WorldWideScience

Sample records for electric quadrupole effects

  1. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    Science.gov (United States)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  2. Electric quadrupole strength in nuclei

    International Nuclear Information System (INIS)

    Kirson, M.W.

    1979-01-01

    Isoscalar electric quadrupole strength distributions in nuclei are surveyed, and it is concluded that the strength is shared, in most cases, roughly equally between low-lying transitions and the giant quadrupole state. The same is not true of the isovector case. A simple extension of the schematic model gives a remarkably successul description of the data, and emphasizes the vital importance of the coupling between high-lying and low-lying quadrupole modes. The standadrd simple representation of the giant quadrupole resonance as produced by operating on the nuclear ground state with the quadrupole transition operator is not applicable to the isoscalar case. It is suggested that giant resonances fall into broad classes of similar states, with considerable qualitative differences between the distinct classes. (author)

  3. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  4. Table of Nuclear Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2013-12-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended value of the moment is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary reference EFG/moment references are required and their use is specified. The literature search covers the period to mid-2013. (author)

  5. Ion-storage in radiofrequency electric quadrupole field

    International Nuclear Information System (INIS)

    Gheorghe, V.

    1976-01-01

    The confinement of charged particles in a quadrupole radiofrequency electric field are presented. The stability diagrams and phase space trajectories for the quadrupole mass spectrometer and for the ion trap are represented and their main characteristics are discussed. (author)

  6. Nuclear electric quadrupole interactions in liquids entrapped in cavities

    Energy Technology Data Exchange (ETDEWEB)

    Furman, Gregory B., E-mail: gregoryf@bgu.ac.il; Meerovich, Victor M.; Sokolovsky, Vladimir L. [Ben Gurion University of the Negev, Physics Department (Israel)

    2016-12-15

    Liquids entrapped in cavities and containing quadrupole nuclei are considered. The interaction of the quadrupole moment of a nucleus with the electric field gradient is studied. In such a system, molecules are in both rotational and translational Brownian motions which are described by the diffusion equation. Solving this equation, we show that the intra- and intermolecular nuclear quadrupole interactions are averaged to zero in cavities with the size larger than several angstroms.

  7. Using nitrogen-14 nuclear quadrupole resonance and electric field gradient information for the study of radiation effects

    International Nuclear Information System (INIS)

    Iselin, L.H.

    1995-12-01

    Nitrogen-14 nuclear quadrupole resonance (NQR) was used in an attempt to detect the effects of ionizing radiation on organic material. Previously reported resonances for urea were detected at 2,913.32 ± 0.01 kHz and 2,347.88 ± 0.08 kHz with associated T 2 * values 780 ± 20 micros and 523 ± 24 micros, respectively. The previously unreported ν - line for urea-d 4 was detected at 2,381 ± 0.04 Khz and used to determine accurately for the first time the values for the nuclear quadrupole coupling constant χ (3,548.74 ± 0.03 kHz) and the asymmetry parameter η (0.31571 ± 0.00007) for urea-d 4 . The inverse linewidth parameter T 2 * for ν + was measured at 928 ± 23 micros and for ν - at 721 ± 12 micros. Townes and Dailey analysis was performed and urea-d 4 exhibits a 0.004 increase in lone pair electronic density and a slight decrease in N-H bond electronic density, as compared to urea, probably due to the mass difference. A relationship is proposed, referred to as NQR linewidth analysis, between the dynamic spin relaxation times T 2 and T 2 * and the widths of the distributions of the NQR parameters. Linewidth analysis is presented as a tool for possible use in future NQR work in all area, not just radiation effects. This relationship is tested using sodium nitrite T 2 and T 2 * values for ν - and ν - as a function of temperature

  8. Electric quadrupole interaction in cubic BCC α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Błachowski, A.; Komędera, K. [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Ruebenbauer, K., E-mail: sfrueben@cyf-kr.edu.pl [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Cios, G.; Żukrowski, J. [AGH University of Science and Technology, Academic Center for Materials and Nanotechnology, Av. A. Mickiewicza 30, PL-30-059 Kraków (Poland); Górnicki, R. [RENON, ul. Gliniana 15/15, PL-30-732 Kraków (Poland)

    2016-07-15

    Mössbauer transmission spectra for the 14.41-keV resonant line in {sup 57}Fe have been collected at room temperature by using {sup 57}Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V{sub zz} = +1.61(4) × 10{sup 19} Vm{sup −2} for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the {sup 57}Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the {sup 57}Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V{sub zz} = +1.92(4) × 10{sup 19} Vm{sup −2}. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge

  9. Electric quadrupole interaction in cubic BCC α-Fe

    International Nuclear Information System (INIS)

    Błachowski, A.; Komędera, K.; Ruebenbauer, K.; Cios, G.; Żukrowski, J.; Górnicki, R.

    2016-01-01

    Mössbauer transmission spectra for the 14.41-keV resonant line in "5"7Fe have been collected at room temperature by using "5"7Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V_z_z = +1.61(4) × 10"1"9 Vm"−"2 for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the "5"7Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the "5"7Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V_z_z = +1.92(4) × 10"1"9 Vm"−"2. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge for ab initio calculations

  10. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2011-04-01

    This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to late 2010. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)

  11. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2014-02-01

    This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to early 2014. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)

  12. Electric quadrupole moments and strong interaction effects in pionic atoms of 165Ho, 175Lu, 176Lu, 179Hf and 181Ta

    International Nuclear Information System (INIS)

    Olaniyi, B.; Shor, A.; Cheng, S.C.; Dugan, G.; Wu, C.S.

    1981-05-01

    The effective quadrupole moments Q sub(eff) of the nuclei of 165 Ho, 175 Lu, 176 Lu, 179 Hf and 181 Ta were accurately measured by detecting the pionic atom 5g-4f x-rays of the elements. The spectroscopic quadrupole moments, Q sub(spec), were obtained by correcting Q sub(eff) for nuclear finite size effect, distortion of the pion wave function by the pion-nucleus strong interaction, and contribution to the energy level splittings by the strong interaction. The intrinsic quadrupole moments, Q 0 , were obtained by projecting Q sub(spec) into the frame of reference fixed on the nucleus. The shift, epsilon 0 , and broadening, GAMMA 0 , of the 4f energy level due to the strong interactions between the pion and the nucleons for all the elements were also measured. Theoretical values of epsilon 0 and GAMMA 0 were calculated and compared to the experimental values. The measured values of Q 0 were compared with the existing results in muonic and pionic atoms. The measured values of epsilon 0 and GAMMA 0 were also compared with existing values. (auth)

  13. Extracting the Omega- electric quadrupole moment from lattice QCD data

    Energy Technology Data Exchange (ETDEWEB)

    G. Ramalho, M.T. Pena

    2011-03-01

    The Omega- has an extremely long lifetime, and is the most stable of the baryons with spin 3/2. Therefore the Omega- magnetic moment is very accurately known. Nevertheless, its electric quadrupole moment was never measured, although estimates exist in different formalisms. In principle, lattice QCD simulations provide at present the most appropriate way to estimate the Omega- form factors, as function of the square of the transferred four-momentum, Q2, since it describes baryon systems at the physical mass for the strange quark. However, lattice QCD form factors, and in particular GE2, are determined at finite Q2 only, and the extraction of the electric quadrupole moment, Q_Omega= GE2(0) e/(2 M_Omega), involves an extrapolation of the numerical lattice results. In this work we reproduce the lattice QCD data with a covariant spectator quark model for Omega- which includes a mixture of S and two D states for the relative quark-diquark motion. Once the model is calibrated, it is used to determine Q_Omega. Our prediction is Q_Omega= (0.96 +/- 0.02)*10^(-2) efm2 [GE2(0)=0.680 +/- 0.012].

  14. Dipole and electric quadrupole excitations in 40,48Ca

    International Nuclear Information System (INIS)

    Hartmann, T.; Enders, J.; Mohr, P.; Vogt, K.; Volz, S.; Zilges, A.

    2001-11-01

    Photon scattering experiments have been performed to investigate the structure of the two doubly magic nuclei 40,48 Ca. The method is highly selective to induce low-order multipole transitions i.e., E1, M1, and E2 from the ground state. We determined the energies and spins of excited states and the absolute strengths of the γ-decays in a model independent way. We find the summed electric dipole strengths below 10 MeV to exhaust the energy weighted sum rule (EWSR) by 0.023% and 0.27%, respectively. The summed electric quadrupole strengths are Σ B(E2) ↑ = 332 e 2 fm 4 and 407 e 2 fm 4 for 40 Ca and 48 Ca, respectively. In order to explain the difference in the E1 strengths of the two isotopes several theoretical models are discussed. (orig.)

  15. Global study of quadrupole correlation effects

    International Nuclear Information System (INIS)

    Bender, M.; Bertsch, G.F.; Heenen, P.-H.

    2006-01-01

    We discuss the systematics of ground-state quadrupole correlations of binding energies and mean-square charge radii for all even-even nuclei, from 16 O up to the superheavies, for which data are available. To that aim we calculate their correlated J=0 ground state by means of the angular-momentum and particle-number projected generator coordinate method, using the axial mass quadrupole moment as the generator coordinate and self-consistent mean-field states restricted only by axial, parity, and time-reversal symmetries. The calculation is performed within the framework of a nonrelativistic self-consistent mean-field model by use of the same Skyrme interaction SLy4 and to a density-dependent pairing force to generate the mean-field configurations and to mix them. These are the main conclusions of our study: (i) The quadrupole correlation energy varies between a few 100 keV and about 5.5 MeV. It is affected by shell closures, but varies only slightly with mass and asymmetry. (ii) Projection on angular momentum J=0 provides the major part of the energy gain of up to about 4 MeV; all nuclei in the study, including doubly magic ones, gain energy by deformation. (iii) The mixing of projected states with different intrinsic axial deformations adds a few 100 keV up to 1.5 MeV to the correlation energy. (iv) Typically nuclei below mass A≤60 have a larger correlation energy than static deformation energy whereas the heavier deformed nuclei have larger static deformation energy than correlation energy. (v) Inclusion of the quadrupole correlation energy improves the description of mass systematics, particularly around shell closures, and of differential quantities, namely two-nucleon separation energies and two-nucleon gaps. The correlation energy provides an explanation of 'mutually enhanced magicity'. (vi) The correlation energy tends to decrease the shell effect on binding energies around magic numbers, but the magnitude of the suppression is not large enough to explain

  16. Electric quadrupole moments of neutron-rich nuclei {sup 32}Al and {sup 31}Al

    Energy Technology Data Exchange (ETDEWEB)

    Kameda, D., E-mail: kameda@ribf.riken.jp; Ueno, H. [RIKEN Nishina Center (Japan); Asahi, K.; Nagae, D.; Takemura, M.; Shimada, K. [Tokyo Institute of Technology, Department of Physics (Japan); Yoshimi, A.; Nagatomo, T.; Sugimoto, T. [RIKEN Nishina Center (Japan); Uchida, M.; Arai, T.; Takase, K.; Suda, S.; Inoue, T. [Tokyo Institute of Technology, Department of Physics (Japan); Murata, J.; Kawamura, H. [Rikkyo University, Department of Physics (Japan); Watanabe, H. [Australian National University, Department of Nuclear Physics (Australia); Kobayashi, Y.; Ishihara, M. [RIKEN Nishina Center (Japan)

    2007-11-15

    The electric quadrupole moments for the ground states of {sup 32}Al and {sup 31}Al have been measured by the {beta} ray-detected nuclear quadrupole resonance method. Spin-polarized {sup 32}Al and {sup 31}Al nuclei were obtained from the fragmentation of {sup 40}Ar projectiles at E/A = 95 MeV/nucleon, and were implanted in a single crystal {alpha}-Al{sub 2}O{sub 3} stopper. The measured Q moment of {sup 32}Al, |Q({sup 32}Al)| = 24(2) mb, is in good agreement with a conventional shell-model calculation with a full sd model space and empirical effective charges, while that of {sup 31}Al is considerably smaller than the sd calculations.

  17. Radiative Decay Rates for Electric Dipole, Magnetic Dipole and Electric Quadrupole Transitions in Triply Ionized Thulium (Tm IV

    Directory of Open Access Journals (Sweden)

    Saturnin Enzonga Yoca

    2017-09-01

    Full Text Available A new set of radiative decay parameters (oscillator strengths, transition probabilities for spectral lines in triply ionized thulium (Tm IV has been obtained within the framework of the pseudo-relativistic Hartree-Fock (HFR approach. The effects of configuration interaction and core-polarization have been investigated in detail and the quality of the results has been assessed through a comparison between different HFR physical models. The spectroscopic data listed in the present paper cover electric dipole as well as magnetic dipole and electric quadrupole transitions in a wide range of wavelengths from extreme ultraviolet to near infrared.

  18. Double-photoionization of helium including quadrupole radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, James [Los Alamos National Laboratory; Ludlow, J A [AUBURN UNIV; Lee, Teck - Ghee [AUBURN UNIV; Pindzola, M S [AUBURN UNIV; Robicheaux, F [AUBURN UNIV

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  19. Control of systematic uncertainties in the storage ring search for an electric dipole moment by measuring the electric quadrupole moment

    Directory of Open Access Journals (Sweden)

    Andrzej Magiera

    2017-09-01

    Full Text Available Measurements of electric dipole moment (EDM for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle’s magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles’ interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.

  20. Control of systematic uncertainties in the storage ring search for an electric dipole moment by measuring the electric quadrupole moment

    Science.gov (United States)

    Magiera, Andrzej

    2017-09-01

    Measurements of electric dipole moment (EDM) for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle's magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles' interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.

  1. Spontaneous transition rates for electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions for He-like calcium and sulfur ions

    International Nuclear Information System (INIS)

    Kingston, A.E.; Norrington, P.H.; Boone, A.W.

    2002-01-01

    The spontaneous decay rates for the electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2) transitions between all of the 1s 2 , 1s2 l and 1s3 l states have been obtained for helium-like calcium and sulfur ions. To assess the accuracy of the calculations, the transition probabilities were calculated using two sets of configuration interaction wavefunctions. One set of wavefunctions was generated using the fully relativistic GRASP code and the other was obtained using CIV3, in which relativistic effects are introduced using the Breit-Pauli approximation. The transition rates, A values, oscillator strengths and line strengths from our two calculations are found to be similar and to compare very well with other recent results for Δn=1 or 2 transitions. For Δn=0 transitions the agreement is much less good; this is mainly due to differences in the calculated excitation energies. (author)

  2. Electric quadrupole moments of {beta}-emitter {sup 21}F and {sup 23}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Takashi; Matsuta, Kensaku; Fukuda, Mitsunori [Osaka Univ., Toyonaka (Japan). Faculty of Science] [and others

    1997-03-01

    For the systematic study of nuclear electromagnetic moments, electric quadrupole moments Q of {beta}-emitting nuclei {sup 21}F and {sup 23}Mg have been measured for the first time through combined technique of the polarized nuclear beams and {beta}-NMR technique. From the quadrupole coupling constants of {sup 21}F and {sup 23}Mg in MgF{sub 2} single crystal, the ratios of the Q`s with the known Q were determined as |Q({sup 21}F)|/|Q({sup 19}F{sup *})|=1.001{+-}0.034 and |Q({sup 23}Mg)|/|Q({sup 25}Mg)|=0.571{+-}0.017. (author)

  3. Observation of interference between stark and electric quadrupole transitions in LIF from He atoms in plasmas

    International Nuclear Information System (INIS)

    Takiyama, K.; Namba, S.; Furukawa, S.; Oda, T.; James, B.W.; Andruczyk, D.

    2004-01-01

    Interference between Stark-induced dipole and electric quadrupole amplitudes was observed in a He hollow cathode plasma with axial magnetic field perpendicular to the sheath electric field E by laser-induced fluorescence (LIF) method. Circularly polarized LIF signals were observed in the sheath region. Spatial profile of the degree of polarization P c showed characteristic features of the interference. Using theoretically calculated P c -E relationship, E-profile was successfully obtained form the measure P c . (author)

  4. Hyperfine structure in the Gd II spectrum and the nuclear electric quadrupole moment of 157Gd

    International Nuclear Information System (INIS)

    Clieves, H.P.; Steudel, A.

    1979-01-01

    The hyperfine structure of 157 Gd was investigated in 20 Gd II lines by means of a photoelectric recording Fabry-Perot interferometer with digital data processing. The hyperfine splitting factors, A and B, were obtained by computer fits to the observed line structures. Using a multiconfigurational set of wave functions in intermediate coupling derived by Wyart, mono-electronic parameters were deduced by a parametric treatment. The nuclear electric quadrupole moment of 157 Gd was evaluated from the quadrupole interaction of the 5d electron in 4f 7 5d6s, the 5d electron in 4f 7 5d6p, and the 6p electron in 4f 7 5d6p. The three values obtained for the quadrupole moment agree very well. The final result, corrected for Sternheimer shielding, is Q( 157 Gd) = 1.34(7) x 10 -24 cm 2 . (orig.) [de

  5. Laser-induced fluorescences due to quadrupole moment transition and Stark effect in a He glow discharge

    International Nuclear Information System (INIS)

    Sakai, Hisashi; Takiyama, Ken; Kimura, Masahiko; Yamasaki, Motokuni; Fujita, Toshiaki; Oda, Toshiatsu; Kawasaki, Ken.

    1993-01-01

    The electric quadrupole moment transition and the Stark effect are investigated in a He hollow cathode discharge with laser-induced fluorescence method. It is shown that the forbidden transition from 2 1 S to 3 1 D in the negative glow is dominantly due to the quadrupole moment transition. This absorption coefficient is obtained from the laser-induced fluorescence intensity measurement in which the collisional transfers are taken into account. The result agrees with the theoretical coefficient. In the cathode dark space the fluorescence due to the Stark effect is also observed. Spatial distribution of the fluorescence is discussed, compared with the electric field distribution in the dark space. (author)

  6. Electric quadrupole moments of the 2$_{1}^{+}$ states in $^{100,102,104}$Cd

    CERN Document Server

    Ekström, A; DiJulio, D D; Fahlander, C; Hjorth-Jensen, M; Blazhev, A; Bruyneel, B; Butler, P A; Davinson, T; Eberth, J; Fransen, C; Geibel, K; Hess, H; Ivanov, O; Iwanicki, J; Kester, O; Kownacki, J; Köster, U; Marsh, B A; Reiter, P; Scheck, M; Siebeck, B; Siem, S; Stefanescu, I; Toft, H K; Tveten, G M; van de Walle, J; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Wrzosek, K; Zielińska, M

    2009-01-01

    Using the REX-ISOLDE facility at CERN the Coulomb excitation cross sections for the 0gs+→21+ transition in the β-unstable isotopes 100,102,104Cd have been measured for the first time. Two different targets were used, which allows for the first extraction of the static electric quadrupole moments Q(21+) in 102,104Cd. In addition to the B(E2) values in 102,104Cd, a first experimental limit for the B(E2) value in 100Cd is presented. The data was analyzed using the maximum likelihood method. The provided probability distributions impose a test for theoretical predictions of the static and dynamic moments. The data are interpreted within the shell-model using realistic matrix elements obtained from a G-matrix renormalized CD-Bonn interaction. In view of recent results for the light Sn isotopes the data are discussed in the context of a renormalization of the neutron effective charge. This study is the first to use the reorientation effect for post-accelerated short-lived radioactive isotopes to simultaneously d...

  7. NMR study of electric quadrupole interactions in GdCo2

    International Nuclear Information System (INIS)

    Barata, A.C.; Guimaraes, A.P.

    1984-01-01

    Quadrupole oscillations have been observed with 59 Co pulsed NMR in the intermetallic compound GdCo 2 . From theses oscillations the nuclear electric quadrupoles interaction (EQI) has been studied as a function of temperature in the range 4K-312K. The value measured at 4K, ν sub(Q)=672 +-3 KHz, is the largest so far reported for the cobalt EQI in the RCo 2 intermetallics. The EQI decreases with increasing temperature, reaching 432 +- 10 KHz at 312K. The amplitude of the oscillations tends to decrease with temperature, being also dependent on the easy direction of magnetization of the compound. Thus, above 200K, as the direction of magnetization changes, large oscillations are again visible in the satellite line; the main line shows no oscillations in this range. The observed temperature dependence of the EQI is roughly linear, as found in other transition metal systems. (Author) [pt

  8. Nuclear Magnetic Dipole and Electric Quadrupole Moments: Their Measurement and Tabulation as Accessible Data

    Energy Technology Data Exchange (ETDEWEB)

    Stone, N. J., E-mail: n.stone@physics.ox.ac.uk [Department of Physics and Astronomy, University of Tennessee, Knoxville Tennessee 37996 (United States)

    2015-09-15

    The most recent tabulations of nuclear magnetic dipole and electric quadrupole moments have been prepared and published by the Nuclear Data Section of the IAEA, Vienna [N. J. Stone, Report No. INDC(NDS)-0650 (2013); Report No. INDC(NDS)-0658 (2014)]. The first of these is a table of recommended quadrupole moments for all isotopes in which all experimental results are made consistent with a limited number of adopted standards for each element; the second is a combined listing of all measurements of both moments. Both tables cover all isotopes and energy levels. In this paper, the considerations relevant to the preparation of both tables are described, together with observations as to the importance and (where appropriate) application of necessary corrections to achieve the “best” values. Some discussion of experimental methods is included with emphasis on their precision. The aim of the published quadrupole moment table is to provide a standard reference in which the value given for each moment is the best available and for which full provenance is given. A table of recommended magnetic dipole moments is in preparation, with the same objective in view.

  9. Intense heavy-ion beam transport with electric and magnetic quadrupoles

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Hopkins, H.S.

    1995-08-01

    As part of the small induction recirculator development at LLNL, the authors are testing an injector and transport line that delivers 4 micros beams of potassium with repetition rates up to 10 Hz at a nominal current of 2 mA. The normalized K-V equivalent emittance of the beams is near 0.02 π mm-mrad and is mostly determined by the temperature of the source (0.1 eV). K + ions generated at 80 keV in a Pierce diode are matched to an alternating gradient transport line by seven electric quadrupoles. Two additional quads have been modified to serve as two-axis steerers. The matching section is followed by a transport section comprised of seven permanent magnet quadrupoles. Matching to this section is achieved by adjusting the voltages on the electric quadrupoles to voltages calculated by an envelope matching code. Measurements of beam envelope parameters are made at the matching section entrance and exit as well as at the end of the permanent magnet transport section. Beam current waveforms along the experiment are compared with results from a one-dimension longitudinal dynamics code. Initial experiments show particle loss occurring at the beam head as a result of overtaking. The apparatus is also being used for the development of non or minimally intercepting diagnostics for future recirculator experiments. These include capacitive monitors for determining beam line-charge density and position in the recirculator; flying wire scanners for beam position; and gated TV scanners for measuring beam profiles and emittance

  10. The g-factor and the electric quadrupole moment of the 7/2+ isomer in 125Xe

    International Nuclear Information System (INIS)

    Alber, D.; Bertschat, H.H.; Grawe, H.; Haas, H.; Mahnke, H.E.; Menningen, M.; Semmler, W.; Sielemann, R.; Zeitz, W.D.; Freie Univ. Berlin

    1983-01-01

    The time differential perturbed angular distribution method (PAD) was used to measure the g-factor and the electric quadrupole interaction in a Cd single crystal for the tsub(1/2)=140 ns, Isup(π)=7/2 + isomer in 125 Xe. The g-factor is g=+0.264(10) and the quadrupole coupling constant e 2 Qq/h=122.1(6) MHz at 552 K. The lifetime of the Isup(π)=11/2 + state was measured to be tau=11.3(1.1) ps by the recoil distance method (RDM). From an analysis of the spectroscopic data using the triaxial-rotor-pulse-particle (TRPP) model the quadrupole moment of the 7/2 + isomer is deduced to be Q=1.40(15) b yielding an electric field gradient (efg) eq=3.6(4)x10 17 V/cm 2 for Xe Cd. (orig.)

  11. The g-factor and the electric quadrupole moment of the 7/2+ isomer in 125Xe

    International Nuclear Information System (INIS)

    Alber, D.; Bertschat, H.H.; Grawe, H.; Haas, H.; Mahnke, H.E.; Menningen, M.; Semmler, W.; Sielemann, R.; Zeitz, W.D.

    1983-01-01

    The time differential perturbed angular distribution method (PAD) was used to measure the g-factor and the electric quadrupole interaction in a Cd single crystal for the tsub(1/2) = 140 ns, Isup(π) = 7/2 + isomer in 125 Xe. The g-factor is g = +0.264(10) and the quadrupole coupling constant e 2 Qq/h = 122.1(6) MHz at 552 K. The lifetime of the Isup(π) = 11/2 + state was measured to be tau = 11.3(1.1) ps by the recoil distance method (RDM). From an analysis of the spectroscopic data using the triaxial-rotor-plus-particle (TRPP) model the quadrupole moment of the 7/2 + isomer is deduced to be Q = 1.40(15) b yielding an electric field gradient (efg) eq = 3.6(4)x10 17 V/cm 2 for Xe Cd. (orig.)

  12. The Analysis of Quadrupole Magnetic Focusing Effect by Finite Element Method

    International Nuclear Information System (INIS)

    Utaja

    2003-01-01

    Quadrupole magnets will introduce focusing effect to a beam of the charge particle passing parallel to the magnet faces. The focusing effect is need to control the particle beam, so that it is in accordance with necessity requirement stated. This paper describes the analysis of focusing effect on the quadrupole magnetic by the finite element method. The finite element method in this paper is used for solve the potential distribution of magnetic field. If the potential magnetic field distribution in every node have known, a charge particle trajectory can be traced. This charge particle trajectory will secure the focusing effect of the quadrupole magnets. (author)

  13. Observation of electric quadrupole X-ray transitions in muonic thallium, lead and bismuth

    CERN Document Server

    Schneuwly, H; Engfer, R; Jahnke, U; Kankeleit, E; Lindenberger, K H; Pearce, R M; Petitjean, C; Schellenberg, L; Schröder, W U; Walter, H K; Zehnder, A

    1972-01-01

    Electric quadrupole X-ray transitions (5g to 3d, 4f to 2p, and 3d to 1s) have been observed in muonic Tl, Pb and Bi. From the 3 to 1 transitions, energy splittings of the n=3 levels were deduced. From a comparison of the relative intensities of E1 and E2 transitions the population ratios 5g/5f, 4f/4d, and 3d/3p were deduced. These ratios are well reproduced by a cascade calculation assuming a statistical initial population at n=20, including K, L and M shell conversion. In the case of /sup 205/Tl discrepancies between the experimental and the calculated 3d-1s/3p-is intensity ratio can be explained by nuclear excitation. From the 3p/sub 3/2/ to 1s/sub 1/2/ intensity in /sup 209 /Bi one can deduce the ratio of the radiationless to the X-ray transition width and give limits for prompt neutron emission from the 3d level. (23 refs).

  14. The effect of quadrupole force to the spectra of nuclei in the f7/2 shell

    International Nuclear Information System (INIS)

    Zhang Qingying

    1992-01-01

    The effect of quadrupole force on the spectra of nuclei in the f 7/2 shell is tested. The nuclear spectra are calculated by using the surface delta interaction plus quadrupole interaction and the modified surface delta interaction respectively. The results calculated with the former are much better than those with the latter, the role of the isospin modified term in the modified surface delta interaction can be substituted by the quadrupole interaction term. It is also shown that the effect of quadrupole interaction in the f 7/2 shell is important although the quadrupole deformations of nuclei in this region are not large

  15. Measurements of electric quadrupole moments of neutron-deficient Au, Pt, and Ir nuclei with NMR-ON in hcp-Co

    CERN Multimedia

    Smolic, E; Hagn, E; Zech, E; Seewald, G

    2002-01-01

    The aim of the experiments is the measurement of $\\,$i) nuclear magnetic moments and electric quadrupole moments of neutron-deficient isotopes in the region Os-Ir-Pt-Au with the methods of quadrupole-interaction-resolved NMR on oriented nuclei " QI-NMR-ON " and modulated adiabatic passage on oriented nuclei " MAPON " and $\\,$ii) the magnetic hyperfine field, electric field gradient (EFG), and spin-lattice relaxation of 5d elements in ferromagnetic Fe, Ni, fcc-Co and hcp-Co.\\\\ The measurements on Au isotopes have been finished successfully. The quadrupole moments of $^{186}$Au, $^{193m}$Au, $^{195}$Au, $^{195m}$Au, $^{197m}$Au, $^{198}$Au and $^{199}$Au were determined with high precision.\\\\ For neutron-deficient Ir isotopes QI-NMR-ON measurements were performed after implantation of Hg precursors. The EFG of Ir in hcp-Co has been calibrated. Thus precise values for the spectroscopic quadrupole mo...

  16. Observation of electric quadrupole transitions to Rydberg nd states of ultracold rubidium atoms

    NARCIS (Netherlands)

    Tong, D.; Farooqi, S.M.; Kempen, van E.G.M.; Pavlovic, Z.; Stanojevic, J.; Coté, R.; Eyler, E.E.; Gould, P.L.

    2009-01-01

    We report the observation of dipole-forbidden, but quadrupole-allowed, one-photon transitions to high-Rydberg states in Rb. Using pulsed uv excitation of ultracold atoms in a magneto-optical trap, we excite 5s¿nd transitions over a range of principal quantum numbers n=27–59. Compared to

  17. Effect of quadrupole fringe fields on the tune of Indus-2

    International Nuclear Information System (INIS)

    Kant, Pradeep; Husain, Riyasat; Ghodke, A.D.; Singh, Gurnam

    2009-01-01

    Being an unavoidable part in a real magnet design, fringe fields of different kind of magnets have various effects on the beam parameters of the storage ring. The fringe field of a bending magnet (dipole) generates closed orbit distortion and disturbs the dispersion function whereas the fringe field of a quadrupole affects other parameters of the ring like tune values and twiss functions. The fringe field pattern of the quadrupoles of Indus-2 was measured by the Magnet Group. The measurements were performed along the various radial tracks in a quadrupole from -30 to 30 mm in steps of 5 mm at various excitation current levels. The pattern of the gradient at these different current levels was obtained by a line fit of the magnetic field at each point. The data was used to get the effect on the tune of Indus-2. The paper describes the results of the effect on the tune. (author)

  18. Magnetic quadrupole resonance of electron irradiated aluminium. Electric field gradients surrounding the vacancies and interstitials

    International Nuclear Information System (INIS)

    Andreani, R.; Minier, M.; Minier, C.

    Some aluminium samples were irradiated at 20K with 3MeV electrons. The quadrupole absorption spectra have been obtained after irradiation and annealing, at 50K, 150K and 300K. Coupled conductivity measurements allowed the evolution in defect concentration to be studied. This new method makes it possible to characterize the presence of vacancies independently of the simultaneous existence of bivacancies, interstitials and clusters [fr

  19. Effect of magnetic quadrupole lens alignment on a nuclear microprobe resolution

    International Nuclear Information System (INIS)

    Kolinko, S.V.; Ponomarev, A.G.

    2016-01-01

    The paper reports the research trends in developing probe-forming systems with high demagnification and analysis factors that limit a nuclear microprobe resolution. Parasitic aberrations caused by tilts and offsets of magnetic quadrupoles are studied in terms of their effect on probe parameters on a target. The most common arrangements of probe-forming systems such as a triplet and “Russian quadruplet” with separated geometry are considered. The accuracy prerequisites for the positioning of the quadrupoles are defined, and practical guidelines for alignment of probe-forming systems with high demagnification factors are suggested.

  20. Second rank direction cosine spherical tensor operators and the nuclear electric quadrupole hyperfine structure Hamiltonian of rotating molecules

    Science.gov (United States)

    di Lauro, C.

    2018-03-01

    Transformations of vector or tensor properties from a space-fixed to a molecule-fixed axis system are often required in the study of rotating molecules. Spherical components λμ,ν of a first rank irreducible tensor can be obtained from the direction cosines between the two axis systems, and a second rank tensor with spherical components λμ,ν(2) can be built from the direct product λ × λ. It is shown that the treatment of the interaction between molecular rotation and the electric quadrupole of a nucleus is greatly simplified, if the coefficients in the axis-system transformation of the gradient of the electric field of the outer charges at the coupled nucleus are arranged as spherical components λμ,ν(2). Then the reduced matrix elements of the field gradient operators in a symmetric top eigenfunction basis, including their dependence on the molecule-fixed z-angular momentum component k, can be determined from the knowledge of those of λ(2) . The hyperfine structure Hamiltonian Hq is expressed as the sum of terms characterized each by a value of the molecule-fixed index ν, whose matrix elements obey the rule Δk = ν. Some of these terms may vanish because of molecular symmetry, and the specific cases of linear and symmetric top molecules, orthorhombic molecules, and molecules with symmetry lower than orthorhombic are considered. Each ν-term consists of a contraction of the rotational tensor λ(2) and the nuclear quadrupole tensor in the space-fixed frame, and its matrix elements in the rotation-nuclear spin coupled representation can be determined by the standard spherical tensor methods.

  1. Electric quadrupole interactions on /sup 12/B and /sup 12/N implanted in Mg studied by nuclear depolarization due to level mixing

    Energy Technology Data Exchange (ETDEWEB)

    Tanihata, I; Kogo, S; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Lab. of Nuclear Studies

    1977-04-25

    Electric quadrupole interactions on polarized /sup 12/B and /sup 12/N implanted in a Mg single crystal have been studied by a new method in which the nuclear depolarization due to level mixing caused by an external magnetic field is detected.

  2. Determination of the effective quadrupole moment in $^{181}$Ta with pionic x-rays

    CERN Document Server

    Beetz, R; Fransson, K; Konijn, J; Panman, J; Tauscher, Ludwig; Tibell, G

    1978-01-01

    From the hyperfine splitting of the 5g to 4f and the 6g to 4f pionic X-rays in /sup 181/Ta, an effective quadrupole moment of Q/sub eff /=3.58+or-0.03 b was determined. The strong interaction monopole shift epsilon /sub 0/ and the width Gamma /sub 0/ of the 4f level were measured to be epsilon /sub 0/=540+or-100 eV and Gamma /sub 0 /=225+or-57 eV, in good agreement with the values obtained with the standard optical potential description of the pion-nucleus interaction. Estimating the influence of the finite nuclear size, the deformation induced through the strong interaction between the pion and the finite nucleus, and the relative magnitude between the strong and the electromagnetic quadrupole coupling constants values for the spectroscopic quadrupole moment of Q=3.30+or-0.06 b, and for the intrinsic quadrupole moment of Q/sub 0/=7.06+or-0.12 b are obtained. (28 refs).

  3. Quadrupole moments measured by nuclear orientation

    International Nuclear Information System (INIS)

    Bouchta, H.

    1985-01-01

    Quadrupole interactions between the nuclei and solids have been studied with the low temperature nuclear orientation technique. The first series of measurements have been effected on the orientation of 195H g m and 197 Hg m , long lived daughter states in the 195 Au and 197 Au decay. The lifetimes of these states are of the same order as the spin-lattice relaxation time. The reorientation of the intermediate states has been taken into account extending the dipole relaxation mechanism to non-equidistant relaxing substates. The experimental nuclear quadrupole moments, thus deduced are slightly different from theoretical estimations. A new high precision method accessible to levels with 100 ns to 1 m lifetimes, the level mixing resonance on oriented nuclei (LMR/ON) has been elaborated in collaboration with LEUVEN university (Belgium). In this technique the nucleus is subject to a non colinear electric plus magnetic combined interaction. The quadrupole interaction of Ag[7/2, = 40 s] isomer with the electric field gradient in zinc has been established to better than 1% observing its level mixing resonances; and also the ratio of electric field gradients of silver in zinc to cadmium. The electric quadrupole moments of 106 Ag m , 107 Ag m and 109 Ag m have been established combining the level mixing resonances with classical low temperature quadrupole alignment measurements. The experimental values are in good agreement with theoretical calculations based on a semi-microscopical model using Yukawa potential [fr

  4. Design of the LINAC4 Transfer Line Quadrupole Electromagnets

    CERN Document Server

    Vanherpe, L

    2013-01-01

    Beam focusing in the various segments of the Linac4 Transfer Line is provided by quadrupole electromagnets. In total seventeen pulsed, air-cooled quadrupole electromagnets are required. They are made of laminated electrical steel yokes and coils wound from solid copper wire. All magnets have an aperture radius of 50 mm and are required to provide an integrated field gradient of 1.8 T over a magnetic length of 300 mm. This design report summarizes the main magnetic, electrical and mechanical design parameters of the Linac4 Transfer Line Quadrupole Magnets. The effect of the vacuum chamber on the magnetic field quality and the field delay is studied.

  5. Modeling of Dipole and Quadrupole Fringe-Field Effects for the Advanced Photon Source Upgrade Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Borland, M.; Lindberg, R.

    2017-06-01

    The proposed upgrade of the Advanced Photon Source (APS) to a multibend-achromat lattice requires shorter and much stronger quadrupole magnets than are present in the existing ring. This results in longitudinal gradient profiles that differ significantly from a hard-edge model. Additionally, the lattice assumes the use of five-segment longitudinal gradient dipoles. Under these circumstances, the effects of fringe fields and detailed field distributions are of interest. We evaluated the effect of soft-edge fringe fields on the linear optics and chromaticity, finding that compensation for these effects is readily accomplished. In addition, we evaluated the reliability of standard methods of simulating hardedge nonlinear fringe effects in quadrupoles.

  6. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, I. C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, João Pessoa, PB 58051-970 (Brazil)

    2016-01-07

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  7. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    Science.gov (United States)

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  8. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    International Nuclear Information System (INIS)

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels

  9. Effects of Collar Permeability on the Field Quality of the Large Aperture Quadrupoles for the LHC

    CERN Document Server

    Catalan-Lasheras, N; Kirby, G; Mess, K H; Ostojic, R; Russenschuck, Stephan

    2008-01-01

    The LHC contains a number of large aperture quadrupoles (MQY) in the insertions. The acceptance of these magnets was based on warm magnetic measurements performed before delivery to CERN. During the series production of the MQY quadrupoles, the permeability of the collars drifted from the nominal value, and effects on the transfer function and multipole components became evident. To study the effects on the magnetic field, variable permeability of the stainless-steel collars as a function of local field and temperature was introduced into a numerical model. Comparing the results with measured data, we could isolate the contribution of permeability deviation on the magnetic field quality. The extrapolation of transfer function and field multipoles to operating temperature and current gives the necessary offsets, which are compared with measurements on a reduced set of magnets.

  10. Analytical calculation of spin tunneling effect in single molecule magnet Fe8 with considering quadrupole excitation

    OpenAIRE

    Y Yousefi; H Fakhari; K Muminov; M R Benam

    2018-01-01

    Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3) generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons). For this SMM, it is established that the use of quadrupole excitation (g dependence) changes not only the location of the quenching points, but also the n...

  11. DNMR theory for ND+4ion. Pt. 1. Tunneling effects and first order approximations in quadrupole interaction

    International Nuclear Information System (INIS)

    Blicharski, J.S.; Lalowicz, Z.T.; Sobol, W.

    1978-01-01

    This work presents results of the calculations of shape of deuteron nuclear magnetic resonance for ND + 4 ion. Tunneling effect and quadrupole interaction influence considerably the line shape. (S.B.)

  12. Analytical calculation of spin tunneling effect in single molecule magnet Fe8 with considering quadrupole excitation

    Directory of Open Access Journals (Sweden)

    Y Yousefi

    2018-02-01

    Full Text Available Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3 generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons. For this SMM, it is established that the use of quadrupole excitation (g dependence changes not only the location of the quenching points, but also the number of these points. Also, these quenching points are the steps in hysteresis loops of this SMM. If dipole and quadrupole excitations in classical energy considered, the number of these steps equals to the number that obtained from experimental data.

  13. Analysis of intense beam instability in a general quadrupole focusing channel with image charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, A., E-mail: animesh@vecc.gov.in; Sing Babu, P., E-mail: psb@vecc.gov.in; Pandit, V.S., E-mail: pandit@vecc.gov.in

    2016-02-01

    The stability properties of transverse envelopes of mismatched intense continuous charge particle beam propagating in a general quadrupole focusing channel have been investigated in the presence of image charge effect due to a cylindrical conducting pipe. Phase shifts and growth factors of the envelope oscillations in the case of instability are calculated by numerical evaluation of the eigenvalues of linearly perturbed envelope equations for small deviations from the matched beam conditions. A detailed study on the region of instability and its dependence on the system parameters like occupancy of the quadrupole focusing field, syncopation factor, zero current phase advance, beam intensity etc. have been carried out. It has been found that the strength and regions of envelope instability due to the lattice and confluent resonances in the parametric space are affected by the presence of image charge.

  14. Nondipole effects in the photoionization of Xe 4d: Evidence for quadrupole satellites

    International Nuclear Information System (INIS)

    Hemmers, O.; Guillemin, R.; Wolska, A.; Lindle, D.W.; Rolles, D.; Cheng, K.T.; Johnson, W.R.; Zhou, H.L.; Manson, S.T.

    2004-01-01

    Full text: We measured the nondipole parameters for the spin-orbit depletes Xe 4d 5/2 and Xe 4d 3/2 over a photonenergy range from 100 eV to 250 eV at beamline 8.0.1.3 of the Advanced Light Source at the Lawrence Berkeley National Laboratory. Significant nondipole effects are found at relatively low energies as a result of Cooper minima in dipole channels and interchannel coupling in quadrupole channels. Most importantly, sharp disagreement between experiment and theory, when otherwise excellent agreement was expected, has provided the first evidence of satellite two-electron quadrupole photoionization transitions, along with their crucial importance for a quantitatively accurate theory

  15. Analytical solution for the electrical properties of a radio-frequency quadrupole (RFQ) with simple vanes

    International Nuclear Information System (INIS)

    Lancaster, H.

    1982-01-01

    Although the SUPERFISH program is used for calculating the design parameters of an RFQ structure with complex vanes, an analytical solution for electrical properties of an RFQ with simple vanes provides insight into the parametric behavior of these more complicated resonators. The fields in an inclined plane wave guide with proper boundary conditions match those in one quadrant of an RFQ. The principle of duality is used to exploit the solutions to a radial transmission line in solving the field equations. Calculated are the frequency equation, frequency sensitivity factors, electric field, magnetic field, stored energy (U), power dissipation, and quality factor

  16. Effect of a serrated trailing edge on sound radiation from nearby quadrupoles.

    Science.gov (United States)

    Karimi, Mahmoud; Croaker, Paul; Kinns, Roger; Kessissoglou, Nicole

    2017-05-01

    A periodic boundary element technique is implemented to study the noise reduction capability of a plate with a serrated trailing edge under quadrupole excitation. It is assumed for this purpose that the quadrupole source tensor is independent of the trailing edge configuration and that the effect of the trailing edge shape is to modify sound radiation from prescribed boundary layer sources. The flat plate is modelled as a continuous structure with a finite repetition of small spanwise segments. The matrix equation formulated by the periodic boundary element method for this 3D acoustic scattering problem is represented as a block Toeplitz matrix. The discrete Fourier transform is employed in an iterative algorithm to solve the block Toeplitz system. The noise reduction mechanism for a serrated trailing edge in the near field is investigated by comparing contour plots obtained from each component of the quadrupole for unserrated and serrated trailing edge plate models. The noise reduction due to the serrated trailing edge is also examined as a function of the source location.

  17. Experimental root mean square charge radii, isotope shifts, ground state magnetic dipole and electric quadrupole moments of 1≤A≤ 239 nuclei

    International Nuclear Information System (INIS)

    Antony, M.S.; Britz, J.

    1986-01-01

    A compilation of experimental root-mean square radii, isotope shifts, ground-state magnetic dipole and electric quadrupole moments of nuclei 1≤A≤239 is presented. Shell, sub-subshell closures and changes in nuclear deformations discernible from data are displayed graphically. The nuclear charge distribution, for 1≤A≤ 239 nuclei deduced from Coulomb displacement energies is shown for comparison

  18. The first LHC insertion quadrupole

    CERN Multimedia

    2004-01-01

    An important milestone was reached in December 2003 at the CERN Magnet Assembly Facility. The team from the Accelerator Technology - Magnet and Electrical Systems group, AT-MEL, completed the first special superconducting quadrupole for the LHC insertions which house the experiments and major collider systems. The magnet is 8 metres long and contains two matching quadrupole magnets and an orbit corrector, a dipole magnet, used to correct errors in quadrupole alignment. All were tested in liquid helium and reached the ultimate performance criteria required for the LHC. After insertion in the cryostat, the superconducting magnet will be installed as the Q9 quadrupole in sector 7-8, the first sector of the LHC to be put in place in 2004. Members of the quadrupole team, from the AT-MEL group, gathered around the Q9 quadrupole at its inauguration on 12 December 2003 in building 181.

  19. On a Neutral Particle with a Magnetic Quadrupole Moment in a Uniform Effective Magnetic Field

    International Nuclear Information System (INIS)

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Quantum effects on a Landau-type system associated with a moving atom with a magnetic quadrupole moment subject to confining potentials are analysed. It is shown that the spectrum of energy of the Landau-type system can be modified, where the degeneracy of the energy levels can be broken. In three particular cases, it is shown that the analogue of the cyclotron frequency is modified, and the possible values of this angular frequency of the system are determined by the quantum numbers associated with the radial modes and the angular momentum and by the parameters associated with confining potentials in order that bound states solutions can be achieved.

  20. All 36 exactly solvable solutions of eigenvalues for nuclear electric quadrupole interaction Hamiltonian and equivalent rigid asymmetric rotor with expanded characteristic equation listing

    Energy Technology Data Exchange (ETDEWEB)

    Menke, Lorenz Harry, E-mail: lnz2004@mindspring.com [University of Pittsburgh (United States)

    2012-05-15

    This paper derives all 36 analytical solutions of the energy eigenvalues for nuclear electric quadrupole interaction Hamiltonian and equivalent rigid asymmetric rotor for polynomial degrees 1 through 4 using classical algebraic theory. By the use of double-parameterization the full general solution sets are illustrated in a compact, symmetric, structural, and usable form that is valid for asymmetry parameter {eta} is an element of (- {infinity}, + {infinity}). These results are useful for code developers in the area of Perturbed Angular Correlation (PAC), Nuclear Quadrupole Resonance (NQR) and rotational spectroscopy who want to offer exact solutions whenever possible, rather that resorting to numerical solutions. In addition, by using standard linear algebra methods, the characteristic equations of all integer and half-integer spins I from 0 to 15, inclusive are represented in a compact and naturally parameterized form that illustrates structure and symmetries. This extends Nielson's listing of characteristic equations for integer spins out to I = 15, inclusive.

  1. Passivation of boron in silicon by hydrogen and muonium: calculation of electric field gradients, quadrupole resonance frequencies and cross relaxation functions

    International Nuclear Information System (INIS)

    Maric, Dj.M.; Meier, P.F.; Vogel, S.; Davis, E.A.

