WorldWideScience

Sample records for electric organ

  1. Electrical Interfaces for Organic Nanodevices

    DEFF Research Database (Denmark)

    Henrichsen, Henrik Hartmann

    Optoelectronic applications of organic semiconductor materials is a research field, which recently came to the large scale consumer market in display technologies. Organic semiconductors are mainly applied in amorphous form offering fabrication control on a large scale. Crystalline organic...... semiconductors, where the molecular packing is more crucial, have not yet had a major impact in commercial products. This thesis describes development of new ways to electrically contact organic semiconductors. In particular, crystalline organic para-hexaphenylene (p6P) nanofibers have been used...... approaches. Creating the separator by partly oxidizing an Al cathode anodically is considered the most promising implementation, however further development would be necessary. During the project a group of collaborators managed to obtain electrically stimulated light emission in organic p6P nanofibers...

  2. 76 FR 16263 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Science.gov (United States)

    2011-03-23

    ...; Order No. 743-A] Revision to Electric Reliability Organization Definition of Bulk Electric System AGENCY... certain provisions of the Final Rule. Order No. 743 directed the Electric Reliability Organization (ERO) to revise the definition of the term ``bulk electric system'' through the ERO's Reliability Standards...

  3. 75 FR 72909 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Science.gov (United States)

    2010-11-26

    ... Bulk-Power System. See Rules Concerning Certification of the Electric Reliability Organization; and... Bulk-Power System in North America because it protects the reliability of the bulk electric system and... Electric Reliability Organization Definition of Bulk Electric System; Final Rule #0;#0;Federal Register...

  4. Electric organ discharges and electric images during electrolocation

    Science.gov (United States)

    Assad, C.; Rasnow, B.; Stoddard, P. K.

    1999-01-01

    Weakly electric fish use active electrolocation - the generation and detection of electric currents - to explore their surroundings. Although electrosensory systems include some of the most extensively understood circuits in the vertebrate central nervous system, relatively little is known quantitatively about how fish electrolocate objects. We believe a prerequisite to understanding electrolocation and its underlying neural substrates is to quantify and visualize the peripheral electrosensory information measured by the electroreceptors. We have therefore focused on reconstructing both the electric organ discharges (EODs) and the electric images resulting from nearby objects and the fish's exploratory behaviors. Here, we review results from a combination of techniques, including field measurements, numerical and semi-analytical simulations, and video imaging of behaviors. EOD maps are presented and interpreted for six gymnotiform species. They reveal diverse electric field patterns that have significant implications for both the electrosensory and electromotor systems. Our simulations generated predictions of the electric images from nearby objects as well as sequences of electric images during exploratory behaviors. These methods are leading to the identification of image features and computational algorithms that could reliably encode electrosensory information and may help guide electrophysiological experiments exploring the neural basis of electrolocation.

  5. 18 CFR 39.4 - Funding of the Electric Reliability Organization.

    Science.gov (United States)

    2010-04-01

    ... CERTIFICATION OF THE ELECTRIC RELIABILITY ORGANIZATION; AND PROCEDURES FOR THE ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.4 Funding of the Electric Reliability Organization. (a) Any... Reliability Organization. 39.4 Section 39.4 Conservation of Power and Water Resources FEDERAL ENERGY...

  6. 78 FR 29209 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Science.gov (United States)

    2013-05-17

    ... Commission 18 CFR Part 40 Revisions to Electric Reliability Organization Definition of Bulk Electric System... local distribution'' as set forth in the Federal Power Act (FPA). \\1\\ Revisions to Electric Reliability... Reliability Organization Definition of Bulk Electric System, Order No. 743, 133 FERC ] 61,150, at P 16 (2010...

  7. 77 FR 39858 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Science.gov (United States)

    2012-07-05

    ... bulk electric system reliability through steady state power flow, and contain a transient stability... Commission 18 CFR Part 40 Revisions to Electric Reliability Organization Definition of Bulk Electric System... definition of ``bulk electric system'' developed by the North American Electric Reliability Corporation (NERC...

  8. The pursuit of electrically-driven organic semiconductor lasers

    NARCIS (Netherlands)

    Bisri, Satria Zulkarnaen; Takenobu, Taishi; Iwasa, Yoshihiro

    2014-01-01

    Organic semiconductors have many favourable and plastic-like optical properties that are promising for the development of low energy consuming laser devices. Although optically-pumped organic semiconductor lasers have been demonstrated since the early days of lasers, electrically-driven organic

  9. National Electric Sector Cybersecurity Organization Resource (NESCOR)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-06-30

    The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

  10. Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes.

    Science.gov (United States)

    Nagel, Rebecca; Kirschbaum, Frank; Tiedemann, Ralph

    2017-03-01

    In mormyrid weakly electric fish, the electric organ discharge (EOD) is used for species recognition, orientation and prey localization. Produced in the muscle-derived adult electric organ, the EOD exhibits a wide diversity across species in both waveform and duration. While certain defining EOD characteristics can be linked to anatomical features of the electric organ, many factors underlying EOD differentiation are yet unknown. Here, we report the differential expression of 13 Kv1 voltage-gated potassium channel genes, two inwardly rectifying potassium channel genes, two previously studied sodium channel genes and an ATPase pump in two sympatric species of the genus Campylomormyrus in both the adult electric organ and skeletal muscle. Campylomormyrus compressirostris displays a basal EOD, largely unchanged during development, while C. tshokwe has an elongated, putatively derived discharge. We report an upregulation in all Kv1 genes in the electric organ of Campylomormyrus tshokwe when compared to both skeletal muscle and C. compressirostris electric organ. This pattern of upregulation in a species with a derived EOD form suggests that voltage-gated potassium channels are potentially involved in the diversification of the EOD signal among mormyrid weakly electric fish.

  11. An Electrically Switchable Metal-Organic Framework

    Science.gov (United States)

    Fernandez, Carlos A.; Martin, Paul C.; Schaef, Todd; Bowden, Mark E.; Thallapally, Praveen K.; Dang, Liem; Xu, Wu; Chen, Xilin; McGrail, B. Peter

    2014-08-01

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in a reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.

  12. Phosphorylation states of the (Na+ + K+)-transporting ATPase in preparations from lamb kidney and electric-eel (Electophorus electricus) electric organ.

    Science.gov (United States)

    Harris, W E; Stahl, W L

    1984-01-01

    Phosphorylation states of the (Na+ + K+)-transporting ATPase were studied in highly purified preparations isolated from electric-eel electric organ and from lamb kidney. The steady-state level of phosphorylated lamb kidney enzyme, obtained by reaction with [gamma-32P]ATP, was not appreciably reduced in the presence of ADP unless oligomycin was present. The phosphorylated form of the electric-eel electric-organ enzyme was reduced by at least 95% under the same conditions, suggesting that the E1P state in the kidney enzyme is more transitory than that in electric organ. The level of phosphorylation from [32P]Pi was higher in the lamb kidney preparation than in the electric-organ preparation, and the difference in stimulation of phosphorylation by ouabain in the two preparations was striking. Ouabain increased the level of phosphorylation by 35% in the kidney preparation and 734% in the electric-organ preparation. The E2P state seems to be stabilized by ouabain in the latter preparation. These findings, as well as the different reactivities of the thiol groups to blocking reagents in these preparations, suggest that the tertiary structure in the enzyme isolated from these two sources is different. PMID:6324756

  13. 78 FR 41339 - Electric Reliability Organization Proposal To Retire Requirements in Reliability Standards

    Science.gov (United States)

    2013-07-10

    ...] Electric Reliability Organization Proposal To Retire Requirements in Reliability Standards AGENCY: Federal... Reliability Standards identified by the North American Electric Reliability Corporation (NERC), the Commission-certified Electric Reliability Organization. FOR FURTHER INFORMATION CONTACT: Kevin Ryan (Legal Information...

  14. 76 FR 58101 - Electric Reliability Organization Interpretation of Transmission Operations Reliability Standard

    Science.gov (United States)

    2011-09-20

    ....C. Cir. 2009). \\4\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693, FERC... for maintaining real and reactive power balance. \\14\\ Electric Reliability Organization Interpretation...; Order No. 753] Electric Reliability Organization Interpretation of Transmission Operations Reliability...

  15. A privacy-preserving sharing method of electricity usage using self-organizing map

    Directory of Open Access Journals (Sweden)

    Yuichi Nakamura

    2018-03-01

    Full Text Available Smart meters for measuring electricity usage are expected in electricity usage management. Although the relevant power supplier stores the measured data, the data are worth sharing among power suppliers because the entire data of a city will be required to control the regional grid stability or demand–supply balance. Even though many techniques and methods of privacy-preserving data mining have been studied to share data while preserving data privacy, a study on sharing electricity usage data is still lacking. In this paper, we propose a sharing method of electricity usage while preserving data privacy using a self-organizing map. Keywords: Privacy preserving, Data sharing, Self-Organizing map

  16. Neotropical electric fishes (Gymnotiformes as model organisms for bioassays

    Directory of Open Access Journals (Sweden)

    Milena Ferreira

    2015-04-01

    Full Text Available Electric fishes (Gymnotiformes inhabit Central and South America and form a relatively large group with more than 200 species. Besides a taxonomic challenge due to their still unresolved systematic, wide distribution and the variety of habitats they occupy, these fishes have been intensively studied due to their peculiar use of bioelectricity for electrolocation and communication. Conventional analysis of cells, tissues and organs have been complemented with the studies on the electric organ discharges of these fishes. This review compiles the results of 13 bioassays developed during the last 50 years, which used the quickness, low costs and functionality of the bioelectric data collection of Gymnotiformes to evaluate the effects of environmental contaminants and neuroactive drugs.

  17. 75 FR 4310 - Credit Reforms in Organized Wholesale Electric Markets

    Science.gov (United States)

    2010-01-27

    ... energy markets, in which regional transmission organizations (RTOs) and independent system operators... require RTOs and ISOs to adopt tariff revisions reflecting these proposed credit reforms. The Commission... is in the organized wholesale electric markets.\\5\\ Individual RTOs and ISOs developed their own...

  18. 18 CFR 39.10 - Changes to an Electric Reliability Organization Rule or Regional Entity Rule.

    Science.gov (United States)

    2010-04-01

    ... RULES CONCERNING CERTIFICATION OF THE ELECTRIC RELIABILITY ORGANIZATION; AND PROCEDURES FOR THE ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.10 Changes to an Electric... Reliability Organization Rule or Regional Entity Rule. 39.10 Section 39.10 Conservation of Power and Water...

  19. The Future of Centrally-Organized Wholesale Electricity Markets

    Energy Technology Data Exchange (ETDEWEB)

    Glazer, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrison, Jay [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Breakman, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Clements, Allison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-21

    The electricity grid in the United States is organized around a network of large, centralized power plants and high voltage transmission lines that transport electricity, sometimes over large distances, before it is delivered to the customer through a local distribution grid. This network of centralized generation and high voltage transmission lines is called the “bulk power system.” Costs relating to bulk power generation typically account for more than half of a customer’s electric bill.1 For this reason, the structure and functioning of wholesale electricity markets have major impacts on costs and economic value for consumers, as well as energy security and national security. Diverse arrangements for bulk power wholesale markets have evolved over the last several decades. The Southeast and Western United States outside of California have a “bilateral-based” bulk power system where market participants enter into long-term bilateral agreements — using competitive procurements through power marketers, direct arrangements among utilities or with other generation owners, and auctions and exchanges.

  20. Bill for a new organization of the electricity market. Final Text

    International Nuclear Information System (INIS)

    2010-01-01

    This text contains the new arrangements introduced to organize the concurrence and the competitiveness in the distribution of the electricity produced in France notably that produced by EDF in the French nuclear power plants. It defines the legal framework for agreements between EDF and electricity providers, i.e. prices and quantities of electricity, purchase obligations. It also defines obligations of the providers with respect to users. It addresses the relationship between local communities and these providers, tariffs, works realized on the network. It also addresses the purchase price of hydroelectricity and of electricity produced from biomass, gas tariff

  1. Effects of electric field and magnetic induction on spin injection into organic semiconductors

    International Nuclear Information System (INIS)

    Wang, Y.M.; Ren, J.F.; Yuan, X.B.; Dou, Z.T.; Hu, G.C.

    2011-01-01

    Spin-polarized injection and transport into ferromagnetic/organic semiconductor structure are studied theoretically in the presence of the external electric field and magnetic induction. Based on the spin-drift-diffusion theory and Ohm's law, we obtain the charge current polarization, which takes into account the special carriers of organic semiconductors. From the calculation, it is found that the current spin polarization is enhanced by several orders of magnitude by tuning the magnetic induction and electric fields. To get an apparent current spin polarization, the effects of spin-depended interfacial resistances and the special carriers in the organic semiconductor, which are polarons and bipolarons, are also discussed. -- Research highlights: → Current polarization in ferromagnetic/organic semiconductor structure is obtained. → Calculations are based on spin-drift-diffusion theory and Ohm's law. → Current polarization is enhanced by tuning magnetic induction and electric fields. → Effects of interfacial resistances and the special carriers are also discussed.

  2. 75 FR 28004 - Credit Reforms in Organized Wholesale Electric Markets; Notice Establishing Date for Comments

    Science.gov (United States)

    2010-05-19

    ... Proposed Rulemaking on Credit Reforms in Organized Wholesale Electric Markets.\\1\\ Specifically, the... counterparty to transactions in their markets \\1\\ Credit Reforms in Organized Wholesale Electric Markets, 130... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM10-13-000] Credit Reforms...

  3. Report for the Prime Minister. Making the future French electric power organization a success

    International Nuclear Information System (INIS)

    Dumont, J.L.

    1998-01-01

    This report from the French Deputy of the Meuse region aims at taking stock of four main questions raised by the future organization of the French electric power industry in the context of the opening of the European power market: the public utility of electric power, the future missions of Electricite de france (EdF) company, the questions in relation with the personnel status in the electric power industry, and the status of the regulating authority. In order to give some elements of answer to these questions, the report has been divided into 2 parts: part 1 presents the power production, transport and distribution in the future electric power regulation (the renewal of nuclear facilities, the building of non-nuclear units, the exploitation of the power distribution network, the accounting dissociation and the transparency of accountancy, the organization of network access, the eligible clients, the direct power lines, the obligations of purchase, the distribution and the role of local authorities). Part 2 presents the four main stakes of the modernization of the French electric power sector: the electric power public utility (public concern and rights, government policy, sustain of innovation, environment protection and energy mastery, the transportation and distribution networks, the role of operators and the financing), the future evolution of EdF (missions and organization, future of the public company), the social modernization of the electric power sector (present day status, adaptation, evolution, pensions), the organization and role of the future regulation authority. The propositions of the author are reported in the appendix. (J.S.)

  4. Ultrafast traveling wave dominates the electric organ discharge of Apteronotus leptorhynchus: an inverse modelling study.

    Science.gov (United States)

    Shifman, Aaron R; Longtin, André; Lewis, John E

    2015-10-30

    Identifying and understanding the current sources that give rise to bioelectric fields is a fundamental problem in the biological sciences. It is very difficult, for example, to attribute the time-varying features of an electroencephalogram recorded from the head surface to the neural activity of specific brain areas; model systems can provide important insight into such problems. Some species of fish actively generate an oscillating (c. 1000 Hz) quasi-dipole electric field to communicate and sense their environment in the dark. A specialized electric organ comprises neuron-like cells whose collective signal underlies this electric field. As a step towards understanding the detailed biophysics of signal generation in these fish, we use an anatomically-detailed finite-element modelling approach to reverse-engineer the electric organ signal over one oscillation cycle. We find that the spatiotemporal profile of current along the electric organ constitutes a travelling wave that is well-described by two spatial Fourier components varying in time. The conduction velocity of this wave is faster than action potential conduction in any known neuronal axon (>200 m/s), suggesting that the spatiotemporal features of high-frequency electric organ discharges are not constrained by the conduction velocities of spinal neuron pathways.

  5. Spin Coulomb Dragging Inhibition of Spin-Polarized Electric Current Injecting into Organic Semiconductors

    International Nuclear Information System (INIS)

    Jun-Qing, Zhao; Shi-Zhu, Qiao; Zhen-Feng, Jia; Ning-Yu, Zhang; Yan-Ju, Ji; Yan-Tao, Pang; Ying, Chen; Gang, Fu

    2008-01-01

    We introduce a one-dimensional spin injection structure comprising a ferromagnetic metal and a nondegenerate organic semiconductor to model electric current polarizations. With this model we analyse spin Coulomb dragging (SCD) effects on the polarization under various electric fields, interface and conductivity conditions. The results show that the SCD inhibits the current polarization. Thus the SCD inhibition should be well considered for accurate evaluation of current polarization in the design of organic spin devices

  6. Direct quantification of transendothelial electrical resistance in organs-on-chips

    NARCIS (Netherlands)

    van der Helm, Marieke Willemijn; Odijk, Mathieu; Frimat, Jean-Philippe; van der Meer, Andries Dirk; Eijkel, Jan C.T.; van den Berg, Albert; Segerink, Loes Irene

    2016-01-01

    Measuring transendothelial or transepithelial electrical resistance (TEER) is a widely used method to monitor cellular barrier tightness in organs-on-chips. Unfortunately, integrated electrodes close to the cellular barrier hamper visual inspection of the cells or require specialized cleanroom

  7. Electric field confinement effect on charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.

    2012-01-01

    While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low

  8. The consequences of the electricity law for the local organizations; Les consequences de la loi electricite pour les collectivites locales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    The French law from February 10, 2000, relative to the modernization of the electric public utility, and more recently the law from January 3, 2003, relative to the gas and electricity markets and to the energy utilities, represent a significant evolution of the French electric power situation with new potentialities and new risks for the cities and the regions. In this new context, the local organizations should have to play a key role even as eligible consumers or as decentralized producers. Today, these organizations benefit of new rights, new duties and new powers, but they also undergo new constraints which are summarized in this document: 1 - the electric power and the local organizations before and after the electricity law (historical aspect; European directive from December 19, 1996; the February, 10, 2000 law); 2 - description of enforcement texts of the electricity law; 3 - the actions of the French organizations in the electricity domain and the consequences of the February 10, 2000 law (power consuming, power producing, power distributing, organizing and stimulating organizations); 4 - reactions of the French organizations with respect to the deregulation of the electric power market in Europe (power consuming and power producing towns). (J.S.)

  9. 75 FR 27330 - Credit Reforms in Organized Wholesale Electric Markets; Notice of Agenda for Technical Conference

    Science.gov (United States)

    2010-05-14

    ... Credit Reforms in Organized Wholesale Electric Markets Notice of Proposed Rulemaking\\1\\ regarding whether... Credit Reforms in Organized Electric Markets May 11, 2010 Commission Meeting Room Agenda 9-9:05 a.m... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM10-13-000] Credit Reforms...

  10. Rapid and Checkable Electrical Post-Treatment Method for Organic Photovoltaic Devices

    Science.gov (United States)

    Park, Sangheon; Seo, Yu-Seong; Shin, Won Suk; Moon, Sang-Jin; Hwang, Jungseek

    2016-01-01

    Post-treatment processes improve the performance of organic photovoltaic devices by changing the microscopic morphology and configuration of the vertical phase separation in the active layer. Thermal annealing and solvent vapor (or chemical) treatment processes have been extensively used to improve the performance of bulk-heterojunction (BHJ) organic photovoltaic (OPV) devices. In this work we introduce a new post-treatment process which we apply only electrical voltage to the BHJ-OPV devices. We used the commercially available P3HT [Poly(3-hexylthiophene)] and PC61BM (Phenyl-C61-Butyric acid Methyl ester) photovoltaic materials as donor and acceptor, respectively. We monitored the voltage and current applied to the device to check for when the post-treatment process had been completed. This electrical treatment process is simpler and faster than other post-treatment methods, and the performance of the electrically treated solar cell is comparable to that of a reference (thermally annealed) device. Our results indicate that the proposed treatment process can be used efficiently to fabricate high-performance BHJ-OPV devices. PMID:26932767

  11. Integrated genomics and proteomics of the Torpedo californica electric organ: concordance with the mammalian neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Mate Suzanne E

    2011-05-01

    Full Text Available Abstract Background During development, the branchial mesoderm of Torpedo californica transdifferentiates into an electric organ capable of generating high voltage discharges to stun fish. The organ contains a high density of cholinergic synapses and has served as a biochemical model for the membrane specialization of myofibers, the neuromuscular junction (NMJ. We studied the genome and proteome of the electric organ to gain insight into its composition, to determine if there is concordance with skeletal muscle and the NMJ, and to identify novel synaptic proteins. Results Of 435 proteins identified, 300 mapped to Torpedo cDNA sequences with ≥2 peptides. We identified 14 uncharacterized proteins in the electric organ that are known to play a role in acetylcholine receptor clustering or signal transduction. In addition, two human open reading frames, C1orf123 and C6orf130, showed high sequence similarity to electric organ proteins. Our profile lists several proteins that are highly expressed in skeletal muscle or are muscle specific. Synaptic proteins such as acetylcholinesterase, acetylcholine receptor subunits, and rapsyn were present in the electric organ proteome but absent in the skeletal muscle proteome. Conclusions Our integrated genomic and proteomic analysis supports research describing a muscle-like profile of the organ. We show that it is a repository of NMJ proteins but we present limitations on its use as a comprehensive model of the NMJ. Finally, we identified several proteins that may become candidates for signaling proteins not previously characterized as components of the NMJ.

  12. The European interconnection system between reality and utopia. Does the market organization fit into the electricity network?

    International Nuclear Information System (INIS)

    Stigler, H.

    2016-01-01

    On the basis of discussions about the contribution that research and innovations can make to the renewal of the electricity market, the synchronous grid of Continental Europe will be compared with the transmission network. The electricity market guidelines are put to critical consideration and the question is raised whether today's electricity market organization is sustainable in the long term. The paper concludes with regard to the usefulness of the organizational structure and the organization of the electricity markets. (rössner) [de

  13. Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes

    Science.gov (United States)

    Fina, Michael Dane

    Organic light-emitting diodes (OLEDs) have made tremendous technological progress in the past two decades and have emerged as a top competitor for next generation light-emitting displays and lighting. State-of-the-art OLEDs have been reported in literature to approach, and even surpass, white fluorescent tube efficiency. However, despite rapid technological progress, efficiency metrics must be improved to compete with traditional inorganic light-emitting diode (LED) technology. Organic materials possess specialized traits that permit manipulations to the light-emitting cavity. Overall, as demonstrated within, these modifications can be used to improve electrical and optical device efficiencies. This work is focused at analyzing the effects that nanopatterned geometric modifications to the organic active layers play on device efficiency. In general, OLED efficiency is complicated by the complex, coupled processes which contribute to spontaneous dipole emission. A composite of three sub-systems (electrical, exciton and optical) ultimately dictate the OLED device efficiency. OLED electrical operation is believed to take place via a low-mobility-modified Schottky injection process. In the injection-limited regime, geometric effects are expected to modify the local electric field leading to device current enhancement. It is shown that the patterning effect can be used to enhance charge carrier parity, thereby enhancing overall recombination. Current density and luminance characteristics are shown to be improved by OLED nanopatterning from both the model developed within and experimental techniques. Next, the optical enhancement effects produced by the nanopatterned array are considered. Finite-difference time-domain (FDTD) simulations are used to determine positional, spectral optical enhancement for the nanopatterned device. The results show beneficial effects to the device performance. The optical enhancements are related to the reduction in internal radiative

  14. In situ–Directed Growth of Organic Nanofibers and Nanoflakes: Electrical and Morphological Properties

    Directory of Open Access Journals (Sweden)

    de Oliveira Hansen Roana

    2011-01-01

    Full Text Available Abstract Organic nanostructures made from organic molecules such as para-hexaphenylene (p-6P could form nanoscale components in future electronic and optoelectronic devices. However, the integration of such fragile nanostructures with the necessary interface circuitry such as metal electrodes for electrical connection continues to be a significant hindrance toward their large-scale implementation. Here, we demonstrate in situ–directed growth of such organic nanostructures between pre-fabricated contacts, which are source–drain gold electrodes on a transistor platform (bottom-gate on silicon dioxide patterned by a combination of optical lithography and electron beam lithography. The dimensions of the gold electrodes strongly influence the morphology of the resulting structures leading to notably different electrical properties. The ability to control such nanofiber or nanoflake growth opens the possibility for large-scale optoelectronic device fabrication.

  15. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    Science.gov (United States)

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process.

  16. 76 FR 23222 - Electric Reliability Organization Interpretation of Transmission Operations Reliability

    Science.gov (United States)

    2011-04-26

    ....3d 1342 (DC Cir. 2009). \\5\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693... Reliability Standards for the Bulk-Power System. Action: FERC-725A. OMB Control No.: 1902-0244. Respondents...] Electric Reliability Organization Interpretation of Transmission Operations Reliability AGENCY: Federal...

  17. 75 FR 20991 - Credit Reforms in Organized Wholesale Electric Markets; Notice of Technical Conference

    Science.gov (United States)

    2010-04-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM10-13-000] Credit Reforms in Organized Wholesale Electric Markets; Notice of Technical Conference April 15, 2010. Take notice... related to the Commission's Notice of Proposed Rulemaking on Credit Reforms in Organized Wholesale...

  18. 75 FR 26749 - Credit Reforms in Organized Wholesale Electric Markets; Notice of Technical Conference

    Science.gov (United States)

    2010-05-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM10-13-000] Credit Reforms in Organized Wholesale Electric Markets; Notice of Technical Conference April 15, 2010. Take notice... related to the Commission's Notice of Proposed Rulemaking on Credit Reforms in Organized Wholesale...

  19. The active electric sense of weakly electric fish: from electric organ discharge to sensory processing and behaviour

    Directory of Open Access Journals (Sweden)

    Krahe Rüdiger

    2016-01-01

    Full Text Available Sensory systems have been shaped by evolution to extract information that is relevant for decision making. In order to understand the mechanisms used by sensory systems for filtering the incoming stream of sensory input, it is important to have a quantitative understanding of the natural sensory scenes that are to be processed. Weakly electric fish lead a rather cryptic nocturnal life in often turbid tropical rainforest streams. They produce electric discharges and sense perturbations of their selfgenerated electric field for prey detection and navigation, and also use their active sense for communication in the context of courtship and aggression. The fact that they produce their electric signals throughout day and night permits the use of electrode arrays to track the movements of multiple individual fish and monitor their communication interactions, thus offering a window into their electrosensory world. This approach yields unprecedented access to information on the biology of these fishes and also on the statistical properties of the sensory scenes that are to be processed by their electrosensory system. The electrosensory system shares many organizational features with other sensory systems, in particular, the use of multiple topographic maps. In fact, the sensory surface (the skin is represented in three parallel maps in the hindbrain, with each map covering the receptor organ array with six different cell types that project to the next higher level of processing. Thus, the electroreceptive body surface is represented a total of 18 times in the hindbrain, with each representation having its specific filter properties and degree of response plasticity. Thus, the access to the sensory world of these fish as well as the manifold filtering of the sensory input makes these fish an excellent model system for exploring the cell-intrinsic and network characteristics underlying the extraction of behaviourally relevant sensory information.

  20. Antecedents of employee electricity saving behavior in organizations: An empirical study based on norm activation model

    International Nuclear Information System (INIS)

    Zhang, Yixiang; Wang, Zhaohua; Zhou, Guanghui

    2013-01-01

    China is one of the major energy-consuming countries, and is under great pressure to promote energy saving and reduce domestic energy consumption. Employees constitute an important target group for energy saving. However, only a few research efforts have been paid to study what drives employee energy saving behavior in organizations. To fill this gap, drawing on norm activation model (NAM), we built a research model to study antecedents of employee electricity saving behavior in organizations. The model was empirically tested using survey data collected from office workers in Beijing, China. Results show that personal norm positively influences employee electricity saving behavior. Organizational electricity saving climate negatively moderates the effect of personal norm on electricity saving behavior. Awareness of consequences, ascription of responsibility, and organizational electricity saving climate positively influence personal norm. Furthermore, awareness of consequences positively influences ascription of responsibility. This paper contributes to the energy saving behavior literature by building a theoretical model of employee electricity saving behavior which is understudied in the current literature. Based on the empirical results, implications on how to promote employee electricity saving are discussed. - Highlights: • We studied employee electricity saving behavior based on norm activation model. • The model was tested using survey data collected from office workers in China. • Personal norm positively influences employee′s electricity saving behavior. • Electricity saving climate negatively moderates personal norm′s effect. • This research enhances our understanding of employee electricity saving behavior

  1. Multi-scale calculation of the electric properties of organic-based devices from the molecular structure

    KAUST Repository

    Li, Haoyuan; Qiu, Yong; Duan, Lian

    2016-01-01

    A method is proposed to calculate the electric properties of organic-based devices from the molecular structure. The charge transfer rate is obtained using non-adiabatic molecular dynamics. The organic film in the device is modeled using

  2. Waveform generation in the weakly electric fish Gymnotus coropinae (Hoedeman): the electric organ and the electric organ discharge.

    Science.gov (United States)

    Castelló, María E; Rodríguez-Cattáneo, Alejo; Aguilera, Pedro A; Iribarne, Leticia; Pereira, Ana Carolina; Caputi, Angel A

    2009-05-01

    This article deals with the electric organ and its discharge in Gymnotus coropinae, a representative species of one of the three main clades of the genus. Three regions with bilateral symmetry are described: (1) subopercular (medial and lateral columns of complex shaped electrocytes); (2) abdominal (medial and lateral columns of cuboidal and fusiform electrocytes); and (3) main [four columns, one dorso-lateral (containing fusiform electrocytes) and three medial (containing cuboidal electrocytes)]. Subopercular electrocytes are all caudally innervated whereas two of the medial subopercular ones are also rostrally innervated. Fusiform electrocytes are medially innervated at the abdominal portion, and at their rostral and caudal poles at the main portion. Cuboidal electrocytes are always caudally innervated. The subopercular portion generates a slow head-negative wave (V(1r)) followed by a head-positive spike (V(3r)). The abdominal and main portions generate a fast tetra-phasic complex (V(2345ct)). Since subopercular components prevail in the near field and the rest in the far field, time coincidence of V(3r) with V(2) leads to different waveforms depending on the position of the receiver. This confirms the splitting hypothesis of communication and exploration channels based on the different timing, frequency band and reach of the regional waveforms. The following hypothesis is compatible with the observed anatomo-functional organization: V(1r) corresponds to the rostral activation of medial subopercular electrocytes and V(3r) to the caudal activation of all subopercular electrocytes; V(2), and part of V(3ct), corresponds to the successive activation of the rostral and caudal poles of dorso-lateral fusiform electrocytes; and V(345ct) is initiated in the caudal face of cuboidal electrocytes by synaptic activation (V(3ct)) and it is completed (V(45ct)) by the successive activation of rostral and caudal faces by the action currents evoked in the opposite face.

  3. Electricity Generation from Organic Matters in Biocatalyst-Based Microbial Fuel Cells (MFCs)

    DEFF Research Database (Denmark)

    Min, Booki; Zhang, Yifeng; Angelidaki, Irini

    for optimum power generation in MFC have been investigated at previous studies. A submersible microbial fuel cell (SMFC), which is a novel configuration, was developed by immersing an anode electrode and a cathode chamber in an anaerobic reactor. Domestic wastewater without any amendments was used......Microbial fuel cells (MFCs) are a novel technology for converting organic matter directly to electricity via biocatalytic reactions by microorganisms. MFCs can also be used for wastewater treatment by the oxidations of organic pollutants during the electricity generation. Several factors...... as the medium and the inoculum in the experiments. The SMFC could successfully generate a stable voltage of 0.428±0.003V with a fixed 470Ω resistor from acetate. From the polarization test, the maximum power density of 204mWm−2 was obtained at current density of 595mAm−2 (external resistance = 180Ω). The power...

  4. 77 FR 59745 - Delegation of Authority Regarding Electric Reliability Organization's Budget, Delegation...

    Science.gov (United States)

    2012-10-01

    ...; Order No. 766] Delegation of Authority Regarding Electric Reliability Organization's Budget, Delegation... rule. SUMMARY: The Commission is issuing this Final Rule to revise its delegations of authority to... delegation agreements, and ERO policies and procedures. DATES: This rule is effective October 1, 2012. FOR...

  5. Surface-type nonvolatile electric memory elements based on organic-on-organic CuPc-H2Pc heterojunction

    International Nuclear Information System (INIS)

    Karimov, Khasan S.; Muqeet Rehman, M.; Zameer Abbas, S.; Ahmad, Zubair; Touati, Farid; Mahroof-Tahir, M.

    2015-01-01

    A novel surface-type nonvolatile electric memory elements based on organic semiconductors CuPc and H 2 Pc are fabricated by vacuum deposition of the CuPc and H 2 Pc films on preliminary deposited metallic (Ag and Cu) electrodes. The gap between Ag and Cu electrodes is 30–40 μm. For the current–voltage (I–V) characteristics the memory effect, switching effect, and negative differential resistance regions are observed. The switching mechanism is attributed to the electric-field-induced charge transfer. As a result the device switches from a low to a high-conductivity state and then back to a low conductivity state if the opposite polarity voltage is applied. The ratio of resistance at the high resistance state to that at the low resistance state is equal to 120–150. Under the switching condition, the electric current increases ∼ 80–100 times. A comparison between the forward and reverse I–V characteristics shows the presence of rectifying behavior. (paper)

  6. Electrical power industry restructuring in Latin America: towards a new mode of organization

    International Nuclear Information System (INIS)

    De Oliveira, A.; Pinto, H.Q.

    1995-01-01

    At the beginning of the 1990s the restructuring of the industrial organization and the regulatory regimes are probably the most important economic and institutional phenomenon in electricity supply industries Latin America countries. This paper analyses the main characteristics of the restructuring in Chili and Brazil. Two major problems are driving this changes: the financial constraints and economic inefficiencies. Despite institutional barriers to privatization initiatives, the participation of new private companies in electricity supply industrial, specially in generation side, is becoming the common aspect of restructuring. This solution requires new regulatory options and new coordination mechanisms. In this context, the electricity companies may promote innovative strategies and adapt their long-term decisions. (authors). 2 tabs., 30 refs

  7. Effects of Neuroactive Drugs in the Discharge Patterns of Microsternarchus (Hypopomidae: Gymnotiformes) Electric Organ.

    Science.gov (United States)

    de Jesus, Isac Silva; Ferreira, Milena; Silva-Júnior, Urbano Lopes; Alves-Gomes, José Antônio

    2017-12-01

    Considering the conserved nature of synaptic physiology among vertebrates, we tested the effects of three psychotropics (diazepam, doxapram, and nicotine) on Microsternarchus cf. bilineatus, measuring 10 parameters associated to the electric organ discharges rhythm and waveform before and after the administration of each drug and a control group. There were statistically significant differences (p electric organ's (EO) firing rate, regardless of the expected stimulant or depressor effect of the drugs on the central nervous system (CNS). The intensity of the response changed with the treatment. The observed changes in the fishes' behavior may be a result of the drugs' direct action on the CNS or a combination of this with systemic effects of each substance tested, also in the EO.

