a heat loss through the legs which connect the microbolometer electrically and mechanically to the substrate, and the electrical power dissipation during readout of the microbolometer (Wood, 1997). The improved model presented in this paper takes a closer look on additional radiation effects in a real IR camera system, for example the radiation emitted by the casing and the lens. The proposed model will consider that some parts of the radiation that is reflected from the casing and the substrate is also absorbed by the microbolometer. Finally, the proposed model will include that some fraction of the radiation is transmitted through the microbolometer at first and then absorbed after the reflection at the surface of the substrate. Compared to the standard model temperature and resistance of the microbolometer can be

  9. Realizing a supercapacitor in an electrical circuit

    International Nuclear Information System (INIS)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2014-01-01

    Capacitors are commonly used in electronic resonance circuits; however, capacitors have not been used for storing large amounts of electrical energy in electrical circuits. Here, we report a superior RC circuit which serves as an electrical storage system characterized by quick charging and long-term discharging of electricity. The improved energy storage characteristics in this mixed electric circuit (R 1  + R 2 C 1 ) with small resistor R 1 , large resistor R 2 , and large capacitor C 1 are derived from the damming effect by large R 2 in simple parallel R 2 C 1 circuit. However, no research work has been carried out previously on the use of capacitors as electrical energy storage devices in circuits. Combined with nanotechnology, we hope that our finding will play a remarkable role in a variety of applications such as hybrid electric vehicles and backup power supplies

  10. An electrical circuit model for simulation of indoor radon concentration.

    Science.gov (United States)

    Musavi Nasab, S M; Negarestani, A

    2013-01-01

    In this study, a new model based on electric circuit theory was introduced to simulate the behaviour of indoor radon concentration. In this model, a voltage source simulates radon generation in walls, conductivity simulates migration through walls and voltage across a capacitor simulates radon concentration in a room. This simulation considers migration of radon through walls by diffusion mechanism in one-dimensional geometry. Data reported in a typical Greek house were employed to examine the application of this technique of simulation to the behaviour of radon.

  11. Electrical characterization and an equivalent circuit model of a microhollow cathode discharge reactor

    International Nuclear Information System (INIS)

    Taylan, O.; Berberoglu, H.

    2014-01-01

    This paper reports the electrical characterization and an equivalent circuit of a microhollow cathode discharge (MHCD) reactor in the self-pulsing regime. A MHCD reactor was prototyped for air plasma generation, and its current-voltage characteristics were measured experimentally in the self-pulsing regime for applied voltages from 2000 to 3000 V. The reactor was modeled as a capacitor in parallel with a variable resistor. A stray capacitance was also introduced to the circuit model to represent the capacitance of the circuit elements in the experimental setup. The values of the resistor and capacitors were recovered from experimental data, and the proposed circuit model was validated with independent experiments. Experimental data showed that increasing the applied voltage increased the current, self-pulsing frequency and average power consumption of the reactor, while it decreased the peak voltage. The maximum and the minimum voltages obtained using the model were in agreement with the experimental data within 2.5%, whereas the differences between peak current values were less than 1%. At all applied voltages, the equivalent circuit model was able to accurately represent the peak and average power consumption as well as the self-pulsing frequency within the experimental uncertainty. Although the results shown in this paper was for atmospheric air pressures, the proposed equivalent circuit model of the MHCD reactor could be generalized for other gases at different pressures.

  12. Electrical Circuits and Water Analogies

    Science.gov (United States)

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  13. Realizing a supercapacitor in an electrical circuit

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, Mikio, E-mail: fukuhara@niche.tohoku.ac.jp; Kuroda, Tomoyuki; Hasegawa, Fumihiko [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

    2014-11-17

    Capacitors are commonly used in electronic resonance circuits; however, capacitors have not been used for storing large amounts of electrical energy in electrical circuits. Here, we report a superior RC circuit which serves as an electrical storage system characterized by quick charging and long-term discharging of electricity. The improved energy storage characteristics in this mixed electric circuit (R{sub 1} + R{sub 2}C{sub 1}) with small resistor R{sub 1}, large resistor R{sub 2}, and large capacitor C{sub 1} are derived from the damming effect by large R{sub 2} in simple parallel R{sub 2}C{sub 1} circuit. However, no research work has been carried out previously on the use of capacitors as electrical energy storage devices in circuits. Combined with nanotechnology, we hope that our finding will play a remarkable role in a variety of applications such as hybrid electric vehicles and backup power supplies.

  14. Trip electrical circuit of the gyrotion

    International Nuclear Information System (INIS)

    Rossi, J.O.

    1987-09-01

    The electron cyclotron resonance heating system of INPE/LAP is shown and the trip electrical circuit of the gyrotron is described, together with its fundamental aspects. The trip electrical circuit consists basically of a series regulator circuit which regulates the output voltage level and controls the pulse width time. Besides that, a protection circuit for both tubes, regulator and gyrotron, against faults in the system. (author) [pt

  15. Students conception and perception of simple electrical circuit

    Science.gov (United States)

    Setyani, ND; Suparmi; Sarwanto; Handhika, J.

    2017-11-01

    This research aims to describe the profile of the students’ conception and perception on the simple electrical circuit. The results of this research suppose to be used as a reference by teachers to use learning models or strategies to improve understanding the physics concept. The research method used is descriptive qualitative. Research subjects are the students of physics education program, Universitas Sebelas Maret, Surakarta, Indonesia (49 students). The results showed that students have alternative conceptions. Their conceptions are (1) a high-voltage wire has an electric current and can cause electric shock, (2) the potential difference and the value of resistance used in a circuit is influenced by electric current, (3) the value of resistance of a lamp is proportional to the filament thickness, (4) the amount of electric current that coming out from the positive pole battery is the same for all type of circuit, in series or parallel (battery is constant current sources), (5) the current at any resistor in the series circuit is influenced by the resistor used, (6) the resistor consume the current through it. This incorrect conception can cause misconceptions.

  16. 30 CFR 57.4011 - Abandoned electric circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized...

  17. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.518 Electric equipment and circuits; overload and short circuit protection... installed so as to protect all electric equipment and circuits against short circuit and overloads. Three...

  18. Fuel Cell Equivalent Electric Circuit Parameter Mapping

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Zhou, Fan; Andreasen, Søren Juhl

    In this work a simple model for a fuel cell is investigated for diagnostic purpose. The fuel cell is characterized, with respect to the electrical impedance of the fuel cell at non-faulty conditions and under variations in load current. Based on this the equivalent electrical circuit parameters can...

  19. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuit and electric equipment... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.509 Electric power circuit and electric equipment; deenergization. [Statutory Provisions] All...

  20. A Practical Circuit-based Model for State of Health Estimation of Li-ion Battery Cells in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Long

    2011-08-23

    In this thesis the development of the state of health of Li-ion battery cells under possible real-life operating conditions in electric cars has been characterised. Furthermore, a practical circuit-based model for Li-ion cells has been developed that is capable of modelling the cell voltage behaviour under various operating conditions. The Li-ion cell model can be implemented in simulation programs and be directly connected to a model of the rest of the electronic system in electric vehicles. Most existing battery models are impractical for electric vehicle system designers and require extensive background knowledge of electrochemistry to be implemented. Furthermore, many models do not take the effect of regenerative braking into account and are obtained from testing fully charged cells. However, in real-life applications electric vehicles are not always fully charged and utilise regenerative braking to save energy. To obtain a practical circuit model based on real operating conditions and to model the state of health of electric vehicle cells, numerous 18650 size LiFePO4 cells have been tested under possible operating conditions. Capacity fading was chosen as the state of health parameter, and the capacity fading of different cells was compared with the charge processed instead of cycles. Tests have shown that the capacity fading rate is dependent on temperature, charging C-rate, state of charge and depth of discharge. The obtained circuit model is capable of simulating the voltage behaviour under various temperatures and C-rates with a maximum error of 14mV. However, modelling the effect of different temperatures and C-rates increases the complexity of the model. The model is easily adjustable and the choice is given to the electric vehicle system designer to decide which operating conditions to take into account. By combining the test results for the capacity fading and the proposed circuit model, recommendations to optimise the battery lifetime are proposed.

  1. Comparison of Parametrization Techniques for an Electrical Circuit Model of Lithium-Sulfur Batteries

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel Loan; Teodorescu, Remus

    2015-01-01

    on the comparison of different parametrization methods of electrical circuit models (ECMs) for Li-S batteries. These methods are used to parametrize an ECM based on laboratory measurements performed on a Li-S pouch cell. Simulation results of ECMs are presented and compared against measurement values...

  2. On equivalent resistance of electrical circuits

    Science.gov (United States)

    Kagan, Mikhail

    2015-01-01

    While the standard (introductory physics) way of computing the equivalent resistance of nontrivial electrical circuits is based on Kirchhoff's rules, there is a mathematically and conceptually simpler approach, called the method of nodal potentials, whose basic variables are the values of the electric potential at the circuit's nodes. In this paper, we review the method of nodal potentials and illustrate it using the Wheatstone bridge as an example. We then derive a closed-form expression for the equivalent resistance of a generic circuit, which we apply to a few sample circuits. The result unveils a curious interplay between electrical circuits, matrix algebra, and graph theory and its applications to computer science. The paper is written at a level accessible by undergraduate students who are familiar with matrix arithmetic. Additional proofs and technical details are provided in appendices.

  3. 29 CFR 1915.181 - Electrical circuits and distribution boards.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Electrical circuits and distribution boards. 1915.181... Electrical Machinery § 1915.181 Electrical circuits and distribution boards. (a) The provisions of this... employee is permitted to work on an electrical circuit, except when the circuit must remain energized for...

  4. 49 CFR 236.308 - Mechanical or electric locking or electric circuits; requisites.

    Science.gov (United States)

    2010-10-01

    ..., AND APPLIANCES Interlocking Standards § 236.308 Mechanical or electric locking or electric circuits; requisites. Mechanical or electric locking or electric circuits shall be installed to prevent signals from... 49 Transportation 4 2010-10-01 2010-10-01 false Mechanical or electric locking or electric...

  5. Dynamic theory for the mesoscopic electric circuit

    International Nuclear Information System (INIS)

    Chen Bin; Shen Xiaojuan; Li Youquan; Sun LiLy; Yin Zhujian

    2005-01-01

    The quantum theory for mesoscopic electric circuit with charge discreteness is briefly described. The minibands of quasienergy in LC design mesoscopic electric circuit have been found. In the mesoscopic 'pure' inductance design circuit, just like in the mesoscopic metallic rings, the quantum dynamic characteristics have been obtained explicitly. In the 'pure' capacity design circuit, the Coulomb blockade had also been addressed

  6. The elusive memristor: properties of basic electrical circuits

    Energy Technology Data Exchange (ETDEWEB)

    Joglekar, Yogesh N; Wolf, Stephen J [Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 (United States)], E-mail: yojoglek@iupui.edu

    2009-07-15

    We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge q and the magnetic flux {phi} in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of these three elements and their circuits are a part of the standard curricula. The existence of the memristor as the fourth ideal circuit element was predicted in 1971 based on symmetry arguments, but was clearly experimentally demonstrated just last year. We present the properties of a single memristor, memristors in series and parallel, as well as ideal memristor-capacitor (MC), memristor-inductor (ML) and memristor-capacitor-inductor (MCL) circuits. We find that the memristor has hysteretic current-voltage characteristics. We show that the ideal MC (ML) circuit undergoes non-exponential charge (current) decay with two time scales and that by switching the polarity of the capacitor, an ideal MCL circuit can be tuned from overdamped to underdamped. We present simple models which show that these unusual properties are closely related to the memristor's internal dynamics. This tutorial complements the pedagogy of ideal circuit elements (R, C and L) and the properties of their circuits, and is aimed at undergraduate physics and electrical engineering students.

  7. The elusive memristor: properties of basic electrical circuits

    International Nuclear Information System (INIS)

    Joglekar, Yogesh N; Wolf, Stephen J

    2009-01-01

    We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge q and the magnetic flux φ in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of these three elements and their circuits are a part of the standard curricula. The existence of the memristor as the fourth ideal circuit element was predicted in 1971 based on symmetry arguments, but was clearly experimentally demonstrated just last year. We present the properties of a single memristor, memristors in series and parallel, as well as ideal memristor-capacitor (MC), memristor-inductor (ML) and memristor-capacitor-inductor (MCL) circuits. We find that the memristor has hysteretic current-voltage characteristics. We show that the ideal MC (ML) circuit undergoes non-exponential charge (current) decay with two time scales and that by switching the polarity of the capacitor, an ideal MCL circuit can be tuned from overdamped to underdamped. We present simple models which show that these unusual properties are closely related to the memristor's internal dynamics. This tutorial complements the pedagogy of ideal circuit elements (R, C and L) and the properties of their circuits, and is aimed at undergraduate physics and electrical engineering students

  8. Circuit drawings in electrical energy technology. 6. rev. ed.

    International Nuclear Information System (INIS)

    Weinert, J.

    1991-01-01

    This book contains a survey of the most important standards for graphical symbols and circuit documents for the area of electrical energy technology; it explains the circuit symbols in their construction and in their material and mental contents of terms; it contains a comparison of the circuit symbols from the DIN standards and the new DINTEC symbols taken from harmonisation, produced by arrangement in the picture column with the addition of the letters IEC; it contains a selection of circuit symbols of the IEC, USA, Canada and Great Britain; it supplements the necessary standards for producing circuit documents by extracts and references; it shows examples for the symbols of electrical equipment by using circuit symbols; it develops and explains the various kinds of representation of electrical circuits by circuit diagrams; it leads to reading and understanding the functioning of circuits by descriptions of functions; it gives examples of applications for designing and producing circuit documents, as used in practice; it contributes to arranging electrical plant according to the 'recognised rules of electrical engineering' and increasing safety by reference to the DIN-VDE regulations connected with representation, and it is a great help in designing electrical energy plant by its technical and electrical data. (orig.) [de

  9. Electrical circuit modeling of conductors with skin effect

    International Nuclear Information System (INIS)

    Kerst, D.W.; Sprott, J.C.

    1986-01-01

    The electrical impedance of a lossy conductor is a complicated function of time (or frequency) because of the skin effect. By solving the diffusion equation for magnetic fields in conductors of several prototypical shapes, the impedance can be calculated as a function of time for a step function of current. The solution suggests an electrical circuit representation that allows calculation of time-dependent voltages and currents of arbitrary waveforms. A technique using an operational amplifier to determine the current in such a conductor by measuring some external voltage is described. Useful analytical approximations to the results are derived

  10. Developing an Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2009-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.

  11. Analogy for Drude’s free electron model to promote students’ understanding of electric circuits in lower secondary school

    Directory of Open Access Journals (Sweden)

    Maria José BM de Almeida

    2014-09-01

    Full Text Available Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude’s free electron model of metals. Using this analogy from the first school contacts with electric phenomena, one can promote students’ understanding of concepts such as electric current, the role of generators, potential difference effects, energy transfer, open and closed circuits, resistances, and their combinations in series and parallel. One believes that through this analogy well-known previous misconceptions of young students about electric circuit behaviors can be overcome. Furthermore, students’ understanding will enable them to predict, and justify with self-constructed arguments, the behavior of different elementary circuits. The students’ predictions can be verified—as a challenge of self-produced understanding schemes—using laboratory experiments. At a preliminary stage, our previsions were confirmed through a pilot study with three classrooms of 9th level Portuguese students.

  12. Aging evaluation of electrical circuits using the ECCAD system

    International Nuclear Information System (INIS)

    Edson, J.L.

    1988-01-01

    As a part of the Nuclear Regulator Commission Nuclear Plant Aging Research Program, an aging assessment of electrical circuits was conducted at the Shippingport atomic power station decommissioning project. The objective of this work was to evaluate the effectiveness of the electrical circuit characterization and diagnostic (ECCAD) system in identifying circuit conditions, to determine the present condition of selected electrical circuits, and correlate the results with aging effects. To accomplish this task, a series of electrical tests was performed on each circuit using the ECCAD system, which is composed of commercially available electronic test equipment under computer control. Test results indicate that the ECCAD system is effective in detecting and identifying aging and service wear in selected electrical circuits. The major area of degradation in the circuits tested was at the termination/connection points, whereas the cables were in generally good condition

  13. Development of 3-D Mechanical Models of Electric Circuits and Their Effect on Students' Understanding of Electric Potential Difference

    Science.gov (United States)

    Balta, Nuri

    2015-01-01

    Visualizing physical concepts through models is an essential method in many sciences. While students are mostly proficient in handling mathematical aspects of problems, they frequently lack the ability to visualize and interpret abstract physical concepts in a meaningful way. In this paper, initially the electric circuits and related concepts were…

  14. Chemical Detection using Electrically Open Circuits having no Electrical Connections

    Science.gov (United States)

    Woodward, Stanley E.; Olgesby, Donald M.; Taylor, Bryant D.; Shams, Qamar A.

    2008-01-01

    This paper presents investigations to date on chemical detection using a recently developed method for designing, powering and interrogating sensors as electrically open circuits having no electrical connections. In lieu of having each sensor from a closed circuit with multiple electrically connected components, an electrically conductive geometric pattern that is powered using oscillating magnetic fields and capable of storing an electric field and a magnetic field without the need of a closed circuit or electrical connections is used. When electrically active, the patterns respond with their own magnetic field whose frequency, amplitude and bandwidth can be correlated with the magnitude of the physical quantities being measured. Preliminary experimental results of using two different detection approaches will be presented. In one method, a thin film of a reactant is deposited on the surface of the open-circuit sensor. Exposure to a specific targeted reactant shifts the resonant frequency of the sensor. In the second method, a coating of conductive material is placed on a thin non-conductive plastic sheet that is placed over the surface of the sensor. There is no physical contact between the sensor and the electrically conductive material. When the conductive material is exposed to a targeted reactant, a chemical reaction occurs that renders the material non-conductive. The change in the material s electrical resistance within the magnetic field of the sensor alters the sensor s response bandwidth and amplitude, allowing detection of the reaction without having the reactants in physical contact with the sensor.

  15. 30 CFR 77.501 - Electric distribution circuits and equipment; repair.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric distribution circuits and equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.501 Electric distribution circuits and equipment; repair. No electrical work shall be performed on electric distribution circuits or equipment...

  16. Tin Whisker Electrical Short Circuit Characteristics. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Lawrence L.; Wright, Maria C.

    2009-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.

  17. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Science.gov (United States)

    2010-07-01

    ... short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the correct type and capacity shall be installed so as to protect all electric equipment and circuits against short...

  18. Developing a Domain Model for Relay Circuits

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth

    2009-01-01

    In this paper we stepwise develop a domain model for relay circuits as used in railway control systems. First we provide an abstract, property-oriented model of networks consisting of components that can be glued together with connectors. This model is strongly inspired by a network model...... for railways madeby Bjørner et.al., however our model is more general: the components can be of any kind and can later be refined to e.g. railway components or circuit components. Then we show how the abstract network model can be refined into an explicit model for relay circuits. The circuit model describes...... the statics as well as the dynamics of relay circuits, i.e. how a relay circuit can be composed legally from electrical components as well as how the components may change state over time. Finally the circuit model is transformed into an executable model, and we show how a concrete circuit can be defined...

  19. Device, system and method for a sensing electrical circuit

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2009-01-01

    The invention relates to a driven ground electrical circuit. A driven ground is a current-measuring ground termination to an electrical circuit with the current measured as a vector with amplification. The driven ground module may include an electric potential source V.sub.S driving an electric current through an impedance (load Z) to a driven ground. Voltage from the source V.sub.S excites the minus terminal of an operational amplifier inside the driven ground which, in turn, may react by generating an equal and opposite voltage to drive the net potential to approximately zero (effectively ground). A driven ground may also be a means of passing information via the current passing through one grounded circuit to another electronic circuit as input. It may ground one circuit, amplify the information carried in its current and pass this information on as input to the next circuit.

  20. Beam dynamics requirements for HL–LHC electrical circuits

    CERN Document Server

    Gamba, Davide; Cerqueira Bastos, Miguel; Coello De Portugal - Martinez Vazquez, Jaime Maria; De Maria, Riccardo; Giovannozzi, Massimo; Martino, Michele; Tomas Garcia, Rogelio

    2017-01-01

    A certain number of LHC magnets and relative electrical circuits will be replaced for the HL-LHC upgrade. The performance of the new circuits will need to be compatible with the current installation, and to provide the necessary improvements to meet the tight requirements of the new operational scenario. This document summarises the present knowledge of the performance and use of the LHC circuits and, based on this and on the new optics requirements, provides the necessary specifications for the new HL-LHC electrical circuits.

  1. 49 CFR 236.16 - Electric lock, main track releasing circuit.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Electric lock, main track releasing circuit. 236... Rules and Instructions: All Systems General § 236.16 Electric lock, main track releasing circuit. When an electric lock releasing circuit is provided on the main track to permit a train or an engine to...

  2. Visual construction of characteristic equations of linear electric circuits

    Directory of Open Access Journals (Sweden)

    V.V. Kostyukov

    2013-12-01

    Full Text Available A visual identification method with application of partial circuits is developed for characteristic equation coefficients of transients in linear electric circuits. The method is based on interrelationship between the roots of algebraic polynomial and its coefficients. The method is illustrated with an example of a third-order linear electric circuit.

  3. Secondary School Students' Misconceptions about Simple Electric Circuits

    Science.gov (United States)

    Küçüközer, Hüseyin; Kocakülah, Sabri

    2007-01-01

    The aim of this study is to reveal secondary school students' misconceptions about simple electric circuits and to define whether specific misconceptions peculiar to Turkish students exist within those identified. Data were obtained with a conceptual understanding test for simple electric circuits and semi-structured interviews. Conceptual…

  4. Intrinsically safe electrical installations, auxiliary circuits and electric communication equipment

    Energy Technology Data Exchange (ETDEWEB)

    Herms, C D

    1981-11-19

    Technical progress has not stopped short of electrical systems in mining, so that three new chapters are new included in the VDE regulations leaflet No. 0118 on 'Installation of electrical systems in underground coal mining'. The regulations on intrinsically safe electric systems, auxiliary circuits and communication systems are briefly described, and grounds for the regulations are presented. The regulations already take account of European regulations on intrinsic safety which will soon be published in a European Regulation on Mine Explosions. In the chapters on auxiliary circuits and communication systems, protection against direct contact, fires, and explosions is discussed as well as the further goal of reliable signal transmission.

  5. Performance evaluation of parallel electric field tunnel field-effect transistor by a distributed-element circuit model

    Science.gov (United States)

    Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki

    2014-12-01

    The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.

  6. Circuit models and SPICE macro-models for quantum Hall effect devices

    International Nuclear Information System (INIS)

    Ortolano, Massimo; Callegaro, Luca

    2015-01-01

    Precise electrical measurement technology based on the quantum Hall effect is one of the pillars of modern quantum electrical metrology. Electrical networks including one or more QHE elements can be used as quantum resistance and impedance standards. The analysis of these networks allows metrologists to evaluate the effect of the inevitable parasitic parameters on their performance as standards. This paper presents a concise review of the various circuit models for QHE elements proposed in the literature, and the development of a new model. This last model is particularly suited to be employed with the analogue electronic circuit simulator SPICE. The SPICE macro-model and examples of SPICE simulations, validated by comparison with the corresponding analytical solution and/or experimental data, are provided. (paper)

  7. Quantifying Demyelination in NK venom treated nerve using its electric circuit model.

    Science.gov (United States)

    Das, H K; Das, D; Doley, R; Sahu, P P

    2016-03-02

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.

  8. Quantifying Demyelination in NK venom treated nerve using its electric circuit model

    Science.gov (United States)

    Das, H. K.; Das, D.; Doley, R.; Sahu, P. P.

    2016-03-01

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.

  9. Power amplifier circuits for functional electrical stimulation systems

    Directory of Open Access Journals (Sweden)

    Delmar Carvalho de Souza

    Full Text Available Abstract Introduction: Functional electrical stimulation (FES is a technique that has been successfully employed in rehabilitation treatment to mitigate problems after spinal cord injury (SCI. One of the most relevant modules in a typical FES system is the power or output amplifier stage, which is responsible for the application of voltage or current pulses of proper intensity to the biological tissue, applied noninvasively via electrodes, placed on the skin surface or inside the muscular tissue, closer to the nervous fibers. The goals of this paper are to describe and discuss about the main power output designs usually employed in transcutaneous functional electrical stimulators as well as safety precautions taken to protect patients. Methods A systematic review investigated the circuits of papers published in IEEE Xplore and ScienceDirect databases from 2000 to 2016. The query terms were “((FES or Functional electric stimulator and (circuit or design” with 274 papers retrieved from IEEE Xplore and 29 from ScienceDirect. After the application of exclusion criteria the amount of papers decreased to 9 and 2 from IEEE Xplore and ScienceDirect, respectively. One paper was inserted in the results as a technological contribution to the field. Therefore, 12 papers presented power stage circuits suitable to stimulate great muscles. Discussion The retrieved results presented relevant circuits with different electronic strategies and circuit components. Some of them considered patient safety strategies or aimed to preserve muscle homeostasis such as biphasic current application, which prevents charge accumulation in stimulated tissues as well as circuits that dealt with electrical impedance variation to keep the electrode-tissue interface within an electrochemical safe regime. The investigation revealed a predominance of design strategies using operational amplifiers in power circuits, current outputs, and safety methods to reduce risks of electrical

  10. An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim; Wright, Clara; Asfour, Shihab; Onar, Arzu; Bayliss, Jon; Ludwig, Larry

    2009-01-01

    In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This empirical model can be used to improve existing risk simulation models. FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.

  11. Introduction to Biosensors From Electric Circuits to Immunosensors

    CERN Document Server

    Yoon, Jeong-Yeol

    2013-01-01

    Introduction to Biosensors: From Electric Circuits to Immunosensors discusses underlying circuitry of sensors for biomedical and biological engineers as well as biomedical sensing modalities for electrical engineers while providing an applications-based approach to the study of biosensors with over 13 extensive, hands-on labs. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors and ending with more complicated biosensors. This book also: Provides electrical engineers with the specific knowledge they need to understand biological sensing modalities Provides biomedical engineers with a solid background in circuits and systems Includes complete coverage of temperature sensors, electrochemical sensors, DNA and immunosensors, piezoelectric sensors and immunosensing in a micofluidic device Introduction to Biosensors: From Electric Circuits to Immunosensors aims to provide an interdisciplinary approach to biosensors that will be apprecia...

  12. Calibration of capacitance probe sensors using Electric Circuit Theory

    NARCIS (Netherlands)

    Kelleners, T.J.; Soppe, R.W.O.; Robinson, D.A.; Schaap, M.G.; Ayars, J.E.; Skaggs, T.H.

    2004-01-01

    Capacitance probe sensors are an attractive electromagnetic technique for estimating soil water content. There is concern, however, about the influence of soil salinity and soil temperature on the sensors. We present an electric circuit model that relates the sensor frequency to the permittivity of

  13. Energy pumping in electrical circuits under avalanche noise.

    Science.gov (United States)

    Kanazawa, Kiyoshi; Sagawa, Takahiro; Hayakawa, Hisao

    2014-07-01

    We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted by an external manipulation of the circuit in a cyclic way, even when the system is spatially symmetric. We discuss the properties of the energy pumping process for both quasistatic and finite-time cases, and analytically obtain formulas for the amounts of the work and the power. Our results demonstrate the significance of the non-Gaussianity in energetics of electrical circuits.

  14. Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2010-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish .

  15. 30 CFR 18.51 - Electrical protection of circuits and equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical protection of circuits and equipment... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.51 Electrical protection of circuits and equipment. (a) An automatic...

  16. A Global Electric Circuit on Mars

    Science.gov (United States)

    Delory, G. T.; Farrell, W. M.; Desch, M. D.

    2001-01-01

    We describe conditions on the surface of Mars conducive to the formation of a martian global electric circuit, in a direct analogy to the terrestrial case where atmospheric currents and electric fields are generated worldwide through the charging in thunderstorms. Additional information is contained in the original extended abstract.

  17. Design of pressure-driven microfluidic networks using electric circuit analogy.

    Science.gov (United States)

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  18. Azerbaijan Technical University’s Experience in Teaching Linear Electrical Circuit Theory

    Directory of Open Access Journals (Sweden)

    G. A. Mamedov

    2006-01-01

    Full Text Available An experience in teaching linear electrical circuit theory at the Azerbaijan Technical University is presented in the paper. The paper describes structure of the Linear Electrical Circuit Theory course worked out by the authors that contains a section on electrical calculation of track circuits, information on electro-magnetic compatibility and typical tests for better understanding of the studied subject.

  19. THE RATE OF CURRENT CHANGE DURING A SHORT CIRCUIT IN THE POWER CIRCUITS OF THE ELECTRIC ROLLING STOCK WITH REGARD TO EDDY CURRENTS

    Directory of Open Access Journals (Sweden)

    L. V. Dubinets

    2010-04-01

    Full Text Available In the article the issue of influence of vortical currents on rate of change of short circuit current is considered, a mathematical model for the calculation of short circuit currents in the traction mode in the power circuits of DC electric rolling stock is presented, and the research results are given.

  20. The Effects oF 4C-ID Model Approach on Acquisition and Transfer of Knowledge about Electric Circuits

    Science.gov (United States)

    Melo, Mário; Miranda, Guilhermina Lobato

    2018-01-01

    This paper reports the first results of an experimental research, carried out in a private school with 9th grade students, where the 4C/ID-model was used for teaching and learning electric circuits. The authors describe the principles and features of the instructional model, that is suitability for the teaching and learning of complex knowledge…

  1. 30 CFR 77.506-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... short circuit protection; minimum requirements. 77.506-1 Section 77.506-1 Mineral Resources MINE SAFETY...-1 Electric equipment and circuits; overload and short circuit protection; minimum requirements. Devices providing either short circuit protection or protection against overload shall conform to the...

  2. Analogy for Drude's Free Electron Model to Promote Students' Understanding of Electric Circuits in Lower Secondary School

    Science.gov (United States)

    de Almeida, Maria José B. M.; Salvador, Andreia; Costa, Maria Margarida R. R.

    2014-01-01

    Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first…

  3. 30 CFR 75.518-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 75.518-1 Section 75.518-1 Mineral Resources MINE SAFETY... short circuit protection; minimum requirements. A device to provide either short circuit protection or...

  4. The Elusive Memristor: Properties of Basic Electrical Circuits

    Science.gov (United States)

    Joglekar, Yogesh N.; Wolf, Stephen J.

    2009-01-01

    We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge "q" and the magnetic flux [phi] in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of…

  5. Simulation of Higher-Order Electrical Circuits with Stochastic Parameters via SDEs

    Directory of Open Access Journals (Sweden)

    BRANCIK, L.

    2013-02-01

    Full Text Available The paper deals with a technique for the simulation of higher-order electrical circuits with parameters varying randomly. The principle consists in the utilization of the theory of stochastic differential equations (SDE, namely the vector form of the ordinary SDEs. Random changes of both excitation voltage and some parameters of passive circuit elements are considered, and circuit responses are analyzed. The voltage and/or current responses are computed and represented in the form of the sample means accompanied by their confidence intervals to provide reliable estimates. The method is applied to analyze responses of the circuit models of optional orders, specially those consisting of a cascade connection of the RLGC networks. To develop the model equations the state-variable method is used, afterwards a corresponding vector SDE is formulated and a stochastic Euler numerical method applied. To verify the results the deterministic responses are also computed by the help of the PSpice simulator or the numerical inverse Laplace transforms (NILT procedure in MATLAB, while removing random terms from the circuit model.

  6. Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles

    International Nuclear Information System (INIS)

    Chen, Zeyu; Xiong, Rui; Tian, Jinpeng; Shang, Xiong; Lu, Jiahuan

    2016-01-01

    Highlights: • The characteristics of ESC fault of lithium-ion battery are investigated experimentally. • The proposed method to simulate the electrical behavior of ESC fault is viable. • Ten parameters in the presented fault model were optimized using a DPSO algorithm. • A two-layer model-based fault diagnosis approach for battery ESC is proposed. • The effective and robustness of the proposed algorithm has been evaluated. - Abstract: This study investigates the external short circuit (ESC) fault characteristics of lithium-ion battery experimentally. An experiment platform is established and the ESC tests are implemented on ten 18650-type lithium cells considering different state-of-charges (SOCs). Based on the experiment results, several efforts have been made. (1) The ESC process can be divided into two periods and the electrical and thermal behaviors within these two periods are analyzed. (2) A modified first-order RC model is employed to simulate the electrical behavior of the lithium cell in the ESC fault process. The model parameters are re-identified by a dynamic-neighborhood particle swarm optimization algorithm. (3) A two-layer model-based ESC fault diagnosis algorithm is proposed. The first layer conducts preliminary fault detection and the second layer gives a precise model-based diagnosis. Four new cells are short-circuited to evaluate the proposed algorithm. It shows that the ESC fault can be diagnosed within 5 s, the error between the model and measured data is less than 0.36 V. The effectiveness of the fault diagnosis algorithm is not sensitive to the precision of battery SOC. The proposed algorithm can still make the correct diagnosis even if there is 10% error in SOC estimation.

  7. High school physics teacher forms of thought about simple electric circuits

    International Nuclear Information System (INIS)

    Kucukozer, H.

    2005-01-01

    According to some researches on students and on science teachers, they have same conceptual difficulties about simple electric circuits and these affect their further learning or/and teaching. [2], [5], [8], [9], [11], [13]. The main aim of this study was to investigate in-service high school physics teachers form of thought about simple electric circuits. In this purpose a test that was developed by Kucukozer [7], contains eight questions related to simple electric circuits was applied to in-service physics teachers (25 subjects) in various Anatolian Teacher High School in Turkey. After analyzing and evaluating of their data, it was found that, the physics teachers have conceptual difficulties about simple electric circuits, especially the concepts about source of stationary current and current usage

  8. Understanding the Pathophysiology of Portosystemic Shunt by Simulation Using an Electric Circuit.

    Science.gov (United States)

    Kim, Moonhwan; Lee, Keon-Young

    2016-01-01

    Portosystemic shunt (PSS) without a definable cause is a rare condition, and most of the studies on this topic are small series or based on case reports. Moreover, no firm agreement has been reached on the definition and classification of various forms of PSS, which makes it difficult to compare and analyze the management. The blood flow can be seen very similar to an electric current, governed by Ohm's law. The simulation of PSS using an electric circuit, combined with the interpretation of reported management results, can provide intuitive insights into the underlying mechanism of PSS development. In this article, we have built a model of PSS using electric circuit symbols and explained clinical manifestations as well as the possible mechanisms underlying a PSS formation.

  9. Measuring user similarity using electric circuit analysis: application to collaborative filtering.

    Science.gov (United States)

    Yang, Joonhyuk; Kim, Jinwook; Kim, Wonjoon; Kim, Young Hwan

    2012-01-01

    We propose a new technique of measuring user similarity in collaborative filtering using electric circuit analysis. Electric circuit analysis is used to measure the potential differences between nodes on an electric circuit. In this paper, by applying this method to transaction networks comprising users and items, i.e., user-item matrix, and by using the full information about the relationship structure of users in the perspective of item adoption, we overcome the limitations of one-to-one similarity calculation approach, such as the Pearson correlation, Tanimoto coefficient, and Hamming distance, in collaborative filtering. We found that electric circuit analysis can be successfully incorporated into recommender systems and has the potential to significantly enhance predictability, especially when combined with user-based collaborative filtering. We also propose four types of hybrid algorithms that combine the Pearson correlation method and electric circuit analysis. One of the algorithms exceeds the performance of the traditional collaborative filtering by 37.5% at most. This work opens new opportunities for interdisciplinary research between physics and computer science and the development of new recommendation systems.

  10. Measuring user similarity using electric circuit analysis: application to collaborative filtering.

    Directory of Open Access Journals (Sweden)

    Joonhyuk Yang

    Full Text Available We propose a new technique of measuring user similarity in collaborative filtering using electric circuit analysis. Electric circuit analysis is used to measure the potential differences between nodes on an electric circuit. In this paper, by applying this method to transaction networks comprising users and items, i.e., user-item matrix, and by using the full information about the relationship structure of users in the perspective of item adoption, we overcome the limitations of one-to-one similarity calculation approach, such as the Pearson correlation, Tanimoto coefficient, and Hamming distance, in collaborative filtering. We found that electric circuit analysis can be successfully incorporated into recommender systems and has the potential to significantly enhance predictability, especially when combined with user-based collaborative filtering. We also propose four types of hybrid algorithms that combine the Pearson correlation method and electric circuit analysis. One of the algorithms exceeds the performance of the traditional collaborative filtering by 37.5% at most. This work opens new opportunities for interdisciplinary research between physics and computer science and the development of new recommendation systems.

  11. Electrical circuits in biomedical engineering problems with solutions

    CERN Document Server

    Keskin, Ali Ümit

    2017-01-01

    This authored monograph presents a comprehensive and in-depth analysis of electrical circuit theory in biomedical engineering, ideally suited as textbook for a course program. The book contains methods and theory, but the topical focus is placed on practical applications of circuit theory, including problems, solutions and case studies. The target audience primarily comprises researchers and experts in electrical engineering who intend to embark on biomedical applications. The book is also very well suited for graduate students in the field. .

  12. An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers-Part I

    Science.gov (United States)

    Courey, Karim; Wright, Clara; Asfour, Shihab; Bayliss, Jon; Ludwig, Larry

    2008-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance, electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data, we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. In addition, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross sectioned and studied using a focused ion beam (FIB).

  13. High-speed Integrated Circuits for electrical/Optical Interfaces

    DEFF Research Database (Denmark)

    Jespersen, Christoffer Felix

    2008-01-01

    This thesis is a continuation of the effort to increase the bandwidth of communicationnetworks. The thesis presents the results of the design of several high-speed electrical ircuits for an electrical/optical interface. These circuits have been a contribution to the ESTA project in collaboration...... circuits at the receiver interface, though VCOs are also found in the transmitter where a multitude of independent sources have to be mutually synchronized before multiplexing. The circuits are based on an InP DHBT process (VIP-2) supplied by Vitesse and made publicly available as MPW. The VIP-2 process...... represents the avant-garde of InP technology, with ft and fmax well above 300 GHz. Principles of high speed design are presented and described as a useful background before proceeding to circuits. A static divider is used as an example to illustrate many of the design principles. Theory and fundamentals...

  14. A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2015-09-01

    Full Text Available Models are crucial in the engineering design process because they can be used for both the optimization of design parameters and the prediction of performance. Thus, models can significantly reduce design, development and optimization costs. This paper proposes a novel equivalent electrical model for Darrieus-type vertical axis wind turbines (DTVAWTs. The proposed model was built from the mechanical description given by the Paraschivoiu double-multiple streamtube model and is based on the analogy between mechanical and electrical circuits. This work addresses the physical concepts and theoretical formulations underpinning the development of the model. After highlighting the working principle of the DTVAWT, the step-by-step development of the model is presented. For assessment purposes, simulations of aerodynamic characteristics and those of corresponding electrical components are performed and compared.

  15. Regulated Electric Drainage and its Interference with Track Circuits

    Directory of Open Access Journals (Sweden)

    Vaclav Kolar

    2018-01-01

    Full Text Available Electric drainage is a power electronic device used to protect underground metal devices (such as piping from the corrosive effects of stray currents. Stray currents are usually caused by DC electric traction, such as trams or railways. In places where stray currents leave the underground device and return into rails, they cause significant electrochemical corrosion of buried devices. The principle of electric drainage is based on electrical connection between the underground device and electric traction rails, which ensures that current flows through this connection, instead of flowing into the ground. Nowadays, the most widely used type is regulated electric drainage, where current is regulated by means of Pulse Width Modulation (PWM. Because of this modulation, current flowing through the drainage contains harmonic components with different frequencies. In modern railways, track circuits are often used as an important part of the track security system. For safe operation, it is necessary to ensure that frequencies generated by the drainage do not interfere with track circuits. This paper describes the design of a regulated drainage control system, with regard to its compatibility with track circuits and this paper contains related computer simulations and discussion of the results

  16. Printed Graphene Derivative Circuits as Passive Electrical Filters.

    Science.gov (United States)

    Sinar, Dogan; Knopf, George K

    2018-02-23

    The objective of this study is to inkjet print resistor-capacitor ( RC ) low pass electrical filters, using a novel water-based cellulose graphene ink, and compare the voltage-frequency and transient behavior to equivalent circuits constructed from discrete passive components. The synthesized non-toxic graphene-carboxymethyl cellulose (G-CMC) ink is deposited on mechanically flexible polyimide substrates using a customized printer that dispenses functionalized aqueous solutions. The design of the printed first-order and second-order low-pass RC filters incorporate resistive traces and interdigitated capacitors. Low pass filter characteristics, such as time constant, cut-off frequency and roll-off rate, are determined for comparative analysis. Experiments demonstrate that for low frequency applications (graphene derivative circuits performed as well as the circuits constructed from discrete resistors and capacitors for both low pass filter and RC integrator applications. The impact of mechanical stress due to bending on the electrical performance of the flexible printed circuits is also investigated.

  17. Printed Graphene Derivative Circuits as Passive Electrical Filters

    Directory of Open Access Journals (Sweden)

    Dogan Sinar

    2018-02-01

    Full Text Available The objective of this study is to inkjet print resistor-capacitor (RC low pass electrical filters, using a novel water-based cellulose graphene ink, and compare the voltage-frequency and transient behavior to equivalent circuits constructed from discrete passive components. The synthesized non-toxic graphene-carboxymethyl cellulose (G-CMC ink is deposited on mechanically flexible polyimide substrates using a customized printer that dispenses functionalized aqueous solutions. The design of the printed first-order and second-order low-pass RC filters incorporate resistive traces and interdigitated capacitors. Low pass filter characteristics, such as time constant, cut-off frequency and roll-off rate, are determined for comparative analysis. Experiments demonstrate that for low frequency applications (<100 kHz the printed graphene derivative circuits performed as well as the circuits constructed from discrete resistors and capacitors for both low pass filter and RC integrator applications. The impact of mechanical stress due to bending on the electrical performance of the flexible printed circuits is also investigated.

  18. A study on the equivalent electric circuit simulation model of DBD streamer and glow alternate discharge

    International Nuclear Information System (INIS)

    Yao, J; Zhang, Z T; Xu, S J; Yu, Q X; Yu, Z; Zhao, J S

    2013-01-01

    This paper presents a dynamic simulating model of the dielectric barrier discharge (DBD), structured as an equivalent electric circuit of the streamer and glow discharge generated alternately in DBD. The main parameters of DBD have been established by means of analysing the structural characteristics of a single discharge cell. An electrical comprehensive Simulink /MATLAB model was developed in order to reveal the interaction of the adjacent two discharge cell. A series of simulations was carried out in order to estimate the key structural parameters that affect the alternate streamer and glow discharge mode. The comparison results of experimental and simulate indicate that there exists a close similarity of the current waveforms graphic. Therefore, we can grasp a deep understanding mechanism of the dielectric barrier discharge and optimize the plasma reactor.

  19. Equivalent circuit and characteristic simulation of a brushless electrically excited synchronous wind power generator

    Science.gov (United States)

    Wang, Hao; Zhang, Fengge; Guan, Tao; Yu, Siyang

    2017-09-01

    A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.

  20. Basic Guidelines to Introduce Electric Circuit Simulation Software in a General Physics Course

    Science.gov (United States)

    Moya, A. A.

    2018-01-01

    The introduction of electric circuit simulation software for undergraduate students in a general physics course is proposed in order to contribute to the constructive learning of electric circuit theory. This work focuses on the lab exercises based on dc, transient and ac analysis in electric circuits found in introductory physics courses, and…

  1. Electric Circuit Model for the Aerodynamic Performance Analysis of a Three-Blade Darrieus-Type Vertical Axis Wind Turbine: The Tchakoua Model

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2016-10-01

    Full Text Available The complex and unsteady aerodynamics of vertical axis wind turbines (VAWTs pose significant challenges for simulation tools. Recently, significant research efforts have focused on the development of new methods for analysing and optimising the aerodynamic performance of VAWTs. This paper presents an electric circuit model for Darrieus-type vertical axis wind turbine (DT-VAWT rotors. The novel Tchakoua model is based on the mechanical description given by the Paraschivoiu double-multiple streamtube model using a mechanical‑electrical analogy. Model simulations were conducted using MATLAB for a three-bladed rotor architecture, characterized by a NACA0012 profile, an average Reynolds number of 40,000 for the blade and a tip speed ratio of 5. The results obtained show strong agreement with findings from both aerodynamic and computational fluid dynamics (CFD models in the literature.

  2. Basic guidelines to introduce electric circuit simulation software in a general physics course

    Science.gov (United States)

    Moya, A. A.

    2018-05-01

    The introduction of electric circuit simulation software for undergraduate students in a general physics course is proposed in order to contribute to the constructive learning of electric circuit theory. This work focuses on the lab exercises based on dc, transient and ac analysis in electric circuits found in introductory physics courses, and shows how students can use the simulation software to do simple activities associated with a lab exercise itself and with related topics. By introducing electric circuit simulation programs in a general physics course as a brief activitiy complementing lab exercise, students develop basic skills in using simulation software, improve their knowledge on the topology of electric circuits and perceive that the technology contributes to their learning, all without reducing the time spent on the actual content of the course.