    1991-01-01

    The possibility of studying impurity passivation complexes in semiconductors by quadrupole resonance spectroscopy is examined. The problem is illustrated for the case of boron in silicon passivated with hydrogen or, equivalently, with muonium, since the radioactive light isotope in principle offers a greater sensitivity for detection of the spectra. Ab initio calculations on suitable cluster models of the passivation complexes provide estimates of the electric field gradients at the quadrupolar nuclei, and thereby predictions of the quadrupole resonance frequencies. Detection via cross-relaxation techniques is proposed, notably muon level crossing resonance (μLCR), and illustrated by calculation of the time dependence of the muon polarization function. Possible reasons for the absence of quadrupolar resonances in μLCR spectra recorded in exploratory experiments are discussed; these include the existence of a local tunnelling mode for the lighter isotope. (author)

  2. Intense ion beam transport in magnetic quadrupoles: Experiments on electron and gas effects

    International Nuclear Information System (INIS)

    Seidl, P.A.; Molvik, A.W.; Bieniosek, F.M.; Cohen, R.H.; Faltens, A.; Friedman, A.; Kireef Covo, M.; Lund, S.M.; Prost, L.; Vay, J-L.

    2004-01-01

    Heavy-ion induction linacs for inertial fusion energy and high-energy density physics have an economic incentive to minimize the clearance between the beam edge and the aperture wall. This increases the risk from electron clouds and gas desorbed from walls. We have measured electron and gas emission from 1 MeV K + incident on surfaces near grazing incidence on the High-Current Experiment (HCX) at LBNL. Electron emission coefficients reach values >100, whereas gas desorption coefficients are near 10 4 . Mitigation techniques are being studied: A bead-blasted rough surface reduces electron emission by a factor of 10 and gas desorption by a factor of 2. We also discuss the results of beam transport (of 0.03-0.18 A K + ) through four pulsed room-temperature magnetic quadrupoles in the HCX at LBNL. Diagnostics are installed on HCX, between and within quadrupole magnets, to measure the beam halo loss, net charge and expelled ions, from which we infer gas density, electron trapping, and the effects of mitigation techniques. A coordinated theory and computational effort has made significant progress towards a self-consistent model of positive-ion beam and electron dynamics. We are beginning to compare experimental and theoretical results

  3. Calculation of the quadrupole-lense fringing field

    International Nuclear Information System (INIS)

    Arzumanov, A.A.

    1978-01-01

    With the aim of decreasing the scattering field effect at electrode edge or quadrupole lens poles with conformal transformations the scattering fields of electric quadrupole lens, two-electrode lens with the electrodes in a hyperbola form, as well as magnetic lens with hyperbolic poles are calculated. For the two-electrode system with kappa=0.1 (kappa - is coefficient, characterizing the rate of field intensity change in the lens) field distortion equals 1.8%. The comparison of experimental data with the calculation data has shown that with a rather high accuracy the scattering field effect in electric and magnetic lenses with hyperbolic poles may be taken into account

  4. The effect of quadrupole fields on particle confinement in a field-reversed mirror

    International Nuclear Information System (INIS)

    McColl, D.B.; Berk, H.L.; Hammer, J.; Morse, E.C.

    1982-01-01

    A particle simulation code has been modified to simulate particle loss caused by quadrupole magnetic fields on a field-reversed mirror plasma device. Since analytic fields are chosen for the equilibrium, the numerical algorithm is highly accurate for long-time integrations of particle orbits. The resultant particle loss due to the quadrupole fields can be competitive with collisional loss in the device

  5. Measurements of field decay and snapback effect on Tevatron dipole and quadrupole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Ambrosio, G.; Annala, G.; Bauer, P.; Carcagno, R.; DiMarco, J.; Glass, H.; Hanft, R.; Kephart, R.; Lamm, M.; Martens, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2005-05-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility (MTF) to understand dynamic effects in Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field ''snapback'' during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 6s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.

  6. Measurements of field decay and snapback effect on Tevatron dipole and quadrupole magnets

    International Nuclear Information System (INIS)

    Velev, G.V.; Ambrosio, G.; Annala, G.; Bauer, P.; Carcagno, R.; DiMarco, J.; Glass, H.; Hanft, R.; Kephart, R.; Lamm, M.; Martens, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.

    2005-01-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility (MTF) to understand dynamic effects in Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field ''snapback'' during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 6s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented

  7. Measurements of Field Decay and Snapback Effect on Tevatron Dipole and Quadrupole Magnets

    CERN Document Server

    Velev, Gueorgui; Annala, Gerald; Bauer, Pierre; Carcagno, Ruben H; Di Marco, Joseph; Glass, Henry; Hanft, Ray; Kephart, Robert; Lamm, Michael J; Martens, Michael A; Schlabach, Philip; Sylvester, C D; Tartaglia, M; Tompkins, John

    2005-01-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility to understand dynamic effects in the Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field "snapback" during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 20 s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.

  8. ¹⁴N Quadrupole Resonance line broadening due to the earth magnetic field, occuring only in the case of an axially symmetric electric field gradient tensor.

    Science.gov (United States)

    Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel

    2015-01-01

    As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)). Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Quadrupole interaction studies of Hg in Sb

    International Nuclear Information System (INIS)

    Soares, J.C.; Krien, K.; Herzog, P.; Folle, H.R.; Freitag, K.; Reuschenbach, F.; Reuschenbach, M.; Trzcinski, R.

    1978-01-01

    Time differential perturbed angular correlation and nuclear orientation studies of the electric quadrupole interaction for Hg in Sb have been performed. The effective field gradients at room temperature and below 0.05K have been derived. These two values are no indication for an anomalous temperature dependence of the effective field gradient for Hg in Sb. The value of the electric field gradient fits well into the systematics for Hg in other hosts. It is shown that the electronic enhancements of the field gradients are correlated to the valence of the impurities and are rather insensitive to the host properties. (orig./HPOE) [de

  10. Electric quadrupole and magnetic dipole interactions at {sup 181}Ta impurity in Zr{sub 2}Ni{sub 7} intermetallic compound: Experiment and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Dey, C.C., E-mail: chandicharan.dey@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Srivastava, S.K. [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721302 (India)

    2013-10-15

    Electric quadrupole interactions at {sup 181}Ta impurity in the intermetallic compound Zr{sub 2}Ni{sub 7} have been studied by perturbed angular correlation technique. It has been found that there are two electric field gradients (EFG) at the {sup 181}Ta site due to two different crystalline configurations in Zr{sub 2}Ni{sub 7}, while contradictory results were reported from previous investigations. The values of EFG at room temperature have been found to be V{sub zz}=7.9×10{sup 17} V/cm{sup 2} and 7.1×10{sup 17} V/cm{sup 2} corresponding to present experimental values of quadrupole frequencies and asymmetry parameters for the two sites: ω{sub Q}{sup 1}=70.7(1) Mrad/s, η=0.28(1), δ=0.8(2)% (site fraction 84%) and ω{sub Q}{sup 2}=63(1) Mrad/s, η=0.35(5), δ∼0 (site fraction 9%). Electric field gradients and asymmetry parameters have been computed from the complementary first-principles density functional theory (DFT) to compare with present experimental results. Our calculated values of EFG are found to be in close agreement with the experimental results. No magnetic interactions in Zr{sub 2}Ni{sub 7} have been observed at 298 and 77 K which implies that there is no ferromagnetic ordering in this material down to 77 K. This observation is corroborated by theoretical calculations, wherein no magnetic moment or hyperfine field is found at any atomic site.

  11. Effect of large neutron excess in the region of the Giant Dipole and Quadrupole Resonance

    CERN Document Server

    Lanza, E G

    1999-01-01

    We study the dipole and quadrupole modes of neutron rich nuclei within the selfconsistent HF + RPA. The presence of neutron skin enhances the mixing of isoscalar and isovector modes. Then it is possible to excite modes of isovector character by an isoscalar probe. In particular we analize the excitation of dipole modes by alpha scattering. The excitation of compressional isoscalar mode is also studied.

  12. The effect and correction of coupling generated by the RHIC triplet quadrupoles

    International Nuclear Information System (INIS)

    Pilat, F.; Peggs, S.; Tepikian, S.; Trbojevic, D.; Wei, J.

    1995-01-01

    This study explores the possibility of operating the nominal RHIC coupling correction system in local decoupling mode, where a subset of skew quadrupoles are independently set by minimizing the coupling as locally measured by beam position monitors. The goal is to establish a correction procedure for the skew quadrupole errors in the interaction region triplets that does not rely on a priori knowledge of the individual errors. After a description of the present coupling correction scheme envisioned for RHIC, the basics of the local decoupling method will be briefly recalled in the context of its implementation in the TEAPOT simulation code as well as operationally. The method is then applied to the RHIC lattice: a series of simple tests establish that single triplet skew quadrupole errors can be corrected by local decoupling. More realistic correction schemes are then studied in order to correct distributed sources of skew quadrupole errors: the machine can be decoupled either by pure local decoupling or by a combination of global (minimum tune separation) and local decoupling. The different correction schemes are successively validated and evaluated by standard RHIC simulation runs with the complete set of errors and corrections. The different solutions and results are finally discussed together with their implications for the hardware

  13. Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules

    Science.gov (United States)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2012-10-01

    The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.

  14. Electric power: the liberalization effects

    International Nuclear Information System (INIS)

    Carpentier, J.

    1999-01-01

    Nine months after the beginning of the deregulation of electric power markets in Europe, the first effects are being felt: fall of prices, amalgamation of electric power companies, development of new technologies and unemployment. (O.M.)

  15. Electricity Distribution Effectiveness

    Directory of Open Access Journals (Sweden)

    Waldemar Szpyra

    2015-12-01

    Full Text Available This paper discusses the basic concepts of cost accounting in the power industry and selected ways of assessing the effectiveness of electricity distribution. The results of effectiveness analysis of MV/LV distribution transformer replacement are presented, and unit costs of energy transmission through various medium-voltage line types are compared. The calculation results confirm the viability of replacing transformers manufactured before 1975. Replacing transformers manufactured after 1975 – only to reduce energy losses – is not economically justified. Increasing use of a PAS type line for energy transmission in local distribution networks is reasonable. Cabling these networks under the current calculation rules of discounts for excessive power outages is not viable, even in areas particularly exposed to catastrophic wire icing.

  16. The Calculation Spontaneous Polarization and Quadrupole Moment of Electric Potential PIZT (PbInxZryTi1-x-yO3-x/2

    Directory of Open Access Journals (Sweden)

    Irzaman

    2004-12-01

    Full Text Available ZT (PbZr1-xTixO3 is a perovskite crystal that can be used for IR sensor. Small amount of dopant can drastically change the specific characteristic of ferroelectric ceramic such as spontaneous polarization, dielectric constant, electromechanical and also electro-optic properties. The addition of In3+ ion (called as hard doping has been applied in this research. Thin film of PIZT (PbInxZryTi1-x-yO3-x/2 has been deposited on Si(100 substrate with Chemical Solution Deposition (CSD method. The concentration of solution is 0,5 M and the angular speed applied of spin coating is 3000 rpm. The PIZT sample has been analyzed with x-ray diffraction method. Rietveld analyses using GSAS-EXPGUI software resulted lattice parameter of crystal and phase compositions of PIZT samples. The values of all sample PIZT spontaneous polarization (Ps have been calculated lower than PZT. The optimally Ps was reached at 0,5% to 1% In2O3 doping. Quadrupole moment of electric potential (ΦQ(r at point P (0,0,2a reached optimum at 6% In2O3 doping and they also showed that PIZT thin film have ΦQ(r higher value than their bulk form for In2O3 doping >1%.

  17. Bench-marking beam-beam simulations using coherent quadrupole effects

    International Nuclear Information System (INIS)

    Krishnagopal, S.; Chin, Y.H.

    1992-06-01

    Computer simulations are used extensively in the study of the beam-beam interaction. The proliferation of such codes raises the important question of their reliability, and motivates the development of a dependable set of bench-marks. We argue that rather than detailed quantitative comparisons, the ability of different codes to predict the same qualitative physics should be used as a criterion for such bench-marks. We use the striking phenomenon of coherent quadrupole oscillations as one such bench-mark, and demonstrate that our codes do indeed observe this behaviour. We also suggest some other tests that could be used as bench-marks

  18. Bench-marking beam-beam simulations using coherent quadrupole effects

    International Nuclear Information System (INIS)

    Krishnagopal, S.; Chin, Y.H.

    1992-01-01

    Computer simulations are used extensively in the study of the beam-beam interaction. The proliferation of such codes raises the important question of their reliability, and motivates the development of a dependable set of bench-marks. We argue that rather than detailed quantitative comparisons, the ability of different codes to predict the same qualitative physics should be used as a criterion for such bench-marks. We use the striking phenomenon of coherent quadrupole oscillations as one such bench-mark, and demonstrate that our codes do indeed observe this behavior. We also suggest some other tests that could be used as bench-marks

  19. Design of an electrostatic magnetic quadrupole accelerator

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohara, Y.

    1993-01-01

    A new type of electrostatic acceleration system, electrostatic magnetic quadrupole (ESMQ) acceleration system, is proposed for efficient acceleration of negative ion beams. In this system, permanent magnets are buried in the acceleration electrodes so as to produce a quadrupole magnetic field in the electrode aperture region. Envelope simulation indicates that the quadrupole field can deflect electrons stripped from the negative ions. Beam envelope simulations for deuterium ions and electrons have been carried out using the beam envelope code TRACE. Electrons are largely divergent and most appear likely to hit downstream electrodes. Furthermore, maximum beam divergence of the deuterium ions is reduced to the focusing effect of the quadrupole magnetic field

  20. ISABELLE insertion quadrupoles

    International Nuclear Information System (INIS)

    Kaugerts, J.; Polk, I.; Sampson, W.; Dahl, P.F.

    1979-01-01

    Beam focussing and control at the beam intersection regions of ISABELLE is accomplished by a number of superconducting insertion quadrupoles. These magnets differ from the standard ISABELLE quadrupoles in various ways. In particular, the requirements of limited space near the intersections and aperture for beam extraction impose constraints on their configuration. To achieve optimum beam focussing and provide tuning flexibility calls for stronger quadrupole trim windings than those in the standard quadrupoles. The magnetic and mechanical design of the insertion quadrupoles and their associated correction and steering windings to accomplish the above tasks is presented

  1. Nuclei quadrupole coupling constants in diatomic molecule

    International Nuclear Information System (INIS)

    Ivanov, A.I.; Rebane, T.K.

    1993-01-01

    An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab

  2. Effect of ion entry acceptance conditions on the performance of a quadrupole mass spectrometer operated in upper and lower stability regions

    International Nuclear Information System (INIS)

    Turner, P.; Taylor, S.; Gibson, J.R.

    2005-01-01

    Computer simulation of ion motion in a quadrupole mass spectrometer has been used to examine the effect of initial ion conditions on performance when operated in the first and third zones of the Mathieu stability diagram. Commercial instruments frequently use round electrodes instead of the better-performing hyperbolic electrodes because the cost of manufacturing is lower. However, adverse features are seen when using round electrodes. Here further insight is provided and a possible method of correction is suggested. For the first time, ion origin for the first stability region for a round electrode quadrupole has been reported

  3. Magnetic Measurement Results of the LCLS Undulator Quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC

    2011-08-18

    This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

  4. On the representation of the electric charge distribution in ethane for calculations of the molecular quadrupole moment and intermolecular electrostatic energy

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Alldredge, G. P.; Bruch, L. W.

    1985-01-01

    and gives a repulsive rather than an attractive electrostatic interaction at typical intermolecular distances. In the local multipole model, the atom-site dipoles give the largest contribution to both the molecular quadrupole moment and the intermolecular interaction. The Journal of Chemical Physics...

  5. Synaptic Effects of Electric Fields

    Science.gov (United States)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  6. Centering of quadrupole family

    International Nuclear Information System (INIS)

    Pinayev, Igor

    2007-01-01

    A procedure for finding the individual centers for a family of quadrupoles fed with a single power supply is described. The method is generalized for using the correctors adjacent to the quadrupoles. Theoretical background is presented as well as experimental data for the NSLS rings. The method accuracy is also discussed

  7. Numerical calculation of spin echo amplitude in pulsed NMR: effects of quadrupole interaction

    International Nuclear Information System (INIS)

    Sobral, R.R.

    1986-01-01

    The spin echo obtained by nuclear magnetic resonance, in systems which atomic nuclei interact with magnetic fields and electric field gradients, present oscillations in function of the time interval between two excitations pulses. Using the density matrix formalism, the amplitudes of these echo is calculated, analytically. In this work, echo amplitudes obtained under different excitation conditions for nuclei of different nuclear spin values are calculated. The numerical results are compared with disposable analytical solutions. Applications of this method to the case of electric field gradient without axial symmetry were studied. Within the used approximation limits, an expression for attnuation of oscillatory behaviour of echo amplitude in function of the time interval between experimentally observed pulses was obtained. (M.C.K.) [pt

  8. Three-dimensional quadrupole lenses made with permanent magnets

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1984-01-01

    The performance of accelerator systems with quadrupole magnets can be improved by using permanent magnets in quadrupole lenses. This requires better methods for treating the three-dimensional nature of the magnetic fields and the nonlinear characteristics of the magnets. A numerical method is described for simulating three-dimensional magnetic fields and used to analyze quadrupole lenses and doublets with permanent magnets. The results, which are confirmed experimentally, indicate that both the quadrupole magnetic gradient and the effective field length are changed in permanent-magnet quadrupole lenses when the pole lengths and the gap between the lenses are varied while the other characteristics of the magnets remain unchanged

  9. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  10. Effects of electric discharges on polymers

    International Nuclear Information System (INIS)

    Bagirov, M.A.

    2002-01-01

    Full text: One of the reasons for the worsening of electrical properties of polymeric isolation in use in the effect of the electric discharges which developing in the gas inclusions and in the interlayer inside the isolation itself. The electrical discharges in the gas gap lead to the electrical growing old and the worsening of its electro physical qualities. We have learned the changes of electrical properties (dielectrical permeability and dielectrical loss, and electrical conductivity, electrical strength) of polymer films under the influence of electrical discharges. This paper shows the ways of increase of stability of polymers to the electrical discharges

  11. Effect of dipole-quadrupole Robinson mode coupling upon the beam response to radio-frequency phase noise

    Directory of Open Access Journals (Sweden)

    R. A. Bosch

    2006-09-01

    Full Text Available In an electron storage ring, coupling between dipole and quadrupole Robinson oscillations modifies the spectrum of longitudinal beam oscillations driven by radio-frequency (rf generator phase noise. In addition to the main peak at the resonant frequency of the coupled dipole Robinson mode, another peak occurs at the resonant frequency of the coupled quadrupole mode. To describe these peaks analytically for a quadratic synchrotron potential, we include the dipole and quadrupole modes when calculating the beam response to generator noise. We thereby obtain the transfer function from generator-noise phase modulation to beam phase modulation with and without phase feedback. For Robinson-stable bunches confined in a synchrotron potential with a single minimum, the calculated transfer function agrees with measurements at the Aladdin 800-MeV electron storage ring. The transfer function is useful in evaluating phase feedback that suppresses Robinson oscillations in order to obtain quiet operation of an infrared beam line.

  12. Solid state NMR, basic theory and recent progress for quadrupole nuclei with half-integer spin

    International Nuclear Information System (INIS)

    Dieter, F.

    1998-01-01

    This review describes the basic theory and some recently developed techniques for the study of quadrupole nuclei with half integer spins in powder materials. The latter is connected to the introduction of the double rotation (DOR) by A. Samoson et al. (1) and to the introduction of the multiple quantum magic-angle spinning (MQ MAS) technique by L. Frydman et. al. (2). For integer spins, especially the solid-state deuterium magnetic resonance, we refer to the review of G.L. Hoatson and R.L. Vold: '' 2 H-NMR Spectroscopy of Solids and Liquid Crystals'' (3). For single crystals we refer to O. Kanert and M. Mehring: ''Static quadrupole effects in disordered cubic solids''(4) and we would like also to mention the ''classic'' review of M.H. Cohen and F. Reif: ''Quadrupole effects in NMR studies of solids'' (5). Some more recent reviews in the field under study are D. Freude and J. Haase ''Quadrupole effects in solid-state NMR'' (6). Ch. Jager: ''Satellite Transition Spectroscopy of Quadrupolar Nuclei'' (7) and B.F. Chmelka and J.W. Zwanziger: ''Solid State NMR Line Narrowing Methods for Quadrupolar Nuclei - Double Rotation and Dynamic-Angle Spinning'' (8). A survey of nuclear quadrupole frequency data published before the end of 1982 is given by H. Chihara and N. Nakamura in Landolt-Bornstein, Vol. 20 (9). Values of the chemical shift of quadrupole nuclei in solids can be found in books such as ''Multinuclear NMR'' edited by J. Mason (10). In section 9 of ref (6) some electric field gradient and chemical shift data published from 1983 to 1992 for the most studied quadrupole nuclei sup 27 Al, sup 23 Na, and sup 17 O are given

  13. Quadrupole Ion Traps

    Indian Academy of Sciences (India)

    to do precision spectroscopic measurements on these ions. ... Bonn, investigated the non-magnetic quadrupole mass filter, .... the details of which will be discussed in the subse- ... the radial plane the ion undergoes a circular motion with the.

  14. Effect of heating strategies on whey protein denaturation--Revisited by liquid chromatography quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Akkerman, M; Rauh, V M; Christensen, M; Johansen, L B; Hammershøj, M; Larsen, L B

    2016-01-01

    Previous standards in the area of effect of heat treatment processes on milk protein denaturation were based primarily on laboratory-scale analysis and determination of denaturation degrees by, for example, electrophoresis. In this study, whey protein denaturation was revisited by pilot-scale heating strategies and liquid chromatography quadrupole time-of-flight mass spectrometer (LC/MC Q-TOF) analysis. Skim milk was heat treated by the use of 3 heating strategies, namely plate heat exchanger (PHE), tubular heat exchanger (THE), and direct steam injection (DSI), under various heating temperatures (T) and holding times. The effect of heating strategy on the degree of denaturation of β-lactoglobulin and α-lactalbumin was determined using LC/MC Q-TOF of pH 4.5-soluble whey proteins. Furthermore, effect of heating strategy on the rennet-induced coagulation properties was studied by oscillatory rheometry. In addition, rennet-induced coagulation of heat-treated micellar casein concentrate subjected to PHE was studied. For skim milk, the whey protein denaturation increased significantly as T and holding time increased, regardless of heating method. High denaturation degrees were obtained for T >100°C using PHE and THE, whereas DSI resulted in significantly lower denaturation degrees, compared with PHE and THE. Rennet coagulation properties were impaired by increased T and holding time regardless of heating method, although DSI resulted in less impairment compared with PHE and THE. No significant difference was found between THE and PHE for effect on rennet coagulation time, whereas the curd firming rate was significantly larger for THE compared with PHE. Micellar casein concentrate possessed improved rennet coagulation properties compared with skim milk receiving equal heat treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. SPS Quadrupole Magnets

    CERN Multimedia

    1974-01-01

    A stack of SPS Quadrupole Magnets ready for installation in the tunnel. The SPS uses a total of 216 laminated normal conducting lattice quadrupoles with a length of 3.13 m for the core, 3.3 m overall. The F and D quads. have identical characteristics: inscribed circle radius 44 mm, core height and width 800 mm, maximum gradient 20 Tesla/m.

  16. Quadrupole moments of hadrons

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1985-01-01

    In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model

  17. AA, wide quadrupole on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Please look up 8101024 first. Shims and washers on the wide quadrupoles (QFW, QDW; located in the lattice where dispersion was large) served mostly for corrections of those lattice parameters which were a function of momentum. After mounting shims and washers, the quadrupoles were measured to determine their magnetic centre and to catalogue the effect of washer constellations. Raymond Brown is busy measuring a wide quad.

  18. Effect of electrical field on the quantized vortices in He II

    International Nuclear Information System (INIS)

    Natsik, V.D.

    2007-01-01

    Electrical polarization and interaction of quantized vortices with electrical field in superfluid Bose fluid are studied. Two types of the vortices polarization are considered; both of them are caused by action of centrifugal forces upon the fluid atoms at their azimuthal motion around the vortex line. Firstly, atoms obtain dipole moments (internal polarization when external polarization when external field is absent) and a nonuniform symmetrical distribution of the polarization density arises; at that, a vortex has no integral dipole moment but each element of the vortex line bears a quadrupole moment. Secondly, action of the centrifugal forces leads to a nonuniform distribution of the atomic density around the vortex line; therefore, the polarization density of the fluid in the external electrical field is also nonuniform in the vicinity of this line and each isolated element of the vortex line obtains dipole moment proportional to the field magnitude (inductive polarization). Analytical expressions for the polarization density around the straight and circular vortex lines are obtained and the effective dipole and quadrupole moments of the vortices are determined. A distribution of the ponderomotive forces acting on the superfluid fluid with quantized vortices in the external electrical field has been analyzed and the caused by field additives to the energy of the straight and circular vortices are found. Numerical estimations of the effects considered are given for He II

  19. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kellö, Vladimir [Department of Physical Chemistry, Comenius University, SK-842 15 Bratislava (Slovakia)

    2015-01-22

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  20. Laced permanent magnet quadrupole drift tube magnets

    International Nuclear Information System (INIS)

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1988-10-01

    A laced permanent magnet quadrupole drift tube magnet has been constructed for a proof-of-principle test. The magnet is a conventional tape-wound quadrupole electromagnet, using iron pole- pieces, with the addition of permanent magnet material (neodymium iron) between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the quadrupole magnets in a drift tube linac is not reversed we can take advantage of this asymmetrical saturation to provide greater focusing strength. The magnet configuration has been optimized and the vanadium permendur poles needed in a conventional quadrupole have been replaced with iron poles. The use of permanent magnet material has allowed us to increase the focusing strength of the magnet by about 20% over that of a conventional tape-wound quadrupole. Comparisons will be made between this magnet and the conventional tape-wound quadrupole. 3 refs., 5 figs

  1. Permanent quadrupole magnets

    International Nuclear Information System (INIS)

    Bush, E.D. Jr.

    1976-01-01

    A family of quadrupole magnets using a soft iron return yoke and circular cross-section permanent magnet poles were fabricated to investigate the feasibility for use in ion or electron beam focusing applications in accelerators and transport lines. Magnetic field measurements yielded promising results. In fixed-field applications, permanent magnets with sufficient gradients would be a low cost substitute for conventional electromagnets, eliminating the need for power supplies, associated wiring, and cooling. Based on preliminary tests, it was seen that permanent quadrupole magnets can offer a low cost, reliable solution in applications requiring small, fixed-field focusing devices for use in ion or electron-beam transport systems. Permanent magnets do require special considerations in design, fabrication, handling, and service that are different than encountered in conventional quadrupole magnets. If these basic conditions are satisfied, the resulting beam-focusing device would be stable, maintenance free, with virtually an indefinite lifetime

  2. Torques on quadrupoles

    OpenAIRE

    Torres del Castillo, G.F; Méndez Garrido, A

    2006-01-01

    Making use of the fact that a 2l-pole can be represented by means of l vectors of the same magnitude, the torque on a quadrupole in an inhomogeneous external field is expressed in terms of the vectors that represent the quadrupole and the gradient of the external field. The conditions for rotational equilibrium are also expressed in terms of these vectors. Haciendo uso de que un multipolo de orden 2l puede representarse mediante l vectores de la misma magnitud, la torca sobre un cuadripolo...

  3. High gradient superconducting quadrupoles

    International Nuclear Information System (INIS)

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed

  4. Radiation-induced effects on the sensors of the Hydrostatic Leveling System for the LHC low-beta quadrupoles

    CERN Document Server

    Dimovasili, E; Mainaud-Durand, H; Marin, A; Ossart, F; Wijnands, Thijs

    2005-01-01

    The dose rate dependence of the Hydrostatic Leveling System (HLS) for the final focusing quadrupole magnets in the Large Hadron collider is discussed. At high dose rates, ionization of the air inside the sensors causes charge deposition and this perturbs the position measurement. A model is presented that corrects the HLS signal offset as a function of the dose rate. The model compares the HLS with condenser ionization chambers and in this note the results of the comparison are presented.

  5. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  6. Rf quadrupole beam dynamics

    International Nuclear Information System (INIS)

    Stokes, R.H.; Crandall, K.R.; Stovall, J.E.; Swenson, D.A.

    1979-01-01

    A method has been developed to analyze the beam dynamics of the radiofrequency quadrupole accelerating structure. Calculations show that this structure can accept a dc beam at low velocity, bunch it with high capture efficiency, and accelerate it to a velocity suitable for injection into a drift tube linac

  7. ISR "Terwilliger" Quadrupole

    CERN Multimedia

    1983-01-01

    There were 48 of these Quadrupoles in the ISR. They were distributed around the rings according to the so-called Terwilliger scheme. Their aperture was 184 mm, their core length 300 mm, their gradient 5 T/m. Due to their small length as compared to the aperture, the end fringe field errors had to be compensated by suitably shaping the poles.

  8. The LHC Main Quadrupoles during Series Fabrication

    CERN Document Server

    Tortschanoff, Theodor; Durante, M; Hagen, P; Klein, U; Krischel, D; Payn, A; Rossi, L; Schellong, B; Schmidt, P; Simon, F; Schirm, K-M; Todesco, E

    2006-01-01

    By the end of August 2005 about 320 of the 400 main LHC quadrupole magnets have been fabricated and about 220 of them assembled into their cold masses, together with corrector magnets. About 130 of them have been cold tested in their cryostats and most of the quadrupoles exceeded their nominal excitation, i.e. 12,000 A, after no more than two training quenches. During this series fabrication, the quality of the magnets and cold masses was thoroughly monitored by means of warm magnetic field measurements, of strict geometrical checking, and of various electrical verifications. A number of modifications were introduced in order to improve the magnet fabrication, mainly correction of the coil geometry for achieving the specified field quality and measures for avoiding coil insulation problems. Further changes concern the electrical connectivity and insulation of instrumentation, and of the corrector magnets inside the cold masses. The contact resistances for the bus-bar connections to the quench protection diode...

  9. Radio frequency quadrupole resonator for linear accelerator

    Science.gov (United States)

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  10. MEQALAC: (multiple electrostatic quadrupole linac): a new approach to low beta rf acceleration

    International Nuclear Information System (INIS)

    Mobley, R.M.; Brodowski, J.J.; Gammel, G.M.; Keane, J.T.; Maschka, A.W.; Sanders, R.T.

    1980-01-01

    MEQALAC is an acronym for a multiple-beam electrostatic-quadrupole array linear accelerator. The principle of operation is very simple. It makes use of the fact that electrostatic quadrupoles focus more effectively at low velocities than conventional magnetic quadrupoles. Moreover, the pole-tip field of an electrostatic quadrupole is limited by field emission of electrons, and is not a function of the size of the quadrupole. Conventional magnetic quadrupoles, on the other hand, require increasingly high current densities if one attempts to scale to smaller size

  11. Variable Permanent Magnet Quadrupole

    International Nuclear Information System (INIS)

    Mihara, T.; Iwashita, Y.; Kyoto U.; Kumada, M.; NIRS, Chiba; Spencer, C.M.; SLAC

    2007-01-01

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments

  12. Permanent quadrupole magnets

    International Nuclear Information System (INIS)

    Bush, E.D. Jr.

    1976-01-01

    A family of quadrupole magnets using a soft iron return yoke and circular cross-section permanent magnet poles were fabricated to investigate the feasibility for use in ion or electron beam focusing applications in accelerators and transport lines. Magnetic field measurements yielded promising results. In fixed-field applications, permanent magnets with sufficient gradients would be a low cost substitute for conventional electromagnets, eliminating the need for power supplies, associated wiring, and cooling. (author)

  13. On quantum quadrupole radiation

    International Nuclear Information System (INIS)

    Fonda, L.; Mankoc-Borstnik, N.

    1981-02-01

    In this paper it is shown that for the electromagnetic decay of a quantum system in a coherent rotational state the total quadrupole radiation is proportional to (d 5 Q/dt 5 )(dQ/dt)sup(*)+c.c. For the radiation flux out of a sphere of large radius a different quantity, closer to the classical expression (d 3 Q/dt 3 ) 2 , is found. (author)

  14. Superconducting Panofsky quadrupoles

    International Nuclear Information System (INIS)

    Harwood, L.H.

    1981-01-01

    A design for a rectangular aperture quadrupole magnet without pole-tips was introduced by Hand and Panofsky in 1959. This design was quite radical but simple to construct. Few magnets of this design were ever built because of the large power needed. With the advent of superconducting coils there has been a renewed interest in them. The mathematical basis, field characteristics, and present and future construction of these magnets are described

  15. Operator approach to effective medium theory to overcome a breakdown of Maxwell Garnett approximation

    DEFF Research Database (Denmark)

    Popov, Vladislav; Lavrinenko, Andrei; Novitsky, Andrey

    2016-01-01

    that the zeroth-, first-, and second-order approximations of the operator effective medium theory correspond to electric dipoles, chirality, and magnetic dipoles plus electric quadrupoles, respectively. We discover that the spatially dispersive bianisotropic effective medium obtained in the second...

  16. Measurements of quadrupole magnets

    International Nuclear Information System (INIS)

    Conradie, J.L.; Fourie, D.T.; Cornell, J.C.; Lloyd, G.C.W.

    1987-01-01

    Measurements carried out on quadrupole magnets using a long asymmetric rotating coil are described. Although the method itself is fairly well-known, the introduction of microprocessors has made this once-tedious technique into a useful and simple method of evaluating quadrupole magnets. The rotating-coil device and a variety of coil sizes are now commercially available. The coil contains a large number of extremely fine wires, embedded in a carefully balanced fibre-glass rotor, resulting in a reasonable induced voltage when the coil is rotated. A digital harmonic analyser is then used to obtain the integrated multipole content of the waveform, while the coil is rotating. By integrating over time, one can average out random noise and increase the reliability and repeatability of the measurements. Because the harmonic analysis is done in real time, the method is quick, easy and accurate, and has been extended to locate the precise magnetic centre of the quadrupole magnet by adjusting its position relative to the coil axis so as to minimize the dipole content of the output waveform. Results of these measurements are compared with those obtained with an optical method using a suspension of magnetite. The observed light pattern is explained analytically. (author)

  17. Determination of Moessbauer electric field gradient

    International Nuclear Information System (INIS)

    Garg, V.K.

    1980-01-01

    There are several reports of the electric quadrupole interactions available in the literature. 1 - 4 The present discussion is a short survey, introducing the electric quadrupole up to the experimental polarised studies. (Author) [pt

  18. Ion trajectories quadrupole mass filters

    International Nuclear Information System (INIS)

    Ursu, D.; Lupsa, N.; Muntean, F.

    1994-01-01

    The present paper aims at bringing some contributions to the understanding of ion motion in quadrupole mass filters. The theoretical treatment of quadrupole mass filter is intended to be a concise derivation of the important physical relationships using Mathieu functions. A simple iterative method of numerical computation has been used to simulate ion trajectories in an ideal quadrupole field. Finally, some examples of calculation are presented with the aid of computer graphics. (Author) 14 Figs., 1 Tab., 20 Refs

  19. MQXFS1 Quadrupole Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Giorgio [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); et al.

    2016-04-14

    This report presents the reference design of MQXFS1, the first 1.5 m prototype of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. The MQXF quadrupoles have 150 mm aperture, coil peak field of about 12 T, and use $Nb_{3}Sn$ conductor. The design is based on the LARP HQ quadrupoles, which had 120 mm aperture. MQXFS1 has 1st generation cable cross-section and magnetic design.

  20. Beam-based alignment of C-shaped quadrupole magnets

    International Nuclear Information System (INIS)

    Portmann, G.; Robin, D.

    1998-06-01

    Many storage rings have implemented a method of finding the positional offset between the electrical center of the beam position monitors (BPM) and the magnetic center of the adjacent quadrupole magnets. The algorithm for accomplishing this is usually based on modulating the current in the quadrupole magnet and finding the beam position that minimizes the orbit perturbation. When the quadrupole magnet is C-shaped, as it is for many light sources, the modulation method can produce an erroneous measurement of the magnetic center in the horizontal plane. When the current in a C-shaped quadrupole is changed, there is an additional dipole component in the vertical field. Due to nonlinearities in the hysteresis cycle of the C-magnet geometry, the beam-based alignment technique at the Advanced Light Source (ALS) deviated horizontally by .5 mm from the actual magnetic center. By modifying the technique, the offsets were measured to an accuracy of better than 50 microm

  1. Model of an LHC superconducting quadrupole magnet

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Model of a superconducting quadrupole magnet for the LHC project. These magnets are used to focus the beam by squeezing it into a smaller cross-section, a similar effect to a lens focusing light. However, each magnet only focuses the beam in one direction so alternating magnet arrangements are required to produce a fully focused beam.

  2. AA, wide quadrupole on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Please look up 8101024 and 8103203 first. Wide quadrupole (QFW, QDW) with end-shims and shimming washers on the measurement stand. With the measurement coil one measured the harmonics of the magnetic field, determined the magnetic centre, and catalogued the effect of washer constellations.

  3. ELEVATED TEMPERATURE EFFECTS ON THE ELECTRICAL ...

    African Journals Online (AJOL)

    The effects of elevated temperatures on the electrical properties of Bi metal probe to Si thin films had been investigated for electric field values 10-100V/m. Measurements of current (I) – voltage (V) characteristics were obtained at temperatures 300,320,340,360,380 and 400K respectively. The results indicated linear I–V ...

  4. Sensitivity of (α,α') cross sections to excited-state quadrupole moments

    International Nuclear Information System (INIS)

    Baker, F.T.; Scott, A.; Ronningen, R.M.; Hamilton, J.H.; Kruse, T.H.; Suchannek, R.; Savin, W.

    1977-01-01

    Inelastic α particle scattering at 21 and 24 MeV has been used to estimate the electric quadrupole moment of the second 2 + state in 180 Hf. Sensitivity to the assumed quadrupole moment is due almost entirely to reorientation via the nuclear force. Results suggest that the technique may be a useful method of estimating excited state quadrupole moments, particularly for states with high excitation energies or with J greater than 2

  5. Quadrupole effects in core and valence photoelectron emission from crystalline germanium measured via a spatially modulated x-ray interference field

    International Nuclear Information System (INIS)

    Nelson, E.J.; Woicik, J.C.; Pianetta, P.; Vartanyants, I.A.; Cooper, J.W.

    2002-01-01

    Near a crystal x-ray Bragg reflection, the incident and reflected x-ray beams that travel with opposite wave vectors create an x-ray standing-wave (XSW) interference field. The quadrupole (and higher order nondipole) contributions to the photoelectron emission matrix element differ for these two beams due to their different wave vectors. By monitoring the angle-resolved photoelectron yield as a function of photon energy near the (11-1) Bragg back-reflection condition of crystalline Ge, we measure the contribution of nondipole effects to Ge 3p, Ge 3d, and Ge valence-band (4s and 4p) XSW photoelectron emission. Significant changes due to nondipole emission are measured in both the apparent amplitude and phase of the Ge structure factor relative to the true Ge atomic distribution, and compared to theory

  6. Quadrupole collectivity beyond N = 50 in neutron- rich Se and Kr isotopes

    Science.gov (United States)

    Elman, Brandon; Gade, A.; Barofsky, D.; Bender, P. C.; Bowry, M.; Hjorth-Jensen, M.; Kemper, K. W.; Lipschutz, S.; Lunderberg, E.; Sachmpazidi, N.; Terpstra, N.; Walters, W. B.; Weisshaar, D.; Westerberg, A.; Williams, S. J.; Wimmer, K.

    2017-09-01

    We will present results on measuring the B (E 2 ;01+ ->2n+) strength for the neutron-rich 88,90Kr and 86Se isotopes from intermediate-energy Coulomb excitation. The electric quadrupole transition strengths to the first 2+ state complete, with considerably improved uncertainties, the evolution of quadrupole collectivity in the Kr and Se isotopes approaching N = 60 , for which 90Kr and 86Se had previously been the most uncertain. We also report significant excitation strength to several higher lying 2+ states in the krypton isotopes. The results confirm shell model calculations in the π (fpg) - ν (sdg) shell with only a minimally tuned shell model setup that is based on a nucleon-nucleon interaction derived from effective field theory with effective charges adjusted to 86Kr.

  7. Quadrupole shunt experiments at SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.; Hettel, R.O.; Nuhn, H.-D.

    1996-05-01

    As part of a program to align and stabilize the SPEAR storage ring, a switchable shunt resistor was installed on each quadrupole to bypass a small percentage of the magnet current. The impact of a quadrupole shunt is to move the electron beam orbit in proportion to the off-axis beam position at the quadrupole, and to shift the betatron tune. Initially, quadrupole shunts in SPEAR were used to position the electron beam in the center of the quadrupoles. This provided readback offsets for nearby beam position monitors, and helped to steer the photon beams with low-amplitude corrector currents. The shunt-induced tune shift measurements were then processed in MAD to derive a lattice model

  8. Quadrupole shunt experiments at SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.; Hettel, R.O.; Nuhn, H.

    1997-01-01

    As part of a program to align and stabilize the SPEAR storage ring, a switchable shunt resistor was installed on each quadrupole to bypass a small percentage of the magnet current. The impact of a quadrupole shunt is to move the electron beam orbit in proportion to the off-axis beam position at the quadrupole and to shift the betatron tune. Initially, quadrupole shunts in SPEAR were used to position the electron beam in the center of the quadrupoles. This provided readback offsets for nearby beam position monitors and helped to steer the photon beams with low-amplitude corrector currents. The shunt-induced tune shift measurements were then processed in MAD to derive a lattice model. copyright 1997 American Institute of Physics

  9. CLIC Quadrupole Module final report

    CERN Document Server

    Artoos, K; Mainaud-Durand, H

    2013-01-01

    Future Linear colliders will need particle beam sizes in the nanometre range. The beam also needs to be stable all along the beam line. The CLIC Main Beam Quadrupole (MBQ) module has been defined and studied. It is meant as a test stand for stabilisation and pre-alignment with a MB Quadrupole. The main topic that has been tackled concerns the Quadrupole magnet stabilisation to 1nm at 1Hz. This is needed to obtain the desired CLIC luminosity of 2.1034 cm-2m-1. The deliverable was demonstrated by procuring a MBQ and by stabilising a powered and cooled CLIC MBQ quadrupole. In addition, the stabilisation system has to be compatible with the pre-alignment procedures. Pre-alignment movement resolution has been demonstrated to 1m. The last step is the combined test of stability with a quadrupole on a CLIC Module with the pre-alignment.

  10. Electromagnetic duality and the electric memory effect

    Science.gov (United States)

    Hamada, Yuta; Seo, Min-Seok; Shiu, Gary

    2018-02-01

    We study large gauge transformations for soft photons in quantum electrodynamics which, together with the helicity operator, form an ISO(2) algebra. We show that the two non-compact generators of the ISO(2) algebra correspond respectively to the residual gauge symmetry and its electromagnetic dual gauge symmetry that emerge at null infinity. The former is helicity universal (electric in nature) while the latter is helicity distinguishing (magnetic in nature). Thus, the conventional large gauge transformation is electric in nature, and is naturally associated with a scalar potential. We suggest that the electric Aharonov-Bohm effect is a direct measure for the electromagnetic memory arising from large gauge transformations.

  11. Quench protection of the LHC inner triplet quadrupoles built at Fermilab

    CERN Document Server

    Bauer, P; Chiesa, L; Di Marco, J; Fehér, S; Lamm, M J; McInturff, A D; Nobrega, A; Orris, D; Tartaglia, M; Tompkins, J C; Zlobin, A V

    2001-01-01

    High gradient quadrupoles are being developed by the US-LHC Accelerator project for the LHC interaction region inner triplets. These 5.5 m long magnets have a single 70 mm aperture and operate in superfluid helium at a peak gradient of 215 T/m. Through the construction and test of eight 2 meter long model quadrupoles, strip heaters of various geometries and insulation thicknesses have proven to be effective in protecting the magnets from excessively high coil temperatures and coil voltages to ground. This paper reports on the results of the model program to optimize the heater performance within the context of the LHC inner triplet electrical power and quench detection scheme. (6 refs).

  12. Nuclear spin phonon relaxation by Raman process in Na{sub 3}H(SO{sub 4}){sub 2} single crystals with the electric-quadrupole-type interaction using {sup 1}H and {sup 23}Na NMR

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ae Ran [Department of Science Education, Jeonju University, Jeonju 560-759, Chonbuk (Korea, Republic of)], E-mail: aeranlim@hanmail.net; Shin, Chang Woo [Solid State Analysis Team, Korea Basic Science Institute, Daegu 702-701 (Korea, Republic of)

    2008-11-30

    Successive phase transitions in a Na{sub 3}H(SO{sub 4}){sub 2} single crystal were found at 296, 513, and 533 K. To investigate the mechanism of the phase transition at 296 K, the {sup 1}H and {sup 23}Na spin-lattice relaxation time and the spin-spin relaxation time of Na{sub 3}H(SO{sub 4}){sub 2} were measured near the phase transition temperature using a FT NMR spectrometer. The spin-lattice relaxation time, T{sub 1}, for {sup 1}H in Na{sub 3}H(SO{sub 4}){sub 2} crystals exhibits a minimum below T{sub C1} (=296 K) indicating the presence of distinct molecular motion governed by the Bloembergen-Purcell-Pound (BPP) theory. Although the results for the {sup 1}H and {sup 23}Na relaxation times provide no evidence of the phase transition at T{sub C1}, the separation of the {sup 23}Na resonance lines changes abruptly at T{sub C1}. The phase transition at 296 K produces a change in the separation of the Na resonance line that is associated with a change in the atomic positions in the vicinity of the Na ions. Also, the nuclear spin-lattice relaxation process in Na{sub 3}H(SO{sub 4}){sub 2} crystals with the electric-quadrupole-type interaction proceed via Raman process. These results are compared with those obtained for other M{sub 3}H(SO{sub 4}){sub 2} (M=K, Rb, and Cs) crystals, which have similar hydrogen-bonded structures.

  13. Transverse acousto-electric effect in superconductors

    Czech Academy of Sciences Publication Activity Database

    Lipavský, P.; Koláček, Jan; Lin, P.-J.

    2016-01-01

    Roč. 525, Jun (2016), 10-17 ISSN 0921-4534 R&D Projects: GA MŠk(CZ) LD14060 Institutional support: RVO:68378271 Keywords : superconductivity * acousto-electric effect * Abrikosov vortex * Tolman–Stewart effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.404, year: 2016

  14. Prototype Superconducting Quadrupole for the ISR low-beta insertion

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The picture shows the cold mass of the Quadrupole with its outer aluminium alloy rings pre-compressing the superconducting coils via the magnetic yoke split in 4 parts.The end of the inner vacuum chamber,supporting the 6-pole correction windings, can also be seen as well as the electrical connections. See also photos 7702690X, 7702307.

  15. An analytical method for estimating the 14N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    International Nuclear Information System (INIS)

    Iselin, L.H.

    1992-01-01

    The use of 14 N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing 14 N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The 14 N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation

  16. An analytical method for estimating the 14N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    Energy Technology Data Exchange (ETDEWEB)

    Iselin, Louis Henry [Univ. of Florida, Gainesville, FL (United States)

    1992-01-01

    The use of 14N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing 14N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The 14N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.