  8. The occurrence of single and multiple organ dysfunction in pediatric electrical versus other thermal burns.

    Science.gov (United States)

    Hundeshagen, Gabriel; Wurzer, Paul; Forbes, Abigail A; Voigt, Charles D; Collins, Vanessa N; Cambiaso-Daniel, Janos; Finnerty, Celeste C; Herndon, David N; Branski, Ludwik K

    2017-05-01

    Multiple organ failure (MOF) is a major contributor to morbidity and mortality in burned children. While various complications induced by electrical injuries have been described, the incidence and severity of single organ failure (SOF) and MOF associated with this type of injury are unknown. The study was undertaken to compare the incidence and severity of SOF and MOF as well as other complications between electrically and thermally burned children. Between 2001 and 2016, 288 pediatric patients with electrical burns (EB; n = 96) or thermal burns (CTR; n = 192) were analyzed in this study. Demographic data; length of hospitalization; and number and type of operations, amputations, and complications were statistically analyzed. Incidence of SOF and MOF was assessed using the DENVER2 classification in an additive mixed model over time. Compound scores and organ-specific scores for lung, heart, kidney, and liver were analyzed. Serum cytokine expression profiles of both groups were also compared over time. Significance was accepted at p in age (CTR, 11 ± 5 years, vs EB, 11 ± 5 years), percent total body surface area burned (CTR, 33% ± 25%, vs EB, 32 ± 25%), and length of hospitalization (CTR, 18 ± 26 days, vs EB, 18 ± 21 days). The percentage of high-voltage injury in the EB group was 64%. The incidence of MOF was lower in the EB group (2 of 96 [2.1%]) than the CTR group (20 of 192 [10.4%]; p The incidence of single organ failure was comparable between groups. Incidence of pulmonary failure was comparable in both groups, but incidence of inhalation injury was significantly higher in the CTR group (p in the EB group had more amputations (p the groups. Serum cytokine expression profiles were also comparable between the groups. In pediatric patients, electrical injury is associated with a lower incidence of MOF than other thermal burns. Early and radical debridement of nonviable tissue is crucial to improve outcomes in the electrical burn patient population

  9. 75 FR 80391 - Electric Reliability Organization Interpretations of Interconnection Reliability Operations and...

    Science.gov (United States)

    2010-12-22

    ... transmission (G&T) cooperative or similar organization to accept compliance responsibility on behalf of its... be found on the Commission's Web site; see, e.g., the ``Quick Reference Guide for Paper Submissions... Electric Reliability Standards, Order No. 672, FERC Stats. & Regs. ] 31,204, order on reh'g, Order No. 672...

  10. Measurement of full-field deformation induced by a dc electrical field in organic insulator films

    Directory of Open Access Journals (Sweden)

    Boudou L.

    2010-06-01

    Full Text Available Digital image correlation method (DIC using the correlation coefficient curve-fitting for full-field surface deformation measurements of organic insulator films is investigated in this work. First the validation of the technique was undertaken. The computer-generated speckle images and the measurement of coefficient of thermal expansion (CTE of aluminium are used to evaluate the measurement accuracy of the technique. In a second part the technique is applied to measure the mechanical deformation induced by electrical field application to organic insulators. For that Poly(ethylene naphthalene 2,6-dicarboxylate (PEN thin films were subjected to DC voltage stress and DIC provides the full-field induced deformations of the test films. The obtained results show that the DIC is a practical and robust tool for better comprehension of mechanical behaviour of the organic insulator films under electrical stress.

  11. Electric fields and currents induced in organs of the human body when exposed to ELF and VLF electromagnetic fields

    Science.gov (United States)

    King, Ronold W. P.; Sandler, Sheldon S.

    1996-09-01

    Formulas for the transverse components of the electric and magnetic fields of the traveling-wave currents of three different types of three-wire, three-phase high-voltage power lines and of a typical VLF transmitter are given. From them, exposure situations for the human body are chosen which permit the analytical determination of the total current induced in that body. With this, the fraction of the total axial current, the axial current density, and the axial electric field in each organ of the body are obtained at any desired cross section. The dimensions and conductivity of these organs must be known. The electric field so obtained is the average macroscopic field in which the cells in each organ are immersed when the whole body is exposed to a known incident field. It corresponds in vivo to the electric field used in vitro to expose cells in tissues.

  12. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.

    Science.gov (United States)

    Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J

    2013-06-10

    Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.

  13. Effect of Pedot-Pss on Electrical and Photovoltaic Properties of ITO/MEH-PPV:PCBM/Al Organic Diodes

    International Nuclear Information System (INIS)

    Gunduz, B.

    2008-01-01

    The photovoltaic and electrical properties of ITO/MEH-PPV:PCBM/Al and ITO/PEDOT-PSS/MEHPPV:PCBM/Al organic diodes have been investigated. The ideality factor, series resistance and shunt resistance values of ITO/MEH-PPV:PCBM/Al and ITO/PEDOT-PSS/MEHPPV:PCBM/Al diodes were found to be 4.6, 6.84x10 6 Ω, 2.2x10 8 Ω and 4.02, 5.8x10 5 Ω, 2x10 7 Ω respectively. The electronic parameters of the ITO/MEH-PPV:PCBM/Al diode were improved using PEDOT-PSS conducting polymer. ITO/MEH-PPV:PCBM/Al and ITO/PEDOT-PSS/MEHPPV:PCBM/Al organic diodes indicate a photovoltaic behaviour with a maximum open circuit voltage V o c and short-circuit current I s c. The photoconductivity sensitivity and responsivity properties of the organic diodes have been characterized by transient-current measurements. The obtained electrical and photovoltaic results indicate that ITO/MEH-PPV:PCBM/Al and ITO/PEDOT-PSS/MEHPPV:PCBM/Al structures are the organic photodiodes with calculated electronic parameters and the electrical properties of the ITO/MEH-PPV:PCBM/Al diode have been improved with PEDOT-PSS conducting polymer

  14. System and method employing a self-organizing map load feature database to identify electric load types of different electric loads

    Science.gov (United States)

    Lu, Bin; Harley, Ronald G.; Du, Liang; Yang, Yi; Sharma, Santosh K.; Zambare, Prachi; Madane, Mayura A.

    2014-06-17

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.

  15. The bicentennial of the Voltaic battery (1800-2000): the artificial electric organ.

    Science.gov (United States)

    Piccolino, M

    2000-04-01

    Alessandro Volta invented the electric battery at the end of 1799 and communicated his invention to the Royal Society of London in 1800. The studies that led him to develop this revolutionary device began in 1792, after Volta read the work of Luigi Galvani on the existence of an intrinsic electricity in living organisms. During these studies, Volta obtained a series of results of great physiological relevance, which led him to anticipate some important ideas that marked the inception of modern neuroscience. These results have been obscured by a cultural tradition that has seen Volta exclusively as a physicist, lacking interest for biological problems and opposed in an irreversible way to the physiologist, Luigi Galvani.

  16. Study of electrical fatigue by defect engineering in organic light-emitting diodes

    International Nuclear Information System (INIS)

    Gassmann, Andrea; Yampolskii, Sergey V.; Klein, Andreas; Albe, Karsten; Vilbrandt, Nicole; Pekkola, Oili; Genenko, Yuri A.; Rehahn, Matthias; Seggern, Heinz von

    2015-01-01

    Graphical abstract: - Highlights: • Electrical fatigue is investigated in PPV-based polymer light-emitting diodes. • Bromide defects remaining from Gilch synthesis limit PLED lifetime. • Electrical stress yields lower hole mobility and transition to dispersive transport. • Triplet excitons reduce lifetime and EL-emission-induced degradation observed. • Self-consistent drift-diffusion model for charge carrier injection and transport. - Abstract: In this work the current knowledge on the electrical degradation of polymer-based light-emitting diodes is reviewed focusing especially on derivatives of poly(p-phenylene-vinylene) (PPV). The electrical degradation will be referred to as electrical fatigue and is understood as mechanisms, phenomena and material properties that change during continuous operation of the device at constant current. The focus of this review lies especially on the effect of chemical synthesis on the transport properties of the organic semiconductor and the device lifetimes. In addition, the prominent transparent conductive oxide indium tin oxide as well as In 2 O 3 will be reviewed and how their properties can be altered by the processing conditions. The experiments are accompanied by theoretical modeling shining light on how the change of injection barriers, charge carrier mobility or trap density influence the current–voltage characteristics of the diodes and on how and which defects form in transparent conductive oxides used as anode

  17. In situ–Directed Growth of Organic Nanofibers and Nanoflakes: Electrical and Morphological Properties

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Madsen, Morten; Kjelstrup-Hansen, Jakob

    2010-01-01

    Organic nanostructures made from organic molecules such as para-hexaphenylene (p-6P) could form nanoscale components in future electronic and optoelectronic devices. However, the integration of such fragile nanostructures with the necessary interface circuitry such as metal electrodes for electri......Organic nanostructures made from organic molecules such as para-hexaphenylene (p-6P) could form nanoscale components in future electronic and optoelectronic devices. However, the integration of such fragile nanostructures with the necessary interface circuitry such as metal electrodes...... patterned by a combination of optical lithography and electron beam lithography. The dimensions of the gold electrodes strongly influence the morphology of the resulting structures leading to notably different electrical properties. The ability to control such nanofiber or nanoflake growth opens...... the possibility for large-scale optoelectronic device fabrication....

  18. 75 FR 27552 - Credit Reforms in Organized Wholesale Electric Markets; Further Notice Concerning Technical...

    Science.gov (United States)

    2010-05-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM10-13-000] Credit Reforms in Organized Wholesale Electric Markets; Further Notice Concerning Technical Conference May 10, 2010... technical conference related to the Commission's Notice of Proposed Rulemaking on Credit Reforms in...

  19. Frequency Dependence of Electrical Parameters of an Organic-Inorganic Hybrid Composite Based Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Rizwan Akram

    2016-05-01

    Full Text Available The present study highlights the interdependence of ambient humidity levels on the electrical parameters of organic-inorganic hybrid composite based humidity sensor at varied AC frequencies of input signal. Starting from the bottom, the layer stack of the fabricated humidity sensor was 200-nm silver (Ag thin film and 4 μm spun-coated PEPC+NiPC+Cu2O active layer. Silver thin films were deposited by thermal evaporator on well cleaned microscopic glass slides, which served as a substrate. Conventional optical lithography procedure was adapted to define pairs of silver-silver surface electrodes with two sorts of configurations, i.e., interdigitated and rectangular. Humidity-sensitive layers of organic-inorganic composite were then spun-cast upon the channel between the silver electrodes. The changes in relative humidity levels induced variation in capacitance and impedance of the sensors. These variations in electrical parameters of sensors were also found to be highly dependent upon frequency of input AC signal. Our findings reveal that the organic-inorganic composite shows higher humidity sensitivity at smaller orders of frequency. This finding is in accordance with the established fact that organic semiconductors-based devices are not applicable for high frequency applications due to their lower charge carrier mobility values. Two distinct geometries of semiconducting medium between the silver electrodes were investigated to optimize the sensing parameters of the humidity sensor. Furthermore, the effect of temperature change on the resistance of organic composite has also been studied.

  20. Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

    Science.gov (United States)

    2016-08-01

    efficiency by reducing energy consumption associated with electrical generation and reduces greenhouse gas emissions by increasing electrical generating...integrated system fuel economy test conditions This computation requires prediction of fuel consumption over baseline and integrated system load...EW-201251) Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

  1. How to Organize Electricity Savings in a Liberalized Electricity Market

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1998-01-01

    The basic idea of Integrated Ressource Planning is described and it is demonstrated how this is in conflict with the sub-optimizing necessary in a liberalized market. Afterwards are outlined how the measuring of savings energy consumption constitutes a fundamental problem. Finally are dicussed...... the future actors in the electricity sector and their roles in implementing electricity savings, followed by some proposals for an energy policy....

  2. Exploring utility organization electricity generation, residential electricity consumption, and energy efficiency: A climatic approach

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Feng, Song

    2017-01-01

    Highlights: • Study examined impact of electricity fuel sources and consumption on emissions. • 97.2% of variability in emissions explained by coal and residential electricity use. • Increasing cooling degree days significantly related to increased electricity use. • Effectiveness of state-level energy efficiency programs showed mixed results. - Abstract: This study examined the impact of electricity generation by fuel source type and electricity consumption on carbon emissions to assess the role of climatic variability and energy efficiency (EE) in the United States. Despite high levels of greenhouse gas emissions, residential electricity consumption continues to increase in the United States and fossil fuels are the primary fuel source of electricity generation. 97.2% of the variability in carbon emissions in the electricity industry was explained by electricity generation from coal and residential electricity consumption. The relationships between residential electricity consumption, short-term climatic variability, long-term climatic trends, short-term reduction in electricity from EE programs, and long-term trends in EE programs was examined. This is the first study of its nature to examine these relationships across the 48 contiguous United States. Inter-year and long-term trends in cooling degree days, or days above a baseline temperature, were the primary climatic drivers of residential electricity consumption. Cooling degree days increased across the majority of the United States during the study period, and shared a positive relationship with residential electricity consumption when findings were significant. The majority of electricity reduction from EE programs was negatively related to residential electricity consumption where findings were significant. However, the trend across the majority of states was a decrease in electricity reduction from EE while residential electricity consumption increased. States that successfully reduced consumption

  3. Mechanically and electrically robust metal-mask design for organic CMOS circuits

    Science.gov (United States)

    Shintani, Michihiro; Qin, Zhaoxing; Kuribara, Kazunori; Ogasahara, Yasuhiro; Hiromoto, Masayuki; Sato, Takashi

    2018-04-01

    The design of metal masks for fabricating organic CMOS circuits requires the consideration of not only the electrical property of the circuits, but also the mechanical strength of the masks. In this paper, we propose a new design flow for metal masks that realizes coanalysis of the mechanical and electrical properties and enables design exploration considering the trade-off between the two properties. As a case study, we apply a “stitching technique” to the mask design of a ring oscillator and explore the best design. With this technique, mask patterns are divided into separate parts using multiple mask layers to improve the mechanical strength at the cost of high resistance of the vias. By a numerical experiment, the design trade-off of the stitching technique is quantitatively analyzed, and it is demonstrated that the proposed flow is useful for the exploration of the designs of metal masks.

  4. Electric double layer capacitance on hierarchical porous carbons in an organic electrolyte

    OpenAIRE

    Yamada, Hirotoshi; Moriguchi, Isamu; Kudo, Tetsuichi

    2008-01-01

    Nanoporous carbons were prepared by using colloidal crystal as a template. Nitrogen adsorption/desorption isotherms and transmission electron microscope images revealed that the porous carbons exhibit hierarchical porous structures with meso/macropores and micropores. Electric double layer capacitor performance of the porous carbons was investigated in an organic electrolyte of 1 M LiClO4 in propylene carbonate and dimethoxy ethane. The hierarchical porous carbons exhibited large specific dou...

  5. The adenosine-triphosphatase system responsible for cation transport in electric organ: exclusion of phospholipids as intermediates

    Science.gov (United States)

    Glynn, I. M.; Slayman, Carolyn W.; Eichberg, J.; Dawson, R. M. C.

    1965-01-01

    1. Subcellular fractions were prepared from the electric organs of Electrophorus and Torpedo and assayed for adenosine-triphosphatase activity. 2. Treatment of the `low-speed' fraction from Torpedo with m-urea gave an adenosine-triphosphatase preparation that was almost completely (98%) inhibited by ouabain (0·1mg./ml.) and dependent on the simultaneous presence of Na+ and K+. 3. The adenosine-triphosphatase preparations were exposed to [γ-32P]ATP for 30sec. in the presence of (i) Na+, (ii) K+, (iii) Na++K+ and (iv) Na++K++ouabain. No significant labelling of phosphatidic acid, triphosphoinositide or any other phospholipid was observed. 4. The results suggest that phospholipids do not act as phosphorylated intermediates in the `transport adenosine-triphosphatase' system of electric organ. PMID:14340060

  6. Electric organ discharge patterns during group hunting by a mormyrid fish.

    Science.gov (United States)

    Arnegard, Matthew E; Carlson, Bruce A

    2005-07-07

    Weakly electric fish emit and receive low-voltage electric organ discharges (EODs) for electrolocation and communication. Since the discovery of the electric sense, their behaviours in the wild have remained elusive owing to their nocturnal habits and the inaccessible environments in which they live. The transparency of Lake Malawi provided the first opportunity to simultaneously observe freely behaving mormyrid fish and record their EODs. We observed a piscivorous mormyrid, Mormyrops anguilloides, hunting in small groups in Lake Malawi while feeding on rock-frequenting cichlids of the largest known vertebrate species flock. Video recordings yielded the novel and unexpected finding that these groups resembled hunting packs by being largely composed of the same individuals across days. We show that EOD accelerations accompany prey probing and size estimation by M. anguilloides. In addition, group members occasionally synchronize bursts of EODs with an extraordinary degree of precision afforded by the mormyrid echo response. The characteristics and context of burst synchronization suggest that it may function as a pack cohesion signal. Our observations highlight the potential richness of social behaviours in a basal vertebrate lineage, and provide a framework for future investigations of the neural mechanisms, behavioural rules and ecological significance of social predation in M. anguilloides.

  7. [Research Progress in Technology of Using Soil Micro-organisms to Generate Electricity and Its Potential Applications].

    Science.gov (United States)

    Deng, Huan; Xue, Hong-jing; Jiang, Yun-bin; Zhong, Wen-hui

    2015-10-01

    Microbial fuel cells ( microbial fuel cells, MFCs) are devices in which micro-organisms convert chemical energy into electrical power. Soil has electrogenic bacteria and organic substrates, thus can generate electrical current in MFCs. Soil MFCs can be operated and applied to real-time and continuously monitor soil pollution, remove soil pollutants and to reduce methane emitted from flooded rice paddy, without energy consumption and the application of chemical reagents to the soil. Instead, the operation of soil MFCs generates small amount of electrical power. Therefore, soil MFCs are useful in the development of environment-friendly technology for monitoring and remediating soil pollution, which have potential value for applications in the domain of environmental science and engineering. However, much of advanced technology hasn't been applied into soil MFCs since the studies on soil MFCs was not started until recently. This paper summarized the research progress in related to soil MFCs combining with the frontier of MFCs technology, and brought forward the possible direction in studies on soil MFCs.

  8. Precision measurement of electric organ discharge timing from freely moving weakly electric fish.

    Science.gov (United States)

    Jun, James J; Longtin, André; Maler, Leonard

    2012-04-01

    Physiological measurements from an unrestrained, untethered, and freely moving animal permit analyses of neural states correlated to naturalistic behaviors of interest. Precise and reliable remote measurements remain technically challenging due to animal movement, which perturbs the relative geometries between the animal and sensors. Pulse-type electric fish generate a train of discrete and stereotyped electric organ discharges (EOD) to sense their surroundings actively, and rapid modulation of the discharge rate occurs while free swimming in Gymnotus sp. The modulation of EOD rates is a useful indicator of the fish's central state such as resting, alertness, and learning associated with exploration. However, the EOD pulse waveforms remotely observed at a pair of dipole electrodes continuously vary as the fish swims relative to the electrodes, which biases the judgment of the actual pulse timing. To measure the EOD pulse timing more accurately, reliably, and noninvasively from a free-swimming fish, we propose a novel method based on the principles of waveform reshaping and spatial averaging. Our method is implemented using envelope extraction and multichannel summation, which is more precise and reliable compared with other widely used threshold- or peak-based methods according to the tests performed under various source-detector geometries. Using the same method, we constructed a real-time electronic pulse detector performing an additional online pulse discrimination routine to enhance further the detection reliability. Our stand-alone pulse detector performed with high temporal precision (<10 μs) and reliability (error <1 per 10(6) pulses) and permits longer recording duration by storing only event time stamps (4 bytes/pulse).

  9. Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators.

    Science.gov (United States)

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu; Matsui, Hiroshi

    2015-01-14

    Peptide-metal-organic framework (Pep-MOF) motors, whose motions are driven by anisotropic surface tension gradients created via peptide self-assembly around frameworks, can rotate microscopic rotors and magnets fast enough to generate an electric power of 0.1 μW. A new rigid Pep-MOF motor can be recycled by refilling the peptide fuel into the nanopores of the MOF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electric field-assisted formation of organically modified hydroxyapatite (ormoHAP) spheres in carboxymethylated gelatin gels.

    Science.gov (United States)

    Heinemann, C; Heinemann, S; Kruppke, B; Worch, H; Thomas, J; Wiesmann, H P; Hanke, T

    2016-10-15

    A biomimetic strategy was developed in order to prepare organically modified hydroxyapatite (ormoHAP) with spherical shape. The technical approach is based on electric field-assisted migration of calcium ions and phosphate ions into a hydrogel composed of carboxymethylated gelatin. The electric field as well as the carboxymethylation using glucuronic acid (GlcA) significantly accelerates the mineralization process, which makes the process feasible for lab scale production of ormoHAP spheres and probably beyond. A further process was developed for gentle separation of the ormoHAP spheres from the gelatin gel without compromising the morphology of the mineral. The term ormoHAP was chosen since morphological analyses using electron microscopy (SEM, TEM) and element analysis (EDX, FT-IR, XRD) confirmed that carboxymethylated gelatin molecules use to act as organic templates for the formation of nanocrystalline HAP. The hydroxyapatite (HAP) crystals self-organize to form hollow spheres with diameters ranging from 100 to 500nm. The combination of the biocompatible chemical composition and the unique structure of the nanocomposites is considered to be a useful basis for future applications in functionalized degradable biomaterials. A novel bioinspired mineralization process was developed based on electric field-assisted migration of calcium and phosphate ions into biochemically carboxymethylated gelatin acting as organic template. Advantages over conventional hydroxyapatite include particle size distribution and homogeneity as well as achievable mechanical properties of relevant composites. Moreover, specifically developed calcium ion or phosphate ion release during degradation can be useful to adjust the fate of bone cells in order to manipulate remodeling processes. The hollow structure of the spheres can be useful for embedding drugs in the core, encapsulated by the highly mineralized outer shell. In this way, controlled drug release could be achieved, which enables

  11. Organic compound destruction and removal efficiency (DRE) for plasma incinerator off-gases using an electrically heated secondary combustion chamber

    International Nuclear Information System (INIS)

    Whitworth, C.G.; Babko-Malyi, S.; Battleson, D.M.; Olstad, S.J.

    1998-01-01

    The US Department of Energy (DOE) sponsored a series pilot-scale plasma incineration tests of simulated mixed wastes at the MSE Technology Applications, Inc. technology development test facility in Butte, MT. One of the objectives of the test series was to assess the ability of an electrically heated afterburner to destroy organic compounds that may be present in the off-gases resulting from plasma incineration of mixed wastes. The anticipated benefit of an electrically heated afterburner was to decrease total off-gas volume by 50% or more, relative to fossil fuel-fired afterburners. For the present test series, feeds of interest to the DOE Mixed Waste Focus Area (MWFA) were processed in a plasma centrifugal furnace while metering selected organic compounds upstream of the electrically heated afterburner. The plasma furnace was equipped with a transferred-mode torch and was operated under oxidizing conditions. Feeds consisted of various mixtures of soil, plastics, portland cement, silicate fines, diesel fuel, and scrap metals. Benzene, chloroform, and 1,1,1-trichloroethane were selected for injection as simulates of organics likely to be present in DOE mixed wastes, and because of their relative rankings on the US Environmental Protection Agency (EPA) thermal stability index. The organic compounds were injected into the off-gas system at a nominal concentration of 2,000 ppmv. The afterburner outlet gas stream was periodically sampled, and analyzed by gas chromatography/mass spectrometry. For the electrically heated afterburner, at operating temperatures of 1,800--1,980 F (982--1,082 C), organic compound destruction and removal efficiencies (DREs) for benzene, chloroform, and 1,1,1-trichloroethane were found to be > 99.99%

  12. Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs

    Science.gov (United States)

    Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen

    2012-01-01

    Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/ sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain s ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable providing imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles.

  13. 75 FR 14097 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Science.gov (United States)

    2010-03-24

    ... electrical failure of a 138 kV motor operated switch on a 138 kV-13 kV transformer located in the ReliabilityFirst region resulted in the tripping of two transformers, one due to the electrical failure and the... Commission 18 CFR Part 40 [Docket No. RM09-18-000; 130 FERC ] 61,204] Revision to Electric Reliability...

  14. Towards future organization of French electricity sector; Vers la future organisation electrique francaise

    Energy Technology Data Exchange (ETDEWEB)

    Strauss-Kahn, Dominique; Pierret, Christian [Ministere de l' Economie, des Finances et de l' Industrie, Paris (France)

    2000-02-07

    This document displays information and questions concerning the future organization of the French electric sector. The directive on the domestic electricity market was adopted in 1996 by the Council of the Ministers of European Union and Parliament. The member states were due to transpose the directive within their national legislation up to 19 February 1999. The directive establishes principles but provides large reaches of maneuver to the member states which can choose the organizational means according to their own expectations. These task is considered as feasible by the authors. It must reinforce the public service by giving added strength to the security of supply and ensuring everybody's access to a well marketed and high quality electric supply. By introduction of certain well controlled elements of competition this evolution should also contribute to cost lowering, boost of the national competitiveness and support of employment. The document contains seven chapters which expose the following items: 1. The objectives of reorganization; 2. The directive and its reach; 3. Strengthening the public service; 4. Revamping the electric service to promote the growth; 5. Preserving the grids for the general benefit; 6. Defining the place of EDF within the new organizational scheme; 7. Developing an efficient regulation. Finally, an appendix is given containing the Directive 96/92/CE of the European Parliament and Council of 19 October 1996, concerning the common rules for domestic electricity market.

  15. Organizing Consumers for a Decarbonized Electricity System

    DEFF Research Database (Denmark)

    Pallesen, Trine; Jenle, Rasmus Ploug

    2018-01-01

    This paper studies a Danish smart grid experiment, EcoGrid EU, designed to sustain the increase of wind power in the electricity system. EcoGrid EU is designed as a real-time market, through which engineers seek to realize price responsive electricity consumers through the introduction of smart...... meters, variable short-term price signals and training users. Based on observations and interviews with scientist, consumers and technicians, this paper analyses the attempt to produce a new kind of electricity consumer. Drawing on social studies of markets, we argue that the project entails constructing...... a new form of calculative agency. We illustrate the extensive work put into the creation of a new, reconfigured electricity consumer, as well as the challenges associated with the construction of consumers willing and able to act in accordance with the EcoGrid script. On one hand, this study adds...

  16. Survey of new forms of organization and financing constructions in the Dutch solar electricity market

    International Nuclear Information System (INIS)

    Meijer, M.; Laurensse, S.; Simon, T.

    2011-01-01

    In the title project the focus is on organizations and projects in the Dutch market for solar electricity, characterized by: minimal dependence on subsidies (state aid), the removal of high initial investments by users (financing), and structures that can easily be extended or replicated (scale) [nl

  17. Hybrid active layers from a conjugated polymer and inorganic nanoparticles for organic light emitting devices with emission colour tuned by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Andrey N; Alexandrova, Elena L; Shcherbakov, Igor P [Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26, Polytechnicheskaya Str., St Petersburg 194021 (Russian Federation)], E-mail: aleshin@transport.ioffe.ru

    2009-05-21

    We report on the investigation of the electrical and optical properties of hybrid active layers for organic devices consisting of a conjugated polymer MEH-PPV mixed with ZnO and Si nanoparticles. The effect of an electric field on the photoluminescence (PL) from a MEH-PPV : ZnO composite film is studied. We have found that in the absence of an electric field PL emission from the MEH-PPV : ZnO composites have two main maxima in the blue-red regions. Three additional minor PL maxima attributed to the exciplex states were found at {approx}420-480 nm. Application of a voltage bias to planar electrodes significantly suppresses the blue emission. Generation of excited states in the MEH-PPV : ZnO structures implies the presence of several radiative recombination mechanisms with the formation of polymer-nanoparticle complexes including exciplex states and charge transfer between the polymer and nanoparticles that can be controlled by an electric field. This effect provides the possibility to tune by an electric field the emission colour of organic light emitting diodes by combining an efficient emission from both organic/inorganic materials involved.

  18. Hybrid active layers from a conjugated polymer and inorganic nanoparticles for organic light emitting devices with emission colour tuned by electric field

    International Nuclear Information System (INIS)

    Aleshin, Andrey N; Alexandrova, Elena L; Shcherbakov, Igor P

    2009-01-01

    We report on the investigation of the electrical and optical properties of hybrid active layers for organic devices consisting of a conjugated polymer MEH-PPV mixed with ZnO and Si nanoparticles. The effect of an electric field on the photoluminescence (PL) from a MEH-PPV : ZnO composite film is studied. We have found that in the absence of an electric field PL emission from the MEH-PPV : ZnO composites have two main maxima in the blue-red regions. Three additional minor PL maxima attributed to the exciplex states were found at ∼420-480 nm. Application of a voltage bias to planar electrodes significantly suppresses the blue emission. Generation of excited states in the MEH-PPV : ZnO structures implies the presence of several radiative recombination mechanisms with the formation of polymer-nanoparticle complexes including exciplex states and charge transfer between the polymer and nanoparticles that can be controlled by an electric field. This effect provides the possibility to tune by an electric field the emission colour of organic light emitting diodes by combining an efficient emission from both organic/inorganic materials involved.

  19. Control of the Intrinsic Sensor Response to Volatile Organic Compounds with Fringing Electric Fields.

    Science.gov (United States)

    Henning, Alex; Swaminathan, Nandhini; Vaknin, Yonathan; Jurca, Titel; Shimanovich, Klimentiy; Shalev, Gil; Rosenwaks, Yossi

    2018-01-26

    The ability to control surface-analyte interaction allows tailoring chemical sensor sensitivity to specific target molecules. By adjusting the bias of the shallow p-n junctions in the electrostatically formed nanowire (EFN) chemical sensor, a multiple gate transistor with an exposed top dielectric layer allows tuning of the fringing electric field strength (from 0.5 × 10 7 to 2.5 × 10 7 V/m) above the EFN surface. Herein, we report that the magnitude and distribution of this fringing electric field correlate with the intrinsic sensor response to volatile organic compounds. The local variations of the surface electric field influence the analyte-surface interaction affecting the work function of the sensor surface, assessed by Kelvin probe force microscopy on the nanometer scale. We show that the sensitivity to fixed vapor analyte concentrations can be nullified and even reversed by varying the fringing field strength, and demonstrate selectivity between ethanol and n-butylamine at room temperature using a single transistor without any extrinsic chemical modification of the exposed SiO 2 surface. The results imply an electric-field-controlled analyte reaction with a dielectric surface extremely compelling for sensitivity and selectivity enhancement in chemical sensors.

  20. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.

    Science.gov (United States)

    Salazar, Vielka L; Krahe, Rüdiger; Lewis, John E

    2013-07-01

    Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.

  1. Electrical characterization of reduced graphene oxide (rGO) on organic thin film transistor (OTFT)

    Science.gov (United States)

    Musa, Nurhazwani; Halim, Nurul Farhanah Ab.; Ahmad, Mohd Noor; Zakaria, Zulkhairi; Hashim, Uda

    2017-03-01

    A green method and eco-friendly solution were used to chemically reduce graphene oxide (GO) to graphene using green reductant. In this study, graphene oxide (GO) were prepared by using Tours method. Then, reduced graphene oxides (rGO) were prepared by using three typical reduction agents: L-ascorbic acid (L-AA), formamidinesulfinic acid (FAS) and sodium sulfite (Na2SO3). The reduced materials were characterized by Fourier transform infrared spectroscopy (FTIR), Thermo gravimetric analysis (TGA) and X-ray diffraction (XRD). Graphene based organic thin film transistor (G-OTFT) was prepared by a spin coating and thermal evaporation technique. The electrical characterization of G-OTFT was analyzed by using semiconductor parameter analyzer (SPA). The G-OTFT devices show p-type semiconducting behaviour. This article focuses on the synthesis and reduction of graphene oxide using three different reductants in order to maximise its electrical conductivity. The rGO product demonstrated a good electrical conductivity performance with highly sensitivity sensor.

  2. Scaling of silent electrical discharge reactors for hazardous organics destruction

    International Nuclear Information System (INIS)

    Coogan, J.J.; Rosocha, L.A.; Brower, M.J.; Kang, M.; Schmidt, C.A.

    1993-01-01

    Silent electrical discharges are used to produce highly reactive free radicals that destroy hazardous compounds entrained in gaseous effluents at ambient gas temperatures and pressures. We have carried out destruction experiments at Los Alamos on a range of volatile organic compounds (VOCs), including trichloroethylene (TCE), carbon tetrachloride, perchloroethylene (PCE), and chlorofluorocarbons (CFCs). We have measured a ''nine-factor'', the amount of energy required to reduce the VOC concentration by a factor of ten. For practical reactor power densities, the ''nine-factor'' can be used to predict the destruction an removal efficiency (DRE) in terms of gas flow rate and the number of reactor modules. This report proposes a modular, stackable architecture for scaling up the reactor throughput

  3. Thermal acclimation and thyroxine treatment modify the electric organ discharge frequency in an electric fish, Apteronotus leptorhynchus.

    Science.gov (United States)

    Dunlap, K D; Ragazzi, M A

    2015-11-01

    In ectotherms, the rate of many neural processes is determined externally, by the influence of the thermal environment on body temperature, and internally, by hormones secreted from the thyroid gland. Through thermal acclimation, animals can buffer the influence of the thermal environment by adjusting their physiology to stabilize certain processes in the face of environmental temperature change. The electric organ discharge (EOD) used by weak electric fish for electrocommunication and electrolocation is highly temperature sensitive. In some temperate species that naturally experience large seasonal fluctuations in environmental temperature, the thermal sensitivity (Q10) of the EOD shifts after long-term temperature change. We examined thermal acclimation of EOD frequency in a tropical electric fish, Apteronotus leptorhynchus that naturally experiences much less temperature change. We transferred fish between thermal environments (25.3 and 27.8 °C) and measured EOD frequency and its thermal sensitivity (Q10) over 11 d. After 6d, fish exhibited thermal acclimation to both warming and cooling, adjusting the thermal dependence of EOD frequency to partially compensate for the small change (2.5 °C) in water temperature. In addition, we evaluated the thyroid influence on EOD frequency by treating fish with thyroxine or the anti-thyroid compound propylthiouricil (PTU) to stimulate or inhibit thyroid activity, respectively. Thyroxine treatment significantly increased EOD frequency, but PTU had no effect. Neither thyroxine nor PTU treatment influenced the thermal sensitivity (Q10) of EOD frequency during acute temperature change. Thus, the EOD of Apteronotus shows significant thermal acclimation and responds to elevated thyroxine. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.

    Science.gov (United States)

    Salzmann, Ingo; Heimel, Georg; Oehzelt, Martin; Winkler, Stefanie; Koch, Norbert

    2016-03-15

    Today's information society depends on our ability to controllably dope inorganic semiconductors, such as silicon, thereby tuning their electrical properties to application-specific demands. For optoelectronic devices, organic semiconductors, that is, conjugated polymers and molecules, have emerged as superior alternative owing to the ease of tuning their optical gap through chemical variability and their potential for low-cost, large-area processing on flexible substrates. There, the potential of molecular electrical doping for improving the performance of, for example, organic light-emitting devices or organic solar cells has only recently been established. The doping efficiency, however, remains conspicuously low, highlighting the fact that the underlying mechanisms of molecular doping in organic semiconductors are only little understood compared with their inorganic counterparts. Here, we review the broad range of phenomena observed upon molecularly doping organic semiconductors and identify two distinctly different scenarios: the pairwise formation of both organic semiconductor and dopant ions on one hand and the emergence of ground state charge transfer complexes between organic semiconductor and dopant through supramolecular hybridization of their respective frontier molecular orbitals on the other hand. Evidence for the occurrence of these two scenarios is subsequently discussed on the basis of the characteristic and strikingly different signatures of the individual species involved in the respective doping processes in a variety of spectroscopic techniques. The critical importance of a statistical view of doping, rather than a bimolecular picture, is then highlighted by employing numerical simulations, which reveal one of the main differences between inorganic and organic semiconductors to be their respective density of electronic states and the doping induced changes thereof. Engineering the density of states of doped organic semiconductors, the Fermi

  5. Report for the Prime Minister. Making the future French electric power organization a success; Rapport au Premier Ministre. Reussir la future organisation electrique francaise

    Energy Technology Data Exchange (ETDEWEB)

    Dumont, J L

    1999-12-31

    This report from the French Deputy of the Meuse region aims at taking stock of four main questions raised by the future organization of the French electric power industry in the context of the opening of the European power market: the public utility of electric power, the future missions of Electricite de france (EdF) company, the questions in relation with the personnel status in the electric power industry, and the status of the regulating authority. In order to give some elements of answer to these questions, the report has been divided into 2 parts: part 1 presents the power production, transport and distribution in the future electric power regulation (the renewal of nuclear facilities, the building of non-nuclear units, the exploitation of the power distribution network, the accounting dissociation and the transparency of accountancy, the organization of network access, the eligible clients, the direct power lines, the obligations of purchase, the distribution and the role of local authorities). Part 2 presents the four main stakes of the modernization of the French electric power sector: the electric power public utility (public concern and rights, government policy, sustain of innovation, environment protection and energy mastery, the transportation and distribution networks, the role of operators and the financing), the future evolution of EdF (missions and organization, future of the public company), the social modernization of the electric power sector (present day status, adaptation, evolution, pensions), the organization and role of the future regulation authority. The propositions of the author are reported in the appendix. (J.S.)