  3. Study of Piezoelectric Vibration Energy Harvester with non-linear conditioning circuit using an integrated model

    Science.gov (United States)

    Manzoor, Ali; Rafique, Sajid; Usman Iftikhar, Muhammad; Mahmood Ul Hassan, Khalid; Nasir, Ali

    2017-08-01

    Piezoelectric vibration energy harvester (PVEH) consists of a cantilever bimorph with piezoelectric layers pasted on its top and bottom, which can harvest power from vibrations and feed to low power wireless sensor nodes through some power conditioning circuit. In this paper, a non-linear conditioning circuit, consisting of a full-bridge rectifier followed by a buck-boost converter, is employed to investigate the issues of electrical side of the energy harvesting system. An integrated mathematical model of complete electromechanical system has been developed. Previously, researchers have studied PVEH with sophisticated piezo-beam models but employed simplistic linear circuits, such as resistor, as electrical load. In contrast, other researchers have worked on more complex non-linear circuits but with over-simplified piezo-beam models. Such models neglect different aspects of the system which result from complex interactions of its electrical and mechanical subsystems. In this work, authors have integrated the distributed parameter-based model of piezo-beam presented in literature with a real world non-linear electrical load. Then, the developed integrated model is employed to analyse the stability of complete energy harvesting system. This work provides a more realistic and useful electromechanical model having realistic non-linear electrical load unlike the simplistic linear circuit elements employed by many researchers.

  4. Modeling the dynamic and thermodynamic operation of Stirling engines by means of an equivalent electrical circuit

    International Nuclear Information System (INIS)

    Cascella, Franco; Sorin, Mikhail; Formosa, Fabien; Teyssedou, Alberto

    2017-01-01

    Highlights: • A model based on the electrical analogy theory has been developed to predict the operation of a Stirling engine. • The models takes into account the continuity, the momentum and the energy conservation equations. • The model predicts the operating conditions of the RE100 Free piston Stirling engine. • The model is sensible to the modeling of the effects of the machine load. - Abstract: The Stirling engines are inherently efficient; their thermodynamic cycles reach the Carnot efficiency. These technologies are suitable to operate under any low temperature difference between the hot and the cold sources. For these reasons, these engines can be considered as reliable power conversion systems to promote the conversion of low-grade waste heat generated by industrial plants. The need of a model to predict the behavior of these engines is of primary importance. Nevertheless, a great difficulty is encountered in developing such a model since it is not simple to take into account coupled thermodynamic and dynamic effects. This is the main reason why several models make use of electrical analogies to describe Stirling engines (in particular, free-piston machines): by assuming the pressure equivalent to a voltage and the flow rate to an electrical current, a coupled dynamic-thermodynamic analysis of the engine can be performed. In this paper, an electrical circuit whose behavior is equivalent to that of the engine is derived from the electrical analogy theory. To this aim, we propose an electrical analogy model based on the three conservation laws (mass, momentum and energy). Since limited experimental information is available in the open literature, the results obtained with the proposed model are compared with the experimental data collected at the NASA Lewis Research center for a free-piston Stirling engine i.e., the RE-1000 engine.

  5. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles

    International Nuclear Information System (INIS)

    He, Hongwen; Zhang, Xiaowei; Xiong, Rui; Xu, Yongli; Guo, Hongqiang

    2012-01-01

    This paper presents a method to estimate the state-of-charge (SOC) of a lithium-ion battery, based on an online identification of its open-circuit voltage (OCV), according to the battery’s intrinsic relationship between the SOC and the OCV for application in electric vehicles. Firstly an equivalent circuit model with n RC networks is employed modeling the polarization characteristic and the dynamic behavior of the lithium-ion battery, the corresponding equations are built to describe its electric behavior and a recursive function is deduced for the online identification of the OCV, which is implemented by a recursive least squares (RLS) algorithm with an optimal forgetting factor. The models with different RC networks are evaluated based on the terminal voltage comparisons between the model-based simulation and the experiment. Then the OCV-SOC lookup table is built based on the experimental data performed by a linear interpolation of the battery voltages at the same SOC during two consecutive discharge and charge cycles. Finally a verifying experiment is carried out based on nine Urban Dynamometer Driving Schedules. It indicates that the proposed method can ensure an acceptable accuracy of SOC estimation for online application with a maximum error being less than 5.0%. -- Highlights: ► An equivalent circuit model with n RC networks is built for lithium-ion batteries. ► A recursive function is deduced for the online estimation of the model parameters like OCV and R O . ► The relationship between SOC and OCV is built with a linear interpolation method by experiments. ► The experiments show the online model-based SOC estimation is reasonable with enough accuracy.

  6. Josephson junction in the quantum mesoscopic electric circuits with charge discreteness

    Science.gov (United States)

    Pahlavani, H.

    2018-04-01

    A quantum mesoscopic electrical LC-circuit with charge discreteness including a Josephson junction is considered and a nonlinear Hamiltonian that describing the dynamic of such circuit is introduced. The quantum dynamical behavior (persistent current probability) is studied in the charge and phase regimes by numerical solution approaches. The time evolution of charge and current, number-difference and the bosonic phase and also the energy spectrum of a quantum mesoscopic electric LC-circuit with charge discreteness that coupled with a Josephson junction device are investigated. We show the role of the coupling energy and the electrostatic Coulomb energy of the Josephson junction in description of the quantum behavior and the spectral properties of a quantum mesoscopic electrical LC-circuits with charge discreteness.

  7. Students' Reasoning When Tackling Electric Field and Potential in Explanation of DC Resistive Circuits

    Science.gov (United States)

    Leniz, Ane; Zuza, Kristina; Guiasola, Jenaro

    2017-01-01

    This study examines the causal reasoning that university students use to explain how dc circuits work. We analyze how students use the concepts of electric field and potential difference in their explanatory models of dc circuits, and what kinds of reasoning they use at the macroscopic and microscopic levels in their explanations. This knowledge…

  8. How Young Children Understand Electric Circuits: Prediction, Explanation and Exploration

    Science.gov (United States)

    Glauert, Esme Bridget

    2009-01-01

    This paper reports findings from a study of young children's views about electric circuits. Twenty-eight children aged 5 and 6 years were interviewed. They were shown examples of circuits and asked to predict whether they would work and explain why. They were then invited to try out some of the circuit examples or make circuits of their own…

  9. The Electron Runaround: Understanding Electric Circuit Basics Through a Classroom Activity

    Science.gov (United States)

    Singh, Vandana

    2010-05-01

    Several misconceptions abound among college students taking their first general physics course, and to some extent pre-engineering physics students, regarding the physics and applications of electric circuits. Analogies used in textbooks, such as those that liken an electric circuit to a piped closed loop of water driven by a water pump, do not completely resolve these misconceptions. Mazur and Knight,2 in particular, separately note that such misconceptions include the notion that electric current on either side of a light bulb in a circuit can be different. Other difficulties and confusions involve understanding why the current in a parallel circuit exceeds the current in a series circuit with the same components, and include the role of the battery (where students may assume wrongly that a dry cell battery is a fixed-current rather than a fixed-voltage device). A simple classroom activity that students can play as a game can resolve these misconceptions, providing an intellectual as well as a hands-on understanding. This paper describes the "Electron Runaround," first developed by the author to teach extremely bright 8-year-old home-schooled children the basics of electric circuits and subsequently altered (according to the required level of instruction) and used for various college physics courses.

  10. THE ANALYSIS OF STRUCTURAL RELIABILITY OF THE MAIN ELECTRIC CONNECTION CIRCUITS OF NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    M. A. Korotkevich

    2017-01-01

    Full Text Available The reliability of the main circuit of electrical connections at a nuclear electric power plant that has two units with a capacity of 1,200 MW each has been determined. Reliability, economical, maneuverable properties of the atomic power plant under study are largely determined by its main circuit, so the choice of the circuit for the design and its status in the process of operation occur to be critical objectives. Main electrical connection circuits in nuclear electric power plants are selected on the basis of the schematic networks of the energy system and the land attached to the plant. The circuit of the connection of a nuclear power plant to the grid in the original normal operating modes at all stages of the construction of such a plant should provide the outcome of the full added capacity of a nuclear power plant and the preservation of its stability in the power system without the influence of the emergency system automatics when any outgoing transmission line is disabled. When selecting the main circuit the individual capacity of the installed units and their number are taken into account as well as the order of development of the plant and power supply system; the voltage on which the power of a plant is delivered; a shortcircuit current for switchgear high voltage and the need for their limitation by circuit means; the most power that can be lost when damage to any switch. A model of reliability of the main circuit of electrical connections is designed to detect all types of accidents that are possible at the coincidence of failures of elements with the repair and operational modes that differs in composition and damageability of the equipment, as well as under conditions of the development of accidents due to failure of operation of devices of relay protection and automation.

  11. Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

    Science.gov (United States)

    Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel

    2016-02-01

    Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.

  12. The Effect of Current-Limiting Reactors on the Tripping of Short Circuits in High-Voltage Electrical Equipment

    International Nuclear Information System (INIS)

    Volkov, M. S.; Gusev, Yu. P.; Monakov, Yu. V.; Cho, Gvan Chun

    2016-01-01

    The insertion of current-limiting reactors into electrical equipment operating at a voltage of 110 and 220 kV produces a change in the parameters of the transient recovery voltages at the contacts of the circuit breakers for disconnecting short circuits, which could be the reason for the increase in the duration of the short circuit, damage to the electrical equipment and losses in the power system. The results of mathematical modeling of the transients, caused by tripping of the short circuit in a reactive electric power transmission line are presented, and data are given on the negative effect of a current-limiting resistor on the rate of increase and peak value of the transient recovery voltages. Methods of ensuring the standard requirements imposed on the parameters of the transient recovery voltages when using current-limiting reactors in the high-voltage electrical equipment of power plants and substations are proposed and analyzed

  13. Analysis of the Diurnal Variation of the Global Electric Circuit Obtained From Different Numerical Models

    Science.gov (United States)

    Jánský, Jaroslav; Lucas, Greg M.; Kalb, Christina; Bayona, Victor; Peterson, Michael J.; Deierling, Wiebke; Flyer, Natasha; Pasko, Victor P.

    2017-12-01

    This work analyzes different current source and conductivity parameterizations and their influence on the diurnal variation of the global electric circuit (GEC). The diurnal variations of the current source parameterizations obtained using electric field and conductivity measurements from plane overflights combined with global Tropical Rainfall Measuring Mission satellite data give generally good agreement with measured diurnal variation of the electric field at Vostok, Antarctica, where reference experimental measurements are performed. An approach employing 85 GHz passive microwave observations to infer currents within the GEC is compared and shows the best agreement in amplitude and phase with experimental measurements. To study the conductivity influence, GEC models solving the continuity equation in 3-D are used to calculate atmospheric resistance using yearly averaged conductivity obtained from the global circulation model Community Earth System Model (CESM). Then, using current source parameterization combining mean currents and global counts of electrified clouds, if the exponential conductivity is substituted by the conductivity from CESM, the peak to peak diurnal variation of the ionospheric potential of the GEC decreases from 24% to 20%. The main reason for the change is the presence of clouds while effects of 222Rn ionization, aerosols, and topography are less pronounced. The simulated peak to peak diurnal variation of the electric field at Vostok is increased from 15% to 18% from the diurnal variation of the global current in the GEC if conductivity from CESM is used.

  14. Equivalent Circuit Modeling of a Rotary Piezoelectric Motor

    DEFF Research Database (Denmark)

    El, Ghouti N.; Helbo, Jan

    2000-01-01

    In this paper, an enhanced equivalent circuit model of a rotary traveling wave piezoelectric ultrasonic motor "shinsei type USR60" is derived. The modeling is performed on the basis of an empirical approach combined with the electrical network method and some simplification assumptions about the ...

  15. Global Electric Circuit Diurnal Variation Derived from Storm Overflight and Satellite Optical Lightning Datasets

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, R. J.; Bateman, M. J.; Bailey, J. C.

    2011-01-01

    We have combined analyses of over 1000 high altitude aircraft observations of electrified clouds with diurnal lightning statistics from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to produce an estimate of the diurnal variation in the global electric circuit. Using basic assumptions about the mean storm currents as a function of flash rate and location, and the global electric circuit, our estimate of the current in the global electric circuit matches the Carnegie curve diurnal variation to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Mean contributions to the global electric circuit from land and ocean thunderstorms are 1.1 kA (land) and 0.7 kA (ocean). Contributions to the global electric circuit from ESCs are 0.22 kA for ocean storms and 0.04 kA for land storms. Using our analysis, the mean total conduction current for the global electric circuit is 2.0 kA.

  16. Real-time monitoring of a microbial electrolysis cell using an electrical equivalent circuit model.

    Science.gov (United States)

    Hussain, S A; Perrier, M; Tartakovsky, B

    2018-04-01

    Efforts in developing microbial electrolysis cells (MECs) resulted in several novel approaches for wastewater treatment and bioelectrosynthesis. Practical implementation of these approaches necessitates the development of an adequate system for real-time (on-line) monitoring and diagnostics of MEC performance. This study describes a simple MEC equivalent electrical circuit (EEC) model and a parameter estimation procedure, which enable such real-time monitoring. The proposed approach involves MEC voltage and current measurements during its operation with periodic power supply connection/disconnection (on/off operation) followed by parameter estimation using either numerical or analytical solution of the model. The proposed monitoring approach is demonstrated using a membraneless MEC with flow-through porous electrodes. Laboratory tests showed that changes in the influent carbon source concentration and composition significantly affect MEC total internal resistance and capacitance estimated by the model. Fast response of these EEC model parameters to changes in operating conditions enables the development of a model-based approach for real-time monitoring and fault detection.

  17. The Electron Runaround: Understanding Electric Circuit Basics through a Classroom Activity

    Science.gov (United States)

    Singh, Vandana

    2010-01-01

    Several misconceptions abound among college students taking their first general physics course, and to some extent pre-engineering physics students, regarding the physics and applications of electric circuits. Analogies used in textbooks, such as those that liken an electric circuit to a piped closed loop of water driven by a water pump, do not…

  18. Electrical circuit theory and technology

    CERN Document Server

    Bird, John

    2014-01-01

    This much-loved textbook explains the principles of electrical circuit theory and technology so that students of electrical and mechanical engineering can master the subject. Real-world situations and engineering examples put the theory into context. The inclusion of worked problems with solutions help you to learn and further problems then allow you to test and confirm you have fully understood each subject. In total the book contains 800 worked problems, 1000 further problems and 14 revision tests with answers online. This an ideal text for foundation and undergraduate degree students and those on upper level vocational engineering courses, in particular electrical and mechanical. It provides a sound understanding of the knowledge required by technicians in fields such as electrical engineering, electronics and telecommunications. This edition has been updated with developments in key areas such as semiconductors, transistors, and fuel cells, along with brand new material on ABCD parameters and Fourier's An...

  19. Pre-assembling electric circuits of braided conductors

    International Nuclear Information System (INIS)

    Mercado Gomez, Martin Elias

    1999-01-01

    The present article has for object to give to know an innovative concept of pre-assembling electric circuits for distribution of normal and regulated power, to the work position like integral subsystems of the calls intelligent buildings

  20. Circuit modeling of the electrical impedance: part III. Disuse following bone fracture

    International Nuclear Information System (INIS)

    Shiffman, C A

    2013-01-01

    Multifrequency measurements of the electrical impedance of muscle have been extended to the study of disuse following bone fracture, and analyzed using the five-element circuit model used earlier in the study of the effects of disease. Eighteen subjects recovering from simple fractures on upper or lower limbs were examined (ten males, eight females, aged 18–66). Muscles on uninjured contralateral limbs were used as comparison standards, and results are presented in terms of the ratios p(injured)/p(uninjured), where p stands for the circuit parameter r 1 , r 2 , r 3 , 1/c 1 or 1/c 2 . These are strikingly similar to the diseased-to-healthy ratios for patients with neuromuscular disease, reported in part I of this series. In particular, r 1 is virtually unaffected and the ratios for r 2 , r 3 , 1/c 1 and 1/c 2 can be as large as in serious disease. Furthermore, the same pattern of relationships between the parameters is found, suggesting that there is a common underlying mechanism for the impedance changes. Atrophy and fibrosis are examined as candidates for that mechanism, but it is argued that their effects are too small to explain the observed changes. Fundamental considerations aside, the sensitivity, reproducibility and technical simplicity of the technique recommend its use for in-flight assessments of muscles during orbital or interplanetary missions. (paper)

  1. Improved SPICE electrical model of silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Marano, D., E-mail: davide.marano@oact.inaf.it [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Bonanno, G.; Belluso, M.; Billotta, S.; Grillo, A.; Garozzo, S.; Romeo, G. [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Catalano, O.; La Rosa, G.; Sottile, G.; Impiombato, D.; Giarrusso, S. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo (Italy)

    2013-10-21

    The present work introduces an improved SPICE equivalent electrical model of silicon photomultiplier (SiPM) detectors, in order to simulate and predict their transient response to avalanche triggering events. In particular, the developed circuit model provides a careful investigation of the magnitude and timing of the read-out signals and can therefore be exploited to perform reliable circuit-level simulations. The adopted modeling approach is strictly related to the physics of each basic microcell constituting the SiPM device, and allows the avalanche timing as well as the photodiode current and voltage to be accurately simulated. Predictive capabilities of the proposed model are demonstrated by means of experimental measurements on a real SiPM detector. Simulated and measured pulses are found to be in good agreement with the expected results. -- Highlights: • An improved SPICE electrical model of silicon photomultipliers is proposed. • The developed model provides a truthful representation of the physics of the device. • An accurate charge collection as a function of the overvoltage is achieved. • The adopted electrical model allows reliable circuit-level simulations to be performed. • Predictive capabilities of the adopted model are experimentally demonstrated.

  2. Electric circuits problem solver

    CERN Document Server

    REA, Editors of

    2012-01-01

    Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies.Here in this highly useful reference is the finest overview of electric circuits currently av

  3. Switchless charge-discharge circuit for electrical capacitance tomography

    International Nuclear Information System (INIS)

    Kryszyn, J; Smolik, W T; Radzik, B; Olszewski, T; Szabatin, R

    2014-01-01

    The main factor limiting the performance of electrical capacitance tomography (ECT) is an extremely low value of inter-electrode capacitances. The charge-discharge circuit is a well suited circuit for a small capacitance measurement due to its immunity to noise and stray capacitance, although it has a problem associated with a charge injected by the analogue switches, which results in a dc offset. This paper presents a new diode-based circuit for capacitance measurement in which a charge transfer method is realized without switches. The circuit was built and tested in one channel configuration with 16 multiplexed electrodes. The performance of the elaborated circuit and a comparison with a classic charge-discharge circuit are presented. The elaborated circuit can be used for sensors with inter-electrode capacitances not lower than 10 fF. The presented approach allows us to obtain a similar performance to the classic charge-discharge circuit, but has a simplified design. A lack of the need to synchronize the analogue switches in the transmitter and the receiver part of this circuit could be a desirable feature in the design of measurement systems integrated with electrodes. (paper)

  4. Modeling of electrical and mesoscopic circuits at quantum nanoscale from heat momentum operator

    Science.gov (United States)

    El-Nabulsi, Rami Ahmad

    2018-04-01

    We develop a new method to study electrical circuits at quantum nanoscale by introducing a heat momentum operator which reproduces quantum effects similar to those obtained in Suykens's nonlocal-in-time kinetic energy approach for the case of reversible motion. The series expansion of the heat momentum operator is similar to the momentum operator obtained in the framework of minimal length phenomenologies characterized by the deformation of Heisenberg algebra. The quantization of both LC and mesoscopic circuits revealed a number of motivating features like the emergence of a generalized uncertainty relation and a minimal charge similar to those obtained in the framework of minimal length theories. Additional features were obtained and discussed accordingly.

  5. [Electric short-circuit incident observed with "Upsher" laryngoscopes].

    Science.gov (United States)

    Tritsch, L; Vailly, B

    2006-01-01

    We observed an electrical short-circuit between a fasten screw of the printed circuit and the handle of an Upsher universal laryngoscope (serial number UQ1). The isolating Silicone layer was broken above the screw. This isolation defect was found all over our Upsher laryngoscopes of the UQ1 series. No doubt that if accumulators were used instead of batteries, emitted heat would be in largest amount and perhaps dangerous.

  6. In situ testing of the Shippingport Atomic Power Station electrical circuits

    International Nuclear Information System (INIS)

    Dinsel, M.R.; Donaldson, M.R.; Soberano, F.T.

    1987-04-01

    This report discusses the results of electrical in situ testing of selected circuits and components at the Shippingport Atomic Power Station in Shippingport, Pennsylvania. Testing was performed by EG and G Idaho in support of the United States Nuclear Regulatory Commission (USNRC) Nuclear Plant Aging Research (NPAR) Program. The goal was to determine the extent of aging or degradation of various circuits from the original plant, and the two major coreplant upgrades (representing three distinct age groups), as well as to evaluate previously developed surveillance technology. The electrical testing was performed using the Electrical Circuit Characterization and Diagnostic (ECCAD) system developed by EG and G for the US Department of Energy to use at TMI-2. Testing included measurements of voltage, effective series capacitance, effective series inductance, impedance, effective series resistance, dc resistance, insulation resistance and time domain reflectometry (TDR) parameters. The circuits evaluated included pressurizer heaters, control rod position indicator cables, miscellaneous primary system Resistance Temperature Detectors (RTDs), nuclear instrumentation cables, and safety injection system motor operated valves. It is to be noted that the operability of these circuits was tested after several years had elapsed because plant operations had concluded at Shippingport. There was no need following plant shutdown to retain the circuits in working condition, so no effort was expended for that purpose. The in situ measurements and analysis of the data confirmed the effectiveness of the ECCAD system for detecting degradation of circuit connections and splices because of high resistance paths, with most of the problems caused by corrosion. Results indicate a correlation between the chronological age of circuits and circuit degradation

  7. Web-based eTutor for learningn electrical circuit analysis

    OpenAIRE

    Debono, Jason; Muscat, Adrian; Porter, Chris; Connections

    2018-01-01

    This paper discusses a web-based eTutor for learning electrical circuit analysis. The eTutor system components, mainly the user-interface and the assessment model, are described. The system architecture developed provides a framework to support interactive sessions between the human and the machine for the case when the human is a student and the machine a tutor and also for the case when the roles of the human and the machine are swapped. To motivate the usefulness of the data...

  8. Experimental verification of a thermal equivalent circuit dynamic model on an extended range electric vehicle battery pack

    Science.gov (United States)

    Ramotar, Lokendra; Rohrauer, Greg L.; Filion, Ryan; MacDonald, Kathryn

    2017-03-01

    The development of a dynamic thermal battery model for hybrid and electric vehicles is realized. A thermal equivalent circuit model is created which aims to capture and understand the heat propagation from the cells through the entire pack and to the environment using a production vehicle battery pack for model validation. The inclusion of production hardware and the liquid battery thermal management system components into the model considers physical and geometric properties to calculate thermal resistances of components (conduction, convection and radiation) along with their associated heat capacity. Various heat sources/sinks comprise the remaining model elements. Analog equivalent circuit simulations using PSpice are compared to experimental results to validate internal temperature nodes and heat rates measured through various elements, which are then employed to refine the model further. Agreement with experimental results indicates the proposed method allows for a comprehensive real-time battery pack analysis at little computational expense when compared to other types of computer based simulations. Elevated road and ambient conditions in Mesa, Arizona are simulated on a parked vehicle with varying quiescent cooling rates to examine the effect on the diurnal battery temperature for longer term static exposure. A typical daily driving schedule is also simulated and examined.

  9. Student use of model-based reasoning when troubleshooting an electric circuit

    Science.gov (United States)

    Dounas-Frazer, Dimitri

    2016-05-01

    Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.

  10. Modeling and simulation of equivalent circuits in description of biological systems - a fractional calculus approach

    Directory of Open Access Journals (Sweden)

    José Francisco Gómez Aguilar

    2012-07-01

    Full Text Available Using the fractional calculus approach, we present the Laplace analysis of an equivalent electrical circuit for a multilayered system, which includes distributed elements of the Cole model type. The Bode graphs are obtained from the numerical simulation of the corresponding transfer functions using arbitrary electrical parameters in order to illustrate the methodology. A numerical Laplace transform is used with respect to the simulation of the fractional differential equations. From the results shown in the analysis, we obtain the formula for the equivalent electrical circuit of a simple spectrum, such as that generated by a real sample of blood tissue, and the corresponding Nyquist diagrams. In addition to maintaining consistency in adjusted electrical parameters, the advantage of using fractional differential equations in the study of the impedance spectra is made clear in the analysis used to determine a compact formula for the equivalent electrical circuit, which includes the Cole model and a simple RC model as special cases.

  11. Improvement of diagnostic techniques and electrical circuit in azo dye degradation by high voltage electrical discharge

    International Nuclear Information System (INIS)

    Shen Yongjun; Lei Lecheng; Zhang Xingwang; Zhou Minghua; Zhang Yi

    2008-01-01

    Fast electrical diagnostics and improvement of electrical circuits for methyl orange (MO) degradation by high voltage pulsed electrical discharge were investigated. To eliminate electromagnetic radiation, several effective methods were employed. RG 218 coaxial cable was substituted for the common transmission lines to transmit high voltage pulses, and multi-lines in parallel were earthed to avoid electromagnetic interference and, additionally, to reduce the stray inductance of the electrical circuit and increase the pulse rise rate to reduce the energy losses in the transmission system. The problem of the differences in the bandwidths of voltage and current probes causing an error in the calculation of energy dissipation was avoided by reducing the bandwidths of voltage and current measurements to the same value. The real discharge current was obtained by subtracting the capacitive current from the total current. The energy per pulse obtained in the reactor before and after improvement of the diagnostics and electrical circuit were 15.5 mJ and 26.8 mJ, respectively, and the energy efficiencies of MO degradation were 1.34 x 10 -9 mol/J and 1.95 x 10 -9 mol/J, respectively

  12. Pre-Service and In-Service Physics Teachers' Ideas about Simple Electric Circuits

    Science.gov (United States)

    Kucukozer, Huseyin; Demirci, Neset

    2008-01-01

    The aim of the study is to determine pre-service and high school physics teachers' ideas about simple electric circuits. In this study, a test containing eight questions related to simple electric circuits was given to the pre-service physics teachers (32 subjects) that had graduated from Balikesir University, Necatibey Faculty of Education, the…

  13. A simple electric circuit model for proton exchange membrane fuel cells

    Science.gov (United States)

    Lazarou, Stavros; Pyrgioti, Eleftheria; Alexandridis, Antonio T.

    A simple and novel dynamic circuit model for a proton exchange membrane (PEM) fuel cell suitable for the analysis and design of power systems is presented. The model takes into account phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The proposed circuit model includes three resistors to approach adequately these phenomena; however, since for the PEM dynamic performance connection or disconnection of an additional load is of crucial importance, the proposed model uses two saturable inductors accompanied by an ideal transformer to simulate the double layer charging effect during load step changes. To evaluate the effectiveness of the proposed model its dynamic performance under load step changes is simulated. Experimental results coming from a commercial PEM fuel cell module that uses hydrogen from a pressurized cylinder at the anode and atmospheric oxygen at the cathode, clearly verify the simulation results.

  14. Global Current Circuit Structure in a Resistive Pulsar Magnetosphere Model

    Science.gov (United States)

    Kato, Yugo. E.

    2017-12-01

    Pulsar magnetospheres have strong magnetic fields and large amounts of plasma. The structures of these magnetospheres are studied using force-free electrodynamics. To understand pulsar magnetospheres, discussions must include their outer region. However, force-free electrodynamics is limited in it does not handle dissipation. Therefore, a resistive pulsar magnetic field model is needed. To break the ideal magnetohydrodynamic (MHD) condition E\\cdot B=0, Ohm’s law is used. This work introduces resistivity depending upon the distance from the star and obtain a self-consistent steady state by time integration. Poloidal current circuits form in the magnetosphere while the toroidal magnetic field region expands beyond the light cylinder and the Poynting flux radiation appears. High electric resistivity causes a large space scale poloidal current circuit and the magnetosphere radiates a larger Poynting flux than the linear increase outside of the light cylinder radius. The formed poloidal-current circuit has width, which grows with the electric conductivity. This result contributes to a more concrete dissipative pulsar magnetosphere model.

  15. Analogue Electrical Circuit for Simulation of the Duffing-Holmes Equation

    DEFF Research Database (Denmark)

    Tamaseviciute, E.; Tamasevicius, A.; Mykolaitis, G.

    2008-01-01

    An extremely simple second order analogue electrical circuit for simulating the two-well Duffing-Holmes mathematical oscillator is described. Numerical results and analogue electrical simulations are illustrated with the snapshots of chaotic waveforms, phase portraits (Lissajous figures...

  16. 30 CFR 56.4011 - Abandoned electric circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and...

  17. Application of group theory to proper vibrations in an electric circuit

    OpenAIRE

    Hosoya, Masahiko; 細谷, 将彦

    2010-01-01

    Group-theoretical analysis is first presented to three-dimensional behavior of an electric circuit. All the modes of proper vibration are found and assigned to each irreducible representation of symmetrical group of the circuit without solving its circuit equations. In order that an electromagnetic radiation from the outside may induce each vibration, a selection rule which is similar to that in infrared absorption must be fulfilled. The circuit may be used as a directive antenna.

  18. Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator

    OpenAIRE

    B. T. Hutsel; P. A. Corcoran; M. E. Cuneo; M. R. Gomez; M. H. Hess; D. D. Hinshelwood; C. A. Jennings; G. R. Laity; D. C. Lamppa; R. D. McBride; J. K. Moore; A. Myers; D. V. Rose; S. A. Slutz; W. A. Stygar

    2018-01-01

    We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-en...

  19. Using graph theory for automated electric circuit solving

    International Nuclear Information System (INIS)

    Toscano, L; Stella, S; Milotti, E

    2015-01-01

    Graph theory plays many important roles in modern physics and in many different contexts, spanning diverse topics such as the description of scale-free networks and the structure of the universe as a complex directed graph in causal set theory. Graph theory is also ideally suited to describe many concepts in computer science. Therefore it is increasingly important for physics students to master the basic concepts of graph theory. Here we describe a student project where we develop a computational approach to electric circuit solving which is based on graph theoretic concepts. This highly multidisciplinary approach combines abstract mathematics, linear algebra, the physics of circuits, and computer programming to reach the ambitious goal of implementing automated circuit solving. (paper)

  20. Equivalent Circuit Modeling of a Rotary Piezoelectric Motor

    DEFF Research Database (Denmark)

    El, Ghouti N.; Helbo, Jan

    2000-01-01

    In this paper, an enhanced equivalent circuit model of a rotary traveling wave piezoelectric ultrasonic motor "shinsei type USR60" is derived. The modeling is performed on the basis of an empirical approach combined with the electrical network method and some simplification assumptions about...... of the temperature on the mechanical resonance frequency is considered and thereby integrated in the final model for long term operations....

  1. System-Level Coupled Modeling of Piezoelectric Vibration Energy Harvesting Systems by Joint Finite Element and Circuit Analysis

    Directory of Open Access Journals (Sweden)

    Congcong Cheng

    2016-01-01

    Full Text Available A practical piezoelectric vibration energy harvesting (PVEH system is usually composed of two coupled parts: a harvesting structure and an interface circuit. Thus, it is much necessary to build system-level coupled models for analyzing PVEH systems, so that the whole PVEH system can be optimized to obtain a high overall efficiency. In this paper, two classes of coupled models are proposed by joint finite element and circuit analysis. The first one is to integrate the equivalent circuit model of the harvesting structure with the interface circuit and the second one is to integrate the equivalent electrical impedance of the interface circuit into the finite element model of the harvesting structure. Then equivalent circuit model parameters of the harvesting structure are estimated by finite element analysis and the equivalent electrical impedance of the interface circuit is derived by circuit analysis. In the end, simulations are done to validate and compare the proposed two classes of system-level coupled models. The results demonstrate that harvested powers from the two classes of coupled models approximate to theoretic values. Thus, the proposed coupled models can be used for system-level optimizations in engineering applications.

  2. Displacement damage analysis and modified electrical equivalent circuit for electron and photon-irradiated silicon solar cells

    Science.gov (United States)

    Arjhangmehr, Afshin; Feghhi, Seyed Amir Hossein

    2014-10-01

    Solar modules and arrays are the conventional energy resources of space satellites. Outside the earth's atmosphere, solar panels experience abnormal radiation environments and because of incident particles, photovoltaic (PV) parameters degrade. This article tries to analyze the electrical performance of electron and photon-irradiated mono-crystalline silicon (mono-Si) solar cells. PV cells are irradiated by mono-energetic electrons and poly-energetic photons and immediately characterized after the irradiation. The mean degradation of the maximum power (Pmax) of silicon solar cells is presented and correlated using the displacement damage dose (Dd) methodology. This method simplifies evaluation of cell performance in space radiation environments and produces a single characteristic curve for Pmax degradation. Furthermore, complete analysis of the results revealed that the open-circuit voltage (Voc) and the filling factor of mono-Si cells did not significantly change during the irradiation and were independent of the radiation type and fluence. Moreover, a new technique is developed that adapts the irradiation-induced effects in a single-cell equivalent electrical circuit and adjusts its elements. The "modified circuit" is capable of modeling the "radiation damage" in the electrical behavior of mono-Si solar cells and simplifies the designing of the compensation circuits.

  3. Stochastic Resonance Induced by Dichotomous Resistor in an Electric Circuit

    International Nuclear Information System (INIS)

    Li Jinghui; Han Yinxia

    2007-01-01

    An electric circuit with dichotomous resistor is investigated. It is shown that the amplitude of the average electric current washing the resistor represents the phenomenon of stochastic resonance, which is the response as a function of the correlation time of the dichotomous resistor.

  4. Comment on 'Current Budget of the Atmospheric Electric Global Circuit'

    Science.gov (United States)

    Driscoll, Kevin T.; Blakeslee, Richard J.

    1996-01-01

    In this paper, three major issues relevant to Kasemir's new model will be addressed. The first concerns Kasemir's assertion that there are significant differences between the potentials associated with the new model and the conventional model. A recalculation of these potentials reveals that both models provide equivalent results for the potential difference between the Earth and ionosphere. The second issue to be addressed is Kasemir's assertion that discrepancies in the electric potentials associated with both models can be attributed to modeling the Earth as a sphere, instead of as a planar surface. A simple analytical comparison will demonstrate that differences in the equations for the potentials of the atmosphere derived with a spherical and a planar Earth are negligible for applications to global current flow. Finally, the third issue to be discussed is Kasemir's claim that numerous aspects of the conventional model are incorrect, including the role of the ionosphere in global current flow as well as the significance of cloud-to-ground lightning in supplying charge to the global circuit. In order to refute these misconceptions, it will be shown that these aspects related to the flow of charge in the atmosphere are accurately described by the conventional model of the global circuit.

  5. Vacuum circuit breaker postarc current modelling based on the theory of Langmuir probes

    NARCIS (Netherlands)

    Lanen, van E.P.A.; Smeets, R.; Popov, M.; Sluis, van der L.

    2007-01-01

    High-resolution measurements on the postarc current in vacuum circuit breakers (VCBs) reveal a period, immediately following current-zero, in which the voltage remains practically zero. The most widely used model for simulating the interaction between the postarc current with the electrical circuit

  6. Web-Based Trainer for Electrical Circuit Analysis

    Science.gov (United States)

    Weyten, L.; Rombouts, P.; De Maeyer, J.

    2009-01-01

    A Web-based system for training electric circuit analysis is presented in this paper. It is centered on symbolic analysis techniques and it not only verifies the student's final answer, but it also tracks and coaches him/her through all steps of his/her reasoning path. The system mimics homework assignments, enhanced by immediate personalized…

  7. Comparison of the AWA lumped-circuit model of electrical discharges with empirical data

    International Nuclear Information System (INIS)

    Maier, W.B. II; Kadish, A.; Robiscoe, R.T.

    1990-01-01

    The authors compare experimental data for three 1.7-m-long transient discharges with an AWA lumped- circuit discharge model in which the arc resistance is taken from the Arc Welder's Ansatz, R a = V*/|I |, where V* is a positive constant and I is the discharge current. In addition to the arc resistance, there is a small series resistance R present in the external circuit. A single value for each of R and V* is deduced from the data, and these values are used to characterize all three discharges. Adequate agreement with the experimental data is obtained; for example, the authors predict the proper number of current reversals for each discharge and abrupt termination of current flow after a finite time. The authors suggest that the AWA lumped circuit provides a better representation of the data than a standard lumped-circuit RLC model and hence is more useful as a tool for prediction and interpretation of discharges

  8. Lumped-parameters equivalent circuit for condenser microphones modeling.

    Science.gov (United States)

    Esteves, Josué; Rufer, Libor; Ekeom, Didace; Basrour, Skandar

    2017-10-01

    This work presents a lumped parameters equivalent model of condenser microphone based on analogies between acoustic, mechanical, fluidic, and electrical domains. Parameters of the model were determined mainly through analytical relations and/or finite element method (FEM) simulations. Special attention was paid to the air gap modeling and to the use of proper boundary condition. Corresponding lumped-parameters were obtained as results of FEM simulations. Because of its simplicity, the model allows a fast simulation and is readily usable for microphone design. This work shows the validation of the equivalent circuit on three real cases of capacitive microphones, including both traditional and Micro-Electro-Mechanical Systems structures. In all cases, it has been demonstrated that the sensitivity and other related data obtained from the equivalent circuit are in very good agreement with available measurement data.

  9. Modeling of the Voltage Waves in the LHC Main Dipole Circuits

    CERN Document Server

    Ravaioli, E; Formenti, F; Steckert, J; Thiesen, H; Verweij, A

    2012-01-01

    When a fast power abort is triggered in the LHC main dipole chain, voltage transients are generated at the output of the power converter and across the energy-extraction switches. The voltage waves propagate through the chain of 154 superconducting dipoles and can have undesired effects leading to spurious triggering of the quench protection system and firing of the quench heaters. The phase velocity of the waves travelling along the chain changes due to the inhomogeneous AC behavior of the dipoles. Furthermore, complex phenomena of reflection and superposition are present in the circuit. For these reasons analytical calculations are not sufficient for properly analyzing the circuit behavior after a fast power abort. The transients following the switch-off of the power converter and the opening of the switches are analyzed by means of a complete electrical model, developed with the Cadence© suite (PSpice© based). The model comprises all the electrical components of the circuit, additional components simula...

  10. On electric vehicle battery charger modeling

    OpenAIRE

    Sainz Sapera, Luis; Mesas García, Juan José; Balcells Sendra, Josep

    2011-01-01

    The increase of electric vehicle (EV) battery chargers connected to electric networks could lead to future harmonic problems in power systems. These loads are nonlinear devices that inject harmonic currents and pollute network voltages. Thus, battery charger modeling must be studied in detail to determine their harmonic emissions and prevent future problems. This paper investigates EV battery charger behavior, analyzes its equivalent circuit and reports a model for each ...

  11. Text Based Analogy in Overcoming Student Misconception on Simple Electricity Circuit Material

    Science.gov (United States)

    Hesti, R.; Maknun, J.; Feranie, S.

    2017-09-01

    Some researcher have found that the use of analogy in learning and teaching physics was effective enough in giving comprehension in a complicated physics concept such as electrical circuits. Meanwhile, misconception become main cause that makes students failed when learning physics. To provide teaching physics effectively, the misconception should be resolved. Using Text Based Analogy is one of the way to identifying misconceptions and it is enough to assist teachers in conveying scientific truths in order to overcome misconceptions. The purpose of the study to investigate the use of text based analogy in overcoming students misconception on simple electrical circuit material. The samples of this research were 28 of junior high school students taken purposively from one high school in South Jakarta. The method use in this research is pre-experimental and design in one shot case study. Students who are the participants of sample have been identified misconception on the electrical circuit material by using the Diagnostic Test of Simple Electricity Circuit. The results of this study found that TBA can replace the misconceptions of the concept possessed by students with scientific truths conveyed in the text in a way that is easily understood so that TBA is strongly recommended to use in other physics materials.

  12. On the Possibility of the Jerk Derivative in Electrical Circuits

    Directory of Open Access Journals (Sweden)

    J. F. Gómez-Aguilar

    2016-01-01

    Full Text Available A subclass of dynamical systems with a time rate of change of acceleration are called Newtonian jerky dynamics. Some mechanical and acoustic systems can be interpreted as jerky dynamics. In this paper we show that the jerk dynamics are naturally obtained for electrical circuits using the fractional calculus approach with order γ. We consider fractional LC and RL electrical circuits with 1⩽γ<2 for different source terms. The LC circuit has a frequency ω dependent on the order of the fractional differential equation γ, since it is defined as ω(γ=ω0γγ1-γ, where ω0 is the fundamental frequency. For γ=3/2, the system is described by a third-order differential equation with frequency ω~ω03/2, and assuming γ=2 the dynamics are described by a fourth differential equation for jerk dynamics with frequency ω~ω02.

  13. In situ measurements of contributions to the global electrical circuit by a thunderstorm in southeastern Brazil

    Science.gov (United States)

    Thomas, J.N.; Holzworth, R.H.; McCarthy, M.P.

    2009-01-01

    The global electrical circuit, which maintains a potential of about 280??kV between the earth and the ionosphere, is thought to be driven mainly by thunderstorms and lightning. However, very few in situ measurements of electrical current above thunderstorms have been successfully obtained. In this paper, we present dc to very low frequency electric fields and atmospheric conductivity measured in the stratosphere (30-35??km altitude) above an active thunderstorm in southeastern Brazil. From these measurements, we estimate the mean quasi-static conduction current during the storm period to be 2.5 ?? 1.25??A. Additionally, we examine the transient conduction currents following a large positive cloud-to-ground (+ CG) lightning flash and typical - CG flashes. We find that the majority of the total current is attributed to the quasi-static thundercloud charge, rather than lightning, which supports the classical Wilson model for the global electrical circuit.

  14. Importance of Practical Relevance and Design Modules in Electrical Circuits Education

    Directory of Open Access Journals (Sweden)

    Kalpathy Sundaram

    2011-05-01

    Full Text Available The interactive technical electronic book, TechEBook, currently under development at the University of Central Florida (UCF, provides a useful tool for engineers and scientists through unique features compared to the most used traditional electrical circuit textbooks available in the market. TechEBook has comprised the two worlds of classical circuit books and an interactive operating platform such as iPads, laptops and desktops utilizing Java Virtual Machine operator. The TechEBook provides an interactive applets screen that holds many modules, in which each had a specific application in the self learning process. This paper describes two of the interactive techniques in the TechEBook known as, Practical Relevance Modules (PRM and Design Modules (DM. The Practical Relevance Module will assist the readers to learn electrical circuit analysis and to understand the practical application of the electrical network theory through solving real world examples and problems. The Design Module will help students design real-life problems. These modules will be displayed after each section in the TechEBook for the user to relate his/her understanding with the outside world, which introduces the term me-applying and me-designing, as a comprehensive full experience for self or individualized education. The main emphasis of this paper is the PRM while the DM will be discussed in brief. A practical example of applying the PRM and DM features is discussed as part of a basic electrical engineering course currently given at UCF and results show improved student performances in learning materials in Electrical Circuits. In the future, such modules can be redesigned to become highly interactive with illustrated animations.

  15. Verification and Analysis of Implementing Virtual Electric Devices in Circuit Simulation of Pulsed DC Electrical Devices in the NI MULTISIM 10.1 Environment

    Directory of Open Access Journals (Sweden)

    V. A. Solov'ev

    2015-01-01

    Full Text Available The paper presents the analysis results of the implementation potential and evaluation of the virtual electric devices reliability when conducting circuit simulation of pulsed DC electrical devices in the NI Multisim 10.1environment. It analyses metrological properties of electric measuring devices and sensors of the NI Multisim 10.1environment. To calculate the reliable parameters of periodic non-sinusoidal electrical values based on their physical feasibility the mathematical expressions have been defined.To verify the virtual electric devices a circuit model of the power section of buck DC converter with enabled devices under consideration at its input and output is used as a consumer of pulse current of trapezoidal or triangular form. It is used as an example to show a technique to verify readings of virtual electric measuring devices in the NI Multisim 10.1environment.It is found that when simulating the pulsed DC electric devices to measure average and RMS voltage supply and current consumption values it is advisable to use the probe. Electric device power consumption read from the virtual power meter is equal to its average value, and its displayed power factor is inversely proportional to the input current form factor. To determine the RMS pulsed DC current by ammeter and multi-meter it is necessary to measure current by these devices in DC and AC modes, and then determine the RMS value of measurement results.Virtual electric devices verification has proved the possibility of their application to determine the energy performance of transistor converters for various purposes in the circuit simulation in the NI 10.1 Multisim environment, thus saving time of their designing.

  16. Li-NMC Batteries Model Evaluation with Experimental Data for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    Aleksandra Baczyńska

    2018-02-01

    Full Text Available The aim of the paper is to present the battery equivalent circuit for electric vehicle application. Moreover, the model described below is dedicated to lithium-ion types of batteries. The purpose of this paper is to introduce an efficient and transparent method to develop a battery equivalent circuit model. Battery modeling requires, depending on the chosen method, either significant calculations or a highly developed mathematical model for optimization. The model is evaluated in comparison to the real data measurements, to present the performance of the method. Battery measurements based on charge/discharge tests at a fixed C-rate are presented to show the relation of the output voltage profiles with the battery state of charge. The pulse discharge test is presented to obtain the electric parameters of the battery equivalent circuit model, using a Thévenin circuit. According to the Reverse Trike Ecologic Electric Vehicle (VEECO RT characteristics used as a case study in this work, new values for vehicle autonomy and battery pack volume based on lithium nickel manganese cobalt oxide cells are evaluated.

  17. MATHEMATICAL MODELING OF TRANSIENT EMERGENCY ELECTROMAGNETIC PROCESSES IN THE SYSTEM OF THE ELECTROMAGNETIC TRACTION DC. 2. SHORT CIRCUIT WITH ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    P. E. Mihalichenko

    2010-04-01

    Full Text Available The article deals with the description of mathematical model of the system of traction electric power supply with load in the short circuit condition as well as the calculation results of this emergency process. The transition values as well as the character of their change, which can be used for detection of emergency processes, have been determined.