  17. Atomic data from the IRON Project. XXXII. On the accuracy of the effective collision strength for the electron impact excitation of the quadrupole transition in AR III

    Science.gov (United States)

    Galavís, M. E.; Mendoza, C.; Zeippen, C. J.

    1998-12-01

    Since te[Burgess et al. (1997)]{bur97} have recently questioned the accuracy of the effective collision strength calculated in the IRON Project for the electron impact excitation of the 3ssp23p sp4 \\ sp1 D -sp1 S quadrupole transition in Ar iii, an extended R-matrix calculation has been performed for this transition. The original 24-state target model was maintained, but the energy regime was increased to 100 Ryd. It is shown that in order to ensure convergence of the partial wave expansion at such energies, it is necessary to take into account partial collision strengths up to L=30 and to ``top-up'' with a geometric series procedure. By comparing effective collision strengths, it is found that the differences from the original calculation are not greater than 25% around the upper end of the common temperature range and that they are much smaller than 20% over most of it. This is consistent with the accuracy rating (20%) previously assigned to transitions in this low ionisation system. Also the present high-temperature limit agrees fairly well (15%) with the Coulomb-Born limit estimated by Burgess et al., thus confirming our previous accuracy rating. It appears that Burgess et al., in their data assessment, have overextended the low-energy behaviour of our reduced effective collision strength to obtain an extrapolated high-temperature limit that appeared to be in error by a factor of 2.

  18. Quadrupole magnetic lens

    International Nuclear Information System (INIS)

    Piskunov, V.A.

    1981-01-01

    The following connection of windings of electromagnet is suggested for simplification of the design of qUadrupole magnetic lens intended for use in radiotechnical and electron-optical devices. The mentioned windings are connected with each other by a bridge scheme and the variable resistors are switched in its diagonals in the lens containing four electromagnet with windings connected with two variable resistors the mobile contacts of which are connected with a direct current source. Current redistribution between left windings and right windings takes place at shift of mobile contact of variable resistor, and current redistribution between upper and low coils of electromagnets takes place at shifting mobile contact of the other variable resistor. In this case smooth and independent electron-optical misalignment of lens by two mutually perpendicular directions proceeds. Use of the given design of the lens in the oscillograph permits to use printing assembly for alignment plate and to reduce the number of connections at the expense of decreasing the number of resistors

  19. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  20. Contamination measurements with quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Bohatka, S.; Berecz, I.; Langer, G.

    1981-01-01

    A sensitive quadrupole mass spectrometer of our own construction was used for different purity measurements. The analysis of gases in operating rooms showed a 1 ppm-10 5 ppm concentration of narcotics and helped to develop an effective and cheap method for regenerating narcotic filters. We regularly control the gases used in radioactive pollution measurements by internal GM counters and in radiocarbon dating technique. Combustion products and the gases of a fermenter are investigated for industrial application. (orig.) [de

  1. Environmental effects of the electric power generation

    International Nuclear Information System (INIS)

    Velez Ocon, C.

    1991-01-01

    Every manner to generate electricity has effects on environment and on the way of life of human society. Nevertheless electricity is a way of secondary energy handy and clean and is also frequently the more efficient, and for its reason its use is growing in countries with a rate superior to the increase in national gross product. This is particularly remarkable in Mexico where still exist population sectors without electricity services and where the demand per capita is left behind with respect to other economic indicators. In the last years, preoccupation for environmental effects in human activities, especially that related with the production and use of energy, has been increasing. 'Acid rain', air and water pollution, destruction of stratospheric ozone layer, global heating, radioactive wastes storage, land use, destruction of tropical forest, inundation of archaeological ruins, extintion of animal and vegetable species, are examples of problems daily expound to society (Author)

  2. Analysis of isomer shift and quadrupole splitting in moessbauer effect for (La1-xSrx)2Cu0.99Fe0.01O4

    International Nuclear Information System (INIS)

    Arai, Juichiro; Nitta, Takehiko

    1997-01-01

    Moessbauer effect is measured for the high-T c superconductors (La 1-x Sr x ) 2 Cu 0.99 Fe 0.01 O 4 (x = 0-0.17) at room temperature. Both the values of quadrupole splitting (E q ) and isomer shift (I.S.) decrease with increasing x. In order to interpret the large E q value in the sample of x 0, the presence of Fe-4p electrons must be taken into account and the analysis of E q decrease for x = 0 to 0.17 gives the increase of Fe-3d holes, Δn 3d = 0.09. The decrease of I.S. can be analyzed by shield effect due to the increase of Fe-3d holes, which gives the same Δn 3d value. The agreement of both the values indicates that hole increase in Fe-3d orbital is responsible for the decrease of both E q and I.S., and Fe-4p and 4s electrons, even if exist, hardly change with Sr concentration. Furthermore, the valence state of Fe ions in the undoped sample of x = 0 is estimated; Fe3d 4.8 4p 0.18 . This is compared with the reported Cu valence state obtained from NQR and their difference is discussed on the basis of energy level difference of 3d orbital in Fe and Cu ions in CuO 2 plane. (author)

  3. High and ulta-high gradient quadrupole magnets

    International Nuclear Information System (INIS)

    Brunk, W.O.; Walz, D.R.

    1985-05-01

    Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e + /e - super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%

  4. Phase-alternated composite π/2 pulses for solid state quadrupole echo NMR spectroscopy

    International Nuclear Information System (INIS)

    Ramamoorthy, A.; Narasimhan, P.T.

    1991-01-01

    Phase-alternated composite π/2 pulses have been constructed for spin I=1 to overcome quadrupole interaction effects in solid state nuclear magnetic resonance(NMR) spectroscopy. Magnus expansion approach is used to design these sequences in a manner similar to the NMR coherent averaging theory. It is inferred that the symmetric phase-alternated composite π/2 pulses reported here are quite successful in producing quadrupole echo free phase distortions. This effectiveness of the present composite pulses is due to the fact that most of them are of shorter durations as compared to the ones reported in literature. In this theoretical procedure, irreducible spherical tensor operator formalism is employed to simplify the complexity involved in the evaluation of Magnus expansion terms. It has been argued in this paper that composite π/2 pulse sequences for this purpose can also be derived from the broadband inversion π pulses which are designed to compensate electric field gradient(efg) inhomogeniety in spin I=1 nuclear quadrupole resonance(NQR) spectroscopy. (author). 28 refs

  5. Ketamine metabolites with antidepressant effects: Fast, economical, and eco-friendly enantioselective separation based on supercritical-fluid chromatography (SFC) and single quadrupole MS detection.

    Science.gov (United States)

    Fassauer, Georg M; Hofstetter, Robert; Hasan, Mahmoud; Oswald, Stefan; Modeß, Christina; Siegmund, Werner; Link, Andreas

    2017-11-30

    Increasing evidence accumulates that metabolites of the dissociative anesthetic ketamine contribute considerably to the biological effects of this drug and could be developed as next generation antidepressants, especially for acute treatment of patients with therapy-refractory major depression. Analytical methods for the simultaneous determination of the plethora of hydroxylated, dehydrogenated and/or demethylated compounds formed after administration of ketamine hydrochloride are a prerequisite for future clinical investigations and a deeper understanding of the individual role of the isomers of these metabolites. In this study, we present development and validation of a method based on supercritical-fluid chromatography (SFC) coupled to single quadrupole MS detection that allows the separation of ketamine as well as all of its relevant metabolites detected in urine of healthy volunteers. Inherently to SFC methods, the run times of the novel protocol are four times shorter than in a comparable HPLC method, the use of organic solvents is reduced and we were able to demonstrate and validate the successful enantioselective separation and quantification of R- and S-ketamine, R- and S-norketamine, R- and S-dehydronorketamine and (2R,6R)- and (2S,6S)-hydroxynorketamine isomers differing in either constitution, stereochemistry, or both, in one run. The developed method may be useful in investigating the antidepressant efficacy of ketamine in clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ion-neutral transport through quadrupole interfaces of mass-spectrometer systems

    International Nuclear Information System (INIS)

    Jugroot, M.; Groth, C.P.T.; Thomson, B.A.; Baranov, V.; Collings, B.A.; French, J.B.

    2004-01-01

    The transport of free ions through highly under-expanded jet flows of neutral gases and in the presence of applied electric fields is investigated by continuum-based numerical simulations. In particular, numerical results are described which are relevant to ion flows occurring in quadrupole interfaces of mass spectrometer systems. A five-moment mathematical model and parallel multi-block numerical solution procedure is developed for predicting the ion transport. The model incorporates the effects of ion-neutral collision processes and is used in conjunction with a Navier-Stokes model and flow solver for the neutral gas to examine the key influences controlling the ion motion. The effects of the neutral gas flow, electric fields (both dc and rf), and flow field geometry on ion mobility are carefully assessed. The capability of controlling the charged particle motions through a combination of directed neutral flow and applied electric field is demonstrated for these high-speed, hypersonic, jet flows. (author)

  7. Electric Field Effects in RUS Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  8. Theory of enhanced second-harmonic generation by the quadrupole-dipole hybrid exciton

    International Nuclear Information System (INIS)

    Roslyak, Oleksiy; Birman, Joseph L

    2008-01-01

    We report calculated substantial enhancement of the second-harmonic generation (SHG) in cuprous oxide crystals, resonantly hybridized with an appropriate organic material (DCM2:CA:PS 'solid state solvent'). The quadrupole origin of the inorganic part of the quadrupole-dipole hybrid provides inversion symmetry breaking and the organic part contributes to the oscillator strength of the hybrid. We show that the enhancement of the SHG, compared to the bulk cuprous oxide crystal, is proportional to the ratio of the DCM2 dipole moment and the effective dipole moment of the quadrupole transitions in the cuprous oxide. It is also inversely proportional to the line-width of the hybrid and bulk excitons. The enhancement may be regulated by adjusting the organic blend (mutual concentration of the DCM2 and CA part of the solvent) and pumping conditions (varying the angle of incidence in the case of optical pumping or populating the minimum of the lower branch of the hybrid in the case of electrical pumping)

  9. Electromagnetic design of superconducting quadrupoles

    Directory of Open Access Journals (Sweden)

    L. Rossi

    2006-10-01

    Full Text Available We study how the critical gradient depends on the coil layout in a superconducting quadrupole for particle accelerators. We show that the results relative to a simple sector coil are well representative of the coil layouts that have been used to build several quadrupoles in the past 30 years. Using a semianalytical approach, we derive a formula that gives the critical gradient as a function of the coil cross-sectional area, of the magnet aperture, and of the superconducting cable parameters. This formula is used to evaluate the efficiency of several types of coil layouts (shell, racetrack, block, open midplane.

  10. Effects of spin vacancies on the correlated spin dynamics in La2Cu1-xZnxO4 from 63Cu nuclear quadrupole resonance relaxation

    International Nuclear Information System (INIS)

    Carretta, P.; Rigamonti, A.; Sala, R.

    1997-01-01

    63 Cu nuclear quadrupole resonance (NQR) relaxation measurements in La 2 CuO 4 doped Zn are used in order to investigate the temperature dependence of the in-plane magnetic correlation length ξ 2D and the effects associated to spin vacancies in two dimensional quantum Heisenberg antiferromagnets (QHAF). The relaxation rates T 1 -1 and T 2 -1 have been related to the static generalized susceptibility χ(q,0) and to the decay rate Γ q of the normal excitations. By using scaling arguments for χ(q,0) and Γ q , the relaxation rates have been expressed in close form in terms of ξ 2D (x,T) and its dependence on temperature and spin doping x thus extracted. The experimental findings are analyzed in light of the renormalized classical (RC) and quantum critical (QC) behaviors predicted for ξ 2D by recent theories for S=1/2 HAF in square lattices. It is first shown that in pure La 2 CuO 4 , ξ 2D is consistent with a RC regime up to about 900 K, with tendency toward the QC regime above. The spin vacancies reduce the Nacute eel temperature according to the law T N (x)∼T N (0)(1 3.5x). From the temperature dependence of 63 Cu NQR relaxation rate T 1 -1 , T 2 -1 and from the composition dependence of T N it is consistently proved that the effect on ξ 2D can be accounted for by the modification of the spin stiffness in a simple dilutionlike model, the system still remaining in the RC regime, at least for T≤900 K. copyright 1997 American Institute of Physics

  11. Rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry-based metabolomics approach to study the effects of jieduquyuziyin prescription on systemic lupus erythematosus.

    Science.gov (United States)

    Ding, Xinghong; Hu, Jinbo; Wen, Chengping; Ding, Zhishan; Yao, Li; Fan, Yongsheng

    2014-01-01

    Jieduquyuziyin prescription (JP), a traditional Chinese medicine (TCM) prescription, has been widely used for the clinical treatment of systemic lupus erythematosus (SLE). However, the complex chemical constituents of JP and the multifactorial pathogenesis of SLE make research on the therapeutic mechanism of JP in SLE challenging. In this paper, a serum metabolomics approach based on rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RRLC-Q-TOF/MS) was employed to acquire the metabolic characteristics of serum samples obtained from mice in the SLE model group, JP-treated group, prednisone acetate (PA)-treated group and control group. The orthogonal partial least squares (OPLS) was applied to recognize metabolic patterns, and an obvious separation of groups was obtained. Thirteen metabolites, namely, phosphatidylethanolamine (PE 20:3), hepoxilin B3, lyso- phosphatidylethanolamine (lyso-PE 22:6), 12S-hydroxypentaenoic acid (12S-HEPE), traumatic acid, serotonin, platelet-activating factor (PAF), phosphatidylcholine (PC 20:5),eicosapentaenoic acid (EPA), 12(S)-hydroxyei- cosatetraenoic acid (12S-HETE), 14-hydroxy docosahexaenoic acid (14-HDOHE), lyso-phosphatidylcholine (lyso-PC 20:4), and indole acetaldehyde, were identified and characterized as differential metabolites involved in the pathogenesis of SLE. After treatment with JP, the relative content of 12(S)-HETE, PAF, 12(S)-HEPE, EPA, PE (20:3), Lyso-PE(22:6), and 14-HDOHE were effectively regulated, which suggested that the therapeutic effects of JP on SLE may involve regulating disturbances to the metabolism of unsaturated fatty acid, tryptophan and phospholipid. This research also demonstrated that metabolomics is a powerful tool for researching complex disease mechanisms and evaluating the mechanism of action of TCM.

  12. Signature effect in the SU(3) limit of SU(6) particle-quadrupole phonon coupling model (PTQM)

    International Nuclear Information System (INIS)

    Paar, V.; Brant, S.

    1981-09-01

    Systematic deviations from the J(J + 1) energy rule in the SU(3) limit of PTQM are studied and interpreted in terms of signature from the rotational model. The signature effect, which is in the rotational mode introduced via the Coriolis force, is generated here by the correlation of PTQM. (author)

  13. Design, simulation and construction of quadrupole magnets for focusing electron beam in powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    S KH Mousavi

    2015-09-01

    Full Text Available In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm mrad emittance of input beam has been considered. We see the electron beam through the quadrupole magnet focus in one side and defocus in other side. The optimum of distance between two quadrupole magnets for low emittance have been achieved. The simulation results have good agreement with experimental results

  14. Radio-frequency quadrupole linear accelerator

    International Nuclear Information System (INIS)

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented

  15. Kinetic energy in the collective quadrupole Hamiltonian from the experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Jolos, R.V., E-mail: jolos@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dubna State University, 141980 Dubna (Russian Federation); Kolganova, E.A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dubna State University, 141980 Dubna (Russian Federation)

    2017-06-10

    Dependence of the kinetic energy term of the collective nuclear Hamiltonian on collective momentum is considered. It is shown that the fourth order in collective momentum term of the collective quadrupole Hamiltonian generates a sizable effect on the excitation energies and the matrix elements of the quadrupole moment operator. It is demonstrated that the results of calculation are sensitive to the values of some matrix elements of the quadrupole moment. It stresses the importance for a concrete nucleus to have the experimental data for the reduced matrix elements of the quadrupole moment operator taken between all low lying states with the angular momenta not exceeding 4.

  16. Effective business models for electric vehicles

    Directory of Open Access Journals (Sweden)

    Gavrilescu Ileana

    2017-07-01

    Full Text Available The proposed study aims to use asyncretic and synthetic approach of two elements that have an intrinsic efficiency value: business models and electric vehicles. Our approach seeks to circumscribe more widespread concerns globally - on the one hand, to oil shortages and climate change - and on the other hand, economic efficiency to business models customized to new types of mobility. New “electric” cars projects besiege the traditional position of the conventional car. In the current economy context the concept of efficiency of business models is quite different from what it meant in a traditional sense, particularly because of new technological fields. The arguments put forward by us will be both factual and emotional. Therefore, we rely on interviews and questionnaires designed to fit significantly to the point of the study. Research in the field of new propulsion systems for vehicles has been exploring various possibilities lately, such as: electricity, hydrogen, compressed air, biogas, etc. Theoretically or in principle, it is possible for tomorrow’s vehicles to be driven by the widest variety if resources. A primary goal of our study would be to theoretically reconsider some of the contemporary entrepreneurship coordinates and secondly to provide minimum guidance for decision-making of businesses that will operate in the field of electric mobility. To achieve this, we shall specifically analyze an electric mobility system but in parallel we will address business models that lend themselves effectively on aspects of this field. With a methodology based on questionnaires that had to overcome the conventional mechanism using some of the most unusual ingredients, we hope that the results of our research will successfully constitute a contribution to the goals and especially as a means of managerial orientation for entrepreneurs in the Romanian market.

  17. A percolation approach to study the high electric field effect on electrical conductivity of insulating polymer

    Science.gov (United States)

    Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour

    2018-04-01

    The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.

  18. Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects

    CERN Document Server

    Vingerhoets, P; Avgoulea, M; Billowes, J; Bissell, M L; Blaum, K; Brown, B A; Cheal, B; De Rydt, M; Forest, D H; Geppert, Ch; Honma, M; Kowalska, M; Kramer, J; Krieger, A; Mane, E; Neugart, R; Neyens, G; Nortershauser, W; Otsuka, T; Schug, M; Stroke, H H; Tungate, G; Yordanov, D T

    2010-01-01

    Measurements of the ground-state nuclear spins, magnetic and quadrupole moments of the copper isotopes from 61Cu up to 75Cu are reported. The experiments were performed at the ISOLDE facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a 56Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is however strongly reduced at N=40 due to the parity change between the $pf$ and $g$ orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.

  19. Quenching of spin-flip quadrupole transitions

    International Nuclear Information System (INIS)

    Castel, B.; Blunden, P.; Okuhara, Y.

    1985-01-01

    An increasing amount of experimental data indicates that spin-flip quadrupole transitions exhibit quenching effects similar to those reported earlier in (p,n) reactions involving l = 0 and l = 1 transitions. We present here two model calculations suggesting that the E2 spin-flip transitions are more affected than their M1 and M3 counterparts by the tensor and spin-orbit components of the nuclear force and should exhibit the largest quenching. We also review the experimental evidence corroborating our observations

  20. Precise calculations of the deuteron quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-06-01

    Recently, two calculations of the deuteron quadrupole moment have have given predictions that agree with the measured value to within 1%, resolving a long-standing discrepancy. One of these uses the covariant spectator theory (CST) and the other chiral effective field theory (cEFT). In this talk I will first briefly review the foundations and history of the CST, and then compare these two calculations with emphasis on how the same physical processes are being described using very different language. The comparison of the two methods gives new insights into the dynamics of the low energy NN interaction.

  1. Radio-frequency quadrupole resonator for linear accelerator

    Science.gov (United States)

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  2. Static quadrupole moment of the Kπ = 14+ isomer in 176W

    International Nuclear Information System (INIS)

    Ionescu-Bujor, M.; Iordachescu, A.; Bucurescu, D.; Brandolini, F.; Lenzi, S. M.; Pavan, P.; Rossi Alvarez, C.; Marginean, N.; Medina, N.H.; Ribas, R.V.; De Poli, M.; Napoli, D. R.; Podolyak, Zs.; Ur, C. A.

    2001-01-01

    The investigation of high-K isomeric states in the deformed nuclei of the A∼180 region has found renewed interest in recent years. Much experimental and theoretical work was devoted to understand the mechanisms which govern their decay to lower-lying states, particularly the anomalous strong decays to low-K states. Other questions of great importance are the quenching of the pairing correlations and the shape polarization effects in the high-seniority multi-quasiparticle excitations. Our interest focused on the 41 ns K π =14 + 3746 keV isomeric state with anomalous decay in 176 W. On the basis of a precise g-factor measurement we assigned to this isomer a pure four-quasiparticle configuration, composed by two protons in the 7/2 + [404] and 9/2 - [514] orbitals and two neutrons in the 7/2 + [633] and 5/2 - [512] orbitals. In the present work the measurement of its static quadrupole moment has been performed. Prior to our experiment, static quadrupole moments have been measured only for three high-K isomeric states of seniority ≥ 4 in the A∼180 region: 16 + in 178 Hf, 35/2 - in 179 W and 25 + in 182 Os. A deformation very similar to that of the ground state has been deduced for the 16 + isomer in 178 Hf, while for the high-K isomers in 179 W and 182 Os significantly smaller deformations were reported. The quadrupole interaction of the 14 + isomeric state in 176 W has been investigated in the electric field gradient (EFG) of the polycrystalline lattice of metallic Tl by applying the time-differential perturbed angular distribution method. For W impurities in Tl host the EFG strength and its temperature dependence have been recently reported. The isomer was populated in the 164 Dy( 16 O,4n) 176 W reaction using a 83 MeV 16 O pulsed beam (pulse width 1.5 ns, repetition period 800 ns) delivered by the XTU-Tandem of Laboratori Nazionali di Legnaro. The target consisted of 0.5 mg/cm 2 metallic 164 Dy on thick Tl backing in which both the recoiling 176 W nuclei and

  3. Quadrupole photoionization of endohedral Xe-C60

    International Nuclear Information System (INIS)

    Govil, Karan; Deshmukh, P C

    2009-01-01

    The effect of an endohedral confinement on the quadrupole photoionization of atomic Xe is studied using the relativistic random phase approximation (RRPA). The atom's confinement is modelled by placing atomic Xe at the centre of a C 60 cage represented by an annular potential around it. A new confinement resonance is reported in the 4p quadrupole cross-section along with 'correlation confinement resonances' in 4d, 5s and 5p photoionizations at about 185 eV. The effect of the confinement on the non-dipole photoelectron angular distribution parameter γ is also reported.

  4. Nuclear quadrupole resonance of arsenolite

    International Nuclear Information System (INIS)

    Madarazo, R.

    1988-01-01

    A pulsed Nuclear Quadrupole Resonance (NQR) spectrometer was constructed using imported Matec units. Peripherical components were specially assembled and tested for the implantation of the spin-echo technique in the Laboratorio de Centros de Cor of IFUSP. The R.F. operation range is from 50 to 1 ) and spin-spin (T 2 ) relaxation times were carried out at room temperature in arsenolite. The 75 As NQR frequency measured at room temperature is 116.223 MHz. (author) [pt

  5. Modification of genetic effect of gamma irradiation by electric current

    International Nuclear Information System (INIS)

    Grigor'eva, N.N.; Shakhbazov, V.G.

    1985-01-01

    The effect of direct electric current of different value and polarity on genetic sequences of γ-irradiation of Vicia faba seedlings has been studied. The previously found modifying effect of direct electric current is confirmed. The extent and character of this effect depend on the value and polarity of current as well as time between irradiation and electric effects. Current effect modes having no effect on irradiated seedlings protecting cells from injury and the modes aggravating radiation effect have been found. At certain modes the effects of direct electric current on irradiated seedlings changes in the rearrangement spectrum are observed, particularly the number of bridges is increased

  6. LDRD report: Smoke effects on electrical equipment

    International Nuclear Information System (INIS)

    TANAKA, TINA J.; BAYNES, EDWARD E. JR.; NOWLEN, STEVEN P.; BROCKMANN, JOHN E.; GRITZO, LOUIS A.; SHADDIX, Christopher R.

    2000-01-01

    Smoke is known to cause electrical equipment failure, but the likelihood of immediate failure during a fire is unknown. Traditional failure assessment techniques measure the density of ionic contaminants deposited on surfaces to determine the need for cleaning or replacement of electronic equipment exposed to smoke. Such techniques focus on long-term effects, such as corrosion, but do not address the immediate effects of the fire. This document reports the results of tests on the immediate effects of smoke on electronic equipment. Various circuits and components were exposed to smoke from different fields in a static smoke exposure chamber and were monitored throughout the exposure. Electrically, the loss of insulation resistance was the most important change caused by smoke. For direct current circuits, soot collected on high-voltage surfaces sometimes formed semi-conductive soot bridges that shorted the circuit. For high voltage alternating current circuits, the smoke also tended to increase the likelihood of arcing, but did not accumulate on the surfaces. Static random access memory chips failed for high levels of smoke, but hard disk drives did not. High humidity increased the conductive properties of the smoke. The conductivity does not increase linearly with smoke density as first proposed; however, it does increase with quantity. The data can be used to give a rough estimate of the amount of smoke that will cause failures in CMOS memory chips, dc and ac circuits. Comparisons of this data to other fire tests can be made through the optical and mass density measurements of the smoke

  7. Effect of applied DC electric fields in flame spread over polyethylene-coated electrical wire

    KAUST Repository

    Jin, Young Kyu

    2011-03-01

    We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ±7 kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet. © 2011 The Korean Society of Mechanical Engineers.

  8. Origin-independent calculation of quadrupole intensities in X-ray spectroscopy

    International Nuclear Information System (INIS)

    Bernadotte, Stephan; Atkins, Andrew J.; Jacob, Christoph R.

    2012-01-01

    For electronic excitations in the ultraviolet and visible range of the electromagnetic spectrum, the intensities are usually calculated within the dipole approximation, which assumes that the oscillating electric field is constant over the length scale of the transition. For the short wavelengths used in hard X-ray spectroscopy, the dipole approximation may not be adequate. In particular, for metal K-edge X-ray absorption spectroscopy (XAS), it becomes necessary to include higher-order contributions. In quantum-chemical approaches to X-ray spectroscopy, these so-called quadrupole intensities have so far been calculated by including contributions depending on the square of the electric-quadrupole and magnetic-dipole transition moments. However, the resulting quadrupole intensities depend on the choice of the origin of the coordinate system. Here, we show that for obtaining an origin-independent theory, one has to include all contributions that are of the same order in the wave vector consistently. This leads to two additional contributions depending on products of the electric-dipole and electric-octupole and of the electric-dipole and magnetic-quadrupole transition moments, respectively. We have implemented such an origin-independent calculation of quadrupole intensities in XAS within time-dependent density-functional theory, and demonstrate its usefulness for the calculation of metal and ligand K-edge XAS spectra of transition metal complexes.

  9. Mechanical Design of a Second Generation LHC IR Quadrupole

    International Nuclear Information System (INIS)

    Caspi, S.; Bartlett, S.E.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Hannaford, C.R.; Lietzke, A.F.; McInturff, A.D.; Sabbi, G.; Scanlan, R.M.

    2003-01-01

    One of the proposed options to increase the LHC luminosity is the replacement of the existing inner triplets at the Interaction Regions with new low-beta larger aperture quadrupoles operating at the same gradient. Lawrence Berkeley National Laboratory (LBNL) is carrying out preliminary studies of a large-bore Nb 3 Sn quadrupole. The mechanical design presents a support structure based on the use of keys and bladders without self-supporting collars. This technology has been proven effective in several successful common coil Nb 3 Sn dipoles built at LBNL, and it is for the first time applied to a cos(2(var t heta)) design. In this paper we present a detailed analysis of the quadrupole mechanical behavior, demonstrating the possibility of delivering, through this method, well-controlled coil precompression during assembly, cool-down and excitation. The study has been performed with the finite element program ANSYS

  10. Ab initio determination of the nuclear quadrupole moments of 114In, 115In, and 117In

    International Nuclear Information System (INIS)

    Errico, Leonardo A.; Renteria, Mario

    2006-01-01

    We present here ab initio determinations of the nuclear-quadrupole moment Q of hyperfine-probe-nuclear states of three different In isotopes: the 5 + 192 keV excited state of 114 In (probe for nuclear quadrupole alignment spectroscopy), the 9/2 + ground state of 115 In (nuclear magnetic and nuclear quadrupole resonance probe), and the 3/2 + 659 keV excited state of 117 In (perturbed angular correlations probe). These nuclear-quadrupole moments were determined by comparing experimental nuclear-quadrupole frequencies to the electric field gradient tensor calculated with high accuracy at In sites in metallic indium within the density functional theory. These ab initio calculations were performed with the full-potential linearized augmented plane wave method. The results obtained for the quadrupole moments of 114 In [Q( 114 In)=-0.14(1) b] are in clear discrepancy with those reported in the literature [Q( 114 In)=+0.16(6) b and +0.739(12) b]. For 115 In and 117 In our results are in excellent agreement with the literature and in the last case Q( 117 In) is determined with more precision. In the case of Q( 117 In), its sign cannot be determined because standard γ-γ perturbed angular correlations experiments are not sensitive to the sign of the nuclear-quadrupole frequency

  11. Effect of increased ionization on the atmospheric electric field

    International Nuclear Information System (INIS)

    Boeck, W.L.

    1980-01-01

    This study is a review of atmospheric electrical theory with the purpose of predicting the atmospheric electrical effects of increased ionization caused by radioactive inert gases. A time-independent perturbation model for the global atmospheric electric circuit precdicts that the electric field at the sea surface would be reduced to about 76% of its unperturbed value by a surface 85 Kr concentration of 3 nCi/m 3 . The electric field at a typical land station is predicted to be about 84% of its unperturbed value. Some scientists have suggested that the atmospheric electric field is part of a closed electrical feedback loop. The present model does not include such a closed feedback loop and may underestimate the total effects. This model is also useful for interpreting atmospheric electrical responses to natural fluctuations in the cosmic-ray component of background radiation

  12. Effect of nanocrystallization on the electrical conductivity enhancement and Moessbauer hyperfine parameters of iron based glasses

    Energy Technology Data Exchange (ETDEWEB)

    El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, Faculty of Education, Suez Canal University, Al-Arish 45511, North Sinaa (Egypt); Ibrahim, F.A. [Department of Physics, Faculty of Education, Suez Canal University, Al-Arish 45511, North Sinaa (Egypt); Mostafa, A.G.; Hassaan, M.Y. [Department of Physics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo (Egypt)

    2010-09-15

    Selected glasses of Fe{sub 2}O{sub 3}-PbO{sub 2}-Bi{sub 2}O{sub 3} system have been transformed into nanomaterials by annealing at temperature close to crystallization temperature (T{sub c}) for 1 h. The effects of the annealing of the present samples on its structural and electrical properties were studied by Moessbauer spectroscopy, transmission electron micrograph (TEM), differential scanning calorimeter (DSC) and dc conductivity ({sigma}). Moessbauer spectroscopy was used in order to determine the states of iron and its hyperfine structure. The effect of nanocrystalization on the Moessbauer hyperfine parameters did not exhibit significant modifications in present glasses. However, in case of glass ceramic nanocrystals show a distinct decrease in the quadrupole splitting ({Delta}) is observed, reflecting an evident decrease in the distortion of structural units like FeO{sub 4} units. In general, the Moessbauer parameters of the nano-crystalline phase exhibit tendency to increase with PbO{sub 2} content. TEM of as-quenched glasses confirm the homogeneous and essentially featureless morphology. TEM of the corresponding glass ceramic nanocrystals indicates nanocrystals embedded in the glassy matrix with average particle size of about 32 nm. The crystallization temperature (T{sub c}) was observed to decrease with PbO{sub 2} content. The glass ceramic nanocrystals obtained by annealing at T{sub c} exhibit improvement of electrical conductivity up to four orders of magnitude than the starting glasses. This considerable improvement of electrical conductivity after nanocrystallization is attributed to formation of defective, well-conducting phases 'easy conduction paths' along the glass-crystallites interfaces.

  13. Quadrupole interactions in pionic and muonic tantalum and rhenium

    International Nuclear Information System (INIS)

    Konijn, J.; Doesburg, W. van; Ewan, G.T; Johansson, T.; Tibell, G.

    1981-01-01

    The hyperfine splitting of pionic and muonic X-rays in natural Re has been studied using the known ratio (accurate to 1.6 parts in 10 5 ) of the quadrupole moments of the two naturally occurring 185 Re and 187 Re isotopes. From the hyperfine splitting of the 5g → 4f and 4f → 3d pionic X-rays the effective quadrupole hyperfine constants were determined to be 187 A 2 sup(e)sup(f)sup(f) (4f) = 1.163 +- 0.010 keV and 187 A 2 sup(e)sup(f)sup(f) (3d) = 5.39 +- 0.63 keV, giving strong interaction quadrupole shifts epsilon 2 (4f) = 46 +- 10 eV and epsilon 2 (3d) = 1.3 +- 0.6 keV. The strong interaction monopole shifts epsilon 0 and widths GAMMA 0 of the 5g, 4f and 3d levels have also been measured. For the two higher orbits, standard optical-potential calculations fit the measured shifts and widths quite well. The observed deeper-lying 3d state, however, has shifts and widths that differ by a factor of 2 or more from the predictions. From the measured quadrupole hyperfine constants of the 4f level we calculate the spectroscopic quadrupole moments to be 187 Qsup(μ) = 2.09 +- 0.04 b, 187 Qsup(π) = 2.07 +- 0.02 b, 185 Qsup(μ) = 2.21 +- 0.04 b, and 185 Qsup(π) = 2.18 +- 0.02 b. In addition, muonic X-rays from 181 Ta were observed; using the same methods for determining the quadrupole moments as above, a value of 181 Qsup(μ) = 3.28 +- 0.06 b was obtained, in good agreement with earlier published data. (orig.)

  14. Nuclear quadrupole-quadrupole interaction in the inelastic scattering of aligned deuterons from deformed nuclei

    International Nuclear Information System (INIS)

    Clement, H.; Frick, R.; Graw, G.; Schiemenz, P.; Seichert, N.

    1983-01-01

    The 2 1 + -excitation of deformed nuclei by tensor polarized deuterons provides an alignment of both nuclei and thus a means to study specifically the quadrupole-quadrupole interaction between both nuclei. The tensor analyzing power Asub(xz)(theta) has been measured for the elastic and inelastic scattering on 24 Mg and 28 Si. The coupled channel analysis including a deformed tensor potential reveals a clear signature of the quadrupole-quadrupole part of the nuclear projectile-target interaction. (orig.)

  15. 1H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH2)3]3Bi2I9 as an example

    International Nuclear Information System (INIS)

    Florek-Wojciechowska, M.; Wojciechowski, M.; Brym, Sz.; Kruk, D.; Jakubas, R.

    2016-01-01

    1 H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu 3 Bi 2 I 9 ([Gu = C(NH 2 ) 3 ] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole ( 14 N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10 −6 s which has turned out to be (almost) temperature independent, and a fast process in the range of 10 −9 s. From the 1 H- 14 N relaxation contribution (that shows “quadrupole peaks”) the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions

  16. 1H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH2)3]3Bi2I9 as an example

    Science.gov (United States)

    Florek-Wojciechowska, M.; Wojciechowski, M.; Jakubas, R.; Brym, Sz.; Kruk, D.

    2016-02-01

    1H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu3Bi2I9 ([Gu = C(NH2)3] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole (14N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10-6 s which has turned out to be (almost) temperature independent, and a fast process in the range of 10-9 s. From the 1H-14N relaxation contribution (that shows "quadrupole peaks") the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions.

  17. MQXFS1 Quadrupole Fabrication Report

    CERN Document Server

    Ambrosio, G; Bossert, R; Cavanna, E; Cheng, D; Chlachidize, G; Cooley, L D; Dietderich, D; Felice, H; Ferracin, P; Ghosh, A; Hafalia, R; Holik, E F; Izquierdo Bermudez, S; Juchno, M; Krave, S; Marchevsky, M; Muratore, J; Nobrega, F; Pan, H; Perez, J C; Pong, I; Prestemon, S; Ravaioli, E; Sabbi, G L; Santini, C; Schmalzle, J; Schmalzle, J; Stoynev, S; Strauss, T; Vallone, G; Wanderer, P; Wang, X; Yu, M

    2017-01-01

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  18. MQXFS1 Quadrupole Fabrication Report

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Anerella, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bossert, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cavanna, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cheng, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chlachidize, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Cooley, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dietderich, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Felice, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ferracin, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ghosh, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hafalia, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Holik, E. F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bermudez, S. Izquierdo [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Juchno, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Krave, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Marchevsky, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Muratore, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nobrega, F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pan, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perez, J. C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pong, I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prestemon, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ravaioli, E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sabbi, G. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Santini, C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schmalzle, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stoynev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Strauss, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Vallone, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Wanderer, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, X. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-07-16

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  19. Nuclear quadrupole moment of the 99Tc ground state

    International Nuclear Information System (INIS)

    Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan

    2008-01-01

    By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2 + ground state of 99 Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc 2 and ZrTc 2 . If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the 99 Tc ground state quadrupole moment could be further reduced

  20. Accurate method of the magnetic field measurement of quadrupole magnets

    International Nuclear Information System (INIS)

    Kumada, M.; Sakai, I.; Someya, H.; Sasaki, H.

    1983-01-01

    We present an accurate method of the magnetic field measurement of the quadrupole magnet. The method of obtaining the information of the field gradient and the effective focussing length is given. A new scheme to obtain the information of the skew field components is also proposed. The relative accuracy of the measurement was 1 x 10 -4 or less. (author)

  1. Quadrupole moments of low-lying baryons with spin

    Indian Academy of Sciences (India)

    The chiral constituent quark model ( CQM) with general parametrization (GP) method has been formulated to calculate the quadrupole moments of the spin − 3 2 + decuplet baryons and spin − 3 2 + → 1 2 + transitions. The implications of such a model have been investigated in detail for the effects of symmetry breaking ...

  2. Dynamic linear modeling of monthly electricity demand in Japan: Time variation of electricity conservation effect.

    Science.gov (United States)

    Honjo, Keita; Shiraki, Hiroto; Ashina, Shuichi

    2018-01-01

    After the severe nuclear disaster in Fukushima, which was triggered by the Great East Japan earthquake in March 2011, nuclear power plants in Japan were temporarily shut down for mandatory inspections. To prevent large-scale blackouts, the Japanese government requested companies and households to reduce electricity consumption in summer and winter. It is reported that the domestic electricity demand had a structural decrease because of the electricity conservation effect (ECE). However, quantitative analysis of the ECE is not sufficient, and especially time variation of the ECE remains unclear. Understanding the ECE is important because Japan's NDC (nationally determined contribution) assumes the reduction of CO2 emissions through aggressive energy conservation. In this study, we develop a time series model of monthly electricity demand in Japan and estimate time variation of the ECE. Moreover, we evaluate the impact of electricity conservation on CO2 emissions from power plants. The dynamic linear model is used to separate the ECE from the effects of other irrelevant factors (e.g. air temperature, economic production, and electricity price). Our result clearly shows that consumers' electricity conservation behavior after the earthquake was not temporary but became established as a habit. Between March 2011 and March 2016, the ECE on industrial electricity demand ranged from 3.9% to 5.4%, and the ECE on residential electricity demand ranged from 1.6% to 7.6%. The ECE on the total electricity demand was estimated at 3.2%-6.0%. We found a seasonal pattern that the residential ECE in summer is higher than that in winter. The emissions increase from the shutdown of nuclear power plants was mitigated by electricity conservation. The emissions reduction effect was estimated at 0.82 MtCO2-2.26 MtCO2 (-4.5% on average compared to the zero-ECE case). The time-varying ECE is necessary for predicting Japan's electricity demand and CO2 emissions after the earthquake.

  3. Nuclear power's effects on electric rate making

    International Nuclear Information System (INIS)

    Smith, D.S.; Lancaster, A.A.

    1978-01-01

    Government and the electric utility industry are re-evaluating nuclear power's contribution to the total U.S. energy supplies. This article addresses how the recently increased nuclear plant construction and operation costs are translated into the prices that consumers pay for electricity. The electric rates that consumers pay must reflect the costs of producing electricity, as well as the costs of transmission, distribution, metering, and billing. The use of nuclear power for electric production is anticipated to grow rapidly so as to meet a larger portion of our country's electricity needs through the end of the century; so nuclear power costs are expected to be an even larger portion of the total electricity price. There are certain rate-making issues that are actively being discussed in public forums and before state and Federal regulatory bodies. These issues are not unique to nuclear power, but take on added significance when nuclear power is used by utilities to produce electricity because of the technology required and because of the type, timing, and magnitude of the costs involved. These are: (1) inclusion of construction work in progress in the rate base; (2) fuel adjustment clauses and treatment of nuclear fuel cycle costs; (3) treatment of certain taxes under the rate-making method called normalization or deferral accounting (sometimes referred to as ''phantom taxes''); and (4) rate treatment for particular nuclear expense items reflecting costs of delays, plant cancellations, and operational slowdowns

  4. Quadrupole formula for Kaluza-Klein modes in the braneworld

    International Nuclear Information System (INIS)

    Kinoshita, Shunichiro; Kudoh, Hideaki; Sendouda, Yuuiti; Sato, Katsuhiko

    2005-01-01

    The quadrupole formula in four-dimensional Einstein gravity is a useful tool to describe gravitational wave radiation. We derive the quadrupole formula for the Kaluza-Klein (KK) modes in the Randall-Sundrum braneworld model. The quadrupole formula provides a transparent representation of the exterior weak gravitational field induced by localized sources. We find that a general isolated dynamical source gives rise to the 1/r 2 correction to the leading 1/r gravitational field. We apply the formula to an evaluation of the effective energy carried by the KK modes from the viewpoint of an observer on the brane. Contrary to the ordinary gravitational waves (zero mode), the flux of the induced KK modes by the non-spherical part of the quadrupole moment vanishes at infinity and only the spherical part contributes to the flux. Since the effect of the KK modes appears in the linear order of the metric perturbations, the effective energy flux observed on the brane is not always positive, but can become negative depending on the motion of the localized sources

  5. Simulation of a quadrupole resonator

    Energy Technology Data Exchange (ETDEWEB)

    Kleindienst, Raphael [Helmholtz Zentrum Berlin (Germany)

    2013-07-01

    Modern particle accelerators often rely on superconducting radio frequency (SRF) technology for accelerating cavities. In particular in CW operation, very high quality factors up into the high range are desirable, since one of the main cost drivers of such an accelerator, the cryogenic refrigeration plant, is inversely proportional to Q{sub 0}. Present day superconducting cavities are generally made of solid Niobium. A possibility to increase the quality factor as well as accelerating fields is to use thin film coated cavities. Apart from Niobium thin films, other superconducting materials, such as MgB{sub 2}, NbN and Nb{sub 3}Sn are promising candidates. Measuring and understanding the RF-properties of superconducting thin films, specifically the surface resistance, is needed to drive forward this development. Currently only few facilities exist capable of measuring the surface resistance of thin films samples with a resolution in the nano-ohm range at the operating frequency of typical cavities(e.g. L-band). A dedicated test stand consisting of a quadrupole resonator is therefore being constructed at the Helmholtz Zentrum Berlin. This system is based on the 400 MHz quadrupole resonator at CERN, with the design adapted to 433 MHz (making available the higher harmonic mode at 1.3 GHz) and optimized with respect to resolution and maximum achievable fields using simulation data obtained with CST Microwave Studio as well as ANSYS. The simulated design is being manufactured. An outlook for future physics runs is given.

  6. RF quadrupole beam dynamics design studies

    International Nuclear Information System (INIS)

    Crandall, K.R.; Stokes, R.H.; Wangler, T.P.

    1979-01-01

    The radio-frequency quadrupole (RFQ) linear accelerator structure is expected to permit considerable flexibility in achieving linac design objectives at low velocities. Calculational studies show that the RFQ can accept a high-current, low-velocity, dc beam, bunch it with high efficiency, and accelerate it to a velocity suitable for injection into a drift-tube linac. Although it is relatively easy to generate a satisfactory design for an RFQ linac for low beam currents, the space-charge effects produced by high currents dominate the design criteria. Methods have been developed to generate solutions that make suitable compromises between the effects of emittance growth, transmission efficiency, and overall structure length. Results are given for a test RFQ linac operating at 425 MHz

  7. Electrostatic quadrupoles for heavy-ion fusion

    International Nuclear Information System (INIS)

    Seidl, P.; Faltens, A.

    1993-05-01

    Voltage-holding data for three quadrupole electrode sizes and inter-electrode spacings are reported. The dependence of the breakdown voltage on system size and its influence on the optimum quadrupole size for beam transport in a multiple beam array are discussed

  8. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  9. Quadrupole moments of the 12+ isomers in 188Hg and 190Hg

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Lonnroth, T.; Vajda, S.; Dafni, E.; Schatz, G.

    1984-01-01

    The electric quadrupole interaction of the 12 + isomers in 188 Hg and 190 Hg has been measured in solid Hg. The quadrupole moments deduced, vertical strokeQ[ 188 Hg(12 + )]vertical stroke = 91(11) e fm 2 and vertical strokeQ[ 190 Hg(12 + )]vertical stroke = 117(14) e fm 2 suggest a possible change in γ-deformation due to the rotation alignment of the isub(13/2) quasi-neutrons. The temperature dependence of the electric field gradient tensor in Hg was also determined. (orig.)

  10. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    Directory of Open Access Journals (Sweden)

    Charlie Huveneers

    Full Text Available Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1, using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1 the behaviour of 18 white sharks (Carcharodon carcharias near a static bait, and (2 the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  11. Experimental investigation of quadrupole virtual photon spectrum

    International Nuclear Information System (INIS)

    Gouffon, P.

    1986-01-01

    To test experimentally the quadrupole virtual photon spectrum calculation, the (e,α) excitation function of an isolated 2 + level at 20.14 MeV in 24 Mg was measured. The most recent calculations in DWBA, including nuclear size effects, are compared to this experimental curve. The differential cross section d 2 σ/dΩdE was measured 48 0 , 90 0 , 132 0 in the laboratory system, for total electron energies of 20.0, 20.8, 21.5, 24.0, 26.0, 28.0, 30.0, 32.0, 36.0, and 40.0 MeV. The reduced matrix element B(E2) of the 20,14 MeV level is extracted as a secondary product of this work. (author) [pt

  12. Electrical and Biological Effects of Transmission Lines: A Review.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jack M.

    1989-06-01

    This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).

  13. Effect of demand management on regulated and deregulated electricity sectors

    International Nuclear Information System (INIS)

    Fahrioglu, Murat

    2016-01-01

    Our society derives a quantifiable benefit from electric power. In particular, forced outages or blackouts have enormous consequences on society, one of which is loss of economic surplus. The society relies on having a continuous supply of electrical energy. Some customers may willingly risk this continuous supply and participate in demand management programs for electrical power. If the power system grid is in trouble, electric utilities need to have demand relief. Customers willing to reduce their demand to help the system can receive an incentive fee for helping the utilities. Demand relief can be system wide or location specific. Sometimes it can be more effective to fix the electrical demand vs. supply imbalance from the demand side. The value of demand management contracts is greatly affected by customer location. Inclusion of locational attributes into the contract design procedure increases the effectiveness of the contracts by helping a utility get more value from its demand management programs. Independent System Operators and regulators, among others, can also benefit from effective demand management. This paper will investigate how this type of demand management contracts can help the electricity sector both in regulated and deregulated environments. - Highlights: • Demand management can help prevent forced electricity outages. • Both electric utilities and ISOs can use demand management. • Regulated and deregulated electricity sectors can benefit from demand management. • Demand management contracts can be effectively used in power system grids.