  6. The Future Organization of Danish Electricity Market for Integrating DERs - a View of FlexPower Project

    DEFF Research Database (Denmark)

    Li, Yang; Zhang, Chunyu; Ding, Yi

    2013-01-01

    in mobilizing small-scale DERs to participate in the existing electricity market, is proposed in this paper to cope with the day-ahead, intra-day and regulating power market. Possible future organizations of different time-scale markets are also introduced and discussed with the precise roles...

  7. Electrical properties of a charge-transfer interlayer modified organic heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuwen; Salzmann, Ingo; Koch, Norbert [Humboldt-Universitaet zu Berlin (Germany). Institut f. Physik; Vollmer, Antje [HZB-BESSY, Berlin (Germany)

    2010-07-01

    We investigated the effect of a thin interlayer (ca. monolayer) of tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) between prototypical hole and electron transport layers (HTL and ETL) on interface energetics and current transport. As HTL we used 4,4{sup '},4''-tris(N,N-diphenyl-amino)triphenylamine (TDATA) and tris (8-hydroxyquinoline)aluminium (Alq{sub 3}) as ETL, which are commonly employed in organic light emitting diodes. The hole injection barrier into TDATA is 0.5 eV, as measured by photoemission spectroscopy. Deposition of an F4-TCNQ interlayer on top of TDATA does not further change the energy level position. However, after applying the F4-TCNQ interlayer the energy levels of Alq3 deposited on top of TDATA are 0.15 eV closer to the Fermi-level than without the interlayer. Diodes fabricated without interlayer had a 0.6 V higher onset-voltage one order of magnitude lower current density than those with F4-TCNQ. These observations can be rationalized by an increased (non-radiative) electron-hole recombination rate at the modified organic heterojunction and a changed internal electric field distribution.

  8. Study of interface layer effect in organic solar cells by electric-field-induced optical second-harmonic generation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Dai; Sumiyoshi, Ryota; Chen, Xiangyu; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp

    2014-03-03

    By using electric-field-induced optical second-harmonic generation (EFISHG) measurement, we studied the effect of the use of bathocuproine (BCP) interface layer. The EFISHG measurements of indium–zinc–oxide (IZO)/C{sub 60}/Al diodes showed that the BCP layer inserted between C{sub 60} and Al formed an electrostatic field |E{sub i}| = 2.5 × 10{sup 4} V/cm in the C{sub 60} layer, pointing in a direction from the Al to the IZO. Accordingly, in the IZO/pentacene/C{sub 60}/BCP/Al organic solar cells (OSCs), holes (electrons) move to the IZO (Al) electrode, enhancing the short-circuit current. The EFISHG measurement is capable of directly probing internal fields in the layers used for OSCs, and is helpful for studying the contribution of the interface layer in OSCs. - Highlights: • Internal field in organic solar cells (OSCs) were directly probed. • Interface layer formed internal electric field, enhancing the OSC performance. • Maxwell–Wagner effect accounts for the internal electric field formation.

  9. Analyzing degradation effects of organic light-emitting diodes via transient optical and electrical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias D., E-mail: Tobias.Schmidt@physik.uni-augsburg.de; Jäger, Lars; Brütting, Wolfgang, E-mail: Wolfgang.Bruetting@physik.uni-augsburg.de [Institute of Physics, University of Augsburg, Augsburg (Germany); Noguchi, Yutaka [Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki (Japan); Center of Frontier Science, Chiba University, Chiba (Japan); Ishii, Hisao [Center of Frontier Science, Chiba University, Chiba (Japan)

    2015-06-07

    Although the long-term stability of organic light-emitting diodes (OLEDs) under electrical operation made significant progress in recent years, the fundamental underlying mechanisms of the efficiency decrease during operation are not well understood. Hence, we present a comprehensive degradation study of an OLED structure comprising the well-known green phosphorescent emitter Ir(ppy){sub 3}. We use transient methods to analyze both electrical and optical changes during an accelerated aging protocol. Combining the results of displacement current measurements with time-resolved investigation of the excited states lifetimes of the emitter allows for a correlation of electrical (e.g., increase of the driving voltage due to trap formation) and optical (e.g., decrease of light-output) changes induced by degradation. Therewith, it is possible to identify two mechanisms resulting in the drop of the luminance: a decrease of the radiative quantum efficiency of the emitting system due to triplet-polaron-quenching at trapped charge carriers and a modified charge carrier injection and transport, as well as trap-assisted non-radiative recombination resulting in a deterioration of the charge carrier balance of the device.

  10. Electrical transport of SiNWs array after covalent attachment of new organic functionalities

    Directory of Open Access Journals (Sweden)

    Marianna Ambrico

    2012-05-01

    Full Text Available Modification of the electrical transport of a random network of silicon nanowires assembled on n‐ silicon support, after silicon nanowires functionalization by chlorination/alkylation procedure , is here described and discussed. We show that the organic functionalities induce charge transfer at single SiNW and produce doping‐like effect that is kept in the random network too. The\tSiNWs\tnetwork\talso\tpresents\ta\tsurface recombination velocity lower than that of bulk silicon. Interestingly, the functionalized silicon nanowires/n‐Si junctions display photo‐yield and open circuit voltages higher than those including oxidized silicon nanowire networks. Electrical properties stability in time of junctions embedding propenyl terminated silicon nanowires network and transport modification after secondary functionalization is also shown. These results suggest a possible route for the integration of functionalized\tSi\tnanowires,\talthough\trandomly distributed, in stable large area photovoltaic or molecule sensitive based devices.

  11. Electric Organ Discharges of Mormyrid Fish as a Possible Cue for Predatory Catfish

    Science.gov (United States)

    Hanika, S.; Kramer, B.

    During reproductive migration the electroreceptive African sharptooth catfish, Clarias gariepinus (Siluriformes), preys mainly on a weakly electric fish, the bulldog Marcusenius macrolepidotus (Mormyridae; Merron 1993). This is puzzling because the electric organ discharges of known Marcusenius species are pulses of a duration (system (optimum sensitivity, 10-30Hz Peters and Bretschneider 1981). On the recent discovery that M. macrolepidotus males emit discharges lasting approximately ten times longer than those of females (Kramer 1997a) we determined behavioral thresholds for discharges of both sexes, using synthetic playbacks of field-recorded discharges. C. gariepinus detected M. macrolepidotus male discharges down to a field gradient of 103μVpeak-peak/cm and up to a distance of 1.5m at natural field conditions. In contrast, thresholds for female discharges were not reached with our setup, and we presume the bulldogs eaten by catfish are predominantly male.

  12. Enhancement of Cd phytoextraction by hyperaccumulator Sedum alfredii using electrical field and organic amendments.

    Science.gov (United States)

    Xiao, Wendan; Li, Dan; Ye, Xuezhu; Xu, Haizhou; Yao, Guihua; Wang, Jingwen; Zhang, Qi; Hu, Jing; Gao, Na

    2017-02-01

    The combined use of organic amendment-assisted phytoextraction and electrokinetic remediation to decontaminate Cd-polluted soil was demonstrated in a laboratory-scale experiment. The plant species selected was the hyperaccumulator Sedum alfredii. Prior to the pot experiment, the loamy soil was treated with 15 g kg -1 of pig manure compost, 10 g kg -1 of humic acid, or 5 mmol kg -1 of EDTA, and untreated soil without application of any amendment was the control. Two conditions were applied to each treatment: no voltage (without an electrical field) and a direct current (DC) electrical field (1 V cm -1 with switching polarity every day). Results indicated that Cd concentrations in S. alfredii were significantly (p phytoextraction by hyperaccumulator S. alfredii.

  13. Electrical conduction of organic ultrathin films evaluated by an independently driven double-tip scanning tunneling microscope.

    Science.gov (United States)

    Takami, K; Tsuruta, S; Miyake, Y; Akai-Kasaya, M; Saito, A; Aono, M; Kuwahara, Y

    2011-11-02

    The electrical transport properties of organic thin films within the micrometer scale have been evaluated by a laboratory-built independently driven double-tip scanning tunneling microscope, operating under ambient conditions. The two tips were used as point contact electrodes, and current in the range from 0.1 pA to 100 nA flowing between the two tips through the material can be detected. We demonstrated two-dimensional contour mapping of the electrical resistance on a poly(3-octylthiophene) thin films as shown below. The obtained contour map clearly provided an image of two-dimensional electrical conductance between two point electrodes on the poly(3-octylthiophene) thin film. The conductivity of the thin film was estimated to be (1-8) × 10(-6) S cm(-1). Future prospects and the desired development of multiprobe STMs are also discussed.

  14. An analytical expression of electric potential and field of organic thin film transistors

    International Nuclear Information System (INIS)

    Pankalla, S; Glesner, M

    2012-01-01

    The two-dimensional electric potential and field of an organic thin-film transistor (OTFT) is derived by conformal mapping using the Schwarz-Christoffel-transformation of the Poisson equation. In this paper we compare this analytical closed-form solution to field simulation results from Silvaco TCAD. Inter alia the potential close to the surface is calculated and we found excellent accordance to the numerical simulations and thus proofed its usability for charge transport calculations. Thus, it is used for calculation of the drain-source-current in the channel.

  15. The effect of high-frequency electrical pulses on organic tissue in root canals.

    Science.gov (United States)

    Lendini, M; Alemanno, E; Migliaretti, G; Berutti, E

    2005-08-01

    To evaluate debris and smear layer scores after application of high-frequency electrical pulses produced by the Endox Endodontic System (Lysis Srl, Nova Milanese, Italy) on intact pulp tissue and organic and inorganic residues after endodontic instrumentation. The study comprised 75 teeth planned for extraction. The teeth were randomly divided into two groups (60 teeth) and a control group (15 teeth): group 1 (30 teeth) was not subjected to instrumentation; group 2 (30 teeth) was instrumented by Hero Shaper instruments and apical stops were prepared to size 40. Each group was subdivided into subgroups A and B (15 teeth); two electrical pulses were applied to subgroups 1A and 2A (one in the apical third and one in the middle third, respectively, at 3 and 6 mm from the root apices); four electrical pulses were applied to subgroups 1B and 2B (two in the apical third, two in the middle third). The control group (15 teeth) was prepared with Hero Shapers and irrigated with 5 mL of EDTA (10%) and 5 mL of 5% NaOCl at 50 degrees C but not subjected to the electrical pulse treatment. Roots were split longitudinally and canal walls were examined at 80x, 200x, 750x, 1500x and 15,000x magnifications, using a scanning electron microscope. Smear layer and debris scores were recorded at the 3 and 6 mm levels using a five-step scoring scale and a 200-microm grid. Means were tested for significance using the one-way anova model and the Bonferroni post-hoc test. The differences between groups were considered to be statistically significant when P < 0.05. The mean value for debris scores for the three groups varied from 1.80 (+/-0.77) to 4.50 (+/-0.68). The smear layer scores for group 2 and the control specimens varied from 2.00 (+/-0.91) to 2.33 (+/-0.99). A significant difference was found in mean debris scores at the 3 and 6 mm levels between the three groups (P < 0.001). The Bonferroni post-hoc test confirmed that the difference was due to group 1. In the two subgroups treated

  16. Electricity market players subgroup report

    International Nuclear Information System (INIS)

    Borison, A.

    1990-03-01

    The purpose of this study is to examine competition in the electric power industry from an ''industrial organization'' point of view. The remainder of this report is organized as follows. Chapter 2 describes the ''industrial organization'' approach used to analyze the electric power market. Industrial organization emphasizes specific market performance criteria, and the impact of market structure and behavior on performance. Chapter 3 identifies the participants in the electric power market, grouped primarily into regulated producers, unregulated producers, and consumers. Chapter 4 describes the varieties of electric power competition, organized along two dimensions: producer competition and consumer competition. Chapters 5 and 6 identify the issues raised by competition along the two dimensions. These issues include efficiency, equity, quality, and stability. Chapters 7 through 9 describe market structure, behavior and performance in three competitive scenarios: minimum competition, maximum competition, and moderate competition. Market structure, behavior and performance are discussed, and the issues raised in Chapters 5 and 6 are discussed in detail. Chapter 10 provides conclusions about ''winners and losers'' and identifies issues that require further study

  17. Surface engineering of ferroelectric polymer for the enhanced electrical performance of organic transistor memory

    Science.gov (United States)

    Kim, Do-Kyung; Lee, Gyu-Jeong; Lee, Jae-Hyun; Kim, Min-Hoi; Bae, Jin-Hyuk

    2018-05-01

    We suggest a viable surface control method to improve the electrical properties of organic nonvolatile memory transistors. For viable surface control, the surface of the ferroelectric insulator in the memory field-effect transistors was modified using a smooth-contact-curing process. For the modification of the ferroelectric polymer, during the curing of the ferroelectric insulators, the smooth surface of a soft elastomer contacts intimately with the ferroelectric surface. This smooth-contact-curing process reduced the surface roughness of the ferroelectric insulator without degrading its ferroelectric properties. The reduced roughness of the ferroelectric insulator increases the mobility of the organic field-effect transistor by approximately eight times, which results in a high memory on–off ratio and a low-voltage reading operation.

  18. Pulsed electric field processing of different fruit juices: impact of pH and temperature on inactivation of spoilage and pathogenic micro-organisms.

    Science.gov (United States)

    Timmermans, R A H; Nierop Groot, M N; Nederhoff, A L; van Boekel, M A J S; Matser, A M; Mastwijk, H C

    2014-03-03

    Pulsed electrical field (PEF) technology can be used for the inactivation of micro-organisms and therefore for preservation of food products. It is a mild technology compared to thermal pasteurization because a lower temperature is used during processing, leading to a better retention of the quality. In this study, pathogenic and spoilage micro-organisms relevant in refrigerated fruit juices were studied to determine the impact of process parameters and juice composition on the effectiveness of the PEF process to inactivate the micro-organisms. Experiments were performed using a continuous-flow PEF system at an electrical field strength of 20 kV/cm with variable frequencies to evaluate the inactivation of Salmonella Panama, Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae in apple, orange and watermelon juices. Kinetic data showed that under the same conditions, S. cerevisiae was the most sensitive micro-organism, followed by S. Panama and E. coli, which displayed comparable inactivation kinetics. L. monocytogenes was the most resistant micro-organism towards the treatment conditions tested. A synergistic effect between temperature and electric pulses was observed at inlet temperatures above 35 °C, hence less energy for inactivation was required at higher temperatures. Different juice matrices resulted in a different degree of inactivation, predominantly determined by pH. The survival curves were nonlinear and could satisfactorily be modeled with the Weibull model. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Charge trapping at organic/self-assembly molecule interfaces studied by electrical switching behaviour in a crosspoint structure

    International Nuclear Information System (INIS)

    Li Yun; Pan Lijia; Pu Lin; Shi Yi; Liu Chuan; Tsukagoshi, Kazuhito

    2012-01-01

    Charge trapping at organic/self-assembly molecule (SAM) interfaces is studied by the electrical switching behaviour in a crosspoint structure, where interfacial charge trapping tunes the potential barrier of the SAM layer. The sample with rubrene exhibits the write-once read-many-times memory effect, which is due to the interfacial charges trapped at deep states. On the other hand, the sample with 2-amino-4,5-dicyanoimidazole presents recyclable conduction transition, which results from the trapped charges distributed at shallow states. Moreover, the percentage of the charges trapped at shallow states can be estimated from electrical transition levels. (paper)

  20. Charge trapping at organic/self-assembly molecule interfaces studied by electrical switching behaviour in a crosspoint structure

    Science.gov (United States)

    Li, Yun; Liu, Chuan; Pan, Lijia; Pu, Lin; Tsukagoshi, Kazuhito; Shi, Yi

    2012-01-01

    Charge trapping at organic/self-assembly molecule (SAM) interfaces is studied by the electrical switching behaviour in a crosspoint structure, where interfacial charge trapping tunes the potential barrier of the SAM layer. The sample with rubrene exhibits the write-once read-many-times memory effect, which is due to the interfacial charges trapped at deep states. On the other hand, the sample with 2-amino-4,5-dicyanoimidazole presents recyclable conduction transition, which results from the trapped charges distributed at shallow states. Moreover, the percentage of the charges trapped at shallow states can be estimated from electrical transition levels.

  1. Potential reduction of carbon dioxide emissions from the use of electric energy storage on a power generation unit/organic Rankine system

    International Nuclear Information System (INIS)

    Mago, Pedro J.; Luck, Rogelio

    2017-01-01

    Highlights: • A power generation organic Rankine cycle with electric energy storage is evaluated. • The potential carbon dioxide emissions reduction of the system is evaluated. • The system performance is evaluated for a building in different climate zones. • The system emissions and cost are compared with those of conventional systems. • Use of carbon emissions cap and trade programs on the system is evaluated. - Abstract: This paper evaluates the potential carbon dioxide emissions reduction from the implementation of electric energy storage to a combined power generation unit and an organic Rankine cycle relative to a conventional system that uses utility gas for heating and utility electricity for electricity needs. Results indicate that carbon dioxide emission reductions from the operation of the proposed system are directly correlated to the ratio of the carbon dioxide emission conversion factor for electricity to that of the fuel. The location where the system is installed also has a strong influence on the potential of the proposed system to save carbon dioxide emissions. Finally, it is shown that by using carbon emissions cap and trade programs, it is possible to establish a frame of reference to compare/exchange operational cost gains with carbon dioxide emission reductions/gains.

  2. Electric characteristics of thin films and gas sensors with varying conductivity: from purely organic materials to nano-composite architectures

    International Nuclear Information System (INIS)

    Pradeau, Jean Paul

    1998-01-01

    This research thesis reports a work which aimed at producing active molecular devices which could be used for gas detection, and which notably display better electric characteristics than existing ones. The author first outlines that these devices present a high sensitivity, and then discusses why they display these reliability problems in terms of electric characteristics. Thus, he studied the influence of the electrode/material interface, and the influence of the material thickness on measured electric characteristics. He highlighted the non negligible influence of a control of physical-chemical properties of the electrode/material interface on the measurement of electric characteristics. Then, in order to solve these problems, the author proposes and reports the study of a mixing, within the same material, of organic molecules (for detection purposes) and metallic particles (for transduction purposes) [fr

  3. 18 CFR 39.3 - Electric Reliability Organization certification.

    Science.gov (United States)

    2010-04-01

    ... operators of the Bulk-Power System, and other interested parties for improvement of the Electric Reliability... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Electric Reliability..., Reliability Standards that provide for an adequate level of reliability of the Bulk-Power System, and (2) Has...

  4. The electric field at hole injecting metal/organic interfaces as a cause for manifestation of exponential bias-dependent mobility

    International Nuclear Information System (INIS)

    Cvikl, B.

    2014-01-01

    It is shown that the well-known empirical exponential bias-dependent mobility is an approximation function of the relevant term emerging in the Mott–Gurney space charge limited current model when the constant non-zero electric field at the hole injecting metal/organic interface E int is taken into account. The term in question is the product of the bias-independent (but organic layer thickness-dependent) effective mobility coefficient and the algebraic function, f(λ), of the argument λ = E int /E a , where E a is the externally applied electric field. On account of the non-zero interfacial field, E int , the singularity of the spatial dependence of the hole current density, p(x), is removed. The resulting hole drift current density, j, is tested as a function of E a against a number of published room temperature hole current j–E a data sets, all characterized by good ohmic contact at the hole injecting interface. It is shown that the calculated current density provides a very good fit to the measurements within a high range of E a intervals. Low values of E a , are investigated analytically under the assumption of hole drift-diffusion. The extremely large internal electric fields at the anode/organic junction indicate drift-diffusion to be an improbable process for the structures investigated. However, a description of hole transport throughout the whole interval of experimental E a values may be obtained at low values of E a by an extended Mark–Helfrich drift model with traps occupying the exponentially distributed energy levels, followed by the extended Mott–Gurney model description within the remaining part of the E a interval. In both models the same (bias-independent) effective mobility coefficient is incorporated into the calculations. The results present evidence that within the framework of the extended Mott–Gurney expression the properly derived term should replace the empirical exponential bias-dependent mobility, making it redundant in the

  5. Enhancement of the electrical characteristics of MOS capacitors by reducing the organic content of H2O-diluted Spin-On-Glass based oxides

    International Nuclear Information System (INIS)

    Molina, Joel; Munoz, Ana; Torres, Alfonso; Landa, Mauro; Alarcon, Pablo; Escobar, Manuel

    2011-01-01

    In this work, the physical, chemical and electrical properties of Metal-Oxide-Semiconductor (MOS) capacitors with Spin-On-Glass (SOG)-based thin films as gate dielectric have been investigated. Experiments of SOG diluted with two different solvents (2-propanol and deionized water) were done in order to reduce the viscosity of the SOG solution so that thinner films (down to ∼20 nm) could be obtained and their general characteristics compared. Thin films of SOG were deposited on silicon by the sol-gel technique and they were thermally annealed using conventional oxidation furnace and Rapid Thermal Processing (RTP) systems within N 2 ambient after deposition. SOG dilution using non-organic solvents like deionized water and further annealing (at relatively high temperatures ≥450 deg. C) are important processes intended to reduce the organic content of the films. Fourier-Transform Infrared (FTIR) Spectroscopy results have shown that water-diluted SOG films have a significant reduction in their organic content after increasing annealing temperature and/or dilution percentage when compared to those of undiluted SOG films. Both current-voltage (I-V) and capacitance-voltage (C-V) measurements show better electrical characteristics for SOG-films diluted in deionized water compared to those diluted in 2-propanol (which is an organic solvent). The electrical characteristics of H 2 O-diluted SOG thin films are very similar to those obtained from high quality thermal oxides so that their application as gate dielectrics in MOS devices is promising. Finally, it has been demonstrated that by reducing the organic content of SOG-based thin films, it is possible to obtain MOS devices with better electrical properties.

  6. 78 FR 803 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Science.gov (United States)

    2013-01-04

    ... Bulk 74. Electric System 1. Inclusion I1 (Transformers) 75. Commission Determination 80. 2. Inclusion... configurations are included in the bulk electric system. Inclusions: I1--Transformers with the primary terminal... bulk electric system. 15. NERC explained that inclusion I1 includes transformers with the primary...

  7. AutoCAD electrical 2013 for electrical control designers

    CERN Document Server

    Tickoo, Sham; CADCIM Technologies

    2013-01-01

    The AutoCAD Electrical 2013 for Electrical Control Designers textbook has been written to assist the engineering students and the practicing designers learn the application of various AutoCAD Electrical tools and options for creating electrical control designs. After reading this textbook, the users will be able to create professional electrical-control drawings easily and effectively. Moreover, the users will be able to automate various control engineering tasks such as building circuits, numbering wires, creating bills of materials, and many more. The textbook takes the users across a wide spectrum of electrical control drawings through progressive examples and numerous illustrations and exercises, thereby making it an ideal guide for both the novice and the advanced users. Salient Features of the Textbook Consists of 14 chapters that are organized in a pedagogical sequence covering various tools and features of AutoCAD Electrical such as schematic drawings, parametric and non-parametric PLC modules, Circu...

  8. Effect of ultraviolet illumination and ambient gases on the photoluminescence and electrical properties of nanoporous silicon layer for organic vapor sensor.

    Science.gov (United States)

    Atiwongsangthong, Narin

    2012-08-01

    The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.

  9. Role of band states and trap states in the electrical properties of organic semiconductors: Hopping versus mobility edge model

    KAUST Repository

    Mehraeen, Shafigh; Coropceanu, Veaceslav; Bré das, Jean-Luc

    2013-01-01

    We compare the merits of a hopping model and a mobility edge model in the description of the effect of charge-carrier concentration on the electrical conductivity, carrier mobility, and Fermi energy of organic semiconductors. We consider the case

  10. Electric and ferroelectric properties of PZT/BLT multilayer films prepared by photochemical metal-organic deposition

    Science.gov (United States)

    Park, Hyeong-Ho; Lee, Hong-Sub; Park, Hyung-Ho; Hill, Ross H.; Hwang, Yun Taek

    2009-01-01

    The electric and ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-substituted bismuth titanate (BLT) multilayer films prepared using photosensitive precursors were characterized. The electric and ferroelectric properties were investigated by studying the effect of the stacking order of four ferroelectric layers of PZT or BLT in 4-PZT, PZT/2-BLT/PZT, BLT/2-PZT/BLT, and 4-BLT multilayer films. The remnant polarization values of the 4-BLT and BLT/2-PZT/BLT multilayer films were 12 and 17 μC/cm 2, respectively. Improved ferroelectric properties of the PZT/BLT multilayer films were obtained by using a PZT intermediate layer. The films which contained a BLT layer on the Pt substrate had improved leakage currents of approximately two orders of magnitude and enhanced fatigue resistances compared to the films with a PZT layer on the Pt substrate. These improvements are due to the reduced number of defects and space charges near the Pt electrodes. The PZT/BLT multilayer films prepared by photochemical metal-organic deposition (PMOD) possessed enhanced electric and ferroelectric properties, and allow direct patterning to fabricate micro-patterned systems without dry etching.

  11. Electric and ferroelectric properties of PZT/BLT multilayer films prepared by photochemical metal-organic deposition

    International Nuclear Information System (INIS)

    Park, Hyeong-Ho; Lee, Hong-Sub; Park, Hyung-Ho; Hill, Ross H.; Hwang, Yun Taek

    2009-01-01

    The electric and ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-substituted bismuth titanate (BLT) multilayer films prepared using photosensitive precursors were characterized. The electric and ferroelectric properties were investigated by studying the effect of the stacking order of four ferroelectric layers of PZT or BLT in 4-PZT, PZT/2-BLT/PZT, BLT/2-PZT/BLT, and 4-BLT multilayer films. The remnant polarization values of the 4-BLT and BLT/2-PZT/BLT multilayer films were 12 and 17 μC/cm 2 , respectively. Improved ferroelectric properties of the PZT/BLT multilayer films were obtained by using a PZT intermediate layer. The films which contained a BLT layer on the Pt substrate had improved leakage currents of approximately two orders of magnitude and enhanced fatigue resistances compared to the films with a PZT layer on the Pt substrate. These improvements are due to the reduced number of defects and space charges near the Pt electrodes. The PZT/BLT multilayer films prepared by photochemical metal-organic deposition (PMOD) possessed enhanced electric and ferroelectric properties, and allow direct patterning to fabricate micro-patterned systems without dry etching.

  12. Effects of Interfacial Charge Depletion in Organic Thin-Film Transistors with Polymeric Dielectrics on Electrical Stability

    Directory of Open Access Journals (Sweden)

    Jaehoon Park

    2010-06-01

    Full Text Available We investigated the electrical stabilities of two types of pentacene-based organic thin-film transistors (OTFTs with two different polymeric dielectrics: polystyrene (PS and poly(4-vinyl phenol (PVP, in terms of the interfacial charge depletion. Under a short-term bias stress condition, the OTFT with the PVP layer showed a substantial increase in the drain current and a positive shift of the threshold voltage, while the PS layer case exhibited no change. Furthermore, a significant increase in the off-state current was observed in the OTFT with the PVP layer which has a hydroxyl group. In the presence of the interfacial hydroxyl group in PVP, the holes are not fully depleted during repetitive operation of the OTFT with the PVP layer and a large positive gate voltage in the off-state regime is needed to effectively refresh the electrical characteristics. It is suggested that the depletion-limited holes at the interface, i.e., interfacial charge depletion, between the PVP layer and the pentacene layer play a critical role on the electrical stability during operation of the OTFT.

  13. Electric organ discharge diversity in the genus Gymnotus: anatomo-functional groups and electrogenic mechanisms.

    Science.gov (United States)

    Rodríguez-Cattáneo, A; Aguilera, P; Cilleruelo, E; Crampton, W G R; Caputi, A A

    2013-04-15

    Previous studies describe six factors accounting for interspecific diversity of electric organ discharge (EOD) waveforms in Gymnotus. At the cellular level, three factors determine the locally generated waveforms: (1) electrocyte geometry and channel repertoire; (2) the localization of synaptic contacts on electrocyte surfaces; and (3) electric activity of electromotor axons preceding the discharge of electrocytes. At the organismic level, three factors determine the integration of the EOD as a behavioral unit: (4) the distribution of different types of electrocytes and specialized passive tissue forming the electric organ (EO); (5) the neural mechanisms of electrocyte discharge coordination; and (6) post-effector mechanisms. Here, we reconfirm the importance of the first five of these factors based on comparative studies of a wider diversity of Gymnotus than previously investigated. Additionally, we report a hitherto unseen aspect of EOD diversity in Gymnotus. The central region of the EO (which has the largest weight on the conspecific-received field) usually exhibits a negative-positive-negative pattern where the delay between the early negative and positive peaks (determined by neural coordination mechanisms) matches the delay between the positive and late negative peaks (determined by electrocyte responsiveness). Because delays between peaks typically determine the peak power frequency, this matching implies a co-evolution of neural and myogenic coordination mechanisms in determining the spectral specificity of the intraspecific communication channel. Finally, we define four functional species groups based on EO/EOD structure. The first three exhibit a heterogeneous EO in which doubly innervated electrocytes are responsible for a main triphasic complex. Group I species exhibit a characteristic cephalic extension of the EO. Group II species exhibit an early positive component of putative neural origin, and strong EO auto-excitability. Group III species exhibit

  14. Electric Potential and Electric Field Imaging with Applications

    Science.gov (United States)

    Generazio, Ed

    2016-01-01

    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  15. Organic magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  16. 7 CFR 1700.28 - Electric Program.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Electric Program. 1700.28 Section 1700.28 Agriculture... GENERAL INFORMATION Agency Organization and Functions § 1700.28 Electric Program. RUS, through the Electric Program, makes loans and loan guarantees for rural electrification and the furnishing of electric...

  17. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d' Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  18. Mastering one's electricity purchases

    International Nuclear Information System (INIS)

    Belon, D.

    2005-01-01

    Manager of about 50000 public lighting areas, the inter-cities energy syndicate of Loire (SIEL) has started in 2003 a procedure in order to chose his electric power supplier conformably with the new rules of public electricity purchase and with the new organization of the electricity market. This article presents this approach and its experience feedback, concretized by the European call for bids launched by SIEL for the annual purchase of about 186 GWh of electric power. (J.S.)

  19. Electricity from biogas

    International Nuclear Information System (INIS)

    Augenstein, D.; Benemann, J.; Hughes, E.

    1994-01-01

    Biogas is a medium-Btu methane and carbon dioxide mix produced by bacterial decomposition of organic matter. Its sources include landfills, waste water sludges, and animal wastes. It can fuel energy applications, of which electricity generation is a frequently-preferred option. The greatest current U.S. biogas recovery and energy use is at landfills, where biogas at about 80 landfill sites fuels a total of approximately 300 MWe. Wastewater treatment plants and confined animal waste management systems support additional electric power production. Generation of electricity from biogas can present difficulties due to the generally small scale of the generating facility, variable energy content of the gas, fluctuating availability, contaminant problems, and often-demanding control needs. However, such difficulties are being successfully addressed and economics for electricity generation are often favorable as biogas can be essentially open-quotes freeclose quotes fuel. Biogas recovery and use has the additional advantage of mitigating a potent greenhouse gas. Biogas from U.S. landfills alone could fuel about 1% of U.S. electrical generation while giving climate change benefit equivalent to reducing CO 2 emissions in the electricity sector by more than 10%. Growth in landfill gas use will be facilitated by recent regulations, advances in equipment, and improved management techniques such as open-quotes controlled landfillingclose quotes. The potential for biogas recovery and electricity production from sewage sludges, animal wastes and other organic resources such as agricultural residues is uncertain but probably exceeds the estimate for landfills

  20. 77 FR 9225 - Allegheny Electric Cooperative, Inc., et al. v. PJM Interconnection, L.L.C.; Organization of PJM...

    Science.gov (United States)

    2012-02-16

    ...-58-010] Allegheny Electric Cooperative, Inc., et al. v. PJM Interconnection, L.L.C.; Organization of PJM States, Inc., et al. v. PJM Interconnection, L.L.C.; Notice of Filing Take notice that on February... by section 18.17.4 of the Amended and Restated Operating Agreement of PJM Interconnection, L.L.C. and...

  1. Individual variation and hormonal modulation of a sodium channel beta subunit in the electric organ correlate with variation in a social signal.

    Science.gov (United States)

    Liu, He; Wu, Ming-Ming; Zakon, Harold H

    2007-09-01

    The sodium channel beta1 subunit affects sodium channel gating and surface density, but little is known about the factors that regulate beta1 expression or its participation in the fine control of cellular excitability. In this study we examined whether graded expression of the beta1 subunit contributes to the gradient in sodium current inactivation, which is tightly controlled and directly related to a social behavior, the electric organ discharge (EOD), in a weakly electric fish Sternopygus macrurus. We found the mRNA and protein levels of beta1 in the electric organ both correlate with EOD frequency. We identified a novel mRNA splice form of this gene and found the splicing preference for this novel splice form also correlates with EOD frequency. Androgen implants lowered EOD frequency and decreased the beta1 mRNA level but did not affect splicing. Coexpression of each splice form in Xenopus oocytes with either the human muscle sodium channel gene, hNav1.4, or a Sternopygus ortholog, smNav1.4b, sped the rate of inactivation of the sodium current and shifted the steady-state inactivation toward less negative membrane potentials. The translational product of the novel mRNA splice form lacks a previously identified important tyrosine residue but still functions normally. The properties of the fish alpha and coexpressed beta1 subunits in the oocyte replicate those of the electric organ's endogenous sodium current. These data highlight the role of ion channel beta subunits in regulating cellular excitability.

  2. How Engineers Make Markets Organizing Electricity System Decarbonization

    DEFF Research Database (Denmark)

    Jenle, Rasmus Ploug; Pallesen, Trine

    2017-01-01

    construction process undertaken by scientists at the Technical University of Denmark, this article shows how engineers have approached the task by designing markets as technical control systems. It is demonstrated that EcoGrid has been designed by modeling a retail electricity market on three different...... conceptions of control systems as found in the discipline of control systems engineering. By tracing the origins of EcoGrid, this article documents the governing of electricity consumers through what we here call a synthetic market, i.e. a market artifact devised to attain goals. These findings about...

  3. Electricity supply in India

    International Nuclear Information System (INIS)

    Abbott, H.J.