  18. Equivalent Electrical Circuits of Thermoelectric Generators under Different Operating Conditions

    Directory of Open Access Journals (Sweden)

    Saima Siouane

    2017-03-01

    Full Text Available Energy harvesting has become a promising and alternative solution to conventional energy generation patterns to overcome the problem of supplying autonomous electrical systems. More particularly, thermal energy harvesting technologies have drawn a major interest in both research and industry. Thermoelectric Generators (TEGs can be used in two different operating conditions, under constant temperature gradient or constant heat flow. The commonly used TEG electrical model, based on a voltage source in series with an electrical resistance, shows its limitations especially under constant heat flow conditions. Here, the analytical electrical modeling, taking into consideration the internal and contact thermal resistances of a TEG under constant temperature gradient and constant heat flow conditions, is first given. To give further insight into the electrical behavior of a TEG module in different operating conditions, we propose a new and original way of emulating the above analytical expressions with usual electronics components (voltage source, resistors, diode, whose values are determined with the TEG’s parameters. Note that such a TEG emulation is particularly suited when designing the electronic circuitry commonly associated to the TEG, to realize both Maximum Power Point Tracking and output voltage regulation. First, the proposed equivalent electrical circuits are validated through simulation with a SPICE environment in static operating conditions using only one value of either temperature gradient or heat flow. Then, they are also analyzed in dynamic operating conditions where both temperature gradient and heat flow are considered as time-varying functions.

  19. Java Based Symbolic Circuit Solver For Electrical Engineering Curriculum

    Directory of Open Access Journals (Sweden)

    Ruba Akram Amarin

    2012-11-01

    Full Text Available The interactive technical electronic book, TechEBook, currently under development at the University of Central Florida (UCF, introduces a paradigm shift by replacing the traditional electrical engineering course with topic-driven modules that provide a useful tool for engineers and scientists. The TechEBook comprises the two worlds of classical circuit books and interactive operating platforms such as iPads, laptops and desktops. The TechEBook provides an interactive applets screen that holds many modules, each of which has a specific application in the self learning process. This paper describes one of the interactive techniques in the TechEBook known as Symbolic Circuit Solver (SymCirc. The SymCirc develops a versatile symbolic based linear circuit with a switches solver. The solver works by accepting a Netlist and the element that the user wants to find the voltage across or current on, as input parameters. Then it either produces the plot or the time domain expression of the output. Frequency domain plots or Symbolic Transfer Functions are also produced. The solver gets its input from a Web-based GUI circuit drawer developed at UCF. Typical simulation tools that electrical engineers encounter are numerical in nature, that is, when presented with an input circuit they iteratively solve the circuit across a set of small time steps. The result is represented as a data set of output versus time, which can be plotted for further inspection. Such results do not help users understand the ultimate nature of circuits as Linear Time Invariant systems with a finite dimensional basis in the solution space. SymCirc provides all simulation results as time domain expressions composed of the basic functions that exclusively include exponentials, sines, cosines and/or t raised to any power. This paper explains the motivation behind SymCirc, the Graphical User Interface front end and how the solver actually works. The paper also presents some examples and

  20. Parameterization of electrical equivalent circuits for pem fuel cells; Parametrierung elektrischer Aequivalentschaltbilder von PEM Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Haubrock, J.

    2007-12-13

    Fuel cells are a very promising technology for energy conversion. For optimization purpose, useful simulation tools are needs. Simulation tools should simulate the static and dynamic electrical behaviour and the models should parameterized by measurment results which should be done easily. In this dissertation, a useful model for simulating a pem fuel cell is developed. the model should parametrizes by V-I curve measurment and by current step respond. The model based on electrical equivalent circuits and it is shown, that it is possible to simulate the dynamic behaviour of a pem fuel cell stack. The simulation results are compared by measurment results. (orig.)

  1. Analysis of electrical circuits with variable load regime parameters projective geometry method

    CERN Document Server

    Penin, A

    2015-01-01

    This book introduces electric circuits with variable loads and voltage regulators. It allows to define invariant relationships for various parameters of regime and circuit sections and to prove the concepts characterizing these circuits. Generalized equivalent circuits are introduced. Projective geometry is used for the interpretation of changes of operating regime parameters. Expressions of normalized regime parameters and their changes are presented. Convenient formulas for the calculation of currents are given. Parallel voltage sources and the cascade connection of multi-port networks are d

  2. Using circuit theory to model connectivity in ecology, evolution, and conservation.

    Science.gov (United States)

    McRae, Brad H; Dickson, Brett G; Keitt, Timothy H; Shah, Viral B

    2008-10-01

    Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.

  3. ELECTRICAL EQUIVALENT CIRCUIT OF BIOLOGICAL OBJECTS OF VEGETABLE

    Directory of Open Access Journals (Sweden)

    I. M. Golev

    2014-01-01

    Full Text Available Summary.The results of measurements of complex biological tissues electrical resistance of vegetable origin are presented. The measurements were performed at T=296 K in the frequency range from 5 to 500 kHz. As the electrodes were covered with tin (purity of 99.9% copper plates.. Experimentally investigated the following objects: samples parenchymal tissue of Apple in the form of cylinders with a diameter of 20 mm and a length of 20 mm; Apple juice, obtained by mechanical destruction of cells; pressed Apple pulp (juice content of not more than 20%obtained by the centrifugal separation, which destroyed the system of cells. For plant tissue with a holistic system of cells in the field 103 - 105 Hz is observed pronounced minimum angle of phase shift. In the absence of cells and its value is greatly reduced .The equivalent electrical circuit fabrics are considered. The calculation of all its elements is made. The equivalent capacitance of the electrical double layer at the interface of metal measuring electrode and extracellular fluid is element of C1 . The electrical resistance of this layer alternating current is characterized by the element R1 . Chain parallel connected resistance and capacitance describes the system of plant cells. The capacitance C2 is due to the electrical capacity of the cell membranes, and the resistance R2 is the electrical resistance of the membranes and intracellular space.The coincidence of experimental and calculated data in a frequency range of more than 103 Hz satisfactory. In the region of lower frequencies is observed differences. This may be due to the specific behavior of the electrical double layer. However, in the frequency region where the electrical properties of the cell structure of the investigated tissue match good, which proves the validity of the considered equivalent circuit. It is shown that the value of the complex electrical impedance of vegetable tissue in the frequency range from 103 Hz to 105

  4. ECAP-370/IFIN - A program for the analysis of electrical and electronic circuits

    International Nuclear Information System (INIS)

    Marinescu, C.D.

    1978-05-01

    A program to be used as a tool for electrical and electronic circuit design is presented. The program performs the DC, AC, and transient analysis for circuits with a given topological structure. (author)

  5. A new method for electric impedance imaging using an eddy current with a tetrapolar circuit.

    Science.gov (United States)

    Ahsan-Ul-Ambia; Toda, Shogo; Takemae, Tadashi; Kosugi, Yukio; Hongo, Minoru

    2009-02-01

    A new contactless technique for electrical impedance imaging, using an eddy current managed along with the tetrapolar circuit method, is proposed. The eddy current produced by a magnetic field is superimposed on a constant current that is normally used in the tetrapolar circuit method, and thus is used to control the current distribution in the body. By changing the current distribution, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in the image reconstruction of the resistivity distribution. The least square error minimization method is used in the reconstruction algorithm. The principle of this method is explained theoretically. A backprojection algorithm was used to get 2-D images. Based on this principle, a measurement system was developed and model experiments were conducted with a saline-filled phantom. The estimated shape of each model in the reconstructed image was similar to that of the corresponding model. From the results of these experiments, it is confirmed that the proposed method is applicable to the realization of electrical conductivity imaging.

  6. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    Science.gov (United States)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  7. A new nonlinear magnetic circuit model for dynamic analysis of interior permanent magnet synchronous motor

    International Nuclear Information System (INIS)

    Nakamura, Kenji; Saito, Kenichi; Watanabe, Tadaaki; Ichinokura, Osamu

    2005-01-01

    Interior permanent magnet synchronous motors (IPMSMs) have high efficiency and torque, since the motors can utilize reluctance torque in addition to magnet torque. The IPMSMs are widely used for electric household appliances and electric bicycles and vehicles. A quantitative analysis method of dynamic characteristics of the IPMSMs, however, has not been clarified fully. For optimum design, investigation of dynamic characteristics considering magnetic nonlinearity is needed. This paper presents a new nonlinear magnetic circuit model of an IPMSM, and suggests a dynamic analysis method using the proposed magnetic circuit model

  8. Fractional RC and LC Electrical Circuits

    Directory of Open Access Journals (Sweden)

    Gómez-Aguilar José Francisco

    2014-04-01

    Full Text Available In this paper we propose a fractional differential equation for the electrical RC and LC circuit in terms of the fractional time derivatives of the Caputo type. The order of the derivative being considered is 0 < ɣ ≤1. To keep the dimensionality of the physical parameters R, L, C the new parameter σ is introduced. This parameter characterizes the existence of fractional structures in the system. A relation between the fractional order time derivative ɣ and the new parameter σ is found. The numeric Laplace transform method was used for the simulation of the equations results. The results show that the fractional differential equations generalize the behavior of the charge, voltage and current depending of the values of ɣ. The classical cases are recovered by taking the limit when ɣ = 1. An analysis in the frequency domain of an RC circuit shows the application and use of fractional order differential equations.

  9. A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling

    KAUST Repository

    Bera, Tushar Kanti

    2016-12-05

    Under an alternating electrical signal, biological tissues produce a complex electrical bioimpedance that is a function of tissue composition and applied signal frequencies. By studying the bioimpedance spectra of biological tissues over a wide range of frequencies, we can noninvasively probe the physiological properties of these tissues to detect possible pathological conditions. Electrical impedance spectroscopy (EIS) can provide the spectra that are needed to calculate impedance parameters within a wide range of frequencies. Before impedance parameters can be calculated and tissue information extracted, impedance spectra should be processed and analyzed by a dedicated software program. National Instruments (NI) Inc. offers LabVIEW, a fast, portable, robust, user-friendly platform for designing dataanalyzing software. We developed a LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) to analyze the electrical impedance spectra for tissue characterization in medical, biomedical and biological applications. Here, we test, calibrate and evaluate the performance of LEBISDI on the impedance data obtained from simulation studies as well as the practical EIS experimentations conducted on electronic circuit element combinations and the biological tissue samples. We analyze the Nyquist plots obtained from the EIS measurements and compare the equivalent circuit parameters calculated by LEBISDI with the corresponding original circuit parameters to assess the accuracy of the program developed. Calibration studies show that LEBISDI not only interpreted the simulated and circuitelement data accurately, but also successfully interpreted tissues impedance data and estimated the capacitive and resistive components produced by the compositions biological cells. Finally, LEBISDI efficiently calculated and analyzed variation in bioimpedance parameters of different tissue compositions, health and temperatures. LEBISDI can also be used for human tissue

  10. A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling

    KAUST Repository

    Bera, Tushar Kanti; Jampana, Nagaraju; Lubineau, Gilles

    2016-01-01

    Under an alternating electrical signal, biological tissues produce a complex electrical bioimpedance that is a function of tissue composition and applied signal frequencies. By studying the bioimpedance spectra of biological tissues over a wide range of frequencies, we can noninvasively probe the physiological properties of these tissues to detect possible pathological conditions. Electrical impedance spectroscopy (EIS) can provide the spectra that are needed to calculate impedance parameters within a wide range of frequencies. Before impedance parameters can be calculated and tissue information extracted, impedance spectra should be processed and analyzed by a dedicated software program. National Instruments (NI) Inc. offers LabVIEW, a fast, portable, robust, user-friendly platform for designing dataanalyzing software. We developed a LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) to analyze the electrical impedance spectra for tissue characterization in medical, biomedical and biological applications. Here, we test, calibrate and evaluate the performance of LEBISDI on the impedance data obtained from simulation studies as well as the practical EIS experimentations conducted on electronic circuit element combinations and the biological tissue samples. We analyze the Nyquist plots obtained from the EIS measurements and compare the equivalent circuit parameters calculated by LEBISDI with the corresponding original circuit parameters to assess the accuracy of the program developed. Calibration studies show that LEBISDI not only interpreted the simulated and circuitelement data accurately, but also successfully interpreted tissues impedance data and estimated the capacitive and resistive components produced by the compositions biological cells. Finally, LEBISDI efficiently calculated and analyzed variation in bioimpedance parameters of different tissue compositions, health and temperatures. LEBISDI can also be used for human tissue

  11. Turkish Students' Conceptions about the Simple Electric Circuits

    Science.gov (United States)

    Cepni, Salih; Keles, Esra

    2006-01-01

    In this study, the Turkish students' understanding level of electric circuits consisting of two bulbs and one battery was investigated by using open-ended questions. Two-hundred fifty students, whose ages range from 11 to 22, were chosen from five different groups at primary, secondary and university levels in Trabzon in Turkey. In analyzing…

  12. Incorrectness of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional circular composite pipes

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Chen, W.-L.; Yu, S.-J.

    2008-01-01

    This study is to prove that two-dimensional steady state heat transfer problems of composite circular pipes cannot be appropriately solved by the conventional one-dimensional parallel thermal resistance circuits (PTRC) model because its interface temperatures are not unique. Thus, the PTRC model is definitely different from its conventional recognized analogy, parallel electrical resistance circuits (PERC) model, which has unique node electric voltages. Two typical composite circular pipe examples are solved by CFD software, and the numerical results are compared with those obtained by the PTRC model. This shows that the PTRC model generates large error. Thus, this conventional model, introduced in most heat transfer text books, cannot be applied to two-dimensional composite circular pipes. On the contrary, an alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to a two-dimensional composite circular pipe with isothermal boundaries, and acceptable results are returned

  13. Color Coding of Circuit Quantities in Introductory Circuit Analysis Instruction

    Science.gov (United States)

    Reisslein, Jana; Johnson, Amy M.; Reisslein, Martin

    2015-01-01

    Learning the analysis of electrical circuits represented by circuit diagrams is often challenging for novice students. An open research question in electrical circuit analysis instruction is whether color coding of the mathematical symbols (variables) that denote electrical quantities can improve circuit analysis learning. The present study…

  14. Crisis induced intermittency in a fourth-order autonomous electric circuit

    International Nuclear Information System (INIS)

    Stouboulos, I.N.; Miliou, A.N.; Valaristos, A.P.; Kyprianidis, I.M.; Anagnostopoulos, A.N.

    2007-01-01

    The chaotic dynamics of a fourth-order autonomous nonlinear electric circuit has been studied. The circuit consists of two active elements, one linear negative conductance and one nonlinear resistor exhibiting a symmetrical piecewise-linear v-i characteristic and two capacitances C 1 and C 2 , which serve as the control parameters of the system. Experimental time series and the corresponding phase portraits were used to register the intermittent behaviour of the corresponding dynamical system between two interacting subattractors. The distribution of the times τ, between successive transitions from the one subattractor to the other indicates that a crisis induced intermittency occurs in the studied circuit

  15. Numerical simulation for arc-plasma dynamics during contact opening process in electrical circuit-breakers

    International Nuclear Information System (INIS)

    Gupta, D N; Srinivas, D; Patil, G N; Kale, S S; Potnis, S B

    2010-01-01

    The high-energy, high-current thermal plasma that develops between electric contacts in a gas circuit-breaker during circuit interruption is an important phenomenon in the power transmission industry. The high temperature and pressure arc dissipates the tremendous amount of energy generated by the fault current. Simultaneously, this energy has to be transferred away from the contacts to build the dielectric strength level of the circuit-breaker. In order to interrupt the current, the arc must be weakened and finally extinguished. We model these phenomena by using a computer software code based on the solution of the unsteady Euler equations of gas dynamics. We consider the equations of fluid flows. These equations are solved numerically in complex circuit breaker geometries using a finite-volume method. The domain is initially filled with SF 6 gas. We begin our simulations from cold mode, where the fault current is not present (hence no arc). An axis-symmetric geometry of a 145 kV gas circuit-breaker is considered to study the pressure, density, and temperature profile during contact opening process.

  16. Variant of multimodal vibration damping of electroviscoelastic structures by appropriate choice of external electric circuit parameters

    Directory of Open Access Journals (Sweden)

    Dmitrii A. Oshmarin

    2016-09-01

    Full Text Available In technical applications it takes place the problem of vibration damping in certain regions of the structure, at the location of optical sensors for instance, at any external dynamic excitations with no mass increase and no changes in spectral portrait. In order to solve these problems it is widespread the use of special damping devices: piezoelectric elements connected to external electric circuits and attached to the structure. It became possible due to piezoelectric effect, which provides transformation of part of energy of vibrations into electric one, which is dissipated in external electric circuit. So that by using appropriate electric circuits one may dissipate internal energy and therefore reduce structural vibrations in definite frequency range. As a rule, external circuit of single branch, which shunts single piezoelectric element, allows vibration damping on one certain frequency. Due to the fact, that practical applications usually include requirements of damping of several modes by one and the same technical devices, the problem of multimodal vibration damping in smart-structures is rather acute. The objective of this paper is the study of possibility of vibration damping on several modes by using single external series RL-circuit, connected to electrodes of single piezoelectric element on the basis of solution of problems on natural and forced steady-state vibrations of electroelastic systems with external electric circuits.

  17. Circuit analysis for dummies

    CERN Document Server

    Santiago, John

    2013-01-01

    Circuits overloaded from electric circuit analysis? Many universities require that students pursuing a degree in electrical or computer engineering take an Electric Circuit Analysis course to determine who will ""make the cut"" and continue in the degree program. Circuit Analysis For Dummies will help these students to better understand electric circuit analysis by presenting the information in an effective and straightforward manner. Circuit Analysis For Dummies gives you clear-cut information about the topics covered in an electric circuit analysis courses to help

  18. Electrical breakthrough effect for end pointing in 90 and 45 nm node circuit edit

    International Nuclear Information System (INIS)

    Liu, Kun; Soskov, Alex; Scipioni, Larry; Bassom, Neil; Sijbrandij, Sybren; Smith, Gerald

    2006-01-01

    The interaction between high-energy Ga + ions and condensed matter is studied for circuit edit applications. A new 'electrical breakthrough effect' due to charging of, and Ga + penetration/doping into, dielectrics is discovered. This new effect is proposed for end pointing in 90 and 45 nm node circuit edits where integrated circuit device dimensions are of a few hundred nanometers. This new end point approach is very sensitive, reliable, and precise. Most importantly, it is not sensitive to device dimensions. A series of circuit edits involving milling holes of high aspect ratio (5-30) and small cross-section area (0.01-0.25 μm 2 ) on real chips has been successfully performed using the electrical breakthrough effect as the end point method

  19. Physical and electrical characterization of corundum substrates and epitaxial silicon layers in view of fabricating integrated circuits

    International Nuclear Information System (INIS)

    Trilhe, J.; Legal, H.; Rolland, G.

    1975-01-01

    The S.O.S. technology (silicon on insulating substrate) allows compact, radiation hard, fast integrated circuits to be fabricated. It is noticeable that complex integrated circuits on corundum substrates obtained with various fabrication processes have various electrical characteristics. Possible correlations between the macroscopic defects of the substrate and the electrical characteristics of the circuit were investigated [fr

  20. SPICE Modeling of Body Bias Effect in 4H-SiC Integrated Circuit Resistors

    Science.gov (United States)

    Neudeck, Philip G.

    2017-01-01

    The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500C durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.

  1. The inaccuracy of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional composite walls

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Hsiao, M.-C.; Chen, W.-L.; Lin, K.-C.

    2008-01-01

    This investigation is to show that two-dimensional steady state heat transfer problems of composite walls should not be solved by the conventionally one-dimensional parallel thermal resistance circuits (PTRC) model because the interface temperatures are not unique. Thus PTRC model cannot be used like its conventional recognized analogy, parallel electrical resistance circuits (PERC) model which has the unique node electric voltage. Two typical composite wall examples, solved by CFD software, are used to demonstrate the incorrectness. The numerical results are compared with those obtained by PTRC model, and very large differences are observed between their results. This proves that the application of conventional heat transfer PTRC model to two-dimensional composite walls, introduced in most heat transfer text book, is totally incorrect. An alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to the two-dimensional composite walls with isothermal boundaries. Results with acceptable accuracy can be obtained by the new model

  2. A universal calculation model for the controlled electric transmission line

    International Nuclear Information System (INIS)

    Zivzivadze, O.; Zivzivadze, L.

    2009-01-01

    Difficulties associated with the development of calculation models are analyzed, and the ways of resolution of these problems are given. A version of the equivalent circuit as a six-pole network, the parameters of which do not depend on the angle of shift Θ between the voltage vectors of circuits is offered. The interrelation between the parameters of the equivalent circuit and the transmission constants of the line was determined. A universal calculation model for the controlled electric transmission line was elaborated. The model allows calculating the stationary modes of lines of such classes at any angle of shift Θ between the circuits. (author)

  3. Chaotic behaviour of a fourth-order autonomous electric circuit

    International Nuclear Information System (INIS)

    Koliopanos, Ch.L.; Kyprianidis, I.M.; Stouboulos, I.N.; Anagnostopoulos, A.N.; Magafas, L.

    2003-01-01

    The chaotic dynamics of a fourth-order autonomous nonlinear electric circuit was studied by measuring its response in the form of chaotic time series. The circuit consists of two active elements, one linear negative conductance and one nonlinear resistor exhibiting a symmetrical piecewise-linear v-i characteristic and two capacitances C 1 and C 2 , which serve as the control parameters of the system. From the experimental time series the minimum embedding dimensions m min =4, correlation dimensions ν, with positive noninteger values, and Kolmogorov entropies, tending to constant positive values, were determined by numerical evaluation for the examined states of the system

  4. Factors influencing the reliability of non-electric detonating circuit in underground uranium mines and preventive measures of misfiring

    International Nuclear Information System (INIS)

    Li Qin

    2010-01-01

    Characteristics of non-electric detonating circuit are introduced. The main factors influencing the reliability of non-electric detonating circuit are described. Taking an underground blasting of a uranium mine for example, the reliability of various kinds of detonating network system is calculated using the reliability theory and numerical analysis method. The reasons that cause the misfiring in non-electric detonating circuit system are analyzed, and preventive measures are put forward.(authors)

  5. An Investigation of the Electrical Short Circuit Characteristics of Tin Whiskers

    Science.gov (United States)

    Courey, Karim J.

    2008-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. Also, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross-sectioned and studied using a focused ion beam (FIB). The rare polycrystalline structure seen in the FIB cross section was confirmed using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size to determine that the tin plating on the card guides had a bright finish.

  6. Model-based evaluation of the short-circuited tripolar cuff configuration.

    Science.gov (United States)

    Andreasen, Lotte N S; Struijk, Johannes J

    2006-05-01

    Recordings of neural information for use as feedback in functional electrical stimulation are often contaminated with interfering signals from muscles and from stimulus pulses. The cuff electrode used for the neural recording can be optimized to improve the S/I ratio. In this work, we evaluate a model of both the nerve signal and the interfering signals recorded by a cuff, and subsequently use this model to study the signal to interference ratio of different cuff designs and to evaluate a recently introduced short-circuited tripolar cuff configuration. The results of the model showed good agreement with results from measurements in rabbits and confirmed the superior performance of the short-circuited tripolar configuration as compared with the traditionally used tripolar configuration.

  7. Joule-Thief Circuit Performance for Electricity Energy Saving of Emergency Lamps

    Science.gov (United States)

    Nuryanto Budisusila, Eka; Arifin, Bustanul

    2017-04-01

    The alternative energy such as battery as power source is required as energy source failures. The other need is outdoor lighting. The electrical power source is expected to be a power saving, optimum and has long life operating. The Joule-Thief circuit is one of solution method for energy saving by using raised electromagnetic force on cored coil when there is back-current. This circuit has a transistor operated as a switch to cut voltage and current flowing along the coils. The present of current causing magnetic induction and generates energy. Experimental prototype was designed by using battery 1.5V to activate Light Emitting Diode or LED as load. The LED was connected in parallel or serial circuit configuration. The result show that the joule-thief circuit able to supply LED circuits up to 40 LEDs.

  8. Integrated electric circuit CAD system in Minolta Camera Co. Ltd

    Energy Technology Data Exchange (ETDEWEB)

    Nakagami, Tsuyoshi; Hirata, Sumiaki; Matsumura, Fumihiko

    1988-08-26

    Development background, fundamental concept, details and future plan of the integrated electric circuit CAD system for OA equipment are presented. The central integrated database is basically intended to store experiences or know-hows, to cover the wide range of data required for designs, and to provide a friendly interface. This easy-to-use integrated database covers the drawing data, parts information, design standards, know-hows and system data. The system contains the circuit design function to support drawing circuit diagrams, the wiring design function to support the wiring and arrangement of printed circuit boards and various parts integratedly, and the function to verify designs, to make full use of parts or technical information, to maintain the system security. In the future, as the system will be wholly in operation, the design period reduction, quality improvement and cost saving will be attained by this integrated design system. (19 figs, 2 tabs)

  9. Electrical and thermal modeling of railguns

    International Nuclear Information System (INIS)

    Kerrisk, J.F.

    1984-01-01

    Electrical and thermal modeling of railguns at Los Alamos has been done for two purposes: (1) to obtain detailed information about the behavior of specific railgun components such as the rails, and (2) to predict overall performance of railgun tests. Detailed electrical and thermal modeling has concentrated on calculations of the inductance and surface current distribution of long parallel conductors in the high-frequency limit and on calculations of current and thermal diffusion in rails. Inductance calculations for various rail cross sections and for magnetic flux compression generators (MFCG) have been done. Inductance and current distribution results were compared with experimental measurements. Twodimensional calculations of current and thermal diffusion in rail cross sections have been done; predictions of rail heating and melting as a function of rail size and total current have been made. An overall performance model of a railgun and power supply has been developed and used to design tests at Los Alamos. The lumped-parameter circuit model uses results from the detailed inductance and current diffusion calculations along with other circuit component models to predict rail current and projectile acceleration, velocity, and position as a function of time

  10. Modelling of optoelectronic circuits based on resonant tunneling diodes

    Science.gov (United States)

    Rei, João. F. M.; Foot, James A.; Rodrigues, Gil C.; Figueiredo, José M. L.

    2017-08-01

    Resonant tunneling diodes (RTDs) are the fastest pure electronic semiconductor devices at room temperature. When integrated with optoelectronic devices they can give rise to new devices with novel functionalities due to their highly nonlinear properties and electrical gain, with potential applications in future ultra-wide-band communication systems (see e.g. EU H2020 iBROW Project). The recent coverage on these devices led to the need to have appropriated simulation tools. In this work, we present RTD based optoelectronic circuits simulation packages to provide circuit signal level analysis such as transient and frequency responses. We will present and discuss the models, and evaluate the simulation packages.

  11. Electric circuit coupling of a slotted semi-analytical model for induction motors based on harmonic modeling

    NARCIS (Netherlands)

    Sprangers, R.L.J.; Paulides, J.J.H.; Gysen, B.L.J.; Waarma, J.; Lomonova, E.A.

    2014-01-01

    The use of empirically determined coefficients to include the effects of leakage and fringing flux is a large drawback of traditional induction motor (IM) models, such as lumped parameter, magnetic equivalent circuit and anisotropic layer models. As an alternative, Finite Element Analysis (FEA) is

  12. Electrical Quality Assurance of the Superconducting Circuits during LHC Machine Assembly

    CERN Document Server

    Bozzini, D; Desebe, O; Mess, K H; Russenschuck, Stephan; Bednarek, M; Dworak, D; Górnicki, E; Jurkiewicz, P; Kapusta, P; Kotarba, A; Ludwin, J; Olek, S; Talach, M; Zieblinski, M; Klisch, M; Prochal, B

    2008-01-01

    Based on the LHC powering reference database, all-together 1750 superconducting circuits were connected in the various cryogenic transfer lines of the LHC machine. Testing the continuity, magnet polarity, and the quality of the electrical insulation were the main tasks of the Electrical Quality Assurance (ELQA) activities during the LHC machine assembly. With the assembly of the LHC now complete, the paper reviews the work flow, resources, and the qualification results including the different types of electrical non-conformities.

  13. Electrical short circuit and current overload tests on aircraft wiring

    Science.gov (United States)

    Cahill, Patricia

    1995-01-01

    The findings of electrical short circuit and current overload tests performed on commercial aircraft wiring are presented. A series of bench-scale tests were conducted to evaluate circuit breaker response to overcurrent and to determine if the wire showed any visible signs of thermal degradation due to overcurrent. Three types of wire used in commercial aircraft were evaluated: MIL-W-22759/34 (150 C rated), MIL-W-81381/12 (200 C rated), and BMS 1360 (260 C rated). A second series of tests evaluated circuit breaker response to short circuits and ticking faults. These tests were also meant to determine if the three test wires behaved differently under these conditions and if a short circuit or ticking fault could start a fire. It is concluded that circuit breakers provided reliable overcurrent protection. Circuit breakers may not protect wire from ticking faults but can protect wire from direct shorts. These tests indicated that the appearance of a wire subjected to a current that totally degrades the insulation looks identical to a wire subjected to a fire; however the 'fire exposed' conductor was more brittle than the conductor degraded by overcurrent. Preliminary testing indicates that direct short circuits are not likely to start a fire. Preliminary testing indicated that direct short circuits do not erode insulation and conductor to the extent that ticking faults did. Circuit breakers may not safeguard against the ignition of flammable materials by ticking faults. The flammability of materials near ticking faults is far more important than the rating of the wire insulation material.

  14. New equivalent lumped electrical circuit for piezoelectric transformers.

    Science.gov (United States)

    Gonnard, Paul; Schmitt, P M; Brissaud, Michel

    2006-04-01

    A new equivalent circuit is proposed for a contour-vibration-mode piezoelectric transformer (PT). It is shown that the usual lumped equivalent circuit derived from the conventional Mason approach is not accurate. The proposed circuit, built on experimental measurements, makes an explicit difference between the elastic energies stored respectively on the primary and secondary parts. The experimental and theoretical resonance frequencies with the secondary in open or short circuit are in good agreement as well as the output "voltage-current" characteristic and the optimum efficiency working point. This circuit can be extended to various PT configurations and appears to be a useful tool for modeling electronic devices that integrate piezoelectric transformers.

  15. Global Electric Circuit Implications of Total Current Measurements over Electrified Clouds

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2009-01-01

    We determined total conduction (Wilson) currents and flash rates for 850 overflights of electrified clouds spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative Wilson currents. We combined these individual storm overflight statistics with global diurnal lightning variation data from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to estimate the thunderstorm and electrified shower cloud contributions to the diurnal variation in the global electric circuit. The contributions to the global electric circuit from lightning producing clouds are estimated by taking the mean current per flash derived from the overflight data for land and ocean overflights and combining it with the global lightning rates (for land and ocean) and their diurnal variation derived from the LIS/OTD data. We estimate the contribution of non-lightning producing electrified clouds by assuming several different diurnal variations and total non-electrified storm counts to produce estimates of the total storm currents (lightning and non-lightning producing storms). The storm counts and diurnal variations are constrained so that the resultant total current diurnal variation equals the diurnal variation in the fair weather electric field (+/-15%). These assumptions, combined with the airborne and satellite data, suggest that the total mean current in the global electric circuit ranges from 2.0 to 2.7 kA, which is greater than estimates made by others using other methods.

  16. Student generated assignments about electrical circuits in a computer simulation

    NARCIS (Netherlands)

    Vreman-de Olde, Cornelise; de Jong, Anthonius J.M.

    2004-01-01

    In this study we investigated the design of assignments by students as a knowledge-generating activity. Students were required to design assignments for 'other students' in a computer simulation environment about electrical circuits. Assignments consisted of a question, alternatives, and feedback on

  17. Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator

    Science.gov (United States)

    Hutsel, B. T.; Corcoran, P. A.; Cuneo, M. E.; Gomez, M. R.; Hess, M. H.; Hinshelwood, D. D.; Jennings, C. A.; Laity, G. R.; Lamppa, D. C.; McBride, R. D.; Moore, J. K.; Myers, A.; Rose, D. V.; Slutz, S. A.; Stygar, W. A.; Waisman, E. M.; Welch, D. R.; Whitney, B. A.

    2018-03-01

    We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-energy-storage capacitor, laser-triggered gas switch, pulse-forming line, self-break water switches, and tri-plate transmission lines. The circuit model also includes elements that represent Zs water convolute, vacuum insulator stack, four parallel outer magnetically insulated vacuum transmission lines (MITLs), double-post-hole vacuum convolute, inner vacuum MITL, and physics load. Within the vacuum-transmission-line system the model conducts analytic calculations of current loss. To calculate the loss, the model simulates the following processes: (i) electron emission from MITL cathode surfaces wherever an electric-field threshold has been exceeded; (ii) electron loss in the MITLs before magnetic insulation has been established; (iii) flow of electrons emitted by the outer-MITL cathodes after insulation has been established; (iv) closure of MITL anode-cathode (AK) gaps due to expansion of cathode plasma; (v) energy loss to MITL conductors operated at high lineal current densities; (vi) heating of MITL-anode surfaces due to conduction current and deposition of electron kinetic energy; (vii) negative-space-charge-enhanced ion emission from MITL anode surfaces wherever an anode-surface-temperature threshold has been exceeded; and (viii) closure of MITL AK gaps due to expansion of anode plasma. The circuit model is expected to be most accurate when the fractional current loss is small. We have performed circuit simulations of 52 Z experiments conducted with a variety of accelerator

  18. Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator

    Directory of Open Access Journals (Sweden)

    B. T. Hutsel

    2018-03-01

    Full Text Available We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-energy-storage capacitor, laser-triggered gas switch, pulse-forming line, self-break water switches, and tri-plate transmission lines. The circuit model also includes elements that represent Zs water convolute, vacuum insulator stack, four parallel outer magnetically insulated vacuum transmission lines (MITLs, double-post-hole vacuum convolute, inner vacuum MITL, and physics load. Within the vacuum-transmission-line system the model conducts analytic calculations of current loss. To calculate the loss, the model simulates the following processes: (i electron emission from MITL cathode surfaces wherever an electric-field threshold has been exceeded; (ii electron loss in the MITLs before magnetic insulation has been established; (iii flow of electrons emitted by the outer-MITL cathodes after insulation has been established; (iv closure of MITL anode-cathode (AK gaps due to expansion of cathode plasma; (v energy loss to MITL conductors operated at high lineal current densities; (vi heating of MITL-anode surfaces due to conduction current and deposition of electron kinetic energy; (vii negative-space-charge-enhanced ion emission from MITL anode surfaces wherever an anode-surface-temperature threshold has been exceeded; and (viii closure of MITL AK gaps due to expansion of anode plasma. The circuit model is expected to be most accurate when the fractional current loss is small. We have performed circuit simulations of 52 Z experiments conducted with a

  19. Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion

    Directory of Open Access Journals (Sweden)

    Alexandros Nikolian

    2016-05-01

    Full Text Available In this paper, advanced equivalent circuit models (ECMs were developed to model large format and high energy nickel manganese cobalt (NMC lithium-ion 20 Ah battery cells. Different temperatures conditions, cell characterization test (Normal and Advanced Tests, ECM topologies (1st and 2nd Order Thévenin model, state of charge (SoC estimation techniques (Coulomb counting and extended Kalman filtering and validation profiles (dynamic discharge pulse test (DDPT and world harmonized light vehicle profiles have been incorporated in the analysis. A concise state-of-the-art of different lithium-ion battery models existing in the academia and industry is presented providing information about model classification and information about electrical models. Moreover, an overview of the different steps and information needed to be able to create an ECM model is provided. A comparison between begin of life (BoL and aged (95%, 90% state of health ECM parameters (internal resistance (Ro, polarization resistance (Rp, activation resistance (Rp2 and time constants (τ is presented. By comparing the BoL to the aged parameters an overview of the behavior of the parameters is introduced and provides the appropriate platform for future research in electrical modeling of battery cells covering the ageing aspect. Based on the BoL parameters 1st and 2nd order models were developed for a range of temperatures (15 °C, 25 °C, 35 °C, 45 °C. The highest impact to the accuracy of the model (validation results is the temperature condition that the model was developed. The 1st and 2nd order Thévenin models and the change from normal to advanced characterization datasets, while they affect the accuracy of the model they mostly help in dealing with high and low SoC linearity problems. The 2nd order Thévenin model with advanced characterization parameters and extended Kalman filtering SoC estimation technique is the most efficient and dynamically correct ECM model developed.

  20. Silicon photonic integrated circuits with electrically programmable non-volatile memory functions.

    Science.gov (United States)

    Song, J-F; Lim, A E-J; Luo, X-S; Fang, Q; Li, C; Jia, L X; Tu, X-G; Huang, Y; Zhou, H-F; Liow, T-Y; Lo, G-Q

    2016-09-19

    Conventional silicon photonic integrated circuits do not normally possess memory functions, which require on-chip power in order to maintain circuit states in tuned or field-configured switching routes. In this context, we present an electrically programmable add/drop microring resonator with a wavelength shift of 426 pm between the ON/OFF states. Electrical pulses are used to control the choice of the state. Our experimental results show a wavelength shift of 2.8 pm/ms and a light intensity variation of ~0.12 dB/ms for a fixed wavelength in the OFF state. Theoretically, our device can accommodate up to 65 states of multi-level memory functions. Such memory functions can be integrated into wavelength division mutiplexing (WDM) filters and applied to optical routers and computing architectures fulfilling large data downloading demands.

  1. Representative-Sandwich Model for Mechanical-Crush and Short-Circuit Simulation of Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-07-28

    Lithium-ion batteries are currently the state-of-the-art power sources for a variety of applications, from consumer electronic devices to electric-drive vehicles (EDVs). Being an energized component, failure of the battery is an essential concern, which can result in rupture, smoke, fire, or venting. The failure of Lithium-ion batteries can be due to a number of external abusive conditions (impact/crush, overcharge, thermal ramp, etc.) or internal conditions (internal short circuits, excessive heating due to resistance build-up, etc.), of which the mechanical-abuse-induced short circuit is a very practical problem. In order to better understand the behavior of Lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, thermal and electrical response has been developed for predicting short circuit under external crush.

  2. Experimental Device for Learning of Logical Circuit Design using Integrated Circuits

    OpenAIRE

    石橋, 孝昭

    2012-01-01

    This paper presents an experimental device for learning of logical circuit design using integrated circuits and breadboards. The experimental device can be made at a low cost and can be used for many subjects such as logical circuits, computer engineering, basic electricity, electrical circuits and electronic circuits. The proposed device is effective to learn the logical circuits than the usual lecture.

  3. Technological Literacy Learning with Cumulative and Stepwise Integration of Equations into Electrical Circuit Diagrams

    Science.gov (United States)

    Ozogul, G.; Johnson, A. M.; Moreno, R.; Reisslein, M.

    2012-01-01

    Technological literacy education involves the teaching of basic engineering principles and problem solving, including elementary electrical circuit analysis, to non-engineering students. Learning materials on circuit analysis typically rely on equations and schematic diagrams, which are often unfamiliar to non-engineering students. The goal of…

  4. Method of boundary testing of the electric circuits and its application for calculating electric tolerances. [electric equipment tests

    Science.gov (United States)

    Redkina, N. P.

    1974-01-01

    Boundary testing of electric circuits includes preliminary and limiting tests. Preliminary tests permit determination of the critical parameters causing the greatest deviation of the output parameter of the system. The boundary tests offer the possibility of determining the limits of the fitness of the system with simultaneous variation of its critical parameters.

  5. Effect of the depth base along the vertical on the electrical parameters of a vertical parallel silicon solar cell in open and short circuit

    Directory of Open Access Journals (Sweden)

    Gokhan Sahin

    2018-03-01

    Full Text Available This article presented a modeling study of effect of the depth base initiating on vertical parallel silicon solar cell’s photovoltaic conversion efficiency. After the resolution of the continuity equation of excess minority carriers, we calculated the electrical parameters such as the photocurrent density, the photovoltage, series resistance and shunt resistances, diffusion capacitance, electric power, fill factor and the photovoltaic conversion efficiency. We determined the maximum electric power, the operating point of the solar cell and photovoltaic conversion efficiency according to the depth z in the base. We showed that the photocurrent density decreases with the depth z. The photovoltage decreased when the depth base increases. Series and shunt resistances were deduced from electrical model and were influenced and the applied the depth base. The capacity decreased with the depth z of the base. We had studied the influence of the variation of the depth z on the electrical parameters in the base. Keywords: Depth base, Conversion efficiency, Electrical parameters, Open circuit, Short circuit

  6. Inclusion of Body Bias Effect in SPICE Modeling of 4H-SiC Integrated Circuit Resistors

    Science.gov (United States)

    Neudeck, Philip G.

    2017-01-01

    The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500 degrees Celsius durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.

  7. Inclusion of Body-Bias Effect in SPICE Modeling of 4H-SiC Integrated Circuit Resistors

    Science.gov (United States)

    Neudeck, Philip G.

    2017-01-01

    The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500 C durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.

  8. Experimental and numerical study of electrical crosstalk in photonic integrated circuits

    NARCIS (Netherlands)

    Yao, W.; Gilardi, G.; Calabretta, N.; Smit, M.K.; Wale, M.J.

    2015-01-01

    This paper presents measurement results on electrical crosstalk between interconnect lines and electro-optical phaseshifters in photonic integrated circuits. The results indicate that overall crosstalk originates from radiative and substrate coupling between lines and from shared ground connections.

  9. Surface charges and J H Poynting’s disquisitions on energy transfer in electrical circuits

    Science.gov (United States)

    Matar, M.; Welti, R.

    2017-11-01

    In this paper we review applications given by J H Poynting (1884) on the transfer of electromagnetic energy in DC circuits. These examples were strongly criticized by O Heaviside (1887). Heaviside stated that Poynting had a misconception about the nature of the electric field in the vicinity of a wire through which a current flows. The historical review of this conflict and its resolution based on the consideration of electrical charges on the surface of the wires can be useful for student courses on electromagnetism or circuit theory.

  10. A Comparison of Experienced and Preservice Elementary School Teachers' Content Knowledge and Pedagogical Content Knowledge about Electric Circuits

    Science.gov (United States)

    Lin, Jing-Wen

    2017-01-01

    This study investigated the differences between Taiwanese experienced and preservice elementary school science teachers' content knowledge (CK) about electric circuits and their ability to predict students' preconceptions about electric circuits as an indicator of their pedagogical content knowledge (PCK). An innovative web-based recruitment and…

  11. Adaptive Electronic Quizzing Method for Introductory Electrical Circuit Course

    Directory of Open Access Journals (Sweden)

    Issa Batarseh

    2009-08-01

    Full Text Available The interactive technical electronic book, TechEBook, currently under development at the University of Central Florida, provides a useful tool for engineers and scientists through unique features compared to the most used traditional electrical circuit textbooks available in the market. TechEBook has comprised the two worlds of classical circuit books and an interactive operating platform such as laptops and desktops utilizing Java Virtual Machine operator. The TechEBook provides an interactive applets screen that holds many modules, in which each had a specific application in the self learning process. This paper describes one of the interactive techniques in the TechEBook known as, QuizMe, for evaluating the readers’ performance and the overall understanding for all subjects at any stage. The QuizMe will be displayed after each section in the TechEBook for the user to evaluate his/her understanding, which introduces the term me-learning, as a comprehensive full experience for self or individualized education. In this paper, a practical example of applying the QuizMe feature is discussed as part of a basic electrical engineering course currently given at the University of Central Florida.

  12. Wireless Sensing System Using Open-circuit, Electrically-conductive Spiral-trace Sensor

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2013-01-01

    A wireless sensing system includes a sensor made from an electrical conductor shaped to form an open-circuit, electrically-conductive spiral trace having inductance and capacitance. In the presence of a time-varying magnetic field, the sensor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to the sensor and wirelessly detects the sensor's response frequency, amplitude and bandwidth.

  13. Microdosimetric study for nanosecond pulsed electric fields on a cell circuit model with nucleus.

    Science.gov (United States)

    Denzi, Agnese; Merla, Caterina; Camilleri, Paola; Paffi, Alessandra; d'Inzeo, Guglielmo; Apollonio, Francesca; Liberti, Micaela

    2013-10-01

    Recently, scientific interest in electric pulses, always more intense and shorter and able to induce biological effects on both plasma and nuclear membranes, has greatly increased. Hence, microdosimetric models that include internal organelles like the nucleus have assumed increasing importance. In this work, a circuit model of the cell including the nucleus is proposed, which accounts for the dielectric dispersion of all cell compartments. The setup of the dielectric model of the nucleus is of fundamental importance in determining the transmembrane potential (TMP) induced on the nuclear membrane; here, this is demonstrated by comparing results for three different sets of nuclear dielectric properties present in the literature. The results have been compared, even including or disregarding the dielectric dispersion of the nucleus. The main differences have been found when using pulses shorter than 10 ns. This is due to the fact that the high spectral components of the shortest pulses are differently taken into account by the nuclear membrane transfer functions computed with and without nuclear dielectric dispersion. The shortest pulses are also the most effective in porating the intracellular structures, as confirmed by the time courses of the TMP calculated across the plasma and nuclear membranes. We show how dispersive nucleus models are unavoidable when dealing with pulses shorter than 10 ns because of the large spectral contents arriving above 100 MHz, i.e., over the typical relaxation frequencies of the dipolar mechanism of the molecules constituting the nuclear membrane and the subcellular cell compartments.

  14. A Computer Program for Short Circuit Analysis of Electric Power ...

    African Journals Online (AJOL)

    The Short Circuit Analysis Program (SCAP) is to be used to assess the composite effects of unbalanced and balanced faults on the overall reliability of electric power system. The program uses the symmetrical components method to compute all phase and sequence quantities for any bus or branch of a given power network ...

  15. Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits

    Energy Technology Data Exchange (ETDEWEB)

    Pries, Jason L. [ORNL; Tang, Lixin [ORNL; Burress, Timothy A. [ORNL

    2017-10-01

    This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequency and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.