  14. Quadrupole interaction in zinc metal

    International Nuclear Information System (INIS)

    Vetterling, W.T.; Pound, R.V.

    1977-01-01

    To allow measurement of the quadrupole interaction in zinc metal, the enriched ZnO was reduced to zinc metal powder and compressed into a pill of thickness 1.4 gm/cm 2 . Sources were made by diffusing 20 mCi of 67 Ga into sintered copper pills. The transducer was based on a cylinder of PZT-4 with 1 / 2 -inch length and could cover linearly a velocity range of +-100 μ/s at 200 Hz. The multiscalar was a modified Northern model NS600, with a minimum dwell time of 20 μs, and with a 10-count buffer at the input to eliminate deadtime from memory cycling

  15. Impact of electric field on Hofmeister effects in aggregation of ...

    Indian Academy of Sciences (India)

    Electric field; Hofmeister effects; ionic polarization; colloidal minerals; electrostatic interaction. 1. Introduction. Aggregation .... sions containing a given quantity of colloidal minerals ..... account to explain the observed Hofmeister effects. On the ...

  16. The effect of climate change on electricity expenditures in Massachusetts

    International Nuclear Information System (INIS)

    Véliz, Karina D.; Kaufmann, Robert K.; Cleveland, Cutler J.; Stoner, Anne M.K.

    2017-01-01

    Climate change affects consumer expenditures by altering the consumption of and price for electricity. Previous analyses focus solely on the former, which implicitly assumes that climate-induced changes in consumption do not affect price. But this assumption is untenable because a shift in demand alters quantity and price at equilibrium. Here we present the first empirical estimates for the effect of climate change on electricity prices. Translated through the merit order dispatch of existing capacity for generating electricity, climate-induced changes in daily and monthly patterns of electricity consumption cause non-linear changes in electricity prices. A 2 °C increase in global mean temperature increases the prices for and consumption of electricity in Massachusetts USA, such that the average household’s annual expenditures on electricity increase by about 12%. Commercial customers incur a 9% increase. These increases are caused largely by higher prices for electricity, whose impacts on expenditures are 1.3 and 3.6 fold larger than changes in residential and commercial consumption, respectively. This suggests that previous empirical studies understate the effects of climate change on electricity expenditures and that policy may be needed to ensure that the market generates investments in peaking capacity to satisfy climate-driven changes in summer-time consumption. - Highlights: • Climate change increases summer peak of load curve in US state of Massachusetts. • Climate change increases electricity prices more than consumption. • Previous studies understate the effect of climate change on electricity expenditures. • Adaptation that reduces electricity demand may reduce the price effect. • Adaptation may raise prices by increasing capacity but lowering utilization rate.

  17. An effective field theory for the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Chang, D.; Kephart, T.W.; Keung, W.Y.; Yuan, T.C.

    1992-01-01

    We derive a CP-odd effective field theory involving the field strengths of the gluon and the photon and their duals as a result of integrating out a heavy quark which carries both the chromo-electric dipole moment and electric dipole moment. The coefficients of the induced gluonic, photonic, and mixed gluon-photon operators with dimension ≤ 8 are determined. Implications of some of these operators on the neutron electric dipole moment are also discussed. (orig.)

  18. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  19. Effects of an Electric Field on White Sharks: In Situ Testing of an Electric Deterrent

    Science.gov (United States)

    Huveneers, Charlie; Rogers, Paul J.; Semmens, Jayson M.; Beckmann, Crystal; Kock, Alison A.; Page, Brad; Goldsworthy, Simon D.

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks. PMID:23658766

  20. Effect of AC electric fields on flame spread over electrical wire

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The effect of electric fields on the characteristics of flame spread over insulated electrical wire has been investigated experimentally by varying AC voltage and frequency applied to the wire in the normal gravity condition. The polyethylene (PE) insulated electrical wire was placed horizontally on electrically non-conducting posts and one end of the wire was connected to the high voltage terminal. Thus, the electrical system is the single electrode configuration. The wire was ignited at one end and the flame spread rate along the wire has been measured from the images using a video camera. Two distinct regimes existed depending on the applied AC frequency. In the low frequency regime, the flame spread rate decreased with the frequency and voltage. While in the high frequency regime, it decreased initially with voltage and then increased. At high frequency, the spread rate was even over that without applying electric fields. This result implies that fire safety codes developed without considering the effect of electric fields may require modifications. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  1. Positrons trapped in polyethylene: Electric field effect

    International Nuclear Information System (INIS)

    Bertolaccini, M.; Bisi, A.; Gambarini, G.; Zappa, L.

    1978-01-01

    The intensity of the iot 2 -component of positrons annihilated in polyethylene is found to increase with increasing electric field, while the formation probability of the positron state responsible for this component remains independent of the field. (orig.) 891 HPOE [de

  2. Distribution effects of electricity tax illustrated by different distribution concepts

    International Nuclear Information System (INIS)

    Halvorsen, Bente; Larsen, Bodil M.; Nesbakken, Runa

    2001-01-01

    This study demonstrates the significance of the choice of distribution concepts in analyses of distribution effects of electricity tax. By distribution effects are meant that life circumstances are changing. The focus is on different income concepts. Income is an important element in the life circumstances of the households. The distribution effects are studied by focusing on general income before and after tax, pension able earnings before and after tax and total consumption expenditure. The authors study how increased electricity expenses caused by a proportional increase of the electricity tax affect the households in various income groups. It is found that the burden of such an increased tax, measured by the budget part set aside for electricity, decreases with income no matter what distribution concept is used. By calculating measures of inequality for income minus electricity tax before and after the tax increase, it is found that the measures of inequality significantly depend on the choice of distribution concept

  3. Design and application possibilities of superconducting radio-frequency quadrupoles

    International Nuclear Information System (INIS)

    Schempp, A.; Deitinghoff, H.

    1990-01-01

    In recent experiments, cw surface electric fields in excess of 100 MV/m have been obtained in a superconducting rf quadrupole (SCRFQ) device. In this paper we explore some design and application possibilities of SCRFQs which have been opened by these results. For example, SCRFQs may be able to accelerate higher cw currents than is now possible. Also, highly-modulated SCRFQs could be designed to provide compact, high-longitudinal-gradient devices. Some conceptual designs and applications will be discussed. 15 refs., 2 figs

  4. Effects of Radial Electric Fields on ICRF Waves

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hosea, J.C.; Ono, M.; Wilson, J.R.

    2001-01-01

    Equilibrium considerations infer that large localized radial electric fields are associated with internal transport barrier structures in tokamaks and other toroidal magnetic confinement configurations. In this paper, the effects of an equilibrium electric field on fast magnetosonic wave propagation are considered in the context of a cold plasma model

  5. Dynamic linear modeling of monthly electricity demand in Japan: Time variation of electricity conservation effect.

    Directory of Open Access Journals (Sweden)

    Keita Honjo

    Full Text Available After the severe nuclear disaster in Fukushima, which was triggered by the Great East Japan earthquake in March 2011, nuclear power plants in Japan were temporarily shut down for mandatory inspections. To prevent large-scale blackouts, the Japanese government requested companies and households to reduce electricity consumption in summer and winter. It is reported that the domestic electricity demand had a structural decrease because of the electricity conservation effect (ECE. However, quantitative analysis of the ECE is not sufficient, and especially time variation of the ECE remains unclear. Understanding the ECE is important because Japan's NDC (nationally determined contribution assumes the reduction of CO2 emissions through aggressive energy conservation. In this study, we develop a time series model of monthly electricity demand in Japan and estimate time variation of the ECE. Moreover, we evaluate the impact of electricity conservation on CO2 emissions from power plants. The dynamic linear model is used to separate the ECE from the effects of other irrelevant factors (e.g. air temperature, economic production, and electricity price. Our result clearly shows that consumers' electricity conservation behavior after the earthquake was not temporary but became established as a habit. Between March 2011 and March 2016, the ECE on industrial electricity demand ranged from 3.9% to 5.4%, and the ECE on residential electricity demand ranged from 1.6% to 7.6%. The ECE on the total electricity demand was estimated at 3.2%-6.0%. We found a seasonal pattern that the residential ECE in summer is higher than that in winter. The emissions increase from the shutdown of nuclear power plants was mitigated by electricity conservation. The emissions reduction effect was estimated at 0.82 MtCO2-2.26 MtCO2 (-4.5% on average compared to the zero-ECE case. The time-varying ECE is necessary for predicting Japan's electricity demand and CO2 emissions after the

  6. Dynamic linear modeling of monthly electricity demand in Japan: Time variation of electricity conservation effect

    Science.gov (United States)

    Shiraki, Hiroto; Ashina, Shuichi

    2018-01-01

    After the severe nuclear disaster in Fukushima, which was triggered by the Great East Japan earthquake in March 2011, nuclear power plants in Japan were temporarily shut down for mandatory inspections. To prevent large-scale blackouts, the Japanese government requested companies and households to reduce electricity consumption in summer and winter. It is reported that the domestic electricity demand had a structural decrease because of the electricity conservation effect (ECE). However, quantitative analysis of the ECE is not sufficient, and especially time variation of the ECE remains unclear. Understanding the ECE is important because Japan’s NDC (nationally determined contribution) assumes the reduction of CO2 emissions through aggressive energy conservation. In this study, we develop a time series model of monthly electricity demand in Japan and estimate time variation of the ECE. Moreover, we evaluate the impact of electricity conservation on CO2 emissions from power plants. The dynamic linear model is used to separate the ECE from the effects of other irrelevant factors (e.g. air temperature, economic production, and electricity price). Our result clearly shows that consumers’ electricity conservation behavior after the earthquake was not temporary but became established as a habit. Between March 2011 and March 2016, the ECE on industrial electricity demand ranged from 3.9% to 5.4%, and the ECE on residential electricity demand ranged from 1.6% to 7.6%. The ECE on the total electricity demand was estimated at 3.2%–6.0%. We found a seasonal pattern that the residential ECE in summer is higher than that in winter. The emissions increase from the shutdown of nuclear power plants was mitigated by electricity conservation. The emissions reduction effect was estimated at 0.82 MtCO2–2.26 MtCO2 (−4.5% on average compared to the zero-ECE case). The time-varying ECE is necessary for predicting Japan’s electricity demand and CO2 emissions after the

  7. Quadrupole moments as measures of electron correlation in two-electron atoms

    International Nuclear Information System (INIS)

    Ceraulo, S.C.; Berry, R.S.

    1991-01-01

    We have calculated quadrupole moments, Q zz , of helium in several of its doubly excited states and in two of its singly excited Rydberg states, and of the alkaline-earth atoms Be, Mg, Ca, Sr, and Ba in their ground and low-lying excited states. The calculations use well-converged, frozen-core configuration-interaction (CI) wave functions and, for interpretive purposes, Hartree-Fock (HF) atomic wave functions and single-term, optimized, molecular rotor-vibrator (RV) wave functions. The quadrupole moments calculated using RV wave functions serve as a test of the validity of the correlated, moleculelike model, which has been used to describe the effects of electron correlation in these two-electron and pseudo-two-electron atoms. Likewise, the quadrupole moments calculated with HF wave functions test the validity of the independent-particle model. In addition to their predictive use and their application to testing simple models, the quadrupole moments calculated with CI wave functions reveal previously unavailable information about the electronic structure of these atoms. Experimental methods by which these quadrupole moments might be measured are also discussed. The quadrupole moments computed from CI wave functions are presented as predictions; measurements of Q zz have been made for only two singly excited Rydberg states of He, and a value of Q zz has been computed previously for only one of the states reported here. We present these results in the hope of stimulating others to measure some of these quadrupole moments

  8. Measurement of the transfer function of the main SPS Quadrupoles

    CERN Document Server

    Dinius, A; Semanaz, P; CERN. Geneva. SPS and LEP Division

    1998-01-01

    During two short MD's we have measured the transfer function (amplitude and phase) of the main quadrupole string QD. By the word string we mean the global effect of power supplies, magnets and the eddy current effects of the vacuum chamber. This paper presents the measurement procedure and the results, which are needed for the design of a real-time feedback system for the betatron tunes ( Qloop).

  9. Effective electrical and thermal conductivity of multifilament twisted superconductors

    International Nuclear Information System (INIS)

    Chechetkin, V.R.

    2013-01-01

    The effective electrical and thermal conductivity of composite wire with twisted superconducting filaments embedded into normal metal matrix is calculated using the extension of Bruggeman method. The resistive conductivity of superconducting filaments is described in terms of symmetric tensor, whereas the conductivity of a matrix is assumed to be isotropic and homogeneous. The dependence of the resistive electrical conductivity of superconducting filaments on temperature, magnetic field, and current density is implied to be parametric. The resulting effective conductivity tensor proved to be non-diagonal and symmetric. The non-diagonal transverse–longitudinal components of effective electrical conductivity tensor are responsible for the redistribution of current between filaments. In the limits of high and low electrical conductivity of filaments the transverse effective conductivity tends to that of obtained previously by Carr. The effective thermal conductivity of composite wires is non-diagonal and radius-dependent even for the isotropic and homogeneous thermal conductivities of matrix and filaments.

  10. Ab-initio calculations of electric field gradient in Ru compounds and ...

    Indian Academy of Sciences (India)

    S N Mishra

    2017-07-11

    Jul 11, 2017 ... with calculated electric field gradient (EFG) for a large number of Ru-based compounds. The ab-initio ... zz assumed to stem from geometric arrangement of ... tant nuclear probes for the measurements of quadrupole ... with the unit cell including the nucleus and no restriction is put on ..... The effect of on-site ...

  11. Eight piece quadrupole magnet, method for aligning quadrupole magent pole tips

    Science.gov (United States)

    Jaski, Mark S.; Liu, Jie; Donnelly, Aric T.; Downey, Joshua S.; Nudell, Jeremy J.; Jain, Animesh

    2018-01-30

    The invention provides an alternative to the standard 2-piece or 4-piece quadrupole. For example, an 8-piece and a 10-piece quadrupole are provided whereby the tips of each pole may be adjustable. Also provided is a method for producing a quadrupole using standard machining techniques but which results in a final tolerance accuracy of the resulting construct which is better than that obtained using standard machining techniques.

  12. Effects of an electric field on interaction of aromatic systems.

    Science.gov (United States)

    Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S

    2016-04-30

    The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density. © 2015 Wiley Periodicals, Inc.

  13. Coupling of magnetospheric electrical effects into the global atmospheric electrical circuit

    International Nuclear Information System (INIS)

    Hays, P.B.; Roble, R.G.

    1979-01-01

    A quasi-static model of global atmospheric electricity has been constructed (Hays and Roble, 1978) to study the electrical processes in the lower atmosphere and the coupling between solar- and upper- atmosphere-induced variations superimposed upon the global electrical circuit. The paper reviews the essential features of this model and discusses the results obtained thus far on the effects of magnetospheric convection and substorms on the global atmospheric electrical circuit. A schematic diagram of the global quasi-static model is given. It is assumed that thunderstorms act as dipole generators, each with a positive center at the top of the cloud and a negative center a few kilometers lower than the positive center

  14. The Effect of Electrical Stimulation in Improving Muscle Tone (Clinical)

    Science.gov (United States)

    Azman, M. F.; Azman, A. W.

    2017-11-01

    Electrical stimulation (ES) and also known as neuromuscular electrical stimulation (NMES) and transcutaneous electrical stimulation (TES) involves the use of electrical current to stimulate the nerves or nerve endings that innervate muscle beneath the skin. Electrical stimulation may be applied superficially on the skin (transcutaneously) or directly into a muscle or muscles (intramuscularly) for the primary purpose of enhancing muscle function. The basic theoretical premise is that if the peripheral nerve can be stimulated, the resulting excitation impulse will be transmitted along the nerve to the motor endplates in the muscle, producing a muscle contraction. In this work, the effect of mere electrical stimulation to the muscle bulk and strength are tested. This paper explains how electrical stimulation can affect the muscle bulk, muscle size, muscle tone, muscle atrophy and muscle strength. The experiment and data collection are performed on 5 subjects and the results obtained are analyzed. This research aims to understand the full potential of electrical stimulation and identifying its possible benefits or disadvantages to the muscle properties. The results indicated that electrical stimulation alone able to improve muscle properties but with certain limits and precautions which might be useful in rehabilitation programme.

  15. Nonuniform radiation damage in permanent magnet quadrupoles.

    Science.gov (United States)

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  16. Nonuniform radiation damage in permanent magnet quadrupoles

    International Nuclear Information System (INIS)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-01-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components

  17. Nonuniform radiation damage in permanent magnet quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  18. AA, shims and washers on quadrupole ends

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Due to the fact that much of the field of the quadrupoles was outside the iron (in particular with the wide quadrupoles) and that thus the fields of quadrupoles and bending magnets interacted, the lattice properties of the AA could not be predicted with the required accuracy. After a first running period in 1980, during which detailed measurements were made with proton test beams, corrections to the quadrupoles were made in 1981, in the form of laminated shims at the ends of the poles, and with steel washers. With the latter ones, further refinements were made in an iterative procedure with measurements on the circulating beam. This eventually resulted, amongst other things, in a very low chromaticity, with the Q-values being constant to within +- 0.001 over the total momentum range of 6 %. Here we see the shims and washers on a narrow qudrupole (QFN, QDN). See also 8103203, 8103204, 8103205, 8103206.

  19. On the theoretical description of nuclear quadrupole coupling in Π states of small molecules

    Czech Academy of Sciences Publication Activity Database

    Fišer, J.; Polák, Rudolf

    2013-01-01

    Roč. 425, NOV 2013 (2013), s. 126-133 ISSN 0301-0104 Institutional support: RVO:61388955 Keywords : Π States * Nuclear quadrupole coupling constant * Electric dipole moment Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.028, year: 2013

  20. Effects of static electricity and fabrication parameters on PVDF film ...

    Indian Academy of Sciences (India)

    2018-03-28

    Mar 28, 2018 ... Degree of crystallinity and β-phase fraction are important factors in ... performance. In the present work, effects of intrinsic static electricity, substrate type, PVDF ... the best electroactive properties among all polymers [1] and.

  1. Effect of External Electric Field Stress on Gliadin Protein Conformation

    OpenAIRE

    Singh, Ashutosh; Munshi, Shirin; Raghavan, Vijaya

    2013-01-01

    A molecular dynamic (MD) modeling approach was applied to evaluate the effect of external electric field on gliadin protein structure and surface properties. Static electric field strengths of 0.001 V/nm and 0.002 V/nm induced conformational changes in the protein but had no significant effect on its surface properties. The study of hydrogen bond evolution during the course of simulation revealed that the root mean square deviation, radius of gyration and secondary structure formation, all de...

  2. Impurity quadrupole Kondo ground state in a dilute Pr system Y1-xPrxIr2Zn20

    Science.gov (United States)

    Yamane, Yu; Onimaru, Takahiro; Uenishi, Kazuto; Wakiya, Kazuhei; Matsumoto, Keisuke T.; Umeo, Kazunori; Takabatake, Toshiro

    2018-05-01

    The electrical resistivity ρ and specific heat C of a dilute Pr system Y1-xPrxIr2Zn20 for 0 ≤ x ≤ 0.44 were measured to study the phenomena arising from active quadrupoles of the Pr3+ ion with 4f2 configuration. On cooling, ρ's of all samples monotonically decrease, while the residual resistivity ratio ρ(300 K)/ρ(3 K) drastically decreases with x. In the whole range x ≤ 0.44, the magnetic contribution to the specific heat divided by temperature Cm/T shows a broad maximum at around 10 K, which can be reproduced by a two-level model with a first-excited triplet separated by 30 K from a ground state doublet. This indicates that the crystalline electric field ground state of the Pr ions remains in the Γ3 doublet for the cubic Td point group. On cooling, the Cm/T data for x = 0.085 and 0.44 approach constant values at Texpected from the random two-level model. By contrast, Cm/T for x = 0.044 increases continuously down to 0.08 K, suggesting a non-Fermi liquid state due to the impurity quadrupole Kondo effect.

  3. The monopole and quadrupole vibrations of a hot nucleus

    International Nuclear Information System (INIS)

    Okolowicz, J.; Drozdz, S.; Ploszajczak, M.; Caurier, E.

    1989-03-01

    An extended time-dependent Hartree-Fock approach has been applied to a description of the isoscalar giant monopole and quadrupole vibration modes in the excited nuclear system at finite temperature. The temperature dependence of the resonance characteristics is established for both modes. In anticipation of some anharmonic effects the principle of regularity and single-valuedness has been used to extract the energies of the collective modes. (orig.)

  4. Behaviour of quadrupole mass spectrometer towards noble gases

    International Nuclear Information System (INIS)

    Hasibullah

    1980-01-01

    This paper describes a quadrupole mass spectrometric set-up for noble gas analysis with its potential application to material accountancy at the input accountability tank of a reprocessing facility. Linear dependence of ion source pressure on the inlet pressure was considered to be practicable criterion for the functionality of the instrument. Short term and long term sensitivity variations have also been discussed. No memory effect was observed under the experimental conditions. (author)

  5. Quantized TDHF for isoscalar giant quadrupole resonances in spherical nuclei

    International Nuclear Information System (INIS)

    Drozdz, S.; Okolowicz, J.; Ploszajczak, M.; Caurier, E.

    1988-01-01

    The time-dependent Hartree-Fock theory supplemented with the regularity and single-valuedness quantization condition for the gauge invariant component of the wavefunction is applied to the description of the centroid energy and escape width of isoscalar giant quadrupole resonances in 16 O, 40 Ca and 110 Zr. Calculations are performed using the Skyrme SIII effective interaction. An important role of the finite oscillation amplitude in the mean-field dynamics is emphasized. (orig.)

  6. Global set of quadrupole deformation parameters for even-even nuclei

    International Nuclear Information System (INIS)

    Raman, S.; Nestor, C.W. Jr.

    1986-01-01

    A compilation of experimental results has been completed for the reduced electric quadrupole transition probability [B(E2)up arrow] between the 0 + ground state and the first 2 + state in even-even nuclei. This compilation together with certain simple relationships noted by other authors can be used to make reasonable predictions of unmeasured B(E2)up arrow values. The quadrupole deformation parameter β 2 immediately follows, because β 2 is proportional to [B(E2)up arrow]/sup 1/2/. 8 refs., 7 figs

  7. The development of compact magnetic quadrupoles for ILSE

    International Nuclear Information System (INIS)

    Faltens, A.; Mukherjee, S.; Brady, V.

    1990-08-01

    Magnetic focussing is selected for the 4 MeV to 10 MeV section of the Induction Linac Systems Experiments (ILSE) to study the transport of magnetically focussed spacecharge-dominated beams and to explore the engineering problems in accurate positioning of the magnetic fields in an array of quadrupoles. A prototype development program for such magnets is currently under way. A compact design was selected to decrease the overall accelerator diameter and its cost. The design evolved from a cosine 2θ current distribution, corrected for end effects. Current-dominated magnets are used in a pulsed mode to allow higher current densities compared to standard dc water-cooled conductors. The POISSON and MAFCO codes were used in the design of the magnets. The construction of the quadrupoles is aimed at achieving location accuracy of the magnetic center to within 1 mil (2.54 x 10 -5 m) of the mechanical center

  8. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    Science.gov (United States)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  9. Electric field and temperature effects in irradiated MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, M. A. G., E-mail: marcilei@fei.edu.br; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A. [Centro Universitário da FEI, São Bernardo do Campo, S.P. (Brazil); Aguiar, Vitor A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H. [Instituto de Física da USP, São Paulo, S.P. (Brazil)

    2016-07-07

    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices.

  10. Labor demand effects of rising electricity prices: Evidence for Germany

    International Nuclear Information System (INIS)

    Cox, Michael; Peichl, Andreas; Pestel, Nico; Siegloch, Sebastian

    2014-01-01

    Germany continues to play a pioneering role in replacing conventional power plants with renewable energy sources. While this might be beneficial with respect to environmental quality, it also implies increasing electricity prices. The extent to which this is associated with negative impacts on employment depends on the interrelationship between labor and electricity as input factors in the production process. In this paper, we estimate cross-price elasticities between electricity and heterogeneous labor for the German manufacturing sector. We use administrative linked employer–employee micro-data combined with information on sector-level electricity prices and usage over the period 2003–2007. We find positive, but small conditional cross-price elasticities of labor demand with respect to electricity prices, which means that electricity as an input factor can be replaced by labor to a limited extent when the production level is held constant. In the case of adjustable output, we find negative unconditional cross-price elasticities, implying that higher electricity prices lead to output reductions and to lower labor demand, with low- and high-skilled workers being affected more than medium-skilled. Resulting adverse distributional effects and potential overall job losses may pose challenges for policy-makers in securing public support for the German energy turnaround. - Highlights: • We estimate cross-price elasticities for electricity and labor in manufacturing. • We use linked employer–employee micro-data from Germany for 2003 to 2007. • We find a weak substitutability between electricity and labor for constant output. • We find complementarity between electricity and labor for adjustable output. • Low- and high-skilled workers are more affected than medium-skilled

  11. Wind energy and electricity prices. Exploring the 'merit order effect'

    International Nuclear Information System (INIS)

    Morthost, P.E.; Ray, S.; Munksgaard, J.; Sinner, A.F.

    2010-04-01

    This report focuses on the effect of wind energy on the electricity price in the power market. As the report will discuss, adding wind into the power mix has a significant influence on the resulting price of electricity, the so called merit order effect (MOE). The merit order effect has been quantified and discussed in many scientific publications. This report ends the first phase of a study on the MOE, evaluating the impact of EWEA's 2020 scenarios on future European electricity prices. The basic principles of the merit order effect are provided in the first part of the document. The literature review itself contains methods and tools not only to quantify the merit order effect but also in order to forecast its future range and volume.

  12. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  13. Effects of a static electric field on nonsequential double ionization

    International Nuclear Information System (INIS)

    Li Hongyun; Wang Bingbing; Li Xiaofeng; Fu Panming; Chen Jing; Liu Jie; Jiang Hongbing; Gong Qihuang; Yan Zongchao

    2007-01-01

    Using a three-dimensional semiclassical method, we perform a systematic analysis of the effects of an additional static electric field on nonsequential double ionization (NSDI) of a helium atom in an intense, linearly polarized laser field. It is found that the static electric field influences not only the ionization rate, but also the kinetic energy of the ionized electron returning to the parent ion, in such a way that, if the rate is increased, then the kinetic energy of the first returning electron is decreased, and vice versa. These two effects compete in NSDI. Since the effect of the static electric field on the ionization of the first electron plays a more crucial role in the competition, the symmetric double-peak structure of the He 2+ momentum distribution parallel to the polarization of the laser field is destroyed. Furthermore, the contribution of the trajectories with multiple recollisions to the NSDI is also changed dramatically by the static electric field. As the static electric field increases, the trajectories with two recollisions, which start at the time when the laser and the static electric field are in the same direction, become increasingly important for the NSDI

  14. The effect of electricity prices on industry in Germany

    International Nuclear Information System (INIS)

    Roepenack, A. von

    1992-01-01

    The contribution gives a survey of the general consumption of electricity in the (former) Federal Republic of Germany from 1980 until 1990 and illustrates the effect of electricity prices on industry - safety of the site, competition, influences on prices for electricity, intensity of electricity, comparison to gross increase in value. In addition, the influence of politics on electricity prices is examined. Among other things, we owe the success of our industry on the international market to the increase in our use of electric power. This is the basis of our success in rationalization and our status on the world market. The dependency of industry and industrial products on this form of energy has increased and will continue to do so. Thus the politicians have little room to act if they do not want to influence industry in a negative way. On the basis of the situation described here, electricity prices which are competitive internationally are an essential prerequisite for the future of our economy. (orig./HSCH) [de

  15. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    International Nuclear Information System (INIS)

    Rainer Meinke Carl Goodzeit Penny Ball Roger Bangerter

    2003-01-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of loW--cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet RandD construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  16. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Rainer Meinke

    2003-10-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of low-cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet R&D construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  17. Analysis of effective electrical parameters for CFETR vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xufeng; Xu, Weiwei, E-mail: wwxu@ipp.ac.cn; Du, Shuangsong; Zheng, Jinxing

    2016-11-15

    Highlights: • The eddy current distribution and variation of CFETR vacuum vessel during plasma disruption have been calculated. • Effective electrical parameters can be derived from the eddy current characters. • The method for eddy current and effective electrical parameters is suit for the complex shell with arbitrary shape. - Abstract: The electrical parameters of CFETR (China Fusion Engineering Test Reactor) vacuum vessel are very important to the design of control system and power supply system. Effective electrical parameters are relevant to the dynamic of eddy current. For complex structure, the distribution of eddy current can’t be obtained by analytical form. A method is presented to solve the eddy current of the vacuum vessel in this paper. The effective electrical parameters can be got from the eddy current distribution and variation. The time constant of the CFETR vacuum vessel is derived from the decay characteristics of the eddy current. And the effective resistance and inductance can be derived from the viewpoint of energy for a certain distribution of eddy current.

  18. Working Around Cosmic Variance: Remote Quadrupole Measurements of the CMB

    Science.gov (United States)

    Adil, Arsalan; Bunn, Emory

    2018-01-01

    Anisotropies in the CMB maps continue to revolutionize our understanding of the Cosmos. However, the statistical interpretation of these anisotropies is tainted with a posteriori statistics. The problem is particularly emphasized for lower order multipoles, i.e. in the cosmic variance regime of the power spectrum. Naturally, the solution lies in acquiring a new data set – a rather difficult task given the sample size of the Universe.The CMB temperature, in theory, depends on: the direction of photon propagation, the time at which the photons are observed, and the observer’s location in space. In existing CMB data, only the first parameter varies. However, as first pointed out by Kamionkowski and Loeb, a solution lies in making the so-called “Remote Quadrupole Measurements” by analyzing the secondary polarization produced by incoming CMB photons via the Sunyaev-Zel’dovich (SZ) effect. These observations allow us to measure the projected CMB quadrupole at the location and look-back time of a galaxy cluster.At low redshifts, the remote quadrupole is strongly correlated to the CMB anisotropy from our last scattering surface. We provide here a formalism for computing the covariance and relation matrices for both the two-point correlation function on the last scattering surface of a galaxy cluster and the cross correlation of the remote quadrupole with the local CMB. We then calculate these matrices based on a fiducial model and a non-standard model that suppresses power at large angles for ~104 clusters up to z=2. We anticipate to make a priori predictions of the differences between our expectations for the standard and non-standard models. Such an analysis is timely in the wake of the CMB S4 era which will provide us with an extensive SZ cluster catalogue.

  19. Compact high-field superconducting quadrupole magnet with holmium poles

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, D.B.; Kraus, R.H. Jr.; Lobb, C.T.; Menzel, M.T. (Los Alamos National Lab., NM (United States)); Walstrom, P.L. (Grumman Space Systems, Los Alamos, NM (United States))

    1992-03-15

    A compact high-field superconducting quadrupole magnet was designed and built with poles made of the rare-earth metal holmium. The magnet is intended for use in superconducting coupled-cavity linear accelerators where compact high-field quadrupoles are needed, but where the use of permanent magnets is ruled out because of trapped-flux losses. The magnet has a clear bore diameter of 1.8 cm, outside diameter of 11 cm, length of 11 cm, and pole tip length of 6 cm. The effect of using holmium, a material with a higher saturation field than iron, was investigated by replacing poles made of iron with identical poles made of holmium. The magnet was operated at a temperature of 4.2 K and reached a peak quadrupole field gradient of 355 T/m, a 10% increase over the same magnet with iron poles. This increase in performance is consistent with calculations based on B-H curves that were measured for holmium at 4.2 K. (orig.).

  20. Effect of the radial electric field on turbulence

    International Nuclear Information System (INIS)

    Carreras, B.A.; Lynch, V.E.

    1990-01-01

    For many years, the neoclassical transport theory for three- dimensional magnetic configurations, such as magnetic mirrors, ELMO Bumpy Tori (EBTs), and stellarators, has recognized the critical role of the radial electric field in the confinement. It was in these confinement devices that the first experimental measurements of the radial electric field were made and correlated with confinement losses. In tokamaks, the axisymmetry implies that the neoclassical fluxes are ambipolar and, as a consequence, independent of the radial electric field. However, axisymmetry is not strict in a tokamak with turbulent fluctuations, and near the limiter ambipolarity clearly breaks down. Therefore, the question of the effect of the radial electric field on tokamak confinement has been raised in recent years. In particular, the radial electric field has been proposed to explain the transition from L-mode to H-mode confinement. There is some initial experimental evidence supporting this type of explanation, although there is not yet a self-consistent theory explaining the generation of the electric field and its effect on the transport. Here, a brief review of recent results is presented. 27 refs., 4 figs

  1. Effects of repetition and temperature on Contingent Electrical Stimulation

    DEFF Research Database (Denmark)

    Castrillon, Eduardo E.; Zhou, Xinwen; Svensson, Peter

    ) activity associated with bruxism. Repetition of the electrical stimulus and skin surface temperature (ST) may affect the perception of CES and possibly also the inhibitory EMG effects.Objectives: To determine the effects of stimulus repetition and skin ST on the perception of CES.  Methods: Healthy...

  2. Modelling the electrical properties of concrete for shielding effectiveness prediction

    International Nuclear Information System (INIS)

    Sandrolini, L; Reggiani, U; Ogunsola, A

    2007-01-01

    Concrete is a porous, heterogeneous material whose abundant use in numerous applications demands a detailed understanding of its electrical properties. Besides experimental measurements, material theoretical models can be useful to investigate its behaviour with respect to frequency, moisture content or other factors. These models can be used in electromagnetic compatibility (EMC) to predict the shielding effectiveness of a concrete structure against external electromagnetic waves. This paper presents the development of a dispersive material model for concrete out of experimental measurement data to take account of the frequency dependence of concrete's electrical properties. The model is implemented into a numerical simulator and compared with the classical transmission-line approach in shielding effectiveness calculations of simple concrete walls of different moisture content. The comparative results show good agreement in all cases; a possible relation between shielding effectiveness and the electrical properties of concrete and the limits of the proposed model are discussed

  3. Boson models of quadrupole collective motion

    International Nuclear Information System (INIS)

    Zelevinskij, V.G.

    1985-01-01

    The subject of the lecture is the low-lying excitations of even-even (e-e) spherical nuclei. The predominant role of the quadrupole mode, which determines the structure of spectra and transitions, is obvious on the background of shell periodicity and pair correlations. Typical E2-transitions are strengthened Ω ∼ A 2/3 times in comparison with single particle evaluations. Together with the regularity of the whole picture it gives evidence about collectivization of quadrupole motion. The collective states are combined in bands, where the transition probability are especially great; frequencies ω of the strengthened transitions are small in comparison with pair separation energies of 2 E-bar ∼ 2 MeV. Thus, the description of low-lying excitations of spherical nuclei has to be based on three principles: collectivity (Ω >> 1), adiabaticity (τ ≡ ω/2E-bar << 1) and quadrupole symmetry

  4. Analysis of Therapeutic Effect of Ilex hainanensis Merr. Extract on Nonalcoholic Fatty Liver Disease through Urine Metabolite Profiling by Ultraperformance Liquid Chromatography/Quadrupole Time of Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Jing-jing Li

    2013-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD, the most common form of chronic liver disease, is increased worldwide in parallel with the obesity epidemic. Our previous studies have showed that the extract of I. hainanensis (EIH can prevent NAFLD in rat fed with high-fat diet. In this work, we aimed to find biomarkers of NAFLD and investigate the therapeutic effects of EIH. NAFLD model was induced in male Sprague-Dawley rats by high-fat diet. The NAFLD rats were administered EIH orally (250 mg/kg for two weeks. After the experimental period, samples of 24 h urine were collected and analyzed by ultraperformance liquid chromatography/quadrupole time of flight mass spectrometry (UPLC-Q-TOF. Orthogonal partial least squares analysis (OPLSs models were built to find biomarkers of NAFLD and investigate the therapeutic effects of EIH. 22 metabolites, which are distributed in several metabolic pathways, were identified as potential biomarkers of NAFLD. Taking these biomarkers as screening indexes, EIH could reverse the pathological process of NAFLD through regulating the disturbed pathway of metabolism. The metabolomic results not only supply a systematic view of the development and progression of NAFLD but also provide a theoretical basis for the prevention or treatment of NAFLD.

  5. Investigation of the Effect of Rice Wine on the Metabolites of the Main Components of Herbal Medicine in Rat Urine by Ultrahigh-Performance Liquid Chromatography-Quadrupole/Time-of-Flight Mass Spectrometry: A Case Study on Cornus officinalis

    Directory of Open Access Journals (Sweden)

    Gang Cao

    2013-01-01

    Full Text Available Ultrahigh-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-QTOF/MS was developed for rapid and sensitive analysis of the effect of rice wine on the metabolites of the main components of herbal medicine in rat urine. Using Cornus officinalis as a model of herbal medicine, the metabolite profiles of crude and processed (steaming the crude drug presteeped in rice wine Cornus officinalis extracts in rat urine were investigated. The metabolites of Cornus officinalis were identified by using dynamic adjustment of the fragmentor voltage to produce structure-relevant fragment ions. In this work, we identified the parent compounds and metabolites of crude and processed Cornus officinalis in rats. In total, three parent compounds and seventeen new metabolites of Cornus officinalis were found in rats. The contents of the parent compounds and metabolites in vivo varied significantly after intragastric (i.g. administration of aqueous extracts of crude and processed Cornus officinalis. Data from this study suggests that UPLC-QTOF/MS could be used as a potential tool for uncovering the effects of excipients found in the metabolites of the main components of herbal medicine, in vivo, to predict and discover the processing mechanisms of herbal medicine.

  6. HVS effect in electric-power substations

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, F.F.

    1973-01-01

    A syndrome is described which the author calls the ''HVS effect'' (high-voltage substation) and affects persons working at substations where very high-voltage current is transformed and which disappears shortly after the end of the exposure. It is characterized by a feeling of tightness and oppression affecting the head, laxity and fatigue in the upper extremities and persistent insomnia; electroencephalograms show signs of cerebral pain. (Cis Abstr.)

  7. HVS effect in electric-power substations

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, F F

    1973-01-01

    A syndrome is described which the author calls the ''HVS effect'' (high-voltage substation) and affects persons working at substations where very high-voltage current is transformed and which disappears shortly after the end of the exposure. It is characterized by a feeling of tightness and oppression affecting the head, laxity and fatigue in the upper extremities and persistent insomnia; electroencephalograms show signs of cerebral pain. (Cis Abstr.)

  8. Lightning effects on electrical and nuclear equipment

    International Nuclear Information System (INIS)

    Gary, C.

    1986-01-01

    This paper gives the physical bases on which lightning protection of buildings and other erections such as nuclear power stations depend. To this end it first examines the impact phenomena of lightning, the operating systems of lightning conductors and methods of protection using metal mesh. It then describes various secondary effects of lightning, particularly those which occur inside buildings as a result of the potential rise in earthing systems and electromagnetic induction phenomena. 18 refs [fr

  9. Effects of hypothetical improvised nuclear detonation on the electrical infrastructure

    International Nuclear Information System (INIS)

    Barrett, Christopher L.; Eubank, Stephen; Evrenosoglu, C. Yaman; Marathe, Achla; Marathe, Madhav V.; Phadke, Arun; Thorp, James; Vullikanti, Anil

    2013-01-01

    We study the impacts of a hypothetical improvised nuclear detonation (IND) on the electrical infrastructure and its cascading effects on other urban inter-dependent infrastructures of a major metropolitan area in the US. We synthesize open source information, expert knowledge, commercial software and Google Earth data to derive a realistic electrical transmission and distribution network spanning the region. A dynamic analysis of the geo-located grid is carried out to determine the cause of malfunction of components, and their short-term and long-term effect on the stability of the grid. Finally a detailed estimate of the cost of damage to the major components of the infrastructure is provided.

  10. Effects of hypothetical improvised nuclear detonation on the electrical infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Christopher L.; Eubank, Stephen; Evrenosoglu, C. Yaman; Marathe, Achla; Marathe, Madhav V.; Phadke, Arun; Thorp, James; Vullikanti, Anil [Virginia Tech, Blacksburg, VA (United States). Network Dynamics and Simulation Science Lab.

    2013-07-01

    We study the impacts of a hypothetical improvised nuclear detonation (IND) on the electrical infrastructure and its cascading effects on other urban inter-dependent infrastructures of a major metropolitan area in the US. We synthesize open source information, expert knowledge, commercial software and Google Earth data to derive a realistic electrical transmission and distribution network spanning the region. A dynamic analysis of the geo-located grid is carried out to determine the cause of malfunction of components, and their short-term and long-term effect on the stability of the grid. Finally a detailed estimate of the cost of damage to the major components of the infrastructure is provided.

  11. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  12. Initial value gravitational quadrupole radiation theorem

    International Nuclear Information System (INIS)

    Winicour, J.

    1987-01-01

    A rigorous version of the quadrupole radiation formula is derived using the characteristic initial value formulation of a general relativistic fluid space-time. Starting from initial data for a Newtonian fluid, an algorithm is presented that determines characteristic initial data for a one-parameter family of general relativistic fluid space-times. At the initial time, a one-parameter family of space-times with this initial data osculates the evolution of the Newtonian fluid and has leading order news function equal to the third time derivative of the transverse Newtonian quadrupole moment

  13. SKEW QUADRUPOLE FOCUSING LATTICES AND APPLICATIONS

    International Nuclear Information System (INIS)

    Parker, B.

    2001-01-01

    In this paper we revisit using skew quadrupole fields in place of traditional normal upright quadrupole fields to make beam focusing structures. We illustrate by example skew lattice decoupling, dispersion suppression and chromatic correction using the neutrino factory Study-II muon storage ring design. Ongoing BNL investigation of flat coil magnet structures that allow building a very compact muon storage ring arc and other flat coil configurations that might bring significant magnet cost reduction to a VLHC motivate our study of skew focusing

  14. Fringe effect of electrical capacitance and resistance tomography sensors

    International Nuclear Information System (INIS)

    Sun, Jiangtao; Yang, Wuqiang

    2013-01-01

    Because of the ‘soft-field’ nature, all electrical tomography sensors suffer from electric field distortion, i.e. the fringe effect. In electrical resistance tomography (ERT) sensors, small pin electrodes are commonly used. It is well known that the pin electrodes result in severe electric field distortion or the fringe effect, and the sensing region of such an ERT sensor spreads out of the pin electrode plane to a large volume. This is also true for electrical capacitance tomography (ECT) sensors, even though it is less severe because of larger electrodes and grounded end guards used. However, when the length of electrodes in an ECT sensor without guards is reduced to almost the same dimension as those in an ERT sensor, the fringe effect is equally obvious. To investigate the fringe effect of ERT and ECT sensors with and without guards, simulations were carried out with different length of electrodes and the results are compared with the corresponding 2D simulation. It is concluded that ECT and ERT sensors with longer electrodes have less fringe effect. Because grounded end guards are effective in reducing the fringe effect of ECT sensors, we propose to apply grounded guards in ERT sensors and integrate ECT and ERT sensors together. Simulation results reveal that ERT sensors with grounded guards have less fringe effect. While commonly current excitation is used with ERT sensors, we propose voltage excitation instead to apply the grounded guards. The feasibility of this approach has been verified by experiment. Finally, a common structure for reducing the fringe effect is proposed for ECT and ERT sensors for the first time to simplify the sensor structure and reduce the mutual interference in ECT/ERT dual-modality measurements. (paper)

  15. Cross-border effects of capacity mechanisms in electricity markets

    International Nuclear Information System (INIS)

    Elberg, Christina

    2014-01-01

    To ensure security of supply in liberalized electricity markets, different types of capacity mechanisms are currently being debated or have recently been implemented in many European countries. The purpose of this study is to analyze the cross-border effects resulting from different choices on capacity mechanisms in neighboring countries. We consider a model with two connected countries that differ in the regulator's choice on capacity mechanism, namely strategic reserves or capacity payments. In both countries, competitive fi rms invest in generation capacity before selling electricity on the spot market. We characterize market equilibria and find the following main result: While consumers' costs may be the same under both capacity mechanisms in non-connected countries, we show that the different capacity mechanisms in interconnected countries induce redistribution effects. More precisely, we nd that consumers' costs are higher in countries in which reserve capacities are procured than in countries in which capacity payments are used to ensure the targeted reliable level of electricity.

  16. The quadrupole moments of Cd and Zn isotopes - an apology

    Science.gov (United States)

    Haas, H.; Barbosa, M. B.; Correia, J. G.

    2016-12-01

    In 2010 we presented an update of the nuclear quadrupole moments (Q) for the Cd and Zn isotopes, based essentially on straightforward density functional (DF) calculations (H. Haas and J.G. Correia, Hyperfine Interact 198, 133-137 (2010)). It has been apparent for some years that the standard DF procedure obviously fails, however, to reproduce the known electric-field gradient (EFG) for various systems, typical cases being Cu2O, As and Sb, and the solid halogens. Recently a cure for this deficiency has been found in the hybrid DF technique. This method is now applied to solid Cd and Zn, and the resultant quadrupole moments are about 15 % smaller than in our earlier report. Also nuclear systematics, using the recently revised values of Q for the long-lived 11/2 isomers in111Cd to129Cd, together with earlier PAD data for107,109Cd, leads to the same conclusion. In addition, EFG calculations for the cadmium dimethyl molecule further support the new values: Q(111Cd, 5/2+) = .683(20) b, Q(67Zn, gs) = .132(5) b. This implies, that the value for the atomic EFG in the 3it {P}1 state of Zn must be revised, as it has been for Cd.

  17. Effect of sodium adsorption ratio and electric conductivity of the ...

    African Journals Online (AJOL)

    Infiltration measurements using a double-ring infiltrometer were conducted on a sandy-loam soil located in Saudi Arabia. The measurements were performed for an undisturbed soil. The effect of sodium adsorption ratio (SAR) and electric conductivity (EC) of the applied water on infiltration rate was examined. The infiltration ...

  18. Proximity effects of high voltage electric power transmission lines on ...

    African Journals Online (AJOL)

    The proximity effects of high voltage electric power transmission lines on Leyland Cypress (xCupressocyparis leylandii (Dallim. and A.B. Jacks.) Dallim) and Japanese Privet (Ligustrum japonicum Thunb.) growth were examined in a private nursery located in Sakarya, Turkey. Five transect were randomly chosen in both ...

  19. Comparison of the Effect of Neuromuscular Electrical Stimulation ...

    African Journals Online (AJOL)

    Children with cerebral palsy (CP) often demonstrate poor hand function due to spasticity. Thus spasticity in the wrist and finger flexors poses a great deal of functional limitations. This study was therefore designed to compare the effectiveness of Cryotherapy and Neuromuscular Electrical Stimulation (NMES) on spasticity ...