    1993-09-01

    This briefing deals with the electricity supply industry in India in two parts. In the first, the structure and organization of the industry is described under sections dealing with national government involvement, energy policy, state electricity boards, regional electricity boards, state corporations, the private sector and private investment in the power sector including foreign investment. Secondly, the power supply system is described covering generation, plant load factor, non-utility generation, nuclear power, transmission and distribution, system losses and electricity consumption. (8 tables) (UK)

  4. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  5. Financial statistics of major US investor-owned electric utilities 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-28

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues. The Financial Statistics of Major US Investor-Owned Electric Utilities publication provides information about the financial results of operations of investor-owned electric utilities for use by government, industry, electric utilities, financial organizations and educational institutions in energy planning. In the private sector, the readers of this publication are researchers and analysts associated with the financial markets, the policymaking and decisionmaking members of electric utility companies, and economic development organizations. Other organizations that may be interested in the data presented in this publication include manufacturers of electric power equipment and marketing organizations. In the public sector, the readers of this publication include analysts, researchers, statisticians, and other professionals engaged in regulatory, policy, and program areas. These individuals are generally associated with the Congress, other legislative bodies, State public utility commissions, universities, and national strategic planning organizations.

  6. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism

    Science.gov (United States)

    Lunkenheimer, Peter; Müller, Jens; Krohns, Stephan; Schrettle, Florian; Loidl, Alois; Hartmann, Benedikt; Rommel, Robert; de Souza, Mariano; Hotta, Chisa; Schlueter, John A.; Lang, Michael

    2012-09-01

    Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.

  7. Technical Analysis of Organic Rankine Cycle System Using Low-Temperature Source to Generate Electricity in Ship

    Directory of Open Access Journals (Sweden)

    Akram Faisal

    2017-01-01

    Full Text Available Nowadays, the shipping sector has growth rapidly as followed by the increasing of world population and the demands for public transportation via sea. This issue entails the large attention on emission, energy efficiency and fuel consumption on the ship. Waste Heat Recovery (WHR is one of the solution to overcome the mentioned issue and one of the WHR method is by installing Organic Rankine Cycle (ORC system in ship. ORC demonstrate to recover and exploit the low temperature waste heat rejected by the ship power generation plant. The main source of heat to be utilized is obtained from container ship (7900 kW BHP, DWT 10969 mt ship jacket water cooling system and use R-134a as a refrigerant. The main equipment consists of evaporator, condenser, pump and steam turbine to generate the electricity. The main objective is to quantifying the estimation of electrical power which can be generated at typical loads of the main engine. As the final result of analysis, the ORC system is able to generate the electricity power ranged from 77,5% - 100% of main engine load producing power averagely 57,69 kW.

  8. Revealing dynamically-organized receptor ion channel clusters in live cells by a correlated electric recording and super-resolution single-molecule imaging approach.

    Science.gov (United States)

    Yadav, Rajeev; Lu, H Peter

    2018-03-28

    The N-methyl-d-aspartate (NMDA) receptor ion-channel is activated by the binding of ligands, along with the application of action potential, important for synaptic transmission and memory functions. Despite substantial knowledge of the structure and function, the gating mechanism of the NMDA receptor ion channel for electric on-off signals is still a topic of debate. We investigate the NMDA receptor partition distribution and the associated channel's open-close electric signal trajectories using a combined approach of correlating single-molecule fluorescence photo-bleaching, single-molecule super-resolution imaging, and single-channel electric patch-clamp recording. Identifying the compositions of NMDA receptors, their spatial organization and distributions over live cell membranes, we observe that NMDA receptors are organized inhomogeneously: nearly half of the receptor proteins are individually dispersed; whereas others exist in heterogeneous clusters of around 50 nm in size as well as co-localized within the diffraction limited imaging area. We demonstrate that inhomogeneous interactions and partitions of the NMDA receptors can be a cause of the heterogeneous gating mechanism of NMDA receptors in living cells. Furthermore, comparing the imaging results with the ion-channel electric current recording, we propose that the clustered NMDA receptors may be responsible for the variation in the current amplitude observed in the on-off two-state ion-channel electric signal trajectories. Our findings shed new light on the fundamental structure-function mechanism of NMDA receptors and present a conceptual advancement of the ion-channel mechanism in living cells.

  9. Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell.

    Science.gov (United States)

    Li, Hui; Tian, Yu; Zuo, Wei; Zhang, Jun; Pan, Xiaoyue; Li, Lipin; Su, Xinying

    2016-04-01

    The microbial fuel cell (MFC) was evaluated as an alternative way to recover electricity from canteen based food waste. Characteristics of the organics in food waste before and after the MFC treatment were analyzed to investigate how the organic matters were biodegraded and transformed during the MFC treatment. A maximum power density of 5.6W/m(3) and an average output voltage of 0.51V were obtained. During the MFC operation, the hydrophilic and acidic fractions were more readily degraded, compared to the neutral fractions. Additionally, aromatic compounds in the hydrophilic fraction were more preferentially removed than non-aromatic compounds. The MFC could easily remove the tryptophan protein-like substances in all fractions and aromatic proteins in hydrophilic and hydrophobic neutral fractions. Additionally, the hydrophobic amide-1 proteins and aliphatic components were readily hydrolyzed and biodegraded in the MFC. These findings may facilitate the pretreatment and posttreatment choices for MFC system fed with food waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Genome-Based Models to Optimize In Situ Bioremediation of Uranium and Harvesting Electrical Energy from Waste Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R

    2012-12-28

    The goal of this research was to provide computational tools to predictively model the behavior of two microbial communities of direct relevance to Department of Energy interests: 1) the microbial community responsible for in situ bioremediation of uranium in contaminated subsurface environments; and 2) the microbial community capable of harvesting electricity from waste organic matter and renewable biomass. During this project the concept of microbial electrosynthesis, a novel form of artificial photosynthesis for the direct production of fuels and other organic commodities from carbon dioxide and water was also developed and research was expanded into this area as well.

  11. Maximizing the short circuit current of organic solar cells by partial decoupling of electrical and optical properties

    Science.gov (United States)

    Qarony, Wayesh; Hossain, Mohammad I.; Jovanov, Vladislav; Knipp, Dietmar; Tsang, Yuen Hong

    2018-03-01

    The partial decoupling of electronic and optical properties of organic solar cells allows for realizing solar cells with increased short circuit current and energy conversion efficiency. The proposed device consists of an organic solar cell conformally prepared on the surface of an array of single and double textured pyramids. The device geometry allows for increasing the optical thickness of the organic solar cell, while the electrical thickness is equal to the nominal thickness of the solar cell. By increasing the optical thickness of the solar cell, the short circuit current is distinctly increased. The quantum efficiency and short circuit current are determined using finite-difference time-domain simulations of the 3D solar cell structure. The influence of different solar cell designs on the quantum efficiency and short circuit current is discussed and optimal device dimensions are proposed.

  12. Peculiarities of electricity acquisition management

    Directory of Open Access Journals (Sweden)

    G. S. Armashova-Telnik

    2018-01-01

    Full Text Available In the current conditions for the implementation of economic guidelines for the development of the electric power industry, minimizing production costs is one of the key areas for enhancing the competitive advantages of energy enterprises. When determining a specific model for the purchase of electricity in the retail market, it is necessary to take into account the conditions of the electricity consumption regime, the marketing surcharges of the generating suppliers, the activity of the regional energy sales organizations, the price range and the scale of retail generation, the real cost of the product's withdrawal to the wholesale market. A number of provisions regarding the specifics of electricity purchase management, regulated by the Government of the Russian Federation, provide optimization of energy management processes in terms of reducing production costs, taking into account the factors of the constituent elements of the price for electricity and services of infrastructure organizations, which increases the economic efficiency of economic activities of the enterprise

  13. Bill for a new organization of the electricity market. Final Text; Projet de Loi portant nouvelle organisation du marche de l'electricite. Texte definitif

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This text contains the new arrangements introduced to organize the concurrence and the competitiveness in the distribution of the electricity produced in France notably that produced by EDF in the French nuclear power plants. It defines the legal framework for agreements between EDF and electricity providers, i.e. prices and quantities of electricity, purchase obligations. It also defines obligations of the providers with respect to users. It addresses the relationship between local communities and these providers, tariffs, works realized on the network. It also addresses the purchase price of hydroelectricity and of electricity produced from biomass, gas tariff

  14. Alaska Village Electric Load Calculator

    Energy Technology Data Exchange (ETDEWEB)

    Devine, M.; Baring-Gould, E. I.

    2004-10-01

    As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

  15. Environmental impacts of electricity self-consumption from organic photovoltaic battery systems at industrial facilities in Denmark

    DEFF Research Database (Denmark)

    Chatzisideris, Marios Dimos; Laurent, Alexis; Hauschild, Michael Zwicky

    2017-01-01

    investigate the life cycle environmental impacts of electricity self-consumption from an OPV system coupled with a sodium/nickel chloride battery at an iron/metal industry in Denmark. Results show that an OPV system without storage could decrease the carbon footprint of the industry; installation......Organic photovoltaics (OPV) show promise of greatly improving the environmental and economic performance of PV compared to conventional silicon. Life cycle assessment studies have assessed the environmental impacts of OPV, but not under a self-consumption scheme for industrial facilities. We...

  16. Report of the Commission on electricity market organization

    International Nuclear Information System (INIS)

    2009-01-01

    After having stated the three objectives of a public policy for a sustainable development of the electricity market, this report shows that the current situation is neither economically satisfying on a short term basis, nor sustainable on a long term basis, notably because market prices in France do not reflect the competitive advantages of the production stock, because the multiplication of regulated prices does not ensure a global economic coherence, and because new incomers do not have any development margin. The authors then state that the regulation must evolve from a general and permanent one to a more targeted and dynamic one while taking the necessity of providing electricity to small consumers, the European law, and competitiveness into account. Two solutions are proposed for such an evolution

  17. Bulk-Like Electrical Properties Induced by Contact-Limited Charge Transport in Organic Diodes: Revised Space Charge Limited Current

    KAUST Repository

    Xu, Guangwei

    2018-02-22

    Charge transport governs the operation and performance of organic diodes. Illuminating the charge-transfer/transport processes across the interfaces and the bulk organic semiconductors is at the focus of intensive investigations. Traditionally, the charge transport properties of organic diodes are usually characterized by probing the current–voltage (I–V) curves of the devices. However, to unveil the landscape of the underlying potential/charge distribution, which essentially determines the I–V characteristics, still represents a major challenge. Here, the electrical potential distribution in planar organic diodes is investigated by using the scanning Kelvin probe force microscopy technique, a method that can clearly separate the contact and bulk regimes of charge transport. Interestingly, by applying to devices based on novel, high mobility organic materials, the space-charge-limited-current-like I–V curves, which are previously believed to be a result of the bulk transport, are surprisingly but unambiguously demonstrated to be caused by contact-limited conduction. A model accounting is developed for the transport properties of both the two metal/organic interfaces and the bulk. The results indicate that pure interface-dominated transport can indeed give rise to I–V curves similar to those caused by bulk transport. These findings provide a new insight into the charge injection and transport processes in organic diodes.

  18. Temperature dependent electrical characteristics of an organic-inorganic heterojunction obtained from a novel organometal Mn complex

    International Nuclear Information System (INIS)

    Ocak, Y.S.; Ebeoglu, M.A.; Topal, G.; Kilicoglu, T.

    2010-01-01

    This study includes synthesizing a Mn hexaamide (MnHA) organometal compound (C 27 H 21 N 9 O 6 MnCl 2 ).(1/2H 2 O), fabrication of MnHA/n-Si organic-inorganic heterojunction and analysis of conduction mechanism of the device over the room temperature. After synthesizing the molecule, the structure of the compound was determined using spectroscopic methods. The Sn/MnHA/n-Si structure was constructed by forming a thin MnHA layer on n-Si inorganic semiconductor and evaporating Sn metal on organic complex. The structure has shown good rectifying behavior and obeys the thermionic emission theory. The current-voltage (I-V) characteristics of the diode have been measured at temperatures ranging from 300 to 380 K at 10 K intervals to determine the temperature dependent electrical characteristics of the device.

  19. Multi-scale calculation of the electric properties of organic-based devices from the molecular structure

    KAUST Repository

    Li, Haoyuan

    2016-03-24

    A method is proposed to calculate the electric properties of organic-based devices from the molecular structure. The charge transfer rate is obtained using non-adiabatic molecular dynamics. The organic film in the device is modeled using the snapshots from the dynamic trajectory of the simulated molecular system. Kinetic Monte Carlo simulations are carried out to calculate the current characteristics. A widely used hole-transporting material, N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB) is studied as an application of this method, and the properties of its hole-only device are investigated. The calculated current densities and dependence on the applied voltage without an injection barrier are close to those obtained by the Mott-Gurney equation. The results with injection barriers are also in good agreement with experiment. This method can be used to aid the design of molecules and guide the optimization of devices. © 2016 Elsevier B.V. All rights reserved.

  20. Economic, Energetic, and Environmental Performance of a Solar Powered Organic Rankine Cycle with Electric Energy Storage in Different Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2018-01-01

    Full Text Available This paper presents an analysis to determine the economic, energetic, and environmental benefits that could be obtained from the implementation of a combined solar-power organic Rankine cycle (ORC with electric energy storage (EES to supply electricity to several commercial buildings including a large office, a small office, and a full service restaurant. The operational strategy for the ORC-EES system consists in the ORC charging the EES when the irradiation level is sufficient to generate power, and the EES providing electricity to the building when there is not irradiation (i.e., during night time. Electricity is purchased from the utility grid unless it is provided by the EES. The potential of the proposed system to reduce primary energy consumption (PEC, carbon dioxide emission (CDE, and cost was evaluated. Furthermore, the available capital cost for a variable payback period for the ORC-EES system was determined for each of the evaluated buildings. The effect of the number of solar collectors on the performance of the ORC-EES is also studied. Results indicate that the proposed ORC-EES system is able to satisfy 11%, 13%, and 18% of the electrical demand for the large office, the small office and the restaurant, respectively.

  1. Selective observation of photo-induced electric fields inside different material components in bulk-heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, S3-33 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2014-01-06

    By using electric-field-induced optical second-harmonic generation (EFISHG) measurement at two laser wavelengths of 1000 nm and 860 nm, we investigated carrier behavior inside the pentacene and C{sub 60} component of co-deposited pentacene:C{sub 60} bulk-heterojunctions (BHJs) organic solar cells (OSCs). The EFISHG experiments verified the presence of two carrier paths for electrons and holes in BHJs OSCs. That is, two kinds of electric fields pointing in opposite directions are identified as a result of the selectively probing of SHG activation from C{sub 60} and pentacene. Also, under open-circuit conditions, the transient process of the establishment of open-circuit voltage inside the co-deposited layer has been directly probed, in terms of photovoltaic effect. The EFISHG provides an additional promising method to study carrier path of electrons and holes as well as dissociation of excitons in BHJ OSCs.

  2. Tuning of electrical and structural properties of indium oxide films grown by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Wang, Ch.Y.; Cimalla, V.; Romanus, H.; Kups, Th.; Niebelschuetz, M.; Ambacher, O.

    2007-01-01

    Tuning of structural and electrical properties of indium oxide (In 2 O 3 ) films by means of metal organic chemical vapor deposition is demonstrated. Phase selective growth of rhombohedral In 2 O 3 (0001) and body-centered cubic In 2 O 3 (001) polytypes on (0001) sapphire substrates was obtained by adjusting the substrate temperature and trimethylindium flow rate. The specific resistance of the as-grown films can be tuned by about two orders of magnitude by varying the growth conditions

  3. Cost-competitiveness of organic photovoltaics for electricity self-consumption at residential buildings: A comparative study of Denmark and Greece under real market conditions

    DEFF Research Database (Denmark)

    Chatzisideris, Marios Dimos; Laurent, Alexis; Christoforidis, Georgios C.

    2017-01-01

    To address sustainability challenges, photovoltaics (PV) are regarded as a promising renewable energy technology. Decreasing PV module costs and increasing residential electricity prices have made self-consumption of PV-generated electricity financially more attractive than exporting to the grid....... Organic photovoltaics (OPV) are an emerging thin-film PV technology that shows promise of greatly improving the environmental and economic performances of PV technologies. Previous studies have estimated the current and future costs of OPV technologies, but the attractiveness of investing in OPV systems...

  4. The history of Korea electric times for four decades

    International Nuclear Information System (INIS)

    2004-11-01

    This book reports the history of Korea electric times for four decades, which is comprised of six parts, it deals with establishment of electric times and organizational systems and an editorial policy, status and pains for rebirth, open up new future, foundation of growth for the electric times, stability of organization extension of organization, establishing independent corporation, carrying out a radical reform, changing reading newspaper into seeing newspaper, ensuring internal stability, for the daily newspaper, development of contents on power industry technology, strategy for specialization, plan for campaign for patriotism, major business for four decades, today's electric times newspaper and future, and electric times years through the paper.

  5. Synaptic vesicles isolated from the electric organ of Torpedo californica and from the central nervous system of Mus musculus contain small ribonucleic acids (sRNAs

    Directory of Open Access Journals (Sweden)

    Huinan Li

    2017-06-01

    Full Text Available Synaptic vesicles (SVs are presynaptic organelles that load and release small molecule neurotransmitters at chemical synapses. In addition to classic neurotransmitters, we have demonstrated that SVs isolated from the Peripheral Nervous Systems (PNS of the electric organ of Torpedo californica, a model cholinergic synapse, and SVs isolated from the Central Nervous System (CNS of Mus musculus (mouse contain small ribonucleic acids (sRNAs; ≤50 nucleotides (Scientific Reports, 5:1–14(14918 Li et al. (2015 [1]. Our previous publication provided the five most abundant sequences associated with the T. californica SVs, and the ten most abundant sequences associated with the mouse SVs, representing 59% and 39% of the total sRNA reads sequenced, respectively. We provide here a full repository of the SV sRNAs sequenced from T. californica and the mouse deposited in the NCBI as biosamples. Three data studies are included: SVs isolated from the electric organ of T. californica using standard techniques, SVs isolated from the electric organ of T. californica using standard techniques with an additional affinity purification step, and finally, SVs isolated from the CNS of mouse. The three biosamples are available at https://www.ncbi.nlm.nih.gov/biosample/ SRS1523467, SRS1523466, and SRS1523472 respectively.

  6. Monitoring and Control of an Adsorption System Using Electrical Properties of the Adsorbent for Organic Compound Abatement.

    Science.gov (United States)

    Hu, Ming-Ming; Emamipour, Hamidreza; Johnsen, David L; Rood, Mark J; Song, Linhua; Zhang, Zailong

    2017-07-05

    Adsorption systems typically need gas and temperature sensors to monitor their adsorption/regeneration cycles to separate gases from gas streams. Activated carbon fiber cloth (ACFC)-electrothermal swing adsorption (ESA) is an adsorption system that has the potential to be controlled with the electrical properties of the adsorbent and is studied here to monitor and control the adsorption/regeneration cycles without the use of gas and temperature sensors and to predict breakthrough before it occurs. The ACFC's electrical resistance was characterized on the basis of the amount of adsorbed organic gas/vapor and the adsorbent temperature. These relationships were then used to develop control logic to monitor and control ESA cycles on the basis of measured resistance and applied power values. Continuous sets of adsorption and regeneration cycles were performed sequentially entirely on the basis of remote electrical measurements and achieved ≥95% capture efficiency at inlet concentrations of 2000 and 4000 ppm v for isobutane, acetone, and toluene in dry and elevated relative humidity gas streams, demonstrating a novel cyclic ESA system that does not require gas or temperature sensors. This contribution is important because it reduces the cost and simplifies the system, predicts breakthrough before its occurrence, and reduces emissions to the atmosphere.

  7. Cogeneration of electricity and organic chemicals using a polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Yuan, X.; Ma, Z.; Bueb, H.; Drillet, J.-F.; Hagen, J.; Schmidt, V.M.

    2005-01-01

    Several unsaturated organic alcohols (allyl alcohol, propargyl alcohol, 2-butin-1,4-diol, 2- buten-1,4-diol) and acids (maleic acid, acrylic acid, crotonic acid, acetylendicarboxylic acid) were used as oxidants together with hydrogen as fuel in a polymer electrolyte fuel cell (PEFC). The standard free enthalpies (Δ R G θ ) of the overall fuel cell reactions H 2 /oxidant were calculated to be negative and the equilibrium voltages of such systems are in the range of U 00 = 0.4-0.6 V. In this way, the cogeneration of electric energy and desired hydrogenated products in a fuel cell reactor is apparent. Nafion[reg] 117, as polymer electrolyte, and commercial gas diffusion electrodes (ETEK) with carbon supported Pt were used in a PEFC reactor. The aqueous solutions of unsaturated alcohols and organic acids (c = 1-2 mol dm -3 ) were pumped under ambient pressure through the cathode compartment of the cell whereas hydrogen was fed into the cell at p 0.15 MPa. The open circuit voltages were measured to be in the range of 0.1-0.25 V. Current densities up to 50 mA cm -2 and maximum power densities of around 1 mW cm -2 has been achieved in the case of allyl alcohol, 2-butene-1,4-diol and acrylic acid. HPLC analysis indicates that the double or triple bond in unsaturated alcohols and organic acids is selectively hydrogenated. In addition, the electrochemical behaviour of the alcohols and acids was studied by means of cyclic voltammetry at a smooth polycrystalline Pt electrode in H 2 SO 4 . Reduction reactions were observed at potentials of E < 200 mV versus RHE. It was found that the onset potential for electrochemical hydrogenation of the double and triple bond in the cyclic voltamogram correlates well with the fuel cell performances using these compounds as oxidants

  8. Pulsed electric field processing of different fruit juices: impac of pH and temperature on inactivation of spoilage and pathogenic micro-organisms

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Nierop Groot, M.N.; Nederhoff, A.L.; Boekel, van M.A.J.S.; Matser, A.M.; Mastwijk, H.C.

    2014-01-01

    Pulsed electrical field (PEF) technology can be used for the inactivation of micro-organisms and therefore for preservation of food products. It is a mild technology compared to thermal pasteurization because a lower temperature is used during processing, leading to a better retention of the

  9. Optimization of low temperature solar thermal electric generation with Organic Rankine Cycle in different areas

    International Nuclear Information System (INIS)

    Jing, Li; Gang, Pei; Jie, Ji

    2010-01-01

    The presented low temperature solar thermal electric generation system mainly consists of compound parabolic concentrators (CPC) and the Organic Rankine Cycle (ORC) working with HCFC-123. A novel design is proposed to reduce heat transfer irreversibility between conduction oil and HCFC-123 in the heat exchangers while maintaining the stability of electricity output. Mathematical formulations are developed to study the heat transfer and energy conversion processes and the numerical simulation is carried out based on distributed parameters. Annual performances of the proposed system in different areas of Canberra, Singapore, Bombay, Lhasa, Sacramento and Berlin are simulated. The influences of the collector tilt angle adjustment, the connection between the heat exchangers and the CPC collectors, and the ORC evaporation temperature on the system performance are investigated. The results indicate that the three factors have a major impact on the annual electricity output and should be the key points of optimization. And the optimized system shows that: (1) The annual received direct irradiance can be significantly increased by two or three times optimal adjustments even when the CPC concentration ratio is smaller than 3.0. (2) Compared with the traditional single-stage collectors, two-stage collectors connected with the heat exchangers by two thermal oil cycles can improve the collector efficiency by 8.1-20.9% in the simultaneous processes of heat collection and power generation. (3) On the use of the market available collectors the optimal ORC evaporation temperatures in most of the simulated areas are around 120 C. (author)

  10. Influence of the crystallographic structure of the electrode surface on the structure of the electrical double layer and adsorption of organic molecules

    International Nuclear Information System (INIS)

    Kochorovski, Z.; Zagorska, I.; Pruzhkovska-Drakhal, R.; Trasatti, S.

    1995-01-01

    The results of systematic investigation of influence of crystal structure of Bi-, Sb- and Cd-electrode surfaces on regularities of double electric layer structure in aqueous and nonaqueous solutions of surface-nonactive electrolyte are given. Influence of electrode surface characteristics on adsorptive behaviour of different organic molecules has been studied. General regularities of of chemical nature influence and surface crystallographic structure on the double layer structure and on organic compounds adsorption have been established. 57 refs., 7 figs., 4 tabs

  11. The history of fifty years of institute of electrical engineers 1947-1996

    International Nuclear Information System (INIS)

    1997-07-01

    This book starts with the survey of a century of Korea electrical industry. It includes a business of electric power and electrical machinery industry. Next, it deals with the survey of fifty years of Korea institute electrical engineers. Then, it enumerates the articles of association, organization, board members, the role of the administrative organization, study and institute business activities in detail.

  12. Superconducting selenides intercalated with organic molecules: synthesis, crystal structure, electric and magnetic properties, superconducting properties, and phase separation in iron based-chalcogenides and hybrid organic-inorganic superconductors

    Science.gov (United States)

    Krzton-Maziopa, Anna; Pesko, Edyta; Puzniak, Roman

    2018-06-01

    Layered iron-based superconducting chalcogenides intercalated with molecular species are the subject of intensive studies, especially in the field of solid state chemistry and condensed matter physics, because of their intriguing chemistry and tunable electric and magnetic properties. Considerable progress in the research, revealing superconducting inorganic–organic hybrid materials with transition temperatures to superconducting state, T c, up to 46 K, has been brought in recent years. These novel materials are synthesized by low-temperature intercalation of molecular species, such as solvates of alkali metals and nitrogen-containing donor compounds, into layered FeSe-type structure. Both the chemical nature as well as orientation of organic molecules between the layers of inorganic host, play an important role in structural modifications and may be used for fine tuning of superconducting properties. Furthermore, a variety of donor species compatible with alkali metals, as well as the possibility of doping also in the host structure (either on Fe or Se sites), makes this system quite flexible and gives a vast array of new materials with tunable electric and magnetic properties. In this review, the main aspects of intercalation chemistry are discussed with a particular attention paid to the influence of the unique nature of intercalating species on the crystal structure and physical properties of the hybrid inorganic–organic materials. To get a full picture of these materials, a comprehensive description of the most effective chemical and electrochemical methods, utilized for synthesis of intercalated species, with critical evaluation of their strong and weak points, related to feasibility of synthesis, phase purity, crystal size and morphology of final products, is included as well.

  13. An examination of electricity generation by utility organizations in the Southeast United States

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Feng, Song

    2016-01-01

    This study examined the impact of climatic variability on electricity generation in the Southeast United States. The relationship cooling degree days (CDD) and heating degree days (HDD) shared with electricity generation by fuel source was explored. Using seasonal autoregressive integrated weighted average (ARIMA) and seasonal simple exponentially smoothed models, retrospective time series analysis was run. The hypothesized relationship between climatic variability and total electricity generation was supported, where an ARIMA model including CDDs as a predictor explained 57.6% of the variability. The hypothesis that climatic variability would be more predictive of fossil fuel electricity generation than electricity produced by clean energy sources was partially supported. The ARIMA model for natural gas indicated that CDDS were the only predictor for the fossil fuel source, and that 79.4% of the variability was explained. Climatic variability was not predictive of electricity generation from coal or petroleum, where simple seasonal exponentially smoothed models emerged. However, HDDs were a positive predictor of hydroelectric electricity production, where 48.9% of the variability in the clean energy source was explained by an ARIMA model. Implications related to base load electricity from fossil fuels, and future electricity generation projections relative to extremes and climate change are discussed. - Highlights: • Models run to examine impact of climatic variability on electricity generation. • Cooling degree days explained 57.6% of variability in total electricity generation. • Climatic variability was not predictive of coal or petroleum generation. • Cooling degree days explained 79.4% of natural gas generation. • Heating degree days were predictive of nuclear and hydroelectric generation.

  14. Time-resolved terahertz spectroscopy of electrically conductive metal-organic frameworks doped with redox active species

    Science.gov (United States)

    Alberding, Brian G.; Heilweil, Edwin J.

    2015-09-01

    Metal-Organic Frameworks (MOFs) are three-dimensional coordination polymers that are well known for large pore surface area and their ability to adsorb molecules from both the gaseous and solution phases. In general, MOFs are electrically insulating, but promising opportunities for tuning the electronic structure exist because MOFs possess synthetic versatility; the metal and organic ligand subunits can be exchanged or dopant molecules can be introduced into the pore space. Two such MOFs with demonstrated electrical conductivity are Cu3(1,3,5-benzenetricarboxylate)2, a.k.a HKUST-1, and Cu[Ni(pyrazine-2,3-dithiolate)2]. Herein, these two MOFs have been infiltrated with the redox active species 7,7,8,8-tetracyanoquinodimethane (TCNQ) and iodine under solution phase conditions and shown to produce redox products within the MOF pore space. Vibrational bands assignable to TCNQ anion and triiodide anion have been observed in the Mid-IR and Terahertz ranges using FTIR Spectroscopy. The MOF samples have been further investigated by Time-Resolved Terehertz Spectroscopy (TRTS). Using this technique, the charge mobility, separation, and recombination dynamics have been followed on the picosecond time scale following photoexcitation with visible radiation. The preliminary results show that the MOF samples have small inherent photoconductivity with charge separation lifetimes on the order of a few picoseconds. In the case of HKUST-1, the MOF can also be supported by a TiO2 film and initial results show that charge injection into the TiO2 layer occurs with a comparable efficiency to the dye sensitizer N3, [cis-Bis(isothiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylato ruthenium(II)], and therefore this MOF has potential as a new light absorbing and charge conducting material in photovoltaic devices.

  15. Intragenus (Campylomormyrus) and intergenus hybrids in mormyrid fish: Physiological and histological investigations of the electric organ ontogeny.

    Science.gov (United States)

    Kirschbaum, Frank; Nguyen, Linh; Baumgartner, Stephanie; Chi, Hiu Wan Linda; Wolfart, Rene; Elarbani, Khouloud; Eppenstein, Hari; Korniienko, Yevheniia; Guido-Böhm, Lilian; Mamonekene, Victor; Vater, Marianne; Tiedemann, Ralph

    2016-10-01

    African weakly electric mormyrid fish show a high diversity of their electric organ discharge (EOD) both across and within genera. Thanks to a recently developed technique of artificial reproduction in mormyrid fish, we were able to perform hybridizations between different genera and within one genus (Campylomormyrus). The hybrids of intergenus hybridizations exhibited different degrees of reduced survival related to the phylogenetic distance of the parent species: hybrids of the crosses between C. rhynchophorus and its sister genus Gnathonemus survived and developed normally. Hybrids between C. rhynchophorus and a Mormyrus species (a more basal clade compared to Campylomormyrus s) survived up to 42days and developed many malformations, e.g., at the level of the unpaired fins. Hybrids between C. numenius and Hippopotamyrus pictus (a derived clade, only distantly related to Campylomormyrus) only survived for two days during embryological development. Eight different hybrid combinations among five Campylomormyrus species (C. tamandua, C. compressirostris, C. tshokwe, C. rhynchophorus, C. numenius) were performed. The aim of the hybridizations was to combine species with (1) either caudal or rostral position of the main stalk innervating the electrocytes in the electric organ and (2) short, median or long duration of their EOD. The hybrids, though they are still juveniles, show very interesting features concerning electrocyte geometry as well as EOD form and duration: the caudal position of the stalk is prevailing over the rostral position, and the penetration of the stalk is dominant over the non-penetrating feature (in the Campylomormyrus hybrids); in the hybrid between C. rhynchophorus and Gnathonemus petersii it is the opposite. When crossing species with long and short EODs, it is always the long duration EOD that is expressed in the hybrids. The F1-Hybrids of the cross C. tamandua×C. compressirostris are fertile: viable F2-fish could be obtained with artificial

  16. Chain governance in the market for electricity. A vision on how to deal with dependencies in the present and future Dutch electricity market

    International Nuclear Information System (INIS)

    Van Duren, M.

    2006-10-01

    The objective of this study is to develop a vision on the organization of the chain governance model for the electricity market in the present and in the future. Chapter 2 describes the complex electricity market, addressing the dependencies between market parties. Chapter 3 describes how enterprises can offer security internally with respect to reliability of processes and information, based on theory about 'governance' and internal management. Chapter 4 describes how external security can be offered in the electricity market based on theory about chains, networks and governance. Chapter 5 analyses the organization of the chain governance model in the current elecricity market. The developments that are anticipated affect the dependencies. Combined with the analysis a vision is formulated for organizing the chain governance model in view of offering security for the future electricity market. [mk] [nl

  17. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation

    International Nuclear Information System (INIS)

    O’Brien, Daniel B.; Massari, Aaron M.

    2015-01-01

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N′-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report

  18. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation.

    Science.gov (United States)

    O'Brien, Daniel B; Massari, Aaron M

    2015-01-14

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N'-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.

  19. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    O’Brien, Daniel B.; Massari, Aaron M., E-mail: massari@umn.edu [Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455 (United States)

    2015-01-14

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N′-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.

  20. Soil Fertility and Electrical Conductivity Affected by Organic Waste Rates and Nutrient Inputs

    Directory of Open Access Journals (Sweden)

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT The composition of organic waste (OW and its effect on soil processes may change soil fertility and electrical conductivity (EC. The side effects of waste use in crop fertilization are poorly understood for Brazilian soils. This study examined the effect of the addition of 15 different organic wastes to Oxisols and a Neosol on pH, base saturation, EC, cation exchange capacity (CEC at pH 7, and the availability of Al, macro (P, K, Ca2+, Mg2+ and S and micronutrients (B, Fe2+, Mn2+, Cu2+ and Zn2+. Soil samples (150 g were treated with chicken, pig, horse, cattle, and quail manures, sewage sludge 1 and 2, eucalyptus sawdust, plant substrate, coconut fiber, pine bark, coffee husk, peat, limed compost, and biochar. Wastes were added considering a fixed amount of C (2 g kg-1, which resulted in waste rates ranging from 2.5 to 25.6 Mg ha-1. The soil-waste mixtures were incubated for 330 days in laboratory conditions. The waste liming or acidification values were soil-dependent. The use of some manures and compost increased the pH to levels above of those considered adequate for plant growth. The soil EC was slightly increased in the Neosol and in the medium textured Oxisol, but it was sharply changed (from 195 to 394 µS cm-1 by the addition of organic wastes in the clayey Oxisol, although the EC values were below the range considered safe for plant growth. Changes in the soil availability of P, K+, Ca2+ and Zn2+ were highly related to the inputs of these nutrients by the wastes, and other factors in soil changed due to waste use. Organic waste use simultaneously affects different soil fertility attributes; thus, in addition to the target nutrient added to the soil, the soil acidity buffering capacity and the waste liming and agronomic value must be taken into account in the waste rate definition.

  1. Crystal structure and electrical conduction of the new organic-inorganic compound (CH2)2(NH3)2CdI4

    Science.gov (United States)

    Zhang, Liuqi; Wang, Jilin; Han, Feifei; Mo, Shuyi; Long, Fei; Gao, Yihua

    2018-03-01

    The new organic-inorganic compound (CH2)2(NH3)2CdI4 was prepared by slow evaporation method using a mixture solution of CdI2 and ethylenediamine iodide (EDAI) in the γ-butyrolactone (GBL). The synthesized compound was further characterized by single crystal diffraction, Infrared (IR) and Raman spectroscopy, energy dispersive spectrometer (EDS), X-Ray photoelectron spectroscopy (XPS) and thermogravimetric analysis. The relaxation behavior and conductivity mechanism of (CH2)2(NH3)2CdI4 was studied by the electrical impedance spectroscopy. The results indicated that (CH2)2(NH3)2CdI4 had a monoclinic structure with space group P21/c at room temperature. The complex impedance plotted as semicircle arcs and the proposed electrical equivalent circuit was to interpret the impedance behavior at different temperatures. The electrical equivalent circuit was made of a parallel combination of resistance (R) and fractal capacitance (CPE). Furthermore, the alternating current conductivity of the sample obeyed the Jonscher's law: σf =σdc + Afs and the conduction could be attributed to the correlated barrier hopping (CBH) model.