  16. Mechanically and electrically robust metal-mask design for organic CMOS circuits

    Science.gov (United States)

    Shintani, Michihiro; Qin, Zhaoxing; Kuribara, Kazunori; Ogasahara, Yasuhiro; Hiromoto, Masayuki; Sato, Takashi

    2018-04-01

    The design of metal masks for fabricating organic CMOS circuits requires the consideration of not only the electrical property of the circuits, but also the mechanical strength of the masks. In this paper, we propose a new design flow for metal masks that realizes coanalysis of the mechanical and electrical properties and enables design exploration considering the trade-off between the two properties. As a case study, we apply a “stitching technique” to the mask design of a ring oscillator and explore the best design. With this technique, mask patterns are divided into separate parts using multiple mask layers to improve the mechanical strength at the cost of high resistance of the vias. By a numerical experiment, the design trade-off of the stitching technique is quantitatively analyzed, and it is demonstrated that the proposed flow is useful for the exploration of the designs of metal masks.

  17. Integrated electric circuit engineering system in LSI design center, Konami Kogyo Co. Ltd

    Energy Technology Data Exchange (ETDEWEB)

    Kamitsuki, Kagehiko; Tanaka, Tomiaki

    1988-08-26

    Development of the integrated engineering system is presented which designs and manufactures the hardwares, softwares and cases of electronic game products with LSI integratedly as an experiment. The system is intended to reduce the number of each development of the parts, to verify each other by comparing each parts with the product concept during the development, to reduce modifications, and to shorten development periods. The main subsystems are an electric circuit CAD for LSI designs and a mechanical CAD for case or printed circuit board designs. The LSI development period has been shortened up to one month by a larger capacity computer and higher speed simulator, and the electric circuit engineering system capable of keeping step with the software development has been approximately completed. In the future, the system will be intended to introduce an expert system or a visual system capable of predicting the final product during a logical design period. (10 figs, 1 photo)

  18. Electrical equivalent circuit of an ion-exchange membrane system

    Energy Technology Data Exchange (ETDEWEB)

    Nikonenko, Victor V., E-mail: v_nikonenko@mail.r [Membrane Institute, Kuban State University, Krasnodar (Russian Federation); Kozmai, Anton E. [Membrane Institute, Kuban State University, Krasnodar (Russian Federation)

    2011-01-01

    Usually, the current flowing through an electrochemical cell is divided into the faradaic current going to an electrochemical interface reaction, and the current charging electric double layer (EDL). This division leads to the Randles-Ershler equivalent circuit with an EDL capacitance in one branch, and the faradaic impedance in the other, specific for each particular system. However, the physics of the separation of the impedance into faradaic and capacitive components for different electrochemical systems is not sufficiently clear. The most of derivations resulting in the formal construction of the Randles-Ershler or similar equivalent circuits are based on the a priori separation of the electroneutral and the double-layer regions. In this paper, we derive an equation for the impedance of a three-layer system consisted of an ion-exchange membrane and two adjoining diffusion boundary layers (DBL) starting from the Poisson equation. The system is polarized by a constant electric current over which a small sinusoidal signal is applied. The equation shows that the impedance of the considered system can be formally interpreted via an equivalent circuit with a frequency dependent capacitance in one branch and a finite-length Warburg-type impedance in the other. To take into account this dependence, the impedance of the system may be presented as a series connection of five circuits. Three of them are consisted of a geometric capacitance connected in parallel with an ohmic resistance, respectively, for both diffusion layers and for the membrane bulk; the two others being the double-layer capacitance in parallel with the finite-length Warburg impedance for the left and the right interfaces, respectively. The comparison of the impedance spectra calculated within our analytical approach with those obtained by the full numerical solution of the Nernst-Planck-Poisson (NPP) equations shows a good agreement. Different possible situations, which might arise in real systems

  19. On The Construction of Models for Electrical Conduction in Biological Tissues

    International Nuclear Information System (INIS)

    Gomez-Aguilar, F.; Bernal-Alvarado, J.; Cordova-Fraga, T.; Rosales-Garcia, J.; Guia-Calderon, M.

    2010-01-01

    Applying RC circuit theory, a theoretical representation for the electrical conduction in a biological multilayer system was developed. In particular an equivalent circuit for the epidermis, dermis and the subcutaneous tissue was constructed. This model includes an equivalent circuit, inside the dermis, in order to model a small formation like tumor. This work shows the feasibility to apply superficial electrodes to detect subcutaneous abnormalities. The behavior of the model is shown in the form of a frequency response chart. The Bode and Nyquist plots are also obtained. This theoretical frame is proposed to be a general treatment to describe the bioelectrical transport in a three layer bioelectrical system.

  20. [Work accidents and automatic circuit reclosers in the electricity sector: beyond the immediate causes].

    Science.gov (United States)

    Silva, Alessandro Jose Nunes da; Almeida, Ildeberto Muniz de; Vilela, Rodolfo Andrade de Gouveia; Mendes, Renata Wey Berti; Hurtado, Sandra Lorena Beltran

    2018-05-10

    The Brazilian electricity sector has recorded high work-related mortality rates that have been associated with outsourcing, used to cut costs. In order to decrease the power outage time for consumers, the industry adopted the automatic circuit recloser as the technical solution. The device has hazardous implications for maintenance workers. The aim of this study was to analyze the origins and consequences of work accidents in power systems with automatic circuit recloser, using the Accident Analysis and Prevention (AAP) model. The AAP model was used to investigate two work accidents, aimed to explore the events' organizational origins. Case 1 - when changing a deenergized secondary line, a worker received a shock from the energized primary cable (13.8kV). The system reclosed three times, causing severe injury to the worker (amputation of a lower limb). Case 2 - a fatal work accident occurred during installation of a new crosshead on a partially insulated energized line. The tip of a metal cross arm section strap touched the energized secondary line and electrocuted the maintenance operator. The circuit breaker component of the automatic circuit recloser failed. The analyses revealed how business management logic can participate in the root causes of work accidents through failures in maintenance management, outsourced workforce management, and especially safety management in systems with reclosers. Decisions to adopt automation to guarantee power distribution should not overlook the risks to workers in overhead power lines or fail to acknowledge the importance of ensuring safe conditions.

  1. Acquiring Knowledge in Learning Concepts from Electrical Circuits: The Use of Multiple Representations in Technology-Based Learning Environments

    Directory of Open Access Journals (Sweden)

    Abdeljalil Métioui

    2012-04-01

    Full Text Available The constructivists approach on the conception of relative software of modelling to training and teaching of the concepts of current and voltage requires appraisal of several disciplinary fields in order to provide to the learners a training adapted to their representations. Thus, this approach requires the researchers to have adequate knowledge or skills in data processing, didactics and science content. In this regard, several researches underline that the acquisition of basic concepts that span a field of a given knowledge, must take into account the student and the scientific representations. The present research appears in this perspective, and aims to present the interactive computer environments that take into account the students (secondary and college and scientific representations related to simple electric circuits. These computer environments will help the students to analyze the functions of the electric circuits adequately.

  2. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  3. Circuit modeling on polyaniline functionalized nanowire-templated micro-interdigital capacitors for pH sensing

    DEFF Research Database (Denmark)

    Antohe, V.A.; Radu, A.; Mátéfi-Tempfli, Stefan

    2011-01-01

    This study presents an improved alternative current (ac) circuit modeling of a highly sensitive capacitive pH-sensing element based on polyaniline (PANI) functionalized nanowire-templated micro-interdigited electrodes (NWs μIDEs). While electrical resonance measurements deal with a total equivale...

  4. Assessment of Electronic Circuits Reliability Using Boolean Truth Table Modeling Method

    International Nuclear Information System (INIS)

    EI-Shanshoury, A.I.

    2011-01-01

    This paper explores the use of Boolean Truth Table modeling Method (BTTM) in the analysis of qualitative data. It is widely used in certain fields especially in the fields of electrical and electronic engineering. Our work focuses on the evaluation of power supply circuit reliability using (BTTM) which involves systematic attempts to falsify and identify hypotheses on the basis of truth tables constructed from qualitative data. Reliability parameters such as the system's failure rates for the power supply case study are estimated. All possible state combinations (operating and failed states) of the major components in the circuit were listed and their effects on overall system were studied

  5. Experience with the Quality Assurance of the Superconducting Electrical Circuits of the LHC Machine

    CERN Document Server

    Bozzini, D; Kotarba, A; Mess, Karl Hubert; Olek, S; Russenschuck, Stephan

    2006-01-01

    The coherence between the powering reference database for the LHC and the Electrical Quality Assurance (ELQA) is guaranteed on the procedural level. However, a challenge remains the coherence between the database, the magnet test and assembly procedures, and the connection of all superconducting circuits in the LHC machine. In this paper, the methods, tooling, and procedures for the ELQA during the assembly phase of the LHC will be presented in view of the practical experience gained in the LHC tunnel. Some examples of detected polarity errors and electrical non-conformities will be presented. The parameters measured at ambient temperature, such as the dielectric insulation of circuits, will be discussed.

  6. The Use of Enhanced Guided Notes in an Electric Circuit Class: An Exploratory Study

    Science.gov (United States)

    Lawanto, O.

    2012-01-01

    This study was conducted to evaluate students' (n=70) learning performance after their participation in lectures using enhanced guided notes (EGN) in an electric circuits course for non-electrical engineering students. Unlike traditional guided notes, EGN include questions that prompt students to evaluate their metacognitive knowledge. The results…

  7. The principle of elaboration of the relay protection against short circuits between the closely placed phases of high voltage electrical line

    Directory of Open Access Journals (Sweden)

    Kiorsak M.

    2015-12-01

    Full Text Available The article is devoted to the elaboration of the principle of relay protection against short circuits between the closely placed phases of higher voltage electrical line with self-compensation, based on the six phase’s symmetrical components. It is shown that the unsymmetrical short circuits between the closely placed phases are characterized by appearance of zero and tertiary sequences of symmetrical components. This fact can be used to choose them for relay protection. The electrical basic circuits and formulas for calculation of the passive parameters of zero and tertiary filters of currents (voltages are done. It is presented the structural-functional basic circuit scheme for relay protection against short circuits between the closely placed phases of higher voltage electrical line with self-compensation.

  8. Asymmetric contacts on a single SnO₂ nanowire device: an investigation using an equivalent circuit model.

    Science.gov (United States)

    Huh, Junghwan; Na, Junhong; Ha, Jeong Sook; Kim, Sangtae; Kim, Gyu Tae

    2011-08-01

    Electrical contacts between the nanomaterial and metal electrodes are of crucial importance both from fundamental and practical points of view. We have systematically compared the influence of contact properties by dc and EIS (Electrochemical impedance spectroscopy) techniques at various temperatures and environmental atmospheres (N(2) and 1% O(2)). Electrical behaviors are sensitive to the variation of Schottky barriers, while the activation energy (E(a)) depends on the donor states in the nanowire rather than on the Schottky contact. Equivalent circuits in terms of dc and EIS analyses could be modeled by Schottky diodes connected with a series resistance and parallel RC circuits, respectively. These results can facilitate the electrical analysis for evaluating the nanowire electronic devices with Schottky contacts.

  9. Development of educational complex on electrical engineering, electronics and microcon-trollers on modeling in TINA software

    Directory of Open Access Journals (Sweden)

    Vladimir A. Alekhin

    2017-01-01

    Full Text Available The study of electrical engineering, electronics and microcontrollers in accordance with federal state educational standards requires from students the practical mastering of experimental methods for the study of electrical circuits and electronic circuits, the formation of competences and skills in the calculation of electrical circuits and electronic circuits. The modern development of information educational technologies, the widespread use of a variety of computer facilities by students in reducing teaching hours for the study of disciplines make it necessary to create new multimedia training complexes, using computer simulation of electrical circuits, electronic circuits and microcontrollers in the lecture process and in the laboratory and practical exercises. The purpose of the research was a comparative analysis of various computer simulation programs in terms of their accessibility, ease of development and efficiency of use by lecturers and students in the educational process, and the creation and testing of a training complex for the electrical engineering, electronics and microcontrollers using the selected modeling environment.The problems associated with the need to purchase licensed software were discussed and a comparative analysis of the following computer modeling programs for electrical circuits and electronic circuits was performed: NI Multisim, Micro-Cap, Proteus VSM, OrCAD, TINA. The research method included the study of these modeling and design programs, writing of teaching aids and conducting of training sessions with students. The cost of licenses for the software application in computer classes and on students’ home computers was estimated. As a result, the conclusion was confirmed about the advisability of using the free student program of computer modeling TINA-TI and the TINACloud environment from DesignSoft for the teaching of electrical engineering and electronics.The new software product TINACloud uses cloud

  10. The global atmospheric electric circuit and its effects on cloud microphysics

    International Nuclear Information System (INIS)

    Tinsley, B A

    2008-01-01

    This review is an overview of progress in understanding the theory and observation of the global atmospheric electric circuit, with the focus on its dc aspects, and its short and long term variability. The effects of the downward ionosphere-earth current density, J z , on cloud microphysics, with its variability as an explanation for small observed changes in weather and climate, will also be reviewed. The global circuit shows responses to external as well as internal forcing. External forcing arises from changes in the distribution of conductivity due to changes in the cosmic ray flux and other energetic space particle fluxes, and at high magnetic latitudes from solar wind electric fields. Internal forcing arises from changes in the generators and changes in volcanic and anthropogenic aerosols in the troposphere and stratosphere. All these result in spatial and temporal variation in J z . Variations in J z affect the production of space charge in layer clouds, with the charges being transferred to droplets and aerosol particles. New observations and new analyses are consistent with non-negligible effects of the charges on the microphysics of such clouds. Observed effects are small, but of high statistical significance for cloud cover and precipitation changes, with resulting atmospheric temperature, pressure and dynamics changes. These effects are detectable on the day-to-day timescale for repeated J z changes of order 10%, and are thus second order electrical effects. The implicit first order effects have not, as yet, been incorporated into basic cloud and aerosol physics. Long term (multidecadal through millennial) global circuit changes, due to solar activity modulating the galactic cosmic ray flux, are an order of magnitude greater at high latitudes and in the stratosphere, as can be inferred from geological cosmogenic isotope records. Proxies for climate change in the same stratified depositories show strong correlations of climate with the inferred global

  11. The global atmospheric electric circuit and its effects on cloud microphysics

    Energy Technology Data Exchange (ETDEWEB)

    Tinsley, B A [Physics Department and Center for Space Sciences, WT15, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX, 75080-3021 (United States)], E-mail: Tinsley@UTDallas.edu

    2008-06-15

    This review is an overview of progress in understanding the theory and observation of the global atmospheric electric circuit, with the focus on its dc aspects, and its short and long term variability. The effects of the downward ionosphere-earth current density, J{sub z}, on cloud microphysics, with its variability as an explanation for small observed changes in weather and climate, will also be reviewed. The global circuit shows responses to external as well as internal forcing. External forcing arises from changes in the distribution of conductivity due to changes in the cosmic ray flux and other energetic space particle fluxes, and at high magnetic latitudes from solar wind electric fields. Internal forcing arises from changes in the generators and changes in volcanic and anthropogenic aerosols in the troposphere and stratosphere. All these result in spatial and temporal variation in J{sub z}. Variations in J{sub z} affect the production of space charge in layer clouds, with the charges being transferred to droplets and aerosol particles. New observations and new analyses are consistent with non-negligible effects of the charges on the microphysics of such clouds. Observed effects are small, but of high statistical significance for cloud cover and precipitation changes, with resulting atmospheric temperature, pressure and dynamics changes. These effects are detectable on the day-to-day timescale for repeated J{sub z} changes of order 10%, and are thus second order electrical effects. The implicit first order effects have not, as yet, been incorporated into basic cloud and aerosol physics. Long term (multidecadal through millennial) global circuit changes, due to solar activity modulating the galactic cosmic ray flux, are an order of magnitude greater at high latitudes and in the stratosphere, as can be inferred from geological cosmogenic isotope records. Proxies for climate change in the same stratified depositories show strong correlations of climate with the

  12. Short- circuit tests of circuit breakers

    OpenAIRE

    Chorovský, P.

    2015-01-01

    This paper deals with short-circuit tests of low voltage electrical devices. In the first part of this paper, there are described basic types of short- circuit tests and their principles. Direct and indirect (synthetic) tests with more details are described in the second part. Each test and principles are explained separately. Oscilogram is obtained from short-circuit tests of circuit breakers at laboratory. The aim of this research work is to propose a test circuit for performing indirect test.

  13. A Circuit Model of Real Time Human Body Hydration.

    Science.gov (United States)

    Asogwa, Clement Ogugua; Teshome, Assefa K; Collins, Stephen F; Lai, Daniel T H

    2016-06-01

    Changes in human body hydration leading to excess fluid losses or overload affects the body fluid's ability to provide the necessary support for healthy living. We propose a time-dependent circuit model of real-time human body hydration, which models the human body tissue as a signal transmission medium. The circuit model predicts the attenuation of a propagating electrical signal. Hydration rates are modeled by a time constant τ, which characterizes the individual specific metabolic function of the body part measured. We define a surrogate human body anthropometric parameter θ by the muscle-fat ratio and comparing it with the body mass index (BMI), we find theoretically, the rate of hydration varying from 1.73 dB/min, for high θ and low τ to 0.05 dB/min for low θ and high τ. We compare these theoretical values with empirical measurements and show that real-time changes in human body hydration can be observed by measuring signal attenuation. We took empirical measurements using a vector network analyzer and obtained different hydration rates for various BMI, ranging from 0.6 dB/min for 22.7 [Formula: see text] down to 0.04 dB/min for 41.2 [Formula: see text]. We conclude that the galvanic coupling circuit model can predict changes in the volume of the body fluid, which are essential in diagnosing and monitoring treatment of body fluid disorder. Individuals with high BMI would have higher time-dependent biological characteristic, lower metabolic rate, and lower rate of hydration.

  14. Development and Implementation of an Electric Circuits On-Line Course

    Directory of Open Access Journals (Sweden)

    Ahmed Hussain

    2009-02-01

    Full Text Available An electric circuit on-line course has been developed at KFUPM to support student centered learning. The course has been used in the first stage to supplement the class room face-to-face instruction. This paper describes the development stages of the on-line course and highlights its fundamental features that are not available in the traditional methods of instruction. The paper also includes the results of a survey conducted among students who have utilized the on-line material to supplement their traditional study of the electric circuits’ course. The results of the survey showed a general satisfaction with the course content and the instructional effectiveness.

  15. Various mechanisms and clinical phenotypes in electrical short circuits of high-voltage devices: report of four cases and review of the literature.

    Science.gov (United States)

    Tsurugi, Takuo; Matsui, Shogo; Nakajima, Hiroshi; Nishii, Nobuhiro; Honda, Toshihiro; Kaneko, Yoshiaki

    2015-06-01

    An electrical short circuit is a rare complication in a high-voltage implantable cardioverter-defibrillator (ICD). However, the inability of an ICD to deliver appropriate shock therapy can be life-threatening. During the last 2 years, four cases of serious complications related to an electrical short circuit have been reported in Japan. A spark due to an electrical short circuit resulted in the failure of an ICD shock to terminate ventricular tachycardia and total damage to the ICD generator in three of four cases. Two of the four patients died from an electrical short circuit between the right ventricle and superior vena cava (SVC) leads. The others had audible sounds from the ICD generator site and were diagnosed with a lead-to-can abrasion, which was manifested by the arc mark on the surface of the can. It is still difficult to predict the occurrence of an electrical short circuit in current ICD systems. To reduce the probability of an electrical short circuit, we suggest the following: (i) avoid lead stress at ICD implantation, (ii) select a single-coil lead instead of a dual-coil lead, or (iii) use a unique algorithm which automatically disconnect can or SVC lead from shock deliver circuit when excessive current was detected. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  16. Temporal integration and 1/f power scaling in a circuit model of cerebellar interneurons.

    Science.gov (United States)

    Maex, Reinoud; Gutkin, Boris

    2017-07-01

    Inhibitory interneurons interconnected via electrical and chemical (GABA A receptor) synapses form extensive circuits in several brain regions. They are thought to be involved in timing and synchronization through fast feedforward control of principal neurons. Theoretical studies have shown, however, that whereas self-inhibition does indeed reduce response duration, lateral inhibition, in contrast, may generate slow response components through a process of gradual disinhibition. Here we simulated a circuit of interneurons (stellate and basket cells) of the molecular layer of the cerebellar cortex and observed circuit time constants that could rise, depending on parameter values, to >1 s. The integration time scaled both with the strength of inhibition, vanishing completely when inhibition was blocked, and with the average connection distance, which determined the balance between lateral and self-inhibition. Electrical synapses could further enhance the integration time by limiting heterogeneity among the interneurons and by introducing a slow capacitive current. The model can explain several observations, such as the slow time course of OFF-beam inhibition, the phase lag of interneurons during vestibular rotation, or the phase lead of Purkinje cells. Interestingly, the interneuron spike trains displayed power that scaled approximately as 1/ f at low frequencies. In conclusion, stellate and basket cells in cerebellar cortex, and interneuron circuits in general, may not only provide fast inhibition to principal cells but also act as temporal integrators that build a very short-term memory. NEW & NOTEWORTHY The most common function attributed to inhibitory interneurons is feedforward control of principal neurons. In many brain regions, however, the interneurons are densely interconnected via both chemical and electrical synapses but the function of this coupling is largely unknown. Based on large-scale simulations of an interneuron circuit of cerebellar cortex, we

  17. On the electrical equivalent circuits of gravitational-wave antennas

    International Nuclear Information System (INIS)

    Pallottino, G.V.; Pizzella, G.; Rome Univ.

    1978-01-01

    The electrical equivalent circuit of a Weber gravitational-wave antenna with piezoelectric transducers is derived for the various longitudinal normal modes by using the Lagrangian formalism. The analysis is applied to the antenna without piezoelectric ceramics, as well as with one or more ceramics operated in both passive and active mode. Particular attention is given to the dissipation problem in order to obtain an expression of the overall merit factor directly related to the physics of the actual dissipation processes. As an example the results are applied to a cylindrical bar with two ceramics: one for calibrating the antenna, the other as sensor of the motion. The values of the physical parameters and of the pertinent parameters of the equivalent circuit for the small antenna (20 kg) and those (predicted) for the intermediate antenna (390 kg) of the Rome group are given in the appendix. (author)

  18. Total dose and dose rate models for bipolar transistors in circuit simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  19. MODELING CONTROLLED ASYNCHRONOUS ELECTRIC DRIVES WITH MATCHING REDUCERS AND TRANSFORMERS

    Directory of Open Access Journals (Sweden)

    V. S. Petrushin

    2015-04-01

    Full Text Available Purpose. Working out of mathematical models of the speed-controlled induction electric drives ensuring joint consideration of transformers, motors and loadings, and also matching reducers and transformers, both in static, and in dynamic regimes for the analysis of their operating characteristics. Methodology. At mathematical modelling are considered functional, mass, dimensional and cost indexes of reducers and transformers that allows observing engineering and economic aspects of speed-controlled induction electric drives. The mathematical models used for examination of the transitive electromagnetic and electromechanical processes, are grounded on systems of nonlinear differential equations with nonlinear coefficients (parameters of equivalent circuits of motors, varying in each operating point, including owing to appearances of saturation of magnetic system and current displacement in a winding of a rotor of an induction motor. For the purpose of raise of level of adequacy of models a magnetic circuit iron, additional and mechanical losses are considered. Results. Modelling of the several speed-controlled induction electric drives, different by components, but working on a loading equal on character, magnitude and a demanded control range is executed. At use of characteristic families including mechanical, at various parameters of regulating on which performances of the load mechanism are superimposed, the adjusting characteristics representing dependences of a modification of electrical, energy and thermal magnitudes from an angular speed of motors are gained. Originality. The offered complex models of speed-controlled induction electric drives with matching reducers and transformers, give the chance to realize well-founded sampling of components of drives. They also can be used as the design models by working out of speed-controlled induction motors. Practical value. Operating characteristics of various speed-controlled induction electric

  20. High Performance Electrical Modeling and Simulation Verification Test Suite - Tier I; TOPICAL

    International Nuclear Information System (INIS)

    SCHELLS, REGINA L.; BOGDAN, CAROLYN W.; WIX, STEVEN D.

    2001-01-01

    This document describes the High Performance Electrical Modeling and Simulation (HPEMS) Global Verification Test Suite (VERTS). The VERTS is a regression test suite used for verification of the electrical circuit simulation codes currently being developed by the HPEMS code development team. This document contains descriptions of the Tier I test cases

  1. MATHEMATICAL MODELING OF AC ELECTRIC POINT MOTOR

    Directory of Open Access Journals (Sweden)

    S. YU. Buryak

    2014-03-01

    Full Text Available Purpose. In order to ensure reliability, security, and the most important the continuity of the transportation process, it is necessary to develop, implement, and then improve the automated methods of diagnostic mechanisms, devices and rail transport systems. Only systems that operate in real time mode and transmit data on the instantaneous state of the control objects can timely detect any faults and thus provide additional time for their correction by railway employees. Turnouts are one of the most important and responsible components, and therefore require the development and implementation of such diagnostics system.Methodology. Achieving the goal of monitoring and control of railway automation objects in real time is possible only with the use of an automated process of the objects state diagnosing. For this we need to know the diagnostic features of a control object, which determine its state at any given time. The most rational way of remote diagnostics is the shape and current spectrum analysis that flows in the power circuits of railway automatics. Turnouts include electric motors, which are powered by electric circuits, and the shape of the current curve depends on both the condition of the electric motor, and the conditions of the turnout maintenance. Findings. For the research and analysis of AC electric point motor it was developed its mathematical model. The calculation of parameters and interdependencies between the main factors affecting the operation of the asynchronous machine was conducted. The results of the model operation in the form of time dependences of the waveform curves of current on the load on engine shaft were obtained. Originality. During simulation the model of AC electric point motor, which satisfies the conditions of adequacy was built. Practical value. On the basis of the constructed model we can study the AC motor in various mode of operation, record and analyze current curve, as a response to various changes

  2. Formalization, equivalence and generalization of basic resonance electrical circuits

    Science.gov (United States)

    Penev, Dimitar; Arnaudov, Dimitar; Hinov, Nikolay

    2017-12-01

    In the work are presented basic resonance circuits, which are used in resonance energy converters. The following resonant circuits are considered: serial, serial with parallel load parallel capacitor, parallel and parallel with serial loaded inductance. For the circuits under consideration, expressions are generated for the frequencies of own oscillations and for the equivalence of the active power emitted in the load. Mathematical expressions are graphically constructed and verified using computer simulations. The results obtained are used in the model based design of resonant energy converters with DC or AC output. This guaranteed the output indicators of power electronic devices.

  3. Laser cooling and optical detection of excitations in a LC electrical circuit

    DEFF Research Database (Denmark)

    Taylor, J. M.; Sørensen, Anders Søndberg; Marcus, Charles Masamed

    2011-01-01

    We explore a method for laser cooling and optical detection of excitations in a room temperature LC electrical circuit. Our approach uses a nanomechanical oscillator as a transducer between optical and electronic excitations. An experimentally feasible system with the oscillator capacitively...... coupled to the LC and at the same time interacting with light via an optomechanical force is shown to provide strong electromechanical coupling. Conditions for improved sensitivity and quantum limited readout of electrical signals with such an “optical loud speaker” are outlined....

  4. AC and DC electrical behavior of MWCNT/epoxy nanocomposite near percolation threshold: Equivalent circuits and percolation limits

    Science.gov (United States)

    Alizadeh Sahraei, Abolfazl; Ayati, Moosa; Baniassadi, Majid; Rodrigue, Denis; Baghani, Mostafa; Abdi, Yaser

    2018-03-01

    This study attempts to comprehensively investigate the effects of multi-walled carbon nanotubes (MWCNTs) on the AC and DC electrical conductivity of epoxy nanocomposites. The samples (0.2, 0.3, and 0.5 wt. % MWCNT) were produced using a combination of ultrason and shear mixing methods. DC measurements were performed by continuous measurement of the current-voltage response and the results were analyzed via a numerical percolation approach, while for the AC behavior, the frequency response was studied by analyzing phase difference and impedance in the 10 Hz to 0.2 MHz frequency range. The results showed that the dielectric parameters, including relative permittivity, impedance phase, and magnitude, present completely different behaviors for the frequency range and MWCNT weight fractions studied. To better understand the nanocomposites electrical behavior, equivalent electric circuits were also built for both DC and AC modes. The DC equivalent networks were developed based on the current-voltage curves, while the AC equivalent circuits were proposed by using an optimization problem according to the impedance magnitude and phase at different frequencies. The obtained equivalent electrical circuits were found to be highly useful tools to understand the physical mechanisms involved in MWCNT filled polymer nanocomposites.

  5. Finite element modeling of electrically rectified piezoelectric energy harvesters

    International Nuclear Information System (INIS)

    Wu, P H; Shu, Y C

    2015-01-01

    Finite element models are developed for designing electrically rectified piezoelectric energy harvesters. They account for the consideration of common interface circuits such as the standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits, as well as complicated structural configurations such as arrays of piezoelectric oscillators. The idea is to replace the energy harvesting circuit by the proposed equivalent load impedance together with the capacitance of negative value. As a result, the proposed framework is capable of being implemented into conventional finite element solvers for direct system-level design without resorting to circuit simulators. The validation based on COMSOL simulations carried out for various interface circuits by the comparison with the standard modal analysis model. The framework is then applied to the investigation on how harvested power is reduced due to fabrication deviations in geometric and material properties of oscillators in an array system. Remarkably, it is found that for a standard array system with strong electromechanical coupling, the drop in peak power turns out to be insignificant if the optimal load is carefully chosen. The second application is to design broadband energy harvesting by developing array systems with suitable interface circuits. The result shows that significant broadband is observed for the parallel (series) connection of oscillators endowed with the parallel-SSHI (series-SSHI) circuit technique. (paper)

  6. Finite element modeling of electrically rectified piezoelectric energy harvesters

    Science.gov (United States)

    Wu, P. H.; Shu, Y. C.

    2015-09-01

    Finite element models are developed for designing electrically rectified piezoelectric energy harvesters. They account for the consideration of common interface circuits such as the standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits, as well as complicated structural configurations such as arrays of piezoelectric oscillators. The idea is to replace the energy harvesting circuit by the proposed equivalent load impedance together with the capacitance of negative value. As a result, the proposed framework is capable of being implemented into conventional finite element solvers for direct system-level design without resorting to circuit simulators. The validation based on COMSOL simulations carried out for various interface circuits by the comparison with the standard modal analysis model. The framework is then applied to the investigation on how harvested power is reduced due to fabrication deviations in geometric and material properties of oscillators in an array system. Remarkably, it is found that for a standard array system with strong electromechanical coupling, the drop in peak power turns out to be insignificant if the optimal load is carefully chosen. The second application is to design broadband energy harvesting by developing array systems with suitable interface circuits. The result shows that significant broadband is observed for the parallel (series) connection of oscillators endowed with the parallel-SSHI (series-SSHI) circuit technique.

  7. Electrical Characterization and Modeling of a Gelatin/Graphene System

    Directory of Open Access Journals (Sweden)

    Giovanni Landi

    2015-01-01

    Full Text Available A gelatin/graphene composite has been analyzed by means of current density-voltage and the electrical impedance measurements. The DC electrical behavior has been interpreted in terms of an equivalent Thévenin model taking into account the open circuit voltage and the series resistance. A model based on the effect of the electrical double layer and on the diffusion of the charge carriers is used for the analysis of the experimental data, obtained in the frequency domain. The model reveals for any applied voltages a marked diffusion process at low frequencies. In particular, where the charge transfer mechanism is dominant, the time distribution of the reaction rates reveals that several multiple step reactions occur in the materials, especially at high values of the applied forward bias voltages.

  8. A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives

    Science.gov (United States)

    Abro, Kashif Ali; Memon, Anwar Ahmed; Uqaili, Muhammad Aslam

    2018-03-01

    This research article is analyzed for the comparative study of RL and RC electrical circuits by employing newly presented Atangana-Baleanu and Caputo-Fabrizio fractional derivatives. The governing ordinary differential equations of RL and RC electrical circuits have been fractionalized in terms of fractional operators in the range of 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1. The analytic solutions of fractional differential equations for RL and RC electrical circuits have been solved by using the Laplace transform with its inversions. General solutions have been investigated for periodic and exponential sources by implementing the Atangana-Baleanu and Caputo-Fabrizio fractional operators separately. The investigated solutions have been expressed in terms of simple elementary functions with convolution product. On the basis of newly fractional derivatives with and without singular kernel, the voltage and current have interesting behavior with several similarities and differences for the periodic and exponential sources.

  9. Electric engineering introduction

    International Nuclear Information System (INIS)

    An, Byeong Won; Eom, Sang Ho

    1999-03-01

    It is divided into nine chapters, which includes electricity theory such as structure of material and current, nature of electricity, static, magnetic force and magnetic attraction, attraction of current and a storage battery, electric circuit on a direct current circuit, single phase circuit and 3-phase current circuit electricity machine like DC generator, DC motor, alternator, electric transformer, single-phase induction motor, 3-phase induction motor, synchronous motor, synchro electric machine, semiconductor such as diode, transistor, FET, UJT, silicon symmetrical switch, electronic circuit like smoothing circuit and Bistable MV. circuit, automatic control, measurement of electricity, electric application and safety.

  10. Analysis and modelling of GaN Schottky-based circuits at millimeter wavelengths

    International Nuclear Information System (INIS)

    Pardo, D; Grajal, J

    2015-01-01

    This work presents an analysis of the capabilities of GaN Schottky diodes for frequency multipliers and mixers at millimeter wavelengths. By using a Monte Carlo (MC) model of the diode coupled to a harmonic balance technique, the electrical and noise performances of these circuits are investigated. Despite the lower electron mobility of GaN compared to GaAs, multipliers based on GaN Schottky diodes can be competitive in the first stages of multiplier chains, due to the excellent power handling capabilities of this material. The performance of these circuits can be improved by taking advantage of the lateral Schottky diode structures based on AlGaN/GaN HEMT technology. (paper)

  11. Combining Different Conceptual Change Methods within Four-Step Constructivist Teaching Model: A Sample Teaching of Series and Parallel Circuits

    Science.gov (United States)

    Ipek, Hava; Calik, Muammer

    2008-01-01

    Based on students' alternative conceptions of the topics "electric circuits", "electric charge flows within an electric circuit", "how the brightness of bulbs and the resistance changes in series and parallel circuits", the current study aims to present a combination of different conceptual change methods within a four-step constructivist teaching…

  12. Study of time dependence and spectral composition of the signal in circuit of ac electric point motors

    Directory of Open Access Journals (Sweden)

    S. Yu. Buryak

    2014-12-01

    Full Text Available Purpose. The paper is aimed to establish the dependence of changes in the time domain and spectral components of the current in the circuit of the AC electric point motor on its technical condition, to identify the common features for the same type of damage. It is necessary using the analysis of the received signals to carry out the remote diagnosis and determination of faults and defects of electric point motors. In addition it suggested to accelerate the process of the failure, malfunction and damage search. Authors propose the automated approach to the service of remote floor automation equipment, which is located in the envelope of trains. Reduction of the threat to life and health of staff by reducing the residence time in the zone of train movement. Reduce the impact of human factors on the result of service. Methodology. The paper studies the structure, parameters and characteristics, the operation and maintenance characteristics of the AC electric point motors. Determination of the main types of possible faults in the process depending on the operating conditions. Presentation of the electric motor as an object of diagnosis. Findings. The time dependences of the current in the circuit of electric point motor for its various states was obtained. The connection between the technical condition of electric point motor and the performance of current curve in time and spectral domains was established. The revealed deviations from the reference signal were justified. According to the obtained results it was made the conclusion. Originality. A method for diagnosing the state of the AC electric point motor by the time dependence and the spectral composition of the current in its circuit was proposed. The connection diagram to the motor windings based on non-infringement of electric parameters of connection circuit in the actual operating conditions was applied. Practical value. The obtained results suggest the possibility and feasibility of

  13. Electro-thermal characterization of Lithium Iron Phosphate cell with equivalent circuit modeling

    International Nuclear Information System (INIS)

    Saw, L.H.; Ye, Y.; Tay, A.A.O.

    2014-01-01

    Highlights: • We modeled the electrical and thermal behavior of the Li-ion battery. • We validated the simulation results with experimental studies. • We studied the thermal response of the battery pack using UDDS and US06 test. • Active cooling system is needed to prolong life cycle of cell. - Abstract: Prediction of the battery performance is important in the development of the electric vehicles battery pack. A battery model that is capable to reproduce I–V characteristic, thermal response and predicting the state of charge of the battery will benefit the development of cell and reduce time to market for electric vehicles. In this work, an equivalent circuit model coupled with the thermal model is used to analyze the electrical and thermal behavior of Lithium Iron Phosphate pouch cell under various operating conditions. The battery model is comprised three RC blocks, one series resistor and one voltage source. The parameters of the battery model are extracted from pulse discharge curve under different temperatures. The simulations results of the battery model under constant current discharge and pulse charge and discharge show a good agreement with experimental data. The validated battery model is then extended to investigate the dynamic behavior of the electric vehicle battery pack using UDDS and US06 test cycle. The simulation results show that an active thermal management system is required to prolong the calendar life and ensure safety of the battery pack

  14. General Tokamak Circuit Simulation Program-GTCSP

    International Nuclear Information System (INIS)

    Matsukawa, Makoto; Miura, Yushi; Aoyagi, Tetsuo.

    1997-05-01

    General Tokamak Circuit Simulation Program (GTCSP) was originally developed for the design work of JT-60 Power Supply System in JAERI. Therefore the prepared models (components) to be analyzed are generator, thyristor converter and coils. This is one of the unique points of GTCSP in comparison with other conventional electric circuit analysis program, because they make a circuit from the small devices such as resister, coil, condenser, transistor and so on. However, GTCSP is also clearly conventional because it is possible to construct an electric circuit freely with the prepared components. Moreover, a similar function could be realized by addition a new component to GTCSP. This report is assumed to be used as an User Manual of the GTCSP, not only to present the development and the analytical functions. Then some useful examples are described, and how to get graphic outputs are also mentioned. (author)

  15. Anterior wrist and medial malleolus as the novel sites of tissue selection: a retrospective study on electric shock death through the hand-to-foot circuit pathway.

    Science.gov (United States)

    Xu, Guangtao; Su, Ruibing; Lv, Junyao; Hu, Bo; Gu, Huan; Li, Xianxian; Gu, Jiang; Yu, Xiaojun

    2017-05-01

    Our previous work demonstrated that characteristic changes could occur in the anterior wrist and medial malleolus in electric deaths through the hand-to-foot electric circuit pathway in an electric shock rat model. However, whether the same phenomenon occurs in humans is unknown. The aim of the present retrospective study was to ascertain whether the anterior wrist and medial malleolus could also be selected as the promising and significant sites in electric death through the hand-to-foot circuit pathway. Nineteen human cases from the autopsy and one clinical survivor who sustained a severe electric shock through the hand-to-foot circuit pathway were analyzed. Additional ten autopsy patients who died from traffic accidents and sudden cardiac attacks were used as the control group. Histopathological changes in the soft tissues of the anterior wrist and medial malleolus in all autopsy patients, as well as the electric current pathway of the survivor, were observed. The results showed that the nuclear polarizations in the anterior wrist and medial malleolus soft tissues of the electric death were extremely noticeable as compared with the controls. The most severe electrical injury in the survivor occurred in the anterior wrist. These findings suggest that the soft tissues of the anterior wrist and/or the medial malleolus as the narrowest parts of the limbs could be used as the complementary sites for tissue selection and considered as necessary locations for examinations to assess the electric death in medicolegal identification.

  16. Model Order Reduction for Electronic Circuits:

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Shontz, Suzanne

    Electronic circuits are ubiquitous; they are used in numerous industries including: the semiconductor, communication, robotics, auto, and music industries (among many others). As products become more and more complicated, their electronic circuits also grow in size and complexity. This increased...... in the semiconductor industry. Circuit simulation proceeds by using Maxwell’s equations to create a mathematical model of the circuit. The boundary element method is then used to discretize the equations, and the variational form of the equations are then solved on the graph network....

  17. New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites

    DEFF Research Database (Denmark)

    Rycroft, Michael J.; Odzimek, Anna; Arnold, Neil F.

    2007-01-01

    discharge from the base of a thunderstorm increases the ionospheric potential above the thundercloud by 0.0013%. Assuming the ionosphere to be an equipotential surface, this discharge increases the current flowing in the global circuit and the fair-weather electric field also by 0.0013%. A moderate positive...

  18. A new equivalent circuit model for micro electroporation systems

    KAUST Repository

    Shagoshtasbi, Hooman; Lee, Yi-Kuen

    2011-01-01

    Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the cell membrane to temporarily generate nanoscale electropores and to increase the membrane permeability for the delivery of exogenous biomolecules or drugs. We propose a new equivalent circuit model with 8 electric components to predict the electrodynamic response of a micro EP system. As the permeability of the cell membrane increases, the membrane resistance decreases. The numerical simulations of the transmembrane current responses to different applied voltages (1∼6V) are consistent with the experimental results using HeLa cells. Besides, the transmembrane voltage as a function of applied voltages is determined as well. These transmembrane current and voltage responses can be extremely useful for the design of new generation of micro EP systems for transfection of large DNA molecules in the future. © 2011 IEEE.

  19. A new equivalent circuit model for micro electroporation systems

    KAUST Repository

    Shagoshtasbi, Hooman

    2011-02-01

    Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the cell membrane to temporarily generate nanoscale electropores and to increase the membrane permeability for the delivery of exogenous biomolecules or drugs. We propose a new equivalent circuit model with 8 electric components to predict the electrodynamic response of a micro EP system. As the permeability of the cell membrane increases, the membrane resistance decreases. The numerical simulations of the transmembrane current responses to different applied voltages (1∼6V) are consistent with the experimental results using HeLa cells. Besides, the transmembrane voltage as a function of applied voltages is determined as well. These transmembrane current and voltage responses can be extremely useful for the design of new generation of micro EP systems for transfection of large DNA molecules in the future. © 2011 IEEE.

  20. Equivalent Circuit Modeling of Hysteresis Motors

    Energy Technology Data Exchange (ETDEWEB)

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  1. An Analysis of Science Textbooks for Grade 6: The Electric Circuit Lesson

    Science.gov (United States)

    Sothayapetch, Pavinee; Lavonen, Jari; Juuti, Kalle

    2013-01-01

    Textbooks are a major tool in the teaching and learning process. This paper presents the results of an analysis of the Finnish and Thai 6th grade science textbooks: electric circuit lesson. Textual and pictorial information from the textbooks were analyzed under four main categories: 1) introduction of the concepts, 2) type of knowledge, 3)…

  2. Electric theory

    International Nuclear Information System (INIS)

    Gong, Ha Seong

    2006-02-01

    This book explains electric theory which is divided into four chapters. The first chapter includes electricity and material, electric field, capacitance, magnetic field and electromagnetic force, inductance. The second chapter mentions electronic circuit analysis, electric resistance,heating and power, chemical activity on current and battery with electrolysis. The third chapter deals with an alternating current circuit about the basics of an AC circuit, operating of resistance, inductance and capacitance, series circuit and parallel circuit of PLC, an alternating current circuit, Three-phase Alternating current, two terminal pair network and voltage and current of non-linearity circuit. The last explains transient phenomena of RC series circuit, RL series circuit, transient phenomena of an alternating current circuit and transient phenomena of RLC series circuit.

  3. Wireless Open-Circuit In-Plane Strain and Displacement Sensor Requiring No Electrical Connections

    Science.gov (United States)

    Woodard, Stanley E. (Inventor)

    2014-01-01

    A wireless in-plane strain and displacement sensor includes an electrical conductor fixedly coupled to a substrate subject to strain conditions. The electrical conductor is shaped between its ends for storage of an electric field and a magnetic field, and remains electrically unconnected to define an unconnected open-circuit having inductance and capacitance. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. The sensor also includes at least one electrically unconnected electrode having an end and a free portion extending from the end thereof. The end of each electrode is fixedly coupled to the substrate and the free portion thereof remains unencumbered and spaced apart from a portion of the electrical conductor so-shaped. More specifically, at least some of the free portion is disposed at a location lying within the magnetic field response generated by the electrical conductor. A motion guidance structure is slidingly engaged with each electrode's free portion in order to maintain each free portion parallel to the electrical conductor so-shaped.

  4. Identifying and Investigating Difficult Concepts in Engineering Mechanics and Electric Circuits. Research Brief

    Science.gov (United States)

    Streveler, Ruth; Geist, Monica; Ammerman, Ravel; Sulzbach, Candace; Miller, Ronald; Olds, Barbara; Nelson, Mary

    2007-01-01

    This study extends ongoing work to identify difficult concepts in thermal and transport science and measure students' understanding of those concepts via a concept inventory. Two research questions provided the focal point: "What important concepts in electric circuits and engineering mechanics do students find difficult to learn?" and…

  5. EQUATIONS OF ELECTRIC MOTOR POWER SUPPLY UNIT DISSYMMETRY UNDER PHASE SHORT-CIRCUIT FAULT

    Directory of Open Access Journals (Sweden)

    V.Y. Tchaban

    2013-04-01

    Full Text Available In the paper, a formula is introduced for calculating electric motor supply unit voltage under feeding by a common transformer in the condition of a phase short-circuit in one of the motors. The formula is used in every time step of electromechanical state equations integration.

  6. Parameter Identification for Nonlinear Circuit Models of Power BAW Resonator

    Directory of Open Access Journals (Sweden)

    CONSTANTINESCU, F.

    2011-02-01

    Full Text Available The large signal operation of the bulk acoustic wave (BAW resonators is characterized by the amplitude-frequency effect and the intermodulation effect. The measurement of these effects, together with that of the small signal frequency characteristic, are used in this paper for the parameter identification of the nonlinear circuit models developed previously by authors. As the resonator has been connected to the measurement bench by wire bonding, the parasitic elements of this connection have been taken into account, being estimated solving some electrical and magnetic field problems.