  20. Corrosion Effects on the I-V Characteristics of Electrically ...

    African Journals Online (AJOL)

    Experimental analysis on the effects of atmospheric Pollution and environmental degradation on the electrical properties of un-protected high tension cables, using copper and Aluminum wires of various diameters as case study, has been advanced. The analysis of the various data obtained in the course of the experiment, ...

  1. Pressure and graphite effects on electrical conductivity in pyroxene

    Science.gov (United States)

    Wang, D.; Liu, T.; Shen, K.; Li, B.

    2017-12-01

    The geophysical observations including magnetotelluric (MT) and geomagnetic deep sounding show the distribution of electrical conductivity in the Earth's interior. The laboratory-based conductivity measurements of minerals and rocks are usually used to interpret the geophysical observations. Pyroxene is the second most abundant components in the upper mantle, and the electrical conductivity of pyroxene is important to understanding the bulk electrical conductivity. The electrical conductivity of a mineral is affected by many factors, such as its chemical composition, temperature, pressure. Here we report the effects of pressure and graphite on the electrical conductivity of pyroxene and applied to interpretation of MT observation. The starting materials are natural of orthopyroxene and clinopyroxe crystals. A powder sample with grain size 10 um was packed in a Mo capsule and hot-pressed at high pressures and temperatures using a 1000-ton Walker-type uniaxial split-cylinder apparatus. A mixture of pyroxene and a few percent of diamond was annealed at high pressure and temperature. All the hot-pressed samples before and after electrical conductivity measurements, were characterized by scanning electron microscopy, Fourier-Transform Infrared and Raman spectroscopy. High pressure conductivity experiments were carried out in a Walker-type multi-anvil apparatus using a 14/8 assembly. We use a Solartron 1260 Impedance/Gain -phase analyzer with 1V applied voltage within a frequency range of 1M-0.1 Hz to collect data. Complex impedance data on were collected in several heating and cooling cycles The electrical conductivity of pyroxene was made at 4,7,10 GPa, and electrical conductivity of the graphite-bearing pyroxene was measured at 4GPa. The results show the electrical conductivity decrease with the increasing of pressure, which may correspond to the transform from orthopyroxene to clinopyroxene. The results can be used to explain a drop of the electrical conductivity in

  2. All systems go for LHC quadrupoles

    CERN Multimedia

    2003-01-01

    The series fabrication of the Main Quadrupole cold masses for the LHC has begun with the delivery of the first unit on February 12th. The superconducting dipole magnets required to bend the proton beams around the LHC are often in the news. Less famous, perhaps, but equally important are the 360 main quadrupole (MQ) magnets, which will perform the principal focusing around the 27 km ring. CERN and CEA-Saclay began collaborating on the development and prototyping of these magnets in 1989. This resulted in five highly successful quadrupole units - also known as short straight sections - one of which was integrated for testing in String 1, and two others of the final design in String 2. Once the tests had confirmed the validity of the design and realization, the fabrication of the 360 cold masses had to be transferred to industry. After highly competitive tendering, the German firm ACCEL Instruments was entrusted both with the construction of the quadrupole magnets themselves, and with their assembly into the co...

  3. Collective Quadrupole Excitations of Transactinide Nuclei

    CERN Document Server

    Zajac, K; Pomorski, K; Rohozinski, S G; Srebrny, J

    2003-01-01

    The quadrupole excitations of transuranic nuclei are described in the frame of the microscopic Bohr Hamiltonian modified by adding the coupling with the collective pairing vibrations. The energies of the states from the ground-state bands in U to No even-even isotopes as well as the B(E2) transition probabilities are reproduced within the model containing no adjustable parameters.

  4. Effects of energetic particle precipitation on the atmospheric electric circuit

    International Nuclear Information System (INIS)

    Reagan, J.B.; Meyerott, R.E.; Evans, J.E.; Imhof, W.L.; Joiner, R.G.

    1983-01-01

    The solar particle event (SPE) of August 1972 is one of the largest that has occurred in the last 20 years. Since it is so well documented, it can serve as a good example of a major perturbation to the atmospheric electric system. In this paper, ion production rates and conductivities from the ground to 80 km at the peak intensity of the event on August 4 and for 30, 35, and 40 km for the 6-day duration of the event are presented. At the peak of the event, the proton and electron precipitation currents, the ohmic current, and the vertical electric field are calculated inside the polar cap. The particle precipitation currents at this time greatly exceed the normal air earth current at altitudes above 30 km and produce reversals in the vertical electric field at 28 km and above. Calculations are presented of the vertical electric field at altitudes near 30 km where balloon measurements were made. Good agreement between the calculated and the measured vertical electric field verifies our ability to calculate disturbed conductivities at these altitudes from satellite measurements of proton spectra incident on the atmosphere. Despite the fact that at the peak of the event the vertical electric field near 30 km was shorted out by the solar particles and that the current carried by the solar particles exceeded the fair weather air-earth current density in the stratosphere by large factors, it is concluded that the largest effect of an SPE of this magnitude on the atmospheric electric circuit is due to the Forbush decrease in the galactic cosmic ray flux rather than to the large increase in solar proton flux

  5. Immediate effect of laryngeal surface electrical stimulation on swallowing performance.

    Science.gov (United States)

    Takahashi, Keizo; Hori, Kazuhiro; Hayashi, Hirokazu; Fujiu-Kurachi, Masako; Ono, Takahiro; Tsujimura, Takanori; Magara, Jin; Inoue, Makoto

    2018-01-01

    Surface electrical stimulation of the laryngeal region is used to improve swallowing in dysphagic patients. However, little is known about how electrical stimulation affects tongue movements and related functions. We investigated the effect of electrical stimulation on tongue pressure and hyoid movement, as well as suprahyoid and infrahyoid muscle activity, in 18 healthy young participants. Electrical stimulation (0.2-ms duration, 80 Hz, 80% of each participant's maximal tolerance) of the laryngeal region was applied. Each subject swallowed 5 ml of barium sulfate liquid 36 times at 10-s intervals. During the middle 2 min, electrical stimulation was delivered. Tongue pressure, electromyographic activity of the suprahyoid and infrahyoid muscles, and videofluorographic images were simultaneously recorded. Tongue pressure during stimulation was significantly lower than before or after stimulation and was significantly greater after stimulation than at baseline. Suprahyoid activity after stimulation was larger than at baseline, while infrahyoid muscle activity did not change. During stimulation, the position of the hyoid at rest was descended, the highest hyoid position was significantly inferior, and the vertical movement was greater than before or after stimulation. After stimulation, the positions of the hyoid at rest and at the maximum elevation were more superior than before stimulation. The deviation of the highest positions of the hyoid before and after stimulation corresponded to the differences in tongue pressures at those times. These results suggest that surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. NEW & NOTEWORTHY Surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. Tongue muscles may contribute to overshot recovery

  6. Effects of pulsed electric field on ULQ and RFP plasmas

    International Nuclear Information System (INIS)

    Watanabe, M.; Saito, K.; Suzuki, T.

    1997-01-01

    Dynamo activity and self-organization processes are investigated using the application of pulsed poloidal and toroidal electric fields on ULQ and RFP plasmas. Synchronized to the application of the pulsed electric fields, the remarkable responses of the several plasma parameters are observed. The plasma has a preferential magnetic field structure, and the external perturbation activates fluctuation to maintain the structure through dynamo effect. This process changes the total dissipation with the variation of magnetic helicity in the system, showing that self organization accompanies an enhanced dissipation. (author)

  7. Electric field effects in scanning tunneling microscope imaging

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Quaade, Ulrich; Grey, Francois

    1998-01-01

    We present a high-voltage extension of the Tersoff-Hamann theory of scanning tunneling microscope (STM) images, which includes the effect of the electric field between the tip and the sample. The theoretical model is based on first-principles electronic structure calculations and has no adjustable...... parameters. We use the method to calculate theoretical STM images of the monohydrate Si(100)-H(2x1) surface with missing hydrogen defects at -2V and find an enhanced corrugation due to the electric field, in good agreement with experimental images....

  8. Electrical circuit modeling of conductors with skin effect

    International Nuclear Information System (INIS)

    Kerst, D.W.; Sprott, J.C.

    1986-01-01

    The electrical impedance of a lossy conductor is a complicated function of time (or frequency) because of the skin effect. By solving the diffusion equation for magnetic fields in conductors of several prototypical shapes, the impedance can be calculated as a function of time for a step function of current. The solution suggests an electrical circuit representation that allows calculation of time-dependent voltages and currents of arbitrary waveforms. A technique using an operational amplifier to determine the current in such a conductor by measuring some external voltage is described. Useful analytical approximations to the results are derived

  9. Electricity

    International Nuclear Information System (INIS)

    Tombs, F.

    1983-01-01

    The subject is discussed, with particular reference to the electricity industry in the United Kingdom, under the headings; importance and scope of the industry's work; future fuel supplies (estimated indigenous fossil fuels reserves); outlook for UK energy supplies; problems of future generating capacity and fuel mix (energy policy; construction programme; economics and pricing; contribution of nuclear power - thermal and fast reactors; problems of conversion of oil-burning to coal-burning plant). (U.K.)

  10. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Pascal H., E-mail: pascal-h.fries@cea.fr [Université Grenoble Alpes, INAC-SCIB, RICC, F-38000 Grenoble (France); CEA, INAC-SCIB, RICC, F-38000 Grenoble (France); Belorizky, Elie [Université Grenoble Alpes, LIPHY, F-38000 Grenoble (France); CEA, Leti-Clinatec, F-38000 Grenoble (France)

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  11. ''Water bath'' effect during the electrical underwater wire explosion

    International Nuclear Information System (INIS)

    Oreshkin, V. I.; Chaikovsky, S. A.; Ratakhin, N. A.; Grinenko, A.; Krasik, Ya. E.

    2007-01-01

    The results of a simulation of underwater electrical wire explosion at a current density >10 9 A/cm 2 , total discharge current of ∼3 MA, and rise time of the current of ∼100 ns are presented. The electrical wire explosion was simulated using a one-dimensional radiation-magnetohydrodynamic model. It is shown that the radiation of the exploded wire produces a thin conducting plasma shell in the water in the vicinity of the exploding wire surface. It was found that this plasma shell catches up to 30% of the discharge current. Nevertheless, it was shown that the pressure and temperature of the wire material remain unchanged as compared with the idealized case of the electrical wire explosion in vacuum. This result is explained by a 'water bath' effect

  12. Cryogenic tests of the first two LHC quadrupole prototypes

    International Nuclear Information System (INIS)

    Genevey, P.; Deregel, J.; Perot, J.; Rifflet, J.M.; Vedrine, P.; Cortella, J.; Le Coroller, A.

    1994-01-01

    Two LHC (Large Hadron Collider) twin aperture quadrupole prototypes were constructed at CEA Saclay (a CERN-CEA collaboration agreement). Their main characteristics are: 3.05 m length, 56 mm coil aperture, 180 mm between the two apertures, 252 T/m nominal gradient at 15060 A. They have been tested and measured in the 1.8 K Saclay test facility in an horizontal cryostat. The magnets are instrumented in order to investigate their behaviour during cool-down, stand-by, powering and current ramping, quenching and warming-up. A summary of the cryogenic, mechanical, pressure and electrical measurements is presented. The quench protection heaters are efficient down to 3000 A. Losses during ramping up and down are reported. (from authors) 5 fig., 11 ref

  13. A radio frequency quadrupole ion beam buncher for ISOLTRAP

    CERN Document Server

    Bollen, G; Dezfuli, A M G; Henry, S; Herfurth, F; Kellerbauer, A G; Kim, T; Kluge, H J; Kohl, A; Lamour, E; Lunney, M D; Moore, R B; Quint, W; Schwarz, S; Varfalvy, P; Vermeeren, L

    1998-01-01

    ISOLTRAP is a Penning trap spectrometer at the on-line mass separator ISOLDE at CERN for the mass determination of radioisotopes. It consists of three electromagnetic traps in tandem; a Paul trap for ISOLDE beam collection, a Penning trap for cooling and purification and a high-precision Penning trap for the measurement of masses by cyclotron resonance. The Paul trap, which collects radionuclide ions using only electric fields and a noble buffer gas, has been essential for the masses of radionuclides that cannot be surface ionized. The success with this system has led to the present program to increase the collection efficiency by replacing the Paul trap by a radiofrequency quadrupole ion guide operating as a buncher. This system would also provide a DC ISOLDE beam of emittance approaching 1$\\pi$ -mm-mrad. (3 refs).

  14. Electric field effects in hyperexcitable neural tissue: A review

    International Nuclear Information System (INIS)

    Durand, D.M.

    2003-01-01

    Uniform electric fields applied to neural tissue can modulate neuronal excitability with a threshold value of about 1mV mm -1 in normal physiological conditions. However, electric fields could have a lower threshold in conditions where field sensitivity is enhanced, such as those simulating epilepsy. Uniform electrical fields were applied to hippocampal brain slices exposed to picrotoxin, high potassium or low calcium solutions. The results in the low calcium medium show that neuronal activity can be completely blocked in 10% of the 30 slices tested with a field amplitude of 1mV mm -1 . These results suggest that the threshold for this effect is clearly smaller than 1mV mm -1 . The hypothesis that the extracellular resistance could affect the sensitivity to the electrical fields was tested by measuring the effect of the osmolarity of the extracellular solution on the efficacy of the field. A 10% decrease on osmolarity resulted in a 56% decrease ( n =4) in the minimum field required for full suppression. A 14% in osmolarity produced an 81% increase in the minimum field required for full suppression. These results show that the extracellular volume can modulate the efficacy of the field and could lower the threshold field amplitudes to values lower than ∼1mmV mm -. (author)

  15. The effect of costs and regulation on electricity prices

    International Nuclear Information System (INIS)

    Schlaf, E.P.

    1991-01-01

    Two distinct econometric tests were performed to determine if state price regulation of public utilities has had a measurable impact on retail electricity prices. The results of both tests agree that, during the 1971-1985 period, average national electricity prices in each of the three major consuming sectors and the four Census regions were below the level which would have been preferred by profit-maximizing monopolists. Electricity consumers received price benefits during the sample period as a result of regulation. The first test of the effectiveness of state price regulation used a 'revealed preference' approach by comparing the actual prices set by regulatory commissioners with prices and outcomes predicted by three competing theories of regulatory motivation. The second test of the effectiveness of price regulation combined traditional cost function inputs with regulatory variables in reduced-form price equations to determine whether the amount of regulatory intensity, as measured by the number of staff members per regulated utility, is associated with declining electricity prices and whether appointed commissioners allow higher prices than elected commissioners

  16. The electric field standing wave effect in infrared transflection spectroscopy

    Science.gov (United States)

    Mayerhöfer, Thomas G.; Popp, Jürgen

    2018-02-01

    We show that an electric field standing wave effect is responsible for the oscillations and the non-linear dependence of the absorbance on the layer thickness in thin layers on a reflective surface. This effect is connected to the occurrence of interference inside these layers. Consequently, the absorptance undergoes a maximum electric field intensity enhancement at spectral positions close to those where corresponding non-absorbing layers on a metal show minima in the reflectance. The effect leads to changes of peak maxima ratios with layer thickness and shows the same periodicity as oscillations in the peak positions. These peculiarities are fully based on and described by Maxwell's equations but cannot be understood and described if the strongly simplifying model centered on reflectance absorbance is employed.

  17. Transmission Line Analysis of the Superconducting Quadrupole Chains of the LHC Collider at CERN

    CERN Document Server

    Dahlerup-Petersen, K

    2003-01-01

    Key information for determination of fundamental design features of magnet powering and protection circuits can be retrieved from the results of transmission line calculations of the superconducting magnet chains in a particle accelerator. Modelling and simulation of the behaviour of long magnet strings provide important data for the expected electrical behaviour and performances under all operating conditions. The presented results of a transmission line study concerns the sixteen superconducting main quadrupole chains QF/QD of CERN's future LHC collider. The paper details the elaboration of the synthesized electrical model of the individual quadrupoles and the associated lumped transmission line. It presents results on the current ripple for a given converter voltage output characteristics, the magnet excitation, leakage and earth currents during the ramping procedure, the impedance resonance spectrum and the need for individual magnet damping and the propagation, reflection, superposition and damping of th...

  18. Competition between pairing and quadrupole deformation in the yrast sequence of sup(150,152)Dy

    International Nuclear Information System (INIS)

    Aberg, S.

    1984-05-01

    The yrast spectra are investigated for the non-collective nuclei sup(150,152)Dy using the Nilsson-Strutinsky + blocked BCS model. The separate effects from the pairing force and the quadrupole force (deformation changes) are studied. It is found that the pairing force is most important in describing the yrast line up to Iproportional30, while the quadrupole force is most important for I> or approx.20. The calculated increase of the oblate deformation with increasing spin is explained as an antipairing effect when only valence nucleons are building the total spin and as a polarization effect when the core becomes excited. (orig.)

  19. Electrical stimulation vs thermal effects in a complex electromagnetic environment.

    Science.gov (United States)

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Sánchez, Miguel

    2009-08-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10(-4)) than that based on thermal considerations (exposure quotient 0.16 10(-4)). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  20. Electrical stimulation vs thermal effects in a complex electromagnetic environment

    International Nuclear Information System (INIS)

    Paniagua, Jesus M.; Rufo, Montana; Jimenez, Antonio; Antolin, Alicia; Sanchez, Miguel

    2009-01-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10 -4 ) than that based on thermal considerations (exposure quotient 0.16 10 -4 ). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  1. Quadrupole moment and a proton halo structure in 17F (Iπ = 5/2+)

    International Nuclear Information System (INIS)

    Zhou Dongmei; Zheng Yongnan; Yuan Daqing; Xizhen, Zhang; Zuo Yi; Minamisono, T; Matsuta, M; Fukuda, M; Mihara, M; Zhang Chunlei; Zhiqiang, Wang; Du Enpeng; Luo Hailong; Xu Guoji; Zhu Shengyun

    2007-01-01

    The quadrupole moment of light nuclei 17 F in the ground state (I π = 5/2 + ) is measured by the β-NMR method. The effective charge of the last proton in a d 5/2 orbit for 17 F is extracted from the measured quadrupole moment Q( 17 F) divided by the quadrupole moment Q sp calculated with a single particle model. A proton effective charge of e eff p = 1.12 ± 0.07e is obtained, which is in agreement with that given by a particle-vibration coupling model calculation within the experimental error. The present value of the proton effective charge is strong evidence for the existence of a proton skin in 17 F (I π = 5/2 + )

  2. Optimized Superconducting Quadrupole Arrays for Multiple Beam Transport

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer B. [Advanced Magnet Lab, Inc., Melbourne, FL (United States); Goodzeit, Carl L. [Advanced Magnet Lab, Inc., Melbourne, FL (United States); Ball, Millicent J. [Advanced Magnet Lab, Inc., Melbourne, FL (United States)

    2005-09-20

    This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive method that involves use of iron shielding.

  3. Transistor regenerative spectrometer for 14N nuclear quadrupole resonance study

    International Nuclear Information System (INIS)

    Anferov, V.P.; Mikhal'kov, V.M.

    1981-01-01

    Improvement of the Robinson transducer for investigations of nuclear quadrupole resonance (NQR) in 14 N is described. Amplifier of the suggested transducer is made using p-n field effect transistor and small-noise SHF bipolar transistor. Such a circuit permits to obtain optimal relation between input resistance, low-frequency noises and transconductance which provides uniform gain of the transducer in the frequency range of 0.6-12 MHz and permits to construct a transistor spectrometer of NQR not yielding to a lamp spectrometer in sensitivity [ru

  4. Quadrupole to BPM offset determination in Indus-2

    International Nuclear Information System (INIS)

    Jena, Saroj; Ghodke, A.D.; Singh, G.

    2009-01-01

    A feasibility of finding the quadrupole to BPM offset using beam based alignment (BBA) technique in Indus-2 has been studied. The measurements of the offsets between BPM and quadrupoles could be performed by using quadratic fitting for the minima of the orbit response w. r. t. changes in the quadrupole strengths. These offsets will be integrated to the orbit data during closed orbit correction. There are 72 quadrupoles and 56 BPMs in Indus-2. However the assessment of Quad-BPM offsets is not feasible in some cases due to non-availability of BPM adjacent to quadrupole and also in some cases because of a large phase advance between quadrupole and nearby BPM. Here single corrector method is used to obtain these offsets and assumed the current of each quadrupole can be varied independently. A graphical user interface (GUI) is developed in MATLAB for the use of BBA in Indus-2. (author)

  5. Electrical detection of magnetization dynamics via spin rectification effects

    Energy Technology Data Exchange (ETDEWEB)

    Harder, Michael, E-mail: michael.harder@umanitoba.ca; Gui, Yongsheng, E-mail: ysgui@physics.umanitoba.ca; Hu, Can-Ming, E-mail: hu@physics.umanitoba.ca

    2016-11-23

    The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.

  6. Nuclear quadrupole deformations and anisotropic angular correlations between K x rays and gamma rays

    International Nuclear Information System (INIS)

    Khalil, A.E.

    1983-01-01

    Anisotropic angular correlation between gamma rays and the K x rays following the K conversion from nuclei with large static deformations has been studied. A complete theoretical expression for 181 Ta, the second known case of this phenomenon, is presented. This case involves several mixed nuclear transitions which result in 62% of the x rays arising from magnetic dipole internal-conversion processes and 38% arising from electric-quadrupole internal-conversion processes

  7. Electric quadruple moments of high-spin isomers in 209Po

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Nicolescu, G.; Plostinaru, D.

    1998-01-01

    The electric quadrupole interaction of the 209 Po (17/2) - and (13/2) - isomers in a Bi single-crystal was measured. The results for the quadrupole moments are connected with studies of isomers in Po isotopes. A two level analysis procedure was employed for the combined data of (17/2) - and (13/2) - isomers. The quadrupole moments of the Po isotopes are of special interest for testing nuclear models because of supposed simple nuclear structure with two protons outside a closed magic number shell. While the g-factors are significant for the predominant few-particle structures often present at high spins, the quadrupole moments are sensitive to additional contributions arising from core deformation effects. A systematic study of quadrupole moments of 12 + isomers in Pb isotopes has indeed demonstrated that the valence neutron effective charge increases as more particle pairs are removed from the 208 Pb core. In the present work, quadrupole coupling constants were measured for the isomers by the time-differential perturbed angular distribution (TDPAD) technique, in the presence of quadrupole interactions from the internal electric field gradient (EFG) in Bi crystal. The experiments were performed using a pulsed deuteron-beam of 13 MeV. The (17/2) - isomer state (T 1/2 = 88 ns) and the (13/2) - isomer state (T 1/2 = 24 ns) were populated and aligned by the 209 Bi(d,2n) reaction. The repetition time of the pulse was 10 μs and the width was around 5 ns (FWHM). The rather low bombardment energy was chosen to reduce population of higher spin isomers and to optimize the population of 209 Po((17/2) - ) and 209 Po((13/2) - ). The 209 Po single crystal target was held at a temperature of 470 K in order to reduce possible radiation damage effects. The experiments have been performed with the c axis of the single crystal at 45 angle and 90 angle to the beam direction. We chose to use a calibration based on isomers with well-understood nuclear structure allowing a reliable

  8. The stochastic effects on the Brazilian Electrical Sector

    International Nuclear Information System (INIS)

    Ferreira, Pedro Guilherme Costa; Oliveira, Fernando Luiz Cyrino; Souza, Reinaldo Castro

    2015-01-01

    The size and characteristics of the Brazilian Electrical Sector (BES) are unique. The system includes a large-scale hydrothermal power system with many hydroelectric plants and multiple owners. Due to the historical harnessing of natural resources, the National Interconnected System (NIS) was developed outside of the economic scale of the BES. The central components of the NIS enable energy generated in any part of Brazil to be consumed in distant regions, considering certain technical configurations. This interconnection results in a large-scale complex system and is controlled by robust computational models, used to support the planning and operation of the NIS. This study presents a different vision of the SEB, demonstrating the intrinsic relationship between hydrological stochasticity and the activities executed by the system, which is an important sector of the infrastructure in Brazil. The simulation of energy scenarios is crucial to the optimal manner to operate the sector and to supporting decisions about whether expansion is necessary, thus, avoiding unnecessary costs and/or losses. These scenarios are an imposing factor in the determination of the spot cost of electrical energy, given that the simulated quantities of water in the reservoirs are one of the determinants for the short-term energy price. - Highlights: • The relationship between the hydrological regimes and the energy policy and planning in Brazil; • An overview about the stochastic effects on the Brazilian Electrical Sector; • The stochasticity associated with the Brazilian electrical planning; • The importance of hydro resources management for energy generation in Brazil;

  9. Electric-field effects in optically generated spin transport

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  10. Electric-field effects in optically generated spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2009-05-25

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  11. Air pollution health effects of electric power generation

    International Nuclear Information System (INIS)

    1975-11-01

    stitutt for Atomenergi (IFA) and Norsk Institutt for Luftforskning (NILU) have undertaken a joint project with the ultimate purpose of comparing the relative air pollution health effects of gas-fired, oil-fired and uranium-fueled electric power generating plants. Phase I of the project includes a literature review on pollutant emissions and their health effects. The methods which have previouously been used to compare the relative health effects are also reviewed. The radioactive effluents from nuclear power plants are tabulated and the health effects discussed on the basis of data from Hiroshima and Nagasaki, medical irradiation therapy and studies of USAEC and UKAEA employees. It is pointed out that there is no indication that chronic low-level radiation has somatic effects, and the Japanese data gives no conclusive indication of genetic effects. Background irradiation in Kerala and Guarapari and in USA is also cited. Following a brief presentation of the principal air pollutants from fossil fuels a number of studies of 'smog' incidents in the UK and USA are discussed, and a prediction equation based on multiple regression analysis is presented. Finally the methods of comparing the health effects from nuclear and fossil-fuel plants are discussed. In an appendix Lave and Freeburg's study 'Health effects of electricity generation from coal, oil and nuclear fuel' is evaluated. (JIW)

  12. LARP Long Nb3Sn Quadrupole Design

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2008-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb 3 Sn conductor. The goal of these magnets is to be a proof of principle that Nb 3 Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure

  13. LARP Long Nb3Sn Quadrupole Design

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; Fermilab; Brookhaven; LBL, Berkeley; Texas A-M

    2007-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb3Sn conductor. The goal of these magnets is to be a proof of principle that Nb3Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure

  14. LARP Long Nb3Sn Quadrupole Design

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2007-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb 3 Sn conductor. The goal of these magnets is to be a proof of principle that Nb 3 Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure

  15. Quadrupole collective excitations in rapidly rotating nuclej

    International Nuclear Information System (INIS)

    Mikhajlov, I.N.

    1983-01-01

    The spectrum of collective quadrupole excitations in nuclei is investigated. The average nucleus field has the axial symmetry and rotation occurs relatively to this axis. Dependences of the spectrum of quadrupole oscillations on rotation rate for classic liquid drop (CLD) and for a drop of fermi-liquid (DFL) with fissionability parameter X=0.62 ( 154 Er) are presented. The dependence of probabilities of E2-transitions between single-phonon and phonon-free states on rotation rate for CLD and DFL with fussionability parameter X=0.62 ( 154 Er) is also presented. It is shown that for CLD collective E2-transition of states of yrast-consequence is absolutely forbidden. For DFL transitions are possible that lead to decay of phonon-free state with the excitation of phonons of γ-modes and decrease of angular momentum

  16. Design of the CLIC Quadrupole Vacuum Chambers

    CERN Document Server

    Garion, C

    2010-01-01

    The Compact Linear Collider, under study, requires vacuum chambers with a very small aperture, of the order of 8 mm in diameter, and with a length up to around 2 m for the main beam quadrupoles. To keep the very tight geometrical tolerances on the quadrupoles, no bake out is allowed. The main issue is to reach UHV conditions (typically 10-9 mbar static pressure) in a system where the vacuum performance is driven by water outgassing. For this application, a thinwalled stainless steel vacuum chamber with two ante chambers equipped with NEG strips, is proposed. The mechanical design, especially the stability analysis, is shown. The key technologies of the prototype fabrication are given. Vacuum tests are carried out on the prototypes. The test set-up as well as the pumping system conditions are presented.

  17. Resolution limit of probe-forming systems with magnetic quadrupole lens triplets and quadruplets

    International Nuclear Information System (INIS)

    Ponomarev, A.G.; Melnik, K.I.; Miroshnichenko, V.I.; Storizhko, V.E.; Sulkio-Cleff, B.

    2003-01-01

    Over the past decade, in MeV ion beam microanalysis efforts to achieve a spatial resolution better than 0.1 μm with a beam current of ∼100 pA have been connected with microprobes of new generation where the probe is formed by means of separated magnetic quadrupole lens structures . However, as was pointed out in , no dramatic improvements in spatial resolution have been produced so far. For better understanding of the situation the authors carried out theoretical studies of multiparameter sets of probe-forming systems based on separated triplets and quadruplets of magnetic quadrupole lenses. Comparisons were made between the highest current values attained at different systems for a given beam spot size. The maximum parasitic sextupole and octupole field components were found whose contributions to spot broadening are tolerable. It is shown that the use of modern electrostatic accelerators and precision magnetic quadrupole lenses makes it possible to eliminate the effect of chromatic aberrations and second- and third-order parasitic aberrations resulting from distortions of the quadrupole lens symmetry. Therefore probe-forming systems with triplets and quadruplets of magnetic quadrupole lenses have a lower theoretical spatial resolution limit which is restricted mainly by intrinsic spherical third-order aberrations in state-of-the-art microprobes

  18. Superconducting quadrupoles for the SLC final focus

    International Nuclear Information System (INIS)

    Erickson, R.; Fieguth, T.; Murray, J.J.

    1987-01-01

    The final focus system of the SLC will be upgraded by replacing the final quadrupoles with higher gradient superconducting magnets positioned closer to the interaction point. The parameters of the new system have been chosen to be compatible with the experimental detectors with a minimum of changes to other final focus components. These parameter choices are discussed along with the expected improvement in SLC performance

  19. On the theory of nuclear quadrupole oscillations

    International Nuclear Information System (INIS)

    Abrosimov, V.I.; Strutinskij, V.M.

    1978-01-01

    Presented is a deduction and a convinient writing form of the secular equation for nuclear quadrupole oscillations. The deduction is consistent with usual random phase approximation. It is regarded that the oscillations of the nuclear average potential are adiabatic with respect to formation of the Cooper pairs and the collective motion arises as a result of the coherent distortion of the quasiparticle wave functions. The energy gap changes are also taken into account

  20. 15 T And Beyond - Dipoles and Quadrupoles

    International Nuclear Information System (INIS)

    Sabbi, GianLuca

    2008-01-01

    Starting with the invention of the cyclotron by Lawrence, accelerator-based experiments have been the primary source of new discoveries in particle physics. In order to progress toward higher energy and luminosity, higher field magnets are required. R and D programs are underway to take advantage of new developments in superconducting materials, achieve better efficiency and simplify magnet fabrication while preserving accelerator-class field quality. A review of recent progress on high field dipole and quadrupole magnets is presented.

  1. Hydrogen isotope analysis by quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Ellefson, R.E.; Moddeman, W.E.; Dylla, H.F.

    1981-03-01

    The analysis of isotopes of hydrogen (H, D, T) and helium ( 3 He, 4 He) and selected impurities using a quadrupole mass spectrometer (QMS) has been investigated as a method of measuring the purity of tritium gas for injection into the Tokamak Fusion Test Reactor (TFTR). A QMS was used at low resolution, m/Δm 3 He, and 4 He in HT/D 2

  2. Superconducting quadrupoles for the SLC final focus

    International Nuclear Information System (INIS)

    Erickson, R.; Fieguth, T.; Murray, J.J.

    1987-01-01

    The final focus system of the SLC will be upgraded by replacing the final quadrupoles with higher gradient supperconducting magnets positioned closer to the interaction point. The parameters of the new system have been chosen to be compatible with the experimental detectors with a minimum of changes to other final focus components. These parameter choices are discussed along with the expected improvement in SLC performance

  3. Emittance measurements by variable quadrupole method

    International Nuclear Information System (INIS)

    Toprek, D.

    2005-01-01

    The beam emittance is a measure of both the beam size and beam divergence, we cannot directly measure its value. If the beam size is measured at different locations or under different focusing conditions such that different parts of the phase space ellipse will be probed by the beam size monitor, the beam emittance can be determined. An emittance measurement can be performed by different methods. Here we will consider the varying quadrupole setting method.

  4. Design of permanent magnet quadrupole for LEHIPA DTL

    International Nuclear Information System (INIS)

    Mathew, Jose V.; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2011-01-01

    The drift tube linac (DTL) of the low energy high intensity proton accelerator (LEHIPA) has been designed to accelerate 30 mA proton beam from 3 MeV to 20 MeV in a distance of around 13 m. A FFDD lattice structure is selected to provide strong transverse focusing, where each drift tube includes one quadrupole magnet. Beam dynamics simulations specified an effective magnet length of 47 mm, maximum field gradient of 47 T/m, and bore aperture of 24 mm. For these specifications, a detailed design of a very thin permanent magnet quadrupole (PMQ) is presented. Four types of PMQ designs have been compared: a 16-segment trapezoidal design in the Halbach configuration, two 16-segment rectangular designs (with and without gaps), and an 8-segment rectangular design. 2D and 3D modeling codes, POISSON and CST Studio suite are used for the design studies. The good field region is calculated based on field gradient deviation in the transverse plane and integral field homogeneity. The very low aspect ratio of these PMQs leads to edge effects, thereby reducing the central field strength. The 3D simulations are used to study these edge effects. (author)

  5. Developmental effects of extremely low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Juutilainen, J.

    2003-01-01

    Developmental effects of extremely low frequency (ELF) electric and magnetic fields are briefly reviewed in this paper. The results of animal studies on ELF electric fields are rather consistent, and do not suggest adverse effects on development. The results of studies on ELF magnetic fields suggest effects on bird embryo development, but not consistently in all studies. Results from experiments with other non-mammalian species have also suggested effects on developmental stability. In mammals, pre-natal exposure to ELF magnetic fields does not result in strong adverse effects on development. The only finding that shows some consistency is increase of minor skeleton alterations. Epidemiological studies do not establish an association between human adverse pregnancy outcomes and maternal exposure to ELF fields, although a few studies have reported increased risks associated with some characteristics of magnetic field exposure. Taken as a whole, the results do not show strong adverse effects on development. However, additional studies on the suggested subtle effects on developmental stability might increase our understanding of the sensitivity of organisms to weak ELF fields. (author)

  6. Excitation of giant monopole and quadrupole resonances

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, H. [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Yamagata, T.; Tanaka, M. [and others; Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    Recent studies on the giant monopole resonance (GMR) and the giant quadrupole resonance (GQR) in /sup 144/Sm and /sup 208/Pb using the ..cap alpha..-scattering performed at RCNP are summarized. The observed angular range covered 1.6/sup 0/ -- 7/sup 0/ with a coupled system of a dipole and a triplet quadrupole magnet. The incident energy was changed from 84 to 119 MeV. The resonance shapes and energy-weighted sum-rule strengths of the GMR and the GQR were reliably deduced as a function of incident energy. The quadrupole strength of --20% was found in the GMR region. The observed excitation function of the GMR was compared with the DWBA calculation, in which the Satchler's Version I was used as a form factor representing the compressional motion of the nucleus. It was found that the experimental excitation function of the GMR shows steeper decrease as lowering the incident energy than the DWBA prediction whereas that of the GQR is successfully described by the DWBA. This suggests that examination of the model describing the GMR is necessary.

  7. Observation of a phononic quadrupole topological insulator

    Science.gov (United States)

    Serra-Garcia, Marc; Peri, Valerio; Süsstrunk, Roman; Bilal, Osama R.; Larsen, Tom; Villanueva, Luis Guillermo; Huber, Sebastian D.

    2018-03-01

    The modern theory of charge polarization in solids is based on a generalization of Berry’s phase. The possibility of the quantization of this phase arising from parallel transport in momentum space is essential to our understanding of systems with topological band structures. Although based on the concept of charge polarization, this same theory can also be used to characterize the Bloch bands of neutral bosonic systems such as photonic or phononic crystals. The theory of this quantized polarization has recently been extended from the dipole moment to higher multipole moments. In particular, a two-dimensional quantized quadrupole insulator is predicted to have gapped yet topological one-dimensional edge modes, which stabilize zero-dimensional in-gap corner states. However, such a state of matter has not previously been observed experimentally. Here we report measurements of a phononic quadrupole topological insulator. We experimentally characterize the bulk, edge and corner physics of a mechanical metamaterial (a material with tailored mechanical properties) and find the predicted gapped edge and in-gap corner states. We corroborate our findings by comparing the mechanical properties of a topologically non-trivial system to samples in other phases that are predicted by the quadrupole theory. These topological corner states are an important stepping stone to the experimental realization of topologically protected wave guides in higher dimensions, and thereby open up a new path for the design of metamaterials.

  8. Plant life extensions for German nuclear power plants? Controversial discussion on potential electricity price effects

    International Nuclear Information System (INIS)

    Matthes, Felix C.; Hermann, Hauke

    2009-06-01

    The discussions on electricity price effects in case of the plant life extension of German nuclear power plants covers the following topics: (1) Introduction and methodology. (2) Electricity generation in nuclear power plants and electricity price based on an empirical view: electricity generation in nuclear power plants and final consumption price for households and industry in the European Union; electricity generation in nuclear power plants and electricity wholesale price in case of low availability of nuclear power plants in Germany; comparison of electricity wholesale prices in Germany and France. (3) Model considerations in relation to electricity prices and nuclear phase-out. (4) Concluding considerations.

  9. Cross-border effects of capacity mechanisms in electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Elberg, Christina

    2014-07-15

    To ensure security of supply in liberalized electricity markets, different types of capacity mechanisms are currently being debated or have recently been implemented in many European countries. The purpose of this study is to analyze the cross-border effects resulting from different choices on capacity mechanisms in neighboring countries. We consider a model with two connected countries that differ in the regulator's choice on capacity mechanism, namely strategic reserves or capacity payments. In both countries, competitive fi rms invest in generation capacity before selling electricity on the spot market. We characterize market equilibria and find the following main result: While consumers' costs may be the same under both capacity mechanisms in non-connected countries, we show that the different capacity mechanisms in interconnected countries induce redistribution effects. More precisely, we nd that consumers' costs are higher in countries in which reserve capacities are procured than in countries in which capacity payments are used to ensure the targeted reliable level of electricity.

  10. Matrix effect in analysis of pesticide residues in fruits and vegetables by high performance liquid chromatography with quadrupole-time of flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Andoralov A.M.

    2017-03-01

    Full Text Available For modern food safety control are using techniques that allow to determinate a large number of components. So for determination of pesticide residues in fruits and vegetables commonly used methods of gas and liquid chromatography with time-of-flight mass-spectrometric detection. This system allows to carry out quantitative determination several hundreds of pesticides and their identification by the characteristic fragments of the mass spectrum. The main problem when using mass spectrometric detection is a matrix effect, which is caused by the influence of matrix components extracted with pesticides from the sample. In this work, attempts have been made to reduce the influence of the matrix in the analysis of pesticide residues by high performance liquid chromatography with time of flight mass spectrometry (HPLC / TOFMS.

  11. 71Ga Chemical Shielding and Quadrupole Coupling Tensors of the Garnet Y(3)Ga(5)O(12) from Single-Crystal (71)Ga NMR

    DEFF Research Database (Denmark)

    Vosegaard, Thomas; Massiot, Dominique; Gautier, Nathalie

    1997-01-01

    A single-crystal (71)Ga NMR study of the garnet Y(3)Ga(5)O(12) (YGG) has resulted in the determination of the first chemical shielding tensors reported for the (71)Ga quadrupole. The single-crystal spectra are analyzed in terms of the combined effect of quadrupole coupling and chemical shielding ...

  12. The prerequisites for effective competition in restructured wholesale electricity markets

    International Nuclear Information System (INIS)

    Haas, R.; Auer, H.

    2006-01-01

    This paper argues that effective competition in reformed wholesale electricity markets can only be achieved if the following six prerequisites are met: (1) separation of the grid from generation and supply; (2) wholesale price deregulation; (3) sufficient transmission capacity for a competitive market and non-discriminating grid access; (4) excess generation capacity developed by a large number of competing generators; (5) an equilibrium relationship between short-term spot markets and the long-term financial instruments that marketers use to manage spot-market price volatility; (6) an essentially hands-off government policy that encompasses reduced oversight and privatization. The absence of any one of the first five conditions may result in an oligopoly or monopoly market whose economic performance does not meet the efficiency standards of a competently managed regulated electrical utility. (author)

  13. Spectator electric fields, de Sitter spacetime, and the Schwinger effect

    Science.gov (United States)

    Giovannini, Massimo

    2018-03-01

    During a de Sitter stage of expansion, the spectator fields of different spin are constrained by the critical density bound and by further requirements determined by their specific physical nature. The evolution of spectator electric fields in conformally flat background geometries is occasionally concocted by postulating the existence of ad hoc currents, but this apparently innocuous trick violates the second law of thermodynamics. Such a problem occurs, in particular, for those configurations (customarily employed for the analysis of the Schwinger effect in four-dimensional de Sitter backgrounds) leading to an electric energy density which is practically unaffected by the expansion of the underlying geometry. The obtained results are compared with more mundane situations where Joule heating develops in the early stages of a quasi-de Sitter phase.

  14. Mergers in the GB Electricity Market: effects on Retail Charges

    International Nuclear Information System (INIS)

    Salies, Evens

    2006-05-01

    The opening up of the UK residential electricity sector in 1999 prompted several studies of the impact this had on both the level and structuring of retail charges, and on incumbent players' market power. Drawing on observations of regional tariffs for the month of January 2004, this paper supports previous conclusions based on simulated retail charges, looking at the response of real tariffs to distribution and transmission costs, customer density, and the length of low voltage underground circuit. We also investigate whether vertically integrated suppliers have a particular effect on charges ceteris paribus the effect of cost drivers and supplier-related factors. (author)

  15. Analytical determination of 5th-order transfer matrices of magnetic quadrupole fringing fields

    International Nuclear Information System (INIS)

    Hartmann, B.; Irnich, H.; Wollnik, H.

    1993-01-01

    The fringing-field effects on particle trajectories in magnetic quadrupoles are described to 5th order by fringing-field integrals. It is shown that this method improves the description of fringing-field effects noticeably over the so far known use of third-order fringing-field integrals. (Author)

  16. High-Energy Gun-Injected Toroidal Quadrupole

    International Nuclear Information System (INIS)

    Hammel, J.E.; Henins, I.; Kewish, R.W. Jr.; Marshall, J.; Sherwood, A.R.

    1971-01-01

    A quadrupole device is being used to investigate the trapping and containment of an energetic gun plasma. The quadrupole is designed to contain a peak density of 5 x 10 13 cm -3 at 2.5 keV within the MHD-stable region. At design field there are 5 gyro-radii for 2. 5-keV protons from the separatrix to the ψ crit . The interior conductors are directly driven with a 0.8-MJ capacitor bank. The current to the coils is fed through a single pair of dipole-guarded conductors to each coil. The coils are also supported from the current feed, The dipole guard is in a force-free configuration with 5 gyro-radii for 2. 5-keV protons from the separatrix (between the dipole and quadrupole fields) to the dipole surface. The dipole is designed so that loss of plasma from the dipole region will be directed away from the interior conductors. This feature is necessary for the prevention of contamination by secondary gas produced by plasma lost at the dipole guard. Experiments at one-half design value of magnetic field have shown that the kilovolt energy gun plasma is trapped by depolarization currents around the coils, and that a very high percentage (>50%) of the gun output can be trapped. The plasma density is measured by a unique Michelson interferometer using CO 2 laser light. The energy of the plasma is derived from magnetic pickup loops placed outside the containment region. The leak caused by the dipole guard Held has been examined by double electric probe measurements. The plasma drift thus inferred is an order of magnitude less than that predicted by a model of Meade's or by calculations by us. This casts doubt upon the validity of any such simple model and emphasizes the necessity of further experimental investigation of the matter. New coils which are being built to operate at full design magnetic field strength will allow a check on the containment time of the device for kilovolt energy plasma. (author)

  17. Electrons in a positive-ion beam with solenoid or quadrupole magnetic transport

    International Nuclear Information System (INIS)

    Molvik, A.W.; Kireeff Covo, M.; Cohen, R.; Coleman, J.; Sharp, W.; Bieniosek, F.; Friedman, A.; Roy, P.K.; Seidl, P.; Lund, S.M.; Faltens, A.; Vay, J.L.; Prost, L.

    2007-01-01

    The High Current Experiment (HCX) is used to study beam transport and accumulation of electrons in quadrupole magnets and the Neutralized Drift-Compression Experiment (NDCX) to study beam transport through and accumulation of electrons in magnetic solenoids. We find that both clearing and suppressor electrodes perform as intended, enabling electron cloud densities to be minimized. Then, the measured beam envelopes in both quadrupoles and solenoids agree with simulations, indicating that theoretical beam current transport limits are reliable, in the absence of electrons. At the other extreme, reversing electrode biases with the solenoid transport effectively traps electrons; or, in quadrupole magnets, grounding the suppressor electrode allows electron emission from the end wall to flood the beam, in both cases producing significant degradation in the beam

  18. A Superstrong Adjustable Permanent Magnet for the Final Focus Quadrupole in a Linear Collider

    International Nuclear Information System (INIS)

    Mihara, T.

    2004-01-01

    A super strong permanent magnet quadrupole (PMQ) was fabricated and tested. It has an integrated strength of 28.5T with overall length of 10 cm and a 7mm bore radius. The final focus quadrupole of a linear collider needs a variable focal length. This can be obtained by slicing the magnet into pieces along the beamline direction and rotating these slices. But this technique may lead to movement of the magnetic center and introduction of a skew quadrupole component when the strength is varied. A ''double ring structure'' can ease these effects. A second prototype PMQ, containing thermal compensation materials and with a double ring structure, has been fabricated. Worm gear is selected as the mechanical rotating scheme because the double ring structure needs a large torque to rotate magnets. The structure of the second prototype PMQ is shown

  19. SU(6) quadrupole phonon model for even and odd nuclei and the SU(3) limit

    Energy Technology Data Exchange (ETDEWEB)

    Paar, V; Brant, S [Zagreb Univ. (Yugoslavia). Prirodoslovno Matematicki Fakultet; Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica; Leander, G [Lund Inst. of Tech. (Sweden). Dept. of Mathematical Physics; Oak Ridge National Lab., TN (USA)); Vouk, M [Zagreb Univ. (Yugoslavia). Computing Centre SRCE

    1982-04-05

    Analogous to the equivalence between the SU(6) quadrupole-phonon model (TQM) and the interacting boson model (IBM), the equivalence is pointed out for odd systems between the SU(6) particle quadrupole-phonon coupling model (PTQM) and the interacting boson-fermion model (IBFM). PTQM is formulated starting from the Dyson representation for the odd system. Different aspects of the SU(3) limit of TQM and PTQM are studied; the quadrupole-phonon block structure of rotational bands in even and odd nuclei and analytic expressions based on the coherent state; signature effects generated in PTQM; electromagnetic properties and correction factors for PTQM; overlaps of the PTQM analogs of Nilsson states with Coriolis-coupled Nilsson states and the relation to the rotational model representation.