  2. Electricity: the new millennium. A global gathering of the new electric industry -- an unparalleled conference... for a unique moment in time

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-05-01

    'Electricity: The New Millennium' is a conference sponsored by four major industry associations -- Edison Electric Institute of the United States, the International Union of Producers of Electrical Energy in Europe, the Canadian Electricity Association and Japan's Federation of Electric Power Companies. The International Energy Agency and the host company, Hydro-Quebec, were also co-sponsors of this crucial and memorable event to provide company CEOs and other top executives of electric companies with opportunities to equip themselves with the facts and viewpoints essential to success in the restructured electrical business environment. The meeting and the accompanying exhibit took place in Montreal, Quebec, on June 18-21, 2000, and drew attendees and exhibitors from all over the world to discuss the radical changes that are affecting the industry in terms of the organization of production and delivery of electric power. Opportunities were also be provided to explore the challenges facing the industry on a global basis, including exploring ways to use emerging technologies for delivering the benefits of electric power to under-served regions of the world's population that has yet to enjoy the most basic quality of life improvements that electricity can afford. Critical issues sessions also explored issues such as building stronger customer relations, organizing and financing the industry's transition, mastering cultural change, the relationship between meeting society's goals and market forces, and transmission systems in transition. Commensurate with the vast range of topics, speakers and session leaders have been recruited from the ranks of chief executives of major energy companies from America to Zambia, government agencies, leaders of major power users, and industry associations. Also appended to this description of the conference are an exhibition floor plan,a directory of exhibitors, and a description of sponsoring organizations

  3. Environmental challenges and opportunities of the evolving North American electricity market : A review: Environmental challenges and opportunities of the North American electricity market : A symposium organized by the Commission for Environmental Cooperation of North America

    International Nuclear Information System (INIS)

    Dukert, J.M.

    2002-06-01

    North America produces and uses over 50 per cent of the electricity in the industrialized world. Regulatory trends in Mexico, the United States and Canada converge toward the opening up of electricity markets, while regional trade of electricity across national borders is being encouraged. Fundamental questions remain concerning the effects on the natural air-water-and-land environment in all three countries and the manner in which this trade occurs. Public health is also a factor to be considered. Some government intervention is required, was the general consensus arrived at at the symposium organized by the Commission for Environmental Cooperation of North America (CEC). This intervention should probably take the form of emission standards, transparent regulatory hearings and efforts to render the rules in the three countries more compatible. Demand growth and the incorporation of pollution controls will require some private investment. The author indicated that the symposium participants recognized that the reconciliation of an efficient continental electricity market with environmental goals will come with improving the efficiency with which North Americans use energy. refs., 1 tab., 1 fig

  4. Two new species and a new subgenus of toothed Brachyhypopomus electric knifefishes (Gymnotiformes, Hypopomidae) from the central Amazon and considerations pertaining to the evolution of a monophasic electric organ discharge.

    Science.gov (United States)

    Sullivan, John P; Zuanon, Jansen; Cox Fernandes, Cristina

    2013-01-01

    We describe two new, closely related species of toothed Brachyhypopomus (Hypopomidae: Gymnotiformes: Teleostei) from the central Amazon basin and create a new subgenus for them. Odontohypopomus, new subgenus of Brachyhypopomus, is diagnosed by (1) small teeth present on premaxillae; (2) medialmost two branchiostegal rays thin with blades oriented more vertically than remaining three rays; (3) background color in life (and to lesser extent in preservation) distinctly yellowish with head and sides peppered with small, widely spaced, very dark brown stellate chromatophores that greatly contrast with light background coloration; (4) a dark blotch or bar of subcutaneous pigment below the eye; (5) electric organ discharge waveform of very long duration (head-positive phase approx. 2 milliseconds or longer, head-negative phase shorter or absent) and slow pulse repetition rate (3-16 Hz). The type species of the new subgenus, Brachyhypopomus (Odontohypopomus) walteri sp. n., is diagnosed by the following additional character states: (1) subcutaneous dark pigment at base of orbit particularly prominent, (2) body semi-translucent and nearly bright yellow background coloration in life, (3) a biphasic electric organ discharge (EOD) waveform of very long duration (between 3.5 and 4 milliseconds at 25° C) with head-positive first phase significantly longer than second head-negative phase in both sexes. Brachyhypopomus (Odontohypopomus) bennetti sp. n. is diagnosed by two character states in addition to those used to diagnose the subgenus Odontohypopomus: (1) a deep electric organ, visible as large semi-transparent area, occupying approximately 14-17% body depth directly posterior to the abdominal cavity in combination with a short, but deep, caudal filament, and (2) a monophasic, head-positive EOD waveform, approximately 2.1 milliseconds in duration in both sexes. These are the only described rhamphichthyoid gymnotiforms with oral teeth, and Brachyhypopomus bennetti is the first

  5. Investgation concerning the structure, critical analysis and improvement of the organization of quality assurance in the qualification of electrical equipment for nuclear power plants with new parts and in-service inspections

    International Nuclear Information System (INIS)

    1985-01-01

    The study gives a survey of methods for the qualification of electrical equipment for nuclear power plants presently applied in the Federal Republic of Germany full consideration being given to the organization of quality assurance on the premises of the organizations involved (operators, plant suppliers, manufacturers). The organization of the qualification is to be kept distinct from the technical execution of the qualification. The qualification procedures are compared to those applied in France and in the USA. Aspects of future developments are shown with are promising with respect to: an increase in safety of electrical equipment for nuclear power plants, a simplification of the licencing procedure under Atomic Law. (orig./HP) [de

  6. Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    See, Kevin C.; Urban, Jeffrey J.; Segalman, Rachel A.; Coates, Nelson E.; Yee, Shannon K.

    2017-11-28

    The present invention provides for an inorganic nanostructure-organic polymer heterostructure, useful as a thermoelectric composite material, comprising (a) an inorganic nanostructure, and (b) an electrically conductive organic polymer disposed on the inorganic nanostructure. Both the inorganic nanostructure and the electrically conductive organic polymer are solution-processable.

  7. Public administration electricity savings. Offentlige energibesparelser; Nyere danske erfaringer

    Energy Technology Data Exchange (ETDEWEB)

    Gjelstrup, G

    1991-01-01

    Analysis on how different types of public authorities experienced carrying out electricity savings showed that the individual public authority's internal political-administrative organizational form is of major importance for the possibilities of realizing potential electricity savings. In addition, it can be concluded that only certain public authorities have utilized external assistance in connection with effecting electricity savings. In these cases there has been some accordance between the particular authority's internal, political-administrative, organization and the organizational form presupposed in the external assistance offered. In spite of this, the public authorities in question have, in general, not progressed very far with electricity savings. Part of the reason for this lies namely in the fact that the special importance the mode of organization has for electricity savings, has been overlooked in this type of assistance. (CLS) 43 refs.

  8. Public administration electricity savings. Offentlige energibesparelser; Nyere danske erfaringer

    Energy Technology Data Exchange (ETDEWEB)

    Gjelstrup, G.

    1991-01-01

    Analysis on how different types of public authorities experienced carrying out electricity savings showed that the individual public authority's internal political-administrative organizational form is of major importance for the possibilities of realizing potential electricity savings. In addition, it can be concluded that only certain public authorities have utilized external assistance in connection with effecting electricity savings. In these cases there has been some accordance between the particular authority's internal, political-administrative, organization and the organizational form presupposed in the external assistance offered. In spite of this, the public authorities in question have, in general, not progressed very far with electricity savings. Part of the reason for this lies namely in the fact that the special importance the mode of organization has for electricity savings, has been overlooked in this type of assistance. (CLS) 43 refs.

  9. Spray deposition of poly(3-hexylthiophene) and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester blend under electric field for improved interface and organic solar cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Neha, E-mail: nchaturvedi9@gmail.com; Swami, Sanjay Kumar; Dutta, Viresh

    2016-01-01

    Spray process is used for the deposition of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) blend film under different voltages (0 V, 300 V, 500 V and 700 V) applied to the nozzle. The presence of the electric field during the spray process makes the P3HT:PCBM film smoother, uniform and more crystalline with well aligned domains. X-ray photoelectron spectroscopy study shows that PCBM rich surface is formed by application of the DC voltage (700 V) which improves the electron transport at the active layer and cathode interface. The application of electric field reduces the recombination at interfaces. The increased charge carrier separation between donor and acceptor at the interface and the crystallinity enhancement result in improved short circuit current density–voltage characteristics of Indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) /P3HT:PCBM/Aluminum solar cell. The organic bulk-heterojunction solar cell using the electric field assisted spray deposited PEDOT:PSS and P3HT:PCBM layers exhibited 84% and 154% increment in the short circuit current density and power conversion efficiency, respectively in comparison to the solar cell having spray deposited PEDOT:PSS and P3HT:PCBM layers in the absence of the electric field. - Highlights: • Spray deposition of P3HT:PCBM is carried out. • Spray deposition under electric field is done. • Electric field application enhanced the crystallinity of the layers. • P3HT:PCBM film arranged in more ordered form with electric field • Efficiency of organic solar cell is enhanced with application of electric field.

  10. Aging of Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, Frank; Schiek, Manuela; Osadnik, Andreas

    2012-01-01

    Organic semiconductors formed by epitaxial growth from small molecules such as the para-phenylenes or squaraines promise a vast application potential as the active ingredient in electric and optoelectronic devices. Their self-organization into organic nanowires or "nanofibers" adds a peculiar...... attribute, making them especially interesting for light generation in OLEDs and for light-harvesting devices such as solar cells. Functionalization of the molecules allows the customization of optical and electrical properties. However, aging of the wires might lead to a considerable decrease in device...... performance over time. In this study the morphological stability of organic nanoclusters and nanowires from the methoxy functionalized quaterphenylene, 4,4'''dimethoxy-1,1':4',1''4'',1'''-quaterphenylene (MOP4), is investigated in detail. Aging experiments conducted by atomic force microscopy under ambient...

  11. Electrical doping: the impact on interfaces of π-conjugated molecular films

    International Nuclear Information System (INIS)

    Gao Weiying; Kahn, Antoine

    2003-01-01

    Organic-metal and organic-organic interfaces play crucial roles in charge injection in, and transport through, organic thin film devices. Their electronic structure, chemical properties and electrical behaviour must be fully characterized and understood if engineering and control of organic devices are to reach the levels attained for inorganic semiconductor devices. Recent fundamental, as well as device, work has demonstrated that electrical doping provides a very interesting way to improve carrier injection into molecular films and, eventually, control molecular level alignment at their interfaces. This brief review emphasizes the current understanding of the effects of doping on organic interfaces

  12. Frequency and voltage dependent electrical responses of poly(triarylamine) thin film-based organic Schottky diode

    Science.gov (United States)

    Anuar Mohamad, Khairul; Tak Hoh, Hang; Alias, Afishah; Ghosh, Bablu Kumar; Fukuda, Hisashi

    2017-11-01

    A metal-organic-metal (MOM) type Schottky diode based on poly (triarylamine) (PTAA) thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f) and capacitance-voltage (C-V-f) characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit). Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz) but decreases at high frequency (1 - 10 kHz). The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV-1cm-2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC) signal.

  13. British and Italian electric power systems: Comparative study

    International Nuclear Information System (INIS)

    Lolli, A.

    1992-01-01

    This study compares the new electricity system in England, Wales and Scotland, after the 1989 Electricity Act, and the Italian electricity system (as modified by the January, 9, 1991, Law No. 9 and by the December 5, 1991, Decree No. 386 made law (No. 35) on January, 29, 1992). The study focuses on legal aspects and socio-economic factors influencing planning and organizing by the national electric power industries in their efforts to maintain supply and demand equilibrium

  14. Report made under the behalf of the Economic Affairs Commission on the bill (N. 2831), modified by the Senate, for a new organization of the electricity market

    International Nuclear Information System (INIS)

    2010-01-01

    This document reports the discussions of the Economic Affairs Commission of the French Parliament on the different articles of the bill addressing the new organization of the electricity market. These articles concern the access to nuclear energy, the purchase price of electricity produced from biomass and of hydroelectricity, the obligations of electricity providers, the financing of works performed on the network, the protection of users, the competencies of local communities and providers, the social regulations applied to providers, and tax aspects. A table gives a comparison between the texts adopted by the Assemblee Nationale, the Senate, and the Commission. It also gives the various amendments which have been proposed

  15. Application of calendering for improving the electrical characteristics of a printed top-gate, bottom-contact organic thin film transistors

    Science.gov (United States)

    Lee, Sang Hoon; Lee, Dong Geun; Jung, Hoeryong; Lee, Sangyoon

    2018-05-01

    Interface between the channel and the gate dielectric of organic thin film transistors (OTFTs) needs to be smoothed in order to improve the electrical characteristics. In this study, an optimized calendering process was proposed to improve the surface roughness of the channel. Top-gate, bottom-contact structural p-type OTFT samples were fabricated using roll-to-roll gravure printing (source/drain, channel), spin coating (gate dielectric), and inkjet printing (gate electrode). The calendering process was optimized using the grey-based Taguchi method. The channel surface roughness and electrical characteristics of calendered and non-calendered samples were measured and compared. As a result, the average improvement in the surface roughness of the calendered samples was 26.61%. The average on–off ratio and field-effect mobility of the calendered samples were 3.574 × 104 and 0.1113 cm2 V‑1 s‑1, respectively, which correspond to the improvements of 16.72 and 10.20%, respectively.

  16. Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry.

    Science.gov (United States)

    Preis, S; Klauson, D; Gregor, A

    2013-01-15

    Increased volatile organic compounds emissions and commensurate tightening of applicable legislation mean that the development and application of effective, cost-efficient abatement methods are areas of growing concern. This paper reviews the last two decades' publications on organic vapour emissions from food processing, their sources, impacts and treatment methods. An overview of the latest developments in conventional air treatment methods is presented, followed by the main focus of the paper, non-thermal plasma technology. The results of the review suggest that non-thermal plasma technology, in its pulsed corona discharge configuration, is an emerging treatment method with potential for low-cost, effective abatement of a wide spectrum of organic air pollutants. It is found that the combination of plasma treatment with catalysis is a development trend that demonstrates considerable potential. The as yet relatively small number of plasma treatment applications is considered to be due to the novelty of pulsed electric discharge techniques and a lack of reliable pulse generators and reactors. Other issues acting as barriers to widespread adoption of the technique include the possible formation of stable oxidation by-products, residual ozone and nitrogen oxides, and sensitivity towards air humidity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes

    Science.gov (United States)

    Zhang, Shuo; Bo, Zheng; Yang, Huachao; Yang, Jinyuan; Duan, Liangping; Yan, Jianhua; Cen, Kefa

    2016-12-01

    Organic electrolytes are widely used in electric double-layer capacitors (EDLCs). In this work, the microstructure of planar graphene-based EDLCs with different organic solvents are investigated with molecular dynamics simulations. Results show that an increase of solvent polarity could weaken the accumulation of counter-ions nearby the electrode surface, due to the screen of electrode charges and relatively lower ionic desolvation. It thus suggests that solvents with low polarity could be preferable to yield high EDL capacitance. Meanwhile, the significant effects of the size and structure of solvent molecules are reflected by non-electrostatic molecule-electrode interactions, further influencing the adsorption of solvent molecules on electrode surface. Compared with dimethyl carbonate, γ-butyrolactone, and propylene carbonate, acetonitrile with relatively small-size and linear structure owns weak non-electrostatic interactions, which favors the easy re-orientation of solvent molecules. Moreover, the shift of solvent orientation in surface layer, from parallel orientation to perpendicular orientation relative to the electrode surface, deciphers the solvent twin-peak behavior near negative electrode. The as-obtained insights into the roles of solvent properties on the interplays among particles and electrodes elucidate the solvent influences on the microstructure and capacitive behavior of EDLCs using organic electrolytes.

  18. Reconfigurable electronics using conducting metal-organic frameworks

    Science.gov (United States)

    Allendorf, Mark D.; Talin, Albert Alec; Leonard, Francois; Stavila, Vitalie

    2017-07-18

    A device including a porous metal organic framework (MOF) disposed between two terminals, the device including a first state wherein the MOF is infiltrated by a guest species to form an electrical path between the terminals and a second state wherein the electrical conductivity of the MOF is less than the electrical conductivity in the first state. A method including switching a porous metal organic framework (MOF) between two terminals from a first state wherein a metal site in the MOF is infiltrated by a guest species that is capable of charge transfer to a second state wherein the MOF is less electrically conductive than in the first state.

  19. Understanding the 'historical' electricity tariffs

    International Nuclear Information System (INIS)

    2010-01-01

    At the time of the debates about the French 'NOME' (new organization of the electricity market) law, it is interesting to analyse the principles which have led to elaborate the 'historical' electricity tariffs in France, in order to better understand the stakes around their recasting. Today, there exists 2 categories of tariffs: the regulated selling prices and the market offers. The regulated selling prices are different depending on the client (individuals, small professionals, companies)

  20. Reflections of hunger and satiation in the structure of temporal organization of slow electrical and spike activities of fundal and antral stomach muscles in rabbits.

    Science.gov (United States)

    Kromin, A A; Zenina, O Yu

    2012-11-01

    Manifestations of hunger and satiation in myoelectric activity patterns in different portions of the stomach were studied in chronic experiments. The state of hunger manifested in the structure of temporal organization of slow electric activity of muscles in the stomach body and antrum in the form of bimodal distributions of slow electric wave periods, while satiation as unimodal distribution. In hunger-specific bimodal distribution of slow electric wave periods generated by muscles of the stomach body and antrum, the position of the first maximum carries the information about oncoming food reinforcement, since this particular range of slow wave fluctuations determines temporal parameters of slow electric activity of muscles in all stomach regions in the course of subsequent successive food-procuring behavior. Under conditions of hunger, the pacemaker features of muscles in the lesser curvature are realized incompletely. Complete realization is achieved in the course of food intake and at the state of satiation.

  1. An electric-eel-inspired soft power source from stacked hydrogels

    Science.gov (United States)

    Schroeder, Thomas B. H.; Guha, Anirvan; Lamoureux, Aaron; Vanrenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-01

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  2. An electric-eel-inspired soft power source from stacked hydrogels.

    Science.gov (United States)

    Schroeder, Thomas B H; Guha, Anirvan; Lamoureux, Aaron; VanRenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-13

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  3. Synthesis of organically-capped metallic zinc nanoparticles using electrical explosion of wires (EEW) coupled with PIERMEN

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkader, Elseddik M.; Jelliss, Paul A., E-mail: jellissp@slu.edu; Buckner, Steven W., E-mail: buckners@slu.edu

    2015-01-15

    In this study zinc nanoparticles (ZNPs) were produced using electrical explosion of wires (EEW) with NP size around 100 nm. The explosion chamber was constructed from Teflon to withstand the shockwave, to allow growth and reaction of the incipient ZNPs in various organic solvents, and to allow a constant flow of argon creating an inert atmosphere. We utilized polymerization initiation by electron-rich metallic nanoparticles (PIERMEN) as the capping technique for the reactive ZNPs. Epoxides and alkenes served as the capping monomers. Epoxide caps underwent oligomerization on the surface of the NPs to form a protective polyether cap which renders the particles stable, non-pyrophoric in air, and dispersible in organic solvents. We investigated various Zn to monomer molar ratios varying from 1:1 to 10:1. Polyethylene glycol was also used as a capping agent and was found to give the smallest average Zn core sizes with the metal core diameters varying from 15 to 20 nm. Several solvents were used to study differences in resultant particle size and we observe toluene to give the smallest metal cores. Transmission electron microscopy shows the spherical particles with the metallic core embedded in a polymer matrix. The sample consists of predominantly smaller particles, but there was also a broad size distribution giving a range of 20–150 nm. Powder X-ray diffraction (PXRD) was used to confirm the identity of the metallic NPs. The capping agents were characterized using both attenuated total reflectance-Fourier transform infra-red (ATR-FTIR) and Raman spectroscopies. There was no evidence for formation of zinc oxide with appropriate organic capping agents and solvent combinations; thus, this is the first report of production of pure metallic zinc nanoparticles with an organic cap using EEW. - Highlights: • Organically-capped Zn metal nanoparticles are produced by EEW in organic solution. • Incipient Zn metal nanoparticles initiate oligomerization of epoxide and

  4. Method of forming an electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Woodward, Jonathan [Ashtead, GB

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  5. Enhanced electric polarization and breakdown strength in the all-organic sandwich-structured poly(vinylidene fluoride-based dielectric film for high energy density capacitor

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2017-07-01

    Full Text Available It is essential to develop the dielectric energy storage capacitor for the modern electrical and electronic equipment. Here, the all-organic sandwich-structured composite with superior breakdown strength and delayed saturation polarization is presented. Furthermore, the energy storage characteristics of the composite are enhanced by the poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene fiber and the redistribution of local electric field. The dielectric permittivity of composite increases to ∼16, and the discharged energy density is high to ∼8.7 J/cm3 at 360 kV/mm, and the breakdown strength is up to ∼408 kV/mm. The excellent performance of the composite broadens the application in the field of power electronics industry.

  6. Producing methane, methanol and electricity from organic waste of fermentation reaction using novel microbes.

    Science.gov (United States)

    Dhiman, Saurabh Sudha; Shrestha, Namita; David, Aditi; Basotra, Neha; Johnson, Glenn R; Chadha, Bhupinder S; Gadhamshetty, Venkataramana; Sani, Rajesh K

    2018-06-01

    Residual solid and liquid streams from the one-pot CRUDE (Conversion of Raw and Untreated Disposal into Ethanol) process were treated with two separate biochemical routes for renewable energy transformation. The solid residual stream was subjected to thermophilic anaerobic digestion (TAD), which produced 95 ± 7 L methane kg -1 volatile solid with an overall energy efficiency of 12.9 ± 1.7%. A methanotroph, Methyloferula sp., was deployed for oxidation of mixed TAD biogas into methanol. The residual liquid stream from CRUDE process was used in a Microbial Fuel Cell (MFC) to produce electricity. Material balance calculations confirmed the integration of biochemical routes (i.e. CRUDE, TAD, and MFC) for developing a sustainable approach of energy regeneration. The current work demonstrates the utilization of different residual streams originated after food waste processing to release minimal organic load to the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Frequency and voltage dependent electrical responses of poly(triarylamine thin film-based organic Schottky diode

    Directory of Open Access Journals (Sweden)

    Mohamad Khairul Anuar

    2017-01-01

    Full Text Available A metal-organic-metal (MOM type Schottky diode based on poly (triarylamine (PTAA thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f and capacitance-voltage (C-V-f characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit. Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz but decreases at high frequency (1 – 10 kHz. The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV−1cm−2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC signal.

  8. Electricity deregulation in OECD (Organization for Economic Cooperation and Development) countries

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sunaidy, A.; Green, R. [Business School, University of Hull, Hull HU6 7RX (United Kingdom)

    2006-05-15

    This paper discusses the spread of electricity deregulation in OECD countries since the early 1990s. England, Wales and Norway were the pioneers, but almost all OECD countries have now introduced some degree of liberalisation, and several have free entry to generation while allowing all electricity consumers to choose where they buy their power. The paper discusses some of the issues raised by competition in generation and in retailing (or supply), and the need to have appropriate regulation for the transmission and distribution systems, which will continue to be monopolies. (author)

  9. Benchmarking electricity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Watts, K. [Department of Justice and Attorney-General, QLD (Australia)

    1995-12-31

    Benchmarking has been described as a method of continuous improvement that involves an ongoing and systematic evaluation and incorporation of external products, services and processes recognised as representing best practice. It is a management tool similar to total quality management (TQM) and business process re-engineering (BPR), and is best used as part of a total package. This paper discusses benchmarking models and approaches and suggests a few key performance indicators that could be applied to benchmarking electricity distribution utilities. Some recent benchmarking studies are used as examples and briefly discussed. It is concluded that benchmarking is a strong tool to be added to the range of techniques that can be used by electricity distribution utilities and other organizations in search of continuous improvement, and that there is now a high level of interest in Australia. Benchmarking represents an opportunity for organizations to approach learning from others in a disciplined and highly productive way, which will complement the other micro-economic reforms being implemented in Australia. (author). 26 refs.

  10. Electric industry restructuring review

    International Nuclear Information System (INIS)

    Slocum Hollis, S.

    2004-01-01

    Restructuring of the electric power industry began in the early 1990's in many jurisdictions in the United States. Restructuring was an attempt to offer large industrial customers lower rates and freedom from regulation for generators and traditional public utilities. The move has gained most attention in the past two years as some utilities report high profits while others, such as Pacific Gas and Electric Co., the largest investor-owned utility in the United States, is in bankruptcy. The August 2003 blackout in the Midwest and Northeast United States and Canada also raised questions regarding electric reliability. The question now remains whether markets should be allowed to determine the need for services and the prices to be charged, and who is in charge in the imperfect market. The Federal Energy Regulatory Commission's (FERC) Order 2000 led to the formation of a Regional Transmission Organizations which is still in the implementation stage. Its influence on precursor Order numbers 888 and 889 were discussed in this paper with reference to independent system operators; regional transmission organizations; standard market design; rates and pricing devices; congestion management; market monitoring; market investigations; reliability measures; OASIS and other information access; interconnection policy; jurisdiction; mergers and merger policy; standards of conduct; policing affiliates; municipal utilities; stranded costs; and, state restructuring scorecards. refs

  11. Synthesis and electrical characterization of Graphene Oxide films

    International Nuclear Information System (INIS)

    Yasin, Muhammad; Tauqeer, T.; Zaidi, Syed M.H.; San, Sait E.; Mahmood, Asad; Köse, Muhammet E.; Canimkurbey, Betul; Okutan, Mustafa

    2015-01-01

    In this work, we have synthesized Graphene Oxide (GO) using modified Hummers method and investigated its electrical properties using parallel plate impedance spectroscopic technique. Graphene Oxide films were prepared using drop casting method on Indium Tin Oxide (ITO) coated glass substrate. Atomic force microscopy was used to characterize the films' microstructure and surface topography. Electrical characterization was carried out using LCR meter in frequency regime (100 Hz to 10 MHz) at different temperatures. AC conductivity σ ac of the films was observed to be varied with angular frequency, ω as ω S , with S < 1. The electrical properties of GO were found to be both frequency and temperature dependent. Analysis showed that GO film contains direct current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Photon absorption and transmittance capability in the visible range and excellent electrical parameters of solution processed Graphene Oxide suggest its suitability for the realization of low cost flexible organic solar cells and organic Thin Film Transistors, respectively. - Highlights: • Synthesize and electrical characterization of Graphene Oxide (GO) Film was undertaken. • Temperature dependent impedance spectroscopy was used for electrical analysis. • AFM was used to characterize films' microstructure and surface topography. • Electrical parameters were found to vary with both temperature and frequency. • GO showed DC and CBH conductivity mechanisms at low and high frequency, respectively

  12. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    Science.gov (United States)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  13. Improvement of the electric power sector through the access to the national power transmission system - SINTREL (Brazilian National System of Electric Power Transmission); Aperfeicoamento do setor de energia eletrica atraves do acesso a transmissao - SINTREL (Sistema Nacional de Transmissao de Energia Eletrica)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    This report presents the organization and the operation of SINTREL (Brazilian National System of Electric Power Transmission), the national power transmission system, and it defines its function in the process of reform of the Brazilian electric sector. Besides showing the traditional organization of the companies and of the electric system, and the evolution of the organization of the Brazilian electric system to favor the competition.

  14. The electrical properties of auditory hair cells in the frog amphibian papilla.

    Science.gov (United States)

    Smotherman, M S; Narins, P M

    1999-07-01

    The amphibian papilla (AP) is the principal auditory organ of the frog. Anatomical and neurophysiological evidence suggests that this hearing organ utilizes both mechanical and electrical (hair cell-based) frequency tuning mechanisms, yet relatively little is known about the electrophysiology of AP hair cells. Using the whole-cell patch-clamp technique, we have investigated the electrical properties and ionic currents of isolated hair cells along the rostrocaudal axis of the AP. Electrical resonances were observed in the voltage response of hair cells harvested from the rostral and medial, but not caudal, regions of the AP. Two ionic currents, ICa and IK(Ca), were observed in every hair cell; however, their amplitudes varied substantially along the epithelium. Only rostral hair cells exhibited an inactivating potassium current (IA), whereas an inwardly rectifying potassium current (IK1) was identified only in caudal AP hair cells. Electrically tuned hair cells exhibited resonant frequencies from 50 to 375 Hz, which correlated well with hair cell position and the tonotopic organization of the papilla. Variations in the kinetics of the outward current contribute substantially to the determination of resonant frequency. ICa and IK(Ca) amplitudes increased with resonant frequency, reducing the membrane time constant with increasing resonant frequency. We conclude that a tonotopically organized hair cell substrate exists to support electrical tuning in the rostromedial region of the frog amphibian papilla and that the cellular mechanisms for frequency determination are very similar to those reported for another electrically tuned auditory organ, the turtle basilar papilla.

  15. Electric rate operations

    International Nuclear Information System (INIS)

    Maillard, D.

    1993-01-01

    The share of nuclear power in EDF production implies multiple rate structures. How are these rates determined. What are the new applications of electricity, and in particular those that make use of the especially low summer prices for electricity. These are topics of interest to the man in the street (witness EDF's recent 'red-white-blue' rates). This prompted the 'Nuclear Power in the Financial, Energy and Economic situation' department of France's nuclear power company to organize a conference bringing together an expert on rates - M.P. Bernard, head of the rate fixing service at the EDF's headquarters - and representatives from suppliers of equipment taking advantage of the various EDF rate options

  16. Influence of heterojunction interface on exciplex emission from organic light-emitting diodes under electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shengyi; Zhang, Xiulong; Lou, Zhidong; Hou, Yanbing [Beijing Jiaotong University, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing (China)

    2008-03-15

    In this paper, electroluminescence from organic light-emitting diodes based on 2-(4'-biphenyl)-5-(4{sup ''}-tert-butylphenyl)-1,3,4-oxadiazole (PBD) and N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) is reported. Based on the exciplex emission from the TPD/PBD interface under high electric fields, the influence of the TPD/PBD interface on exciplex emission was investigated by increasing the number of TPD/PBD interfaces while keeping both the total thickness of the TPD layer and the PBD layer constant in the multiple quantum-wells (MQW) device ITO/TPD/[PBD/TPD]{sub n}/PBD/Al (n is the well number that was varied from 0 to 3). Our experimental data shows that exciplex emission can be enhanced by suitably increasing the well number of this kind of MQW-like device. (orig.)

  17. Stratum Electricity Markets: Toward Multi-temporal Distributed Risk Management for Sustainable Electricity Provision

    Science.gov (United States)

    Wu, Zhiyong (Richard)

    Motivated by the overall challenge of ensuring long-term sustainable electricity service, we view this challenge as a long-term decision making problem under uncertainties. We start by recognizing that, independent of the industry organization, the uncertainties are enormous and often exogenous to the energy service providers. They are multi-dimensional and are result of fundamental drivers, ranging from the supply side, through the demand side, to the regulatory and policy sides. The basic contribution of this thesis comes from the recognition that long-term investments for ensuring reliable and stable electricity service critically depend on how these uncertainties are perceived, valued and managed by the different stakeholders within the complex industry organization such as the electric power industry. We explain several reasons why price signals obtained from current short-term electricity markets alone are not sufficient enough for long-term sustainable provision. Some enhancements are presented in the thesis to improve the short-term electricity market price signals to reflect the true cost of operation. New market mechanisms and instruments are needed to facilitate the stakeholders to better deal with long-term risks. The problems of ensuring long-term stable reliable service in the sense of the traditional resource adequacy requirements are revisited in both the restructuring industry and regulated industry. We introduce a so-called Stratum Electricity Market (SEM) design as the basic market mechanism for solving the problem of long-term reliable electricity service through a series of interactive multi-lateral market exchange platforms for risks communication, management and evaluations over various time horizons and by the different groups of stakeholders. In other words, our proposed SEM is a basic IT-enabled framework for the decision making processes by various parties over different time. Because of the uniqueness of electricity as a commodity, the

  18. Electric power and gas markets

    International Nuclear Information System (INIS)

    2001-01-01

    These two days organized by EFE in Paris, dealt with the european market of the gas and the electrical power. The first day developed the actual situation and the tendencies. The french market deregulation, the possibility of a united market and the energy transportation sector are discussed. The second day dealt with the new commercial technologies, the convergence of Gas and Electricity and the competing in a change world, the opportunities of the NTIC (new technologies of the information and communication). (A.L.B.)

  19. The role of the European Union in private law relations of organizations operating in the internal electricity or gas market in medium and small size Member States

    International Nuclear Information System (INIS)

    Nechvátal, Ivan; Pilavachi, Petros A.; Kakaras, Emmanuel

    2012-01-01

    This paper studies European Union (EU) legislation on private law relations for organizations operating in the internal electricity and gas market in medium and small size Member States. It consists of the analysis of both the EU primary (Treaties) and secondary (directives and regulations) legislation. A survey was sent to organizations operating in the internal energy market in four Member States: Greece, Czech Republic, Finland, and Malta. Through the survey, the paper identifies problematic areas of current EU legislation and compares them with new legislation applied as from 3 March 2011 (third liberalization package). It looks into all important EU energy legislation on private law relations of organizations operating in the internal energy market such as unbundling, procurement, procedural law, duties related to information and other legislation on energy contracts. The study concludes that, despite some small problems, the energy liberalization including the third liberalization legislative package progresses in a correct manner. There are nearly no problems in the access to the transmission and distribution systems. The functioning of the gas market is considered as the most important problem. - Highlights: ► European Union legislation on private law relations was studied. ► Organizations operating in the electricity and gas market were considered. ► A survey was sent to organizations in four Member States. ► Despite some problems, the energy liberalization advances correctly. ► The gas market is considered as the most important problem.

  20. 5th International Conference on Atmospheric Electricity

    CERN Document Server

    Reiter, Reinhold; Landsberg, Helmut

    1976-01-01

    These Proceedings are published to give a full account of the Fifth International Conference on Atmospheric Electricity held in September 1974 in Garmisch-Partenkirchen in the Bavarian Alps in Germany. Traditionally, the Proceedings of these Conferences have served as reference books updating the textbooks and monographs on Atmospheric Electricity. As treated by these Conferences, Atmos­ pheric Electricity covers all aspects of this science, including the processes and problems which reach out into the Earth's environment as well as analogous processes on other planets and on the Moon. A history of these Conferences, an account of their purpose, and an outline of the scope and the preparation is to be found at the end of these Proceedings. There, also the Business Meetings of the involved organizations are mentioned. The Proceedings closely follow the original program and are accordingly organized into "Sessions". The papers printed in each "Session" in this book are the ones which were accepted for the sess...

  1. Electric moments in molecule interferometry

    International Nuclear Information System (INIS)

    Eibenberger, Sandra; Gerlich, Stefan; Arndt, Markus; Tuexen, Jens; Mayor, Marcel

    2011-01-01

    We investigate the influence of different electric moments on the shift and dephasing of molecules in a matter wave interferometer. Firstly, we provide a quantitative comparison of two molecules that are non-polar yet polarizable in their thermal ground state and that differ in their stiffness and response to thermal excitations. While C 25 H 20 is rather rigid, its larger derivative C 49 H 16 F 52 is additionally equipped with floppy side chains and vibrationally activated dipole moment variations. Secondly, we elucidate the role of a permanent electric dipole momentby contrasting the quantum interference pattern of a (nearly) non-polar and a polar porphyrin derivative. We find that a high molecular polarizability and even sizeable dipole moment fluctuations are still well compatible with high-contrast quantum interference fringes. The presence of permanent electric dipole moments, however, can lead to a dephasing and rapid degradation of the quantum fringe pattern already at moderate electric fields. This finding is of high relevance for coherence experiments with large organic molecules, which are generally equipped with strong electric moments.