  7. Analytical Modelling of Wireless Power Transfer (WPT) Systems for Electric Vehicle Application

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Madhu Sudhan [ORNL; Campbell, Steven L [ORNL

    2016-01-01

    This paper presents an analytical model for wireless power transfer system used in electric vehicle application. The equivalent circuit model for each major component of the system is described, including the input voltage source, resonant network, transformer, nonlinear diode rectifier load, etc. Based on the circuit model, the primary side compensation capacitance, equivalent input impedance, active / reactive power are calculated, which provides a guideline for parameter selection. Moreover, the voltage gain curve from dc output to dc input is derived as well. A hardware prototype with series-parallel resonant stage is built to verify the developed model. The experimental results from the hardware are compared with the model predicted results to show the validity of the model.

  8. Fermionic models with superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)

    2015-12-01

    We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)

  9. Network model and short circuit program for the Kennedy Space Center electric power distribution system

    Science.gov (United States)

    1976-01-01

    Assumptions made and techniques used in modeling the power network to the 480 volt level are discussed. Basic computational techniques used in the short circuit program are described along with a flow diagram of the program and operational procedures. Procedures for incorporating network changes are included in this user's manual.

  10. Neuroelectronics and modeling of electrical signals for monitoring and control of Parkinson's disease

    Science.gov (United States)

    Chintakuntla, Ritesh R.; Abraham, Jose K.; Varadan, Vijay K.

    2009-03-01

    The brain and the human nervous system are perhaps the most researched but least understood components of the human body. This is so because of the complex nature of its working and the high density of functions. The monitoring of neural signals could help one better understand the working of the brain and newer recording and monitoring methods have been developed ever since it was discovered that the brain communicates internally by means of electrical pulses. Neuroelectronics is the field which deals with the interface between electronics or semiconductors to living neurons. This includes monitoring of electrical activity from the brain as well as the development of feedback devices for stimulation of parts of the brain for treatment of disorders. In this paper these electrical signals are modeled through a nano/microelectrode arrays based on the electronic equivalent model using Cadence PSD 15.0. The results were compared with those previously published models such as Kupfmuller and Jenik's model, McGrogan's Neuron Model which are based on the Hodgkin and Huxley model. We have developed and equivalent circuit model using discrete passive components to simulate the electrical activity of the neurons. The simulated circuit can be easily be modified by adding some more ionic channels and the results can be used to predict necessary external stimulus needed for stimulation of neurons affected by the Parkinson's disease (PD). Implementing such a model in PD patients could predict the necessary voltages required for the electrical stimulation of the sub-thalamus region for the control tremor motion.

  11. 30 CFR 56.6402 - Deenergized circuits near detonators.

    Science.gov (United States)

    2010-07-01

    ... Electric Blasting § 56.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not be deenergized between 25 to 50 feet of the electric detonators if stray current tests, conducted as frequently...

  12. 30 CFR 57.6402 - Deenergized circuits near detonators.

    Science.gov (United States)

    2010-07-01

    ... Electric Blasting-Surface and Underground § 57.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not be deenergized between 25 to 50 feet of the electric detonators if stray current tests...

  13. Unexpected ICD pulse generator failure due to electronic circuit damage caused by electrical overstress.

    Science.gov (United States)

    Hauser, R G; Hayes, D L; Almquist, A K; Epstein, A E; Parsonnet, V; Tyers, G F; Vlay, S C; Schoenfeld, M H

    2001-07-01

    Because it is a lifesaving device, the unexpected failure of an ICD can be catastrophic. We report ICD electronic circuit failure due to electrical overstress damage (EOS) to the high voltage hybird circuit and other electronic components in a series of ICD pulse generator models. Data were obtained from the Multicenter Registry of Pacemaker and ICD Pacemaker and Lead Failures, and from the manufactures' adverse event reports, that were in the FDA's Manufacturer and User Facility Device Experience (MAUDE) database. Of 16 nonbattery Guidant/CPI ICD pulse generator failures reported to the registry, 6 (38%) have been confirmed by the manufacturer to be EOS related, and Guidant/CPI has reported 273 such failures to the FDA as of 12/29/00. The signs of failure included loss of telemetry and inability to deliver therapy, and some patients have experienced serious adverse events. Hybrid circuit damage may have occurred during capacitor charging or reform, and the majority appears to have happened during normal ICD function. While the incidence of this problem is unknown, a management strategy should be adopted that includes routine follow-up every 3 months and device evaluation after a shock or exposure to external defibrillation or electrosurgical devices. This study suggests that additional data are needed to determine the incidence of this problem, and that our present methods for monitoring the performance of ICD's following market release are inadequate.

  14. Method for heating of the primary circuit of WWER electric power units at cold start-up

    International Nuclear Information System (INIS)

    Ivanov, I.N.; Dimitrov, B.D.; Korkinova, M.I.

    1982-01-01

    The method increases the heating rate and shorten the start-up time of the electric power units. It comprises a primary stopping of the reactor core heating and provides a forced circulation of the heat-carrier through the circulation cycles of the primary circuit. The thermal energy is supplied in one or several steam generators in the secondary circuit of an NPP operating unit. 1 cl., 3 figs

  15. Development of a Three-Tier Test to Assess Misconceptions about Simple Electric Circuits

    Science.gov (United States)

    Pesman, Haki; Eryilmaz, Ali

    2010-01-01

    The authors aimed to propose a valid and reliable diagnostic instrument by developing a three-tier test on simple electric circuits. Based on findings from the interviews, open-ended questions, and the related literature, the test was developed and administered to 124 high school students. In addition to some qualitative techniques for…

  16. Source-circuit design overview

    Science.gov (United States)

    Ross, R. G., Jr.

    1983-01-01

    The source circuit is the fundamental electrical building block of a large central-station array; it consists of a series-parallel network of solar cells that develops full system voltage. The array field is generally made up of a large number of parallel source circuits. Source-circuit electrical configuration is driven by a number of design considerations, which must be considered simultaneously. Array fault tolerance and hot spot heating endurance are examined in detail.

  17. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions

    International Nuclear Information System (INIS)

    Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J.

    2002-01-01

    Electrical impedance spectroscopy (EIS) was applied in order to investigate electrochemical nanocrystalline TiO 2 dye solar cells (DSC). Typically, three characteristic frequency peaks were observed in the spectra. These frequency peaks could be explained by variations of cell parameters and by comparison with intensity-modulated photovoltage spectroscopy (IMVS). It was shown that the low-frequency peak (in the mHz range) corresponds to the Nernstian diffusion within the electrolyte, while the middle-frequency peak (in the 10-100 Hz range) reflects the properties of the photoinjected electrons within the TiO 2 . The high-frequency peak (in the kHz range) corresponds to the charge-transfer at the platinum counter electrode. For a detailed analysis of the spectra, a model was developed which allows the evaluation of EIS spectra, measured under bias illumination and under open-circuit conditions. The influence of cell parameters such as the TiO 2 layer thickness, cell thickness, charge-transfer resistance of the platinum counter electrode, and the lifetime of the photoinjected electrons, on the impedance spectra was studied both experimentally and theoretically. Finally, it is shown that EIS is a measurement method suited well for the investigation of the long-term stability of DSC, as changes of the inner cell parameters can be revealed

  18. Superconducting quantum circuits theory and application

    OpenAIRE

    Deng, Xiuhao

    2015-01-01

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification.The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to a...

  19. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.

    Science.gov (United States)

    Zhang, Jing; Liu, Xiaojun; Xu, Wenjing; Luo, Wenhan; Li, Ming; Chu, Fangbing; Xu, Lu; Cao, Anyuan; Guan, Jisong; Tang, Shiming; Duan, Xiaojie

    2018-04-09

    Recent developments of transparent electrode arrays provide a unique capability for simultaneous optical and electrical interrogation of neural circuits in the brain. However, none of these electrode arrays possess the stretchability highly desired for interfacing with mechanically active neural systems, such as the brain under injury, the spinal cord, and the peripheral nervous system (PNS). Here, we report a stretchable transparent electrode array from carbon nanotube (CNT) web-like thin films that retains excellent electrochemical performance and broad-band optical transparency under stretching and is highly durable under cyclic stretching deformation. We show that the CNT electrodes record well-defined neuronal response signals with negligible light-induced artifacts from cortical surfaces under optogenetic stimulation. Simultaneous two-photon calcium imaging through the transparent CNT electrodes from cortical surfaces of GCaMP-expressing mice with epilepsy shows individual activated neurons in brain regions from which the concurrent electrical recording is taken, thus providing complementary cellular information in addition to the high-temporal-resolution electrical recording. Notably, the studies on rats show that the CNT electrodes remain operational during and after brain contusion that involves the rapid deformation of both the electrode array and brain tissue. This enables real-time, continuous electrophysiological monitoring of cortical activity under traumatic brain injury. These results highlight the potential application of the stretchable transparent CNT electrode arrays in combining electrical and optical modalities to study neural circuits, especially under mechanically active conditions, which could potentially provide important new insights into the local circuit dynamics of the spinal cord and PNS as well as the mechanism underlying traumatic injuries of the nervous system.

  20. Electrical model of cold atmospheric plasma gun

    Science.gov (United States)

    Slutsker, Ya. Z.; Semenov, V. E.; Krasik, Ya. E.; Ryzhkov, M. A.; Felsteiner, J.; Binenbaum, Y.; Gil, Z.; Shtrichman, R.; Cohen, J. T.

    2017-10-01

    We present an analytical model of cold atmospheric plasma formed by a dielectric barrier discharge (DBD), which is based on the lumped and distributed elements of an equivalent electric circuit of this plasma. This model is applicable for a wide range of frequencies and amplitudes of the applied voltage pulses, no matter whether or not the generated plasma plume interacts with a target. The model allows quantitative estimation of the plasma plume length and the energy delivered to the plasma. Also, the results of this model can be used for the design of DBD guns which efficiently generate cold atmospheric plasma. A comparison of the results of the model with those obtained in experiments shows a fairly good agreement.

  1. The use of mathematics and electric circuit simulator software in the learning process of wireless power transfer for electrical engineering students

    Science.gov (United States)

    Habibi, Muhammad Afnan; Fall, Cheikh; Setiawan, Eko; Hodaka, Ichijo; Wijono, Hasanah, Rini Nur

    2017-09-01

    Wireless Power Transfer (WPT) isa technique to deliver the electrical power from the source to the load without using wires or conductors. The physics of WPT is well known and basically learned as a course in high school. However, it is very recent that WPT is useful in practical situation: it should be able to transfer electric power in a significant efficiency. It means that WPT requires not much knowledge to university students but may attract students because of cutting edge technique of WPT. On the other hand, phenomena of WPT is invisible and sometimes difficult to imagine. The objective of this paper is to demonstrate the use of mathematics and an electric circuit simulator using MATHEMATICA software and LT-SPICE software in designing a WPT system application. It brings to a conclusion that the students as well the designer can take the benefit of the proposed method. By giving numerical values to circuit parameters, students acquires the power output and efficiency of WPT system. The average power output as well as the efficiency of the designed WPT which resonance frequency set on the system,leads it to produce high output power and better efficiency.

  2. Arc modelling in SF6 circuit breakers

    International Nuclear Information System (INIS)

    Verite, J.C.; Boucher, T.; Comte, A.; Delalondre, C.; Robin-Jouan, P.; Serres, E.; Texier, V.; Barrault, M.; Chevrier, P.; Fievet, C.

    1995-06-01

    The paper presents the work done by an operator, EDF and two manufacturers to improve the physical models and numerical methods used to simulate the behavior of the plasma and cold gas around it in a breaking chamber of the HV SF6 circuit breaker, during the high-current phase. This work concerns flow phenomena, in particular incorporating compressibility and the study of turbulence, the coupling between these flow phenomena and electromagnetic phenomena, and finally, radiation - which plays an essential role in energy transfer during the high-current phase. For this latter aspect, emission but also absorption were proven to play a major role, and the two were introduced into the models. The paper presents the models developed and the results obtained with them for simulation of two circuit breaker mock-ups (a double-pressure circuit breaker mock-up and a self-expanding and rotating arc circuit breaker mock-up). (author)

  3. Dual Transformer Model based on Standard Circuit Elements for the Study of Low- and Mid-frequency Transients

    Science.gov (United States)

    Jazebi, Saeed

    This thesis is a step forward toward achieving the final objective of creating a fully dual model for transformers including eddy currents and nonlinearities of the iron core using the fundamental electrical components already available in the EMTP-type programs. The model is effective for the study of the performance of transformers during power system transients. This is very important for transformer designers, because the insulation of transformers is determined with the overvoltages caused by lightning or switching operations. There are also internally induced transients that occur when a switch is actuated. For example switching actions for reconfiguration of distribution systems that offers economic advantages, or protective actions to clear faults and large short-circuit currents. Many of the smart grid concepts currently under development by many utilities rely heavily on switching to optimize resources that produce transients in the system. On the other hand, inrush currents produce mechanical forces which deform transformer windings and cause malfunction of the differential protection. Also, transformer performance under ferroresonance and geomagnetic induced currents are necessary to study. In this thesis, a physically consistent dual model applicable to single-phase two-winding transformers is proposed. First, the topology of a dual electrical equivalent circuit is obtained from the direct application of the principle of duality. Then, the model parameters are computed considering the variations of the transformer electromagnetic behavior under various operating conditions. Current modeling techniques use different topological models to represent diverse transient situations. The reversible model proposed in this thesis unifies the terminal and topological equivalent circuits. The model remains invariable for all low-frequency transients including deep saturation conditions driven from any of the two windings. The very high saturation region of the

  4. The Short Circuit Model of Reading.

    Science.gov (United States)

    Lueers, Nancy M.

    The name "short circuit" has been given to this model because, in many ways, it adequately describes what happens bioelectrically in the brain. The "short-circuiting" factors include linguistic, sociocultural, attitudinal and motivational, neurological, perceptual, and cognitive factors. Research is reviewed on ways in which each one affects any…

  5. Conceptual understanding of electrical circuits in secondary vocational engineering education: combining traditional instruction with inquiry learning in a virtual lab

    NARCIS (Netherlands)

    Kolloffel, Bas Jan; de Jong, Anthonius J.M.

    2013-01-01

    Background: Traditionally, engineering curricula about electrical circuits use textbook instruction and hands-on lessons, which are effective approaches for teaching terms and definitions, the procedural use of formulas, and how to build circuits. Nonetheless, students often lack conceptual

  6. Encountering the Expertise Reversal Effect with a Computer-Based Environment on Electrical Circuit Analysis

    Science.gov (United States)

    Reisslein, Jana; Atkinson, Robert K.; Seeling, Patrick; Reisslein, Martin

    2006-01-01

    This study examined the effectiveness of a computer-based environment employing three example-based instructional procedures (example-problem, problem-example, and fading) to teach series and parallel electrical circuit analysis to learners classified by two levels of prior knowledge (low and high). Although no differences between the…

  7. Anti-electromagnetic interference analysis of equivalent circuit of ion channel based on the Hodgkin-Huxley model

    International Nuclear Information System (INIS)

    Chu, J; Chang, X L; Zhao, M; Man, M H; Wei, M; Yuan, L

    2013-01-01

    With the continuous improvement of circuit integration and working clock frequency in the electronic system, it is increasingly easy for the system to be affected by electromagnetic waves, and electromagnetic susceptibility and vulnerability become more severe. However, living beings in nature have shown extraordinary compatibility, immunity and adaptability to the electromagnetism at the same time. In addition, the ion channel on the neuron cytomembrane is a typical representation of b ioelectrical immunity . So the Hodgkin-Huxley circuit model with one capacitor in parallel with some power supplies and resistors was adopted to simulate the ion channel on the neuron cytomembrane. Through analysis, the circuit model can be used to simulate some electrical characteristics of biological neuron cells, and then acquire a certain level of anti-electromagnetic interference ability. This method will be useful for improving the reliability, compatibility and anti-interference capability of the electronic system in the complicated electromagnetic environment.

  8. 49 CFR 236.721 - Circuit, control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ...

  9. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    Science.gov (United States)

    López-Fernandez, J. A.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Muñoz-Castro, A.; Rodríguez-Méndez, B. G.

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results.

  10. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    International Nuclear Information System (INIS)

    López-Fernandez, J A; Peña-Eguiluz, R; López-Callejas, R; Mercado-Cabrera, A; Valencia-Alvarado, R; Muñoz-Castro, A; Rodríguez-Méndez, B G

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results. (paper)

  11. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  12. Effects of energetic particle precipitation on the atmospheric electric circuit

    International Nuclear Information System (INIS)

    Reagan, J.B.; Meyerott, R.E.; Evans, J.E.; Imhof, W.L.; Joiner, R.G.

    1983-01-01

    The solar particle event (SPE) of August 1972 is one of the largest that has occurred in the last 20 years. Since it is so well documented, it can serve as a good example of a major perturbation to the atmospheric electric system. In this paper, ion production rates and conductivities from the ground to 80 km at the peak intensity of the event on August 4 and for 30, 35, and 40 km for the 6-day duration of the event are presented. At the peak of the event, the proton and electron precipitation currents, the ohmic current, and the vertical electric field are calculated inside the polar cap. The particle precipitation currents at this time greatly exceed the normal air earth current at altitudes above 30 km and produce reversals in the vertical electric field at 28 km and above. Calculations are presented of the vertical electric field at altitudes near 30 km where balloon measurements were made. Good agreement between the calculated and the measured vertical electric field verifies our ability to calculate disturbed conductivities at these altitudes from satellite measurements of proton spectra incident on the atmosphere. Despite the fact that at the peak of the event the vertical electric field near 30 km was shorted out by the solar particles and that the current carried by the solar particles exceeded the fair weather air-earth current density in the stratosphere by large factors, it is concluded that the largest effect of an SPE of this magnitude on the atmospheric electric circuit is due to the Forbush decrease in the galactic cosmic ray flux rather than to the large increase in solar proton flux

  13. A global model of thunderstorm electricity and the prediction of whistler duct formation

    International Nuclear Information System (INIS)

    Stansbery, E.K.

    1989-01-01

    A two-dimensional numerical model is created to calculate the electric field and current that flow from a thunderstorm source into the global electrical circuit. The model includes a hemisphere in which the thunderstorm is located, an equalization layer, and a passive magnetic conjugate hemisphere. To maintain the fair weather electric field, the output current from the thunderstorm is allowed to spread out in the ionosphere or flow along the magnetic field lines into the conjugate hemisphere. The vertical current is constant up to approximately 65 km, decays and is redirected horizontally in the ionosphere. Approximately half of the current that reaches the ionosphere flows along magnetic field lines into the conjugate hemisphere while the rest is spread out in the ionosphere and redirected to the fair weather portion of the storm hemisphere. Our results show that it is important to include a realistic model of the equalization layer to evaluate the role of thunderstorm charging of the global circuit. The mapping of thunderstorm electric fields at middle and subauroral latitudes into the magnetic equatorial plane is studied. The geomagnetic field lines are assumed to be dipolar above approximately 150 km. The horizontal electric field computed in the ionosphere by our model is of sufficient size and shape for the formation of electron density irregularities in the magnetosphere. The mechanism involves a localized convection of ionization tubes by ExB drift. It is shown that the horizontal range of the electric field disturbance in the ionosphere must be within approximately 160 km to produce density irregularities necessary for the formation of whistler ducts. Although the electric field strength at ionospheric heights depends sensitively on the conductivity profile, the results presented show that whistler duct formation is possible by thunderstorm generated electric fields.*

  14. Modeling and simulation of floating gate nanocrystal FET devices and circuits

    Science.gov (United States)

    Hasaneen, El-Sayed A. M.

    The nonvolatile memory market has been growing very fast during the last decade, especially for mobile communication systems. The Semiconductor Industry Association International Technology Roadmap for Semiconductors states that the difficult challenge for nonvolatile semiconductor memories is to achieve reliable, low power, low voltage performance and high-speed write/erase. This can be achieved by aggressive scaling of the nonvolatile memory cells. Unfortunately, scaling down of conventional nonvolatile memory will further degrade the retention time due to the charge loss between the floating gate and drain/source contacts and substrate which makes conventional nonvolatile memory unattractive. Using nanocrystals as charge storage sites reduces dramatically the charge leakage through oxide defects and drain/source contacts. Floating gate nanocrystal nonvolatile memory, FG-NCNVM, is a candidate for future memory because it is advantageous in terms of high-speed write/erase, small size, good scalability, low-voltage, low-power applications, and the capability to store multiple bits per cell. Many studies regarding FG-NCNVMs have been published. Most of them have dealt with fabrication improvements of the devices and device characterizations. Due to the promising FG-NCNVM applications in integrated circuits, there is a need for circuit a simulation model to simulate the electrical characteristics of the floating gate devices. In this thesis, a FG-NCNVM circuit simulation model has been proposed. It is based on the SPICE BSIM simulation model. This model simulates the cell behavior during normal operation. Model validation results have been presented. The SPICE model shows good agreement with experimental results. Current-voltage characteristics, transconductance and unity gain frequency (fT) have been studied showing the effect of the threshold voltage shift (DeltaVth) due to nanocrystal charge on the device characteristics. The threshold voltage shift due to

  15. System and circuit models for microwave antennas

    OpenAIRE

    Sobhy, Mohammed; Sanz-Izquierdo, Benito; Batchelor, John C.

    2007-01-01

    This paper describes how circuit and system models are derived for antennas from measurement of the input reflection coefficient. Circuit models are used to optimize the antenna performance and to calculate the radiated power and the transfer function of the antenna. System models are then derived for transmitting and receiving antennas. The most important contribution of this study is to show how microwave structures can be integrated into the simulation of digital communication systems. Thi...

  16. Electricity sequence control

    International Nuclear Information System (INIS)

    Shin, Heung Ryeol

    2010-03-01

    The contents of the book are introduction of control system, like classification and control signal, introduction of electricity power switch, such as push-button and detection switch sensor for induction type and capacitance type machinery for control, solenoid valve, expression of sequence and type of electricity circuit about using diagram, time chart, marking and term, logic circuit like Yes, No, and, or and equivalence logic, basic electricity circuit, electricity sequence control, added condition, special program control about choice and jump of program, motor control, extra circuit on repeat circuit, pause circuit in a conveyer, safety regulations and rule about classification of electricity disaster and protective device for insulation.

  17. Uninterruptible power supply model of independent voltage inverter of NPP electrical equipment

    International Nuclear Information System (INIS)

    Rozhkov, V.V.; Ajdaralieva, V.Eh.

    2010-01-01

    A package of main transforming units models of advanced uninterruptible power supply systems of NPP electrical equipment was developed. The package of models allows investigating the basic modes of uninterruptible power supply systems operation by computer modeling. Simulation results were presented. Recommendations on choice of parameters of power circuit elements as well as on diagnostics and adjustment of regulators of converters control systems were given [ru

  18. The Simulation Computer Based Learning (SCBL) for Short Circuit Multi Machine Power System Analysis

    Science.gov (United States)

    Rahmaniar; Putri, Maharani

    2018-03-01

    Strengthening Competitiveness of human resources become the reply of college as a conductor of high fomal education. Electrical Engineering Program UNPAB (Prodi TE UNPAB) as one of the department of electrical engineering that manages the field of electrical engineering expertise has a very important part in preparing human resources (HR), Which is required by where graduates are produced by DE UNPAB, Is expected to be able to compete globally, especially related to the implementation of Asean Economic Community (AEC) which requires the active participation of graduates with competence and quality of human resource competitiveness. Preparation of HR formation Competitive is done with the various strategies contained in the Seven (7) Higher Education Standard, one part of which is the implementation of teaching and learning process in Electrical system analysis with short circuit analysis (SCA) This course is a course The core of which is the basis for the competencies of other subjects in the advanced semester at Development of Computer Based Learning model (CBL) is done in the learning of interference analysis of multi-machine short circuit which includes: (a) Short-circuit One phase, (B) Two-phase Short Circuit Disruption, (c) Ground Short Circuit Disruption, (d) Short Circuit Disruption One Ground Floor Development of CBL learning model for Electrical System Analysis course provides space for students to be more active In learning in solving complex (complicated) problems, so it is thrilling Ilkan flexibility of student learning how to actively solve the problem of short-circuit analysis and to form the active participation of students in learning (Student Center Learning, in the course of electrical power system analysis.

  19. A bio-inspired spatial patterning circuit.

    Science.gov (United States)

    Chen, Kai-Yuan; Joe, Danial J; Shealy, James B; Land, Bruce R; Shen, Xiling

    2014-01-01

    Lateral Inhibition (LI) is a widely conserved patterning mechanism in biological systems across species. Distinct from better-known Turing patterns, LI depend on cell-cell contact rather than diffusion. We built an in silico genetic circuit model to analyze the dynamic properties of LI. The model revealed that LI amplifies differences between neighboring cells to push them into opposite states, hence forming stable 2-D patterns. Inspired by this insight, we designed and implemented an electronic circuit that recapitulates LI patterning dynamics. This biomimetic system serve as a physical model to elucidate the design principle of generating robust patterning through spatial feedback, regardless of the underlying devices being biological or electrical.

  20. Automatic Analysis at the Commissioning of the LHC Superconducting Electrical Circuits

    CERN Document Server

    Reymond, H; Charrondiere, C; Rijllart, A; Zerlauth, M

    2011-01-01

    Since the beginning of 2010 the LHC has been operating in a routinely manner, starting with a commissioning phase and then an operation for physics phase. The commissioning of the superconducting electrical circuits requires rigorous test procedures before entering into operation. To maximize the beam operation time of the LHC, these tests should be done as fast as procedures allow. A full commissioning need 12000 tests and is required after circuits have been warmed above liquid nitrogen temperature. Below this temperature, after an end of year break of two months, commissioning needs about 6000 tests. As the manual analysis of the tests takes a major part of the commissioning time, we automated existing analysis tools. We present here how these LabVIEW™ applications were automated, the evaluation of the gain in commissioning time and reduction of experts on night shift observed during the LHC hardware commissioning campaign of 2011 compared to 2010. We end with an outlook at what can be further optimized.

  1. Automatic analysis at the commissioning of the LHC superconducting electrical circuits

    International Nuclear Information System (INIS)

    Reymond, H.; Andreassen, O.O.; Charrondiere, C.; Rijllart, A.; Zerlauth, M.

    2012-01-01

    Since the beginning of 2010 the LHC has been operating in a routinely manner, starting with a commissioning phase and then an operation for physics phase. The commissioning of the superconducting electrical circuits requires rigorous test procedures before entering into operation. To maximize the beam operation time of the LHC, these tests should be done as fast as procedures allow. A full commissioning need 12000 tests and is required after circuits have been warmed above liquid nitrogen temperature. Below this temperature, after an end of year break of two months, commissioning needs about 6000 tests. As the manual analysis of the tests takes a major part of the commissioning time, we automated existing analysis tools. We present here how these LabVIEW TM applications were automated, the evaluation of the gain in commissioning time and reduction of experts on night shift observed during the LHC hardware commissioning campaign of 2011 compared to 2010. We end with an outlook at what can be further optimized. (authors)

  2. Addressable-Matrix Integrated-Circuit Test Structure

    Science.gov (United States)

    Sayah, Hoshyar R.; Buehler, Martin G.

    1991-01-01

    Method of quality control based on use of row- and column-addressable test structure speeds collection of data on widths of resistor lines and coverage of steps in integrated circuits. By use of straightforward mathematical model, line widths and step coverages deduced from measurements of electrical resistances in each of various combinations of lines, steps, and bridges addressable in test structure. Intended for use in evaluating processes and equipment used in manufacture of application-specific integrated circuits.

  3. First-Order SPICE Modeling of Extreme-Temperature 4H-SiC JFET Integrated Circuits

    Science.gov (United States)

    Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu

    2016-01-01

    A separate submission to this conference reports that 4H-SiC Junction Field Effect Transistor (JFET) digital and analog Integrated Circuits (ICs) with two levels of metal interconnect have reproducibly demonstrated electrical operation at 500 C in excess of 1000 hours. While this progress expands the complexity and durability envelope of high temperature ICs, one important area for further technology maturation is the development of reasonably accurate and accessible computer-aided modeling and simulation tools for circuit design of these ICs. Towards this end, we report on development and verification of 25 C to 500 C SPICE simulation models of first order accuracy for this extreme-temperature durable 4H-SiC JFET IC technology. For maximum availability, the JFET IC modeling is implemented using the baseline-version SPICE NMOS LEVEL 1 model that is common to other variations of SPICE software and importantly includes the body-bias effect. The first-order accuracy of these device models is verified by direct comparison with measured experimental device characteristics.

  4. New Electro-Thermal Battery Pack Model of an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Muhammed Alhanouti

    2016-07-01

    Full Text Available Since the evolution of the electric and hybrid vehicle, the analysis of batteries’ characteristics and influence on driving range has become essential. This fact advocates the necessity of accurate simulation modeling for batteries. Different models for the Li-ion battery cell are reviewed in this paper and a group of the highly dynamic models is selected for comparison. A new open circuit voltage (OCV model is proposed. The new model can simulate the OCV curves of lithium iron magnesium phosphate (LiFeMgPO4 battery type at different temperatures. It also considers both charging and discharging cases. The most remarkable features from different models, in addition to the proposed OCV model, are integrated in a single hybrid electrical model. A lumped thermal model is implemented to simulate the temperature development in the battery cell. The synthesized electro-thermal battery cell model is extended to model a battery pack of an actual electric vehicle. Experimental tests on the battery, as well as drive tests on the vehicle are performed. The proposed model demonstrates a higher modeling accuracy, for the battery pack voltage, than the constituent models under extreme maneuver drive tests.

  5. Functional end-arterial circulation of the choroid assessed by using fat embolism and electric circuit simulation.

    Science.gov (United States)

    Lee, Ji Eun; Ahn, Ki Su; Park, Keun Heung; Pak, Kang Yeun; Kim, Hak Jin; Byon, Ik Soo; Park, Sung Who

    2017-05-30

    The discrepancy in the choroidal circulation between anatomy and function has remained unsolved for several decades. Postmortem cast studies revealed extensive anastomotic channels, but angiographic studies indicated end-arterial circulation. We carried out experimental fat embolism in cats and electric circuit simulation. Perfusion defects were observed in two categories. In the scatter perfusion defects suggesting an embolism at the terminal arterioles, fluorescein dye filled the non-perfused lobule slowly from the adjacent perfused lobule. In the segmental perfusion defects suggesting occlusion of the posterior ciliary arteries, the hypofluorescent segment became perfused by spontaneous resolution of the embolism without subsequent smaller infarction. The angiographic findings could be simulated with an electric circuit. Although electric currents flowed to the disconnected lobule, the level was very low compared with that of the connected ones. The choroid appeared to be composed of multiple sectors with no anastomosis to other sectors, but to have its own anastomotic arterioles in each sector. Blood flows through the continuous choriocapillaris bed in an end-arterial nature functionally to follow a pressure gradient due to the drainage through the collector venule.

  6. MODELING OF SYMMETRIC THREE-PHASE ASYNCHRONOUS ELECTRIC MOTOR IN ASYMMETRIC CONNECTION TO NETWORK

    Directory of Open Access Journals (Sweden)

    V. I. Lukovnikov

    2005-01-01

    Full Text Available The paper shows how to solve the problem concerning reveal of changes in mathematical models and electric parameters of symmetric three-phase short-circuited asynchronous electric motors in case of their connection to single- or two-phase network in comparison with their connection to three-phase network. The uniform methodological approach permitting to generalize the known data and receive new results is offered in the paper.

  7. Modeling digital switching circuits with linear algebra

    CERN Document Server

    Thornton, Mitchell A

    2014-01-01

    Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transf

  8. Application of Circuit Model for Photovoltaic Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Natarajan Pandiarajan

    2012-01-01

    Full Text Available Circuit model of photovoltaic (PV module is presented in this paper that can be used as a common platform by material scientists and power electronic circuit designers to develop better PV power plant. Detailed modeling procedure for the circuit model with numerical dimensions is presented using power system blockset of MATLAB/Simulink. The developed model is integrated with DC-DC boost converter with closed-loop control of maximum power point tracking (MPPT algorithm. Simulation results are validated with the experimental setup.

  9. Effects of a parallel resistor on electrical characteristics of a piezoelectric transformer in open-circuit transient state.

    Science.gov (United States)

    Chang, Kuo-Tsai

    2007-01-01

    This paper investigates electrical transient characteristics of a Rosen-type piezoelectric transformer (PT), including maximum voltages, time constants, energy losses and average powers, and their improvements immediately after turning OFF. A parallel resistor connected to both input terminals of the PT is needed to improve the transient characteristics. An equivalent circuit for the PT is first given. Then, an open-circuit voltage, involving a direct current (DC) component and an alternating current (AC) component, and its related energy losses are derived from the equivalent circuit with initial conditions. Moreover, an AC power control system, including a DC-to-AC resonant inverter, a control switch and electronic instruments, is constructed to determine the electrical characteristics of the OFF transient state. Furthermore, the effects of the parallel resistor on the transient characteristics at different parallel resistances are measured. The advantages of adding the parallel resistor also are discussed. From the measured results, the DC time constant is greatly decreased from 9 to 0.04 ms by a 10 k(omega) parallel resistance under open output.

  10. EQUATIONS OF ELECTRIC MOTOR POWER SUPPLY UNIT DISSYMMETRY UNDER PHASE-TO-PHASE SHORT-CIRCUIT FAULT

    Directory of Open Access Journals (Sweden)

    V.Y. Tchaban

    2013-10-01

    Full Text Available In the paper, a formula is introduced to calculate electric motor supply unit voltage under feeding by a common transformer in the condition of a phase-to-phase short-circuit. The formula is used in every time step of electromechanical state equations integration.

  11. Operating characteristics and modeling of the LLNL 100-kV electric gun

    International Nuclear Information System (INIS)

    Osher, J.E.; Barnes, G.; Chau, H.H.; Lee, R.S.; Lee, C.; Speer, R.; Weingart, R.C.

    1989-01-01

    In the electric gun, the explosion of an electrically heated metal foil and the accompanying magnetic forces drive a thin flyer plate up a short barrel. Flyer velocities of up to 18 km/s make the gun useful for hypervelocity impact studies. The authors briefly review the technological evolution of the exploding-metal circuit elements that power the gun, describe the 100-kV electric gun designed at Lawrence Livermore National Laboratory (LLNL) in some detail, and present the general principles of electric gun operation. They compare the experimental performance of the LLNL gun with a simple model and with predictions of a magnetohydrodynamics code

  12. Background voltage distortion influence on power electric systems in the presence of the Steinmetz circuit

    Energy Technology Data Exchange (ETDEWEB)

    Sainz, Luis; Pedra, Joaquin [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal 647, 08028 Barcelona (Spain); Caro, Manuel [IDOM Ingenieria y Arquitectura, C. Barcas 2, 46002 Valencia (Spain)

    2009-01-15

    In traction systems, it is usual to connect reactances in delta configuration with single-phase loads to reduce voltage unbalances and avoid electric system operation problems. This set is known as Steinmetz circuit. Parallel and series resonances can occur due to the capacitive reactance of the Steinmetz circuit and affect power quality. In this paper, the series resonance ''observed'' from the supply system is numerically located. The study of this resonance is important to avoid problems due to background voltage distortion. Experimental measurements are also presented to validate the obtained numerical results. (author)

  13. Creating a Simple Electric Circuit with Children between the Ages of Five and Six

    Science.gov (United States)

    Kada, Vasiliki; Ravanis, Kostantinos

    2016-01-01

    This paper presents a study of how preschool-aged children go about creating and operating a simple electric circuit (wires, light bulb, and battery), and how they view the elements that comprise it, particularly how they view the role of the battery. The research involved 108 children aged between five and six, who were individually interviewed.…

  14. Sistem Proteksi Arus Bocor Menggunakan Earth Leakage Circuit Breaker Berbasis Arduino

    Directory of Open Access Journals (Sweden)

    Syukriyadin Syukriyadin

    2017-02-01

    Full Text Available Touching a live part of electrical equipment either intentionally or unintentionally can cause an electric shock. The touch can occur directly or indirectly and results in the flow of electric current through the human body to the ground. This electric current is known as the leakage current and can have fatal effects on the human body such as burns, cramps, faint and death. This paper aims to design a prototype protection model of the earth leakage circuit breaker device based on Arduino (ELCBA to protect the human body from the electrical hazards. The performance of the ELCBA is investigated by detecting the earth leakage current to the grounding system (TN.  The prototype is designed and simulated by using Proteus software. Based on the response test carried out on the prototype, it can be concluded that the ELCBA can operate properly to disconnect the electric circuit if the leakage current is detected greater than or equal to 30 mA with a time delay of 15 ms and to reclose the circuit again after 5 minutes.

  15. Analog circuits cookbook

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  16. Fire protection electrical engineering

    International Nuclear Information System (INIS)

    Oh, Jung Min

    2000-03-01

    This book concentrates of electricity with current, voltage, power, ohms law, access of resistance, electrolytic analysis and battery, static on frictional electricity and electrostatic induction, coulomb's law, Gauss's law, condenser and capacity, magmatism on magnetic field and magnetic line of force, magnetic circuit, electromagnetic force, electromotive current, basic alternating current circuit, circuit network analysis, three-phase current, non-sinusoidal alternating current, transient phenomena, semiconductor, electric measurement on measurement over resistance, power, power rate and circuit tester, automatic control on introduction, term, classification, foundation of sequence control, logic circuit and basic logic circuit and electric equipment.

  17. Questions about Answers: Probing Teachers' Awareness and Planned Remediation of Learners' Misconceptions about Electric Circuits

    Science.gov (United States)

    Gaigher, Estelle

    2014-01-01

    This article reports an exploratory multi-case study on how science teachers understand and envisage addressing learners' misconceptions about electric circuits. Four teachers from schools in and around a large South African city participated in the study. An open-ended questionnaire was designed in a novel way, questioning teachers about wrong…

  18. Arc modelling in SF{sub 6} circuit breakers

    Energy Technology Data Exchange (ETDEWEB)

    Verite, J.C. [Electricite de France, Clamart (France). Derection des Etudes et Recherches; Boucher, T.; Comte, A. [Electricite de France, Moret sur Loing (France). Direction des Etudes et Recherches; Delalondre, C. [Electricite de France, Chatou (France). Direction des Etudes et Recherches; Robin-Jouan, P.; Serres, E.; Texier, V. [GEC Alsthom, Villeurbanne (France). Direction Technique Haute et Moyenne Tension; Barrault, M.; Chevrier, P.; Fievet, C. [CEA Centre d`Etudes Nucleaires de Grenoble, 38 (France). Merlin Gerin

    1995-06-01

    The paper presents the work done by an operator, EDF and two manufacturers to improve the physical models and numerical methods used to simulate the behavior of the plasma and cold gas around it in a breaking chamber of the HV SF6 circuit breaker, during the high-current phase. This work concerns flow phenomena, in particular incorporating compressibility and the study of turbulence, the coupling between these flow phenomena and electromagnetic phenomena, and finally, radiation - which plays an essential role in energy transfer during the high-current phase. For this latter aspect, emission but also absorption were proven to play a major role, and the two were introduced into the models. The paper presents the models developed and the results obtained with them for simulation of two circuit breaker mock-ups (a double-pressure circuit breaker mock-up and a self-expanding and rotating arc circuit breaker mock-up). (author) 10 refs.

  19. Maximizing the short circuit current of organic solar cells by partial decoupling of electrical and optical properties

    Science.gov (United States)

    Qarony, Wayesh; Hossain, Mohammad I.; Jovanov, Vladislav; Knipp, Dietmar; Tsang, Yuen Hong

    2018-03-01

    The partial decoupling of electronic and optical properties of organic solar cells allows for realizing solar cells with increased short circuit current and energy conversion efficiency. The proposed device consists of an organic solar cell conformally prepared on the surface of an array of single and double textured pyramids. The device geometry allows for increasing the optical thickness of the organic solar cell, while the electrical thickness is equal to the nominal thickness of the solar cell. By increasing the optical thickness of the solar cell, the short circuit current is distinctly increased. The quantum efficiency and short circuit current are determined using finite-difference time-domain simulations of the 3D solar cell structure. The influence of different solar cell designs on the quantum efficiency and short circuit current is discussed and optimal device dimensions are proposed.

  20. Bias-dependent model of the electrical impedance of ionic polymer-metal composites.

    Science.gov (United States)

    Cha, Youngsu; Porfiri, Maurizio

    2013-02-01

    In this paper, we analyze the charge dynamics of ionic polymer-metal composites (IPMCs) in response to voltage inputs composed of a large dc bias and a small superimposed time-varying voltage. The IPMC chemoelectrical behavior is described through the modified Poisson-Nernst-Planck framework, in which steric effects are taken into consideration. The physics of charge build-up and mass transfer in the proximity of the high surface electrodes is modeled by schematizing the IPMC as the stacked sequence of five layers, in which the ionomeric membrane is separated from the metal electrodes by two composite layers. The method of matched asymptotic expansions is used to derive a semianalytical solution for the concentration of mobile counterions and the electric potential in the IPMC, which is, in turn, used to establish an equivalent circuit model for the IPMC electrical response. The circuit model consists of the series connection of a resistor and two complex elements, each constituted by the parallel connection of a capacitor and a Warburg impedance. The resistor is associated with ion transport in the ionomeric membrane and is independent of the dc bias. The capacitors and the Warburg impedance idealize charge build-up and mass transfer in the vicinity of the electrodes and their value is controlled by the dc bias. The proposed approach is validated against experimental results on in-house fabricated IPMCs and the accuracy of the equivalent circuit is assessed through comparison with finite element results.

  1. Electrical principles 3 checkbook

    CERN Document Server

    Bird, J O

    2013-01-01

    Electrical Principles 3 Checkbook aims to introduce students to the basic electrical principles needed by technicians in electrical engineering, electronics, and telecommunications.The book first tackles circuit theorems, single-phase series A.C. circuits, and single-phase parallel A.C. circuits. Discussions focus on worked problems on parallel A.C. circuits, worked problems on series A.C. circuits, main points concerned with D.C. circuit analysis, worked problems on circuit theorems, and further problems on circuit theorems. The manuscript then examines three-phase systems and D.C. transients

  2. A multilayer electro-thermal model of pouch battery during normal discharge and internal short circuit process

    International Nuclear Information System (INIS)

    Chen, Mingbiao; Bai, Fanfei; Song, Wenji; Lv, Jie; Lin, Shili

    2017-01-01

    Highlights: • 2D network equivalent circuit considers the interplay of cell units. • The temperature non-uniformity Φ of multilayer model is bigger than that of lumped model. • The temperature non-uniformity is quantified and the reason of non-uniformity is analyzed. • Increasing the thermal conductivity of the separator can effectively relieve the heat spot effect of ISC. - Abstract: As the electrical and thermal characteristic will affect the batteries’ safety, performance, calendar life and capacity fading, an electro-thermal coupled model for pouch battery LiFePO_4/C is developed in normal discharge and internal short circuit process. The battery is discretized into many cell elements which are united as a 2D network equivalent circuit. The electro-thermal model is solved with finite difference method. Non-uniformity of current distribution and temperature distribution is simulated and the result is validated with experiment data at various discharge rates. Comparison of the lumped model and the multilayer structure model shows that the temperature non-uniformity Φ of multilayer model is bigger than that of lumped model and shows more precise. The temperature non-uniformity is quantified and the reason of non-uniformity is analyzed. The electro-thermal model can also be used to guide the safety design of battery. The temperature of the ISC element near tabs is the highest because the equivalent resistance of the external circuit (not including the ISC element) is the smallest when the resistance of cell units is small. It is found that increasing the thermal conductivity of integrated layer can effectively relieve the heat spot effect of ISC.

  3. Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters

    Directory of Open Access Journals (Sweden)

    Ting Tan

    2017-03-01

    Full Text Available The performance of cantilever-beam piezoelectric energy harvester is usually analyzed with pure resistive circuit. The optimal performance of such a vibration-based energy harvesting system is limited by narrow bandwidth around its modified natural frequency. For broadband piezoelectric energy harvesting, series and parallel inductive-resistive circuits are introduced. The electromechanical coupled distributed parameter models for such systems under harmonic base excitations are decoupled with modified natural frequency and electrical damping to consider the coupling effect. Analytical solutions of the harvested power and tip displacement for the electromechanical decoupled model are confirmed with numerical solutions for the coupled model. The optimal performance of piezoelectric energy harvesting with inductive-resistive circuits is revealed theoretically as constant maximal power at any excitation frequency. This is achieved by the scenarios of matching the modified natural frequency with the excitation frequency and equating the electrical damping to the mechanical damping. The inductance and load resistance should be simultaneously tuned to their optimal values, which may not be applicable for very high electromechanical coupling systems when the excitation frequency is higher than their natural frequencies. With identical optimal performance, the series inductive-resistive circuit is recommended for relatively small load resistance, while the parallel inductive-resistive circuit is suggested for relatively large load resistance. This study provides a simplified optimization method for broadband piezoelectric energy harvesters with inductive-resistive circuits.

  4. Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters

    Science.gov (United States)

    Tan, Ting; Yan, Zhimiao

    2017-03-01

    The performance of cantilever-beam piezoelectric energy harvester is usually analyzed with pure resistive circuit. The optimal performance of such a vibration-based energy harvesting system is limited by narrow bandwidth around its modified natural frequency. For broadband piezoelectric energy harvesting, series and parallel inductive-resistive circuits are introduced. The electromechanical coupled distributed parameter models for such systems under harmonic base excitations are decoupled with modified natural frequency and electrical damping to consider the coupling effect. Analytical solutions of the harvested power and tip displacement for the electromechanical decoupled model are confirmed with numerical solutions for the coupled model. The optimal performance of piezoelectric energy harvesting with inductive-resistive circuits is revealed theoretically as constant maximal power at any excitation frequency. This is achieved by the scenarios of matching the modified natural frequency with the excitation frequency and equating the electrical damping to the mechanical damping. The inductance and load resistance should be simultaneously tuned to their optimal values, which may not be applicable for very high electromechanical coupling systems when the excitation frequency is higher than their natural frequencies. With identical optimal performance, the series inductive-resistive circuit is recommended for relatively small load resistance, while the parallel inductive-resistive circuit is suggested for relatively large load resistance. This study provides a simplified optimization method for broadband piezoelectric energy harvesters with inductive-resistive circuits.