  20. Magnetic field in the end region of the SSC quadrupole magnet

    International Nuclear Information System (INIS)

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-06-01

    Recent advances in methods of computing magnetic fields have made it possible to study the field in the end region of the SS quadrupole magnet in detail. The placement of conductor in the straight section, away from the ends, was designed to produce a practically pure quadrupole field in the two-dimensional sense. The ends of the coils were designed to produce a practically pure quadrupole field in the integral sense using a method that ignores the presence of the iron yoke. Subsequently, the effect of presence of the yoke on the field was analyzed. The paper presents the end configuration together with the computed integrated multipole components, local multipole components, and local field components. A comparison with measurements is included. 5 refs., 5 figs., 1 tab

  1. Magnetic Measurements of Permanent and Fast-Pulsed Quadrupoles for the CERN LINAC4 Project

    CERN Document Server

    Golluccio, G; Buzio, M; Dunkel, O; Giloteaux, D; Lombardi, A; Mateo, F; Ramberger, S

    2010-01-01

    Linac4 is currently under construction at CERN to improve intensity and reliability for the whole accelerator chain. This machine will include about 120 permanent quadrupoles housed in the Drift Tube tanks, as well as about 80 electromagnetic quadrupoles. This paper describes the magnetic measurements carried out at CERN on the first batch of quadrupoles, including several prototypes from different manufacturers, as well as those done on several spare Linac 2 magnets reused in Linac4's 3 MeV test stand. We first describe a prototype test bench based on technology developed for the LHC and able to carry out high-precision harmonic measurements in both continuously-rotating and stepping-coil mode. Next we present the first results obtained in terms of field strength, harmonics quality and effects of fast eddy current transients. Finally, we discuss the expected impact of these findings on the operation of the machine.

  2. Results of Magnetic Axis Measurements on a Prototype Main Lattice Quadrupole for the LHC

    CERN Document Server

    Smirnov, N; Deferne, G; Parma, V; Rohmig, P; Tortschanoff, Theodor

    2004-01-01

    More than 470 twin aperture lattice quadrupoles are needed for the Large Hadron Collider (LHC) under construction at CERN. The lattice quadrupole, assembled with correction magnets in its helium enclosure - the cold mass and integrated in a common cryostat called the Short Straight Section (SSS). All SSS cold mass prototypes have been developed and built by CEA (Saclay) in collaboration with CNRS (Orsay, France). The last SSS prototype (SSS5) was used to investigate the behavior of the magnetic axis through various steps of the installation cycle for the series quadrupoles: including transportation, thermal-cycles, and being lowered into the tunnel. Results of extensive measurements before and after each of these stages are presented here, showing that the effect of transport is weak and within the window of measurement resolution. Also shown is that the long-term stability observed during two years is comparable with the requirements from magnet tolerances. To minimize systematic errors, all tests were perfo...

  3. Chaotic motion in axially symmetric potentials with oblate quadrupole deformation

    Energy Technology Data Exchange (ETDEWEB)

    Letelier, Patricio S. [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Ramos-Caro, Javier, E-mail: javier@ime.unicamp.br [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Lopez-Suspes, Framsol, E-mail: framsol@gmail.com [Facultad de Telecomunicaciones, Universidad Santo Tomas and Escuela de Fisica, Universidad Industrial de Santander, Bucaramanga (Colombia)

    2011-10-03

    By computing the Poincare's surfaces of section and Lyapunov exponents, we study the effect of introducing an oblate quadrupole in the dynamics associated with two generic spherical potentials of physical interest: the central monopole and the isotropic harmonic oscillator. In the former case we find saddle points in the effective potential, in contrast to the statements presented by Gueron and Letelier in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. The results we show in the second case have application in nuclear or atomic physics. In particular, we find values of oblate deformation leading to a disappearance of shell structure in the single-particle spectrum. -- Highlights: → We find chaotic motion around a monopole with oblate quadrupole deformation. → This corrects the statements introduced in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. → We present an alternative model for the potential due to an oblate deformed nuclei. → This leads to stochastic regions in the phase space of classical orbits. → It suggests that the shell structure of single-particle spectrum tends to disappear.

  4. A surface-electrode quadrupole guide for electrons

    Energy Technology Data Exchange (ETDEWEB)

    Hoffrogge, Johannes Philipp

    2012-12-19

    This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical

  5. A surface-electrode quadrupole guide for electrons

    International Nuclear Information System (INIS)

    Hoffrogge, Johannes Philipp

    2012-01-01

    This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical

  6. Magnetic and Engineering Analysis of an Adjustable Strength Permanent Magnet Quadrupole

    CERN Document Server

    Gottschalk, Stephen C

    2005-01-01

    Magnetic and engineering analyses used in the design of an adjustable strength permanent magnet quadrupole will be reported. The quadrupole designed has a pole length of 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) of 68.7Tesla. Analyses of magnetic strength, field quality, magnetic centerline, temperature compensation and dynamic eddy currents induced during field adjustments will be presented. Magnet sorting strategies, pole positioning sensitivity, component forces, and other sensitivity analyses will be presented. Engineering analyses of stress, deflection and thermal effects as well as compensation strategies will also be shown.

  7. Static quadrupole moment of the first excited state of 24Mg

    International Nuclear Information System (INIS)

    Fewell, M.P.; Hinds, S.; Kean, D.C.; Zabel, T.H.

    1979-01-01

    The static quadrupole moment Qsub(2+) and the B(E2;0 + → 2 + ) value for the first excited state of 24 Mg have been determined using the reorientation effect in Coulomb excitation. Surface barrier detectors at 90 0 and 172 0 were used to detect 24 Mg ions scattered from 208 Pb. It is found that Qsub(2+) = -18.1 +- 1.3 e.fm 2 , suggesting that, contrary to most previous experimental evidence, the quadrupole moment is in agreement with theoretical predictions. For B(E2;0 + → 2 + ) the value 443 +- 24 e 2 . fm 4 was obtained

  8. Air pollution effects due to deregulation of the electric industry

    Science.gov (United States)

    Davoodi, Khojasteh Riaz

    The Energy Policy Act of 1992 introduced the concept of open-access into the electric utility industry which allows privately-owned utilities to transmit power produced by non-utility generators and independent power producers (IPPs). In April 1996, the Federal Energy Regulatory Commission (FERC) laid down the final rules (Orders No. 888 & No. 889), which required utilities to open their transmission lines to any power producer and charge them no more than what they pay for the use of their own lines. These rules set the stage for the retail sale of electricity to industrial, commercial and residential utility customers; non-utility generators (Nugs); and power marketers. These statutory, regulatory and administrative changes create for the electric utility industry two different forces that contradict each other. The first is the concept of competition among utility companies; this places a greater emphasis on electric power generation cost control and affects generation/fuel mix selection and demand side management (DSM) activities. The second force, which is converse to the first, is that utilities are major contributors to the air pollution burden in the United States and environmental concerns are forcing them to reduce emissions of air pollutants by using more environmentally friendly fuels and implementing energy saving programs. This study evaluates the impact of deregulation within the investor owned electric utilities and how this deregulation effects air quality by investigating the trend in demand side management programs and generation/fuel mix. A survey was conducted of investor owned utilities and independent power producers. The results of the survey were analyzed by analysis of variance and regression analysis to determine the impact to Air Pollution. An air Quality Impact model was also developed in this study. This model consists of six modules: (1) demand side management and (2) consumption of coal, (3) gas, (4) renewable, (5) oil and (6

  9. The Contribution of Electricity Generation to Greenhouse Effect

    International Nuclear Information System (INIS)

    Lubis, Erwansyah

    2008-01-01

    The development activities has successfully increasing the human kind, but also has increasing trend the planet changes radically, because of the greenhouse effect (GHE), decreasing ozone layer and acid rain, that all could treat the living of the species-species and including man inside. The electricity generation and transportation are the main contribution of greenhouse gas (GHG), reaching 1/3 of global emission. Base on the Kyoto protocol in 1997, that all countries, alone or together agree to reduce the emission of GG of 5.2 % under the emission of the 1990. The decreasing of GHG could be reached by implementing the technology generation that contain low carbon, such a natural gas, hydro power, wind, solar and nuclear power. Diversification of electricity generation has to take into a count of environmental capacity, so the supply stability and sustainable development could be reached. The IAEA results studies indicated that the emission factor of fossil fuel 2 times greater compare to the natural gas. The emission factor of wind and biomass lie between solar and nuclear power. In the electricity generation chain, nuclear power emit the 25 g of CO 2 /kWh compare to fossil fuel emit 250 - 1250 g CO 2 /kWh. (author)

  10. Thermal effects of electrically conductive deposits in melter

    International Nuclear Information System (INIS)

    Choi, I.G.; Bickford, D.F.; Carter, J.T.

    1992-01-01

    The radioactive waste processed by the Defense Waste Processing Facility melter at the Savannah river Site contains noble metal fission-products. Operation of waste-glass melters treating commercial power reactor wastes indicates that accumulation of noble metals on melter floors can lead to distortion of electric heating patterns, loss of power, and possible electrode damage. Changes in melter geometry have been developed in Japan and Germany to minimize these effects. The two existing melters for the US Department of Energy's Defense Waste Processing Facility were designed in 1982, before this effect was known or had been characterized. Modeling and pilot scale tests are being conducted in the Integrated DWPF melter system to determine if the effect is significant for melters processing defense wastes, and if the effect can be diagnosed and corrected without significant damage or changes to the melter design. This document provides a discussion of these tests

  11. Adjustable permanent quadrupoles for the next linear collider

    International Nuclear Information System (INIS)

    Volk, James T.

    2001-01-01

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 138 Tesla, with a maximum gradient of 141 Tesla per meter, an adjustment range of +0 to -20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. In an effort to reduce costs and increase reliability, several designs using hybrid permanent magnets have been developed. Four different prototypes have been built. All magnets have iron poles and use Samarium Cobalt to provide the magnetic fields. Two use rotating permanent magnetic material to vary the gradient, one uses a sliding shunt to vary the gradient and the fourth uses counter rotating magnets. Preliminary data on gradient strength, temperature stability, and magnetic center position stability are presented. These data are compared to an equivalent electromagnetic prototype

  12. Adjustable Permanent Quadrupoles for the Next Linear Collider

    International Nuclear Information System (INIS)

    Spencer, Cherrill M

    2001-01-01

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 138 Tesla, with a maximum gradient of 141 Tesla per meter, an adjustment range of +0 to - 20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. In an effort to reduce costs and increase reliability, several designs using hybrid permanent magnets have been developed. Four different prototypes have been built. All magnets have iron poles and use Samarium Cobalt to provide the magnetic fields. Two use rotating permanent magnetic material to vary the gradient, one uses a sliding shunt to vary the gradient and the fourth uses counter rotating magnets. Preliminary data on gradient strength, temperature stability, and magnetic center position stability are presented. These data are compared to an equivalent electromagnetic prototype

  13. High Reliability Prototype Quadrupole for the Next Linear Collider

    International Nuclear Information System (INIS)

    Spencer, Cherrill M

    2001-01-01

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85% overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20% and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths

  14. Study of Nb3Sn cables for superconducting quadrupoles

    International Nuclear Information System (INIS)

    Otmani, R.

    1999-10-01

    In particle physics, the quest for higher energies may be satisfied by the use of niobium-tin superconducting magnets. Such magnets are made of Rutherford type cables which are wound from superconducting strands. The strands are made by the 'internal tin' method. The aim of this study is to determine the main parameters for the fabrication of a quadrupole. The two main requirements the cable must fulfill are high critical current and low losses. The main parameters were determined from different measurements and models. Thus, the key parameters for the current transport capacity are the number and the diameter of the filaments, the number of sub-elements, the surface of superconductor and the copper-to-non-copper ratio. For the hysteresis losses, the main parameters appear to be the effective filament diameter and the spacing of the filaments. For intra-strand losses, the main parameters appear to be the filaments' diameter, the filament spacing, the nature of the diffusion barrier and the Residual Resistivity Ratio (RRR) of the copper. The interstrand resistances for the cable are the key parameters for the losses. Thus, the nature of the strands coating or the presence of a stainless steel core can strongly diminish the cable losses. Finally, a design, for the strands and the cables for the fabrication of a quadrupole is proposed. (author)

  15. Effects of Induced Electric Fields on Tissues and Cells

    Science.gov (United States)

    Sequin, Emily Katherine

    Cancer remains a substantial health burden in the United States. Traditional treatments for solid malignancies may include chemotherapy, radiation therapy, targeted therapies, or surgical resection. Improved surgical outcomes coincide with increased information regarding the tumor extent in the operating room. Furthermore, pathological examination and diagnosis is bettered when the pathologist has additional information about lesion locations on the large resected specimens from which they take a small sample for microscopic evaluation. Likewise, cancer metastasis is a leading cause of cancer death. Fully understanding why a particular tumor becomes metastatic as well as the mechanisms of cell migration are critical to both preventing metastasis and treating it. This dissertation utilizes the complex interactions of induced electric fields with tissues and cells to meet two complementary research goals. First, eddy currents are induced in tissues using a coaxial eddy current probe (8mm diameter) in order to distinguish tumor tissue from surrounding normal tissue to address the needs of surgeons performing curative cancer resections. Measurements on animal tissue phantoms characterize the eddy current measurement finding that the effective probing area corresponds to about twice the diameter of the probe and that the specimen temperature must be constant for reliable measurements. Measurements on ten fresh tissue specimens from human patients undergoing surgical resection for liver metastases from colorectal cancer showed that the eddy current measurement technique can be used to differentiate tumors from surrounding liver tissue in a non-destructive, non-invasive manner. Furthermore, the differentiation between the tumor and normal tissues required no use of contrast agents. Statistically significant differences between eddy current measurements in three tissue categories, tumor, normal, and interface, were found across patients using a Tukey's pairwise comparison

  16. The reorientation precession technique, REPREC, and the quadrupole moments of /sup 108/ /sup 110/Pd. [Sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Hasselgren, L; Fahlander, C; Edvardson, L O; Thun, J E; Falk, F; Ghumman, B S

    1975-04-01

    The orientation precession technique, REPREC, for measurements of quadrupole moments is described. The application of REPREC to the measurement of the static electric quadrupole moments of the first excited 2/sup +/-states in /sup 108/ /sup 110/Pd is presented. The possibility to measure the matrix product P/sub 4/ = M/sub 02/M/sub 22/,M/sub 02/M/sub 22/ is also discussed. Such measurements are presented for /sup 108/ /sup 110/Pd. The results of these measurements are P/sub 4/O for both /sup 108/Pd and /sup 110/Pd. For /sup 108/Pd the quadrupole moment of the first excited 2/sup +/-state was found to be -.66 +- .18 eb and for /sup 110/Pd -.72 +- .14 eb. Intrinsic nuclear properties for /sup 106 -110/Pd are derived using the sum rules suggested by Kumar.

  17. Reorientation precession measurements on /sup 108/ /sup 110/Pd and the quadrupole moments of their first 2/sup +/ states

    Energy Technology Data Exchange (ETDEWEB)

    Hasselgren, L; Fahlander, C; Falk, F; Edvardson, L O; Thun, J E; Ghuman, B S [Uppsala Univ. (Sweden). Fysiska Institutionen; Skaali, B [Oslo Univ. (Norway). Fysisk Institutt

    1976-06-28

    The reorientation precession technique, REPREC, for measurements of quadrupole moments is described. The application of REPREC to the measurement of the static electric quadrupole moments of the first excited 2/sup +/ states in /sup 108/ /sup 110/Pd is presented. The possibility to measure the sign of the matrix product P/sub 4/ = M/sub 02/Msub(22')Msub(02')M/sub 22/ is also discussed. Such measurements are presented for /sup 108/ /sup 110/Pd. The results of these measurements are P/sub 4/ < 0 for both /sup 108/Pd and /sup 110/Pd. For /sup 108/Pd the quadrupole moment of the first excited 2/sup +/ state was found to be -0.66+-0.18e.b and for /sup 110/Pd, -0.72+-0.14e.b. Intrinsic nuclear properties for /sup 106 -110/Pd are derived using the sum rules suggested by Kumar.

  18. Magnetic storm effects in electric power systems and prediction needs

    Science.gov (United States)

    Albertson, V. D.; Kappenman, J. G.

    1979-01-01

    Geomagnetic field fluctuations produce spurious currents in electric power systems. These currents enter and exit through points remote from each other. The fundamental period of these currents is on the order of several minutes which is quasi-dc compared to the normal 60 Hz or 50 Hz power system frequency. Nearly all of the power systems problems caused by the geomagnetically induced currents result from the half-cycle saturation of power transformers due to simultaneous ac and dc excitation. The effects produced in power systems are presented, current research activity is discussed, and magnetic storm prediction needs of the power industry are listed.

  19. Effectively utilizing NYMEX contracts for natural gas electricity futures

    International Nuclear Information System (INIS)

    Burke, L.M.

    1996-01-01

    NYMEX (New York Mercantile Exchange) is one of the United States' largest commodity exchanges. The primary role of commodity exchanges were summarized as well as the characteristics of an effective exchange. The concept of commoditization, price risk and price volatility were explained. The evolution of world and domestic regulated energy markets, the characteristics of the futures market, NYMEX electricity futures contract specifications, natural gas and crude futures contract development, and the nature of hedging were reviewed. Differences of risk management practices in cash markets and futures markets were illustrated. tabs., figs

  20. A quantized microwave quadrupole insulator with topologically protected corner states

    Science.gov (United States)

    Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav

    2018-03-01

    The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.

  1. Nuclear quadrupole interaction measurements of 19F* and 22Na* on Graphite

    International Nuclear Information System (INIS)

    Djoko-Surono, Th; Martin, Peter W

    1996-01-01

    Time differential perturbed angular distribution (TDPAD) technique has been used to investigate nuclear quadrupole interactions of 19 F * and 22 Na * in graphite. We concentrated the measurements on pseudo single crystal graphite called Highly Oriented Pyrolytic Graphite for it has an ordered structure in which the c-axes of the microcrystals aligned in a certain direction with the mosaic spread less than 1 o , while the a- and b-axes randomly oriented on a plane perpendicular to the c-axes. Interactions between quadrupole moment of 19 F * and 22 Na * with its surroundings electric field gradient were studied by detecting the γ-rays distribution, W(Θ,t). For 1 9F * we found one static interaction. The corresponding electric field gradient was V zz =3.24(19)x10 22 V/m 2 . In the case of 22 Na * we found no evidence of nuclear quadrupole interaction, however, we were able to conclude that |QV 22 | 19 bV/m 2 . Using theoretical calculation Q=0.06 barn, we find that |V zz | 20 V/m 2 . These results indicate that the value efg depend on two factors, the host crystal and the core electrons. The core electrons contribution to the total efg is considerably large

  2. Effect of Electrical Current Stimulation on Pseudomonas Aeruginosa Growth

    Science.gov (United States)

    Alneami, Auns Q.; Khalil, Eman G.; Mohsien, Rana A.; Albeldawi, Ali F.

    2018-05-01

    The present study evaluates the effect of electrical current with different frequencies stimulation to kill pathogenic Pseudomonas aeruginosa (PA) bacteria in vitro using human safe level of electricity controlled by function generator. A wide range of frequencies has been used from 0.5 Hz-1.2 MHz to stimulate the bacteria at a voltage of 20 p-p volt for different periods of time (5 to 30) minutes. The culture of bacteria used Nickel, Nichrome, or Titanium electrode using agarose in phosphate buffer saline (PBS) and mixed with bacterial stock activated by trypticase soy broth (TSB). The results of frequencies between 0.5-1 KHz show the inhibition zone diameter of 20 mm in average at 30 minutes of stimulation. At frequencies between 3-60 KHz the inhibition zone diameter was only 10mm for 30 minutes of stimulation. While the average of inhibition zone diameter increased to more than 30mm for 30 minutes of stimulation at frequencies between 80-120 KHz. From this study we conclude that at specific frequency (resonance frequency) (frequencies between 0.5-1 KHz) there was relatively large inhibition zone because the inductive reactance effect is equal to the value of capacitive reactance effect (XC = XL). At frequencies over than 60 KHz, maximum inhibition zone noticed because the capacitance impedance becomes negligible (only the small resistivity of the bacterial internal organs).

  3. The effect of surface electrical stimulation on vocal fold position.

    Science.gov (United States)

    Humbert, Ianessa A; Poletto, Christopher J; Saxon, Keith G; Kearney, Pamela R; Ludlow, Christy L

    2008-01-01

    Closure of the true and false vocal folds is a normal part of airway protection during swallowing. Individuals with reduced or delayed true vocal fold closure can be at risk for aspiration and may benefit from intervention to ameliorate the problem. Surface electrical stimulation is currently used during therapy for dysphagia, despite limited knowledge of its physiological effects. Prospective single effects study. The immediate physiological effect of surface stimulation on true vocal fold angle was examined at rest in 27 healthy adults using 10 different electrode placements on the submental and neck regions. Fiberoptic nasolaryngoscopic recordings during passive inspiration were used to measure change in true vocal fold angle with stimulation. Vocal fold angles changed only to a small extent during two electrode placements (P vocal fold abduction was 2.4 degrees; while horizontal placements of electrodes in the submental region produced a mean adduction of 2.8 degrees (P = .03). Surface electrical stimulation to the submental and neck regions does not produce immediate true vocal fold adduction adequate for airway protection during swallowing, and one position may produce a slight increase in true vocal fold opening.

  4. Power supplies for the injector synchrotron quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1995-01-01

    This light source note will describe the power supplies for the injector synchrotron quadrupole and sextupole magnets. The injector synchrotron has two families of quadrupole magnets. Each family consists of 40 quadrupole magnets connected in series. These magnets are energized by two phase-controlled, 12-pulse power supplies. Therefore, each power supply will be rated to deliver the necessary power to only 40 quadrupole magnets. The two families of sextupole magnets in the injector synchrotron each consists of 32 sextupole magnets connected in series, powered by a phase-controlled power supply. Thus, each power supply shall be capable of delivering power to only 32 sextupole magnets

  5. Thermogravimetric-quadrupole mass-spectrometric analysis of geochemical samples.

    Science.gov (United States)

    Gibson, E. K., Jr.; Johnson, S. M.

    1972-01-01

    Thermogravimetric-quadrupole mass-spectrometric-analysis techniques can be used to study a wide variety of problems involving decomposition processes and identification of released volatile components. A recording vacuum thermoanalyzer has been coupled with a quadrupole mass spectrometer. The rapid scan capabilities of the quadrupole mass spectrometer are used to identify the gaseous components released. The capability of the thermogravimetric-quadrupole mass spectrometer to provide analytical data for identification of the released volatile components, for determination of their sequence of release and for correlation of thermal-decomposition studies is illustrated by an analysis of the Orgueil carbonaceous chondrite.

  6. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-04-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received attention recently, since it could modulate flames appreciably even for the cases when direct current (DC) has minimal effects. In this study, the effect of AC electric fields on small coflow diffusion flames is focused with applications of various laser diagnostic techniques. Flow characteristics of baseline diffusion flames, which corresponds to stationary small coflow diffusion flames when electric field is not applied, were firstly investigated with a particular focus on the flow field in near-nozzle region with the buoyancy force exerted on fuels due to density differences among fuel, ambient air, and burnt gas. The result showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle exit. Nozzle heating effect influenced this near-nozzle flow-field particularly among lighter fuels. Numerical simulations were also conducted and the results showed that a fuel inlet boundary condition with a fully developed velocity profile for cases with long fuel tubes should be specified inside the fuel tube to obtain satisfactory agreement in both the flow and temperature fields with those from experiment. With sub-critical AC applied to the baseline flames, particle image velocimetry (PIV), light scattering, laser-induced incandescence (LII), and laser-induced fluores- cence (LIF) techniques were adopted to identify the flow field and the structures of OH, polycyclic aromatic hydrocarbons (PAHs), soot zone. Under certain AC condi- tions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered from the

  7. Design and fabrication of the prototype superconducting tuning quadrupole and octupole correction winding for the LHC project

    International Nuclear Information System (INIS)

    Perin, R.; Siegel, N.; Bidaurrazaga, H.; Garcia Tabares, L.

    1992-01-01

    CERN is preparing for the construction of the Large Hadron Collider (LHC) to be installed in the LEP tunnel. The magnetic lattice of the LHC will consist of a ring of twin aperture dipoles and quadrupoles, connected electrically in series. To adjust the working point of the machine, so called tuning quadrupoles will be installed in pairs in each regular cell, next to the main quadrupoles. Also, to correct multipolar field errors in the LHC, an octupole correction winding is required near each lattice quadrupole. A nested construction of these two magnets is foreseen. As part of the LHC R and D program, CERN and ACICA (a group of five Spanish industries: Abengoz, Canzler, Indar, Cenemesa and AME; since June 1990 Cenemesa is part of ABB Spain), signed a common development agreement for the design, fabrication and testing of a prototype tuning quadrupole and octupole corrector. This paper describes the design of these magnets, giving details of magnetic and mechanical calculations, including results from existing and specially developed computer codes, and model work. Further, the construction procedures are described, including the facilities and tooling developed by ACICA for this work

  8. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    International Nuclear Information System (INIS)

    Chu Zhe; Lin, W. P.; Yang Xiaofeng

    2013-01-01

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  9. The welfare effects of integrating renewable energy into electricity markets

    Science.gov (United States)

    Lamadrid, Alberto J.

    The challenges of deploying more renewable energy sources on an electric grid are caused largely by their inherent variability. In this context, energy storage can help make the electric delivery system more reliable by mitigating this variability. This thesis analyzes a series of models for procuring electricity and ancillary services for both individuals and social planners with high penetrations of stochastic wind energy. The results obtained for an individual decision maker using stochastic optimization are ambiguous, with closed form solutions dependent on technological parameters, and no consideration of the system reliability. The social planner models correctly reflect the effect of system reliability, and in the case of a Stochastic, Security Constrained Optimal Power Flow (S-SC-OPF or SuperOPF), determine reserve capacity endogenously so that system reliability is maintained. A single-period SuperOPF shows that including ramping costs in the objective function leads to more wind spilling and increased capacity requirements for reliability. However, this model does not reflect the inter temporal tradeoffs of using Energy Storage Systems (ESS) to improve reliability and mitigate wind variability. The results with the multiperiod SuperOPF determine the optimum use of storage for a typical day, and compare the effects of collocating ESS at wind sites with the same amount of storage (deferrable demand) located at demand centers. The collocated ESS has slightly lower operating costs and spills less wind generation compared to deferrable demand, but the total amount of conventional generating capacity needed for system adequacy is higher. In terms of the total system costs, that include the capital cost of conventional generating capacity, the costs with deferrable demand is substantially lower because the daily demand profile is flattened and less conventional generation capacity is then needed for reliability purposes. The analysis also demonstrates that the

  10. Quadrupole Transfer Function for Emittance Measurement

    CERN Document Server

    Cameron, Peter; Jansson, Andreas; Tan, Cheng-Yang

    2008-01-01

    Historically the use of the quadrupole moment measurement has been impeded by the requirement for large dynamic range, as well as measurement sensitivity to beam position. We investigate the use of the transfer function technique [1-3] in combination with the sensitivity and 160dB revolution line rejection of the direct diode detection analog front end [4] to open the possibility of an emittance diagnostic that may be implemented without operational complication, quasi- parasitic to the operation of existing tune measurement systems. Such a diagnostic would be particularly useful as an emittance monitor during acceleration ramp development in machines like RHIC and the LHC.

  11. Fast storage of nuclear quadrupole resonance signals

    International Nuclear Information System (INIS)

    Anferov, V.P.; Molchanov, S.V.; Levchun, O.D.

    1988-01-01

    Fast multichannel storage of nuclear quadrupole resonance (NQR) signals is described. Analog-to-digital converter, arithmetic-logical unit, internal memory device (IMD) selection-storage unit and control unit are the storage main units. The storage is based on 43 microcircuits and provides for record and storage of NQR-signals at the contributed operation with Mera-60 microcomputer. Time of analog-to-digital conversion and signal recording into IMD is ∼ 1 mks. Capacity of analog-to-digital converter constitutes 8-10 bits. IMD capacity is 4 K bitsx16. Number of storage channels is 4

  12. Implementation of $ab$ $initio$ perturbed angular correlation observables for analysis of fluctuating quadrupole interactions

    CERN Document Server

    Barbosa, Marcelo

    A review about the nuclear properties, namely the nuclear moments (magnetic dipole moment and electric quadrupole moment) and their interaction with electromagnetic fields external to the nucleus (hyperfine interactions), as well as the angular distribution of radiation produced by $\\gamma$-decay, is presented. A detailed description about the theory of Perturbed Angular Correlations was done, including the comparison between $\\gamma-\\gamma$- correlations and $e^{-}- \\gamma$ correlations. For dynamic nuclear interactions, an introduction to the theory of stochastic states in PAC was performed. We focused on ab-initio implementation of observables for analyzing fluctuating quadrupole hyperfine interactions on time dependent perturbed angular correlations experiments. The development of computacional codes solving the full problem, adapted to fit data obtained on single crystals or polycrystals for two-state transient fields with any axial symmetry and orientation was the main purpose of this work. The final pa...

  13. Measurement of the ground state spectroscopic quadrupole moments of 191Os and 193Os

    International Nuclear Information System (INIS)

    Ernst, H.; Hagn, E.; Zech, E.

    1979-01-01

    Radioactive 191 Os and 193 Os nuclei have been aligned in an Os single crystal at temperatures down to 4 mK. From the temperature dependence of the γ-anisotropy the quadrupole frequencies vsub(Q) = e 2 qQ/h have been determined as vsub(Q)( 191 OsOs) = -278+-9 MHz and vsub(Q)( 193 OsOs) = -96+-15 MHz. With the known electric field gradient for OsOs of eq = (-4.54+-0.24) x 10 17 V/cm 2 the ground state spectroscopic quadrupole moments are deduced to be Q( 191 Os) = +2.53+-0.16 b and Q( 193 Os) = +0.87+-0.15 b. (orig.)

  14. Status of a study of stabilization and fine positioning of CLIC quadrupoles to the nanometre level

    CERN Document Server

    Artoos, K; Esposito, M; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Leuxe, R; Moron Ballester, R

    2011-01-01

    Mechanical stability to the nanometre and below is required for the Compact Linear Collider (CLIC) quadrupoles to frequencies as low as 1 Hz. An active stabilization and positioning system based on very stiff piezo electric actuators and inertial reference masses is under study for the Main Beam Quadrupoles (MBQ). The stiff support was selected for robustness against direct forces and for the option of incrementally repositioning the magnet with nanometre resolution. The technical feasibility was demonstrated by a representative test mass being stabilized and repositioned to the required level in the vertical and lateral direction. Technical issues were identified and the development programme of the support, sensors, and controller was continued to increase the performance, integrate the system in the overall controller, adapt to the accelerator environment, and reduce costs. The improvements are implemented in models, test benches, and design of the first stabilized prototype CLIC magnet. The characterizati...

  15. 1s2p resonant inelastic X-ray scattering combined dipole and quadrupole analysis method

    DEFF Research Database (Denmark)

    Bagger, Alexander; Haarman, Ties; Molina, Anna Puig

    2017-01-01

    , it is shown that only in the case of quadrupole excitations being present is additional information gained by RIXS compared with XAS. Combining this knowledge with methods to calculate the dipole contribution in XAS measurements gives scientists the opportunity to plan more effective experiments....

  16. Effects of ionizing radiation of electrical properites of refractory insulators

    International Nuclear Information System (INIS)

    van Lint, V.A.J.; Bunch, J.M.

    1975-01-01

    The Los Alamos Reference Theta Pinch Reactor (RTPR) requires on the first wall an electrical insulator which will withstand transient high voltage at high temperature 10 sec after severe neutron and ionizing irradiation. Few measurements of electrical parameters for heavily disordered refractory insulators have been reported; estimates are made as to whether breakdown strength or conductivity will be degraded by the irradiation. The approach treats separately short-term ionization effects (free and trapped electrons and holes) and long-term gross damage effects (transmutation products and various lattice defects). The following processes could produce unacceptable conduction across the first wall insulator: (a) delayed electronic conductivity 10 sec after the prompt ionization by bremsstrahlung; (b) prompt electronic conductivity from delayed ionization; (c) electronic breakdown; (d) electronic or ionic conductivity due to thermal motion in the disordered material, possibly leading to thermal breakdown. Worst-case calculations based on lower limits to recombination coefficients limit process (a) to sigma much less than 5 x 10 -14 mho/cm. Data on ionization-induced conductivity in insulators predict for process (b) sigma much less than 10 -8 mho/cm. Electronic breakdown generally occurs at fields well above the 10 5 V/cm required for RTPR. Thermal breakdown is negligible due to the short voltage pulse. Ionic and electronic conduction must be studied theoretically and experimentally in the type of highly disordered materials that result from neutron irradiation of the first wall

  17. Collinear Laser Spectroscopy of Manganese Isotopes using the Radio Frequency Quadrupole Cooler and Buncher at ISOLDE

    CERN Document Server

    AUTHOR|(CDS)2083426

    The hyperfine structure of the odd-even $^{51−63}$Mn isotopes (N = 26 − 38) were measured using bunched beam collinear laser spectroscopy with the COLLAPS experimental setup at ISOLDE, CERN. The properties of these nuclei were investigated over the course of two experiments. During the first experiment, nuclear spins and magnetic dipole moments were extracted from spectroscopy on manganese atoms. These nuclear properties were then compared to the predictions of two large-scale shell model effective interactions (GXPF1A [1, 2] and LNPS [3]) which use different model spaces. In the case of $^{61,63}$Mn, these results show the increasing importance of neutron excitations across the proposed N = 40 subshell closure, and of proton excitations across the Z = 28 shell gap. These measurements provide the first direct proof that proton and neutron excitations across shell gaps are playing an important role in the ground state wave functions of the neutron-rich Mn isotopes. The electric quadrupole moment provides c...

  18. Long-term effects of electrical neurostimulation in patients with unstable angina : Refractory to conventional therapies

    NARCIS (Netherlands)

    de Vries, Jessica; DeJongste, Mike J. L.; Zijlstra, Felix; Staal, Michiel

    2007-01-01

    Background. Patients with unstable angina pectoris may become refractory to conventional therapies. Electrical neurostimulation with transcutaneous electrical stimulation and/or spinal cord stimulation has been shown to be effective for patients with refractory unstable angina pectoris in hospital

  19. Stabilization and destabilization effects of the electric field on stochastic precipitate pattern

    NARCIS (Netherlands)

    Lagzi, István; Izsak, F.

    2004-01-01

    Stabilization and destabilization effects of an applied electric field on the Liesegang pattern formation in low concentration gradient were studied with numerical model simulations. In the absence of an electric field pattern formation exhibits increasingly stochastic behaviour as the initial

  20. Dynamically assisted Sauter-Schwinger effect in inhomogeneous electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Christian; Schützhold, Ralf [Fakultät für Physik, Universität Duisburg-Essen,Lotharstrasse 1, 47057 Duisburg (Germany)

    2016-02-24

    Via the world-line instanton method, we study electron-positron pair creation by a strong (but sub-critical) electric field of the profile E/cosh{sup 2} (kx) superimposed by a weaker pulse E{sup ′}/cosh{sup 2} (ωt). If the temporal Keldysh parameter γ{sub ω}=mω/(qE) exceeds a threshold value γ{sub ω}{sup crit} which depends on the spatial Keldysh parameter γ{sub k}=mk/(qE), we find a drastic enhancement of the pair creation probability — reporting on what we believe to be the first analytic non-perturbative result for the interplay between temporal and spatial field dependences E(t,x) in the Sauter-Schwinger effect. Finally, we speculate whether an analogous effect (drastic enhancement of tunneling probability) could occur in other scenarios such as stimulated nuclear decay, for example.

  1. Radial electrical field effects in TJ-II. (Preliminary study)

    International Nuclear Information System (INIS)

    Guasp, J.

    1996-01-01

    The influence of the radial electric field upon the neoclassical transport coefficients of TJ-II helical axis Stellarator has been calculated as well on the microwave heating stage (ECRH) as on the neutral injection one (NBI). The influence of the solutions for the self-consistent ambipolar field on confinement times and temperatures has been studied by means of a zero-dimensional energy balance. The simultaneous presence of two roots, the electronic and the ionic one, is observed for the ECRH phase, while for NBI only the ionic root appears, although with a strong field intensity that could produce a favourable effect on confinement. The interest and need of the extension of these calculations to include radial profile effects by using spatial dependent transport codes in stressed

  2. Autaptic effects on synchrony of neurons coupled by electrical synapses

    Science.gov (United States)

    Kim, Youngtae

    2017-07-01

    In this paper, we numerically study the effects of a special synapse known as autapse on synchronization of population of Morris-Lecar (ML) neurons coupled by electrical synapses. Several configurations of the ML neuronal populations such as a pair or a ring or a globally coupled network with and without autapses are examined. While most of the papers on the autaptic effects on synchronization have used networks of neurons of same spiking rate, we use the network of neurons of different spiking rates. We find that the optimal autaptic coupling strength and the autaptic time delay enhance synchronization in our neural networks. We use the phase response curve analysis to explain the enhanced synchronization by autapses. Our findings reveal the important relationship between the intraneuronal feedback loop and the interneuronal coupling.

  3. Magnetoresistance effect in a both magnetically and electrically modulated nanostructure

    International Nuclear Information System (INIS)

    Lu, Mao-Wang; Yang, Guo-Jian

    2007-01-01

    We propose a magnetoresistance device in a both magnetically and electrically modulated two-dimensional electron gas, which can be realized experimentally by the deposition, on the top and bottom of a semiconductor heterostructure, of two parallel metallic ferromagnetic strips under an applied voltage. It is shown that a considerable magnetoresistance effect can be achieved in such a device due to the significant transmission difference for electrons through parallel and antiparallel magnetization configurations. It is also shown that the magnetoresistance ratio depends strongly on the applied voltage to the stripe in the device. These interesting properties may provide an alternative scheme to realize magnetoresistance effect in hybrid ferromagnetic/semiconductor nanosystems, and this system may be used as a voltage-tunable magnetoresistance device

  4. Space Weather Effects on Current and Future Electric Power Systems

    Science.gov (United States)

    Munoz, D.; Dutta, O.; Tandoi, C.; Brandauer, W.; Mohamed, A.; Damas, M. C.

    2016-12-01

    This work addresses the effects of Geomagnetic Disturbances (GMDs) on the present bulk power system as well as the future smart grid, and discusses the mitigation of these geomagnetic impacts, so as to reduce the vulnerabilities of the electric power network to large space weather events. Solar storm characterized by electromagnetic radiation generates geo-electric fields that result in the flow of Geomagnetically Induced Currents (GICs) through the transmission lines, followed by transformers and the ground. As the ground conductivity and the power network topology significantly vary with the region, it becomes imperative to estimate of the magnitude of GICs for different places. In this paper, the magnitude of GIC has been calculated for New York State (NYS) with the help of extensive modelling of the whole NYS electricity transmission network using real data. Although GIC affects only high voltage levels, e.g. above 300 kV, the presence of coastline in NYS makes the low voltage transmission lines also susceptible to GIC. Besides this, the encroachment of technologies pertaining to smart grid implementation, such as Phasor Measurement Units (PMUs), Microgrids, Flexible AC Transmission System (FACTS), and Information and Communication Technology (ICT) have been analyzed for GMD impacts. Inaccurate PMU results due to scintillation of GPS signals that are affected by electromagnetic interference of solar storm, presence of renewable energy resources in coastal areas that are more vulnerable to GMD, the ability of FACTS devices to either block or pave new path for GICs and so on, shed some light on impacts of GMD on smart grid technologies.

  5. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-01-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received

  6. New approach in electricity network regulation: an issue on effective integration of distributed generation in electricity supply systems

    International Nuclear Information System (INIS)

    Scheepers, Martin J.J.; Wals, Adrian F.

    2003-11-01

    Technological developments and EU targets for penetration of renewable energy sources (RES) and greenhouse gas (GHG) reduction are decentralising the electricity infrastructure and services. Although, the liberalisation and internationalisation of the European electricity market has resulted in efforts to harmonise transmission pricing and regulation, hardly any initiative exists to consider the opening up and regulation of distribution networks to ensure effective participation of RES and distributed generation (DG) in the internal market. The SUSTELNET project has been created in order to close this policy gap. Its main objective is to develop regulatory roadmaps for the transition to an electricity market and network structure that creates a level playing field between centralised and decentralised generation and that facilitates the integration of RES, within the framework of the liberalisation of the EU electricity market. By analysing the technical, socio-economic and institutional dynamics of the European electricity system and markets, the project identifies the underlying patterns that provide the boundary conditions and levers for policy development to reach long term RES and GHG targets (2020-2030 time frame). This paper presents results of this analytical phase of the SUSTELNET project. Furthermore, preliminary results of the current work in progress are presented. Principles and criteria for a regulatory framework for sustainable electricity systems are discussed, as well as the development of medium to long-term transition strategies/roadmaps for network regulation and market transformation to facilitate the integration of RES and decentralised electricity generating systems.

  7. Variable high gradient permanent magnet quadrupole (QUAPEVA)

    Science.gov (United States)

    Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.

    2017-12-01

    Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.

  8. LHC interaction region quadrupole cryostat design

    International Nuclear Information System (INIS)

    Nicol, T.H.; Darve, Ch.; Huang, Y.; Page, T.M.

    2002-01-01

    The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multi-layer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating lifetime. This paper describes the current LHC IR inner triplet quadrupole magnet cryostats being designed and manufactured at Fermilab as part of the US-LHC collaboration, and includes discussions on the structural and thermal considerations involved in the development of each of the major systems

  9. Effects of regulatory reforms in the electricity supply industry on electricity prices in developing countries

    International Nuclear Information System (INIS)

    Nagayama, Hiroaki

    2007-01-01

    Electric power sector reforms in the electricity supply industry have had an impact on industrial and household prices in developing countries in Latin America, the former Soviet Union, and Eastern Europe. Using original panel data for 83 countries during the period from 1985 to 2002, we examine how each policy instrument of the reform measures influenced electricity prices for countries in the above regions. We found that variables such as entry of independent power producers (IPP), unbundling of generation and transmission, establishment of a regulatory agency, and the introduction of a wholesale spot market have had a variety of impacts on electricity prices, some of which were not always consistent with expected results. The research findings suggest that neither unbundling nor introduction of a wholesale pool market on their own necessarily reduces the electric power price. In fact, contrary to expectations, there was a tendency for the price to rise. However, coexistent with an independent regulator, unbundling may work to reduce electricity prices. Privatization and the introduction of foreign IPP and retail competition lower electricity prices in some regions, but not all

  10. Does the small CMB quadrupole moment suggest new physics?

    CERN Document Server

    Cline, J M; Lesgourgues, Julien; Cline, James M.; Crotty, Patrick; Lesgourgues, Julien

    2003-01-01

    Motivated by WMAP's confirmation of an anomalously low value of the quadrupole moment of the CMB temperature fluctuations, we investigate the effects on the CMB of cutting off the primordial power spectrum P(k) at low wave numbers. This could arise, for example, from a break in the inflaton potential, a prior period of matter or radiation domination, or an oscillating scalar field which couples to the inflaton. We reanalyze the full WMAP parameter space supplemented by a low-k cutoff for P(k). The temperature correlations by themselves are better fit by a cutoff spectrum, but including the TE temperature-polarization spectrum reduces this preference to a 1.4 sigma effect. Inclusion of large scale structure data does not change the conclusion. If taken seriously, the low-k cutoff is correlated with optical depth so that reionization occurs even earlier than indicated by the WMAP analysis.

  11. Electric shocks are ineffective in treatment of lethal effects of rattlesnake envenomation in mice.

    Science.gov (United States)

    Johnson, E K; Kardong, K V; Mackessy, S P

    1987-01-01

    Electrical shocks, even crudely delivered from 'stun guns' and gasoline engine spark plugs, have been reported to be effective in the treatment of snake bite. We thus applied similar electric shocks to mice artificially injected with reconstituted rattlesnake venom at various LD50 multiples. Those envenomated mice treated with electric shock survived no better than the controls. We thus found no evidence that electric shocks crudely administered had any life saving effect in mice.

  12. Effect of electrical stimulation on consumer acceptance of mutton ...

    African Journals Online (AJOL)

    MarianaD

    -voltage electrical stimulation, HVES – high-voltage electrical stimulation, ... Electrical stimulation varied between 21 V – 1100 V. The drop in pH was significantly faster in the .... Table 2 Gender and age distribution of consumer panel (n=229).

  13. Effect of turbulent flow on the double electric layer

    International Nuclear Information System (INIS)

    Rutten, F. van.

    1978-01-01

    The existence of the double electric layer could explain the local deposition of corrosion products in water cooled reactors. It is shown that turbulent flow tends to drive the ions away from the wall, disturbs the diffuse layer and enables the electric field to extend further into the liquid phase. This electric field attracts the particles to the walls by electrophoresis [fr

  14. Interplay between electric and magnetic effect in adiabatic polaritonic systems

    KAUST Repository

    Alabastri, Alessandro; Toma, Andrea; Liberale, Carlo; Chirumamilla, Manohar; Giugni, Andrea; De Angelis, Francesco De; Das, Gobind; Di Fabrizio, Enzo M.; Proietti Zaccaria, Remo

    2013-01-01

    We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator. © 2013 Optical Society of America.

  15. DESIGN OF A THIN QUADRUPOLE TO BE USED IN THE AGS SYNCHROTRON

    Energy Technology Data Exchange (ETDEWEB)

    TSOUPAS,N.; AHRENS, L.; ALFORQUE, R.; BAI, M.; BROWN, K.; COURANT, E.; ET AL.

    2007-06-25

    The Alternating Gradient Synchrotron (AGS) employs two partial helical snakes[l] to preserve the polarization of the proton beam during acceleration. In order to compensate for the focusing effect of the partial helical snakes on the beam optics in the AGS during acceleration of the beam, we introduced eight quadrupoles in straight sections of the AGS at the proximity of the partial snakes. At injection energies, the strength of each quad is set at a high value, and is ramped down to zero as the effect of the snakes diminishes by the square of beam's rigidity. Four of the eight compensation quadrupoles had to be placed in very short straight sections -30 cm in length, therefore the quadruples had be thin with an overall length of less than 30 cm. In this paper we will discus: (a) the mechanical and magnetic specifications of the ''thin'' quadrupole. (b) the method to minimize the strength of the dodecapole harmonic, (c) the method to optimize the thickness of the laminations that the magnet iron is made, (d) mechanical tolerances of the magnet, (e) comparison of the measured and calculated magnetic multipoles of the quadrupole.