  2. Numerical analysis of the electrical and the optical properties of green phosphorescent organic light-emitting diodes

    International Nuclear Information System (INIS)

    Hwang, Young Wook; Lee, Hyeon Gi; Won, Tae Young

    2014-01-01

    In this paper, we report a theoretical study on the electrical-optical properties of phosphorescent organic light-emitting diodes (PHOLEDs). Our simulation reveals that the refractive index of each material plays a crucial role in the emission characteristics and that the barrier height at the interface significantly influences the behavior of charge transport as well as the generation of excitons. The calculated transient profiles indicate that the carrier recombination in the PHOLEDs takes place mainly at the interface between the emitting layer and the hole transport layer after 8 μs. In the case of high index of refraction, the simulation result via modal analysis implies a possibility for improving the light extraction by increasing the substrate mode. As the thickness of each layer has been altered, we observe that the chromaticity of the device changes periodically.

  3. Electrical engineering a pocket reference

    CERN Document Server

    Schmidt-Walter, Heinz

    2007-01-01

    This essential reference offers you a well-organized resource for accessing the basic electrical engineering knowledge you need for your work. Whether you're an experienced engineer who appreciates an occasional refresher in key areas, or a student preparing to enter the field, Electrical Engineering: A Pocket Reference provides quick and easy access to fundamental principles and their applications. You also find an extensive collection of time-saving equations that help simplify your daily projects.Supported with more than 500 diagrams and figures, 60 tables, and an extensive index, this uniq

  4. New Electronic Technology Applied in Flexible Organic Optical System

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2014-02-01

    Full Text Available The synthesis and application of new organic materials, nanostructured, for developing technology based on organic devices, have been the main focus of the scientific community. In recent years, the first polymeric electronics products have entered the market (organic semiconductor materials and there are some electrochromic devices among them that have been called smart windows, once they control the passage of light or heat through a closed environment as an ordinary window. The main functional aspect of electrochromic devices, when being used in architectural and automotive industry, is to control the passage of light and temperature with thermal and visual comfort. These devices can be flexible and very thin, not containing heavy metals, and formed by layers of organic material deposited in several architectures. In this study, the electro-deposition of organic materials in the Polyaniline, PANI case, which provide stability in optical and electrical parameters, was utilized with the means of developing prototypes of organic electrochromic devices. These materials were characterized by: ultraviolet-visible spectroscopy absorption (UV-Vis, measurement of thickness (MT and electrical measurements (EM. This study aims to establish the relationship between the thickness of the active layer and the value of the electrical resistivity of the layer deposited through an electro-deposition technique. The experimental results enabled the equating of the electrical resistivity related to the thickness of the deposited layer. The linear fit of these results has expressed the thickness of the conducting layer, α, and the lowest value of the electrical resistivity, β, associated with the gap between the valence band and the conduction band. Thus, the results have demonstrated that, when the layer of organic material is completely conductive, we may obtain the thickness of the organic material deposited on the substrate.

  5. Electric power annual 1995. Volume I

    International Nuclear Information System (INIS)

    1996-07-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with data that may be used in understanding U.S. electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy. In the private sector, the majority of the users of the Electric Power Annual are researchers and analysts and, ultimately, individuals with policy- and decisionmaking responsibilities in electric utility companies. Financial and investment institutions, economic development organizations interested in new power plant construction, special interest groups, lobbyists, electric power associations, and the news media will find data in the Electric Power Annual useful. In the public sector, users include analysts, researchers, statisticians, and other professionals with regulatory, policy, and program responsibilities for Federal, State, and local governments. The Congress and other legislative bodies may also be interested in general trends related to electricity at State and national levels. Much of the data in these reports can be used in analytic studies to evaluate new legislation. Public service commissions and other special government groups share an interest in State-level statistics. These groups can also compare the statistics for their States with those of other jurisdictions

  6. Institutional and programmatic suggestions for satisfying public policy responsibilities in a retail competitive electric industry

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B.E.; Schweitzer, M. [Oak Ridge National Lab., TN (United States)

    1997-01-01

    The emergence of retail competition in the US electric power industry places at risk various environmental and social programmes such as demand side management, low income programmes and renewable energy. This paper presents institutional and programmatic suggestions for satisfying these kinds of public policy responsibilities in a disintegrated industry. Suggestions include customer owned electricity franchises, electricity facility siting marketplaces, electric industry foresight councils, model systems programmes, integrated social services programmes, collaborative electric service programmes, ISO standards and portfolio standards. These recommendations would be funded by a national transmission charge, a state level distribution charge and franchise level sales taxes, to be paid by transmission organizations, distribution organizations and electricity consumers, respectively. (author)

  7. The French electricity policy facing European integration and environmental law

    International Nuclear Information System (INIS)

    Begue, M.C.

    2004-02-01

    The french electricity policy is traditionally defined by public authorities. The preference for nuclear power implies great risk and severe damage to the environment. These features of french electricity policy are however questioned by the increasing influence of european law and the (relatively) recent recognition of the environmental issues of such policy. This thesis intends to study the consequences of two 'new' tendencies that seem to be inevitable in the field of electricity policy: the decreasing role of national public authorities and the diffusion of the concept of sustainable development. The theoretical model which underlies the organization of commercial exchanges is replacing the traditional intervention of the State. regarding of this basic good. The adoption of legal rules to organize the electricity market has involved the development of many economic instruments. Those instruments aim at modifying the electricity policy in accordance with the principle of integration of environmental dimension in sectoral policies. The main object of our work is to analyse the consequences of these changes in the concept of public utility as well as in the importance given to environmental protection in the new forms of electricity policies. (author)

  8. Electric property evidences of carbonification of organic matters in marine shales and its geologic significance: A case study of the Lower Cambrian Qiongzhusi shale in the southern Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yuman Wang

    2014-12-01

    Full Text Available Searching for some reliable evidences that can verify the carbonification of organic matters in marine shales is a major scientific issue in selecting shale gas fairways in old strata. To this end, based on core, logging and testing data, the electric property of two organic-rich shale layers in the Lower Cambrian Qiongzhusi Fm. and the Lower Silurian Longmaxi Fm. in the southern Sichuan Basin was compared to examine the carbonification signs of organic matters in the Qiongzhusi shale and its influence on gas occurrence in the shales. The following conclusions were reached: (1 the electric property experiment shows that the Qiongzhusi shale in the study area has had carbonification of organic matters. The low resistivity of dry samples from this highly mature organic-rich shale and ultra-low resistivity on downhole logs can be used to directly judge the degree of organic matter carbonification and the quality of source rocks; (2 in the Changning area, the Qiongzhusi shale shows low resistivity of dry samples and low to ultra-low resistivity on logs, indicating that organic matters are seriously carbonized, while in the Weiyuan area, the Qiongzhusi shale shows a basically normal resistivity on log curves, indicating its degree of graphitization between the Longmaxi Fm. and Qiongzhusi Fm. in the Changning area; (3 shale with medium-to-high resistivity is remarkably better than that with ultra-low resistivity in terms of gas generation potential, matrix porosity and gas adsorption capacity; (4 industrial gas flow has been tested in the organic shales with medium-to-high resistivity in the Jianwei–Weiyuan–Tongnan area in the north, where the Qiongzhusi shale is a favorable shale gas exploration target.

  9. Ten-year statistics of the electric power supply. Status and tendencies

    International Nuclear Information System (INIS)

    2000-12-01

    The ten-year statistics of the electric power supply in Denmark for 1990-1999 presents in tables and figures the trend of the electric power supply sector during the last ten years. The tables and figures present information on total energy consumption, combined heat and power generation, fuel consumption and the environment, the technical systems, economy and pricing, organization of the electricity supply, auto-production of electricity and information on electricity prices and taxes for households and industry in various countries. (LN)

  10. Room-temperature coupling between electrical current and nuclear spins in OLEDs

    Science.gov (United States)

    Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C.

    2014-09-01

    The effects of external magnetic fields on the electrical conductivity of organic semiconductors have been attributed to hyperfine coupling of the spins of the charge carriers and hydrogen nuclei. We studied this coupling directly by implementation of pulsed electrically detected nuclear magnetic resonance spectroscopy in organic light-emitting diodes (OLEDs). The data revealed a fingerprint of the isotope (protium or deuterium) involved in the coherent spin precession observed in spin-echo envelope modulation. Furthermore, resonant control of the electric current by nuclear spin orientation was achieved with radiofrequency pulses in a double-resonance scheme, implying current control on energy scales one-millionth the magnitude of the thermal energy.

  11. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  12. Sustainability in Electricity Markets. Study for the Dutch Transition Platform on Sustainable Electricity

    International Nuclear Information System (INIS)

    2005-12-01

    The current energy system is not sustainable. This situation is liable to lead to serious and costly consequences in the long term. The two most important themes to be addressed are climate change and securing energy supplies, particularly in view of the increasing dependency on fossil fuels from geo-politically unstable regions. That is why the Dutch government has decided to strive for a transition towards a Sustainable Energy System. The aim of the energy transition is to transform the current energy system over the coming decades into a sustainable energy system. The participants in this Energy Transition have established six themes for achieving a sustainable energy economy within 50 years. Within these themes experiments are being conducted, experiments that ensure that the final aims become clearer and feasible. Market participants, scientific and civil organizations, and government agencies are taking the lead in each of the six themes: (a) Green raw materials; (b) Sustainable Mobility; (c) Chain Efficiency; (d) New Gas; (e) Sustainable Electricity; (f) Energy in the built environment. This document provides input for the theme on Sustainable Electricity. The Dutch Ministry of Economic Affairs together with SenterNovem is preparing a Platform Renewable Electricity Supply. In this Platform representatives from different stakeholders are to take part. The platform is meant to stimulate concrete actions/initiatives towards sustainable electricity supply. SenterNovem has asked PricewaterhouseCoopers (PwC) to make an international inventory of electricity market developments, with a focus on the impact for future sustainable electricity supply. The question which options for electricity generation are the most suitable for a sustainable electricity supply will be dealt with by KEMA (a Dutch research institute for the electric power industry)

  13. Characteristics of particulate matter emissions from toy cars with electric motors.

    Science.gov (United States)

    Wang, Xiaofei; Williams, Brent J; Biswas, Pratim

    2015-04-01

    Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47×10(7) particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated. A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.

  14. Preparing for electrical-system startup at a nuclear power plant

    International Nuclear Information System (INIS)

    Boissy, G.J.

    1977-01-01

    Experience at St Lucie Unit No. 1 nuclear power plant regarding organization for electrical startup is related and analyzed. Problems of staffing, organization procedures, test standard development, and implementation of the program are considered

  15. Evaluation of a solar-powered organic Rankine cycle using dry organic working fluids

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2015-12-01

    Full Text Available This paper presents a model to evaluate the performance of a solar-powered organic Rankine cycle (ORC. The system was evaluated in Jackson, MS, using five dry organic working fluids, R218, R227ea, R236ea, R236fa, and RC318. The purpose of this study is to investigate how hourly temperature change affects the electricity production and exergy destruction rates of the solar ORC, and to determine the effect of the working fluid on the proposed system. The system was also evaluated in Tucson, AZ, to investigate the effect of average hourly outdoor temperatures on its performance. The potential of the system to reduce primary energy consumption and carbon dioxide emissions is also investigated. A parametric analysis to determine how temperature and pressure of the organic working fluid, the solar collector area, and the turbine efficiency affect the electricity production is performed. Results show that the ORC produces the most electricity during the middle of the day, when the temperatures are the highest and when the solar collectors have the highest efficiency. Also, R-236ea is the working fluid that shows the best performance of the evaluated fluids. An economic analysis was performed to determine the capital cost available for the proposed system.

  16. Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions

    Science.gov (United States)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of

  17. Effects of pulsed electric field on ULQ and RFP plasmas

    International Nuclear Information System (INIS)

    Watanabe, M.; Saito, K.; Suzuki, T.

    1997-01-01

    Dynamo activity and self-organization processes are investigated using the application of pulsed poloidal and toroidal electric fields on ULQ and RFP plasmas. Synchronized to the application of the pulsed electric fields, the remarkable responses of the several plasma parameters are observed. The plasma has a preferential magnetic field structure, and the external perturbation activates fluctuation to maintain the structure through dynamo effect. This process changes the total dissipation with the variation of magnetic helicity in the system, showing that self organization accompanies an enhanced dissipation. (author)

  18. Advances in Electrical Engineering and Automation

    CERN Document Server

    Huang, Xiong

    2012-01-01

    EEA2011 is an integrated conference concentration its focus on Electrical Engineering and Automation. In the proceeding, you can learn much more knowledge about  Electrical Engineering and Automation of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.  

  19. New Organic Semiconductor Materials Applied in Organic Photovoltaic and Optical Devices

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2015-04-01

    Full Text Available The development of flexible organic photovoltaic solar cells, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The flexible organic photovoltaic solar cells are the base Poly (3,4-ethylenedioxythiophene, PEDOT, Poly(3-hexyl thiophene, P3HT, Phenyl-C61-butyric acid methyl ester, PCBM and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by Electrical Measurements and Scanning Electron Microscopy (SEM. In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by electrical Measurements has demonstrated that the PET/ITO/PEDOT/P3HT:PCBM Blend/PANI-X1 layer presents the characteristic curve of standard solar cell after spin-coating and electrodeposition. The Thin film obtained by electrodeposition of PANI-X1 on P3HT/PCBM Blend was prepared in perchloric acid solution. These flexible organic photovoltaic solar cells presented power conversion efficiency of 12%. The inclusion of the PANI-X1 layer reduced the effects of degradation these organic photovoltaic panels induced for solar irradiation. In Scanning Electron Microscopy (SEM these studies reveal that the surface of PANI-X1 layers is strongly conditioned by the surface morphology of the dielectric.

  20. Ten-year statistics of the electric power supply. Status and tendencies

    International Nuclear Information System (INIS)

    2001-12-01

    The ten-year statistics of the electric power supply in Denmark for 1991-2000 presents in tables and figures the trend of the electric power supply sector during the last ten years. The tables and figures present information on total energy consumption, combined heat and power generation, fuel consumption and the environment, the technical systems, economy and pricing, organization of the electricity supply, and information on electricity prices and taxes for households and industry in various countries. (LN)

  1. The internationalization of the electricity industry

    International Nuclear Information System (INIS)

    Gulli, F.; Indigenti, S.; Ninni, A.

    1998-01-01

    During the last years the evolution of the electricity industry has been featured by a marked development of the internationalization processes. Several companies started huge foreign investment programmes; construction of power plants; acquisition of generation, distribution and integrated companies. The goal of this study is to analyse the determinants in the internationalization process of the world electricity industry. This topic is introduced in the first, part with a hint on the main theoretical contributions regarding the companies internationalization. In the second part, an attempt is made to define the size of the phenomenon adopting the results yielded by a detailed inquiry about the international strategies of the leading electric companies. In the third part, an econometric analysis, referring to a significant sample of electric companies, is aimed at identifying the main determining factors affecting the international development is mainly due to both organization and regulation of the single national markets [it

  2. Electrical characterization of organic-on-inorganic semiconductor Schottky structures

    International Nuclear Information System (INIS)

    Guellue, Oe; Tueruet, A; Asubay, S

    2008-01-01

    We prepared a methyl red/p-InP organic-inorganic (OI) Schottky device formed by evaporation of an organic compound solution directly to a p-InP semiconductor wafer. The value of the optical band gap energy of the methyl red organic film on a glass substrate was obtained as 2.0 eV. It was seen that the Al/methyl red/p-InP contacts showed a good rectifying behavior. An ideality factor of 2.02 and a barrier height (Φ b ) of 1.11 eV for the Al/methyl red/p-InP contact were determined from the forward bias I-V characteristics. It was seen that the value of 1.11 eV obtained for Φ b for the Al/methyl red/p-InP contact was significantly larger than the value of 0.83 eV for conventional Al/p-InP Schottky diodes. Modification of the interfacial potential barrier for the Al/p-InP diode was achieved using a thin interlayer of the methyl red organic semiconductor. This ascribed to the fact that the methyl red interlayer increases the effective Φ b by influencing the space charge region of InP

  3. EFFECTS OF ORGANIC SUPPLEMENT ON GROWTH, LEAF ...

    African Journals Online (AJOL)

    USER

    germination and reducing plant height, stem density ... study attempts to investigate the effect of Palm. Bunch Ash and Dry Poultry .... Electrical conductivity (EC), organic carbon, total N ..... organisms which promotes cell division and elongation ...

  4. Microscopic studies of the fate of charges in organic semiconductors: Scanning Kelvin probe measurements of charge trapping, transport, and electric fields in p- and n-type devices

    Science.gov (United States)

    Smieska, Louisa Marion

    Organic semiconductors could have wide-ranging applications in lightweight, efficient electronic circuits. However, several fundamental questions regarding organic electronic device behavior have not yet been fully addressed, including the nature of chemical charge traps, and robust models for injection and transport. Many studies focus on engineering devices through bulk transport measurements, but it is not always possible to infer the microscopic behavior leading to the observed measurements. In this thesis, we present scanning-probe microscope studies of organic semiconductor devices in an effort to connect local properties with local device behavior. First, we study the chemistry of charge trapping in pentacene transistors. Working devices are doped with known pentacene impurities and the extent of charge trap formation is mapped across the transistor channel. Trap-clearing spectroscopy is employed to measure an excitation of the pentacene charge trap species, enabling identification of the degradationrelated chemical trap in pentacene. Second, we examine transport and trapping in peryelene diimide (PDI) transistors. Local mobilities are extracted from surface potential profiles across a transistor channel, and charge injection kinetics are found to be highly sensitive to electrode cleanliness. Trap-clearing spectra generally resemble PDI absorption spectra, but one derivative yields evidence indicating variation in trap-clearing mechanisms for different surface chemistries. Trap formation rates are measured and found to be independent of surface chemistry, contradicting a proposed silanol trapping mechanism. Finally, we develop a variation of scanning Kelvin probe microscopy that enables measurement of electric fields through a position modulation. This method avoids taking a numeric derivative of potential, which can introduce high-frequency noise into the electric field signal. Preliminary data is presented, and the theoretical basis for electric field

  5. Film morphology effects on the electrical and optical properties of bulk heterojunction organic solar cells based on MEH-PPV/C60 composite

    International Nuclear Information System (INIS)

    Ltaief, A.; Davenas, J.; Bouazizi, A.; Ben Chaabane, R.; Alcouffe, P.; Ben Ouada, H.

    2005-01-01

    The influence of film morphology on the electrical behaviour of an MEH-PPV/C 60 organic solar cells has been investigated. The dissociation of photogenerated charge pairs in composites of buckminsterfullerenes (C 60 ) in a conjugated polymer matrix (MEH-PPV) forming dispersed heterojunctions was studied at low C 60 acceptor concentrations to separate electron transfer from charge transport effects. The motivation of this study was to analyse the strong dependence of organic solar cell efficiencies on the morphology of the composite. Two effects controlling film morphology have been investigated; the first one being the influence of the fullerene concentration and the second one is the effect of the organic solvent used to deposit the photoactive layer. The sample morphology was studied using atomic force microscopy (AFM). Photoluminescence (PL) experiments and current-voltage (I-V) measurements were performed on the deposited photovoltaic film to investigate the influence of dispersion on the charge transfer process between MEH-PPV and C 60 . An attempt to explain all the results will be presented

  6. Synthesis and characterization of a new organic semiconductor material

    Energy Technology Data Exchange (ETDEWEB)

    Tiffour, Imane [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); Dehbi, Abdelkader [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Mourad, Abdel-Hamid I., E-mail: ahmourad@uaeu.ac.ae [Mechanical Engineering Department, Faculty of Engineering, United Arab Emirates University, Al-Ain, P.O. Box 15551 (United Arab Emirates); Belfedal, Abdelkader [Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); LPCMME, Département de Physique, Université d' Oran Es-sénia, 3100 Oran (Algeria)

    2016-08-01

    The objective of this study is to create an ideal mixture of Acetaminophen/Curcumin leading to a new and improved semiconductor material, by a study of the electrical, thermal and optical properties. This new material will be compared with existing semiconductor technology to discuss its viability within the industry. The electrical properties were investigated using complex impedance spectroscopy and optical properties were studied by means of UV-Vis spectrophotometry. The electric conductivity σ, the dielectric constant ε{sub r}, the activation energy E{sub a}, the optical transmittance T and the gap energy E{sub g} have been investigated in order to characterize our organic material. The electrical conductivity of the material is approximately 10{sup −5} S/m at room temperature, increasing the temperature causes σ to increase exponentially to approximately 10{sup −4} S/m. The activation energy obtained for the material is equal to 0.49 ± 0.02 ev. The optical absorption spectra show that the investigating material has absorbance in the visible range with a maximum wavelength (λ{sub max}) 424 nm. From analysis, the absorption spectra it was found the optical band gap equal to 2.6 ± 0.02 eV and 2.46 ± 0.02 eV for the direct and indirect transition, respectively. In general, the study shows that the developed material has characteristics of organic semiconductor material that has a promising future in the field of organic electronics and their potential applications, e.g., photovoltaic cells. - Highlights: • Development of a new organic acetaminophen/Curcumin semiconductor material. • The developed material has characteristics of an organic semiconductor. • It has electrical conductivity comparable to available organic semiconductors. • It has high optical transmittance and low permittivity/dielectric constant.

  7. Synthesis and characterization of a new organic semiconductor material

    International Nuclear Information System (INIS)

    Tiffour, Imane; Dehbi, Abdelkader; Mourad, Abdel-Hamid I.; Belfedal, Abdelkader

    2016-01-01

    The objective of this study is to create an ideal mixture of Acetaminophen/Curcumin leading to a new and improved semiconductor material, by a study of the electrical, thermal and optical properties. This new material will be compared with existing semiconductor technology to discuss its viability within the industry. The electrical properties were investigated using complex impedance spectroscopy and optical properties were studied by means of UV-Vis spectrophotometry. The electric conductivity σ, the dielectric constant ε_r, the activation energy E_a, the optical transmittance T and the gap energy E_g have been investigated in order to characterize our organic material. The electrical conductivity of the material is approximately 10"−"5 S/m at room temperature, increasing the temperature causes σ to increase exponentially to approximately 10"−"4 S/m. The activation energy obtained for the material is equal to 0.49 ± 0.02 ev. The optical absorption spectra show that the investigating material has absorbance in the visible range with a maximum wavelength (λ_m_a_x) 424 nm. From analysis, the absorption spectra it was found the optical band gap equal to 2.6 ± 0.02 eV and 2.46 ± 0.02 eV for the direct and indirect transition, respectively. In general, the study shows that the developed material has characteristics of organic semiconductor material that has a promising future in the field of organic electronics and their potential applications, e.g., photovoltaic cells. - Highlights: • Development of a new organic acetaminophen/Curcumin semiconductor material. • The developed material has characteristics of an organic semiconductor. • It has electrical conductivity comparable to available organic semiconductors. • It has high optical transmittance and low permittivity/dielectric constant.

  8. A bargaining model of regulated markets' integration with an application to electricity supply market

    International Nuclear Information System (INIS)

    Wei Jingyuan; Smeers, Y.; Canon, E.

    1995-01-01

    An integrated market organized by regulated electric utilities is modelled. It is assumed that, given a price vector for the exchange of electricity between each pair of neighboring utilities, utilities independently maximize their own domestic social welfare subject to the zero profit constraint. An equilibrium price vector for exchanges among utilities is defined as the one which clears the exchanges for all pair of business partners. A single piecewise linear model is formulated for computing market equilibria. The model is used to simulate the electricity supply market organized by 11 western European countries

  9. Electric shock and electrical fire specialty

    International Nuclear Information System (INIS)

    2011-02-01

    This book deals with electric shock and electrical fire, which is made up seven chapters. It describes of special measurement for electric shock and electrical fire. It mentions concretely about electrical fire analysis and precautionary measurement, electrical shock analysis cases, occurrence of static electricity and measurement, gas accident, analysis of equipment accident and precautionary measurement. The book is published to educate the measurement on electric shock and electrical fire by electrical safety technology education center in Korea Electrical Safety Corporation.

  10. Elementary steps in electrical doping of organic semiconductors

    KAUST Repository

    Tietze, Max Lutz; Benduhn, Johannes; Pahner, Paul; Nell, Bernhard; Schwarze, Martin; Kleemann, Hans; Krammer, Markus; Zojer, Karin; Vandewal, Koen; Leo, Karl

    2018-01-01

    Fermi level control by doping is established since decades in inorganic semiconductors and has been successfully introduced in organic semiconductors. Despite its commercial success in the multi-billion OLED display business, molecular doping

  11. World electricity and gas industries

    International Nuclear Information System (INIS)

    Kahane, A.

    1990-01-01

    Electric and gas utilities are central middlemen in the energy business. Worldwide, more than 50% of all primary energy is transformed by utilities and delivered to final consumers through utility wires and pipes. The structure and behavior of the electricity and gas industries and the role and behavior of utilities are therefore important to all other energy industry players. The electricity and gas industries are special. Unlike oil, coal, or wood, electricity and gas are transported from producers to consumers mostly via fixed grids. This means that supplies are generally tied to specific markets and, unlike an oil tanker on the high seas, cannot be easily diverted elsewhere. These grids are natural monopolies inasmuch as having more than one wire or pipe along a given route is generally unnecessary duplicative. In addition, both supply and grid investments are generally large and lumpy. Industrial organization theory suggests that the coordination of industries can be achieved either through hierarchies or through markets. Hierarchies are generally preferred when the transaction costs of coordinating through markets is too high. These two elements of electricity and gas industry structure are the means of hierarchical coordination. This paper discusses the possibilities for changing the structure of utilities to one which has greater reliance on markets

  12. Flexible and Cellulose-based Organic Electronics

    OpenAIRE

    Edberg, Jesper

    2017-01-01

    Organic electronics is the study of organic materials with electronic functionality and the applications of such materials. In the 1970s, the discovery that polymers can be made electrically conductive led to an explosion within this field which has continued to grow year by year. One of the attractive features of organic electronic materials is their inherent mechanical flexibility, which has led to the development of numerous flexible electronics technologies such as organic light emitting ...

  13. Electricity generation and microbial community structure of air-cathode microbial fuel cells powered with the organic fraction of municipal solid waste and inoculated with different seeds

    KAUST Repository

    El-Chakhtoura, Joline

    2014-08-01

    The organic fraction of municipal solid waste (OFMSW), normally exceeding 60% of the waste stream in developing countries, could constitute a valuable source of feed for microbial fuel cells (MFCs). This study tested the start-up of two sets of OFMSW-fed air-cathode MFCs inoculated with wastewater sludge or cattle manure. The maximum power density obtained was 123±41mWm-2 in the manure-seeded MFCs and 116±29mWm-2 in the wastewater-seeded MFCs. Coulombic efficiencies ranged between 24±5% (manure-seeded MFCs) and 23±2% (wastewater-seeded MFCs). Chemical oxygen demand removal was >86% in all the MFCs and carbohydrate removal >98%. Microbial community analysis using 16S rRNA gene pyrosequencing demonstrated the dominance of the phylum Firmicutes (67%) on the anode suggesting the possible role of members of this phylum in electricity generation. Principal coordinate analysis showed that the microbial community structure in replicate MFCs converged regardless of the inoculum source. This study demonstrates efficient electricity production coupled with organic treatment in OFMSW-fueled MFCs inoculated with manure or wastewater. © 2014 Elsevier Ltd.

  14. Electricity generation and microbial community structure of air-cathode microbial fuel cells powered with the organic fraction of municipal solid waste and inoculated with different seeds

    KAUST Repository

    El-Chakhtoura, Joline; El-Fadel, Mutasem E.; Rao, Hari Ananda; Li, Dong; Ghanimeh, Sophia A.; Saikaly, Pascal

    2014-01-01

    The organic fraction of municipal solid waste (OFMSW), normally exceeding 60% of the waste stream in developing countries, could constitute a valuable source of feed for microbial fuel cells (MFCs). This study tested the start-up of two sets of OFMSW-fed air-cathode MFCs inoculated with wastewater sludge or cattle manure. The maximum power density obtained was 123±41mWm-2 in the manure-seeded MFCs and 116±29mWm-2 in the wastewater-seeded MFCs. Coulombic efficiencies ranged between 24±5% (manure-seeded MFCs) and 23±2% (wastewater-seeded MFCs). Chemical oxygen demand removal was >86% in all the MFCs and carbohydrate removal >98%. Microbial community analysis using 16S rRNA gene pyrosequencing demonstrated the dominance of the phylum Firmicutes (67%) on the anode suggesting the possible role of members of this phylum in electricity generation. Principal coordinate analysis showed that the microbial community structure in replicate MFCs converged regardless of the inoculum source. This study demonstrates efficient electricity production coupled with organic treatment in OFMSW-fueled MFCs inoculated with manure or wastewater. © 2014 Elsevier Ltd.

  15. Optical, Electrical and Magnetic Studies of Pi-Conjugated Organic Semiconductor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vardeny, Zeev Valentine [Univ. of Utah, Salt Lake City, UT (United States)

    2016-09-15

    Over the duration of this grant our group has studied the transient and cw optical response of various π-conjugated polymers, oligomers, single crystals, fullerene molecules and blends of organic donor-acceptor molecules. We have been also involved in complementary experiments such as magneto-optical studies and spin-physics. We have advanced the field of photophysics of these materials by providing information on their excited state energies and primodal and long-lived photoexcitations such as singlet excitons, triplet excitons, polaron-pairs, excimers and exciplexes. We also fabricated various organic optoelectronic devices such as organic light emitting diodes (OLED), electrochemical cells, organic diodes, organic spin-valves (OSV), and organic photovoltaic (OPV) solar cells. These devices benefited the society in terms of cheap and energy saving illumination, as well as harnessing the solar energy.

  16. Electric treatment for hydrophilic ink deinking.

    Science.gov (United States)

    Du, Xiaotang; Hsieh, Jeffery S

    2017-09-01

    Hydrophilic inks have been widely used due to higher printing speed, competitive cost and being healthy non-organic solvents. However, they cause problems in both product quality and process runnability due to their hydrophilic surface wettability, strong negative surface charge and sub-micron size. Electric treatment was shown to be able to increase the ink sizes from 60 nm to 700 nm through electrocoagulation and electrophoresis. In addition, electric treatment assisted flotation could reduce effective residual ink concentration (ERIC) by 90 ppm, compared with only 20 ppm by traditional flotation. Furthermore, the effect of electric treatment alone on ink separation was investigated by two anode materials, graphite and stainless steel. Both of them could remove hydrophilic inks with less than 1% yield loss via electroflotation and electrophoresis. But graphite is a better material as the anode because graphite reduced ERIC by an additional 100 ppm. The yield loss of flotation following electric treatment was also lower by 17% if graphite was the anode material. The difference between the two electrode materials resulted from electrocoagulation and ink redeposition during electric treatment. An electric pretreatment-flotation-hyperwashing process was conducted to understand the deinking performance in conditions similar to a paper mill, and the ERIC was reduced from 950 ppm to less than 400 ppm.

  17. 18 CFR 375.303 - Delegations to the Director of the Office of Electric Reliability.

    Science.gov (United States)

    2010-04-01

    ... Director of the Office of Electric Reliability. 375.303 Section 375.303 Conservation of Power and Water... Delegations § 375.303 Delegations to the Director of the Office of Electric Reliability. The Commission... Electric Reliability Organization or Regional Entity rules or procedures; (ii) Reject an application...

  18. Role of band states and trap states in the electrical properties of organic semiconductors: Hopping versus mobility edge model

    KAUST Repository

    Mehraeen, Shafigh

    2013-05-01

    We compare the merits of a hopping model and a mobility edge model in the description of the effect of charge-carrier concentration on the electrical conductivity, carrier mobility, and Fermi energy of organic semiconductors. We consider the case of a composite electronic density of states (DOS) that consists of a superposition of a Gaussian DOS and an exponential DOS. Using kinetic Monte Carlo simulations, we apply the two models in order to interpret the recent experimental data reported for n-doped C60 films. While both models are capable of reproducing the experimental data very well and yield qualitatively similar characteristic parameters for the density of states, some discrepancies are found at the quantitative level. © 2013 American Physical Society.

  19. Charge transport in electrically doped amorphous organic semiconductors.

    Science.gov (United States)

    Yoo, Seung-Jun; Kim, Jang-Joo

    2015-06-01

    This article reviews recent progress on charge generation by doping and its influence on the carrier mobility in organic semiconductors (OSs). The doping induced charge generation efficiency is generally low in OSs which was explained by the integer charge transfer model and the hybrid charge transfer model. The ionized dopants formed by charge transfer between hosts and dopants can act as Coulomb traps for mobile charges, and the presence of Coulomb traps in OSs broadens the density of states (DOS) in doped organic films. The Coulomb traps strongly reduce the carrier hopping rate and thereby change the carrier mobility, which was confirmed by experiments in recent years. In order to fully understand the doping mechanism in OSs, further quantitative and systematic analyses of charge transport characteristics must be accomplished. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Flip-flop logic circuit based on fully solution-processed organic thin film transistor devices with reduced variations in electrical performance

    Science.gov (United States)

    Takeda, Yasunori; Yoshimura, Yudai; Adib, Faiz Adi Ezarudin Bin; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2015-04-01

    Organic reset-set (RS) flip-flop logic circuits based on pseudo-CMOS inverters have been fabricated using full solution processing at a relatively low process temperatures of 150 °C or less. The work function for printed silver electrodes was increased from 4.7 to 5.4 eV through surface modification with a self-assembled monolayer (SAM) material. A bottom-gate, bottom-contact organic thin-film transistor (OTFT) device using a solution-processable small-molecular semiconductor material exhibited field-effect mobility of 0.40 cm2 V-1 s-1 in the saturation region and a threshold voltage (VTH) of -2.4 V in ambient air operation conditions. In order to reduce the variations in mobility and VTH, we designed a circuit with six transistors arranged in parallel, in order to average out their electrical characteristics. As a result, we have succeeded in reducing these variations without changing the absolute values of the mobility and VTH. The fabricated RS flip-flop circuits were functioned well and exhibited short delay times of 3.5 ms at a supply voltage of 20 V.

  1. PCA Fault Feature Extraction in Complex Electric Power Systems

    Directory of Open Access Journals (Sweden)

    ZHANG, J.

    2010-08-01

    Full Text Available Electric power system is one of the most complex artificial systems in the world. The complexity is determined by its characteristics about constitution, configuration, operation, organization, etc. The fault in electric power system cannot be completely avoided. When electric power system operates from normal state to failure or abnormal, its electric quantities (current, voltage and angles, etc. may change significantly. Our researches indicate that the variable with the biggest coefficient in principal component usually corresponds to the fault. Therefore, utilizing real-time measurements of phasor measurement unit, based on principal components analysis technology, we have extracted successfully the distinct features of fault component. Of course, because of the complexity of different types of faults in electric power system, there still exists enormous problems need a close and intensive study.

  2. Brain hemorrhage after electrical burn injury: Case report and probable mechanism

    OpenAIRE

    Axayacalt, Gutierrez Aceves Guillermo; Alejandro, Ceja Espinosa; Marcos, Rios Alanis; Inocencio, Ruiz Flores Milton; Alfredo, Herrera Gonzalez Jose

    2016-01-01

    Background: High-voltage electric injury may induce lesion in different organs. In addition to the local tissue damage, electrical injuries may lead to neurological deficits, musculoskeletal damage, and cardiovascular injury. Severe vascular damage may occur making the blood vessels involved prone to thrombosis and spontaneous rupture. Case Description: Here, we present the case of a 39-year-old male who suffered an electrical burn with high tension wire causing intracranial bleeding. He ...

  3. Canada's first competitive electricity market: the Alberta experience

    International Nuclear Information System (INIS)

    McMaster, D.