  5. Dynamic Circuit Model for Spintronic Devices

    KAUST Repository

    Alawein, Meshal

    2017-01-09

    In this work we propose a finite-difference scheme based circuit model of a general spintronic device and benchmark it with other models proposed for spintronic switching devices. Our model is based on the four-component spin circuit theory and utilizes the widely used coupled stochastic magnetization dynamics/spin transport framework. In addition to the steady-state analysis, this work offers a transient analysis of carrier transport. By discretizing the temporal and spatial derivatives to generate a linear system of equations, we derive new and simple finite-difference conductance matrices that can, to the first order, capture both static and dynamic behaviors of a spintronic device. We also discuss an extension of the spin modified nodal analysis (SMNA) for time-dependent situations based on the proposed scheme.

  6. Dynamic Circuit Model for Spintronic Devices

    KAUST Repository

    Alawein, Meshal; Fariborzi, Hossein

    2017-01-01

    In this work we propose a finite-difference scheme based circuit model of a general spintronic device and benchmark it with other models proposed for spintronic switching devices. Our model is based on the four-component spin circuit theory and utilizes the widely used coupled stochastic magnetization dynamics/spin transport framework. In addition to the steady-state analysis, this work offers a transient analysis of carrier transport. By discretizing the temporal and spatial derivatives to generate a linear system of equations, we derive new and simple finite-difference conductance matrices that can, to the first order, capture both static and dynamic behaviors of a spintronic device. We also discuss an extension of the spin modified nodal analysis (SMNA) for time-dependent situations based on the proposed scheme.

  7. IMPROVING THE RELIABILITY OF THE POWER CIRCUIT OF THE ELECTRIC TRAINS ЕР2Т AND ЕПЛ2Т

    Directory of Open Access Journals (Sweden)

    N. H. Visin

    2010-02-01

    Full Text Available The transitional processes in shunt circuit of traction engines, which armatures and excitation windings are connected in non-conducting direction as to the flowing power current, are considered in this paper. The changes in the control circuits of braking switch and in the shunt power circuit of traction engines with additional mounting a resistor of 0.5 Ohm are proposed. All this modernization will allow increasing greatly the operation reliability of power circuit of ЭР2Т and ЕПЛ2Т electric locomotives during their service life.

  8. Improving the electromagnetic compatibility of track circuits with electric rolling stock of double power supply with induction traction motors and electrictraction network

    Directory of Open Access Journals (Sweden)

    N.G. Visin

    2012-04-01

    Full Text Available In this article the research results of many authors on the effect of current interference from the existing electric rolling stock with induction traction motors (ITM on the track circuits and the possibility of exceeding the train traffic safety standards are used. The new promising scheme of power circuit for electric locomotive of double power supply with an ITM applying the intermediary high-frequency transformer for reducing significantly the interference effects to SCB and communication devices is developed.

  9. A perturbation-based model for rectifier circuits

    Directory of Open Access Journals (Sweden)

    Vipin B. Vats

    2006-01-01

    Full Text Available A perturbation-theoretic analysis of rectifier circuits is presented. The governing differential equation of the half-wave rectifier with capacitor filter is analyzed by expanding the output voltage as a Taylor series with respect to an artificially introduced parameter in the nonlinearity of the diode characteristic as is done in quantum theory. The perturbation parameter introduced in the analysis is independent of the circuit components as compared to the method presented by multiple scales. The various terms appearing in the perturbation series are then modeled in the form of an equivalent circuit. This model is subsequently used in the analysis of full-wave rectifier. Matlab simulation results are included which confirm the validity of the theoretical formulations. Perturbation analysis acts a helpful tool in analyzing time-varying systems and chaotic systems.

  10. Estimation of Operating Condition of Appliances Using Circuit Current Data on Electric Distribution Boards

    Science.gov (United States)

    Iwafune, Yumiko; Ogimoto, Kazuhiko; Yagita, Yoshie

    The Energy management systems (EMS) on demand sides are expected as a method to enhance the capability of supply and demand balancing of a power system under the anticipated penetration of renewable energy generation such as Photovoltaics (PV). Elucidation of energy consumption structure in a building is one of important elements for realization of EMS and contributes to the extraction of potential energy saving. In this paper, we propose the estimation method of operating condition of household appliances using circuit current data on an electric distribution board. Circuit current data are broken down by their shape using a self-organization map method and aggregated by appliance based on customers' information of appliance possessed. Proposed method is verified using residential energy consumption measurement survey data.

  11. The Effect of Herrmann Whole Brain Teaching Method on Students' Understanding of Simple Electric Circuits

    Science.gov (United States)

    Bawaneh, Ali Khalid Ali; Nurulazam Md Zain, Ahmad; Salmiza, Saleh

    2011-01-01

    The purpose of this study was to investigate the effect of Herrmann Whole Brain Teaching Method over conventional teaching method on eight graders in their understanding of simple electric circuits in Jordan. Participants (N = 273 students; M = 139, F = 134) were randomly selected from Bani Kenanah region-North of Jordan and randomly assigned to…

  12. Short-Circuit Modeling of a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Gevorgian, V.

    2011-03-01

    This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. The short-circuit behavior will be presented. Both the simplified models and detailed models are used in the simulations and both symmetrical faults and unsymmetrical faults are discussed.

  13. Circuit models and three-dimensional electromagnetic simulations of a 1-MA linear transformer driver stage

    Directory of Open Access Journals (Sweden)

    D. V. Rose

    2010-09-01

    Full Text Available A 3D fully electromagnetic (EM model of the principal pulsed-power components of a high-current linear transformer driver (LTD has been developed. LTD systems are a relatively new modular and compact pulsed-power technology based on high-energy density capacitors and low-inductance switches located within a linear-induction cavity. We model 1-MA, 100-kV, 100-ns rise-time LTD cavities [A. A. Kim et al., Phys. Rev. ST Accel. Beams 12, 050402 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050402] which can be used to drive z-pinch and material dynamics experiments. The model simulates the generation and propagation of electromagnetic power from individual capacitors and triggered gas switches to a radially symmetric output line. Multiple cavities, combined to provide voltage addition, drive a water-filled coaxial transmission line. A 3D fully EM model of a single 1-MA 100-kV LTD cavity driving a simple resistive load is presented and compared to electrical measurements. A new model of the current loss through the ferromagnetic cores is developed for use both in circuit representations of an LTD cavity and in the 3D EM simulations. Good agreement between the measured core current, a simple circuit model, and the 3D simulation model is obtained. A 3D EM model of an idealized ten-cavity LTD accelerator is also developed. The model results demonstrate efficient voltage addition when driving a matched impedance load, in good agreement with an idealized circuit model.

  14. Effects of the Physical Laboratory versus the Virtual Laboratory in Teaching Simple Electric Circuits on Conceptual Achievement and Attitudes Towards the Subject

    Science.gov (United States)

    Tekbiyik, Ahmet; Ercan, Orhan

    2015-01-01

    Current study examined the effects of virtual and physical laboratory practices on students' conceptual achievement in the subject of electricity and their attitudes towards simple electric circuits. Two groups (virtual and physical) selected through simple random sampling was taught with web-aided material called "Electricity in Our…

  15. Enhancing Communication Skills of Pre-service Physics Teacher through HOT Lab Related to Electric Circuit

    Science.gov (United States)

    Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.; Dirgantara, Y.; Yuniarti, H.; Sapriadil, S.; Hermita, N.

    2018-01-01

    This study aimed to investigate the improvement to pre-service teacher’s communication skills through Higher Order Thinking Laboratory (HOT Lab) on electric circuit topic. This research used the quasi-experiment method with pretest-posttest control group design. Research subjects were 60 students of Physics Education in UIN Sunan Gunung Djati Bandung. The sample was chosen by random sampling technique. Students’ communication skill data collected using a communication skills test instruments-essays form and observations sheets. The results showed that pre-service teacher communication skills using HOT Lab were higher than verification lab. Student’s communication skills in groups using HOT Lab were not influenced by gender. Communication skills could increase due to HOT Lab based on problems solving that can develop communication through hands-on activities. Therefore, the conclusion of this research shows the application of HOT Lab is more effective than the verification lab to improve communication skills of pre-service teachers in electric circuit topic and gender is not related to a person’s communication skills.

  16. On reliability and maintenance modelling of ageing equipment in electric power systems

    International Nuclear Information System (INIS)

    Lindquist, Tommie

    2008-04-01

    Maintenance optimisation is essential to achieve cost-efficiency, availability and reliability of supply in electric power systems. The process of maintenance optimisation requires information about the costs of preventive and corrective maintenance, as well as the costs of failures borne by both electricity suppliers and customers. To calculate expected costs, information is needed about equipment reliability characteristics and the way in which maintenance affects equipment reliability. The aim of this Ph.D. work has been to develop equipment reliability models taking the effect of maintenance into account. The research has focussed on the interrelated areas of condition estimation, reliability modelling and maintenance modelling, which have been investigated in a number of case studies. In the area of condition estimation two methods to quantitatively estimate the condition of disconnector contacts have been developed, which utilise results from infrared thermography inspections and contact resistance measurements. The accuracy of these methods were investigated in two case studies. Reliability models have been developed and implemented for SF6 circuit-breakers, disconnector contacts and XLPE cables in three separate case studies. These models were formulated using both empirical and physical modelling approaches. To improve confidence in such models a Bayesian statistical method incorporating information from the equipment design process was also developed. This method was illustrated in a case study of SF6 circuit-breaker operating rods. Methods for quantifying the effect of maintenance on equipment condition and reliability have been investigated in case studies on disconnector contacts and SF6 circuit-breakers. The input required by these methods are condition measurements and historical failure and maintenance data, respectively. This research has demonstrated that the effect of maintenance on power system equipment may be quantified using available data

  17. Mode of the short circuit in the direct current electric traction network with different feed charts of fyder area

    Directory of Open Access Journals (Sweden)

    P. Mihalichenko

    2012-12-01

    Full Text Available In the article the results of mathematical design of the system of electric traction of direct current are represented in the mode of short circuit and different feed charts of fyder area: two-sided; one-sided. Comparison of transitional electric sizes which characterize electromagnetic processes during these malfunctions is analysed and executed.

  18. Equivalence between classical and quantum dynamics. Neutral kaons and electric circuits

    International Nuclear Information System (INIS)

    Caruso, M.; Fanchiotti, H.; Canal, C.A. Garcia

    2011-01-01

    An equivalence between the Schroedinger dynamics of a quantum system with a finite number of basis states and a classical dynamics is presented. The equivalence is an isomorphism that connects in univocal way both dynamical systems. We treat the particular case of neutral kaons and found a class of electric networks uniquely related to the kaon system finding the complete map between the matrix elements of the effective Hamiltonian of kaons and those elements of the classical dynamics of the networks. As a consequence, the relevant ε parameter that measures CP violation in the kaon system is completely determined in terms of network parameters. - Highlights: → We provide a formal equivalence between classical and quantum dynamics. → We make use of the decomplexification concept. → Neutral kaon systems can be represented by electric circuits. → CP symmetry violation can be taken into account by non-reciprocity. → Non-reciprocity is represented by gyrators.

  19. Circuit oriented electromagnetic modeling using the PEEC techniques

    CERN Document Server

    Ruehli, Albert; Jiang, Lijun

    2017-01-01

    This book provides intuitive solutions to electromagnetic problems by using the Partial Eelement Eequivalent Ccircuit (PEEC) method. This book begins with an introduction to circuit analysis techniques, laws, and frequency and time domain analyses. The authors also treat Maxwell's equations, capacitance computations, and inductance computations through the lens of the PEEC method. Next, readers learn to build PEEC models in various forms: equivalent circuit models, non orthogonal PEEC models, skin-effect models, PEEC models for dielectrics, incident and radiate field models, and scattering PEEC models. The book concludes by considering issues like such as stability and passivity, and includes five appendices some with formulas for partial elements.

  20. Four-terminal circuit element with photonic core

    Science.gov (United States)

    Sampayan, Stephen

    2017-08-29

    A four-terminal circuit element is described that includes a photonic core inside of the circuit element that uses a wide bandgap semiconductor material that exhibits photoconductivity and allows current flow through the material in response to the light that is incident on the wide bandgap material. The four-terminal circuit element can be configured based on various hardware structures using a single piece or multiple pieces or layers of a wide bandgap semiconductor material to achieve various designed electrical properties such as high switching voltages by using the photoconductive feature beyond the breakdown voltages of semiconductor devices or circuits operated based on electrical bias or control designs. The photonic core aspect of the four-terminal circuit element provides unique features that enable versatile circuit applications to either replace the semiconductor transistor-based circuit elements or semiconductor diode-based circuit elements.

  1. Fuse Modeling for Reliability Study of Power Electronic Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    This paper describes a comprehensive modeling approach on reliability of fuses used in power electronic circuits. When fuses are subjected to current pulses, cyclic temperature stress is introduced to the fuse element and will wear out the component. Furthermore, the fuse may be used in a large......, and rated voltage/current are opposed to shift in time to effect early breaking during the normal operation of the circuit. Therefore, in such cases, a reliable protection required for the other circuit components will not be achieved. The thermo-mechanical models, fatigue analysis and thermo...

  2. Resilience of the quantum Rabi model in circuit QED

    International Nuclear Information System (INIS)

    Manucharyan, Vladimir E; Baksic, Alexandre; Ciuti, Cristiano

    2017-01-01

    In circuit quantum electrodynamics (circuit QED), an artificial ‘circuit atom’ can couple to a quantized microwave radiation much stronger than its real atomic counterpart. The celebrated quantum Rabi model describes the simplest interaction of a two-level system with a single-mode boson field. When the coupling is large enough, the bare multilevel structure of a realistic circuit atom cannot be ignored even if the circuit is strongly anharmonic. We explored this situation theoretically for flux (fluxonium) and charge (Cooper pair box) type multi-level circuits tuned to their respective flux/charge degeneracy points. We identified which spectral features of the quantum Rabi model survive and which are renormalized for large coupling. Despite significant renormalization of the low-energy spectrum in the fluxonium case, the key quantum Rabi feature—nearly-degenerate vacuum consisting of an atomic state entangled with a multi-photon field—appears in both types of circuits when the coupling is sufficiently large. Like in the quantum Rabi model, for very large couplings the entanglement spectrum is dominated by only two, nearly equal eigenvalues, in spite of the fact that a large number of bare atomic states are actually involved in the atom-resonator ground state. We interpret the emergence of the two-fold degeneracy of the vacuum of both circuits as an environmental suppression of flux/charge tunneling due to their dressing by virtual low-/high-impedance photons in the resonator. For flux tunneling, the dressing is nothing else than the shunting of a Josephson atom with a large capacitance of the resonator. Suppression of charge tunneling is a manifestation of the dynamical Coulomb blockade of transport in tunnel junctions connected to resistive leads. (paper)

  3. Lumped element modelling of superconducting circuits with SPICE

    CERN Document Server

    Baveco, Maurice Antoine

    2015-01-01

    In this project research is carried out aimed at benchmarking a general-purpose circuit simulation software tool (”SPICE”). The project lasted for 8 weeks, from 29 June 2015 until 21 August 2015 at Performance Evaluation section at CERN. The goal was to apply it on a model of superconducting magnets, namely the main dipole circuit (RB circuit) of the the LHC (Large Hadron Collider), developed by members of the section. Then the strengths and the flaws of the tool were investigated. Transient effects were the main simulation focus point. In the first stage a simplified RB circuit was modelled in SPICE based on subcircuits. The first results were promising but still not with a perfect agreement. After implementing more detailed subcircuits there is an improvement and promising agreement achieved between SPICE and the results of the paper (PSpice) [2]. In general there are more strengths than drawbacks of simulating with SPICE. For example, it should have a shorter simulation time than PSpice for the same mo...

  4. Deep Modeling: Circuit Characterization Using Theory Based Models in a Data Driven Framework

    Energy Technology Data Exchange (ETDEWEB)

    Bolme, David S [ORNL; Mikkilineni, Aravind K [ORNL; Rose, Derek C [ORNL; Yoginath, Srikanth B [ORNL; Holleman, Jeremy [University of Tennessee, Knoxville (UTK); Judy, Mohsen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science

    2017-01-01

    Analog computational circuits have been demonstrated to provide substantial improvements in power and speed relative to digital circuits, especially for applications requiring extreme parallelism but only modest precision. Deep machine learning is one such area and stands to benefit greatly from analog and mixed-signal implementations. However, even at modest precisions, offsets and non-linearity can degrade system performance. Furthermore, in all but the simplest systems, it is impossible to directly measure the intermediate outputs of all sub-circuits. The result is that circuit designers are unable to accurately evaluate the non-idealities of computational circuits in-situ and are therefore unable to fully utilize measurement results to improve future designs. In this paper we present a technique to use deep learning frameworks to model physical systems. Recently developed libraries like TensorFlow make it possible to use back propagation to learn parameters in the context of modeling circuit behavior. Offsets and scaling errors can be discovered even for sub-circuits that are deeply embedded in a computational system and not directly observable. The learned parameters can be used to refine simulation methods or to identify appropriate compensation strategies. We demonstrate the framework using a mixed-signal convolution operator as an example circuit.

  5. A Comparison of Students' Conceptual Understanding of Electric Circuits in Simulation Only and Simulation-Laboratory Contexts

    Science.gov (United States)

    Jaakkola, Tomi; Nurmi, Sami; Veermans, Koen

    2011-01-01

    The aim of this experimental study was to compare learning outcomes of students using a simulation alone (simulation environment) with outcomes of those using a simulation in parallel with real circuits (combination environment) in the domain of electricity, and to explore how learning outcomes in these environments are mediated by implicit (only…

  6. 49 CFR 236.786 - Principle, closed circuit.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Principle, closed circuit. 236.786 Section 236.786 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Principle, closed circuit. The principle of circuit design where a normally energized electric circuit which...

  7. Simplified model of a PWR primary circuit

    International Nuclear Information System (INIS)

    Souza, A.L.; Faya, A.J.G.

    1988-07-01

    The computer program RENUR was developed to perform a very simplified simulation of a typical PWR primary circuit. The program has mathematical models for the thermal-hydraulics of the reactor core and the pressurizer, the rest of the circuit being treated as a single volume. Heat conduction in the fuel rod is analyzed by a nodal model. Average and hot channels are treated so that bulk response of the core and DNBR can be evaluated. A homogenenous model is employed in the pressurizer. Results are presented for a steady-state situation as well as for a loss of load transient. Agreement with the results of more elaborate computer codes is good with substantial reduction in computer costs. (author) [pt

  8. Active component modeling for analog integrated circuit design. Model parametrization and implementation in the SPICE-PAC circuit simulator

    International Nuclear Information System (INIS)

    Marchal, Xavier

    1992-01-01

    In order to use CAD efficiently in the analysis and design of electronic Integrated circuits, adequate modeling of active non-linear devices such as MOSFET transistors must be available to the designer. Many mathematical forms can be given to those models, such as explicit relations, or implicit equations to be solved. A major requirement in developing MOS transistor models for IC simulation is the availability of electrical characteristic curves over a wide range of channel width and length, including the sub-micrometer range. To account in a convenient way for bulk charge influence on I_D_S = f(V_D_S, V_G_S, v_B_S) device characteristics, all 3 standard SPICE MOS models use an empirical fitting parameter called the 'charge sharing factor'. Unfortunately, this formulation produces models which only describe correctly either some of the short channel phenomena, or some particular operating conditions (low injection, avalanche effect, etc.). We present here a cellular model (CDM = Charge Distributed Model) implemented in the open modular SPICE-PAC Simulator; this model is derived from the 4-terminal WANG charge controlled MOSFET model, using the charge sheet approximation. The CDM model describes device characteristics in ail operating regions without introducing drain current discontinuities and without requiring a 'charge sharing factor'. A usual problem to be faced by designers when they simulate MOS ICs is to find a reliable source of model parameters. Though most models have a physical basis, some of their parameters cannot be easily estimated from physical considerations. It can also happen that physically determined parameters values do not produce a good fit to measured device characteristics. Thus it is generally necessary to extract model parameters from measured transistor data, to ensure that model equations approximate measured curves accurately enough. Model parameters extraction can be done in 2 different ways, exposed in this thesis. The first

  9. Approaching the Processes in the Generator Circuit Breaker at Disconnection through Sustainability Concepts

    Directory of Open Access Journals (Sweden)

    Carmen A. Bulucea

    2013-03-01

    current interruption by the generator the circuit-breaker (when the GCB has been subjected at the metal contact terminals to the high temperature of a plasma arc, up to 50,000 K between its opened contacts, there arises the transient recovery voltage (TRV which constitutes the most important dielectric stress after the electric arc extinction. Since the magnitude and shape of the TRV occurring across the generator circuit-breaker are critical parameters in the recovering gap after the current zero, in this paper, we model, for the case of the faults fed by the main step-up transformer, the equivalent configurations, with operational impedances, for the TRV calculation, taking into account the main transformer parameters, on the basis of the symmetrical components method.

  10. Application of Memristors in Microwave Passive Circuits

    Directory of Open Access Journals (Sweden)

    M.Potrebic

    2015-06-01

    Full Text Available The recent implementation of the fourth fundamental electric circuit element, the memristor, opened new vistas in many fields of engineering applications. In this paper, we explore several RF/microwave passive circuits that might benefit from the memristor salient characteristics. We consider a power divider, coupled resonator bandpass filters, and a low-reflection quasi-Gaussian lowpass filter with lossy elements. We utilize memristors as configurable linear resistors and we propose memristor-based bandpass filters that feature suppression of parasitic frequency pass bands and widening of the desired rejection band. The simulations are performed in the time domain, using LTspice, and the RF/microwave circuits under consideration are modeled by ideal elements available in LTspice.

  11. CIRCUIT-DESIGN SOLUTIONS AND INFORMATION SUPPORT OF CITY ELECTRIC NETWORKS IN THE CONDITIONS OF THE SMART GRID

    Directory of Open Access Journals (Sweden)

    M. I. Fursanov

    2017-01-01

    Full Text Available The structure, circuit-design solutions and information support of the city electric networks in the conditions of the SMART GRID have been analyzed. It is demonstrated that the new conditions of functioning of electric power engineering, increasing demands for its technological state and reliability in most countries determined the transition to a restructuring of electrical networks to be based on the SMART GRID (intelligent power networks innovative new structure. The definitions of the SMART GRID, its various attributes and characteristics in most developed countries including Belarus are presented. It is revealed that the existing and future circuit and constructive solutions that can automate the process of managing modes of urban electric networks under the SMART GRID conditions are manifold. At present, the most common in distribution networks are the sources of distributed generation (combustion turbines, wind turbines, photovoltaic installations, mini-hydro, etc.. The patterns and problems of information traceability of a traditional urban networks of the unified energy system of Belarus have been analyzed, and it is demonstrated that in the conditions of the SMART GRID most of the problems of the control mode that are characteristic for traditional distribution networks 6–10 kV and 0.38 kV, lose their relevance. Therefore, the present article presents and features the main directions of development of automatic control modes of the SMART GRID.

  12. Through-silicon-via crosstalk model and optimization design for three-dimensional integrated circuits

    International Nuclear Information System (INIS)

    Qian Li-Bo; Xia Yin-Shui; Zhu Zhang-Ming; Ding Rui-Xue; Yang Yin-Tang

    2014-01-01

    Through-silicon-via (TSV) to TSV crosstalk noise is one of the key factors affecting the signal integrity of three-dimensional integrated circuits (3D ICs). Based on the frequency dependent equivalent electrical parameters for the TSV channel, an analytical crosstalk noise model is established to capture the TSV induced crosstalk noise. The impact of various design parameters including insulation dielectric, via pitch, via height, silicon conductivity, and terminal impedance on the crosstalk noise is analyzed with the proposed model. Two approaches are proposed to alleviate the TSV noise, namely, driver sizing and via shielding, and the SPICE results show 241 mV and 379 mV reductions in the peak noise voltage, respectively

  13. Simplified and quick electrical modeling for dye sensitized solar cells: An experimental and theoretical investigation

    Science.gov (United States)

    de Andrade, Rocelito Lopes; de Oliveira, Matheus Costa; Kohlrausch, Emerson Cristofer; Santos, Marcos José Leite

    2018-05-01

    This work presents a new and simple method for determining IPH (current source dependent on luminance), I0 (reverse saturation current), n (ideality factor), RP and RS, (parallel and series resistance) to build an electrical model for dye sensitized solar cells (DSSCs). The electrical circuit parameters used in the simulation and to generate theoretical curves for the single diode electrical model were extracted from I-V curves of assembled DSSCs. Model validation was performed by assembling five different types of DSSCs and evaluating the following parameters: effect of a TiO2 blocking/adhesive layer, thickness of the TiO2 layer and the presence of a light scattering layer. In addition, irradiance, temperature, series and parallel resistance, ideality factor and reverse saturation current were simulated.

  14. Model reduction for circuit simulation

    CERN Document Server

    Hinze, Michael; Maten, E Jan W Ter

    2011-01-01

    Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the devi

  15. An enhanced lumped element electrical model of a double barrier memristive device

    International Nuclear Information System (INIS)

    Solan, Enver; Ochs, Karlheinz; Dirkmann, Sven; Hansen, Mirko; Kohlstedt, Hermann; Ziegler, Martin; Schroeder, Dietmar; Mussenbrock, Thomas

    2017-01-01

    The massive parallel approach of neuromorphic circuits leads to effective methods for solving complex problems. It has turned out that resistive switching devices with a continuous resistance range are potential candidates for such applications. These devices are memristive systems—nonlinear resistors with memory. They are fabricated in nanotechnology and hence parameter spread during fabrication may aggravate reproducible analyses. This issue makes simulation models of memristive devices worthwhile. Kinetic Monte-Carlo simulations based on a distributed model of the device can be used to understand the underlying physical and chemical phenomena. However, such simulations are very time-consuming and neither convenient for investigations of whole circuits nor for real-time applications, e.g. emulation purposes. Instead, a concentrated model of the device can be used for both fast simulations and real-time applications, respectively. We introduce an enhanced electrical model of a valence change mechanism (VCM) based double barrier memristive device (DBMD) with a continuous resistance range. This device consists of an ultra-thin memristive layer sandwiched between a tunnel barrier and a Schottky-contact. The introduced model leads to very fast simulations by using usual circuit simulation tools while maintaining physically meaningful parameters. Kinetic Monte-Carlo simulations based on a distributed model and experimental data have been utilized as references to verify the concentrated model. (paper)

  16. The Confidence-Accuracy Relationship in Diagnostic Assessment: The Case of the Potential Difference in Parallel Electric Circuits

    Science.gov (United States)

    Saglam, Murat

    2015-01-01

    This study explored the relationship between accuracy of and confidence in performance of 114 prospective primary school teachers in answering diagnostic questions on potential difference in parallel electric circuits. The participants were required to indicate their confidence in their answers for each question. Bias and calibration indices were…

  17. Resistor Combinations for Parallel Circuits.

    Science.gov (United States)

    McTernan, James P.

    1978-01-01

    To help simplify both teaching and learning of parallel circuits, a high school electricity/electronics teacher presents and illustrates the use of tables of values for parallel resistive circuits in which total resistances are whole numbers. (MF)

  18. Managing electrical safety

    CERN Document Server

    Wiggins, James H, Jr

    2001-01-01

    Managing Electrical Safety provides an overview of electric basics, hazards, and established standards that enables you to understand the hazards you are likely to encounter in your workplace. Focusing on typical industrial environments-which utilize voltages much higher than household or office circuits-the author identifies the eight key components of an electrical safety program and examines each using a model safety management process. You'll learn how to identify electrical hazards, how to prescribe necessary electrical Personal Protective Equipment, how to ensure that equipment is de-ene

  19. MOS integrated circuit design

    CERN Document Server

    Wolfendale, E

    2013-01-01

    MOS Integral Circuit Design aims to help in the design of integrated circuits, especially large-scale ones, using MOS Technology through teaching of techniques, practical applications, and examples. The book covers topics such as design equation and process parameters; MOS static and dynamic circuits; logic design techniques, system partitioning, and layout techniques. Also featured are computer aids such as logic simulation and mask layout, as well as examples on simple MOS design. The text is recommended for electrical engineers who would like to know how to use MOS for integral circuit desi

  20. Cage-rotor induction motor inter-turn short circuit fault detection with and without saturation effect by MEC model.

    Science.gov (United States)

    Naderi, Peyman

    2016-09-01

    The inter-turn short fault for the Cage-Rotor-Induction-Machine (CRIM) is studied in this paper and its local saturation is taken into account. However, in order to observe the exact behavior of machine, the Magnetic-Equivalent-Circuit (MEC) and nonlinear B-H curve are proposed to provide an insight into the machine model and saturation effect respectively. The electrical machines are generally operated near to their saturation zone due to some design necessities. Hence, when the machine is exposed to a fault such as short circuit or eccentricities, it is operated within its saturation zone and thus, time and space harmonics are integrated and as a result, current and torque harmonics are generated which the phenomenon cannot be explored when saturation is dismissed. Nonetheless, inter-turn short circuit may lead to local saturation and this occurrence is studied in this paper using MEC model. In order to achieve the mentioned objectives, two and also four-pole machines are modeled as two samples and the machines performances are analyzed in healthy and faulty cases with and without saturation effect. A novel strategy is proposed to precisely detect inter-turn short circuit fault according to the stator׳s lines current signatures and the accuracy of the proposed method is verified by experimental results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Power operated contact apparatus for superconductive circuit

    Energy Technology Data Exchange (ETDEWEB)

    Woods, D.C.; Efferson, K.R.

    1989-10-10

    This patent describes a power operated contact apparatus for extending and retracting one or more electrical leads into and out of a cryostat for making and breaking, at a cryogenic temperature, electrical contact with a superconductive circuit. It comprises at least one rigid elongated lead for extending into a cold space of the cryostat which is at or near a cryogenic temperature. The lead having an inner end and a outer end; a connector fixed at the inner end of the lead for making electrical contact in the cold space with a connector of the superconductive circuit; guide means journaling the lead for allowing the lead to move axially relative to the guide means and sealing against the lead; a foundation for sealed attachment to the cryostat and to the guide means so that the connector on the inner end of the lead is extendable into making electrical contact with the connector of the superconductive circuit in the cold space; power operated means mounted on the foundation and fixed to the outer end of the lead for extending and retracting the lead to and from making electrical contact with the superconductive circuit in the cold space; and means for de-icing the exterior of the leads and guide means when the leads are connected to the superconducting circuit.

  2. SITE WIDE SHORT CIRCUIT STUDY ASSESSMENT

    International Nuclear Information System (INIS)

    CARRATT, R.T.

    2004-01-01

    The Department of Energy requested that Fluor Hanford develop a plan to update the electrical distribution studies for FH managed facilities. Toward this end, an assessment of FH's nuclear facilities was performed to determine whether a current short circuit study of the facility electrical distribution system exists, and the status of such study. This report presents the methodology and results of that assessment. The assessment identified 29 relevant facilities. Of these, a short circuit study could not be identified for 15 facilities. A short circuit study was found to exist for fourteen facilities, however, of these 14, four were not released into a controlled document system, and two were not performed for the entire electrical distribution system. It is recommended that for four of the facilities no further action is required based upon the limited nature of the existing electrical system, or as in the case of PFP, the status of the existing short circuit study was determined adequate. For the majority of the facilities without a short circuit study, it is recommended that one is performed, and released into a controlled document system. Two facilities require further evaluation due to missing or conflicting documentation. For the remainder of the facilities, the recommendations are to review and revise as appropriate the existing study, and release into a controlled document system. A summation of the recommendations is presented

  3. DQ reference frame modeling and control of single-phase active power decoupling circuits

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    . This paper presents the dq synchronous reference frame modeling of single-phase power decoupling circuits and a complete model describing the dynamics of dc-link ripple voltage is presented. The proposed model is universal and valid for both inductive and capacitive decoupling circuits, and the input...... of decoupling circuits can be either dependent or independent of its front-end converters. Based on this model, a dq synchronous reference frame controller is designed which allows the decoupling circuit to operate in two different modes because of the circuit symmetry. Simulation and experimental results...... are presented to verify the effectiveness of the proposed modeling and control method....

  4. Rotating magnetizations in electrical machines: Measurements and modeling

    Science.gov (United States)

    Thul, Andreas; Steentjes, Simon; Schauerte, Benedikt; Klimczyk, Piotr; Denke, Patrick; Hameyer, Kay

    2018-05-01

    This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.

  5. Self-Regulated Learning Strategies of Engineering College Students While Learning Electric Circuit Concepts with Enhanced Guided Notes

    Science.gov (United States)

    Lawanto, Oenardi; Santoso, Harry

    2013-01-01

    The current study evaluated engineering college students' self-regulated learning (SRL) strategies while learning electric circuit concepts using enhanced guided notes (EGN). Our goal was to describe how students exercise SRL strategies and how their grade performance changes after using EGN. Two research questions guided the study: (1) To what…

  6. "Printed-circuit" rectenna

    Science.gov (United States)

    Dickinson, R. M.

    1977-01-01

    Rectifying antenna is less bulky structure for absorbing transmitted microwave power and converting it into electrical current. Printed-circuit approach, using microstrip technology and circularly polarized antenna, makes polarization orientation unimportant and allows much smaller arrays for given performance. Innovation is particularly useful with proposed electric vehicles powered by beam microwaves.

  7. A model for the scattering of high-frequency electromagnetic fields from dielectrics exhibiting thermally-activated electrical losses

    Science.gov (United States)

    Hann, Raiford E.

    1991-01-01

    An equivalent circuit model (ECM) approach is used to predict the scattering behavior of temperature-activated, electrically lossy dielectric layers. The total electrical response of the dielectric (relaxation + conductive) is given by the ECM and used in combination with transmission line theory to compute reflectance spectra for a Dallenbach layer configuration. The effects of thermally-activated relaxation processes on the scattering properties is discussed. Also, the effect of relaxation and conduction activation energy on the electrical properties of the dielectric is described.

  8. Extended behavioural device modelling and circuit simulation with Qucs-S

    Science.gov (United States)

    Brinson, M. E.; Kuznetsov, V.

    2018-03-01

    Current trends in circuit simulation suggest a growing interest in open source software that allows access to more than one simulation engine while simultaneously supporting schematic drawing tools, behavioural Verilog-A and XSPICE component modelling, and output data post-processing. This article introduces a number of new features recently implemented in the 'Quite universal circuit simulator - SPICE variant' (Qucs-S), including structure and fundamental schematic capture algorithms, at the same time highlighting their use in behavioural semiconductor device modelling. Particular importance is placed on the interaction between Qucs-S schematics, equation-defined devices, SPICE B behavioural sources and hardware description language (HDL) scripts. The multi-simulator version of Qucs is a freely available tool that offers extended modelling and simulation features compared to those provided by legacy circuit simulators. The performance of a number of Qucs-S modelling extensions are demonstrated with a GaN HEMT compact device model and data obtained from tests using the Qucs-S/Ngspice/Xyce ©/SPICE OPUS multi-engine circuit simulator.

  9. Electric engineering summary

    International Nuclear Information System (INIS)

    Kang, Sing Eun; Park, Seong Taek; Lim, Yong Un

    1975-03-01

    This book is made up six parts, which deals with circuit theory about sinusoidal alternating current, basic current circuit, wave power, distorted wave, two terminal network, distributed circuit, laplace transformation and transfer function, power engineering on line, failure analysis transmission of line, substation and protection device and hydroelectric power plant, electricity machine like DC machine, electric transformer, induction machine and rectifier, electromagnetic on dielectric substance current, electromagnetic, electricity application like lighting engineering, heat transfer and electricity chemistry, industry, industry math with integer, rational number, factorization, matrix and differential.

  10. A current-excited triple-time-voltage oversampling method for bio-impedance model for cost-efficient circuit system.

    Science.gov (United States)

    Yan Hong; Yong Wang; Wang Ling Goh; Yuan Gao; Lei Yao

    2015-08-01

    This paper presents a mathematic method and a cost-efficient circuit to measure the value of each component of the bio-impedance model at electrode-electrolyte interface. The proposed current excited triple-time-voltage oversampling (TTVO) method deduces the component values by solving triple simultaneous electric equation (TSEE) at different time nodes during a current excitation, which are the voltage functions of time. The proposed triple simultaneous electric equations (TSEEs) allows random selections of the time nodes, hence numerous solutions can be obtained during a single current excitation. Following that, the oversampling approach is engaged by averaging all solutions of multiple TSEEs acquired after a single current excitation, which increases the practical measurement accuracy through the improvement of the signal-to-noise ratio (SNR). In addition, a print circuit board (PCB) that consists a switched current exciter and an analog-to-digital converter (ADC) is designed for signal acquisition. This presents a great cost reduction when compared against other instrument-based measurement data reported [1]. Through testing, the measured values of this work is proven to be in superb agreements on the true component values of the electrode-electrolyte interface model. This work is most suited and also useful for biological and biomedical applications, to perform tasks such as stimulations, recordings, impedance characterizations, etc.

  11. Hybrid Direct-Current Circuit Breaker

    Science.gov (United States)

    Wang, Ruxi (Inventor); Premerlani, William James (Inventor); Caiafa, Antonio (Inventor); Pan, Yan (Inventor)

    2017-01-01

    A circuit breaking system includes a first branch including at least one solid-state snubber; a second branch coupled in parallel to the first branch and including a superconductor and a cryogenic contactor coupled in series; and a controller operatively coupled to the at least one solid-state snubber and the cryogenic contactor and programmed to, when a fault occurs in the load circuit, activate the at least one solid-state snubber for migrating flow of the electrical current from the second branch to the first branch, and, when the fault is cleared in the load circuit, activate the cryogenic contactor for migrating the flow of the electrical current from the first branch to the second branch.

  12. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  13. Scientific computing in electrical engineering SCEE 2010

    Energy Technology Data Exchange (ETDEWEB)

    Michielsen, Bastiaan [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 31 - Toulouse (France); Poirier, Jean-Rene (eds.) [LAPLACE-ENSEEIHT, Toulouse (France)

    2012-07-01

    Selected from papers presented at the 8th Scientific Computation in Electrical Engineering conference in Toulouse in 2010, the contributions to this volume cover every angle of numerically modelling electronic and electrical systems, including computational electromagnetics, circuit theory and simulation and device modelling. On computational electromagnetics, the chapters examine cutting-edge material ranging from low-frequency electrical machine modelling problems to issues in high-frequency scattering. Regarding circuit theory and simulation, the book details the most advanced techniques for modelling networks with many thousands of components. Modelling devices at microscopic levels is covered by a number of fundamental mathematical physics papers, while numerous papers on model order reduction help engineers and systems designers to bring their modelling of industrial-scale systems within the reach of present-day computational power. Complementing these more specific papers, the volume also contains a selection of mathematical methods which can be used in any application domain. (orig.)

  14. Digital circuit boards mach 1 GHz

    CERN Document Server

    Morrison, Ralph

    2012-01-01

    A unique, practical approach to the design of high-speed digital circuit boards The demand for ever-faster digital circuit designs is beginning to render the circuit theory used by engineers ineffective. Digital Circuit Boards presents an alternative to the circuit theory approach, emphasizing energy flow rather than just signal interconnection to explain logic circuit behavior. The book shows how treating design in terms of transmission lines will ensure that the logic will function, addressing both storage and movement of electrical energy on these lines. It cove

  15. Working Memory and Decision-Making in a Frontoparietal Circuit Model.

    Science.gov (United States)

    Murray, John D; Jaramillo, Jorge; Wang, Xiao-Jing

    2017-12-13

    Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental "building blocks" of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal

  16. Using a Conflict Map as an Instructional Tool To Change Student Conceptions in Simple Series Electric-Circuits.

    Science.gov (United States)

    Tsai, Chin-Chung

    2003-01-01

    Examines the effects of using a conflict map on 8th grade students' conceptual change and ideational networks about simple series electric circuits. Analyzes student interview data through a flow map method. Shows that the use of conflict maps could help students construct greater, richer, and more integrated ideational networks about electric…

  17. Rotating magnetizations in electrical machines: Measurements and modeling

    Directory of Open Access Journals (Sweden)

    Andreas Thul

    2018-05-01

    Full Text Available This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.

  18. [A case of the fatal injury by technical electricity from a mobile device (cell phone) connected to the circuit].

    Science.gov (United States)

    Rudenko, I A; Kil'dyushov, E M; Koludarova, E M; Morozov, V Yu; Fetisov, V A

    2015-01-01

    The authors report a case of the fatal injury by technical electricity from a mobile device (cell phone) attached to the circuit in a moist environment as a result of the unsafe handling of the gadget (when taking the bath).

  19. Scientific Computing in Electrical Engineering

    CERN Document Server

    Amrhein, Wolfgang; Zulehner, Walter

    2018-01-01

    This collection of selected papers presented at the 11th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in St. Wolfgang, Austria, in 2016, showcases the state of the art in SCEE. The aim of the SCEE 2016 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, and to promote intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The focus in methodology was on model order reduction and uncertainty quantification. This extensive reference work is divided into six parts: Computational Electromagnetics, Circuit and Device Modeling and Simulation, Coupled Problems and Multi‐Scale Approaches in Space and Time, Mathematical and Computational Methods Including Uncertainty Quantification, Model Order Reduction, and Industrial Applicat...

  20. [Shunt and short circuit].

    Science.gov (United States)

    Rangel-Abundis, Alberto

    2006-01-01

    Shunt and short circuit are antonyms. In French, the term shunt has been adopted to denote the alternative pathway of blood flow. However, in French, as well as in Spanish, the word short circuit (court-circuit and cortocircuito) is synonymous with shunt, giving rise to a linguistic and scientific inconsistency. Scientific because shunt and short circuit made reference to a phenomenon that occurs in the field of the physics. Because shunt and short circuit are antonyms, it is necessary to clarify that shunt is an alternative pathway of flow from a net of high resistance to a net of low resistance, maintaining the stream. Short circuit is the interruption of the flow, because a high resistance impeaches the flood. This concept is applied to electrical and cardiovascular physiology, as well as to the metabolic pathways.

  1. Quantum RLC circuits: Charge discreteness and resonance

    Energy Technology Data Exchange (ETDEWEB)

    Utreras-Diaz, Constantino A. [Instituto de Fisica, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Casilla 567, Valdivia (Chile)], E-mail: cutreras@uach.cl

    2008-10-20

    In a recent article [C.A. Utreras-Diaz, Phys. Lett. A 372 (2008) 5059], we have advanced a semiclassical theory of quantum circuits with discrete charge and electrical resistance. In this work, we present a few elementary applications of this theory. For the zero resistance inductive circuit, we obtain the Stark ladder energies in yet another way; for the circuit driven by a combination d.c. plus a.c. electromotive force (emf) we generalize earlier results by Chandia et al. [K. Chandia, J.C. Flores, E. Lazo, Phys. Lett. A 359 (2006) 693]. As a second application, we investigate the effect of electrical resistance and charge discreteness, in the resonance conditions of a series RLC quantum circuit.

  2. Quantum RLC circuits: Charge discreteness and resonance

    International Nuclear Information System (INIS)

    Utreras-Diaz, Constantino A.

    2008-01-01

    In a recent article [C.A. Utreras-Diaz, Phys. Lett. A 372 (2008) 5059], we have advanced a semiclassical theory of quantum circuits with discrete charge and electrical resistance. In this work, we present a few elementary applications of this theory. For the zero resistance inductive circuit, we obtain the Stark ladder energies in yet another way; for the circuit driven by a combination d.c. plus a.c. electromotive force (emf) we generalize earlier results by Chandia et al. [K. Chandia, J.C. Flores, E. Lazo, Phys. Lett. A 359 (2006) 693]. As a second application, we investigate the effect of electrical resistance and charge discreteness, in the resonance conditions of a series RLC quantum circuit

  3. Sistem Proteksi Arus Bocor Menggunakan Earth Leakage Circuit Breaker Berbasis Arduino

    OpenAIRE

    Syukriyadin, Syukriyadin

    2016-01-01

    Touching a live part of electrical equipment either intentionally or unintentionally can cause an electric shock. The touch can occur directly or indirectly and results in the flow of electric current through the human body to the ground. This electric current is known as the leakage current and can have fatal effects on the human body such as burns, cramps, faint and death. This paper aims to design a prototype protection model of the earth leakage circuit breaker device based on Arduino (EL...

  4. Application of Circuit Simulation Method for Differential Modeling of TIM-2 Iron Uptake and Metabolism in Mouse Kidney Cells

    Directory of Open Access Journals (Sweden)

    Zhijian eXie

    2013-06-01

    Full Text Available Circuit simulation is a powerful methodology to generate differential mathematical models. Due to its highly accurate modelling capability, circuit simulation can be used to investigate interactions between the parts and processes of a cellular system. Circuit simulation has become a core technology for the field of electrical engineering, but its application in biology has not yet been fully realized. As a case study for evaluating the more advanced features of a circuit simulation tool called Advanced Design System (ADS, we collected and modeled laboratory data for iron metabolism in mouse kidney cells for a H ferritin (HFt receptor, T cell immunoglobulin and mucin domain-2 (TIM-2. The internal controlling parameters of TIM-2 associated iron metabolism were extracted and the ratios of iron movement among cellular compartments were quantified by ADS. The differential model processed by circuit simulation demonstrated a capability to identify variables and predict outcomes that could not be readily measured by in vitro experiments. For example, an initial rate of uptake of iron-loaded HFt was 2.17 pmol per million cells. TIM-2 binding probability with iron-loaded HFt was 16.6%. An average of 8.5 minutes was required for the complex of TIM-2 and iron-loaded HFt to form an endosome. The endosome containing HFt lasted roughly 2 hours. At the end of endocytosis, about 28% HFt remained intact and the rest was degraded. Iron released from degraded HFt was in the labile iron pool (LIP and stimulated the generation of endogenous HFt for new storage. Both experimental data and the model showed that TIM-2 was not involved in the process of iron export. The extracted internal controlling parameters successfully captured the complexity of TIM-2 pathway and the use of circuit simulation-based modeling across a wider range of cellular systems is the next step for validating the significance and utility of this method.