  16. Experimental study on the effects of AC electric fields on flame spreading over polyethylene-insulated electric-wire

    KAUST Repository

    Jin, Young Kyu

    2010-11-01

    In this present study, we experimentally investigated the effects of electric fields on the characteristics of flames spreading over electric-wires with AC fields. The dependence of the rate at which a flame spreads over polyethylene-insulated wires on the frequency and amplitude of the applied AC electric field was examined. The spreading of the flame can be categorized into linear spreading and non-linearly accelerated spreading of flame. This categorization is based on the axial distribution of the field strength of the applied electric field. The rate at which the flame spreads is highly dependent on the inclined direction of the wire fire. It could be possible to explain the spreading of the flame on the basis of thermal balance. © 2010 The Korean Society of Mechanical Engineers.

  17. Redistribution effects of energy and climate policy: The electricity market

    International Nuclear Information System (INIS)

    Hirth, Lion; Ueckerdt, Falko

    2013-01-01

    Energy and climate policies are usually seen as measures to internalize externalities. However, as a side effect, the introduction of these policies redistributes wealth between consumers and producers, and within these groups. While redistribution is seldom the focus of the academic literature in energy economics, it plays a central role in public debates and policy decisions. This paper compares the distributional effects of two major electricity policies: support schemes for renewable energy sources, and CO 2 pricing. We find that the redistribution effects of both policies are large, and they work in opposed directions. While renewables support transfers wealth from producers to consumers, carbon pricing does the opposite. More specifically, we show that moderate amounts of wind subsidies can increase consumer surplus, even if consumers bear the subsidy costs. CO 2 pricing, in contrast, increases aggregated producer surplus, even without free allocation of emission allowances; however, not all types of producers benefit. These findings are derived from an analytical model of electricity markets, and a calibrated numerical model of Northwestern Europe. Our findings imply that if policy makers want to avoid large redistribution they might prefer a mix of policies, even if CO 2 pricing alone is the first-best climate policy in terms of allocative efficiency. -- Graphical abstract: Display Omitted -- Highlights: •CO 2 pricing and renewables support have strikingly different impacts on rents. •Carbon pricing increases producer surplus and decreases consumer surplus. •Renewable support schemes (portfolio standards, feed-in tariffs) do the opposite. •We model these impacts theoretically and quantify them for Europe. •Redistribution of wealth is found to be significant in size

  18. The effect of policy incentives on electric vehicle adoption

    International Nuclear Information System (INIS)

    Langbroek, Joram H.M.; Franklin, Joel P.; Susilo, Yusak O.

    2016-01-01

    In order to increase the attractiveness of electric vehicles (EVs), packages of policy incentives are provided in many countries. However, it is still unclear how effective different policy incentives are. Also, it is questionable that they have the same impact on different groups of people. In this study, based on a stated-choice experiment, the effect of several potential policy incentives on EV-adoption, as well as the influence of socio-psychological determinants are investigated, using constructs of the Transtheoretical Model of Change (TTM) and the Protection Motivation Theory (PMT). The probability of stated EV-adoption increases if policy incentives are offered in the choice experiment, which is expected because of the decrease of the generalized cost of EV-use. The high stated valuation of free parking or access to bus lanes makes those incentives an efficient alternative to expensive subsidies. EV-adoption probability increases for people that are further in the process of behavioural change. However, the responsiveness to subsidies decreases for people in more advanced stages-of-change. People that believe EVs to be effective in decreasing the negative externalities of the current transport system and people whose travel patterns can cope with the use of EVs also have a higher probability to choose the EV. - Highlights: •Policy incentives have a positive influence on electric vehicle adoption. •Being in advanced stages-of-change to EV-adoption increases likelihood to adopt EVs. •People in more advanced stages-of-change to EV-adoption are less price-sensitive. •People with a high self-efficacy and response efficacy are more likely to adopt EVs.

  19. Fe/sup 57/ polarimetry based on quadrupole interaction

    Energy Technology Data Exchange (ETDEWEB)

    Gonser, U; Sakai, H; Keune, W [Universitaet des Saarlandes, Saarbruecken (F.R. Germany). Fachbereich Angewandte Physik

    1976-01-01

    A quadrupole Fe/sup 57/ polarimeter consisting of single crystals of LiNbO/sub 3/:Co/sup 57/ as source (polarizer) and of FeCO/sub 3/ (siderite) as absorber (analyzer) is described. The quadrupole interactions of the two materials are nearly equal in magnitude but opposite in sign and in addition the asymmetry parameter eta equal approximately 0.

  20. Large permanent magnet quadrupoles for an electron storage ring

    International Nuclear Information System (INIS)

    Herb, S.W.

    1987-01-01

    We have built large high quality permanent magnet quadrupoles for use as interaction region quadrupoles in the Cornell Electron Storage Ring where they must operate in the 10 kG axial field of the CLEO experimental detector. We describe the construction and the magnetic measurement and tuning procedures used to achieve the required field quality and stability. (orig.)

  1. Fifth-order aberrations in magnetic quadrupole-octupole systems

    International Nuclear Information System (INIS)

    Ling, K.M.

    1990-01-01

    Explicit integral expressions are given for the fifth-order geometrical aberration coefficients in rectilinear magnetic quadrupole-octupole systems used for the transport of nonrelativistic charged particle beams. The numerical values of the fifth-order geometrical aberration coefficients for a rare earth cobalt (REC) quadrupole doublet are given as an example. 26 refs., 5 figs., 4 tabs

  2. Computation of a quadrupole magnet for the APS storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L.R.; Kim, S.H.; Thompson, K.M.

    1990-01-01

    The storage ring of the Advanced Photon Source will include 400 quadrupole magnets for focusing the beam. A prototype quadrupole has been designed, constructed, and measured. This paper describes the two- and three-dimensional (2-D and 3-D) field computations performed for this design. 2 refs., 6 figs., 1 tab.

  3. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    International Nuclear Information System (INIS)

    Maschke, A. W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly

  4. Preliminary Results of the VLFE Quadrupole Instrumentation From The PARX Sounding Rocket

    Science.gov (United States)

    Reinleitner, L. A.; Holzworth, R. H.; Meadows, A. L.

    2003-12-01

    The NASA Pulsating Auroral Rocket eXperiment (PARX - March '97 from Poker Flat, AK) was equipped with 4 electric field probes oriented (X and Y) perpendicular to the ambient magnetic field, and one probe (along the Z axis) to obtain the parallel electric field. The rocket also included a three-axis VLF search coil magnetometer. The VLF measurements for both instruments were from 100 Hz - 8 KHz. Additionally, the electric field information was used onboard the rocket to obtain the "quadrupole" electric field, defined to be {(V1+V2) - (V3+V4)}/2d, which shows significant response only to short wavelength waves. This instrumentation clearly shows the long wavelength nature of features tentatively described as auroral hiss, and the shorter wavelength nature of the electrostatic and/or quasi-electrostatic waves.

  5. Oxygen effect on the electrical characteristics of pentacene transistors

    International Nuclear Information System (INIS)

    Hu Yan; Dong Guifang; Hu Yuanchuan; Wang Liduo; Qiu Yong

    2006-01-01

    The effect of oxygen on the electrical characteristics of organic thin film transistors with pentacene as the active layer has been investigated. The saturation currents and mobilities of the transistors increase as the ambient oxygen concentration decreases, which is ascribed to the formation of a charge transfer complex between pentacene and O 2 . The deposition rate of the pentacene layer affects this phenomenon. The transistor with the pentacene layer deposited at a rate of 15 nm min -1 shows higher sensitivity to oxygen concentration than the device with the pentacene layer deposited at 30 nm min -1 . We suggest that when deposited at a lower rate the pentacene film is less compact, leading to easier entrance of oxygen into the charge accumulation region

  6. Electric dipole moments of light nuclei in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, Jan; Liebig, Susanna; Minossi, David [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Hanhart, Christoph; Nogga, Andreas; Vries, Jordy de; Wirzba, Andreas [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Meissner, UlfG. [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Helmholtz-Institut fuer Strahlen und Kernphysik, Universitaet Bonn (Germany)

    2014-07-01

    Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT-theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP-violation from the standard mechanism predicts EDMs that are experimentally inaccessible in the foreseeable future. We calculate within the framework of effective field theory the two-nucleon contributions to the EDMs of the deuteron, helion, and triton induced by P- and T-violating terms that arise from the QCD θ-term or dimension-6 sources of physics beyond the Standard Model (SM). We demonstrate what insights into physics beyond the SM can be gained from a suitable combination of measurements and, if needed, supplementary lattice QCD calculations.

  7. Theory of nuclear quadrupole interactions in solid hydrogen fluoride

    International Nuclear Information System (INIS)

    Mohamed, N.S.; Sahoo, N.; Das, T.P.; Kelires, P.C.

    1990-01-01

    The nuclear quadrupole interaction of 19 F * (I=5/2) nucleus in solid hydrogen fluoride has been studied using the Hartree Fock cluster technique to understand the influence of both intrachain hydrogen bonding effects and the weak interchain interaction. On the basis of our investigations, the 34.04 MHz coupling constant observed by TDPAD measurements has been ascribed to the bulk solid while the observed 40.13 MHz coupling constant is suggested as arising from a small two- or three-molecule cluster produced during the proton irradiation process. Two alternate explanations are offered for the origin of coupling constants close to 40 MHz in a number of solid hydrocarbons containing hydrogen and fluorine ligands. (orig.)

  8. Rescuing the nonjet (NJ azimuth quadrupole from the flow narrative

    Directory of Open Access Journals (Sweden)

    Trainor Thomas A.

    2017-01-01

    Full Text Available According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data “nonflow” depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication (“jet quenching” in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that “carry” the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions, and that in the boost frame a single universal quadrupole spectrum (Lévy distribution on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet QCD mechanism for the NJ quadrupole conventionally represented by υ2.

  9. Rescuing the nonjet (NJ) azimuth quadrupole from the flow narrative

    Science.gov (United States)

    Trainor, Thomas A.

    2017-04-01

    According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data "nonflow" depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ) quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication ("jet quenching") in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt) data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that "carry" the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions), and that in the boost frame a single universal quadrupole spectrum (Lévy distribution) on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet) QCD mechanism for the NJ quadrupole conventionally represented by υ2.

  10. Effects of electrical stimulation on cell proliferation and apoptosis.

    Science.gov (United States)

    Love, Maria R; Palee, Siripong; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-03-01

    The application of exogenous electrical stimulation (ES) to cells in order to manipulate cell apoptosis and proliferation has been widely investigated as a possible method of treatment in a number of diseases. Alteration of the transmembrane potential of cells via ES can affect various intracellular signaling pathways which are involved in the regulation of cellular function. Controversially, several types of ES have proved to be effective in both inhibiting or inducing apoptosis, as well as increasing proliferation. However, the mechanisms through which ES achieves this remain fairly unclear. The aim of this review was to comprehensively summarize current findings from in vitro and in vivo studies on the effects of different types of ES on cell apoptosis and proliferation, highlighting the possible mechanisms through which ES induced these effects and define the optimum parameters at which ES can be used. Through this we hope to provide a greater insight into how future studies can most effectively use ES at the clinical trial stage. © 2017 Wiley Periodicals, Inc.

  11. Quadrupole moments of odd-A 53−63Mn: Onset of collectivity towards N=40

    Directory of Open Access Journals (Sweden)

    C. Babcock

    2016-09-01

    Full Text Available The spectroscopic quadrupole moments of the odd–even Mn isotopes between N=28 and N=38 have been measured using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. In order to increase sensitivity to the quadrupole interaction, the measurements have been done using a transition in the ion rather than in the atom, with the additional advantage of better spectroscopic efficiency. Since the chosen transition is from a metastable state, optical pumping in ISOLDE's cooler and buncher (ISCOOL was used to populate this state. The extracted quadrupole moments are compared to large-scale shell model predictions using three effective interactions, GXPF1A, LNPS and modified A3DA. The inclusion of both the 1νg9/2 and 2νd5/2 orbitals in the model space is shown to be necessary to reproduce the observed increase in the quadrupole deformation from N=36 onwards. Specifically, the inclusion of the 2νd5/2 orbital induces an increase in neutron and proton excitations across the reduced gaps at N=40 and Z=28, leading to an increase in deformation above N=36.

  12. Electric Power Lines : Questions and Answers on Research into Health Effects.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1993-11-01

    Most people know that electric power lines, like the wiring in our homes, can cause serious electric shocks if we`re not careful. Many people also want to know whether the electric and magnetic fields (EMF) produced by power lines and other electrical devices cause health effects. The purpose of this pamphlet is to answer some common questions that the Bonneville Power Administration (BPA) receives about the possible effects of power lines on health. (BPA is the Pacific Northwest`s Federal electric power marketing agency.) First, some basic electrical terms are defined, and electric and magnetic fields are described. Next, answers are given to several questions about recent scientific studies. We then describe how BPA is addressing public concerns raised by these studies. Some important information about electrical safety follows. The last section tells you how to obtain more detailed information about the health and safety issues summarized in this pamphlet.

  13. Electroresistance Effect in Gold Thin Film Induced by Ionic-Liquid-Gated Electric Double Layer

    NARCIS (Netherlands)

    Nakayama, Hiroyasu; Ye, Jianting; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Iwasa, Yoshihiro; Saitoh, Eiji

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with

  14. Quench Protection of SC Quadrupole Magnets

    Science.gov (United States)

    Feher, S.; Bossert, R.; Dimarco, J.; Mitchell, D.; Lamm, M. J.; Limon, P. J.; Mazur, P.; Nobrega, F.; Orris, D.; Ozelis, J. P.; Strait, J. B.; Tompkins, J. C.; Zlobin, A. V.; McInturff, A. D.

    1997-05-01

    The energy stored in a superconducting accelerator magnet is dissipated after a quench in the coil normal zones, heating the coil and generating a turn to turn and coil to ground voltage drop. Quench heaters are used to protect the superconducting magnet by greatly increasing the coil normal zone thus allowing the energy to be dissipated over a larger conductor volume. Such heaters will be required for the Fermilab/LBNL design of the high gradient quads (HGQ) designed for the LHC interaction regions. As a first step, heaters were installed and tested in several Tevatron low-β superconducting quadrupoles. Experimental studies in normal and superfluid helium are presented which show the heater-induced quench response as a function of magnet excitation current, magnet temperature and peak heater energy density.

  15. Isabelle dipole and quadrupole coil configurations

    International Nuclear Information System (INIS)

    Dahl, P.F.; Hahn, H.

    1980-01-01

    The coil configurations of the ISABELLE dipole and quadrupole magnets have been reviewed and a number of improvements were suggested for incorporation into the final design. The coil designs are basically single layer multiple block approximations to cosine current distributions, wound from a high aspect ratio non-keystoned braided conductor. The blocks are separated by knife-edge wedges to maximize the quench propagation velocity. The current density variation is obtained by an appropriate distribution of the spacer turns and, to a lesser degree, by the wedge locations. The use of inert turns is necessary to minimize the peak field enhancement both in the ends and in the two dimensional section. Schemes for deriving turns distributions yielding harmonic coefficients satisfying the stringent ISABELLE tolerances on field uniformity, while allowing for simplicity in winding and taking into account quench propagation considerations, will be discussed, as well as our approach to the coil end configuration

  16. An improved integrally formed radio frequency quadrupole

    Science.gov (United States)

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  17. Commissioning results of the HZB quadrupole resonator

    CERN Document Server

    Kleindienst, Raphael; Knobloch, Jens; Kugeler, Oliver

    2015-01-01

    Recent cavity results with niobium have demonstrated the necessity of a good understanding of both the BCS and residual resistance. For a complete picture and comparison with theory, it is essential that one can measure the RF properties as a function of field, temperature, frequency and ambient magnetic field. Standard cavity measurements are limited in their ability to change all parameters freely and in a controlled manner. On the other hand, most sample measurement setups operate at fairly high frequency, where the surface resistance is always BCS dominated. The quadrupole resonator, originally developed at CERN, is ideally suited for characterization of samples at typical cavity RF frequencies. We report on a modified version of the QPR with improved RF figures of merit for high-field operation. Experimental challenges in the commissioning run and alternate designs for simpler sample changes are shown alongside measurement results of a large grain niobium sample.

  18. TOUTATIS: A radio frequency quadrupole code

    Directory of Open Access Journals (Sweden)

    Romuald Duperrier

    2000-12-01

    Full Text Available A cw high power linear accelerator can only work with very low particle losses and structure activation. At low energy, the radio frequency quadrupole (RFQ is an accelerator element that is very sensitive to losses. To design this structure, a good understanding of the beam dynamics is required. Generally, the reference code PARMTEQM is enough to design the accelerator. TOUTATIS has been written with the goals of cross-checking results and obtaining more reliable dynamics. This paper relates the different numerical methods used in the code. It is time based, using multigrids methods and adaptive mesh for a fine description of the forces without being time consuming. The field is calculated through a Poisson solver and the vanes are fully described, allowing it to properly simulate the coupling gaps and the RFQs extremities. Theoretical and experimental tests are also described and show a good agreement between simulations and reference cases.

  19. Health effects of low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    1992-06-01

    The US Department of Labor and the President's Office of Science and Technology Policy (STP) requested that the Committee on interagency Radiation Research and Policy Coordination (CIRRPC) conduct an independent evaluation of the reported health effects from exposure to low-frequency electric and magnetic fields (ELF-EMF), especially reports of carcinogenesis and reproductive and neurophysiological effects focusing on frequencies which appeared to be of greatest public concern. Oak Ridge Associated Universities (ORAU) was tasked by the CIRRPC to oversee the review by a panel of independent, non-Federal, scientists. Following their review of over 1000 journal articles, the ORAU Panel concluded ''... that there is no convincing evidence ... to support the contention that exposure to ELF-EMF generated by sources such as household appliances, video display terminals (10 to 30 KHz), and local power lines (15 to 180 Hz) are demonstrable health hazards.'' Although the Panel noted that some biological effects produced by these fields may be of scientific interest and warrant consideration for future research, it concluded that ''... in the broad scope of research needs in basic science and health research, any health concerns over exposures to these fields should not receive a high priority.'' This executive summary outlines the panel's investigation

  20. Matter-wave solitons supported by quadrupole-quadrupole interactions and anisotropic discrete lattices

    Science.gov (United States)

    Zhong, Rong-Xuan; Huang, Nan; Li, Huang-Wu; He, He-Xiang; Lü, Jian-Tao; Huang, Chun-Qing; Chen, Zhao-Pin

    2018-04-01

    We numerically and analytically investigate the formations and features of two-dimensional discrete Bose-Einstein condensate solitons, which are constructed by quadrupole-quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.

  1. Effects in atmospheric electricity daily variation controlled by solar wind

    International Nuclear Information System (INIS)

    Ptitsyna, N.G.; Tyasto, M.I.; Levitin, A.E.; Gromova, L.A.; Tuomi, T.; AN SSSR, Moscow

    1995-01-01

    An analysis of fair weather atmospheric electricity, one of the environmental factors which affects the biosphere, is conducted. A distinct difference in the diurnal variation of atmospheric electric field at Helsinki is found between disturbed and extremely quiet conditions in the magnetosphere in winter before midnight. The comparison with the numerical model of the ionospheric electric field based on the solar wind parameters reveals that the maximum contribution of the magnetospheric-ionospheric generator to atmospheric electric field is about 100-150 v/m which assumes values of about 30% of the surface field. 8 refs.; 2 figs

  2. Electric Power Lines : Questions and Answers on Research into Health Effects.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1994-05-01

    Most people know that electric power lines, like the wiring in our homes, can cause serious electric shocks if we`re not careful. Many people also want to know whether the electric and magnetic fields (EMF) produced by power lines and other electrical devices cause health effects. The purpose of this booklet is to answer some common questions that the Bonneville Power Administration (BPA) receives about the possible effects of power lines on health. First, some basic electrical terms are defined, and electric and magnetic fields are debed. Next, answers are given to several questions about recent scientific studies. Some important information about electrical safety follows. We then describe how BPA is addressing public concerns about potential health effects of power lines. The last section tells you how to obtain more detailed information about the health and safety issues summarized in this booklet.

  3. Mechanical to electrical energy conversion by shock wave effect in a ferro-electric material

    International Nuclear Information System (INIS)

    David, Jean

    1977-01-01

    The shock wave propagation through a polarized ferroelectric ceramic changes or destroys remanent polarization and this way allows to get, in adequate electrical circuit, a volume energy of about 2 J/ cm 3 , during a time of the order of 0,4 μs; which corresponds to a peak - power of 5 MW/cm 3 . The present report has for objective to specify the optimum working conditions of this mechanical to electrical conversion from ceramic characteristics, load circuit connected to its electrodes and from the characteristics of the pressure wave which travels through the materials which constitute the converter. After a few lines about the ferroelectric materials and about the shock waves, the shock generator, the used setting and measures are described. A mathematical model which exhibits the transducer operation and a computation of the allowable electrical energy are given. For ending, the released electrical energies by industrial and laboratory ceramics are compared to the estimated computations and a thermodynamical balance is carried out. (author) [fr

  4. Methods for studying and criteria for evaluating the biological effects of electric fields of industrial frequency

    Energy Technology Data Exchange (ETDEWEB)

    Savin, B. M.; Shandala, M. G.; Nikonova, K. V.; Morozov, Yu. A.

    1978-10-01

    Data are reviewed from a number of USSR research studies on the biological effects of electric power transmission lines of 1150 Kv and above. Effects on man, plants, animals, and terrestrial ecosystems are reported. Existing health standards in the USSR for the exposure of personnel working in electric fields are included. It is concluded that high-voltage electric fields have a harmful effect on man and his environment.

  5. Local Electric Field Effects on Rhodium-Porphyrin and NHC-Gold Catalysts

    Science.gov (United States)

    2015-01-05

    AFRL-OSR-VA-TR-2015-0023 (NII) - Local Electric Field Effects on Rhodium -Porphyrin and NHC-Gold Catalysts MATTHEW KANAN LELAND STANFORD JUNIOR UNIV...Effects on Rhodium -Porphyrin and NHC-Gold Catalysts Principal Investigator: Matthew W. Kanan Project Publications: 1. “An Electric Field–Induced Change...Stanford University Grant/Contract Title The full title of the funded effort. (NII)-Local Electric Field Effects on Rhodium -Porphyrin and NHC-Gold

  6. Nuclear electric dipole moments in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, J.; Vries, J. de [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Hanhart, C. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany); Liebig, S. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - High Performance Computing,Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics,Universität Bonn,D-53115 Bonn (Germany); Minossi, D. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Nogga, A.; Wirzba, A. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2015-03-19

    We provide a consistent and complete calculation of the electric dipole moments of the deuteron, helion, and triton in the framework of chiral effective field theory. The CP-conserving and CP-violating interactions are treated on equal footing and we consider CP-violating one-, two-, and three-nucleon operators up to next-to-leading-order in the chiral power counting. In particular, we calculate for the first time EDM contributions induced by the CP-violating three-pion operator. We find that effects of CP-violating nucleon-nucleon contact interactions are larger than those found in previous studies based on phenomenological models for the CP-conserving nucleon-nucleon interactions. Our results which apply to any model of CP violation in the hadronic sector can be used to test various scenarios of CP violation. As examples, we study the implications of our results on the QCD θ-term and the minimal left-right symmetric model.

  7. Effect of electric field (at different temperatures) on germination of ...

    African Journals Online (AJOL)

    Chickpea (Cicer arietinum) seeds were exposed to electric field from zero to 1300 V for 15 min at three different temperatures (13, 16 and 19°C). It was found that the exposure of chickpea seeds to the electric field caused a change in water uptake capacity (and its coefficient) as compared to control. A new theoretical model ...

  8. Electric control of the heat flux through electrophononic effects

    Science.gov (United States)

    Seijas-Bellido, Juan Antonio; Aramberri, Hugo; Íñiguez, Jorge; Rurali, Riccardo

    2018-05-01

    We demonstrate a fully electric control of the heat flux, which can be continuously modulated by an externally applied electric field in PbTiO3, a prototypical ferroelectric perovskite, revealing the mechanisms by which experimentally accessible fields can be used to tune the thermal conductivity by as much as 50% at room temperature.

  9. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  10. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    1998-12-01

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  11. The effect of pulsed electric fields on carotenoids bioaccessibility

    NARCIS (Netherlands)

    Bot, Francesca; Verkerk, Ruud; Mastwijk, Hennie; Anese, Monica; Fogliano, Vincenzo; Capuano, Edoardo

    2018-01-01

    Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and

  12. Ambient effects on the electrical conductivity of carbon nanotubes

    DEFF Research Database (Denmark)

    Roch, Aljoscha; Greifzu, Moritz; Roch Talens, Esther

    2015-01-01

    We show that the electrical conductivity of single walled carbon nanotubes (SWCNT) networks is affected by oxygen and air humidity under ambient conditions by more than a magnitude. Later, we intentionally modified the electrical conductivity by functionalization with iodine and investigated...

  13. Effect of a background electric field on the Hagedorn temperature

    International Nuclear Information System (INIS)

    Ferrer, E.J.; Incera, V. de la; Fradkin, E.S.

    1990-07-01

    We compute the one-loop free energy of the open neutral string gas in a constant electromagnetic background. Starting from this result we show that the Hagedorn temperature of this hot string gas depends on the background electric field. The larger the electric field, the lower the Hagedorn temperature is. (author). 13 refs

  14. The Effect of Divestitures in the German Electricity Market

    NARCIS (Netherlands)

    Weigt, H.; Willems, Bert

    2011-01-01

    In the most liberalized electricity markets, abuse of market power is a concern related to oligopolistic market structures, flaws in market architecture, and the specific characteristics of electricity generation and demand. Several methods have been suggested to improve the competitiveness of the

  15. The Effect of Divestitures in the German Electricity Market

    NARCIS (Netherlands)

    Weigt, H.; Willems, Bert

    2011-01-01

    In most liberalized electricity markets, abuse of market power is a concern related to oligopolistic market structures, flaws in market architecture, and the specific characteristics of electricity generation and demand. Several methods have been suggested to improve the competitiveness of the

  16. Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings

    International Nuclear Information System (INIS)

    Karna, S.P.

    1997-01-01

    A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. copyright 1997 The American Physical Society

  17. An algebraic description of identical bands and of high-spin quadrupole collectivity

    International Nuclear Information System (INIS)

    Guidry, M.W.

    1993-01-01

    The Fermion Dynamical Symmetry Model (FDSM) has been used to describe electric quadrupole transition rates and static moments at high angular momentum in deformed nuclei. A quantitative description of these phenomena appears possible by these means. The formalism accounts naturally for those cases where significant reductions in B(E2) values are accompanied by relatively constant moments of inertia. A discussion of identical bands as being due to a dynamical symmetry will be given. The empirical properties of these bands and general principles of group theory will be used to place constraints on an acceptable symmetry. A model that represents a minimal implementation of these criteria will be presented

  18. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  19. Impact of electrical intertie capacity on carbon policy effectiveness

    International Nuclear Information System (INIS)

    English, J.; Niet, T.; Lyseng, B.; Palmer-Wilson, K.; Keller, V.; Moazzen, I.; Pitt, L.; Wild, P.; Rowe, A.

    2017-01-01

    This study investigates the potential cost and emissions reductions that result from an increase in electricity transmission capacity between Canada's two westernmost provinces: Alberta, a fossil fuel dominated jurisdiction, and British Columbia, a predominantly hydroelectric jurisdiction. A bottom-up model is used to find the least cost electricity generation mix in Alberta and British Columbia under different carbon policies. The long-term evolution of the electricity system is determined by minimizing net present cost of electricity generation for the time span of 2010–2060. Different levels of intertie capacity expansion are considered together with a variety of carbon tax and carbon cap scenarios. Results indicate that increased intertie capacity reduces the cost of electricity and emissions under carbon pricing policies. However, the expandable intertie does not encourage greater adoption of variable renewable generation. Instead, it is used to move low-cost energy from the United States to Alberta. The optimal intertie capacity and cost reduction of increased interconnectivity increases with more restrictive carbon policies. - Highlights: • A techno-economic optimization model is used to examine electricity generation in western Canada. • Interprovincial electricity transmission can decrease carbon abatement costs. • Market conditions can reduce the expected synergy between storage hydroelectricity and variable renewable generation. • Inconsistent carbon policies between regions mean emissions are moved, not avoided.

  20. Numerical analysis on effective electric field penetration depth for interdigital impedance sensor

    International Nuclear Information System (INIS)

    Kim, Chon-ung; Jong, Hakchol; Ro, Cholwu; Pak, Gilhung; Im, Songil; Li, Guofeng; Li, Jie; Song, Yunho

    2013-01-01

    Interdigital (finger-like) electrodes are widely used for electrical impedance and capacitance tomography of composite dielectric materials and complex insulating structures. Because of their advantages, they are now effectively introduced as capacitance sensors into a variety of industrial branches, agriculture, medical science, biological engineering, military branches, etc. In order to effectively apply the so-called interdigital impedance sensors in practice, of great importance is to optimize the sensor design parameters such as the electric field penetration depth, signal strength and so on. The general design principles of the interdigital capacitance sensor have been discussed for a long time by many researchers. However, there is no consensus on the definition of the effective electric field penetration depth of interdigital electrode. This paper discusses how to determine the effective electric field penetration depth of interdigital sensor on the basis of the refractive principle of electric field intensity and the FEM analyses of electric field distribution and capacitance for the sensor model.

  1. Electric field confinement effect on charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.

    2012-01-01

    While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low

  2. An electricity price model with consideration to load and gas price effects.

    Science.gov (United States)

    Huang, Min-xiang; Tao, Xiao-hu; Han, Zhen-xiang

    2003-01-01

    Some characteristics of the electricity load and prices are studied, and the relationship between electricity prices and gas (fuel) prices is analyzed in this paper. Because electricity prices are strongly dependent on load and gas prices, the authors constructed a model for electricity prices based on the effects of these two factors; and used the Geometric Mean Reversion Brownian Motion (GMRBM) model to describe the electricity load process, and a Geometric Brownian Motion(GBM) model to describe the gas prices; deduced the price stochastic process model based on the above load model and gas price model. This paper also presents methods for parameters estimation, and proposes some methods to solve the model.

  3. Electrical measurement of radiation effect in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Satoshi; Kamiya, Koji; Kanno, Ikuo [Kyoto Univ. (Japan). Faculty of Engineering] [and others

    1996-04-01

    For aiming to limited resources and environmental conservations on the Earth, development of controlling element workable under high temperature environment was investigated so as to establish a high grade and optimum controlling system. In order to observe changes of electrical properties before and after irradiation and after annealing, and to investigate changes of carrier concentration and movability after irradiating neutron from reactor and accelerator for the SiC single crystal wafer, elucidation on neutron irradiation effect of SiC as well as finding an optimum method on nuclear conversion injection were investigated. For this reason, SiC surface was purified by its etching and was treated thermally at 1000degC for about 30 min. under argon gas atmosphere after vacuum depositing nickel on it. And then, it was irradiated neutron using Kyoto University reactor (LTL), Linac and University of Tokyo reactor (YAYOI) to measure changes of resistivity using van der Pauw. As a result, it was found that LTL irradiation data was under investigation of measuring method, that in Linac no meaning change was observed because of low irradiation, and that only YAYOI data showed increase of resistivity. (G.K.)

  4. Effective field theory, electric dipole moments and electroweak baryogenesis

    International Nuclear Information System (INIS)

    Balazs, Csaba; White, Graham; Yue, Jason

    2017-01-01

    Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.

  5. Effects of pharyngeal electrical stimulation on swallowing performance.

    Science.gov (United States)

    Takeishi, Ryosuke; Magara, Jin; Watanabe, Masahiro; Tsujimura, Takanori; Hayashi, Hirokazu; Hori, Kazuhiro; Inoue, Makoto

    2018-01-01

    Pharyngeal electrical stimulation (PEStim) has been found to facilitate voluntary swallowing. This study investigated how PEStim contributed to modulation of swallowing function in 15 healthy humans. In the involuntary swallowing test, water was injected onto the pharynx at 0.05 ml/s and the onset latency of the first swallow was measured. In the voluntary swallowing test, subjects swallowed their own saliva as quickly as possible for 30 s and the number of swallows was counted. Voluntary and involuntary swallowing was evaluated before (baseline), immediately after, and every 10 min after 10-min PEStim for 60 min. A voluntary swallowing test with simultaneous 30-s PEStim was also conducted before and 60 min after 10-min PEStim. The number of voluntary swallows with simultaneous PEStim significantly increased over 60 min after 10-min PEStim compared with the baseline. The onset latency of the first swallow in the involuntary swallowing test was not affected by 10-min PEStim. The results suggest that PEStim may have a long-term facilitatory effect on the initiation of voluntary swallowing in healthy humans, but not on peripherally-evoked swallowing. The physiological implications of this modulation are discussed.

  6. Cardiac effects of electrically induced intrathoracic autonomic reflexes.

    Science.gov (United States)

    Armour, J A

    1988-06-01

    Electrical stimulation of the afferent components in one cardiopulmonary nerve (the left vagosympathetic complex at a level immediately caudal to the origin of the left recurrent laryngeal nerve) in acutely decentralized thoracic autonomic ganglionic preparations altered cardiac chronotropism and inotropism in 17 of 44 dogs. Since these neural preparations were acutely decentralized, the effects were mediated presumably via intrathoracic autonomic reflexes. The lack of consistency of these reflexly generated cardiac responses presumably were due in part to anatomical variation of afferent axons in the afferent nerve stimulated. As stimulation of the afferent components in the same neural structure caudal to the heart (where cardiopulmonary afferent axons are not present) failed to elicit cardiac responses in any dog, it is presumed that when cardiac responses were elicited by the more cranially located stimulations, these were due to activation of afferent axons arising from the heart and (or) lungs. When cardiac responses were elicited, intramyocardial pressures in the right ventricular conus as well as the ventral and lateral walls of the left ventricle were augmented. Either bradycardia or tachycardia was elicited. Following hexamethonium administration no responses were produced, demonstrating that nicotonic cholinergic synaptic mechanisms were involved in these intrathoracic cardiopulmonary-cardiac reflexes. In six of the animals, when atropine was administered before hexamethonium, reflexly generated responses were attenuated. The same thing occurred when morphine was administered in four animals. In contrast, in four animals following administration of phentolamine, the reflexly generated changes were enhanced.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Effective field theory, electric dipole moments and electroweak baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, Csaba; White, Graham [ARC Centre of Excellence for Particle Physics at the Terascale School of Physics and Astronomy,Monash University,Victoria 3800 (Australia); Yue, Jason [Department of Physics, National Taiwan Normal University,Taipei 116, Taiwan (China); ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics,The University of Sydney,NSW 2006 (Australia)

    2017-03-07

    Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.

  8. Trapping of Electron Cloud LLC/Cesrta Quadrupole and Sextupole Magnets

    International Nuclear Information System (INIS)

    Wang, L.

    2011-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R and D (1). One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in CESRTA and ILC quadrupole and sextupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with a long lifetime in a quadrupole and sextupole magnet due to the mirror field trapping mechanism. We study the effects of magnet strength, bunch current, ante-chamber effect, bunch spacing effect and secondary emission yield (SEY) in great detail. The development of an electron cloud in magnets is the main concern where a weak solenoid field is not effective. Quadrupole and sextupole magnets have mirror field configurations which may trap electrons by the mirror field trapping mechanism (2). Fig.1 shows the orbit of a trapped electron in a quadrupole magnet. The electron makes gyration motion (called transverse motion) and also moves along the field line (called longitudinal motion). At the mirror point (middle of the field line), there is a maximum longitudinal energy and minimum transverse energy. When the electron moves away from the mirror point, its longitudinal energy reduces and the transverse energy increases as the magnetic field increases. If the magnetic field is strong enough, the longitudinal energy becomes zero at one point and then the electron is turned back by the strong field. Note that the electrons are trapped in the region near the middle of the field lines. Although all quadrupole and sextupole magnets can trap electrons in principle, the

  9. Effect of nuclear power generation on the electricity price in Korea

    International Nuclear Information System (INIS)

    Lee, Man Kee; Song, Kee Dong; Kim, Seung Soo; Kim, Sung Kee; Lee, Yung Kun

    1994-12-01

    The main purpose of this study is to estimate the effect of nuclear power generation on the electricity price by analysing electricity supply sector. The effects on electricity price changes are estimated in terms of following respects: - Restriction on the additional introduction of nuclear power plant. - CO 2 emission quantity control and carbon tax. A computer model by using Linear Programming optimization technique was also developed for these analyses. 10 figs, 12 tabs, 32 refs. (Author)

  10. The Features of Moessbauer Spectra of Hemoglobins: Approximation by Superposition of Quadrupole Doublets or by Quadrupole Splitting Distribution?

    International Nuclear Information System (INIS)

    Oshtrakh, M. I.; Semionkin, V. A.

    2004-01-01

    Moessbauer spectra of hemoglobins have some features in the range of liquid nitrogen temperature: a non-Lorentzian asymmetric line shape for oxyhemoglobins and symmetric Lorentzian line shape for deoxyhemoglobins. A comparison of the approximation of the hemoglobin Moessbauer spectra by a superposition of two quadrupole doublets and by a distribution of the quadrupole splitting demonstrates that a superposition of two quadrupole doublets is more reliable and may reflect the non-equivalent iron electronic structure and the stereochemistry in the α- and β-subunits of hemoglobin tetramers.

  11. Effects of electric vehicles on power systems in Northern Europe

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Ravn, Hans; Juul, Nina

    2012-01-01

    In this study, it is analysed how a large-scale implementation of plug-in hybrid electric vehicles and battery electric vehicles towards 2030 would influence the power systems of five Northern European countries, Denmark, Finland, Germany, Norway, and Sweden. Increasing shares of electric vehicles...... (EVs) are assumed; comprising 2.5%, 15%, 34%, and 53% of the private passenger vehicle fleet in 2015, 2020, 2025, and 2030, respectively. Results show that when charged/discharged intelligently, EVs can facilitate significantly increased wind power investments already at low vehicle fleet shares....... Moreover, due to vehicle-to-grid capability, EVs can reduce the need for new coal/natural gas power capacities. Wind power can be expected to provide a large share of the electricity for EVs in several of the countries. However, if EVs are not followed up by economic support for renewable energy...

  12. Effect of different carbon fillers and dopant acids on electrical ...

    Indian Academy of Sciences (India)

    analysis (TGA) and X-ray diffraction (XRD) studies were also conducted for different PANI composites. The results ... facile synthesis, electrical conductivity and environmental ... such as melt mixing, in situ polymerization, grafting macro-.

  13. Electrical conductivity of metal–carbon nanotube structures: Effect of ...

    Indian Academy of Sciences (India)

    Administrator

    The electrical properties of asymmetric metal–carbon nanotube (CNT) structures have been studied using ... The models with asymmetric metal contacts and carbon nanotube bear resemblance to experimental ... ordinary mechanical strength.

  14. The effect of electric transmission constraints on how power generation companies bid in the Colombian electrical power market

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Gallego Vega

    2010-05-01

    Full Text Available This paper presents the results of research about the effect of transmission constraints on both expected electrical energy to be dispatched and power generation companies’ bidding strategies in the Colombian electrical power market. The proposed model simulates the national transmission grid and economic dispatch by means of optimal power flows. The proposed methodology allows structural problems in the power market to be analyzed due to the exclusive effect of trans- mission constraints and the mixed effect of bidding strategies and transmission networks. A new set of variables is proposed for quantifying the impact of each generation company on system operating costs and the change in expected dispatched energy. A correlation analysis of these new variables is presented, revealing some interesting linearities in some generation companies’ bidding patterns.

  15. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING

    International Nuclear Information System (INIS)

    LUO, Y.; PILAT, F.; ROSER, T.

    2004-01-01

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed

  16. The giant quadrupole resonance in highly excited rotating nuclei

    International Nuclear Information System (INIS)

    Civitarese, O.; Furui, S.; Ploszajczak, M.; Faessler, A.

    1983-01-01

    The giant quadrupole resonance in highly excited, fast rotating nuclei is studied as a function of both the nuclear temperature and the nuclear angular momentum. The photo-absorption cross sections for quadrupole radiation in 156 Dy, 160 Er and 164 Er are evaluated within the linear response theory. The strength functions of the γ-ray spectrum obtained from the decay of highly excited nuclear states by deexcitation of the isoscalar quadrupole mode show a fine structure, which depends on the temperature T, the angular momentum I and the deformation of the nucleus β. The splitting of the modes associated with the signature-conserving and signature-changing components of the quadrupole field is discussed. (orig.)

  17. Semimicroscopic description of the giant quadrupole resonances in deformed nuclei

    International Nuclear Information System (INIS)

    Kurchev, G.; Malov, L.A.; Nesterenko, V.O.; Soloviev, V.G.

    1976-01-01

    The calculation results of the giant quadrupole isoscalar and isovector resonances performed within the random phase approximation are represented. The strength functions for E2-transitions are calculated for doubly even deformed nuclei in the regions 150 (<=) A < 190 and 228 (<=) A < 248 in the energy interval (0-40) MeV. The following integral characteristics of giant quadrupole resonances are obtained: the position, widths, the contribution to the energy weighted sum rule and the contribution to the total cross section of photoabsorption. The calculations have shown that giant quadrupole resonances are common for all the considered nuclei. The calculated characteristics of the isoscalar giant quadrupole resonance agree with the available experimental data. The calculations also show that the semimicroscopic theory can be successfully applied for the description of giant multipole resonances

  18. Nuclear quadrupole interactions in ferroelectric compounds of HF181

    International Nuclear Information System (INIS)

    Kunzler, J.V.

    1971-01-01

    Measurements of nuclear quadrupole interaction constants in perovkite-type compounds of PbHfO 3 , SnhfO 3 , CaHfO 3 e SrHfO 3 have been performed using the perturbed angular correlation technique. A range of fundamental frequencies from 150 to 550 Megaradians persecond was determined. The variation of quadrupole constants has been discussed through the molecular orbital theory

  19. Relaxation of quadrupole orientation in an optically pumped alkali vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-04-01

    The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.

  20. Quadrupole moment of the superdeformed band in 131Ce

    International Nuclear Information System (INIS)

    He, Y.; Godfrey, M.J.; Jenkins, I.; Kirwan, A.J.; Nolan, P.J.

    1990-01-01

    A mean lifetime measurement has been carried out on the states in the superdeformed band found in 131 Ce using the Doppler shift attenuation method (DSAM). The measured intrinsic nuclear quadrupole moment is Q o approx= 6 eb, assuming constant deformation, which corresponds to a quadrupole deformation β 2 approx= 0.35. This is considerably smaller than the value deduced for 132 Ce. (author)

  1. Waferscale Electrostatic Quadrupole Array for Multiple Ion Beam Manipulation

    OpenAIRE

    Vinayakumar, K. B.; Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Lal, A.

    2018-01-01

    We report on the first through-wafer silicon-based Electrostatic Quadrupole Array (ESQA) to focus high energy ion beams. This device is a key enabler for a wafer based accelerator architecture that lends itself to orders-of-magnitude reduction in cost, volume and weight of charged particle accelerators. ESQs are a key building block in developing compact Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) [1]. In a MEQALAC electrostatic forces are used to focus ions, and elec...

  2. Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.

    Science.gov (United States)

    Campanelli, L; Cea, P; Tedesco, L

    2006-09-29

    The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy.

  3. Two qubits in pure nuclear quadrupole resonance

    International Nuclear Information System (INIS)

    Furman, G.B.; Goren, S.D.; Meerovich, V.M.; Sokolovsky, V.L.

    2002-01-01

    It is shown theoretically that by the use of two radio-frequency fields of the same resonance frequency but with the different phases and directions the degeneracy of the energy spectrum of a spin system with I=3/2 is removed. This leads to four non-degenerate spin states which can be used as a platform for quantum computing. The feasibility of quantum computing based on a pure (without DC magnetic fields) nuclear quadrupole resonance technique is investigated in detail. Various quantum logic gates can be constructed by using different excitation techniques allowing different manipulations with the spin system states. Three realizations of quantum logic gates are considered: the application of an additional magnetic field with the resonance frequency, the amplitude modulation of one of the applied RF fields by the resonance frequency field, and the level-crossing method. It is shown that the probabilities of the resonance transitions depend on the method of excitation and on the direction of the excitation field. Feasibility of quantum computing is demonstrated with the examples of constructing a controlled-NOT logic gate using the resonance excitation technique and SWAP and NOT2 logic gates using the level-crossing method. (author)

  4. Quadrupole collectivity in {sup 128}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Boenig, Esther Sabine

    2014-07-07

    The regions around shell closures, especially around doubly magic nuclei, are of major interest in nuclear structure physics, as they provide a perfect test for nuclear structure theory. The neutron-rich Cd isotopes in the region of {sup 132}Sn are only two protons away from the shell closure at Z=50 and in close proximity to the N=82 magic number. Nevertheless they show an irregular behaviour regarding the excitation energy of the first excited 2{sup +} state. This is not reproduced by shell model calculations, which is astonishing due to the proximity of the shell closures. In order to shed light on the much discussed region around doubly magic {sup 132}Sn, a Coulomb excitation experiment of {sup 128}Cd has been performed at REX-ISOLDE, CERN. The reduced transition strength B(E2;0{sup +}{sub gs} → 2{sup +}{sub 1}), which is a measure of collectivity, and the spectroscopic quadrupole moment Q{sub s}(2{sup +}{sub 1}) as a measure of deformation could be determined for the first time. The results are shown as the continuation of already measured neutron-rich Cd isotopes and are compared to both beyond mean field and shell model calculations, which give different predictions for these observables.

  5. Design and Implementation of Effective Electrical Power System for Surya Satellite-1

    Science.gov (United States)

    Sulistya, A. H.; Hasbi, W.; Muhida, R.

    2018-05-01

    Surya Satellite-1 is a nanosatellite developed by students of Surya University. The subject of this paper is the design and implementation of effective electrical power system for Surya Satellite 1. The electrical power system role is to supply other systems of the satellite with appropriate electrical power. First, the requirements of the electrical power system are defined. The architecture of the electrical power system is then designed to build the prototype. The orbit simulation is calculated to predict the power production. When prototype test and simulation data is gained, we make an operation scenario to keep the produced power and the consumed power in balance. The design of the modules of the electrical power system is carried out with triple junction solar cells, lithium ion batteries, maximum power point trackers, charging controllers, power distributions, and protection systems. Finally, the prototypes of the electrical power system are presented.