    1997-01-01

    The restructuring of the electric power industry as experienced in the province of Alberta was discussed. Alberta's electric industry structure today is comprised of a power pool and open access transmission. The forces for change, the evolution of the new structure, the new Electric Utilities Act that defined restructuring, features of the restructured industry, the organization and functions of the Alberta Power Pool and the Transmission Administrator, the day-to-day functioning of the Power Pool, the price setting mechanism, access to the transmission system, the legislated financial hedges, the timeline for the retirement of the existing generation system, and anticipated future developments were described

  4. Cytostretch, an Organ-on-Chip Platform

    NARCIS (Netherlands)

    Gaio, N.; van Meer, B.; Quiros Solano, W.F.; Bergers, L.; van de Stolpe, A; Mummery, CL; Sarro, P.M.; Dekker, R.

    2016-01-01

    Organ-on-Chips (OOCs) are micro-fabricated devices which are used to culture cells in order to mimic functional units of human organs. The devices are designed to simulate the physiological environment of tissues in vivo. Cells in some types of OOCs can be stimulated in situ by electrical and/or

  5. Electrical property heterogeneity at transparent conductive oxide/organic semiconductor interfaces: mapping contact ohmicity using conducting-tip atomic force microscopy.

    Science.gov (United States)

    MacDonald, Gordon A; Veneman, P Alexander; Placencia, Diogenes; Armstrong, Neal R

    2012-11-27

    We demonstrate mapping of electrical properties of heterojunctions of a molecular semiconductor (copper phthalocyanine, CuPc) and a transparent conducting oxide (indium-tin oxide, ITO), on 20-500 nm length scales, using a conductive-probe atomic force microscopy technique, scanning current spectroscopy (SCS). SCS maps are generated for CuPc/ITO heterojunctions as a function of ITO activation procedures and modification with variable chain length alkyl-phosphonic acids (PAs). We correlate differences in small length scale electrical properties with the performance of organic photovoltaic cells (OPVs) based on CuPc/C(60) heterojunctions, built on these same ITO substrates. SCS maps the "ohmicity" of ITO/CuPc heterojunctions, creating arrays of spatially resolved current-voltage (J-V) curves. Each J-V curve is fit with modified Mott-Gurney expressions, mapping a fitted exponent (γ), where deviations from γ = 2.0 suggest nonohmic behavior. ITO/CuPc/C(60)/BCP/Al OPVs built on nonactivated ITO show mainly nonohmic SCS maps and dark J-V curves with increased series resistance (R(S)), lowered fill-factors (FF), and diminished device performance, especially near the open-circuit voltage. Nearly optimal behavior is seen for OPVs built on oxygen-plasma-treated ITO contacts, which showed SCS maps comparable to heterojunctions of CuPc on clean Au. For ITO electrodes modified with PAs there is a strong correlation between PA chain length and the degree of ohmicity and uniformity of electrical response in ITO/CuPc heterojunctions. ITO electrodes modified with 6-8 carbon alkyl-PAs show uniform and nearly ohmic SCS maps, coupled with acceptable CuPc/C(60)OPV performance. ITO modified with C14 and C18 alkyl-PAs shows dramatic decreases in FF, increases in R(S), and greatly enhanced recombination losses.

  6. Electric emissions from electrical appliances

    International Nuclear Information System (INIS)

    Leitgeb, N.; Cech, R.; Schroettner, J.

    2008-01-01

    Electric emissions from electric appliances are frequently considered negligible, and standards consider electric appliances to comply without testing. By investigating 122 household devices of 63 different categories, it could be shown that emitted electric field levels do not justify general disregard. Electric reference values can be exceeded up to 11-fold. By numerical dosimetry with homogeneous human models, induced intra-corporal electric current densities were determined and factors calculated to elevate reference levels to accounting for reduced induction efficiency of inhomogeneous fields. These factors were found not high enough to allow generally concluding on compliance with basic restrictions without testing. Electric appliances usually simultaneously emit both electric and magnetic fields exposing almost the same body region. Since the sum of induced current densities is limited, one field component reduces the available margin for the other. Therefore, superposition of electric current densities induced by either field would merit consideration. (authors)

  7. Focus on Organic Conductors

    Directory of Open Access Journals (Sweden)

    Shinya Uji, Takehiko Mori and Toshihiro Takahashi

    2009-01-01

    Full Text Available Organic materials are usually thought of as electrical insulators. Progress in chemical synthesis, however, has brought us a rich variety of conducting organic materials, which can be classified into conducting polymers and molecular crystals. Researchers can realize highly conducting molecular crystals in charge-transfer complexes, where suitable combinations of organic electron donor or acceptor molecules with counter ions or other organic molecules provide charge carriers. By means of a kind of chemical doping, the charge-transfer complexes exhibit high electrical conductivity and, thanks to their highly crystalline nature, even superconductivity has been observed. This focus issue of Science and Technology of Advanced Materials is devoted to the research into such 'organic conductors'The first organic metal was (TTF(TCNQ, which was found in 1973 to have high conductivity at room temperature and a metal–insulator transition at low temperatures. The first organic superconductor was (TMTSF2PF6, whose superconductivity under high pressures was reported by J´erome in 1980. After these findings, the research on organic conductors exploded. Hundreds of organic conductors have been reported, among which more than one hundred exhibit superconductivity. Recently, a single-component organic conductor has been found with metallic conductivity down to low temperatures.In these organic conductors, in spite of their simple electronic structures, much new physics has arisen from the low dimensionality. Examples are charge and spin density waves, characteristic metal–insulator transitions, charge order, unconventional superconductivity, superconductor–insulator transitions, and zero-gap conductors with Dirac cones. The discovery of this new physics is undoubtedly derived from the development of many intriguing novel organic conductors. High quality single crystals are indispensable to the precise measurement of electronic states.This focus issue

  8. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors.

    Science.gov (United States)

    Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C P; Gelinck, Gerwin H; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2016-10-20

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics.

  9. The evaluation and management of electrical storm.

    Science.gov (United States)

    Eifling, Michael; Razavi, Mehdi; Massumi, Ali

    2011-01-01

    Electrical storm is an increasingly common and life-threatening syndrome that is defined by 3 or more sustained episodes of ventricular tachycardia, ventricular fibrillation, or appropriate shocks from an implantable cardioverter-defibrillator within 24 hours. The clinical presentation can be dramatic. Electrical storm can manifest itself during acute myocardial infarction and in patients who have structural heart disease, an implantable cardioverter-defibrillator, or an inherited arrhythmic syndrome. The presence or absence of structural heart disease and the electrocardiographic morphology of the presenting arrhythmia can provide important diagnostic clues into the mechanism of electrical storm. Electrical storm typically has a poor outcome.The effective management of electrical storm requires an understanding of arrhythmia mechanisms, therapeutic options, device programming, and indications for radiofrequency catheter ablation. Initial management involves determining and correcting the underlying ischemia, electrolyte imbalances, or other causative factors. Amiodarone and β-blockers, especially propranolol, effectively resolve arrhythmias in most patients. Nonpharmacologic treatment, including radiofrequency ablation, can control electrical storm in drug-refractory patients. Patients who have implantable cardioverter-defibrillators can present with multiple shocks and may require drug therapy and device reprogramming. After the acute phase of electrical storm, the treatment focus should shift toward maximizing heart-failure therapy, performing revascularization, and preventing subsequent ventricular arrhythmias. Herein, we present an organized approach for effectively evaluating and managing electrical storm.

  10. Electric Potential and Electric Field Imaging with Dynamic Applications: 2017 Research Award Innovation

    Science.gov (United States)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  11. Small organic molecule based flow battery

    Science.gov (United States)

    Huskinson, Brian; Marshak, Michael; Aziz, Michael J.; Gordon, Roy G.; Betley, Theodore A.; Aspuru-Guzik, Alan; Er, Suleyman; Suh, Changwon

    2018-05-08

    The invention provides an electrochemical cell based on a new chemistry for a flow battery for large scale, e.g., gridscale, electrical energy storage. Electrical energy is stored chemically at an electrochemical electrode by the protonation of small organic molecules called quinones to hydroquinones. The proton is provided by a complementary electrochemical reaction at the other electrode. These reactions are reversed to deliver electrical energy. A flow battery based on this concept can operate as a closed system. The flow battery architecture has scaling advantages over solid electrode batteries for large scale energy storage.

  12. 25th anniversary article: organic photovoltaic modules and biopolymer supercapacitors for supply of renewable electricity: a perspective from Africa.

    Science.gov (United States)

    Inganäs, Olle; Admassie, Shimelis

    2014-02-12

    The role of materials in civilization is well demonstrated over the centuries and millennia, as materials have come to serve as the classifier of stages of civilization. With the advent of materials science, this relation has become even more pronounced. The pivotal role of advanced materials in industrial economies has not yet been matched by the influence of advanced materials during the transition from agricultural to modern societies. The role of advanced materials in poverty eradication can be very large, in particular if new trajectories of social and economic development become possible. This is the topic of this essay, different in format from the traditional scientific review, as we try to encompass not only two infant technologies of solar energy conversion and storage by means of organic materials, but also the social conditions for introduction of the technologies. The development of organic-based photovoltaic energy conversion has been rapid, and promises to deliver new alternatives to well-established silicon photovoltaics. Our recent development of organic biopolymer composite electrodes opens avenues towards the use of renewable materials in the construction of wooden batteries or supercapacitors for charge storage. Combining these new elements may give different conditions for introduction of energy technology in areas now lacking electrical grids, but having sufficient solar energy inputs. These areas are found close to the equator, and include some of the poorest regions on earth. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effects of electric stimulation of the hunger center in the lateral hypothalamus on slow electric activity and spike activity of fundal and antral stomach muscles in rabbits under conditions of hunger and satiation.

    Science.gov (United States)

    Kromin, A A; Zenina, O Yu

    2013-09-01

    In chronic experiments on rabbits, the effect of electric stimulation of the hunger center in the lateral hypothalamus on myoelectric activity of the fundal and antral parts of the stomach was studied under conditions of hunger and satiation in the absence of food. Stimulation of the lateral hypothalamus in rabbits subjected to 24-h food deprivation and in previously fed rabbits produced incessant seeking behavior, which was followed by reorganization of the structure of temporal organization of slow wave electric activity of muscles of the stomach body and antrum specific for hungry and satiated animals. Increased hunger motivation during electric stimulation of the lateral hypothalamus manifested in the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles in rabbits subjected to 24-h food deprivation in the replacement of bimodal distribution of slow wave periods to a trimodal type typical of 2-day deprivation, while transition from satiation to hunger caused by electric stimulation of the lateral hypothalamus was associated with a shift from monomodal distributions of slow wave periods to a bimodal type typical of 24-h deprivation. Reorganization of the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles during electric stimulation of the lateral hypothalamus was determined by descending inhibitory influences of food motivational excitation on activity of the myogenic pacemaker of the lesser curvature of the stomach.

  14. Charge carrier relaxation model in disordered organic semiconductors

    International Nuclear Information System (INIS)

    Lu, Nianduan; Li, Ling; Sun, Pengxiao; Liu, Ming

    2013-01-01

    The relaxation phenomena of charge carrier in disordered organic semiconductors have been demonstrated and investigated theoretically. An analytical model describing the charge carrier relaxation is proposed based on the pure hopping transport theory. The relation between the material disorder, electric field and temperature and the relaxation phenomena has been discussed in detail, respectively. The calculated results reveal that the increase of electric field and temperature can promote the relaxation effect in disordered organic semiconductors, while the increase of material disorder will weaken the relaxation. The proposed model can explain well the stretched-exponential law by adopting the appropriate parameters. The calculation shows a good agreement with the experimental data for organic semiconductors

  15. Bill project modified by the Senate on a new organisation of the electricity market

    International Nuclear Information System (INIS)

    2010-01-01

    This report contains the modifications introduced by the French Senate in a bill project voted by the National Assembly which addresses a new organization of the electricity market. Several aspects are treated in this text: the freedom of choice of the electricity provider, the sale and the conditions of sale of electricity by EDF to other electricity providers, the maximum volume a provider can buy and its evaluation, the electricity price determination, the provider obligations, and so on

  16. Total qualification of class 1E electric equipment

    International Nuclear Information System (INIS)

    Chauvin, G.

    1982-09-01

    For nuclear power plant projects in France, Framatome and its partners Electricite de France (EDF) and the Commissariat a l'Energie Atomique (CEA) have responded to the present qualification context by implementing a wide-ranging qualification program to acquire significant organizational and practical experience. The following sections detail Framatome's approach to the activities of an organization mandated to provide a complete spectrum of qualification services. Thorough implementation of a Class 1E electric equipment qualification program by the competent organization or qualifier entails completion of three consecutive steps: 1) program preparation, 2) program implementation, and 3) analysis of test results and conclusion. The qualifier assumes extensive responsibility for each of these steps. The following sections present test facilities used in France to conduct a total qualification program for Class 1E electric equipment

  17. Multifunctional Organic-Semiconductor Interfacial Layers for Solution-Processed Oxide-Semiconductor Thin-Film Transistor.

    Science.gov (United States)

    Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik

    2017-06-01

    The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. An Effective Design of Electrically Conducting Thin-Film Composite (TFC) Membranes for Bio and Organic Fouling Control in Forward Osmosis (FO).

    Science.gov (United States)

    Liu, Qing; Qiu, Guanglei; Zhou, Zhengzhong; Li, Jingguo; Amy, Gary Lee; Xie, Jianping; Lee, Jim Yang

    2016-10-04

    The organic foulants and bacteria in secondary wastewater treatment can seriously impair the membrane performance in a water treatment plant. The embedded electrode approach using an externally applied potential to repel organic foulants and inhibit bacterial adhesion can effectively reduce the frequency of membrane replacement. Electrode embedment in membranes is often carried out by dispensing a conductor (e.g., carbon nanotubes, or CNTs) in the membrane substrate, which gives rise to two problems: the leaching-out of the conductor and a percolation-limited membrane conductivity that results in an added energy cost. This study presents a facile method for the embedment of a continuous electrode in thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, a conducting porous carbon paper is used as the understructure for the formation of a membrane substrate by the classical phase inversion process. The carbon paper and the membrane substrate polymer form an interpenetrating structure with good stability and low electrical resistance (only about 1Ω/□). The membrane-electrode assembly was deployed as the cathode of an electrochemical cell, and showed good resistance to organic and microbial fouling with the imposition of a 2.0 V DC voltage. The carbon paper-based FO TFC membranes also possess good mechanical stability for practical use.

  19. Reliability risks during the transition to competitive electricity markets

    International Nuclear Information System (INIS)

    Hughes, J.P.

    2005-01-01

    The Electricity Consumers Resource Council (ELCON) is a U.S. association representing industrial consumers of electricity, and is a long-standing advocate of competition in the electric power industry. However, because a reliable grid is necessary to support competitive wholesale markets, ELCON believes that the transmission system is an essential facility that must remain regulated. The initiatives discussed in this white paper represent significant steps that the National Electric Reliability Council (NERC) and the industry have taken to improve reliability in a competitive and restructured electric industry. Strategic manoeuvres of incumbent utilities to maintain market share were evaluated, as well as discrimination against potential competitors. It was suggested that, occasionally, indecisive federal policies have been taken advantage of by utilities. The unintended consequences of state restructuring policies that allow utilities to over-earn their revenue requirements were reviewed. NERC reliability standards will remain unenforceable until a new Electricity Reliability Organization has been certified. Flawed market designs and inadequate market power mitigation, as well as the financial distress of merchant generators, pose considerable risks. It was suggested that these risks could trigger transmission loading relief incidents, local outages or widespread outages. In the absence of mandatory reliability standards with penalties, and complementary market rules for mitigating generation and transmission market power, economic incentives will encourage other forms of opportunistic behavior that may be the root cause of other outages. Public concern regarding these risks to grid reliability may result in lost public support for competitive electricity markets. Proposed solutions include the certification of a new Electric Reliability Organization to establish and enforce mandatory reliability standards, and granting the Federal Energy Regulatory Commission

  20. Environmental challenges and opportunities of the evolving North American electricity market : European electricity generating facilities: an overview of European regulatory requirements and standardization efforts

    International Nuclear Information System (INIS)

    Nichols, L.

    2002-06-01

    Several factors are affecting power generating facilities, such as the opening of both electricity and gas markets, and the pressure applied on generators and governments to ensure a steady energy supply for consumers. An additional factor is the pressure for the closing of nuclear power facilities. European siting and emissions requirements for coal-fired and natural gas generating facilities were presented in this background paper. In addition, the author provided an overview of the standardization process in place in Europe. The European Union and its functioning were briefly described, as well as a listing of relevant organizations. The current trends were examined. The document first introduced the European Union, and the next section dealt with Regulatory regime: the internal energy market. The third section examined the issue of Regulatory regime: generation and environmental regulations. Section four presented environmental management systems, followed by a section on standardization. Section six discussed European organizations involved in electricity issues, while the following section dealt with European commission programs. The last section briefly looked at the trends in the electricity sector, broaching topics such as compliance, electricity generation, and emissions trading. 52 refs., 2 tabs

  1. Low-frequency electrical properties of peat

    Science.gov (United States)

    Comas, Xavier; Slater, Lee

    2004-12-01

    Electrical resistivity/induced polarization (0.1-1000 Hz) and vertical hydraulic conductivity (Kv) measurements of peat samples extracted from different depths (0-11 m) in a peatland in Maine were obtained as a function of pore fluid conductivity (σw) between 0.001 and 2 S/m. Hydraulic conductivity increased with σw (Kv ∝ σw0.3 between 0.001 and 2 S/m), indicating that pore dilation occurs due to the reaction of NaCl with organic functional groups as postulated by previous workers. Electrical measurements were modeled by assuming that "bulk" electrolytic conduction through the interconnected pore space and surface conduction in the electrical double layer (EDL) at the organic sediment-fluid interface act in parallel. This analysis suggests that pore space dilation causes a nonlinear relationship between the "bulk" electrolytic conductivity (σel) and σw (σel ∝ σw1.3). The Archie equation predicts a linear dependence of σel on σw and thus appears inappropriate for organic sediments. Induced polarization (IP) measurements of the imaginary part (σ″surf) of the surface conductivity (σ*surf) show that σ″surf is greater and more strongly σw-dependent (σ″surf ∝ σw0.5 between 0.001 and 2 S/m) than observed for inorganic sediments. By assuming a linear relationship between the real (σ'surf) and the imaginary part (σ″surf) of the surface conductivity, we develop an empirical model relating the resistivity and induced polarization measurements to σw in peat. We demonstrate the use of this model to predict (a) σw and (b) the change in Kv due to an incremental change in σw from resistivity and induced polarization measurements on organic sediments. Our study has implications for noninvasive geophysical characterization of σw and Kv with potential to benefit studies of carbon cycling and greenhouse gas fluxes as well as nutrient supply dynamics in peatlands.

  2. Network governance in electricity distribution: Public utility or commodity

    International Nuclear Information System (INIS)

    Kuenneke, Rolf; Fens, Theo

    2005-01-01

    This paper addresses the question whether the operation and management of electricity distribution networks in a liberalized market environment evolves into a market driven commodity business or might be perceived as a genuine public utility task. A framework is developed to classify and compare different institutional arrangements according to the public utility model and the commodity model. These models are exemplified for the case of the Dutch electricity sector. It appears that the institutional organization of electricity distribution networks is at the crossroads of two very different institutional development paths. They develop towards commercial business if the system characteristics of the electricity sector remain basically unchanged to the traditional situation. If however innovative technological developments allow for a decentralization and decomposition of the electricity system, distribution networks might be operated as public utilities while other energy services are exploited commercially. (Author)

  3. Photosonic digestion of aqueous organics

    International Nuclear Information System (INIS)

    Toy, M.S.

    1993-02-01

    The objective of the program discussed in this report has been to develop an on-line aqueous organic digestion process that decomposes the organic compounds in water to ionic species, which can then be removed by the plant's demineralizers. At the Susquehanna Steam Electric Plant (SSES) of Pennsylvania Power and Light Company (PP ampersand L), the sonolysis process was tested by application to standard water streams to which ethylene glycol and urea were added. There were a substantial number of ionic species generated from both compounds as determined by ion chromatography. The sonolysis process and another organic destruction method, the General Electric ozone/UV process, were compared for their ability to remove the total organic carbon (TOC) and total inorganic carbon (TIC) from streams from the collection tanks of the plant's radwaste system. The sonolysis process efficiency, evaluated after the effluent from sonolysis was passed through a demineralizer, was estimated to be 55 + 17% for TOC removal as compared to a 93% removal by ozone/UV. Sonolysis led to the removal of 93% of the TIC as compared to 100% by the UV/ozone process

  4. Organisation and reforms of the electricity sector in Slovenia

    International Nuclear Information System (INIS)

    Hrovatin, Nevenka; Zoric, Jelena; Pittman, Russell

    2009-01-01

    As a new member state of the EU, Slovenia has been required to adopt EU legislation in full. The Slovenian electricity market has been partially opened since 2001. From 1 July 2007, when households became eligible customers, the electricity market opened fully. The electricity reforms carried out so far comprise of market liberalization, unbundling of activities, allowing regulated TPA, formation of an organized power market, adoption of incentive-based price cap regulation and the establishment of an independent regulatory body. The challenge that remains to be addressed is how to enhance competition in an electricity market that has a net importer position with limited cross-border capacity. Envisaged investments in generating and cross-border capacities will partially close the gap between domestic generation and consumption. Furthermore, since Slovenia has one of the largest levels of state ownership in the electricity sector among EU member states, privatization of electricity companies is envisaged in the near future. (author)

  5. Electric utilities in 2007

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, L.S. [Smith Barney Inc., New York, NY (United States)

    1998-10-01

    A century ago--in the year J.J. Thomson discovered the electron--electricity, gas and traction companies battled for markets, and corrupt city councils demanded their fair share of the take. One tycoon became so disgusted with the confusion and dishonesty that he decided to bribe the legislature to set up an honest, state-run regulatory agency that would bring order to chaos. But he was found out. The scandal set back the cause of regulation until 1907, the year in which the electric washing machine and the vacuum cleaner were invented. By then, electricity sales had septupled from 1897 levels, and three states had established utility regulation. In the coming decade, 1997 to 2007, the utility business could undergo similar dramatic change, but it will move toward less regulation and more competition during a period of slow growth. Management will have to work harder to achieve success, however, because much of the profits will have to come not from a growing market but from the pockets of competitors. By 2007, electricity will constitute a component of a larger energy and utility services industry that sells electricity, natural gas and possibly water, propane and telecommunications. Customized service will meet the needs of consumers of all sizes. The dominant firm in the industry, the virtual utility, may look more like a financial organization or a mass marketer than the traditional converter of raw material to energy. Emphasis on market-based pricing should lead to more efficient use of resources. If the process works right, the consumer wins.

  6. Electric power and environment in Mexico

    International Nuclear Information System (INIS)

    Quintanilla, J.

    1997-01-01

    This volume is one of the three resulting volumes about the project named Document analysis and prospective organized by the National Autonomous University of Mexico (UNAM) through it University Energy Program (PUE). It is a non-periodical publication collection of the variable content and extent that as a whole constitutes an information heritage and an original contribution about the energy problematic as International level as at the country context and the University activities. In this book the manners of producing electrical energy are discussed, so how satisfying the growing necessities of this energy in Mexico without contaminating environment and how doing rational and efficient use of energy. The content of each document of this book is however exclusive responsibility of authors, as in the information as in their told opinions. The following papers were presented: 1) Hydroelectricity, soils use and water management. 2) The electric generation in Mexico and its environmental impacts: Past, present and future. 3) The nucleo electricity and the radioactive materials management. 4) Exposure to electromagnetic fields and its association with leukemia in children. 5) The electric power in Mexico and the supportable development. 6) Potential of electric generation at great scale with eolic energy in Mexico. 7) Toward an electric generation scheme distributed with non-conventional energies. 8) Renewable sources of energy in Mexico at the Century 21. (Author)

  7. Organic semiconductor heterojunctions and its application in organic light-emitting diodes

    CERN Document Server

    Ma, Dongge

    2017-01-01

    This book systematically introduces the most important aspects of organic semiconductor heterojunctions, including the basic concepts and electrical properties. It comprehensively discusses the application of organic semiconductor heterojunctions as charge injectors and charge generation layers in organic light-emitting diodes (OLEDs). Semiconductor heterojunctions are the basis for constructing high-performance optoelectronic devices. In recent decades, organic semiconductors have been increasingly used to fabricate heterojunction devices, especially in OLEDs, and the subject has attracted a great deal of attention and evoked many new phenomena and interpretations in the field. This important application is based on the low dielectric constant of organic semiconductors and the weak non-covalent electronic interactions between them, which means that they easily form accumulation heterojunctions. As we know, the accumulation-type space charge region is highly conductive, which is an important property for high...

  8. Electrical switching and memory phenomena observed in redox-gradient dendrimer sandwich devices

    OpenAIRE

    Li, JianChang; Blackstock, Silas C.; Szulczewski, Greg J.

    2005-01-01

    We report on the fabrication of dendrimer sandwich devices with electrical switching and memory properties. The storage media is consisted of a redox-gradient dendrimer layer sandwiched in organic barrier thin films. The dendrimer layer acts as potential well where redox-state changes and consequent electrical transitions of the embedded dendrimer molecules are expected to be effectively triggered and retained, respectively. Experimental results indicated that electrical switching could be re...

  9. The effect of electric field strength on electroplex emission at the interface of NPB/PBD organic light-emitting diodes

    Science.gov (United States)

    Zhao, De-Wei; Xu, Zheng; Zhang, Fu-Jun; Song, Shu-Fang; Zhao, Su-Ling; Wang, Yong; Yuan, Guang-Cai; Zhang, Yan-Fei; Xu, Hong-Hua

    2007-02-01

    Organic light-emitting diode (OLED) based on two kinds of blue emission materials N, N'-bis(1-naphthyl)- N, N'-diphenyl-l,l'-diphenyl-4,4'-diamine (NPB) and 2-(4-biphenylyl)-5(4- tert-butyl-phenyl)-1,3,4-oxadiazole (PBD) was fabricated. There is only one emission peak in photoluminescence (PL) spectrum which originates from NPB exciton emission. And the electroluminescence (EL) emission peaks have an apparent red-shift with the increase of driving voltage. The red-shift emission from exciplex emission could be ruled out. Thus, by the method of Gaussian fitting it should be ascribed to the overlap of exciton emission and electroplex emission which occurs at the interface between NPB and PBD. The formation of the electroplex emission under high electric field is analyzed.

  10. Fabrication and electrical properties of organic-on-inorganic Schottky devices

    International Nuclear Information System (INIS)

    Guellue, Oe; Biber, M; Tueruet, A; Cankaya, M

    2008-01-01

    In this paper, we fabricated an Al/new fuchsin/p-Si organic-inorganic (OI) Schottky diode structure by direct evaporation of an organic compound solution on a p-Si semiconductor wafer. A direct optical band gap energy value of the new fuchsin organic film on a glass substrate was obtained as 1.95 eV. Current-voltage (I-V) and capacitance-voltage (C-V) measurements of the OI device were carried out at room temperature. From the I-V characteristics, it was seen that the Al/new fuchsin/p-Si contacts showed good rectifying behavior. An ideality factor value of 1.47 and a barrier height (BH) value of 0.75 eV for the Al/new fuchsin/p-Si contact were determined from the forward bias I-V characteristics. A barrier height value of 0.78 eV was obtained from the capacitance-voltage (C-V) characteristics. It has been seen that the BH value of 0.75 eV obtained for the Al/new fuchsin/p-Si contact is significantly larger than that of conventional Al/p-Si Schottky metal-semiconductor (MS) diodes. Thus, modification of the interfacial potential barrier for Al/p-Si diodes has been achieved using a thin interlayer of the new fuchsin organic semiconductor; this has been ascribed to the fact that the new fuchsin interlayer increases the effective barrier height because of the interface dipole induced by passivation of the organic layer

  11. Ways to control quality of electric equipment in the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Shipilov, A.D.; Nabokov, E.P.

    1982-01-01

    A structure is proposed for organization in the coal industry of a permanent service for controlling quality of electrical engineering equipment. A form was developed for introduction of recommendations to improve quality. Methods are suggested for evaluating the quality level as applied to specific tasks of controlling quality of the electrical equipment used in mining.

  12. Y2K lessons learned for electric grid stability

    International Nuclear Information System (INIS)

    Gueorguiev, B.; Ianev, I. L.; Purvis, E. E.

    2000-01-01

    Y2K was an example of a worldwide infrastructure threat. Actions to understand infrastructure risks and mitigate infrastructure threats are a continuing and increasing part of the worlds corporate, government, and international organizations systems, and the severe implications of infrastructure failures to the health, safety, and financial well being of people and organizations are the deriving force. The IAEA conducted a number of Y2K related activities in nuclear power and fuel cycle activities. A set of these activities address the interface between electric power generation facilities and electric power grids in the region of Eastern Europe and the countries of the former Soviet Union. This addressed a continuing infrastructure risks and actions to mitigate these risk. The results were shown by events to have made positive contributions. The potential loss of nuclear power plant generation is a significant risk to electric power grids, an important critical infrastructure. Not only does the threat constitute a problem with the potential loss of the grid, loss of the electric power grid increases the probability of accidents in nuclear power plants. Recognizing that these activities addressed only one area of infrastructure risk in one region, there are some key lessons that were learned that could have general applicability

  13. Organic semiconductors in sensor applications

    CERN Document Server

    Malliaras, George; Owens, Róisín

    2008-01-01

    Organic semiconductors offer unique characteristics such as tunability of electronic properties via chemical synthesis, compatibility with mechanically flexible substrates, low-cost manufacturing, and facile integration with chemical and biological functionalities. These characteristics have prompted the application of organic semiconductors and their devices in physical, chemical, and biological sensors. This book covers this rapidly emerging field by discussing both optical and electrical sensor concepts. Novel transducers based on organic light-emitting diodes and organic thin-film transistors, as well as systems-on-a-chip architectures are presented. Functionalization techniques to enhance specificity are outlined, and models for the sensor response are described.

  14. Energy and electricity demand forecasting for nuclear power planning in developing countries

    International Nuclear Information System (INIS)

    1988-07-01

    This Guidebook is designed to be a reference document to forecast energy and electricity demand. It presents concepts and methodologies that have been developed to make an analytical approach to energy/electricity demand forecasting as part of the planning process. The Guidebook is divided into 6 main chapters: (Energy demand and development, energy demand analysis, electric load curve analysis, energy and electricity demand forecasting, energy and electricity demand forecasting tools used in various organizations, IAEA methodologies for energy and electricity demand forecasting) and 3 appendices (experience with case studies carried out by the IAEA, reference technical data, reference economic data). A bibliography and a glossary complete the Guidebook. Refs, figs and tabs

  15. Doping Polymer Semiconductors by Organic Salts: Toward High-Performance Solution-Processed Organic Field-Effect Transistors.

    Science.gov (United States)

    Hu, Yuanyuan; Rengert, Zachary D; McDowell, Caitlin; Ford, Michael J; Wang, Ming; Karki, Akchheta; Lill, Alexander T; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2018-04-24

    Solution-processed organic field-effect transistors (OFETs) were fabricated with the addition of an organic salt, trityl tetrakis(pentafluorophenyl)borate (TrTPFB), into thin films of donor-acceptor copolymer semiconductors. The performance of OFETs is significantly enhanced after the organic salt is incorporated. TrTPFB is confirmed to p-dope the organic semiconductors used in this study, and the doping efficiency as well as doping physics was investigated. In addition, systematic electrical and structural characterizations reveal how the doping enhances the performance of OFETs. Furthermore, it is shown that this organic salt doping method is feasible for both p- and n-doping by using different organic salts and, thus, can be utilized to achieve high-performance OFETs and organic complementary circuits.

  16. Green Power Partnership Eligible Organizations

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership is a voluntary partnership program designed to reduce the environmental impact of electricity generation by promoting renewable energy. Many different types of organizations are eligible to become Partners.

  17. Hydro and After: The Canadian Experience with the Organization, Nationalization and Deregulation of Electrical Utilities

    International Nuclear Information System (INIS)

    Nelles, Henry Vivian

    2003-01-01

    This paper surveys the process of nationalization and some recent steps towards denationalization in a distinctive Canadian institutional setting, the provincial hydro-electric power utilities. The richest, most industrialized central province, Ontario, established a dynamic publicly owned electric generation and distribution system before World War I. Most other provinces developed variations of the regulatory model to govern private monopolies until the post World War II period when widespread nationalization at the provincial level created a near universal pattern of state owned electric companies. Recently, the process of dismantling state monopolies in this sector has begun in two provinces, one where public ownership was weakest, and the other where the concept of 'provincial hydro' was born

  18. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.

    Science.gov (United States)

    Kouzuma, Atsushi; Kaku, Nobuo; Watanabe, Kazuya

    2014-12-01

    Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ∼80 mW m(-2) (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world.

  19. Organic solid-state lasers

    CERN Document Server

    Forget, Sébastien

    2013-01-01

    Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.

  20. Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment

    Science.gov (United States)

    Schrijver, C. J.; Dobbins, R.; Murtagh, W.; Petrinec, S. M.

    2014-07-01

    Geomagnetically induced currents are known to induce disturbances in the electric power grid. Here we perform a statistical analysis of 11,242 insurance claims from 2000 through 2010 for equipment losses and related business interruptions in North American commercial organizations that are associated with damage to, or malfunction of, electrical and electronic equipment. We find that claim rates are elevated on days with elevated geomagnetic activity by approximately 20% for the top 5% and by about 10% for the top third of most active days ranked by daily maximum variability of the geomagnetic field. When focusing on the claims explicitly attributed to electrical surges (amounting to more than half the total sample), we find that the dependence of claim rates on geomagnetic activity mirrors that of major disturbances in the U.S. high-voltage electric power grid. The claim statistics thus reveal that large-scale geomagnetic variability couples into the low-voltage power distribution network and that related power-quality variations can cause malfunctions and failures in electrical and electronic devices that, in turn, lead to an estimated 500 claims per average year within North America. We discuss the possible magnitude of the full economic impact associated with quality variations in electrical power associated with space weather.

  1. Electrical Distribution System Functional Inspection (EDSFI) data base program

    International Nuclear Information System (INIS)

    Gautam, A.

    1993-01-01

    This document describes the organization, installation procedures, and operating instructions for the database computer program containing inspection findings from the US Nuclear Regulatory Commission's (NRC's) Electrical Distribution System Functional Inspections (EDSFIs). The program enables the user to search and sort findings, ascertain trends, and obtain printed reports of the findings. The findings include observations, unresolved issues, or possible deficiencies in the design and implementation of electrical distribution systems in nuclear plants. This database will assist those preparing for electrical inspections, searching for deficiencies in a plant, and determining the corrective actions previously taken for similar deficiencies. This database will be updated as new EDSFIs are completed

  2. Organic/Inorganic Hybrid Perovskite FETs for Electrically Injected Laser Action

    Science.gov (United States)

    2015-09-01

    UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Wake Forest University REPORT NUMBER Department of Physics...Action PI, Oana D. Jurchescu, Wake Forest University In collaboration with Z. Valy Vardeny ( University of Utah) -supported under N00014-15-1-2524 ONR...between mob ili ty and y can be clearly observed. The mobility increases over fi ve orders of magnitude as a result of decreasing y by about 20 times

  3. Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data

    International Nuclear Information System (INIS)

    Raesaenen, Teemu; Voukantsis, Dimitrios; Niska, Harri; Karatzas, Kostas; Kolehmainen, Mikko

    2010-01-01

    The recent technological developments monitoring the electricity use of small customers provides with a whole new view to develop electricity distribution systems, customer-specific services and to increase energy efficiency. The analysis of customer load profile and load estimation is an important and popular area of electricity distribution technology and management. In this paper, we present an efficient methodology, based on self-organizing maps (SOM) and clustering methods (K-means and hierarchical clustering), capable of handling large amounts of time-series data in the context of electricity load management research. The proposed methodology was applied on a dataset consisting of hourly measured electricity use data, for 3989 small customers located in Northern-Savo, Finland. Information for the hourly electricity use, for a large numbers of small customers, has been made available only recently. Therefore, this paper presents the first results of making use of these data. The individual customers were classified into user groups based on their electricity use profile. On this basis, new, data-based load curves were calculated for each of these user groups. The new user groups as well as the new-estimated load curves were compared with the existing ones, which were calculated by the electricity company, on the basis of a customer classification scheme and their annual demand for electricity. The index of agreement statistics were used to quantify the agreement between the estimated and observed electricity use. The results indicate that there is a clear improvement when using data-based estimations, while the new-estimated load curves can be utilized directly by existing electricity power systems for more accurate load estimates.