  5. Anterior wrist and medial malleolus: the optimal sites for tissue selection in electric death through hand-to-foot circuit pathway.

    Science.gov (United States)

    Xu, Guangtao; Su, Ruibing; Lv, Junyao; Lai, Xiaoping; Li, Xianxian; Wu, Jiayan; Hu, Bo; Xu, Long; Shen, Ruilin; Gu, Jiang; Yu, Xiaojun

    2017-03-01

    Specific morphological changes may be absent in some cases of electrocution shocked by the voltage of 220 V or lower. In this study, we attempted to demonstrate that the anterior wrist and medial malleolus were the optimal sites with promising and significant changes in electric death through the hand-to-foot circuit pathway. We established an electric shock rat model and observed histopathologic changes in the anterior wrist and medial malleolus. The results showed that the current intensities in the left anterior wrist and right medial malleolus were remarkably higher than those in the other sites, and the nuclei long/short (L/S) axis ratios of the arterial endotheliocyte and the skeletal muscle cell in these two areas were significantly higher than those in other parts of the body. These findings suggested that the anterior wrist and/or medial malleolus soft tissues as the narrowest parts of the limbs could be used as promising and useful sites for the assessment of electrical shock death, especially in forensic pathologic evaluation.

  6. NRC Information No. 89-63: Possible submergence of electrical circuits located above the flood level because of water intrusion and lack of drainage

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    This information notice is being provided to alert addressees that electrical circuits located above the plant flood level within electrical enclosures may become submerged in water because appropriate drainage has not been provided. Failure of electrical circuits during service conditions, including postulated accidents, can occur due to submergence if water enters these enclosures and there is no provision for drainage. The electrical enclosures addressed by this notice include terminal boxes, junction boxes, pull boxes, conduits, Condulets, and other enclosures for end-use equipment (such as limit switches, motor operators, and electrical penetrations), the contents of which may include cables, terminal blocks, electrical splices and connectors. Information Notice 84-57, ''Operating Experience Related to Moisture Intrusion on Safety-Related Electrical Equipment at Commercial Power Plants,'' addressed watertight sealing of all electrical conduits to junction boxes and conduit-to-terminal box connection points for safety-related equipment located in areas of the reactor building as well as for areas that are potentially subject to high temperature steam or water impingement. This notice further addressed the importance of ensuring that box drain holes and equipment interfaces are in conformance with the test setup established during equipment qualification testing and with the vendor's recommendations

  7. MoREK: The learning media to improve students understanding about electrical circuit in informatics

    Science.gov (United States)

    Indrianto; Nur Indah Susanti, Meilia; Arianto, Rakhmat

    2018-03-01

    The needs for labor in the world is already increasing especially in Indonesia. According to the World Bank, Indonesia is a country that ranks 9th in the world’s largest economic growth. To meet that needs, Indonesia needs 55 million workers who are experts in the field of electricity. Therefore, it takes a lot of human resources and has been equipped with knowledge and expertise in the field of electricity. To be able to meet these needs, it takes a better method of learning to increase knowledge and expertise in the field of electricity since college, especially in the field of informatics. Prototype of Electrical Module (The MoREK) requires a Prototype method for the Practicum Module to be created as desired. This method is often used in the real world or it could be said Prototype method is part of the product that expresses the logic and physical external interface that is displayed. For data retrieval is used Pre-experimental method where students will be given pre-test and post-test. The Design of Electrical Module has a purpose to improve the students understanding of Electric Circuit Engineering Courses with the creation of The MoREK so that students are more competent to the course and can meet the needs of manpower or Human Resources (SDM) in the field of electricity. By using The Morek, the score of student learning outcomes increased by 7.8% and informatics students who conduct research in the field of electricity increased to 21%.

  8. Accurate Models for Evaluating the Direct Conducted and Radiated Emissions from Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Domenico Capriglione

    2018-03-01

    Full Text Available This paper deals with the electromagnetic compatibility (EMC issues related to the direct and radiated emissions from a high-speed integrated circuits (ICs. These emissions are evaluated here by means of circuital and electromagnetic models. As for the conducted emission, an equivalent circuit model is derived to describe the IC and the effect of its loads (package, printed circuit board, decaps, etc., based on the Integrated Circuit Emission Model template (ICEM. As for the radiated emission, an electromagnetic model is proposed, based on the superposition of the fields generated in the far field region by the loop currents flowing into the IC and the package pins. A custom experimental setup is designed for validating the models. Specifically, for the radiated emission measurement, a custom test board is designed and realized, able to highlight the contribution of the direct emission from the IC, usually hidden by the indirect emission coming from the printed circuit board. Measurements of the package currents and of the far-field emitted fields are carried out, providing a satisfactory agreement with the model predictions.

  9. Rocket measurements within a polar cap arc: Plasma, particle, and electric circuit parameters

    International Nuclear Information System (INIS)

    Weber, E.J.; Ballenthin, J.O.; Basu, S.; Carlson, H.C.; Hardy, D.A.; Maynard, N.C.; Smiddy, M.; Kelley, M.C.; Fleischman, J.R.; Sheehan, R.E.; Pfaff, R.F.; Rodriguez, P.

    1989-01-01

    An instrumented rocket payload was launched into a polar cap F layer aurora to investigate the energetic particle, plasma, and electric circuit parameters of a Sun-aligned arc. On-board instruments measured energetic electron flux, ion composition and density fluctuations, electron density and temperature, electron density fluctuations, and ac and dc electric fields. Real-time all-sky imaging photometer measurements of the location and motion of the aurora, were used to determine the proper geophysical situation for launch. Comparison of the in situ measurements with remote optical measurements shows that the arc was produced by fluxes of low-energy (< 1 keV) electrons. Field-aligned potentials in the arc inferred from the electron spectra had a maximum value of approximately 300 V, and from the spectral shape a parent population of preaccelerated electrons characteristic of the boundary plasma sheet or magnetosheath was inferred. Electric field components along and across the arc show sunward flow within the arc and duskward drift of the arc consistent with the drift direction and speed determined from optical imaging. Thus this arc is drifting duskward under the influence of the convection electric field. Three possible explanations for this (field-aligned currents, chemistry, and transport) are considered. Finally, ionospheric irregularity and electric field fluctuations indicate two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability

  10. Unit: Electric Circuits, Inspection Pack, National Trial Print.

    Science.gov (United States)

    Australian Science Education Project, Toorak, Victoria.

    As a part of the unit materials in the series produced by the Australian Science Education Project, this teacher edition is primarily composed of a core relating to simple circuits, a test form, and options. Options are given under the headings: Your Invention; "How Long Does a Call Last?"; One, Two, Three Wires; Parallel Circuits; More…

  11. Quantum Effects of Mesoscopic Inductance and Capacity Coupling Circuits

    International Nuclear Information System (INIS)

    Liu Jianxin; Yan Zhanyuan; Song Yonghua

    2006-01-01

    Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finite-difference Schroedinger equation of the non-dissipative mesoscopic inductance and capacity coupling circuit is achieved. The Coulomb blockade effect, which is caused by the discreteness of electric charges, is studied. Appropriately choose the components in the circuits, the finite-difference Schroedinger equation can be divided into two Mathieu equations in p-circumflex representation. With the WKBJ method, the currents quantum fluctuations in the ground states of the two circuits are calculated. The results show that the currents quantum zero-point fluctuations of the two circuits are exist and correlated.

  12. 30 CFR 56.12065 - Short circuit and lightning protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit and lightning protection. 56... Electricity § 56.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...

  13. Single-Wire Electric-Field Coupling Power Transmission Using Nonlinear Parity-Time-Symmetric Model with Coupled-Mode Theory

    Directory of Open Access Journals (Sweden)

    Xujian Shu

    2018-03-01

    Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.

  14. The Effects on Students' Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives within a Physical Manipulatives-Oriented Curriculum

    Science.gov (United States)

    Zacharia, Zacharias C.; de Jong, Ton

    2014-01-01

    This study investigates whether Virtual Manipulatives (VM) within a Physical Manipulatives (PM)-oriented curriculum affect conceptual understanding of electric circuits and related experimentation processes. A pre-post comparison study randomly assigned 194 undergraduates in an introductory physics course to one of five conditions: three…

  15. Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling.

    Science.gov (United States)

    Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas

    2016-09-23

    InP nanowire arrays with axial p-i-n junctions are promising devices for next-generation photovoltaics, with a demonstrated efficiency of 13.8%. However, the short-circuit current in such arrays does not match their absorption performance. Here, through combined optical and electrical modeling, we study how the absorption of photons and separation of the resulting photogenerated electron-hole pairs define and limit the short-circuit current in the nanowires. We identify how photogenerated minority carriers in the top n segment (i.e. holes) diffuse to the ohmic top contact where they recombine without contributing to the short-circuit current. In our modeling, such contact recombination can lead to a 60% drop in the short-circuit current. To hinder such hole diffusion, we include a gradient doping profile in the n segment to create a front surface barrier. This approach leads to a modest 5% increase in the short-circuit current, limited by Auger recombination with increased doping. A more efficient approach is to switch the n segment to a material with a higher band gap, like GaP. Then, a much smaller number of holes is photogenerated in the n segment, strongly limiting the amount that can diffuse and disappear into the top contact. For a 500 nm long top segment, the GaP approach leads to a 50% higher short-circuit current than with an InP top segment. Such a long top segment could facilitate the fabrication and contacting of nanowire array solar cells. Such design schemes for managing minority carriers could open the door to higher performance in single- and multi-junction nanowire-based solar cells.

  16. Research on the equivalent circuit model of a circular flexural-vibration-research on the equivalent circuit model of a circular flexural-vibration-mode piezoelectric transformer with moderate thickness.

    Science.gov (United States)

    Huang, Yihua; Huang, Wenjin; Wang, Qinglei; Su, Xujian

    2013-07-01

    The equivalent circuit model of a piezoelectric transformer is useful in designing and optimizing the related driving circuits. Based on previous work, an equivalent circuit model for a circular flexural-vibration-mode piezoelectric transformer with moderate thickness is proposed and validated by finite element analysis. The input impedance, voltage gain, and efficiency of the transformer are determined through computation. The basic behaviors of the transformer are shown by numerical results.

  17. Prediction Model and Principle of End-of-Life Threshold for Lithium Ion Batteries Based on Open Circuit Voltage Drifts

    International Nuclear Information System (INIS)

    Cui, Yingzhi; Yang, Jie; Du, Chunyu; Zuo, Pengjian; Gao, Yunzhi; Cheng, Xinqun; Ma, Yulin; Yin, Geping

    2017-01-01

    Highlights: •Open circuit voltage evolution over ageing of lithium ion batteries is deciphered. •The mechanism responsible for the end-of-life (EOL) threshold is elaborated. •A new prediction model of EOL threshold with improved accuracy is developed. •This EOL prediction model is promising for the applications in electric vehicles. -- Abstract: The end-of-life (EOL) of a lithium ion battery (LIB) is defined as the time point when the LIB can no longer provide sufficient power or energy to accomplish its intended function. Generally, the EOL occurs abruptly when the degradation of a LIB reaches the threshold. Therefore, current prediction methods of EOL by extrapolating the early degradation behavior often result in significant errors. To address this problem, this paper analyzes the reason for the EOL threshold of a LIB with shallow depth of discharge. It is found that the sudden appearance of EOL threshold results from the drift of open circuit voltage (OCV) at the end of both shallow depth and full discharges. Further, a new EOL threshold prediction model with highly improved accuracy is developed based on the OCV drifts and their evolution mechanism, which can effectively avoid the misjudgment of EOL threshold. The accuracy of this EOL threshold prediction model is verified by comparing with experimental results. The EOL threshold prediction model can be applied to other battery chemistry systems and its possible application in electric vehicles is finally discussed.

  18. Electrical and electronic principles

    CERN Document Server

    Knight, SA

    1988-01-01

    Electrical and Electronic Principles, 3 focuses on the principles involved in electrical and electronic circuits, including impedance, inductance, capacitance, and resistance.The book first deals with circuit elements and theorems, D.C. transients, and the series circuits of alternating current. Discussions focus on inductance and resistance in series, resistance and capacitance in series, power factor, impedance, circuit magnification, equation of charge, discharge of a capacitor, transfer of power, and decibels and attenuation. The manuscript then examines the parallel circuits of alternatin

  19. Development and verification of printed circuit board toroidal transformer model

    DEFF Research Database (Denmark)

    Pejtersen, Jens; Mønster, Jakob Døllner; Knott, Arnold

    2013-01-01

    An analytical model of an air core printed circuit board embedded toroidal transformer configuration is presented. The transformer has been developed for galvanic isolation of very high frequency switch-mode dc-dc power converter applications. The theoretical model is developed and verified...... by comparing calculated parameters with 3D finite element simulations and experimental measurement results. The developed transformer model shows good agreement with the simulated and measured results. The model can be used to predict the parameters of printed circuit board toroidal transformer configurations...

  20. IE Information Notice No. 85-93: Westinghouse Type DS circuit breakers, potential failure of electric closing feature because of broken spring release latch lever

    International Nuclear Information System (INIS)

    Jordan, E.L.

    1992-01-01

    On April 14, 1985, the Westinghouse Nuclear Services Integration Division (NSID) issued Technical Bulletin No. NSID-TB-85-17 advising their customers of a potential malfunction in Westinghouse Type DS Class 1E circuit breakers because of broken spring release latch levers. These electrically operated type DS breakers will not close electrically when the spring release latch lever has been broken off. Twenty-five broken levers have been reported and evaluated. This evaluation shows concentrations of incidents traceable to manufacturing in the following periods of time: early 1975, April 1976, and early 1978. This circuit breaker failure, as discussed, adversely affects the safety function (closing on demand) when the circuit breaker is used in the Engineered Safety Features Systems. However, this failure mode will not affect the safety trip function when it is used in the reactor protection system

  1. Pulse generator circuit triggerable by nuclear radiation

    International Nuclear Information System (INIS)

    Fredrickson, P.B.

    1980-01-01

    A pulse generator circuit triggerable by a pulse of nuclear radiation is described. The pulse generator circuit includes a pair of transistors arranged, together with other electrical components, in the topology of a standard monostable multivibrator circuit. The circuit differs most significantly from a standard monostable multivibrator circuit in that the circuit is adapted to be triggered by a pulse of nuclear radiation rather than electrically and the transistors have substantially different sensitivities to radiation, due to different physical and electrical characteristics and parameters. One of the transistors is employed principally as a radiation detector and is in a normally non-conducting state and the other transistor is normally in a conducting state. When the circuit is exposed to a pulse of nuclear radiation, currents are induced in the collector-base junctions of both transistors but, due to the different radiation sensitivities of the transistors, the current induced in the collector-base junction of the radiation-detecting transistor is substantially greater than that induced in the collector-base junction of the other transistor. The pulse of radiation causes the radiation-detecting transistor to operate in its conducting state, causing the other transistor to operate in its non-conducting state. As the radiation-detecting transistor operates in its conducting state, an output signal is produced at an output terminal connected to the radiation-detecting transistor indicating the presence of a predetermined intensity of nuclear radiation

  2. Simplified model of a PWR primary coolant circuit

    International Nuclear Information System (INIS)

    Souza, A.L. de; Faya, A.J.G.

    1988-01-01

    The computer program RENUR was developed to perform a very simplified simulation of a typical PWR primary circuit. The program has mathematical models for the thermal-hydraulics of the reactor core and the pressurizer, the rest of the circuit being treated as a single volume. Heat conduction in the fuel rod is analysed by a nodal model. Average and hot channels are treated so that the bulk response of the core and DNBR can be evaluated. A Homogenenous model is employed in the pressurizer. Results are presented for a steady-state situation as well as for a loss of load transient. Agreement with the results of more elaborate computer codes is good with substantial reduction in computer costs. (author) [pt

  3. Study of recursive model for pole-zero cancellation circuit

    International Nuclear Information System (INIS)

    Zhou Jianbin; Zhou Wei; Hong Xu; Hu Yunchuan; Wan Xinfeng; Du Xin; Wang Renbo

    2014-01-01

    The output of charge sensitive amplifier (CSA) is a negative exponential signal with long decay time which will result in undershoot after C-R differentiator. Pole-zero cancellation (PZC) circuit is often applied to eliminate undershoot in many radiation detectors. However, it is difficult to use a zero created by PZC circuit to cancel a pole in CSA output signal accurately because of the influences of electronic components inherent error and environmental factors. A novel recursive model for PZC circuit is presented based on Kirchhoff's Current Law (KCL) in this paper. The model is established by numerical differentiation algorithm between the input and the output signal. Some simulation experiments for a negative exponential signal are carried out using Visual Basic for Application (VBA) program and a real x-ray signal is also tested. Simulated results show that the recursive model can reduce the time constant of input signal and eliminate undershoot. (authors)

  4. CMOS digital integrated circuits a first course

    CERN Document Server

    Hawkins, Charles; Zarkesh-Ha, Payman

    2016-01-01

    This book teaches the fundamentals of modern CMOS technology and covers equal treatment to both types of MOSFET transistors that make up computer circuits; power properties of logic circuits; physical and electrical properties of metals; introduction of timing circuit electronics and introduction of layout; real-world examples and problem sets.

  5. Modeling of forced vibration phenomenon by making an electrical analogy with ANSYS finite element software

    Directory of Open Access Journals (Sweden)

    Myriam Rocío Pallares Muñoz

    2009-01-01

    Full Text Available Designing mechanical systems which are submitted to vibration requires calculation methods which are very different to those u-sed in other disciplines because, when this occurs, the magnitude of the forces becomes secondary and the frequency with which the force is repeated becomes the most important aspect. It must be taken care of, given that smaller periodic forces can prompt disasters than greater static forces. The article presents a representative problem regarding systems having forced vibration, the mathematical treatment of differential equations from an electrical and mechanical viewpoint, an electrical analogy, numerical modeling of circuits using ANSYS finite element software, analysis and comparison of numerical modeling results compared to test values, the post-processing of results and conclusions regarding electrical analogy methodology when analysing forced vibra-tion systems.

  6. Circuit analysis with Multisim

    CERN Document Server

    Baez-Lopez, David

    2011-01-01

    This book is concerned with circuit simulation using National Instruments Multisim. It focuses on the use and comprehension of the working techniques for electrical and electronic circuit simulation. The first chapters are devoted to basic circuit analysis.It starts by describing in detail how to perform a DC analysis using only resistors and independent and controlled sources. Then, it introduces capacitors and inductors to make a transient analysis. In the case of transient analysis, it is possible to have an initial condition either in the capacitor voltage or in the inductor current, or bo

  7. Energy consumption in Hodgkin–Huxley type fast spiking neuron model exposed to an external electric field

    Directory of Open Access Journals (Sweden)

    K. Usha

    2016-09-01

    Full Text Available This paper evaluates the change in metabolic energy required to maintain the signalling activity of neurons in the presence of an external electric field. We have analysed the Hodgkin–Huxley type conductance based fast spiking neuron model as electrical circuit by changing the frequency and amplitude of the applied electric field. The study has shown that, the presence of electric field increases the membrane potential, electrical energy supply and metabolic energy consumption. As the amplitude of applied electric field increases by keeping a constant frequency, the membrane potential increases and consequently the electrical energy supply and metabolic energy consumption increases. On increasing the frequency of the applied field, the peak value of membrane potential after depolarization gradually decreases as a result electrical energy supply decreases which results in a lower rate of hydrolysis of ATP molecules.

  8. 30 CFR 57.12065 - Short circuit and lightning protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit and lightning protection. 57... MINES Electricity Surface Only § 57.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...

  9. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G

    2011-01-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  10. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    OpenAIRE

    Jian-ping Wen; Chuan-wei Zhang

    2015-01-01

    In order to improve energy utilization rate of battery-powered electric vehicle (EV) using brushless DC machine (BLDCM), the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO) to observe actual braking current and the unknown disturbances of regenerative braking system, ...

  11. Analysis of High Power IGBT Short Circuit Failures

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, G.

    2005-02-11

    The Next Linear Collider (NLC) accelerator proposal at SLAC requires a highly efficient and reliable, low cost, pulsed-power modulator to drive the klystrons. A solid-state induction modulator has been developed at SLAC to power the klystrons; this modulator uses commercial high voltage and high current Insulated Gate Bipolar Transistor (IGBT) modules. Testing of these IGBT modules under pulsed conditions was very successful; however, the IGBTs failed when tests were performed into a low inductance short circuit. The internal electrical connections of a commercial IGBT module have been analyzed to extract self and mutual partial inductances for the main current paths as well as for the gate structure. The IGBT module, together with the partial inductances, has been modeled using PSpice. Predictions for electrical paths that carry the highest current correlate with the sites of failed die under short circuit tests. A similar analysis has been carried out for a SLAC proposal for an IGBT module layout. This paper discusses the mathematical model of the IGBT module geometry and presents simulation results.

  12. SEB circuit-level model in N-channel power MOSFETs; Modele pour circuits du burnout dans des MOSFETs de puissance de type N

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Schrimpf, R.D.; Massengill, L.; Galloway, K.F. [Vanderbilt Univ., Nashville, TN (United States)

    1999-07-01

    A Single Event Burnout (SEB) circuit model has been developed. The dependence of SEB sensitivity on various parameters is presented and compared with experimental results. The parasitic resistance and capacitance of the device as well as the circuit parameters contribute to the length of SEB pulse. Increasing the switching frequency of the power MOSFET may be a possible way to prevent SEB in applications. (authors)

  13. Superconducting push-pull flux quantum logic circuits

    International Nuclear Information System (INIS)

    Murphy, J.H.; Daniel, M.R.; Przybysz, J.X.

    1993-01-01

    A superconducting digital logic circuit is described comprising: a first circuit branch including first and second Josephson junctions electrically connected in series with each other; means for applying a positive bias voltage to a first end of said circuit branch; means for applying a negative bias voltage to a second end of said circuit branch; means for applying a first dual polarity input voltage signal to a first node in said circuit branch; and means for extracting a first output voltage signal from said first node in said circuit branch

  14. Differential transimpedance amplifier circuit for correlated differential amplification

    Science.gov (United States)

    Gresham, Christopher A [Albuquerque, NM; Denton, M Bonner [Tucson, AZ; Sperline, Roger P [Tucson, AZ

    2008-07-22

    A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.

  15. Adaptive control of power supply for integrated circuits

    NARCIS (Netherlands)

    2012-01-01

    The present invention relates to a circuit arrangement and method for controlling power supply in an integrated circuit wherein at least one working parameter of at least one electrically isolated circuit region (10) is monitored, and the conductivity of a variable resistor means is locally

  16. Electronic meter with custom integrated circuit for electric energy measurement; Medidor eletronico de energia eletrica com circuito integrado dedicado

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, Roberto Pereira

    1990-04-01

    The design and implementation of an electrical energy electronic meter for operation at low voltages, according to two steps of development carried out in Centro de Pesquisas de Energia Eletrica - CEPEL is described. In the first step, an electronic meter with discrete commercial components has been developed, in order to demonstrate to the Brazilian power suppliers the feasibility of such a device for electrical energy metering and charging. The second step was constituted by the design of an integrated circuit, aiming the reduction of the cost of the meter as well as the enhancement of its reliability. Several techniques of electrical energy measurement are presented. The meter with discrete components makes use of a time division multiplier (TDM), in order to determine the active power in the load. Voltage and current levels have been reduced through the use of voltage and current sensors compatible with the TDM's inputs. A V-F converter employing continuos integration, has been used for the determination of the energy consumed by the load through the integration of the TDM's output signal. Most of the discrete components of the meter have been replaced by the dedicated integrated circuit. The TDM has remained essentially the same, but the V-F converter has been changed into a dual-slope one, which is more adequate for implementation in a single chip. The tests performed with the prototypes of the meter including both the meter with discrete components and the meter with the custom-made integrated circuit have presented measurement errors of less the 0,2 %. The initial goal, according to Brazilian specifications of electromechanical meters and international specifications for electronic meters, was 1 %. (author)

  17. Electronic meter with custom integrated circuit for electric energy measurement; Medidor eletronico de energia eletrica com circuito integrado dedicado

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, Roberto Pereira

    1990-04-01

    The design and implementation of an electrical energy electronic meter for operation at low voltages, according to two steps of development carried out in Centro de Pesquisas de Energia Eletrica - CEPEL is described. In the first step, an electronic meter with discrete commercial components has been developed, in order to demonstrate to the Brazilian power suppliers the feasibility of such a device for electrical energy metering and charging. The second step was constituted by the design of an integrated circuit, aiming the reduction of the cost of the meter as well as the enhancement of its reliability. Several techniques of electrical energy measurement are presented. The meter with discrete components makes use of a time division multiplier (TDM), in order to determine the active power in the load. Voltage and current levels have been reduced through the use of voltage and current sensors compatible with the TDM's inputs. A V-F converter employing continuos integration, has been used for the determination of the energy consumed by the load through the integration of the TDM's output signal. Most of the discrete components of the meter have been replaced by the dedicated integrated circuit. The TDM has remained essentially the same, but the V-F converter has been changed into a dual-slope one, which is more adequate for implementation in a single chip. The tests performed with the prototypes of the meter including both the meter with discrete components and the meter with the custom-made integrated circuit have presented measurement errors of less the 0,2 %. The initial goal, according to Brazilian specifications of electromechanical meters and international specifications for electronic meters, was 1 %. (author)

  18. Electrical and electronic principles

    CERN Document Server

    Knight, S A

    1991-01-01

    Electrical and Electronic Principles, 2, Second Edition covers the syllabus requirements of BTEC Unit U86/329, including the principles of control systems and elements of data transmission. The book first tackles series and parallel circuits, electrical networks, and capacitors and capacitance. Discussions focus on flux density, electric force, permittivity, Kirchhoff's laws, superposition theorem, arrangement of resistors, internal resistance, and powers in a circuit. The text then takes a look at capacitors in circuit, magnetism and magnetization, electromagnetic induction, and alternating v

  19. Employment of single-diode model to elucidate the variations in photovoltaic parameters under different electrical and thermal conditions.

    Directory of Open Access Journals (Sweden)

    Fahmi F Muhammad

    Full Text Available In this research work, numerical simulations are performed to correlate the photovoltaic parameters with various internal and external factors influencing the performance of solar cells. Single-diode modeling approach is utilized for this purpose and theoretical investigations are compared with the reported experimental evidences for organic and inorganic solar cells at various electrical and thermal conditions. Electrical parameters include parasitic resistances (Rs and Rp and ideality factor (n, while thermal parameters can be defined by the cells temperature (T. A comprehensive analysis concerning broad spectral variations in the short circuit current (Isc, open circuit voltage (Voc, fill factor (FF and efficiency (η is presented and discussed. It was generally concluded that there exists a good agreement between the simulated results and experimental findings. Nevertheless, the controversial consequence of temperature impact on the performance of organic solar cells necessitates the development of a complementary model which is capable of well simulating the temperature impact on these devices performance.

  20. Modeling the cosmic-ray-induced soft-error rate in integrated circuits: An overview

    International Nuclear Information System (INIS)

    Srinivasan, G.R.

    1996-01-01

    This paper is an overview of the concepts and methodologies used to predict soft-error rates (SER) due to cosmic and high-energy particle radiation in integrated circuit chips. The paper emphasizes the need for the SER simulation using the actual chip circuit model which includes device, process, and technology parameters as opposed to using either the discrete device simulation or generic circuit simulation that is commonly employed in SER modeling. Concepts such as funneling, event-by-event simulation, nuclear history files, critical charge, and charge sharing are examined. Also discussed are the relative importance of elastic and inelastic nuclear collisions, rare event statistics, and device vs. circuit simulations. The semi-empirical methodologies used in the aerospace community to arrive at SERs [also referred to as single-event upset (SEU) rates] in integrated circuit chips are reviewed. This paper is one of four in this special issue relating to SER modeling. Together, they provide a comprehensive account of this modeling effort, which has resulted in a unique modeling tool called the Soft-Error Monte Carlo Model, or SEMM

  1. Development of a model for integrated simulation of the European transmission networks and electricity markets

    International Nuclear Information System (INIS)

    Rathke, Christian

    2013-01-01

    The liberalisation of electricity markets and the increase of renewable energy generation actually causes dramatic changes for the whole European power industry. The transmission system operators in particular have to meet the challenge to ensure a stable and reliable system operation in the future. Significant changes in power generation will require a substantial extension to current inadequate original transmission grids to handle increased wide area power flows. This is the only way to avoid overloading the grid and to reduce the herefrom resulting limitations for the Pan-European cross-border trade of electricity. This work describes in detail the development of a Pan-European integrated grid and an electricity market simulation tool. For this purpose an overview about the today's structure of the European electricity industry is given initially. Afterwards the configuration of the transmission grid, the used equipment and different methods for the load flow and short circuit calculation are explained. Furthermore models for the calculation of local loads and the power plant dispatch are presented in the following chapters. Following on from this a detailed model of the European electricity industry is developed and the main functions are described by means of some exemplary simulations. The simulation tool developed in this work enables the user to calculate realistic power plant schedules and the consequent resulting physical effects on the European transmission grid. It combines a time series based simulation of the electricity market with a detailed model of the transmission grid. The highly detailing of the model offers the feasibility to execute a complete AC load flow calculation using the Newton Raphson algorithm.Therefore it is possible to identify the active as well as the reactive power flows in the grid. The results of the power flow calculation are the basis for further investigations (e. g. the short circuit calculation) and to decide on

  2. Magnonic logic circuits

    International Nuclear Information System (INIS)

    Khitun, Alexander; Bao Mingqiang; Wang, Kang L

    2010-01-01

    We describe and analyse possible approaches to magnonic logic circuits and basic elements required for circuit construction. A distinctive feature of the magnonic circuitry is that information is transmitted by spin waves propagating in the magnetic waveguides without the use of electric current. The latter makes it possible to exploit spin wave phenomena for more efficient data transfer and enhanced logic functionality. We describe possible schemes for general computing and special task data processing. The functional throughput of the magnonic logic gates is estimated and compared with the conventional transistor-based approach. Magnonic logic circuits allow scaling down to the deep submicrometre range and THz frequency operation. The scaling is in favour of the magnonic circuits offering a significant functional advantage over the traditional approach. The disadvantages and problems of the spin wave devices are also discussed.

  3. Electrical stimulation of superior colliculus affects strabismus angle in monkey models for strabismus

    Science.gov (United States)

    Upadhyaya, Suraj; Meng, Hui

    2017-01-01

    Disruption of binocular vision during the critical period for development leads to eye misalignment in humans and in monkey models. We have previously suggested that disruption within a vergence circuit could be the neural basis for strabismus. Electrical stimulation in the rostral superior colliculus (rSC) leads to vergence eye movements in normal monkeys. Therefore, the purpose of this study was to investigate the effect of SC stimulation on eye misalignment in strabismic monkeys. Electrical stimulation was delivered to 51 sites in the intermediate and deep layers of the SC (400 Hz, 0.5-s duration, 10–40 μA) in 3 adult optical prism-reared strabismic monkeys. Scleral search coils were used to measure movements of both eyes during a fixation task. Staircase saccades with horizontal and vertical components were elicited by stimulation as predicted from the SC topographic map. Electrical stimulation also resulted in significant changes in horizontal strabismus angle, i.e., a shift toward exotropia/esotropia depending on stimulation site. Electrically evoked saccade vector amplitude in the two eyes was not significantly different (P > 0.05; paired t-test) but saccade direction differed. However, saccade disconjugacy accounted for only ~50% of the change in horizontal misalignment while disconjugate postsaccadic movements accounted for the other ~50% of the change in misalignment due to electrical stimulation. In summary, our data suggest that electrical stimulation of the SC of strabismic monkeys produces a change in horizontal eye alignment that is due to a combination of disconjugate saccadic eye movements and disconjugate postsaccadic movements. NEW & NOTEWORTHY Electrical stimulation of the superior colliculus in strabismic monkeys results in a change in eye misalignment. These data support the notion of developmental disruption of vergence circuits leading to maintenance of eye misalignment in strabismus. PMID:28031397

  4. Development of circuit model for arcing on solar panels

    International Nuclear Information System (INIS)

    Mehta, Bhoomi K; Deshpande, S P; Mukherjee, S; Gupta, S B; Ranjan, M; Rane, R; Vaghela, N; Acharya, V; Sudhakar, M; Sankaran, M; Suresh, E P

    2010-01-01

    The increased requirements of payload capacity of the satellites have resulted in much higher power requirements of the satellites. In order to minimize the energy loss during power transmission due to cable loss, use of high voltage solar panels becomes necessary. When a satellite encounters space plasma it floats negatively with respect to the surrounding space plasma environment. At high voltage, charging and discharging on solar panels causes the power system breakdown. Once a solar panel surface is charged and potential difference between surface insulator and conductor exceeds certain value, electrostatic discharge (ESD) may occur. This ESD may trigger a secondary arc that can destroy the solar panel circuit. ESD is also called as primary or minor arc and secondary is called major arc. The energy of minor arc is supplied by the charge stored in the coverglass of solar array and is a pulse of typically several 100 ns to several 100 μs duration. The damage caused by minor arc is less compared to major arcs, but it is observed that the minor arc is cause of major arc. Therefore it is important to develop an understanding of minor arc and mitigation techniques. In this paper we present a linear circuit analysis for minor arcs on solar panels. To study arcing event, a ground experimental facility to simulate space plasma environment has been developed at Facilitation Centre for Industrial Plasma Technologies (Institute for Plasma Research) in collaboration with Indian Space Research Organization's ISRO Satellite Technology Centre (ISAC). A linear circuit model has been developed to explain the experimental results by representing the coverglass, solar cell interconnect and wiring by an LCR circuit and the primary arc by an equivalent LR circuit. The aim of the circuit analysis is to predict the arc current which flows through the arc plasma. It is established from the model that the current depends on various parameters like potential difference between insulator

  5. 30 CFR 75.900-2 - Approved circuit schemes.

    Science.gov (United States)

    2010-07-01

    ... device installed in the main secondary circuit at the source transformer may be used to provide undervoltage protection for each circuit that receives power from that transformer. (c) One circuit breaker may... accordance with the settings listed in the tables of the National Electric Code, 1968. ...

  6. Radio-frequency integrated-circuit engineering

    CERN Document Server

    Nguyen, Cam

    2015-01-01

    Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. Provide

  7. 30 CFR 57.6407 - Circuit testing.

    Science.gov (United States)

    2010-07-01

    ...) Continuity of each electric detonator in the blasthole prior to stemming and connection to the blasting line... connection of electric detonator series; and (4) Total blasting circuit resistance prior to connection to the...) Continuity of blasting lines prior to the connection of electric detonators. Nonelectric Blasting—Surface and...

  8. Stochastic Simulation of Integrated Circuits with Nonlinear Black-Box Components via Augmented Deterministic Equivalents

    Directory of Open Access Journals (Sweden)

    MANFREDI, P.

    2014-11-01

    Full Text Available This paper extends recent literature results concerning the statistical simulation of circuits affected by random electrical parameters by means of the polynomial chaos framework. With respect to previous implementations, based on the generation and simulation of augmented and deterministic circuit equivalents, the modeling is extended to generic and ?black-box? multi-terminal nonlinear subcircuits describing complex devices, like those found in integrated circuits. Moreover, based on recently-published works in this field, a more effective approach to generate the deterministic circuit equivalents is implemented, thus yielding more compact and efficient models for nonlinear components. The approach is fully compatible with commercial (e.g., SPICE-type circuit simulators and is thoroughly validated through the statistical analysis of a realistic interconnect structure with a 16-bit memory chip. The accuracy and the comparison against previous approaches are also carefully established.

  9. Compact physical model of a-IGZO TFTs for circuit simulation

    NARCIS (Netherlands)

    Ghittorelli, M.; Torricelli, F.; Garripoli, C.; Van Der Steen, J.L.J.P.; Gelinck, G.H.; Abdinia, S.; Cantatore, E.; Kovacs-Vajna, Z.M.

    2017-01-01

    Amorphous InGaZnO (a-IGZO) is a candidate material for thin-film transistors (TFTs) owing to its large electron mobility. The development of high functionality circuits requires accurate and efficient circuit simulation that, in turn, is based on compact physical a-IGZO TFTs models. Here we propose

  10. Electrical measurements in the laboratory practice

    CERN Document Server

    Bartiromo, Rosario

    2016-01-01

    This book covers the basic theory of electrical circuits, describes analog and digital instrumentation, and applies modern methods to evaluate uncertainties in electrical measurements. It is comprehensive in scope and is designed specifically to meet the needs of students in physics and electrical engineering who are attending laboratory classes in electrical measurements. The topics addressed in individual chapters include the analysis of continuous current circuits; sources of measurement uncertainty and their combined effect; direct current measurements; analysis of alternating current circuits; special circuits including resonant circuits, frequency filters and impedance matching networks; alternating current measurements; analog and digital oscilloscopes; non-sinusoidal waveforms and circuit excitation by pulses; distributed parameter components and transmission lines. Each chapter is equipped with a number of problems. A special appendix describes a series of nine experiments, in each case providing a p...

  11. Mechanical to electrical energy conversion by shock wave effect in a ferro-electric material

    International Nuclear Information System (INIS)

    David, Jean

    1977-01-01

    The shock wave propagation through a polarized ferroelectric ceramic changes or destroys remanent polarization and this way allows to get, in adequate electrical circuit, a volume energy of about 2 J/ cm 3 , during a time of the order of 0,4 μs; which corresponds to a peak - power of 5 MW/cm 3 . The present report has for objective to specify the optimum working conditions of this mechanical to electrical conversion from ceramic characteristics, load circuit connected to its electrodes and from the characteristics of the pressure wave which travels through the materials which constitute the converter. After a few lines about the ferroelectric materials and about the shock waves, the shock generator, the used setting and measures are described. A mathematical model which exhibits the transducer operation and a computation of the allowable electrical energy are given. For ending, the released electrical energies by industrial and laboratory ceramics are compared to the estimated computations and a thermodynamical balance is carried out. (author) [fr

  12. SEB circuit-level model in N-channel power MOSFETs

    International Nuclear Information System (INIS)

    Liu, J.; Schrimpf, R.D.; Massengill, L.; Galloway, K.F.

    1999-01-01

    A Single Event Burnout (SEB) circuit model has been developed. The dependence of SEB sensitivity on various parameters is presented and compared with experimental results. The parasitic resistance and capacitance of the device as well as the circuit parameters contribute to the length of SEB pulse. Increasing the switching frequency of the power MOSFET may be a possible way to prevent SEB in applications. (authors)

  13. Equivalent model of a dually-fed machine for electric drive control systems

    Science.gov (United States)

    Ostrovlyanchik, I. Yu; Popolzin, I. Yu

    2018-05-01

    The article shows that the mathematical model of a dually-fed machine is complicated because of the presence of a controlled voltage source in the rotor circuit. As a method of obtaining a mathematical model, the method of a generalized two-phase electric machine is applied and a rotating orthogonal coordinate system is chosen that is associated with the representing vector of a stator current. In the chosen coordinate system in the operator form the differential equations of electric equilibrium for the windings of the generalized machine (the Kirchhoff equation) are written together with the expression for the moment, which determines the electromechanical energy transformation in the machine. Equations are transformed so that they connect the currents of the windings, that determine the moment of the machine, and the voltages on these windings. The structural diagram of the machine is assigned to the written equations. Based on the written equations and accepted assumptions, expressions were obtained for the balancing the EMF of windings, and on the basis of these expressions an equivalent mathematical model of a dually-fed machine is proposed, convenient for use in electric drive control systems.

  14. Reduced-order modeling of piezoelectric energy harvesters with nonlinear circuits under complex conditions

    Science.gov (United States)

    Xiang, Hong-Jun; Zhang, Zhi-Wei; Shi, Zhi-Fei; Li, Hong

    2018-04-01

    A fully coupled modeling approach is developed for piezoelectric energy harvesters in this work based on the use of available robust finite element packages and efficient reducing order modeling techniques. At first, the harvester is modeled using finite element packages. The dynamic equilibrium equations of harvesters are rebuilt by extracting system matrices from the finite element model using built-in commands without any additional tools. A Krylov subspace-based scheme is then applied to obtain a reduced-order model for improving simulation efficiency but preserving the key features of harvesters. Co-simulation of the reduced-order model with nonlinear energy harvesting circuits is achieved in a system level. Several examples in both cases of harmonic response and transient response analysis are conducted to validate the present approach. The proposed approach allows to improve the simulation efficiency by several orders of magnitude. Moreover, the parameters used in the equivalent circuit model can be conveniently obtained by the proposed eigenvector-based model order reduction technique. More importantly, this work establishes a methodology for modeling of piezoelectric energy harvesters with any complicated mechanical geometries and nonlinear circuits. The input load may be more complex also. The method can be employed by harvester designers to optimal mechanical structures or by circuit designers to develop novel energy harvesting circuits.

  15. Prediction of ionizing radiation effects in integrated circuits using black-box models

    International Nuclear Information System (INIS)

    Williamson, P.W.

    1976-10-01

    A method is described which allows general black-box modelling of integrated circuits as distinct from the existing method of deriving the radiation induced response of the model from actual terminal measurements on the device during irradiation. Both digital and linear circuits are discussed. (author)

  16. Variations in the electrical short-circuit current decay for recombination lifetime and velocity measurements

    Science.gov (United States)

    Jung, Tae-Won; Lindholm, Fredrik A.; Neugroschel, Arnost

    1987-01-01

    An improved measurement system for electrical short-circuit current decay is presented that extends applicability of the method to silicon solar cells having an effective lifetime as low as 1 microsec. The system uses metal/oxide/semiconductor transistors as voltage-controlled switches. Advances in theory developed here increase precision and sensitivity in the determination of the minority-carrier recombination lifetime and recombination velocity. A variation of the method, which exploits measurements made on related back-surface field and back-ohmic contact devices, further improves precision and sensitivity. The improvements are illustrated by application to 15 different silicon solar cells.

  17. Other origins for the fluorescence modulation of single dye molecules in open-circuit and short-circuit devices.

    Science.gov (United States)

    Teguh, Jefri S; Kurniawan, Michael; Wu, Xiangyang; Sum, Tze Chien; Yeow, Edwin K L

    2013-01-07

    Fluorescence intensity modulation of single Atto647N dye molecules in a short-circuit device and a defective device, caused by damaging an open-circuit device, is due to a variation in the excitation light focus as a result of the formation of an alternating electric current.

  18. Some didactical suggestions for a deeper embedding of DC circuits into electromagnetism

    International Nuclear Information System (INIS)

    Cavinato, M; Giliberti, M; Barbieri, S R

    2017-01-01

    Undergraduate students often encounter great difficulties in understanding Ohm’s law and electrical circuits. Considering the widespread students’ beliefs and their common mistakes, as they come out from the literature and our teaching experience, we think that a relevant source of these problems comes from the fact that electrical circuits are generally treated separately from the other topics of electromagnetism, with poor reference to the circulation of the electric field. We present here a way to deal with electrical circuits that could help students to overcome their difficulties. In our approach, the electric field is the protagonist and the mathematical tool the students are asked to use is its circulation. In the light of the circulation of the electric field, the experimental Ohm’s law is revisited, the concept of electromotive force is discussed and some suggestions to eliminate common misconceptions about the role of a battery in a circuit are presented. (paper)

  19. Some didactical suggestions for a deeper embedding of DC circuits into electromagnetism

    Science.gov (United States)

    Cavinato, M.; Giliberti, M.; Barbieri, S. R.

    2017-09-01

    Undergraduate students often encounter great difficulties in understanding Ohm’s law and electrical circuits. Considering the widespread students’ beliefs and their common mistakes, as they come out from the literature and our teaching experience, we think that a relevant source of these problems comes from the fact that electrical circuits are generally treated separately from the other topics of electromagnetism, with poor reference to the circulation of the electric field. We present here a way to deal with electrical circuits that could help students to overcome their difficulties. In our approach, the electric field is the protagonist and the mathematical tool the students are asked to use is its circulation. In the light of the circulation of the electric field, the experimental Ohm’s law is revisited, the concept of electromotive force is discussed and some suggestions to eliminate common misconceptions about the role of a battery in a circuit are presented.

  20. Superior model for fault tolerance computation in designing nano-sized circuit systems

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. S. S., E-mail: narinderjit@petronas.com.my; Muthuvalu, M. S., E-mail: msmuthuvalu@gmail.com [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak (Malaysia); Asirvadam, V. S., E-mail: vijanth-sagayan@petronas.com.my [Electrical and Electronics Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalization of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.

  1. Superior model for fault tolerance computation in designing nano-sized circuit systems

    International Nuclear Information System (INIS)

    Singh, N. S. S.; Muthuvalu, M. S.; Asirvadam, V. S.

    2014-01-01

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalization of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines

  2. Application of Computer Systems of Dynamic Modeling for Evaluation of Protection Behavior of Electric Power Lines

    Directory of Open Access Journals (Sweden)

    F. A. Romaniouk

    2008-01-01

    Full Text Available The paper considers problems pertaining to mathematical modeling of a transformer substation with protected electric power lines. It is proposed to use systems of dynamic modeling for investigations applying a method of calculative experiment with the purpose to evaluate behavior of protection and automation at short circuits. The paper contains comparison of results obtained with the help of program-simulated complex on the basis of a complex mathematical model of an object and with the help of dynamic modeling system – MathLab.

  3. 10th International Conference on Scientific Computing in Electrical Engineering

    CERN Document Server

    Clemens, Markus; Günther, Michael; Maten, E

    2016-01-01

    This book is a collection of selected papers presented at the 10th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in Wuppertal, Germany in 2014. The book is divided into five parts, reflecting the main directions of SCEE 2014: 1. Device Modeling, Electric Circuits and Simulation, 2. Computational Electromagnetics, 3. Coupled Problems, 4. Model Order Reduction, and 5. Uncertainty Quantification. Each part starts with a general introduction followed by the actual papers. The aim of the SCEE 2014 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, with the goal of fostering intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The methodological focus was on model order reduction and uncertainty quantification.