  6. The effect of pulsed electric fields on carotenoids bioaccessibility: The role of tomato matrix.

    Science.gov (United States)

    Bot, Francesca; Verkerk, Ruud; Mastwijk, Hennie; Anese, Monica; Fogliano, Vincenzo; Capuano, Edoardo

    2018-02-01

    Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and lycopene bioaccessibility were found upon combined and individual pulsed electric fields and heating, except in the following cases: (i) in tissue, a significant decrease in lycopene bioaccessibility upon combined pulsed electric fields and heating and heating only was observed; (ii) in chromoplasts, both β-carotene and lycopene bioaccessibility significantly decreased upon combined pulsed electric fields and heating and pulsed electric fields only. The reduction in carotenoids bioaccessibility was attributed to modification in chromoplasts membrane and carotenoids-protein complexes. Differences in the effects of pulsed electric fields on bioaccessibility among different tomato fractions were related to tomato structure complexity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Electric field effect on exchange interaction in ultrathin Co films with ionic liquids

    Science.gov (United States)

    Ishibashi, Mio; Yamada, Kihiro T.; Shiota, Yoichi; Ando, Fuyuki; Koyama, Tomohiro; Kakizakai, Haruka; Mizuno, Hayato; Miwa, Kazumoto; Ono, Shimpei; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2018-06-01

    Electric-field modulations of magnetic properties have been extensively studied not only for practical applications but also for fundamental interest. In this study, we investigated the electric field effect on the exchange interaction in ultrathin Co films with ionic liquids. The exchange coupling J was characterized from the direct magnetization measurement as a function of temperature using Pt/ultrathin Co/MgO structures. The trend of the electric field effect on J is in good agreement with that of the theoretical prediction, and a large change in J by applying a gate voltage was observed by forming an electric double layer using ionic liquids.

  8. Incorporating network effects in a competitive electricity industry. An Australian perspective

    International Nuclear Information System (INIS)

    Outhred, H.; Kaye, J.

    1996-01-01

    The role of an electricity network in a competitive electricity industry is reviewed, the nation's experience with transmission pricing is discussed, and a 'Nodal Auction Model' for incorporating network effects in a competitive electricity industry is proposed. The model uses a computer-based auction procedure to address both the spatial issues associated with an electricity network and the temporal issues associated with operation scheduling. The objective is to provide a market framework that addresses both network effects and operation scheduling in a coordinated implementation of spot pricing theory. 12 refs

  9. Effects of feedback on residential electricity demand—Findings from a field trial in Austria

    International Nuclear Information System (INIS)

    Schleich, Joachim; Klobasa, Marian; Gölz, Sebastian; Brunner, Marc

    2013-01-01

    This paper analyzes the effects of providing feedback on electricity consumption in a field trial involving more than 1500 households in Linz, Austria. About half of these households received feedback together with information about electricity-saving measures (pilot group), while the remaining households served as a control group. Participation in the pilot group was random, but households were able to choose between two types of feedback: access to a web portal or written feedback by post. Results from cross section OLS regression suggest that feedback provided to the pilot group corresponds with electricity savings of around 4.5% for the average household. Our results from quantile regressions imply that for households in the 30th to the 70th percentile of electricity consumption, feedback on electricity consumption is statistically significant and effects are highest in absolute terms and as a share of electricity consumption. For percentiles below or above this range, feedback appears to have no effect. Finally, controlling for a potential endogeneity bias induced by non random participation in the feedback type groups, we find no difference in the effects of feedback provided via the web portal and by post. - Highlights: • We estimate the effects of feedback on household electricity use in a field trial in Linz, Austria. • Providing feedback on electricity use corresponds with average savings of around 4.5%. • Effects of feedback are most pronounced in the 30th to the 70th percentile. • Feedback provided via a web portal and by post appears equally effective

  10. Minimisation of higher order harmonics for large aperture super-ferric quadrupole magnet

    International Nuclear Information System (INIS)

    Dutta, Atanu; Sharma, P.R.; Dey, M.K.; Bhunia, U.; Nandy, C.; Roy, S.; Pal, G.; Mallik, C.

    2011-01-01

    We have analysed the magnetic field of finite length (effective length of 1200 mm), large bore (pole radius of 350 mm) superconducting quadrupole magnets for use in Low Energy Branch of Super FRS with the program TOSCA. In particularly we have tried to minimize the 12-pole and 20-pole components, which would contribute to geometric aberrations. At the same time we have tried to keep the gradient field uniformity at reference radius 300 mm within ±8.0E-04. (author)

  11. The quadrupole moment of the first 3- state in 208Pb

    International Nuclear Information System (INIS)

    Joye, A.M.R.; Baxter, A.M.; Fewell, M.P.; Kean, D.C.; Spear, R.H.

    1977-04-01

    The B(E3; 0 + →3 - ) and quadrupole moment, Qsub(3 - ), of the first excited state of 208 Pb have been measured by the reorientation effect in Coulomb excitation, giving B(E3; 0 + →3 - ) = 0.665 +- E 2 B 3 and Qsub(3 - ) = -0.42 +- 0.32 EB. This value for Qsub(3 - ) is much smaller in magnitude than those obtained by Barnett et al., and is consistent with most theoretical predictions. (Author)

  12. Measurements of electron cloud growth and mitigation in dipole, quadrupole, and wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Calvey, J.R., E-mail: jrc97@cornell.edu; Hartung, W.; Li, Y.; Livezey, J.A.; Makita, J.; Palmer, M.A.; Rubin, D.

    2015-01-11

    Retarding field analyzers (RFAs), which provide a localized measurement of the electron cloud, have been installed throughout the Cornell Electron Storage Ring (CESR), in different magnetic field environments. This paper describes the RFA designs developed for dipole, quadrupole, and wiggler field regions, and provides an overview of measurements made in each environment. The effectiveness of electron cloud mitigations, including coatings, grooves, and clearing electrodes, are assessed with the RFA measurements.

  13. High-gradient quadrupole magnet for a polarized-beam facility

    International Nuclear Information System (INIS)

    Smith, R.P.; Hoffman, J.A.; Kim, S.H.; Mataya, K.F.; Niemann, R.C.; Turner, L.R.

    1980-01-01

    A prototype quadrupole magnet with 2.8 m effective length is under design and construction for use in a polarized beam transport system at Fermi National Accelerator Laboratory. The operating gradient required is 50 T/m and the higher multipole error fields must not exceed a few parts in one thousand over a 10 cm diameter bore. For cryogenic efficiency the magnet will operate at 1000 amperes and a cold iron yoke will provide complete field shielding

  14. A Study of the Social Effects in a Comparative Assessment among the Electricity Generating Systems

    International Nuclear Information System (INIS)

    Kim, Kil Yoo; Kim, Tae Woon

    2007-01-01

    A comparative assessment among 7 electricity generating systems by considering their environmental impacts, risks, health effects, and social effects was studied last year. The compared electricity generating systems are nuclear, coal, LNG, hydro, oil, wind, photovoltaic (=solar) ones. In last year's work, the social effects were handled by a public acceptance based on an aversion. However, in this paper, the social effects were also studied by a preference in view of the 'willingness to pay' (WTP). With the new social effects study, a comparative analysis of the 7 electricity generation systems was performed in this paper

  15. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers

    Science.gov (United States)

    Tong, Wen-Yi; Duan, Chun-Gang

    2017-08-01

    In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.

  16. Effects of a static electric field on two-color photoassociation between different atoms

    International Nuclear Information System (INIS)

    Chakraborty, Debashree; Deb, Bimalendu

    2014-01-01

    We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et al., J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime

  17. The State Electricity Commission of Victoria and the greenhouse effect

    International Nuclear Information System (INIS)

    Hoy, R.D.

    1990-01-01

    The State Electricity Commission of Victoria is examining how the greenhouse issue may affect its electricity supply system in the future. Possible generation scenarios for 2005 are presented in order to show how the Toronto goal of a 20% reduction on 1988 levels of CO 2 emissions could be achieved. The main approaches to achieving these emission reductions include energy conservation and cogeneration, new gas-fired plant, use of renewable energy, reduction of energy system losses, retirement of older brown coal plant and an extensive tree planting program. It is estimated that achieving the Toronto goal would require electricity prices to rise by 1% to 1.5%, on average, each year by more than they otherwise would have, for the next 15 years. 12 refs., 3 tabs

  18. Transient optical and electrical effects in polymeric semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bange, Sebastian

    2009-05-28

    Classical semiconductor physics has been continuously improving electronic components such as diodes, light-emitting diodes, solar cells and transistors based on highly purified inorganic crystals over the past decades. Organic semiconductors, notably polymeric, are a comparatively young field of research, the first light-emitting diode based on conjugated polymers having been demonstrated in 1990. Polymeric semiconductors are of tremendous interest for high-volume, low-cost manufacturing (''printed electronics''). Due to their rather simple device structure mostly comprising only one or two functional layers, polymeric diodes are much more difficult to optimize compared to small-molecular organic devices. Usually, functions such as charge injection and transport are handled by the same material which thus needs to be highly optimized. The present work contributes to expanding the knowledge on the physical mechanisms determining device performance by analyzing the role of charge injection and transport on device efficiency for blue and white-emitting devices, based on commercially relevant spiro-linked polyfluorene derivatives. It is shown that such polymers can act as very efficient electron conductors and that interface effects such as charge trapping play the key role in determining the overall device efficiency. This work contributes to the knowledge of how charges drift through the polymer layer to finally find neutral emissive trap states and thus allows a quantitative prediction of the emission color of multichromophoric systems, compatible with the observed color shifts upon driving voltage and temperature variation as well as with electrical conditioning effects. In a more methodically oriented part, it is demonstrated that the transient device emission observed upon terminating the driving voltage can be used to monitor the decay of geminately-bound species as well as to determine trapped charge densities. This enables direct comparisons with numerical

  19. Transient optical and electrical effects in polymeric semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bange, Sebastian

    2009-05-28

    Classical semiconductor physics has been continuously improving electronic components such as diodes, light-emitting diodes, solar cells and transistors based on highly purified inorganic crystals over the past decades. Organic semiconductors, notably polymeric, are a comparatively young field of research, the first light-emitting diode based on conjugated polymers having been demonstrated in 1990. Polymeric semiconductors are of tremendous interest for high-volume, low-cost manufacturing (''printed electronics''). Due to their rather simple device structure mostly comprising only one or two functional layers, polymeric diodes are much more difficult to optimize compared to small-molecular organic devices. Usually, functions such as charge injection and transport are handled by the same material which thus needs to be highly optimized. The present work contributes to expanding the knowledge on the physical mechanisms determining device performance by analyzing the role of charge injection and transport on device efficiency for blue and white-emitting devices, based on commercially relevant spiro-linked polyfluorene derivatives. It is shown that such polymers can act as very efficient electron conductors and that interface effects such as charge trapping play the key role in determining the overall device efficiency. This work contributes to the knowledge of how charges drift through the polymer layer to finally find neutral emissive trap states and thus allows a quantitative prediction of the emission color of multichromophoric systems, compatible with the observed color shifts upon driving voltage and temperature variation as well as with electrical conditioning effects. In a more methodically oriented part, it is demonstrated that the transient device emission observed upon terminating the driving voltage can be used to monitor the decay of geminately-bound species as well as to determine trapped charge densities. This enables direct

  20. Effects of radial electrical field on neoclassical transport in tokamaks

    International Nuclear Information System (INIS)

    Wang Zhongtian; Le Clair, G.

    1996-07-01

    Neoclassical transport theory for tokamaks in presence of a radial electrical field with shear is developed using Hamiltonian formalism. Diffusion coefficients are derived in both plateau regime including a large electric field and banana regime including the squeezing factor which can greatly affect diffusion at the plasma edge. The scaling on squeezing factor is different from the one given by Shaing and Hazeltine. Rotation speeds are calculated in the scrape-off region. They are in good agreement with measurements on TdeV Tokamak. (2 figs.)

  1. The Effect of Wind Power on Electricity Prices in Denmark

    DEFF Research Database (Denmark)

    Jonsson, Tryggvi; Madsen, Henrik

    This report is the result of a special course taken by the author at IMM DTU under the guidance of professor Henrik Madsen. The aim of the project is to analyze the influence wind energy has on the electricity spot price in Western Denmark and investigate how information about wind power production...... can be used to model the electricity spot price. Various model types were tried, giving very different performance. Here, only the models that performed best are discussed in order to keep focus on the projects goal....

  2. Status of radio frequency quadrupole accelerator at IUAC, New Delhi

    International Nuclear Information System (INIS)

    Ahuja, Rajeev; Kothari, Ashok; Kumar, Sugam; Safvan, C.P.; Shankar, Ram

    2015-01-01

    As part of the accelerator augmentation program at IUAC, a High Current Injector (HCI) is being developed to inject highly charged ions into the superconducting LINAC. The HCI consists of a superconducting (High TC) ECR source, producing the high currents of highly charged ions. The ion beams produced will be injected into a Radio Frequency Quadrupole Accelerator (RFQ) and be accelerated to 180 keV/u. RF power of about 100 kW at 48.5 MHz will be fed to the RFQ during its actual working. The ions will be further accelerated by a Drift Tube Linac (DTL), before being further velocity matched with a low beta cavity into the superconducting LINAC. RFQ at IUAC is a four rod cavity structure having individual demountable copper vanes held on vane posts with a total vane length of 2.536 m and a minimum aperture of 12mm. The vane posts hold twenty nos. of vanes. Water will flow into vanes through the vane posts. The copper plated stainless steel vacuum housing has been divided into two chambers for the ease of fabrication and copper plating. The RFQ stand has provision for alignment in all the three axes. After successfully validating all the electrical and mechanical design parameters on a prototype RFQ, the fabrication of final RFQ has been completed. Initial assembly to check the mechanical accuracies was carried out. Low power RF tests were conducted to validate the design parameters. The resonance frequency of the RFQ was measured as 44.12 MHz and Q value was measured ∼ 5500. The final assembly is in progress. This paper details the present status and future plan of RFQ. (author)

  3. Radio-frequency quadrupole: a new linear accelerator

    International Nuclear Information System (INIS)

    Stokes, R.H.; Wangler, T.P.; Crandall, K.R.

    1981-01-01

    In many Laboratories, great emphasis now is placed on the development of linear accelerators with very large ion currents. To achieve this goal, a primary concern must be the low-velocity part of the accelerator, where the current limit is determined and where most of the emittance growth occurs. The use of magnetic focusing, the conflicting requirements in the choice of linac frequency, and the limitations of high-voltage dc injectors, have tended to produce low-velocity designs that limit overall performance. The radio-frequency quadrupole (RFQ) linear accelerator, invented in the Soviet Union and developed at Los Alamos, offers an attractive solution to many of these low-velocity problems. In the RFQ, the use of RF electric fields for radial focusing, combined with special programming of the bunching, allows high-current dc beams to be captured and accelerated with only small beam loss and low radial emittance growth. Advantages of the RFQ linac include a low injection energy (20 to 50 keV for protons) and a final energy high enough so the beam can be further accelerated with high efficiency in a Wideroee or Alvarez linac. These properties have been confirmed at Los Alamos in a highly successful experimental test performed during the past year. The success of this test and the advances in RFQ design procedures have led to the adoption of this linac for a wide range of applications. The beam-dynamics parameters of three RFQ systems are described. These are the final design for the protytype test of the Fusion Materials Irradiation Test (FMIT) accelerator, the final design for the prototype test of the Pion Generator for Medical Irradiations (PIGMI), and an improved low-velocity linac for heavy ion fusion

  4. Biological effects of exposure to low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Ahnstroem, G.

    1992-10-01

    The biological effects of exposure to low frequency electric and magnetic fields are reviewed with the objective of summarizing effects directly relevant to considerations of the health and safety of exposed people

  5. Effect of mobilities and electric field on the stability of magnetized positive column

    International Nuclear Information System (INIS)

    Dogra, V.K.; Uberoi, M.S.

    1983-01-01

    The effect of ratio of the mobilities of electrons and ions and non-dimensional electric field, on the stability of magnetized positive column for all unstable modes is studied in a self-consistent formulation for the perturbations of plasma density and electric potential. The minimum non-dimensional electric field at which magnetized positive column becomes unstable for different ratios of the mobilities of electrons and ions is also investigated. (author)

  6. On an effect of interplanetary magnetic field on a distribution electric fields in the polar ionosphere

    International Nuclear Information System (INIS)

    Uvarov, V.M.; Barashkov, P.D.

    1985-01-01

    The problem on the effect of the interplanetary magnetic field (IMF) on the distribution of electric fields in polar ionosphere is discussed. The problem on excitation of electric fields is reduced to the solution of the system of continuity equations for the current in three regions-northern polar cap, southern cap and the region outside the caps. It is shown that one succeeds in reproducing the observed types of distributions of electric fields

  7. The effect of polymer type on electric breakdown strength on a nanosecond time scale

    Institute of Scientific and Technical Information of China (English)

    Zhao Liang; Su Jian-Cang; Pan Ya-Feng; Zhang Xi-Bo

    2012-01-01

    Based on the concepts of fast polarization,effective electric field and electron impact ionization criterion,the effect of polymer type on electric breakdown strength (EBD) on a nanosecond time scale is investigated,and a formula that qualitatively characterizes the relation between the electric breakdown strength and the polymer type is derived.According to this formula,it is found that the electric breakdown strength decreases with an increase in the effective relative dielectric constants of the polymers.By calculating the effective relative dielectric constants for different types of polymers,the theoretical relation for the electric breakdown strengths of common polymers is predicted.To verify the prediction,the polymers of PE (polyethylene),PTFE (polytetrafluoroethelene),PMMA (organic glass) and Nylon are tested with a nanosecond-pulse generator.The experimental result shows EBD (PTFE) > EBD (PMMA) > EBD (Nylon) > EBD (PE).This result is consistent with the theoretical prediction.

  8. Core business concentration vs. corporate diversification in the US electric utility industry: Synergy and deregulation effects

    International Nuclear Information System (INIS)

    Sueyoshi, Toshiyuki; Goto, Mika; Shang, Jennifer

    2009-01-01

    Many economists such as Wilson (2002) [Wilson, R., 2002. Architecture of power market, Econometrica, 70, 1299-1340] have considered that there are similarities between electricity and gas services in the US electric utility industry. Hence, they expect a synergy effect between them. However, the two businesses do not have technology similarities at the level that the gas service produces a synergy effect with electricity. To examine whether there is a synergy effect of corporate diversification in the industry, we compare electricity-specialized firms with diversified utility firms in terms of their financial performance and corporate value. The comparison indicates that core business concentration is more effective for electric utility firms than corporate diversification under the current US deregulation policy.

  9. Skyrme's interaction beyond the mean-field. The DGCM+GOA Hamiltonian of nuclear quadrupole motion

    International Nuclear Information System (INIS)

    Kluepfel, Peter

    2008-01-01

    This work focuses on the microscopic description of nuclear collective quadrupole motion within the framework of the dynamic Generator-Coordinate-Method(DGCM)+Gaussian-Overlap-Approximation(GOA). Skyrme-type effective interactions are used as the fundamental many-particle interaction. Starting from a rotational invariant, polynomial and topologic consistent formulation of the GCM+GOA Hamiltonian an interpolation scheme for the collective masses and potential is developed. It allows to define the collective Hamiltonian of fully triaxial collective quadrupole dynamics from a purely axial symmetric configuration space. The substantial gain in performance allows the self-consistent evaluation of the dynamic quadrupole mass within the ATDHF-cranking model. This work presents the first large-scale analysis of quadrupole correlation energies and lowlying collective states within the DGCM+GOA model. Different Skyrme- and pairing interactions are compared from old standards up to more recent parameterizations. After checking the validity of several approximations to the DGCM+GOA model - both on the mean-field and the collective level - we proceed with a detailed investigation of correlation effects along the chains of semi-magic isotopes and isotones. This finally allows to define a set of observables which are hardly affected by collective correlations. Those observables were used for a refit of a Skyrme-type effective interaction which is expected to cure most of the problems of the recent parameterizations. Preparing further work, estimates for the correlated ground state energy are proposed which can be evaluated directly from the mean-field model. (orig.)

  10. Skyrme's interaction beyond the mean-field. The DGCM+GOA Hamiltonian of nuclear quadrupole motion

    Energy Technology Data Exchange (ETDEWEB)

    Kluepfel, Peter

    2008-07-29

    This work focuses on the microscopic description of nuclear collective quadrupole motion within the framework of the dynamic Generator-Coordinate-Method(DGCM)+Gaussian-Overlap-Approximation(GOA). Skyrme-type effective interactions are used as the fundamental many-particle interaction. Starting from a rotational invariant, polynomial and topologic consistent formulation of the GCM+GOA Hamiltonian an interpolation scheme for the collective masses and potential is developed. It allows to define the collective Hamiltonian of fully triaxial collective quadrupole dynamics from a purely axial symmetric configuration space. The substantial gain in performance allows the self-consistent evaluation of the dynamic quadrupole mass within the ATDHF-cranking model. This work presents the first large-scale analysis of quadrupole correlation energies and lowlying collective states within the DGCM+GOA model. Different Skyrme- and pairing interactions are compared from old standards up to more recent parameterizations. After checking the validity of several approximations to the DGCM+GOA model - both on the mean-field and the collective level - we proceed with a detailed investigation of correlation effects along the chains of semi-magic isotopes and isotones. This finally allows to define a set of observables which are hardly affected by collective correlations. Those observables were used for a refit of a Skyrme-type effective interaction which is expected to cure most of the problems of the recent parameterizations. Preparing further work, estimates for the correlated ground state energy are proposed which can be evaluated directly from the mean-field model. (orig.)

  11. Generalized Kerr spacetime with an arbitrary mass quadrupole moment: geometric properties versus particle motion

    International Nuclear Information System (INIS)

    Bini, Donato; Geralico, Andrea; Luongo, Orlando; Quevedo, Hernando

    2009-01-01

    An exact solution of Einstein's field equations in empty space first found in 1985 by Quevedo and Mashhoon is analyzed in detail. This solution generalizes Kerr spacetime to include the case of matter with an arbitrary mass quadrupole moment and is specified by three parameters, the mass M, the angular momentum per unit mass a and the quadrupole parameter q. It reduces to the Kerr spacetime in the limiting case q = 0 and to the Erez-Rosen spacetime when the specific angular momentum a vanishes. The geometrical properties of such a solution are investigated. Causality violations, directional singularities and repulsive effects occur in the region close to the source. Geodesic motion and accelerated motion are studied on the equatorial plane which, due to the reflection symmetry property of the solution, also turns out to be a geodesic plane.

  12. Harmonic current layer method for the design of superconducting quadrupole magnetic field

    International Nuclear Information System (INIS)

    Zizek, F.

    1977-01-01

    The magnetic field of a superconducting quadrupole is investigated by the method of harmonic current layers of cylindrical shape. The superconducting winding is replaced by a system of thin current layers with a harmonically distributed density of the surface current along the circumference. The effect of the outer ferromagnetic circuit with an arbitrary constant permeability over the cross section is replaced analogically. The resultant magnetic field is then given by the superposition of the contributions from the individual current layers. The calculation method can be modified for the selection of the geometry of the winding for the latter to meet the demand for the high homogeneity of the gradient of magnetic induction in the working space of the superconducting quadrupole. (author)

  13. Quadrupole corrections to matrix elements of transitions in resonant reactions of muonic molecule formation

    International Nuclear Information System (INIS)

    Faifman, M.P.; Strizh, T.A.; Armour, E.A.G.; Harston, M.R.

    1996-01-01

    The calculated resonant formation rates of the muonic molecules DDμ and DTμ are presented. The approach developed earlier for calculating the transition matrix elements in the dipole approximation has been extended to include the quadrupole terms in the multipole expansion of the interaction operator. The calculated dependence of the DTμ formation rates on the energies of the incident Tμ muonic atoms shows that the effect of including the quadrupole correction is to reduce the magnitude of the peak rates by about 20-30% at the different temperatures, compared to those calculated in the dipole approximation. The dependence on temperature for the DDμ formation rates is obtained with the differences between the presented and previous calculations being less than 5%. (orig.)

  14. Practical design approach for trapezoidal modulation of a radio-frequency quadrupole

    Directory of Open Access Journals (Sweden)

    A. S. Plastun

    2018-03-01

    Full Text Available Trapezoidal modulation of quadrupole electrodes offers additional benefits to the concept of a radio-frequency quadrupole (RFQ. Because of the significant increase of the effective shunt impedance, RFQs with trapezoidal modulation have a reduced interelectrode voltage or resonator length as compared to conventional RFQs with sinusoidal modulation. This feature is especially valuable for RFQs operating in cw mode, since it reduces the required rf power. We develop a detailed procedure for the design of RFQ electrodes with trapezoidal modulation. With our design procedure and by properly choosing the trapezoidal cell parameters, we can easily control the peak surface fields in the RFQ to the same level as for sinusoidal cell modulation. The procedure is applied to the design of the electrodes for the ReA3 RFQ at Michigan State University.

  15. Effect of electrical stimulation of carcasses from Dorper sheep with ...

    African Journals Online (AJOL)

    Three consumer sensory tests, namely the hedonic rating of the acceptability of each sensory attribute, a preference test and a food action rating test, were conducted in sequence. The acceptability of the juiciness, tenderness, flavour and overall acceptability were not significantly influenced by the electrical stimulation of ...

  16. Hall-effect electric fields in semiconducting rings. II

    International Nuclear Information System (INIS)

    Gorodzha, L.V.; Emets, Yu.P.; Stril'ko, S.I.

    1987-01-01

    A calculation is presented for the current density distribution in a semiconducting ring with two electrodes symmetrically located on the outer boundary (system II, Fig. 1). The difference between this electrode position and that on the ring considered previously (system I) leads to substantial changes in the shape of the electric field

  17. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.

    Science.gov (United States)

    Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng

    2005-04-01

    This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.

  18. The nuclear quadrupole interaction of {sup 181}Ta in the intermetallic compound Hf{sub 2}Rh

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovic, N.; Koicki, S.; Cekic, B.; Manasijevic, M.; Koteski, V.; Marjanovic, D. [Institute of Nuclear Sciences VINCA, Laboratory for Nuclear and Plasma Physics, PO Box 522, Belgrade (Yugoslavia)

    1999-01-11

    The time differential perturbed angular correlation technique has been used to measure the electric field gradient at {sup 181}Ta impurities in the intermetallic compound Hf{sub 2}Rh. The results of the measurements show the presence of two independent quadrupole interactions. At room temperature the interaction frequencies are {omega}{sub Q1} = 58 Mrad s{sup -1} and {omega}{sub Q2} = 239 Mrad s{sup -1}. The electric field gradient V{sub 22}, the corresponding asymmetry parameter {eta} and the distribution parameter {delta} exhibit a pronounced temperature dependence from 78 to 1223 K. (author)

  19. Development of a radio-frequency quadrupole cooler for high beam currents

    Science.gov (United States)

    Boussaid, Ramzi; Ban, G.; Quéméner, G.; Merrer, Y.; Lorry, J.

    2017-12-01

    The SHIRaC prototype is a recently developed radio-frequency quadrupole (RFQ) beam cooler with an improved optics design to deliver the required beam quality to a high resolution separator (HRS). For an isobaric separation of isotopes, the HRS demands beams with emittance not exceeding 3 π mm mrad and longitudinal energy spread ˜1 eV . Simulation studies showed a significant contribution of the buffer gas diffusion, space charge effect and mainly the rf fringe field to degrade the achieved beam quality at the RFQ exit. A miniature rf quadrupole (μ RFQ ) has been implemented at that exit to remove the degrading effects and provide beams with 1 eV of energy spread and around 1.75 π mm mrad of emittance for 4 Pa gas pressure. This solution enables also to transmit more than 60% of the incoming ions for currents up to 1 μ A . Detailed studies of this development are presented and discussed in this paper. Transport of beams from SHIRaC towards the HRS has been done with an electrostatic quadrupole triplet. Simulations and first experimental tests showed that more than 95% of ions can reach the HRS. Because SPIRAL-2 beams are of high current and very radioactive, the buffer gas will be highly contaminated. Safe maintenance of the SHIRaC beam line needs exceptional treatment of radioactive contaminants. For that, special vinyl sleep should be mounted on elements to be maintained. A detailed maintenance process will be presented.

  20. Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer

    International Nuclear Information System (INIS)

    Nakayama, Hiroyasu; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Saitoh, Eiji; Ye, Jianting; Iwasa, Yoshihiro

    2012-01-01

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with 27 (-25) MV cm -1 of electric field by applying only 1.7 V of positive (negative) gate voltage. The experimental results indicate that the ionic-liquid-gated EDLT technique can be used for controlling the surface electronic states on metallic systems. (author)

  1. The effect of feedback by SMS-text messages and email on household electricity consumption

    DEFF Research Database (Denmark)

    Gleerup, Maria; Larsen, Anders; Leth-Petersen, Søren

    2010-01-01

    This paper analyzes the effect of supplying feedback by text messages (SMS) and email about electricity consumption on the level of total household electricity consumption. An experiment was conducted in which 1,452 households were randomly allocated to three experimental groups and two control....... Results suggest that email and SMS messaging that communicated timely information about a household's 'exceptional' consumption periods (e.g. highest week of electricity use in past quarter) produced average reductions in total annual electricity use of about 3%. The feedback technology is cheap...

  2. Technical issues of electric nanopulse contact lithotripsy as factors affecting lithotripsy effectiveness and probe resourses

    Directory of Open Access Journals (Sweden)

    L. Yu. Ivanova

    2012-01-01

    Full Text Available To assess the relationship of main technical issues of electric nanopulse contact lithotripsy (CLT with lithotripsy effectiveness and lithotripsy resources of probe.Electric nanopulses were transmitted by the flexible probes and the lithotripter «Urolit». The relationship between lithotripsy effectiveness and tip diameter of probes, pulse energy, pulse frequency was assessed, and resources of lithotripsy probes with different diameters of the tip were analyzed.Sufficient number of electric nanopulse to destroy stone models was less when tip diameter, nanopulse energy and frequency were greater.Effectiveness of electric nanopulse CLT can be enhanced with the increase of nanopulse energy, frequency and probe diameter. Complex correction of technical issues of electric nanopulse CLT can be a way of probe resources saving.

  3. Effectiveness of functional electrical stimulation (fes) versus conventional electrical stimulation in gait rehabilitation of patients with stroke

    International Nuclear Information System (INIS)

    Sharif, F.; Ghulam, S.; Malik, A.N.

    2017-01-01

    To compare the effectiveness of functional electrical stimulation (FES) versus conventional electrical stimulation in gait rehabilitation of patients with stroke for finding the most appropriate problem-oriented treatment for foot drop patients in a shorter time period. Study Design: Randomized controlled trial. Place and Duration of Study:Armed Forces Institute of Rehabilitation Medicine, Rawalpindi, from July to December 2016. Methodology: Subjects with foot drop due to stroke were allotted randomly into 1 of 2 groups receiving standard rehabilitation with Functional Electrical Stimulation (FES) or Electrical Muscle Stimulation (EMS). FES was applied on tibialis anterior 30 minutes/day, five days/week for six weeks. EMS was also applied on the tibialis anterior five days/week for six weeks. Outcome measures included Fugl-Meyer Assessment Scale, Modified Ashworth Scale, Berg Balance Scale (BBS), Time Up and Go Test (TUG) and Gait Dynamic Index (GDI). They were recorded at baseline, after 3 and 6 weeks. Pre- and post-treatment scores were analyzed between two groups on SPSS-20. Results: After six weeks of intervention, significant improvement was recorded in Fugl-Meyer Assessment score (p<0.001), modified Ashworth Scale score (p=0.027), Berg Balance Scale score (p<0.001), Time Up and Go Test (p<0.001) and Gait Dynamic Index (p=0.012) of the group subjected to FES. Conclusion: Gait training with FES is more effective than EMS in improving mobility, balance, gait performance and reducing spasticity in stroke patients. The research will help clinicians to select appropriate treatment of foot drop in stroke patients. (author)

  4. Temperature and mixing effects on electrical resistivity of carbon fiber enhanced concrete

    International Nuclear Information System (INIS)

    Chang, Christiana; Song, Gangbing; Gao, Di; Mo, Y L

    2013-01-01

    In this paper, the effect of temperature and mixing procedure on the electrical resistivity of carbon fiber enhanced concrete is investigated. Different compositions of concrete containing varying concentrations of carbon fiber into normal and self-consolidating concrete (SCC) were tested under DC electrical loading over the temperature range −10 to 20 °C. The electrical resistivity of the bulk samples was calculated and compared against temperature. It was observed that there is an inverse exponential relationship between resistivity and temperature which follows the Arrhenius relationship. The bulk resistivity decreased with increasing fiber concentration, though data from SCC indicates a saturation limit beyond which electrical resistivity begins to drop. The activation energy of the bulk electrically conductive concrete was calculated and compared. While SCC exhibited the lowest observed electrical resistance, the activation energy was similar amongst SCC and surfactant enhanced concrete, both of which were lower than fiber dispersed in normal concrete. (paper)

  5. Effect of parallel electric fields on the whistler mode wave propagation in the magnetosphere

    International Nuclear Information System (INIS)

    Gupta, G.P.; Singh, R.N.

    1975-01-01

    The effect of parallel electric fields on whistler mode wave propagation has been studied. To account for the parallel electric fields, the dispersion equation has been analyzed, and refractive index surfaces for magnetospheric plasma have been constructed. The presence of parallel electric fields deforms the refractive index surfaces which diffuse the energy flow and produce defocusing of the whistler mode waves. The parallel electric field induces an instability in the whistler mode waves propagating through the magnetosphere. The growth or decay of whistler mode instability depends on the direction of parallel electric fields. It is concluded that the analyses of whistler wave records received on the ground should account for the role of parallel electric fields

  6. Substituting natural gas heating for electric heating: assessment of the energy and environmental effects in Ontario

    International Nuclear Information System (INIS)

    Rosen, M.A.; Sy, E.; Gharghouri, P.

    1996-01-01

    A study was conducted to find practical ways to reduce Ontario's energy consumption and environmental emissions. A major portion of the study focused on the advantages of cogeneration in certain regions and sectors of Ontario. Substituting direct fuel heating with natural gas for electric heating was the principal recommendation. Results of a technical analysis of the effects of substituting electric heating with natural gas heating were described. One of the benefits of this substitution would be reduced fuel energy requirements for direct heating, relative to the two-step process of electricity generation followed by electric heating. It was suggested that natural gas should still be used for electricity generation because natural gas has many advantages as an electricity supply option including reductions in coal and uranium use and related emissions. It was recommended that developers and designers of energy systems seriously consider this option. 33 refs., 2 tabs., 4 figs

  7. Effects of an electric field on the electronic and optical properties of zigzag boron nitride nanotubes

    Science.gov (United States)

    Chegel, Raad; Behzad, Somayeh

    2011-02-01

    We have investigated the electro-optical properties of zigzag BNNTs, under an external electric field, using the tight binding approximation. It is found that an electric field modifies the band structure and splits the band degeneracy. Also the large electric strength leads to coupling the neighbor subbands which these effects reflect in the DOS and JDOS spectrum. It has been shown that, unlike CNTs, the band gap of BNNTs can be reduced linearly by applying a transverse external electric field. Also we show that the larger diameter tubes are more sensitive than small ones. The semiconducting metallic transition can be achieved through increasing the applied fields. The number and position of peaks in the JDOS spectrum are dependent on electric field strength. It is found that at a high electric field, the two lowest subbands are oscillatory with multiple nodes at the Fermi level.

  8. The effect of z-binding yarns on the electrical properties of 3D woven composites

    KAUST Repository

    Saleh, Mohamed Nasr; Yudhanto, Arief; Lubineau, Gilles; Soutis, Constantinos

    2017-01-01

    Electrical resistance monitoring (ERM) has been used to study the effect of the z-binding yarns on the initial electrical resistance (ER) and its change of three architectures of 3D woven carbon fibre composites namely (orthogonal “ORT”, layer

  9. Effect of Ar bombardment on the electrical and optical properties of ...

    Indian Academy of Sciences (India)

    The influence of low-energy Ar ion beam irradiation on both electrical and optical properties of low-density polyethylene (LDPE) films is presented. The polymer films were bombarded with 320 keV Ar ions with fuences up to 1 × 10 15 cm − 2 . Electrical properties of LDPE films were measured and the effect of ion ...

  10. Analytical solution of electromagnetic radiation by a vertical electric dipole inside the earth and the effect of atmospheric electrical conductivity inhomogeneity

    Science.gov (United States)

    Mosayebidorcheh, Taha; Hosseinibalam, Fahimeh; Hassanzadeh, Smaeyl

    2017-11-01

    In this paper, the effect of atmospheric electrical conductivity on the electromagnetic waves radiated by a vertical electric dipole located in the earth, near the surface of the earth, is investigated. As far as electrical conductivity is concerned, the atmosphere is divided into three areas, in which the electrical conductivity changes with altitude. The Maxwell equations in these areas are investigated as well. Using the differential transform method, the differential equation is solved in a way that atmospheric electrical conductivity is variable. Solving the problem in these areas indicates that electrical conductivity in the middle and lower areas of atmosphere may be ignored. However, in the upper areas of atmosphere, the magnitude of the magnetic field in the ionosphere at a frequency of 10 kHz at night is five times smaller when electrical conductivity is considered compared to when it is neglected.

  11. Effect of electrical pulse on the precipitates and material strength of 2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weichao, E-mail: weichao127@gmail.com; Wang, Yongjun, E-mail: t.s.wu@163.com; Wang, Junbiao, E-mail: wangjunb@nwpu.edu.cn; Wei, Shengmin, E-mail: weism@nwpu.edu.cn

    2014-07-01

    The effect of electrical pulse on the metastable precipitates and material strength of Al–Cu–Mg based 2024 aluminum alloy was investigated by means of tensile tests, hardness measurement, transmission electron microscopy and differential scanning calorimetry. The experimental results show that the electrical pulse passing through the naturally aged 2024 alloy can cause an electrical pulse retrogression effect which is characterized by the decrease of material strength and the appearance of Portevin–Le Chatelier (PLC) effect. More electrical pulses under higher current densities are more efficient in causing the electrical pulse retrogression effect. TEM and DSC experimental results reveal that, the electrical pulse retrogression effect is owing to the dissolution of the metastable precipitates in naturally aged 2024 alloy. Compared with the traditional retrogression heat treatment that heats the aluminum alloys through bulk heating in furnace for short time to reduce their material strength, the electrical pulse retrogression effect occurs at a much lower temperature and the pulse treated alloy can nearly restore to its original strength at a faster speed at room temperature.

  12. EFFECTS OF FUNCTIONAL ELECTRICAL STIMULATION IN REHABILITATION WITH HEMIPARESIS PATIENTS

    Science.gov (United States)

    Tanović, Edina

    2009-01-01

    Cerebrovascular accident is a focal neurological deficiency occurring suddenly and lasting for more than 24 hours. The purpose of our work is to determine the role of the functional electrical simulation (FES) in the rehabilitation of patients with hemiparesis, which occurred as a consequence of a cerebrovascular accident. This study includes the analysis of two groups of 40 patients with hemiparesis (20 patients with deep hemiparesis and 20 patients with light hemi- paresis), a control group which was only treated with kinesiotherapy and a tested group which was treated with kinesiotherapy and functional electrical stimulation. Both groups of patients were analyzed in respect to their sex and age. Additional analysis of the walking function was completed in accordance with the BI and RAP index. The analysis of the basic demographical data demonstrated that there is no significant difference between the control and tested group. The patients of both groups are equal in respect of age and sex. After 4 weeks of rehabilitation of patients with deep and light hemiparesis there were no statistically significant differences between the groups after evaluation by the BI index. However, a statistically significant difference was noted between the groups by the RAP index among patients with deep hemiparesis. After 8 weeks of rehabilitation the group of patients who were treated with kinesiotherapy and functional electrical stimulation showed better statistically significant results of rehabilitation in respect to the control group with both the BI index and the RAP index (p<0,001). In conclusion, we can state that the patients in rehabilitation after a cerebrovascular accident require rehabilitation longer than 4 weeks. Walking rehabilitation after stroke is faster and more successful if we used functional electrical stimulation, in combination with kinesiotherapy, in patients with disabled extremities. PMID:19284395

  13. Effective Usage of Lithium Ion Batteries for Electric Vehicles

    OpenAIRE

    濱田, 耕治; ハマダ, コウジ; Koji, HAMADA

    2008-01-01

    Pure Electric Vehicles(PEV's) are promising when seen in relation to global environment. However, there is the need to solve a number of problems before PEV's become viable alternatives of transportation. For example, reduction of battery charge time, improvement of battery performance, and reduction in vehicle cost. A way to improve battery performance is to use lithium ion batteries. One problem with lithium ion batteries is with charging (recharging). It is difficult to provide a constant ...

  14. Piezoelectric effect in polarized and electrically depolarized ferrotextures

    International Nuclear Information System (INIS)

    Luchaninov, A.G.; Shil'nikov, A.V.; Shuvalov, L.A.

    1999-01-01

    Piezoelectric moduli were calculated for ferroelectric textures in the states with the greatest possible (in terms of symmetry) polarization and the zero polarization (obtained from the former by electrical depolarization). The calculations were performed for the textures of crystals of the classes 2, 3, 4, 6, mm2, 3m, 4mm,and 6mm. The experimental results for lead zirconate-titanate- and barium-titanate-based piezoelectric ceramic are reported

  15. Effects of resistive bodies on DC electrical soundings

    Directory of Open Access Journals (Sweden)

    L. Alfano

    1996-06-01

    Full Text Available Some deep DC electrical soundings, performed in alpine and apenninic areas with the continuous polar dipole-dipole spread, show apparent resistivity curves with positive slopes. Measured values of apparent resistivity reach 30000 Wm. Applying the "surface charges" method we developed three dimensional mathematical models, by means of which we can state simple rules for determining the minimum extensions of the deep resistive bodies, fundamental information for a more precise interpretation of the field results.

  16. Electric field effect in the growth of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, E., E-mail: ericvpp@gmail.com; Briceño-Fuenmayor, H. [Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio de Física de Fluidos y Plasma (Venezuela, Bolivarian Republic of); Arévalo, J. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of); Atencio, R. [Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (Venezuela, Bolivarian Republic of); Corredor, L. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of)

    2015-06-15

    The growth of carbon nanotubes (CNTs) under a controlled electric field in a chemical vapor deposition system is investigated. We evaluate the influence of this external field on the morphological and structural characteristics of CNTs. Scanning electron microscopy results display a large presence of carbonaceous material in the positive plate, which appear to be a consequence of the attraction of electric forces over the electronically unbalanced cracked carbon molecules in the heating zone. We also observe a growth behavior for CNTs, in which catalyst particles are localized either at the bottom or the upper part of the nanotube, depending on the intensity and direction of the electric field. A Raman analysis from all obtained carbon materials shows the presence of two peaks, corresponding to the D ∼ 1340 cm{sup −1} and G ∼ 1590 cm{sup −1} bands attributed to multiwall CNTs. The average diameter of the CNTs is in the range between 90 and 40 nm. These results provide experimental evidence for the dependence of the catalyst and subtract interaction on the growing mechanism, in which weak chemical or electronic interactions could stimulate a top-growing as the strongest base-growing process.

  17. The effect of economic factors and energy efficiency programs on residential electricity consumption

    Science.gov (United States)

    Sakai, Mihoko

    Many countries have implemented policies to correct market and behavioral failures that lead to inefficient energy use. It is important to know what factors and policies can effectively overcome such failures and improve energy efficiency; however, a comprehensive analysis has been difficult because of data limitations. Using state scores compiled by American organizations recently, and adopting fixed-effects regression models, I analyze the joint impacts of relevant factors and policy programs on residential electricity consumption in each U.S. state. The empirical results reveal that increases in electricity price have small and negative effects, and increases in personal income have positive effects on residential electricity sales per capita (a measure of energy efficiency). The results suggest that it may take time for economic factors to affect electricity sales. The effects of personal income suggest the difficulty of controlling residential electricity consumption; however, they also imply that there is some room in households to reduce electricity use. The study also finds that programs and budgets of several policies seem to be associated with electricity sales. The estimates from a model including interaction terms suggest the importance of including multiple policies when analyzing and designing policies to address electricity efficiency. The results also imply the possibility of rebound effects of some policies, whereby improvements in energy efficiency lead to increases in energy consumption due to the associated lower per unit cost. Future studies should analyze both short-term and long-term effects of economic factors and policies, based on improved and accumulated time series and panel data, in order to design more effective policies for improving residential electricity efficiency.

  18. Theoretical investigation of flute modes in a magnetic quadrupole

    International Nuclear Information System (INIS)

    Wu, H.S.

    1988-01-01

    This research developed theories and conducted numerical investigations of electrostatic flute modes in a plasma confined in a magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L 0 for intermediate- and low-frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. The frequency is predicted to be inversely proportional to the wave number. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion bounce frequencies in a plasma confined to a magnetic quadrupole. Chapter VIII presents a summary of the research described

  19. Vibrationally induced nuclear quadrupole coupling in the v3 = 1 state of 189OsO4

    International Nuclear Information System (INIS)

    Scappini, F.; Kreiner, W.A.; Frye, J.M.; Oka, T.

    1987-01-01

    Electric nuclear quadrupole hyperfine structure arising from a quadrupolar nucleus at the center of tetrahedral molecules, such as 189 OsO 4 , is symmetry forbidden. However, through vibration--rotation distortion a small nuclear quadrupole coupling is induced. The hyperfine structure due to the vibrationally induced eqQ has been measured for a number of P- and R-branch transitions in the ν 3 fundamental of 189 OsO 4 , by using inverse Lamb dip spectroscopy. Microwave modulation sidebands of CO 2 laser lines have been used as the tunable infrared radiation. From the analysis of the observed hyperfine structure patterns, the values of the scalar and tensor coupling constants have been determined to be chi/sup V//sub s/ = -4.103 +- 0.048 MHz and chi/sup V//sub t/ = -3.090 +- 0.059 MHz

  20. Hyperfine interaction of {sup 25}Al in {alpha}-Al{sub 2}O{sub 3} and its quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Matsuta, K., E-mail: matsuta@vg.phys.sci.osaka-u.ac.jp; Mihara, M. [Osaka University, Department of Physics (Japan); Nagatomo, T. [RIKEN (Japan); Matsumiya, R. [Osaka University, Department of Physics (Japan); Momota, S. [Kochi University of Technology (Japan); Ohtsubo, T. [Niigata University, Department of Physics (Japan); Izumikawa, T. [Niigata University, Radioisotope Center (Japan); Hirano, H.; Takahashi, S. [Niigata University, Department of Physics (Japan); Nishimura, D.; Komurasaki, J. [Osaka University, Department of Physics (Japan); Kitagawa, A.; Kanazawa, M.; Torikoshi, M.; Sato, S. [National Institute of Radiological Sciences (Japan); Fukuda, M. [Osaka University, Department of Physics (Japan); Minamisono, T. [Fukui University of Technology (Japan); Sumikama, T. [Tokyo University of Science (Japan); Tanaka, K.; Takechi, M. [RIKEN (Japan)

    2007-11-15

    The electric quadrupole (Q) moment of short-lived nucleus {sup 25}Al (I{sup {pi}} = 5/2{sup +}, T{sub 1/2} = 7.18 s) has been measured for the first time, by means of the {beta}-NQR technique. The spin polarization of {sup 25}Al was produced in heavy ion collisions and was kept in a {alpha}-Al{sub 2}O{sub 3} single crystal for as long as 2 s and the quadrupole coupling frequency was obtained as vertical bar eqQ / h({sup 25}Al in Al{sub 2}O{sub 3}) vertical bar = (4.05 {+-}0.30) MHz. From the result, the Q moment was determined as |Q({sup 25}Al)| = (240 {+-}20) mb. The present Q moment is larger by 30% than the shell model value of 184 mb, calculated by OXBASH code, which may show additional deformation of the nucleus.