  4. Accurate Electromagnetic Modeling Methods for Integrated Circuits

    NARCIS (Netherlands)

    Sheng, Z.

    2010-01-01

    The present development of modern integrated circuits (IC’s) is characterized by a number of critical factors that make their design and verification considerably more difficult than before. This dissertation addresses the important questions of modeling all electromagnetic behavior of features on

  5. 30 CFR 75.1323 - Blasting circuits.

    Science.gov (United States)

    2010-07-01

    ...) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made by different manufacturers shall not be combined in the same blasting circuit. (c) Detonator leg wires shall be... used between the blasting cable and detonator circuitry shall— (1) Be undamaged; (2) Be well insulated...

  6. Modeling the electrochemistry of the primary circuits of light water reactors

    International Nuclear Information System (INIS)

    Bertuch, A.; Macdonald, D.D.; Pang, J.; Kriksunov, L.; Arioka, K.

    1994-01-01

    To model the corrosion behaviors of the heat transport circuits of light water reactors, a mixed potential model (NTM) has been developed and applied to both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Using the data generated by the GE/UKEA-Harwell radiolysis model, electrochemical potentials (ECPs) have been calculated for the heat transport circuits of eight BWRs operating under hydrogen water chemistry (HWC). By modeling the corrosion behaviors of these reactors, the effectiveness of HWC at limiting IGSCC and IASCC can be determined. For simulating PWR primary circuits, a chemical-radiolysis model (developed by the authors) was used to generate input parameters for the MPM. Corrosion potentials of Type 304 and 316 SSs in PWR primary environments were calculated using the NTM and were found to be in good agreement with the corrosion potentials measured in the laboratory for simulated PWR primary environments

  7. Theory and Circuit Model for Lossy Coaxial Transmission Line

    Energy Technology Data Exchange (ETDEWEB)

    Genoni, T. C.; Anderson, C. N.; Clark, R. E.; Gansz-Torres, J.; Rose, D. V.; Welch, Dale Robert

    2017-04-01

    The theory of signal propagation in lossy coaxial transmission lines is revisited and new approximate analytic formulas for the line impedance and attenuation are derived. The accuracy of these formulas from DC to 100 GHz is demonstrated by comparison to numerical solutions of the exact field equations. Based on this analysis, a new circuit model is described which accurately reproduces the line response over the entire frequency range. Circuit model calculations are in excellent agreement with the numerical and analytic results, and with finite-difference-time-domain simulations which resolve the skindepths of the conducting walls.

  8. Modelling of boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2002-01-01

    the circulation in the evaporator circuit. The models have been developed as Differential-Algebraic-Equations (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for the relatively stiff equation systems. Experimental verification is planned...

  9. MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model

    International Nuclear Information System (INIS)

    Mian, Muhammad Umer; Khir, M. H. Md.; Tang, T. B.; Dennis, John Ojur; Riaz, Kashif; Iqbal, Abid; Bazaz, Shafaat A.

    2015-01-01

    Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for the proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used

  10. MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model

    Energy Technology Data Exchange (ETDEWEB)

    Mian, Muhammad Umer, E-mail: umermian@gmail.com; Khir, M. H. Md.; Tang, T. B. [Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia); Dennis, John Ojur [Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia); Riaz, Kashif; Iqbal, Abid [Faculty of Electronics Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhaw (Pakistan); Bazaz, Shafaat A. [Department of Computer Science, Center for Advance Studies in Engineering, Islamabad (Pakistan)

    2015-07-22

    Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for the proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used.

  11. Modelling the short-circuit current of polymer bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Geens, Wim; Martens, Tom; Poortmans, Jef; Aernouts, Tom; Manca, Jean; Lutsen, Laurence; Heremans, Paul; Borghs, Staf; Mertens, Robert; Vanderzande, Dirk

    2004-01-01

    An analytical model has been developed to estimate the short-circuit current density of conjugated polymer/fullerene bulk heterojunction solar cells. The model takes into account the solvent-dependent molecular morphology of the donor/acceptor blend, which was revealed by transmission electron microscopy. Field-effect transistors based on single and composite organic layers were fabricated to determine values for the charge carrier mobilities of such films. These values served as input parameters of the model. It is shown that the difference in short-circuit current density that was measured between toluene-cast and chlorobenzene-cast conjugated polymer/fullerene photovoltaic cells (Appl. Phys. Lett. 78 (2001) 841) could be very well simulated with the model. Moreover, the calculations illustrate how increasing the hole and electron mobilities in the photoactive blend can improve the overall short-circuit current density of the solar cell

  12. High-precision analog circuit technology for power supply integrated circuits; Dengen IC yo koseido anarogu kairo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamori, A.; Suzuki, T.; Mizoe, K. [Fuji Electric Corporate Research and Development,Ltd., Kanagawa (Japan)

    2000-08-10

    With the recent rapid spread of portable electronic appliances, specification requirements such as compact power supply and long operation with batteries have become severer. Power supply ICs (integrated circuits) are required to reduce power consumption in the circuit and perform high-precision control. To meet these requirements, Fuji Electric develops high-precision CMOS (complementary metal-oxide semiconductor) analog technology. This paper describes three analog circuit technologies of a voltage reference, an operational amplifier and a comparator as circuit components particularly important for the precision of power supply ICs. (author)

  13. Analysis of electrical and thermal stress effects on PCBM:P3HT solar cells by photocurrent and impedance spectroscopy modeling

    DEFF Research Database (Denmark)

    Torto, Lorenzo; Rizzo, Antonio; Cester, Andrea

    2017-01-01

    We investigated the effects of electrical stress and thermal storage by means of photocurrent, Impedance Spectroscopy and Open Circuit Voltage Decay models. The electrical stress damages only the active layer, by reducing the generation rate, the polaron separation probability and the carrier...... lifetime. The thermal stress also degrades the anode interface. This reflects on the appearance of an inflection in the I-V photocurrent shape close to the operative region....

  14. Ripple gate drive circuit for fast operation of series connected IGBTs

    Science.gov (United States)

    Rockot, Joseph H.; Murray, Thomas W.; Bass, Kevin C.

    2005-09-20

    A ripple gate drive circuit includes a plurality of transistors having their power terminals connected in series across an electrical potential. A plurality of control circuits, each associated with one of the transistors, is provided. Each control circuit is responsive to a control signal and an optical signal received from at least one other control circuit for controlling the conduction of electrical current through the power terminals of the associated transistor. The control circuits are responsive to a first state of the control circuit for causing each transistor in series to turn on sequentially and responsive to a second state of the control signal for causing each transistor in series to turn off sequentially.

  15. Modelling of electric characteristics of 150-watt peak solar panel using Boltzmann sigmoid function under various temperature and irradiance

    Science.gov (United States)

    Sapteka, A. A. N. G.; Narottama, A. A. N. M.; Winarta, A.; Amerta Yasa, K.; Priambodo, P. S.; Putra, N.

    2018-01-01

    Solar energy utilized with solar panel is a renewable energy that needs to be studied further. The site nearest to the equator, it is not surprising, receives the highest solar energy. In this paper, a modelling of electrical characteristics of 150-Watt peak solar panels using Boltzmann sigmoid function under various temperature and irradiance is reported. Current, voltage, temperature and irradiance data in Denpasar, a city located at just south of equator, was collected. Solar power meter is used to measure irradiance level, meanwhile digital thermometer is used to measure temperature of front and back panels. Short circuit current and open circuit voltage data was also collected at different temperature and irradiance level. Statistically, the electrical characteristics of 150-Watt peak solar panel can be modelled using Boltzmann sigmoid function with good fit. Therefore, it can be concluded that Boltzmann sigmoid function might be used to determine current and voltage characteristics of 150-Watt peak solar panel under various temperature and irradiance.

  16. Boolean network model of the Pseudomonas aeruginosa quorum sensing circuits.

    Science.gov (United States)

    Dallidis, Stylianos E; Karafyllidis, Ioannis G

    2014-09-01

    To coordinate their behavior and virulence and to synchronize attacks against their hosts, bacteria communicate by continuously producing signaling molecules (called autoinducers) and continuously monitoring the concentration of these molecules. This communication is controlled by biological circuits called quorum sensing (QS) circuits. Recently QS circuits and have been recognized as an alternative target for controlling bacterial virulence and infections without the use of antibiotics. Pseudomonas aeruginosa is a Gram-negative bacterium that infects insects, plants, animals and humans and can cause acute infections. This bacterium has three interconnected QS circuits that form a very complex and versatile QS system, the operation of which is still under investigation. Here we use Boolean networks to model the complete QS system of Pseudomonas aeruginosa and we simulate and analyze its operation in both synchronous and asynchronous modes. The state space of the QS system is constructed and it turned out to be very large, hierarchical, modular and scale-free. Furthermore, we developed a simulation tool that can simulate gene knock-outs and study their effect on the regulons controlled by the three QS circuits. The model and tools we developed will give to life scientists a deeper insight to this complex QS system.

  17. Dissecting OCD Circuits: From Animal Models to Targeted Treatments

    Science.gov (United States)

    Ahmari, Susanne E.; Dougherty, Darin D.

    2015-01-01

    Obsessive Compulsive Disorder (OCD) is a chronic, severe mental illness with up to 2–3% prevalence worldwide, which has been classified as one of the world’s 10 leading causes of illness-related disability according to the World Health Organization, largely because of the chronic nature of disabling symptoms 1. Despite the severity and high prevalence of this chronic and disabling disorder, there is still relatively limited understanding of its pathophysiology. However, this is now rapidly changing due to development of powerful technologies that can be used to dissect the neural circuits underlying pathologic behaviors. In this article, we describe recent technical advances that have allowed neuroscientists to start identifying the circuits underlying complex repetitive behaviors using animal model systems. In addition, we review current surgical and stimulation-based treatments for OCD that target circuit dysfunction. Finally, we discuss how findings from animal models may be applied in the clinical arena to help inform and refine targeted brain stimulation-based treatment approaches. PMID:25952989

  18. Practical electrical engineering

    CERN Document Server

    N Makarov, Sergey; Bitar, Stephen J

    2016-01-01

    This textbook provides comprehensive, in-depth coverage of the fundamental concepts of electrical and computer engineering. It is written from an engineering perspective, with special emphasis on circuit functionality and applications. Reliance on higher-level mathematics and physics, or theoretical proofs has been intentionally limited in order to prioritize the practical aspects of electrical engineering. This text is therefore suitable for a number of introductory circuit courses for other majors such as robotics, mechanical, biomedical, aerospace, civil, architecture, petroleum, and industrial engineering. The authors’ primary goal is to teach the aspiring engineering student all fundamental tools needed to understand, analyze and design a wide range of practical circuits and systems. Their secondary goal is to provide a comprehensive reference, for both major and non-major students as well as practicing engineers. Provides a self-contained, fundamental textbook on electric circuits and basic electronic...

  19. Short-Circuit Fault Detection and Classification Using Empirical Wavelet Transform and Local Energy for Electric Transmission Line.

    Science.gov (United States)

    Huang, Nantian; Qi, Jiajin; Li, Fuqing; Yang, Dongfeng; Cai, Guowei; Huang, Guilin; Zheng, Jian; Li, Zhenxin

    2017-09-16

    In order to improve the classification accuracy of recognizing short-circuit faults in electric transmission lines, a novel detection and diagnosis method based on empirical wavelet transform (EWT) and local energy (LE) is proposed. First, EWT is used to deal with the original short-circuit fault signals from photoelectric voltage transformers, before the amplitude modulated-frequency modulated (AM-FM) mode with a compactly supported Fourier spectrum is extracted. Subsequently, the fault occurrence time is detected according to the modulus maxima of intrinsic mode function (IMF₂) from three-phase voltage signals processed by EWT. After this process, the feature vectors are constructed by calculating the LE of the fundamental frequency based on the three-phase voltage signals of one period after the fault occurred. Finally, the classifier based on support vector machine (SVM) which was constructed with the LE feature vectors is used to classify 10 types of short-circuit fault signals. Compared with complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved CEEMDAN methods, the new method using EWT has a better ability to present the frequency in time. The difference in the characteristics of the energy distribution in the time domain between different types of short-circuit faults can be presented by the feature vectors of LE. Together, simulation and real signals experiment demonstrate the validity and effectiveness of the new approach.

  20. Simulation and experimental study on lithium ion battery short circuit

    International Nuclear Information System (INIS)

    Zhao, Rui; Liu, Jie; Gu, Junjie

    2016-01-01

    Highlights: • Both external and internal short circuit tests were performed on Li-ion batteries. • An electrochemical–thermal model with an additional nail site heat source is presented. • The model can accurately simulate the temperature variations of non-venting batteries. • The model is reliable in predicting the occurrence and start time of thermal runaway. • A hydrogel cooling system proves its strength in preventing battery thermal runaway. - Abstract: Safety is the first priority in lithium ion (Li-ion) battery applications. A large portion of electrical and thermal hazards caused by Li-ion battery is associated with short circuit. In this paper, both external and internal short circuit tests are conducted. Li-ion batteries and battery packs of different capacities are used. The results indicate that external short circuit is worse for smaller size batteries due to their higher internal resistances, and this type of short can be well managed by assembling fuses. In internal short circuit tests, higher chance of failure is found on larger capacity batteries. A modified electrochemical–thermal model is proposed, which incorporates an additional heat source from nail site and proves to be successful in depicting temperature changes in batteries. Specifically, the model is able to estimate the occurrence and approximate start time of thermal runaway. Furthermore, the effectiveness of a hydrogel based thermal management system in suppressing thermal abuse and preventing thermal runaway propagation is verified through the external and internal short tests on batteries and battery packs.

  1. Investigation of Equivalent Circuit for PEMFC Assessment

    International Nuclear Information System (INIS)

    Myong, Kwang Jae

    2011-01-01

    Chemical reactions occurring in a PEMFC are dominated by the physical conditions and interface properties, and the reactions are expressed in terms of impedance. The performance of a PEMFC can be simply diagnosed by examining the impedance because impedance characteristics can be expressed by an equivalent electrical circuit. In this study, the characteristics of a PEMFC are assessed using the AC impedance and various equivalent circuits such as a simple equivalent circuit, equivalent circuit with a CPE, equivalent circuit with two RCs, and equivalent circuit with two CPEs. It was found in this study that the characteristics of a PEMFC could be assessed using impedance and an equivalent circuit, and the accuracy was highest for an equivalent circuit with two CPEs

  2. Integrated coherent matter wave circuits

    International Nuclear Information System (INIS)

    Ryu, C.; Boshier, M. G.

    2015-01-01

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. Moreover, the source of coherent matter waves is a Bose-Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry

  3. Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces

    Science.gov (United States)

    McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.

    2004-01-01

    A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.

  4. Equivalent circuit modeling of space charge dominated magnetically insulated transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Kazuki; Nakajima, Mitsuo; Horioka, Kazuhiko

    1997-12-31

    A new equivalent circuit model for space charge dominated MITLs (Magnetically Insulated Transmission Lines) was developed. MITLs under high power operation are dominated with space charge current flowing between anode and cathode. Conventional equivalent circuit model does not account for space charge effects on power flow. The model was modified to discuss the power transportation through the high power MITLs. With this model, it is possible to estimate the effects of space charge current on the power flow efficiency, without using complicated particle code simulations. (author). 3 figs., 3 refs.

  5. Models of the electrically stimulated binaural system: A review.

    Science.gov (United States)

    Dietz, Mathias

    2016-01-01

    In an increasing number of countries, the standard treatment for deaf individuals is moving toward the implantation of two cochlear implants. Today's device technology and fitting procedure, however, appears as if the two implants would serve two independent ears and brains. Many experimental studies have demonstrated that after careful matching and balancing of left and right stimulation in controlled laboratory studies most patients have almost normal sensitivity to interaural level differences and some sensitivity to interaural time differences (ITDs). Mechanisms underlying the limited ITD sensitivity are still poorly understood and many different aspects may contribute. Recent pioneering computational approaches identified some of the functional implications the electric input imposes on the neural brainstem circuits. Simultaneously these studies have raised new questions and certainly demonstrated that further refinement of the model stages is necessary. They join the experimental study's conclusions that binaural device technology, binaural fitting, specific speech coding strategies, and binaural signal processing algorithms are obviously missing components to maximize the benefit of bilateral implantation. Within this review, the existing models of the electrically stimulated binaural system are explained, compared, and discussed from a viewpoint of a "CI device with auditory system" and from that of neurophysiological research.

  6. Active component modeling for analog integrated circuit design. Model parametrization and implementation in the SPICE-PAC circuit simulator; Modelisation de composants actifs pour la CAO de circuits integres analogiques. Parametrage et implantation de modeles dans le simulateur SPICE-PAC

    Energy Technology Data Exchange (ETDEWEB)

    Marchal, Xavier

    1992-06-19

    In order to use CAD efficiently in the analysis and design of electronic Integrated circuits, adequate modeling of active non-linear devices such as MOSFET transistors must be available to the designer. Many mathematical forms can be given to those models, such as explicit relations, or implicit equations to be solved. A major requirement in developing MOS transistor models for IC simulation is the availability of electrical characteristic curves over a wide range of channel width and length, including the sub-micrometer range. To account in a convenient way for bulk charge influence on I{sub DS} = f(V{sub DS}, V{sub GS}, v{sub BS}) device characteristics, all 3 standard SPICE MOS models use an empirical fitting parameter called the 'charge sharing factor'. Unfortunately, this formulation produces models which only describe correctly either some of the short channel phenomena, or some particular operating conditions (low injection, avalanche effect, etc.). We present here a cellular model (CDM = Charge Distributed Model) implemented in the open modular SPICE-PAC Simulator; this model is derived from the 4-terminal WANG charge controlled MOSFET model, using the charge sheet approximation. The CDM model describes device characteristics in ail operating regions without introducing drain current discontinuities and without requiring a 'charge sharing factor'. A usual problem to be faced by designers when they simulate MOS ICs is to find a reliable source of model parameters. Though most models have a physical basis, some of their parameters cannot be easily estimated from physical considerations. It can also happen that physically determined parameters values do not produce a good fit to measured device characteristics. Thus it is generally necessary to extract model parameters from measured transistor data, to ensure that model equations approximate measured curves accurately enough. Model parameters extraction can be done in 2 different ways, exposed in this thesis

  7. Instantaneous Switching Processes in Quasi-Linear Circuits

    Directory of Open Access Journals (Sweden)

    Rositsa Angelova

    2004-01-01

    Full Text Available The paper considers instantaneous processes in electrical circuits produced by the stepwise change of the capacitance of the capacitor and the inductance of the inductor and by the switching on and switching off of the circuit. In order to determine the set of electrical circuits, for which it is possible to explicitly obtain the values of the currents and the voltages at the end of the instantaneous process, a classification of the networks with nonlinear elements is introduced in the paper. The instantaneous switching process in the moment t0 is approximated when T->t0 with a sequence of processes in the interval [t0, T]. For quasi-linear inductive and capacitive circuits; we present the type of the system satisfied by the currents and the voltages, the charges, as well as the fluxes in the interval [t0, T]. From this system, after passage to the limit T->t0, we obtain the formulas for the values of the circuits at the end of the instantaneous process. The obtained results are applied for the analysis of particular processes.

  8. 46 CFR 169.679 - Wiring for power and lighting circuits.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Wiring for power and lighting circuits. 169.679 Section... SCHOOL VESSELS Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.679 Wiring for power and lighting circuits. Wiring...

  9. Optoisolation circuits nonlinearity applications in engineering : optoisolation nonlinear dynamics and chaos, application in engineering

    CERN Document Server

    Aluf, Ofer

    2012-01-01

    This book describes a new concept in analyzing circuits, which includes optoisolation elements. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual optoisolation circuits are innovative and can be broadly implemented in engineering applications. The dynamics of optoisolation circuits provides several ways to use them in a variety of applications covering wide areas. The presentation fills the gap of analytical methods for optoisolation circuits analysis, concrete examples, and geometric examples. The optoisolation circuits analysis is developed systematically, starting with basic optoisolation circuits differential equations and their bifurcations, followed by Fixed points analysis, limit cycles and their bifurcations. Optoisolation circuits can be characterized as Lorenz equations, chaos, iterated maps, period doubling and attractors. This book is aimed at electrical and electronic engineers, students and researchers in physics as well. A ...

  10. Pulse mode of operation of a spherical piezoceramic transducer filled with liquid and having a correcting electric circuit.

    Science.gov (United States)

    Konovalov, S I; Kuz'menko, A G

    2010-12-01

    By means of a computational method, the possibility of radiating a short acoustic pulse by a transducer in the form of a piezoceramic sphere internally filled with liquid is investigated. An electric inductive-resistive circuit is connected to the electric input of the transducer. Solution is obtained based on scheme-analogs theory for piezoceramic transducers, and spectral Fourier transform theory. The values of parameters of the system, providing minimal durations of radiated signals, are determined. Computation was carried out for different values of relative thicknesses of the transducer wall. The estimates of durations and amplitudes of the acoustic signals radiated into the external medium are obtained.

  11. Arithmetic circuits for DSP applications

    CERN Document Server

    Stouraitis, Thanos

    2017-01-01

    Arithmetic Circuits for DSP Applications is a complete resource on arithmetic circuits for digital signal processing (DSP). It covers the key concepts, designs and developments of different types of arithmetic circuits, which can be used for improving the efficiency of implementation of a multitude of DSP applications. Each chapter includes various applications of the respective class of arithmetic circuits along with information on the future scope of research. Written for students, engineers, and researchers in electrical and computer engineering, this comprehensive text offers a clear understanding of different types of arithmetic circuits used for digital signal processing applications. The text includes contributions from noted researchers on a wide range of topics, including a review o circuits used in implementing basic operations like additions and multiplications; distributed arithmetic as a technique for the multiplier-less implementation of inner products for DSP applications; discussions on look ...

  12. Low-voltage circuit breaker arcs—simulation and measurements

    International Nuclear Information System (INIS)

    Yang, Fei; Wu, Yi; Rong, Mingzhe; Sun, Hao; Ren, Zhigang; Niu, Chunping; Murphy, Anthony B

    2013-01-01

    As one of the most important electrical components, the low-voltage circuit breaker (LVCB) has been widely used for protection in all types of low-voltage distribution systems. In particular, the low-voltage dc circuit breaker has been arousing great research interest in recent years. In this type of circuit breaker, an air arc is formed in the interrupting process which is a 3D transient arc in a complex chamber geometry with splitter plates. Controlling the arc evolution and the extinction are the most significant problems. This paper reviews published research works referring to LVCB arcs. Based on the working principle, the arcing process is divided into arc commutation, arc motion and arc splitting; we focus our attention on the modelling and measurement of these phases. In addition, previous approaches in papers of the critical physical phenomenon treatment are discussed, such as radiation, metal erosion, wall ablation and turbulence in the air arc. Recommendations for air arc modelling and measurement are presented for further investigation. (topical review)

  13. Development and Simulation of Increased Generation on a Secondary Circuit of a Microgrid

    Science.gov (United States)

    Reyes, Karina

    As fossil fuels are depleted and their environmental impacts remain, other sources of energy must be considered to generate power. Renewable sources, for example, are emerging to play a major role in this regard. In parallel, electric vehicle (EV) charging is evolving as a major load demand. To meet reliability and resiliency goals demanded by the electricity market, interest in microgrids are growing as a distributed energy resource (DER). In this thesis, the effects of intermittent renewable power generation and random EV charging on secondary microgrid circuits are analyzed in the presence of a controllable battery in order to characterize and better understand the dynamics associated with intermittent power production and random load demands in the context of the microgrid paradigm. For two reasons, a secondary circuit on the University of California, Irvine (UCI) Microgrid serves as the case study. First, the secondary circuit (UC-9) is heavily loaded and an integral component of a highly characterized and metered microgrid. Second, a unique "next-generation" distributed energy resource has been deployed at the end of the circuit that integrates photovoltaic power generation, battery storage, and EV charging. In order to analyze this system and evaluate the impact of the DER on the secondary circuit, a model was developed to provide a real-time load flow analysis. The research develops a power management system applicable to similarly integrated systems. The model is verified by metered data obtained from a network of high resolution electric meters and estimated load data for the buildings that have unknown demand. An increase in voltage is observed when the amount of photovoltaic power generation is increased. To mitigate this effect, a constant power factor is set. Should the real power change dramatically, the reactive power is changed to mitigate voltage fluctuations.

  14. Hybrid finite difference/finite element solution method development for non-linear superconducting magnet and electrical circuit breakdown transient analysis

    International Nuclear Information System (INIS)

    Kraus, H.G.; Jones, J.L.

    1986-01-01

    The problem of non-linear superconducting magnet and electrical protection circuit system transients is formulated. To enable studying the effects of coil normalization transients, coil distortion (due to imbalanced magnetic forces), internal coil arcs and shorts, and other normal and off-normal circuit element responses, the following capabilities are included: temporal, voltage and current-dependent voltage sources, current sources, resistors, capacitors and inductors. The concept of self-mutual inductance, and the form of the associated inductance matrix, is discussed for internally shorted coils. This is a Kirchhoff's voltage loop law and Kirchhoff's current node law formulation. The non-linear integrodifferential equation set is solved via a unique hybrid finite difference/integral finite element technique. (author)

  15. Design of outer-rotor type multipolar SR motor for electric vehicle

    International Nuclear Information System (INIS)

    Nakamura, Kenji; Suzuki, Yosuke; Goto, Hiroki; Ichinokura, Osamu

    2005-01-01

    In this paper, we design an outer-rotor type multipolar switched reluctance (SR) motor, and examine an application of the SR motor to an electric vehicle (EV). The design is based on a nonlinear magnetic circuit model proposed by the authors. Using the model, we can calculate dynamic characteristics of a SR motor accurately. Furthermore, by combining the nonlinear magnetic circuit model with a motor drive circuit and motion equation of an EV, we can predict dynamic characteristics such as the maximum speed, acceleration torque, and a battery current of the EV

  16. Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation.

    Directory of Open Access Journals (Sweden)

    José Luis Vargas Luna

    Full Text Available Transcutaneous electrical stimulation can depolarize nerve or muscle cells applying impulses through electrodes attached on the skin. For these applications, the electrode-skin impedance is an important factor which influences effectiveness. Various models describe the interface using constant or current-depending resistive-capacitive equivalent circuit. Here, we develop a dynamic impedance model valid for a wide range stimulation intensities. The model considers electroporation and charge-dependent effects to describe the impedance variation, which allows to describe high-charge pulses. The parameters were adjusted based on rectangular, biphasic stimulation pulses generated by a stimulator, providing optionally current or voltage-controlled impulses, and applied through electrodes of different sizes. Both control methods deliver a different electrical field to the tissue, which is constant throughout the impulse duration for current-controlled mode or have a very current peak for voltage-controlled. The results show a predominant dependence in the current intensity in the case of both stimulation techniques that allows to keep a simple model. A verification simulation using the proposed dynamic model shows coefficient of determination of around 0.99 in both stimulation types. The presented method for fitting electrode-skin impedance can be simple extended to other stimulation waveforms and electrode configuration. Therefore, it can be embedded in optimization algorithms for designing electrical stimulation applications even for pulses with high charges and high current spikes.

  17. Electrical Differentiation of Mesenchymal Stem Cells into Schwann-Cell-Like Phenotypes Using Inkjet-Printed Graphene Circuits.

    Science.gov (United States)

    Das, Suprem R; Uz, Metin; Ding, Shaowei; Lentner, Matthew T; Hondred, John A; Cargill, Allison A; Sakaguchi, Donald S; Mallapragada, Surya; Claussen, Jonathan C

    2017-04-01

    Graphene-based materials (GBMs) have displayed tremendous promise for use as neurointerfacial substrates as they enable favorable adhesion, growth, proliferation, spreading, and migration of immobilized cells. This study reports the first case of the differentiation of mesenchymal stem cells (MSCs) into Schwann cell (SC)-like phenotypes through the application of electrical stimuli from a graphene-based electrode. Electrical differentiation of MSCs into SC-like phenotypes is carried out on a flexible, inkjet-printed graphene interdigitated electrode (IDE) circuit that is made highly conductive (sheet resistance electrically stimulated/treated (etMSCs) display significant enhanced cellular differentiation and paracrine activity above conventional chemical treatment strategies [≈85% of the etMSCs differentiated into SC-like phenotypes with ≈80 ng mL -1 of nerve growth factor (NGF) secretion vs. 75% and ≈55 ng mL -1 for chemically treated MSCs (ctMSCs)]. These results help pave the way for in vivo peripheral nerve regeneration where the flexible graphene electrodes could conform to the injury site and provide intimate electrical simulation for nerve cell regrowth. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. CALCULATION OF CONTROL CIRCUITS IN TIME DOMAIN USING SCILAB / XCOS ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Chioncel Petru

    2014-10-01

    Full Text Available The paper presents the computing of control circuits in time domain, starting from the mathematical model of the control path described by differential equation’s with constant coefficients, whose solution can be obtained through Laplace transform and transfer functions. In the field of electric drives, the control circuits can be reduced to elements of PT1 and PT2 type, for which, the responses obtained from step and impulse function in the test process, are analyzed. The presented calculation, done in Scilab, highlights the test responses of the process and, the speed control circuit implemented as block diagrams in Xcos, reveals the improve of the process parameter through the control loop.

  19. New circuits high-voltage pulse generators with inductive-capacitive energy storage

    International Nuclear Information System (INIS)

    Gordeev, V.S.; Myskov, G.A.

    2001-01-01

    The paper describes new electric circuits of multi-cascade generators based on stepped lines. The distinction of the presented circuits consists in initial storage of energy in electric and magnetic fields simultaneously. The circuit of each generator,relations of impedances,values of initial current and charge voltages are selected in such a manner that the whole of initially stored energy is concentrated at the generator output as a result of transient wave processes. In ideal case the energy is transferred with 100% efficiency to the resistive load where a rectangular voltage pulse is formed, whose duration is equals to the double electrical length of the individual cascade. At the same time there is realized a several time increase of output voltage as compared to the charge voltage of the generator. The use of the circuits proposed makes it possible to ensure a several time increase (as compared to the selection of the number of cascades) of the generator energy storage, pulse current and output electric power

  20. Quantum Effect in the Mesoscopic RLC Circuits with a Source

    International Nuclear Information System (INIS)

    Liu Jianxin; Yan Zhanyuan

    2005-01-01

    The research work on the quantum effects in mesoscopic circuits has undergone a rapid development recently, however the whole quantum theory of the mesoscopic circuits should consider the discreteness of the electric charge. In this paper, based on the fundamental fact that the electric charge takes discrete values, the finite-difference Schroedinger equation of the mesoscopic RLC circuit with a source is achieved. With a unitary transformation, the Schroedinger equation becomes the standard Mathieu equation, then the energy spectrum and the wave functions of the system are obtained. Using the WKBJ method, the average of currents and square of the current are calculated. The results show the existence of the current fluctuation, which causes noise in the circuits. This paper is an application of the whole quantum mesoscopic circuits theory to the fundamental circuits, and the results will shed light on the design of the miniation circuits, especially on the purpose of reducing quantum noise coherent controlling of the mesoscopic quantum states.

  1. Characteristic Analysis of DC Electric Railway Systems with Superconducting Power Cables Connecting Power Substations

    Science.gov (United States)

    Ohsaki, H.; Matsushita, N.; Koseki, T.; Tomita, M.

    2014-05-01

    The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.

  2. Characteristic analysis of DC electric railway systems with superconducting power cables connecting power substations

    International Nuclear Information System (INIS)

    Ohsaki, H; Matsushita, N; Koseki, T; Tomita, M

    2014-01-01

    The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.

  3. Electrical circuit for checking the state of charge of a vehicle battery. Elektrische Schaltung zur Kontrolle des Ladezustandes einer Batterie in Kraftfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Gamulescu, A

    1981-05-27

    The invention concerns an electrical circuit for checking the state of charge of a vehicle battery. The circuit consists of a transistor, whose collector is connected via a series resistance and a Zener diode to the positive pole of the battery. The breakdown voltage of the Zener diode is about 12 volts. The emitter of the transistor is connected via an LED to earth. A second LED is connected in parallel with the collector-emitter circuit of the transistor, which works via a voltage divider. This voltage divider reduces the voltage at the LED with the transistor which is conducting to about 0.7 volts. A second Zener diode connected via a series resistance to the positive pole is also provided. Its breakdown voltage is 15 volts.

  4. Circuit theoretical methods for efficient solution of finite element structural mechanics problems

    OpenAIRE

    Ekinci, Ahmet Suat

    1999-01-01

    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent Univ., 1999. Thesis (Ph.D.) -- Bilkent University, 1999. Includes bibliographical references leaves 78-84. Shrinking device dimensions in integrated circuit technology made integrated circuits with millions of components a reality. As a result of this advance, electrical circuit simulators that can handle very large number of components have emerged. These...

  5. High Performance Electrical Modeling and Simulation Software Normal Environment Verification and Validation Plan, Version 1.0; TOPICAL

    International Nuclear Information System (INIS)

    WIX, STEVEN D.; BOGDAN, CAROLYN W.; MARCHIONDO JR., JULIO P.; DEVENEY, MICHAEL F.; NUNEZ, ALBERT V.

    2002-01-01

    The requirements in modeling and simulation are driven by two fundamental changes in the nuclear weapons landscape: (1) The Comprehensive Test Ban Treaty and (2) The Stockpile Life Extension Program which extends weapon lifetimes well beyond their originally anticipated field lifetimes. The move from confidence based on nuclear testing to confidence based on predictive simulation forces a profound change in the performance asked of codes. The scope of this document is to improve the confidence in the computational results by demonstration and documentation of the predictive capability of electrical circuit codes and the underlying conceptual, mathematical and numerical models as applied to a specific stockpile driver. This document describes the High Performance Electrical Modeling and Simulation software normal environment Verification and Validation Plan

  6. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires.

    Science.gov (United States)

    Cheng, Yin; Wang, Ranran; Sun, Jing; Gao, Lian

    2015-04-28

    Stretchable electronics, as a promising research frontier, has achieved progress in a variety of sophisticated applications. The realization of stretchable electronics frequently involves the demand for a stretchable conductor as an electrical circuit. However, it still remains a challenge to fabricate high-performance (working strain exceeding 200%) stretchable conductors. Here, we present for the first time a facile, cost-effective, and scalable method for manufacturing ultrastretchable composite fibers with a "twining spring" configuration: cotton fibers twining spirally around a polyurethane fiber. The composite fiber possesses a high conductivity up to 4018 S/cm, which remains as high as 688 S/cm at 500% tensile strain. In addition, the conductivity of the composite fiber (initial conductivity of 4018 S/cm) remains perfectly stable after 1000 bending events and levels off at 183 S/cm after 1000 cyclic stretching events of 200% strain. Stretchable LED arrays are integrated efficiently utilizing the composite fibers as a stretchable electric wiring system, demonstrating the potential applications in large-area stretchable electronics. The biocompatibility of the composite fiber is verified, opening up its prospects in the field of implantable devices. Our fabrication strategy is also versatile for the preparation of other specially functionalized composite fibers with superb stretchability.

  7. Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2014-08-01

    Full Text Available The power converter is one of the essential elements for effective use of renewable power sources. This paper focuses on the development of a circuit simulation model for maximum power point tracking (MPPT evaluation of solar power that involves using different buck-boost power converter topologies; including SEPIC, Zeta, and four-switch type buck-boost DC/DC converters. The circuit simulation model mainly includes three subsystems: a PV model; a buck-boost converter-based MPPT system; and a fuzzy logic MPPT controller. Dynamic analyses of the current-fed buck-boost converter systems are conducted and results are presented in the paper. The maximum power point tracking function is achieved through appropriate control of the power switches of the power converter. A fuzzy logic controller is developed to perform the MPPT function for obtaining maximum power from the PV panel. The MATLAB-based Simulink piecewise linear electric circuit simulation tool is used to verify the complete circuit simulation model.

  8. Theoretical modelling of quantum circuit systems

    International Nuclear Information System (INIS)

    Stiffell, Peter Barry

    2002-01-01

    The work in this thesis concentrates on the interactions between circuit systems operating in the quantum regime. The main thrust of this work involves the use of a new model for investigating the way in which different components in such systems behave when coupled together. This is achieved by utilising the matrix representation of quantum mechanics, in conjunction with a number of other theoretical techniques (such as Wigner functions and entanglement entropies). With these tools in place it then becomes possible to investigate and review different quantum circuit systems. These investigations cover systems ranging from simple electromagnetic (cm) field oscillators in isolation to coupled SQUID rings in more sophisticated multi-component arrangements. Primarily, we look at the way SQUID rings couple to em fields, and how the ring-field interaction can be mediated by the choice of external flux, Φ x , applied to the SQUID ring. A lot of interest is focused on the transfer of energy between the system modes. However, we also investigate the statistical properties of the system, including squeezing, entropy and entanglement. Among the phenomena uncovered in this research we note the ability to control coupling in SQUID rings via the external flux, the capacity for entanglement between quantum circuit modes, frequency conversions of photons, flux squeezing and the existence of Schroedinger Cat states. (author)

  9. Switching conditions in the electric power system

    International Nuclear Information System (INIS)

    Tsukushi, M.; Hirasawa, K.; Kurosawa, Y.

    1991-01-01

    This paper reports that a circuit breaker must be capable of making, carrying, and interrupting the current under both normal and abnormal conditions, especially in the case of a short-circuit fault. Before installing a circuit breaker, it is necessary to estimate the maximum short-circuit current that can occur in the electric power system and then select a circuit breaker that can interrupt and make the estimated current. Many types of short-circuit faults occur in electric power systems

  10. Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters

    Science.gov (United States)

    Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.

    1989-01-01

    Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.

  11. Model for transient simulation in a PWR steam circuit

    International Nuclear Information System (INIS)

    Mello, L.A. de.

    1982-11-01

    A computer code (SURF) was developed and used to simulate pressure losses along the tubes of the main steam circuit of a PWR nuclear power plant, and the steam flow through relief and safety valves when pressure reactors its thresholds values. A thermodynamic model of turbines (high and low pressure), and its associated components are simulated too. The SURF computer code was coupled to the GEVAP computer code, complementing the simulation of a PWR nuclear power plant main steam circuit. (Author) [pt

  12. A METHOD AND AN APPARATUS FOR PROVIDING TIMING SIGNALS TO A NUMBER OF CIRCUITS, AN INTEGRATED CIRCUIT AND A NODE

    DEFF Research Database (Denmark)

    2006-01-01

    A method of providing or transporting a timing signal between a number of circuits, electrical or optical, where each circuit is fed by a node. The nodes forward timing signals between each other, and at least one node is adapted to not transmit a timing signal before having received a timing...... signal from at least two nodes. In this manner, the direction of the timing skew between nodes and circuits is known and data transport between the circuits made easier....

  13. Conceptions of Pupils of the Primary on the Topic of an Electric Circuit in Three Countries (Canada, France and Morocco)

    Science.gov (United States)

    Métioui, Abdeljalil; MacWillie, Mireille Baulu; Trudel, Louis

    2016-01-01

    Qualitative research conducted with 237 pupils from Canada, France, and Morocco, between 10 and 12 years of age, on the setting and functioning of simple electric circuits, demonstrates that similar explanatory systems of the students. For this, we had given them a paper and pencil questionnaire of a sixty minutes duration. The first question was…

  14. Modeling and Analysis of a Fractional-Order Generalized Memristor-Based Chaotic System and Circuit Implementation

    Science.gov (United States)

    Yang, Ningning; Xu, Cheng; Wu, Chaojun; Jia, Rong; Liu, Chongxin

    2017-12-01

    Memristor is a nonlinear “missing circuit element”, that can easily achieve chaotic oscillation. Memristor-based chaotic systems have received more and more attention. Research shows that fractional-order systems are more close to real systems. As an important parameter, the order can increase the flexibility and degree of freedom of the system. In this paper, a fractional-order generalized memristor, which consists of a diode bridge and a parallel circuit with an equivalent unit circuit and a linear resistance, is proposed. Frequency and electrical characteristics of the fractional-order memristor are analyzed. A chain structure circuit is used to implement the fractional-order unit circuit. Then replacing the conventional Chua’s diode by the fractional-order generalized memristor, a fractional-order memristor-based chaotic circuit is proposed. A large amount of research work has been done to investigate the influence of the order on the dynamical behaviors of the fractional-order memristor-based chaotic circuit. Varying with the order, the system enters the chaotic state from the periodic state through the Hopf bifurcation and period-doubling bifurcation. The chaotic state of the system has two types of attractors: single-scroll and double-scroll attractor. The stability theory of fractional-order systems is used to determine the minimum order occurring Hopf bifurcation. And the influence of the initial value on the system is analyzed. Circuit simulations are designed to verify the results of theoretical analysis and numerical simulation.

  15. Efficient Probabilistic Diagnostics for Electrical Power Systems

    Science.gov (United States)

    Mengshoel, Ole J.; Chavira, Mark; Cascio, Keith; Poll, Scott; Darwiche, Adnan; Uckun, Serdar

    2008-01-01

    We consider in this work the probabilistic approach to model-based diagnosis when applied to electrical power systems (EPSs). Our probabilistic approach is formally well-founded, as it based on Bayesian networks and arithmetic circuits. We investigate the diagnostic task known as fault isolation, and pay special attention to meeting two of the main challenges . model development and real-time reasoning . often associated with real-world application of model-based diagnosis technologies. To address the challenge of model development, we develop a systematic approach to representing electrical power systems as Bayesian networks, supported by an easy-to-use speci.cation language. To address the real-time reasoning challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuit evaluation supports real-time diagnosis by being predictable and fast. In essence, we introduce a high-level EPS speci.cation language from which Bayesian networks that can diagnose multiple simultaneous failures are auto-generated, and we illustrate the feasibility of using arithmetic circuits, compiled from Bayesian networks, for real-time diagnosis on real-world EPSs of interest to NASA. The experimental system is a real-world EPS, namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. In experiments with the ADAPT Bayesian network, which currently contains 503 discrete nodes and 579 edges, we .nd high diagnostic accuracy in scenarios where one to three faults, both in components and sensors, were inserted. The time taken to compute the most probable explanation using arithmetic circuits has a small mean of 0.2625 milliseconds and standard deviation of 0.2028 milliseconds. In experiments with data from ADAPT we also show that arithmetic circuit evaluation substantially outperforms joint tree propagation and variable elimination, two alternative algorithms for diagnosis using Bayesian network inference.

  16. Graphene radio frequency receiver integrated circuit.

    Science.gov (United States)

    Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A; Haensch, Wilfried

    2014-01-01

    Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm(2) area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.

  17. Newnes circuit calculations pocket book with computer programs

    CERN Document Server

    Davies, Thomas J

    2013-01-01

    Newnes Circuit Calculations Pocket Book: With Computer Programs presents equations, examples, and problems in circuit calculations. The text includes 300 computer programs that help solve the problems presented. The book is comprised of 20 chapters that tackle different aspects of circuit calculation. The coverage of the text includes dc voltage, dc circuits, and network theorems. The book also covers oscillators, phasors, and transformers. The text will be useful to electrical engineers and other professionals whose work involves electronic circuitry.

  18. A novel electrical model of nerve and muscle using Pspice

    CERN Document Server

    Peasgood, W; Lam, C K; Armstrong, A G; Wood, W

    2003-01-01

    In this work, a model is developed to simulate the biological processes involved in nerve fibre transmission and subsequent muscle contraction. The model has been based on approximating biological structure and function to electrical circuits and as such was implemented on an electronics simulation software package called Pspice. Models of nerve, the nerve-muscle interface and muscle fibre have been implemented. The time dependent ionic properties of the nerve and muscle membranes have been simulated using the Hodgkin-Huxley equations and for the muscle fibre, the implementation of the Huxley sliding filament theory for muscular contraction. The results show that nerve may be considered as a fractal transmission line and that the amplitude of the nerve membrane depolarization is dependent on the dimensions of the fibre. Additionally, simulation of the nerve-muscle interface allows the fractal nerve model to be connected to the muscle fibre model and it is shown that a two sarcomere molecular simulation can pr...

  19. Printed circuit for ATLAS

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    A printed circuit board made by scientists in the ATLAS collaboration for the transition radiaton tracker (TRT). This will read data produced when a high energy particle crosses the boundary between two materials with different electrical properties.

  20. Electrical description of a magnetic pole enhanced inductively coupled plasma source: Refinement of the transformer model by reverse electromagnetic modeling

    International Nuclear Information System (INIS)

    Meziani, T.; Colpo, P.; Rossi, F.

    2006-01-01

    The magnetic pole enhanced inductively coupled source (MaPE-ICP) is an innovative low-pressure plasma source that allows for high plasma density and high plasma uniformity, as well as large-area plasma generation. This article presents an electrical characterization of this source, and the experimental measurements are compared to the results obtained after modeling the source by the equivalent circuit of the transformer. In particular, the method applied consists in performing a reverse electromagnetic modeling of the source by providing the measured plasma parameters such as plasma density and electron temperature as an input, and computing the total impedance seen at the primary of the transformer. The impedance results given by the model are compared to the experimental results. This approach allows for a more comprehensive refinement of the electrical model in order to obtain a better fitting of the results. The electrical characteristics of the system, and in particular the total impedance, were measured at the inductive coil antenna (primary of the transformer). The source was modeled electrically by a finite element method, treating the plasma as a conductive load and taking into account the complex plasma conductivity, the value of which was calculated from the electron density and electron temperature measurements carried out previously. The electrical characterization of the inductive excitation source itself versus frequency showed that the source cannot be treated as purely inductive and that the effect of parasitic capacitances must be taken into account in the model. Finally, considerations on the effect of the magnetic core addition on the capacitive component of the coupling are made