  4. Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data

    Energy Technology Data Exchange (ETDEWEB)

    Raesaenen, Teemu; Niska, Harri; Kolehmainen, Mikko [Department of Environmental Sciences, University of Eastern Finland P.O. Box 1627, FIN-70211 Kuopio (Finland); Voukantsis, Dimitrios; Karatzas, Kostas [Department of Mechanical Engineering, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)

    2010-11-15

    The recent technological developments monitoring the electricity use of small customers provides with a whole new view to develop electricity distribution systems, customer-specific services and to increase energy efficiency. The analysis of customer load profile and load estimation is an important and popular area of electricity distribution technology and management. In this paper, we present an efficient methodology, based on self-organizing maps (SOM) and clustering methods (K-means and hierarchical clustering), capable of handling large amounts of time-series data in the context of electricity load management research. The proposed methodology was applied on a dataset consisting of hourly measured electricity use data, for 3989 small customers located in Northern-Savo, Finland. Information for the hourly electricity use, for a large numbers of small customers, has been made available only recently. Therefore, this paper presents the first results of making use of these data. The individual customers were classified into user groups based on their electricity use profile. On this basis, new, data-based load curves were calculated for each of these user groups. The new user groups as well as the new-estimated load curves were compared with the existing ones, which were calculated by the electricity company, on the basis of a customer classification scheme and their annual demand for electricity. The index of agreement statistics were used to quantify the agreement between the estimated and observed electricity use. The results indicate that there is a clear improvement when using data-based estimations, while the new-estimated load curves can be utilized directly by existing electricity power systems for more accurate load estimates. (author)

  5. 76 FR 23171 - Electric Reliability Organization Interpretations of Interconnection Reliability Operations and...

    Science.gov (United States)

    2011-04-26

    ... Reliability Standards for the Bulk-Power System, Order No. 693, FERC Stats. & Regs. ] 31,242, order on reh'g...-Power System reliability may request an interpretation of a Reliability Standard.\\7\\ The ERO's standards... information in its reliability assessments. The Reliability Coordinator must monitor Bulk Electric System...

  6. Polyphenol extraction from fresh tea leaves by pulsed electric field : a study of mechanisms

    NARCIS (Netherlands)

    Zderic, Aleksandra; Zondervan, Edwin

    2016-01-01

    The major interest in pulsed electric field treatment of biological tissues is derived from its non-thermal application: increasing cell permeability. This application has an important implication in extraction of complex organic molecules. In this work, pulsed electric field treatment is

  7. A ‘NanoSuit’ surface shield successfully protects organisms in high vacuum: observations on living organisms in an FE-SEM

    Science.gov (United States)

    Takaku, Yasuharu; Suzuki, Hiroshi; Ohta, Isao; Tsutsui, Takami; Matsumoto, Haruko; Shimomura, Masatsugu; Hariyama, Takahiko

    2015-01-01

    Although extremely useful for a wide range of investigations, the field emission scanning electron microscope (FE-SEM) has not allowed researchers to observe living organisms. However, we have recently reported that a simple surface modification consisting of a thin extra layer, termed ‘NanoSuit’, can keep organisms alive in the high vacuum (10−5 to 10−7 Pa) of the SEM. This paper further explores the protective properties of the NanoSuit surface-shield. We found that a NanoSuit formed with the optimum concentration of Tween 20 faithfully preserves the integrity of an organism's surface without interfering with SEM imaging. We also found that electrostatic charging was absent as long as the organisms were alive, even if they had not been coated with electrically conducting materials. This result suggests that living organisms possess their own electrical conductors and/or rely on certain properties of the surface to inhibit charging. The NanoSuit seems to prolong the charge-free condition and increase survival time under vacuum. These findings should encourage the development of more sophisticated observation methods for studying living organisms in an FE-SEM. PMID:25631998

  8. Studies in market-based electric power trade and regulation

    International Nuclear Information System (INIS)

    Hope, Einar

    2000-01-01

    This is a compilation of articles written by the author during the last fifteen years. Most of the articles are related to the reform of the Norwegian electric power market. This reform led to the Energy Act of 1990 and to the subsequent development of the power markets. Some of the sections are in Norwegian, some in English. The sections discuss (1) Markets for electricity trade in Norway, (2) Economic incentives and public firm behaviour, (3) Market alternatives to the present forms of occasional power trade, (4) Socio-economic considerations about electricity pricing, (5) Scenarios for market based power trade in Norway, (6) Markets for electricity: economic reform of the Norwegian electricity industry, (7) The Norwegian power market, (8) A common Nordic energy market?, (9) Organization of supply markets for natural gas in Europe, (10) The extent of the central grid, (11) Optimum regulation of grid monopolies in the power trade, (12) Power markets and competition policy, (13) Deregulation of the Norwegian power sector, (14) designing a market based system for the Icelandic electricity industry and (15) regulation regimes for the power sector

  9. Self-organization process of a magnetohydrodynamic plasma in the presence of thermal conduction

    International Nuclear Information System (INIS)

    Zhu, Shao-ping; Horiuchi, Ritoku; Sato, Tetsuya; Watanabe, K.; Hayashi, T.; Todo, Y.; Watanabe, T.H.; Kageyama, A.; Takamaru, H.

    1995-12-01

    A self-organization process of a magnetohydrodynamic(MHD) plasma with a finite thermal conductivity is investigated by means of a three-dimensional MHD simulation. With no thermal conduction an MHD system self-organizes to a non-Taylor's state in which the electric current perpendicular to the magnetic field remains comparable to the parallel electric current. In the presence of thermal conductivity the perpendicular component of electric current and the nonuniformity of thermal pressure generated by driven reconnection tend to be smoothened. Thus, the self-organized state approaches to a force-free minimum energy state under the influence of thermal conduction. Detailed energy conversion processes are also studied to find that the rapid decay of magnetic energy during the self-organization process is caused not only through the ohmic heating, but also through the work done by the j x B force. (author)

  10. Environmental impacts of cable connections of offshore wind power parks at the electric power network. Impacts of operational electrical and magnetic fields; Umweltauswirkungen der Kabelanbindung von Offshore-Windenergieparks an das Verbundstromnetz. Effekte betriebsbedingter elektrischer und magnetischer Felder sowie thermischer Energieeintraege in den Meeresgrund

    Energy Technology Data Exchange (ETDEWEB)

    Pophof, Blanka; Geschwentner, Dirk

    2013-02-15

    According to the offshore network development plan from August 2012, the Federal Maritime and Hydrographic Agency (Hamburg, Federal Republic of Germany) is responsible for a strategic environmental impact assessment of offshore wind power plants. The contribution under consideration deals exclusively with electrical and magnetic fields emitted by submarine cables in operation as well as with the possible impacts of electrical and magnetic fields on marine organisms and the general population. Some marine organisms may perceive electrical fields and orientate themselves by magnetic fields. Changes in behaviour of marine organisms are possible. Thermal impacts may result in sedimentary changes. The consequences of these changes are assessable only partly at present.

  11. We can forget about cheaper electricity

    International Nuclear Information System (INIS)

    Marcan, P.

    2007-01-01

    It has happened again. At the end of the year as a kind of Christmas present the 2008 energy prices were published. But not everyone will benefit from the cabinet's interventions during negotiations with Slovak producers and major electricity suppliers. This year, households benefited from the zero price increase and in 2008 it will once again be households that will benefit from a lower increase rate. For companies, electricity prices will rise by over 10% next year. This is a paradoxical situation as in the corporate sector the traditional regional suppliers already have competition. But in the future the number of competitors should decrease. Mainly the smaller ones may disappear as the Ministry of Economy keeps changing the rules and these changes cost money. The newly introduced export charge or supervision over auctions organized by commercial electricity producers will not help to increase the trust of investors. And under these circumstances the Ministry's criticism of auctions that established the basis for a part of the electricity price for 2008 sounds strange especially as a state-owned company also took part in the auction. (authors)

  12. Mediator oxidation systems in organic electrosynthesis

    International Nuclear Information System (INIS)

    Ogibin, Yurii N; Elinson, Michail N; Nikishin, Gennady I

    2009-01-01

    The data on the use of mediator oxidation systems activated by electric current (anodic or parallel anodic and cathodic) in organic electrosynthesis are considered and generalised. Electrochemical activation of these systems permits successful application of catalytic versions and easy scaling of mediator-promoted processes. Chemical and environmental advantages of electrochemical processes catalysed by mediator oxidation systems are demonstrated. Examples of the application of organic and inorganic mediators for the oxidation of various classes of organic compounds under conditions of electrolysis are given.

  13. Choice of models and data availability for the efficiency analysis of the Dutch distribution and supply companies in the electricity sector. Background document of 'Guidelines for price cap regulation in the Dutch electricity sector'

    International Nuclear Information System (INIS)

    Burns, P.; Huggins, M.; Riechmann, C.; Weyman-Jones, T.

    2000-02-01

    July 1999 The Netherlands Electricity Regulatory Service (DtE) published an Information and Consultation Document on the title subject. By means of price cap regulation tariffs are determined such that businesses are stimulated continuously to organize their total processes and operation as efficient as possible. In the consultation document a large number of questions with respect to the future organization and planning of the system of economic regulation of the electricity sector in the Netherlands can be found. Many reactions and answers were received, compiled and analyzed. The results are presented in the main report, which forms the framework for the DtE to shape the economic regulation of the Dutch electricity sector. In this background document attention is paid to the most appropriate models by means of which the efficiency of the electricity companies in the Netherlands can be analyzed

  14. Electricity economics. Production functions with electricity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhaoguang [State Grid Energy Research Institute, Beijing (China); Hu, Zheng [Delaware Univ., Newark, DE (United States)

    2013-07-01

    The first book studies on the economics of electricity consumption. Compares the sector production functions with electricity and the commercial production functions with electricity. Introduces the global E-GDP function, the European E-GDP function and 12 national E-GDP functions. Presents the gene characters of EAI production functions and E-GDP functions for USA to see why USA's economy is entering an up-industrialization period. Discusses China's economic growth by production functions with electricity. Electricity Economics: Production Functions with Electricity studies the production output from analyzing patterns of electricity consumption. Since electricity data can be used to measure scenarios of economic performance due to its accuracy and reliability, it could therefore also be used to help scholars explore new research frontiers that directly and indirectly benefits human society. Our research initially explores a similar pattern to substitute the Cobb-Douglas function with the production function with electricity to track and forecast economic activities. The book systematically introduces the theoretical frameworks and mathematical models of economics from the perspective of electricity consumption. The E-GDP functions are presented for case studies of more than 20 developed and developing countries. These functions also demonstrate substantial similarities between human DNA and production functions with electricity in terms of four major characteristics, namely replication, mutation, uniqueness, and evolution. Furthermore, the book includes extensive data and case studies on the U.S., China, Japan, etc. It is intended for scientists, engineers, financial professionals, policy makers, consultants, and anyone else with a desire to study electricity economics as well as related applications.

  15. Electricity economics. Production functions with electricity

    International Nuclear Information System (INIS)

    Hu, Zhaoguang; Hu, Zheng

    2013-01-01

    The first book studies on the economics of electricity consumption. Compares the sector production functions with electricity and the commercial production functions with electricity. Introduces the global E-GDP function, the European E-GDP function and 12 national E-GDP functions. Presents the gene characters of EAI production functions and E-GDP functions for USA to see why USA's economy is entering an up-industrialization period. Discusses China's economic growth by production functions with electricity. Electricity Economics: Production Functions with Electricity studies the production output from analyzing patterns of electricity consumption. Since electricity data can be used to measure scenarios of economic performance due to its accuracy and reliability, it could therefore also be used to help scholars explore new research frontiers that directly and indirectly benefits human society. Our research initially explores a similar pattern to substitute the Cobb-Douglas function with the production function with electricity to track and forecast economic activities. The book systematically introduces the theoretical frameworks and mathematical models of economics from the perspective of electricity consumption. The E-GDP functions are presented for case studies of more than 20 developed and developing countries. These functions also demonstrate substantial similarities between human DNA and production functions with electricity in terms of four major characteristics, namely replication, mutation, uniqueness, and evolution. Furthermore, the book includes extensive data and case studies on the U.S., China, Japan, etc. It is intended for scientists, engineers, financial professionals, policy makers, consultants, and anyone else with a desire to study electricity economics as well as related applications.

  16. Sludge pre-treatment with pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Kopplow, O.; Barjenbruch, M.; Heinz, V.

    2003-07-01

    The anaerobic stabilization process depends - among others - on the bio-availability of organic carbon. Through pre-treatment of the sludge which leads to the destruction of micro-organisms and to the setting-free of cell content substances (disintegration), the carbon can be microbially converted better and faster. Moreover, effects on the digestion are likely. However, only little experience is available in the sludge treatment with pulsed electric fields. Laboratory-scale digestion tests have been run to analyse the influence of pulsed electric fields on the properties of sludge, anaerobic degradation, sludge water reload and foaming of digesters. The results will be compared with those of other disintegration methods (high pressure homogenise, thermal treatment). The effect of pre-treatment on the sludge is shown by the COD release. Degrees of disintegration have been achieved up to 20%. The specific energy input was high. The energy consumption has been decreased by initial improvements (pre-heating to 55{sup o}C). The filament bacteria were partially destroyed. The foam reduction in the digesters was marginal. The anaerobic degradation performance has been improved in every case. The degradation rate of organic matter increased about 9%. Due to the increase of degradation, there is a higher reload of the sludge-water with COD and nitrogen compounds. (author)

  17. Electrical localization of weakly electric fish using neural networks

    International Nuclear Information System (INIS)

    Kiar, Greg; Mamatjan, Yasin; Adler, Andy; Jun, James; Maler, Len

    2013-01-01

    Weakly Electric Fish (WEF) emit an Electric Organ Discharge (EOD), which travels through the surrounding water and enables WEF to locate nearby objects or to communicate between individuals. Previous tracking of WEF has been conducted using infrared (IR) cameras and subsequent image processing. The limitation of visual tracking is its relatively low frame-rate and lack of reliability when visually obstructed. Thus, there is a need for reliable monitoring of WEF location and behaviour. The objective of this study is to provide an alternative and non-invasive means of tracking WEF in real-time using neural networks (NN). This study was carried out in three stages. First stage was to recreate voltage distributions by simulating the WEF using EIDORS and finite element method (FEM) modelling. Second stage was to validate the model using phantom data acquired from an Electrical Impedance Tomography (EIT) based system, including a phantom fish and tank. In the third stage, the measurement data was acquired using a restrained WEF within a tank. We trained the NN based on the voltage distributions for different locations of the WEF. With networks trained on the acquired data, we tracked new locations of the WEF and observed the movement patterns. The results showed a strong correlation between expected and calculated values of WEF position in one dimension, yielding a high spatial resolution within 1 cm and 10 times higher temporal resolution than IR cameras. Thus, the developed approach could be used as a practical method to non-invasively monitor the WEF in real-time.

  18. Spatial interpolation of soil organic carbon using apparent electrical conductivity as secondary information

    Science.gov (United States)

    Martinez, G.; Vanderlinden, K.; Ordóñez, R.; Muriel, J. L.

    2009-04-01

    Soil organic carbon (SOC) spatial characterization is necessary to evaluate under what circumstances soil acts as a source or sink of carbon dioxide. However, at the field or catchment scale it is hard to accurately characterize its spatial distribution since large numbers of soil samples are necessary. As an alternative, near-surface geophysical sensor-based information can improve the spatial estimation of soil properties at these scales. Electromagnetic induction (EMI) sensors provide non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa), which depends under non-saline conditions on clay content, water content or SOC, among other properties that determine the electromagnetic behavior of the soil. This study deals with the possible use of ECa-derived maps to improve SOC spatial estimation by Simple Kriging with varying local means (SKlm). Field work was carried out in a vertisol in SW Spain. The field is part of a long-term tillage experiment set up in 1982 with three replicates of conventional tillage (CT) and Direct Drilling (DD) plots with unitary dimensions of 15x65m. Shallow and deep (up to 0.8m depth) apparent electrical conductivity (ECas and ECad, respectively) was measured using the EM38-DD EMI sensor. Soil samples were taken from the upper horizont and analyzed for their SOC content. Correlation coefficients of ECas and ECad with SOC were low (0.331 and 0.175) due to the small range of SOC values and possibly also to the different support of the ECa and SOC data. Especially the ECas values were higher in the DD plots. The normalized ECa difference (ΔECa), calculated as the difference between the normalized ECas and ECad values, distinguished clearly the CT and DD plots, with the DD plots showing positive ΔECa values and CT plots ΔECa negative values. The field was stratified using fuzzy k-means (FKM) classification of ΔECa (FKM1), and ECas and ECad (FKM2). The FKM1 map mainly showed the difference between

  19. High mobility emissive organic semiconductor

    Science.gov (United States)

    Liu, Jie; Zhang, Hantang; Dong, Huanli; Meng, Lingqiang; Jiang, Longfeng; Jiang, Lang; Wang, Ying; Yu, Junsheng; Sun, Yanming; Hu, Wenping; Heeger, Alan J.

    2015-01-01

    The integration of high charge carrier mobility and high luminescence in an organic semiconductor is challenging. However, there is need of such materials for organic light-emitting transistors and organic electrically pumped lasers. Here we show a novel organic semiconductor, 2,6-diphenylanthracene (DPA), which exhibits not only high emission with single crystal absolute florescence quantum yield of 41.2% but also high charge carrier mobility with single crystal mobility of 34 cm2 V−1 s−1. Organic light-emitting diodes (OLEDs) based on DPA give pure blue emission with brightness up to 6,627 cd m−2 and turn-on voltage of 2.8 V. 2,6-Diphenylanthracene OLED arrays are successfully driven by DPA field-effect transistor arrays, demonstrating that DPA is a high mobility emissive organic semiconductor with potential in organic optoelectronics. PMID:26620323

  20. Expert System Applications for the Electric Power Industry: Proceedings

    International Nuclear Information System (INIS)

    1992-06-01

    A conference on Expert System Applications for the Electric Power Industry was held in Boston on September 8--11, 1991 to provide a forum for technology transfer, technical information exchange, and education. The conference was attended by more than 150 representatives of electric utilities, equipment manufacturers, engineering consulting organizations, universities, national laboratories, and government agencies. The meeting included a keynote address, 70 papers, and 18 expert system demonstrations. Sessions covered expert systems in power system planning operations, fossil power plant applications, nuclear power plant applications, and intelligent user interfaces. The presentations showed how expert systems can provide immediate benefits to the electric power industry in many applications. Individual papers are indexed separately

  1. Investigation of the properties of indium tin oxide-organic contacts for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Stanculescu, A. [National Institute of Materials Physics, 105 bis Atomistilor Street, P.O. Box MG-7, Bucharest-Magurele 077125 (Romania)], E-mail: sanca@infim.ro; Stanculescu, F. [University of Bucharest, Faculty of Physics, 405 Atomistilor Street, P.O. Box MG-11, Bucharest-Magurele 077125 (Romania)

    2007-10-15

    This paper presents some investigations on the electrical transport properties of ITO/single (double) layer organic semiconductor (m-DNB, benzil, PTCDA, Alq3) contacts in SIS-like (ITO/organic/Si) and MIS-like (ITO/organic/metal) heterostructures. The I-V characteristics have emphasised the injection properties of different contacts and the effect of space charge limited currents in correlation with the type and preparation conditions of the contacts. We have studied the influence of the type of contact (In/ITO; In/Al) on the electrical conduction in Alq3/PTCDA/Si/In heterostructure. In a planar grid contact configuration for In/Al/PTCDA/Al/In structure we have observed the effect of the low electric field on the shape of the I-V characteristic.

  2. Operating Organic Electronics via Aqueous Electric Double Layers

    OpenAIRE

    Toss, Henrik

    2015-01-01

    The field of organic electronics emerged in the 1970s with the discovery of conducting polymers. With the introduction of plastics as conductors and semiconductors came many new possibilities both in production and function of electronic devices. Polymers can often be processed from solution and their softness provides both the possibility of working on flexible substrates, and various advantages in interfacing with other soft materials, e.g. biological samples and specimens. Conducting polym...

  3. Electricity and the environment: Building partnerships through technology

    Energy Technology Data Exchange (ETDEWEB)

    Yeager, K.E.; Torrens, I. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-12-01

    The vision for electricity in the world today transcends its role as just an energy medium and focuses on its ability to furnish ever greater productivity of labor, capital and primary energy resources. Its efficiency and precision, through innovative technology, have become essential assets for resolving the interrelated economic, environmental and energy security issues facing the world. As a result, electricity has become a major differentiating factor in the global economy. For example, the fraction of all primary energy converted to electricity is typically used as a rough indication of regional prosperity. This index reflects the importance of electricity in both creating and harvesting technological innovation. Electricity`s advantages in focusing and amplifying physical power during the first century are being complemented in the second by its even greater advantages for focusing and amplifying the power of knowledge. As its importance grows, electricity will likely expand in the next half-century to provide over half the world`s energy demands while providing the means for the most effective conservation of natural resources. Collaborative R&D organizations such as EPRI are acting as new catalysts and partners to transfer technology on a world-wide basis. With respect to Central and Eastern Europe, this effort focuses on new, more cost-effective innovations for the generation and delivery of electricity because obsolete and inefficient technology is contrary to our mutual interest in achieving efficient and sustainable economic development. EPRI stands ready to assist in this international endeavor.

  4. Performance of Microbial Fuel Cell for Wastewater Treatment and Electricity Generation

    Directory of Open Access Journals (Sweden)

    Z Yavari

    2013-06-01

    Full Text Available Renewable energy will have an important role as a resource of energy in the future. Microbial fuel cell (MFC is a promising method to obtain electricity from organic matter andwastewater treatment simultaneously. In a pilot study, use of microbial fuel cell for wastewater treatment and electricity generation investigated. The bacteria of ruminant used as inoculums. Synthetic wastewater used at different organic loading rate. Hydraulic retention time was aneffective factor in removal of soluble COD and more than 49% removed. Optimized HRT to achieve the maximum removal efficiency and sustainable operation could be regarded 1.5 and 2.5 hours. Columbic efficiency (CE affected by organic loading rate (OLR and by increasing OLR, CE reduced from 71% to 8%. Maximum voltage was 700mV. Since the microbial fuel cell reactor considered as an anaerobic process, it may be an appropriate alternative for wastewater treatment

  5. Report of the Economy, Sustainable Development and Land Planning Commission aiming at authorizing electricity final user and small companies to go back to the electricity regulated price

    International Nuclear Information System (INIS)

    2010-01-01

    This report first presents the French regulated price system by recalling the legal bases for electricity and natural gas pricing, and by describing the progressive process of the electricity and natural gas market opening in France. It outlines that a reversibility principle has been introduced along with regulated pricing in most of the European Union countries. It also comments the complexity created on this issue by successive laws in France, the consequences of the soon coming law on the new organization of the electricity market. Then, the report comments the proposition which aims at authorizing electricity household users and small companies to go back to the regulated electricity price, thereby perpetuating the reversibility principle, while maintaining a criterion of installed electricity power, including natural gas prices and new consumption sites. A table proposes a comparison between existing texts, the present law project and this Commission proposition

  6. Guidelines for price cap regulation in the Dutch electricity sector for the period 2000-2003

    International Nuclear Information System (INIS)

    Burns, P.; Newbery, D.; Tjin, T.; Verdonkschot, I.; Buitelaar, T.; Van Gent, C.

    2000-02-01

    July 1999 The Netherlands Electricity Regulatory Service (DtE) published an Information and Consultation Document on the title subject. By means of price cap regulation tariffs are determined such that businesses are stimulated continuously to organize their total processes and operation as efficient as possible. In the consultation document a large number of questions with respect to the future organization and planning of the system of economic regulation of the electricity sector in the Netherlands can be found. Many reactions and answers were received, compiled and analyzed. The results are presented in this report, which forms the framework for the DtE to shape the economic regulation of the Dutch electricity sector

  7. Direct Electrical Detection of Iodine Gas by a Novel Metal-Organic-Framework-Based Sensor.

    Science.gov (United States)

    Small, Leo J; Nenoff, Tina M

    2017-12-27

    High-fidelity detection of iodine species is of utmost importance to the safety of the population in cases of nuclear accidents or advanced nuclear fuel reprocessing. Herein, we describe the success at using impedance spectroscopy to directly detect the real-time adsorption of I 2 by a metal-organic framework zeolitic imidazolate framework (ZIF)-8-based sensor. Methanolic suspensions of ZIF-8 were dropcast onto platinum interdigitated electrodes, dried, and exposed to gaseous I 2 at 25, 40, or 70 °C. Using an unoptimized sensor geometry, I 2 was readily detected at 25 °C in air within 720 s of exposure. The specific response is attributed to the chemical selectivity of the ZIF-8 toward I 2 . Furthermore, equivalent circuit modeling of the impedance data indicates a >10 5 × decrease in ZIF-8 resistance when 116 wt % I 2 is adsorbed by ZIF-8 at 70 °C in air. This irreversible decrease in resistance is accompanied by an irreversible loss in the long-range crystallinity, as evidenced by X-ray diffraction and infrared spectroscopy. Air, argon, methanol, and water were found to produce minimal changes in ZIF-8 impedance. This report demonstrates how selective I 2 adsorption by ZIF-8 can be leveraged to create a highly selective sensor using >10 5 × changes in impedance response to enable the direct electrical detection of environmentally relevant gaseous toxins.

  8. Monopoly and competition in the electric power industry

    International Nuclear Information System (INIS)

    Eugeniu, P.; Rucareanu, L.C.

    1995-01-01

    The authors show how some of the electric energy characteristics can lead to monopoly and state control and how this trend acts in the totalitarian regimes and in the market economy countries. For exemplification, the organization of the electricity industry in several countries, its evolution and its trends for the near future, are shown. Taking into consideration the Romanian present situation, there are underlined the factors able to ensure the transition to a regime based on private property and competition. Finally it is shown that the Romanian electricity industry requires a two stage implementation of the privatization process: first a non-cession form implying management contracts, loaning contracts, concessions in exploitation and public and private enterprises associations, followed by a cession form when the capital is privatized by direct selling. (author)

  9. Analysis of the Electrical Properties of an Electron Injection Layer in Alq3-Based Organic Light Emitting Diodes.

    Science.gov (United States)

    Kim, Soonkon; Choi, Pyungho; Kim, Sangsub; Park, Hyoungsun; Baek, Dohyun; Kim, Sangsoo; Choi, Byoungdeog

    2016-05-01

    We investigated the carrier transfer and luminescence characteristics of organic light emitting diodes (OLEDs) with structure ITO/HAT-CN/NPB/Alq3/Al, ITO/HAT-CN/NPB/Alq3/Liq/Al, and ITO/HAT-CN/NPB/Alq3/LiF/A. The performance of the OLED device is improved by inserting an electron injection layer (EIL), which induces lowering of the electron injection barrier. We also investigated the electrical transport behaviors of p-Si/Alq3/Al, p-Si/Alq3/Liq/Al, and p-Si/Alq3/LiF/Al Schottky diodes, by using current-voltage (L-V) and capacitance-voltage (C-V) characterization methods. The parameters of diode quality factor n and barrier height φ(b) were dependent on the interlayer materials between Alq3 and Al. The barrier heights φ(b) were 0.59, 0.49, and 0.45 eV, respectively, and the diode quality factors n were 1.34, 1.31, and 1.30, respectively, obtained from the I-V characteristics. The built in potentials V(bi) were 0.41, 0.42, and 0.42 eV, respectively, obtained from the C-V characteristics. In this experiment, Liq and LiF thin film layers improved the carrier transport behaviors by increasing electron injection from Al to Alq3, and the LiF schottky diode showed better I-V performance than the Liq schottky diode. We confirmed that a Liq or LiF thin film inter-layer governs electron and hole transport at the Al/Alq3 interface, and has an important role in determining the electrical properties of OLED devices.

  10. Clean electricity from photovoltaics

    CERN Document Server

    Green, Martin A

    2015-01-01

    The second edition of Clean Electricity from Photovoltaics , first published in 2001, provides an updated account of the underlying science, technology and market prospects for photovoltaics. All areas have advanced considerably in the decade since the first edition was published, which include: multi-crystalline silicon cell efficiencies having made impressive advances, thin-film CdTe cells having established a decisive market presence, and organic photovoltaics holding out the prospect of economical large-scale power production. Contents: The Past and Present (M D Archer); Limits to Photovol

  11. artificial neural network (ann) approach to electrical load

    African Journals Online (AJOL)

    2004-08-18

    Aug 18, 2004 ... self organizing feature map; which is back-propagating in nature. ... distribution scheduling. ... electricity demand with lead times that range from ... become increasingly vital since the rise of the ... implemented for advanced control, data and sensor ... inspired methods of computing are thought to be the.

  12. Problems associated with accelerated thermal aging of electrical equipment

    International Nuclear Information System (INIS)

    Isgro, J.R.

    1984-01-01

    This paper discusses the potential problems that may be experienced when accounting for aging mechanisms in organic polymers when utilizing accelerated thermal aging techniques for electrical equipment qualification. Included are discussions of actual experiences and problems encountered in the qualification of electrical and electronic equipment for a complete nuclear power plant. The wide variety of approaches to thermal accelerated aging by various manufacturers of diverse equipment types provides depth to the discussion. A description of how to account for aging mechanisms is also presented

  13. The geothermal power organization

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  14. Electric power industry restructuring in Australia: Lessons from down-under. Occasional paper No. 20

    Energy Technology Data Exchange (ETDEWEB)

    Ray, D. [Univ. of Wisconsin, Madison, WI (United States)

    1997-01-01

    Australia`s electric power industry (EPI) is undergoing major restructuring. This restructuring includes commercialization of state-owned electric organization through privatization and through corporatization into separate governmental business units; structural unbundling of generation, transmission, retailing, and distribution; and creation of a National Electricity Market (NEM) organized as a centralized, market-based trading pool for buying and selling electricity. The principal rationales for change in the EPI were the related needs of enhancing international competitiveness, improving productivity, and lowering electric rates. Reducing public debt through privatization also played an important role. Reforms in the EPI are part of the overall economic reform package that is being implemented in Australia. Enhancing efficiency in the economy through competition is a key objective of the reforms. As the need for reform was being discussed in the early 1990s, Australia`s previous prime minister, Paul Keating, observed that {open_quotes}the engine which drives efficiency is free and open competition.{close_quotes} The optimism about the economic benefits of the full package of reforms across the different sectors of the economy, including the electricity industry, is reflected in estimated benefits of a 5.5 percent annual increase in real gross domestic product and the creation of 30,000 more jobs. The largest source of the benefits (estimated at 25 percent of total benefits) was projected to come from reform of the electricity and gas sectors.

  15. Effect of external electric field on Cyclodextrin-Alcohol adducts: A ...

    Indian Academy of Sciences (India)

    solid state with organic molecules through host-guest interactions with unique ... for separation of compounds and extraction processes.2. CDs are very attractive ... of external electric field on hydrogen adsorption over activated carbon sepa-.

  16. Polymeric Materials for Conversion of Electromagnetic Waves from the Sun to Electric Power

    Directory of Open Access Journals (Sweden)

    SK Manirul Haque

    2018-03-01

    Full Text Available Solar photoelectric energy converted into electricity requires large surface areas with incident light and flexible materials to capture these light emissions. Currently, sunlight rays are converted to electrical energy using silicon polymeric material with efficiency up to 22%. The majority of the energy is lost during conversion due to an energy gap between sunlight photons and polymer energy transformation. This energy conversion also depends on the morphology of present polymeric materials. Therefore, it is very important to construct mechanisms of highest energy occupied molecular orbitals (HOMOs and the lowest energy unoccupied molecular orbitals (LUMOs to increase the efficiency of conversion. The organic and inorganic solar cells used as dyes can absorb more photons from sunlight and the energy gap will be less for better conversion of energy to electricity than the conventional solar cells. This paper provides an up-to-date review on the performance, characterization, and reliability of different composite polymeric materials for energy conversion. Specific attention has been given to organic solar cells because of their several advantages over others, such as their low-energy payback time, conversion efficiency and greenhouse emissions. Finally, this paper provides the recent progress on the application of both organic and inorganic solar cells for electric power generations together with several challenges that are currently faced.

  17. Prices on electricity and transmission of electricity

    International Nuclear Information System (INIS)

    2003-01-01

    This publication contains data on prices of electric energy and transmission of electricity valid from 1 January 2003. The purpose is to illustrate the price changes on the electricity market in terms of prices for different customer categories. All companies holding network concessions for areas and all companies trading in electricity are included in this report, which is produced on an annual basis.The prices for transmission services 1 January 2003 were on the whole unchanged compared to the preceding year. For households the mean annual cost was SEK 882 for flats, SEK 4 335 for one- or two-family houses with electric heating and SEK 1 925 for those without electric heating. Electricity prices rose considerably on 1 January 2003 compared to the year before. The mean price per kWh for households with standard agreements was SEK 0.519 for deliveries to flats, SEK 0.447 for one- or two-family houses with electric heating and SEK 0.471 without electric heating. As a result, the mean annual cost increased by SEK 326 for flats, SEK 3 012 for one- or two-family houses with electric heating, and by SEK 774 for those houses without electric heating. The high costs of electricity may be explained in part by the development on the Nordic Power Exchange (Nord Pool), where the spot price increased by about 290 per cent during 2002 (1 USD is about 8 SEK)

  18. Type C investigation of electrical fabrication projects in ICF Kaiser shops

    International Nuclear Information System (INIS)

    Huckfeldt, R.A.

    1995-06-01

    A Type C Investigation Board was convened to investigate an electrical miswiring problem found during the operation of the electrical distribution trailer for the TWRS Rotary Mode Core Sampling Truck number-sign 2. The trailer was designed by WHC and fabricated ICF KH on site for use in the Characterization Program. This problem resulted in a serious safety hazard since the support truck frame/chassis became electrically energized. This final report provides results of the ''Type C Investigation, Electrical Fabrication Projects in ICF KH Shops, June, 1995.'' It contains the investigation scope, executive summary, relevant facts, analysis, conclusions and corrective actions. DOE Order 5484.1, ''Environmental Protection, Safety and Health Protection Information Reporting Requirements,'' was followed in preparation of this report. Because the incident was electrical in nature and involved both Westinghouse Hanford Company and ICF Kaiser Hanford organizations, the board included members from both contractors and members with considerable electrical expertise

  19. Estimation of Corn Yield and Soil Nitrogen via Soil Electrical Conductivity Measurement Treated with Organic, Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    H. Khalilzade

    2016-02-01

    Full Text Available Introduction Around the world maize is the second crop with the most cultivated areas and amount of production, so as the most important strategic crop, have a special situation in policies, decision making, resources and inputs allocation. On the other side, negative environmental consequences of intensive consumption of agrochemicals resulted to change view concerning food production. One of the most important visions is sustainable production of enough food plus attention to social, economic and environmental aspects. Many researchers stated that the first step to achieve this goal is optimization and improvement of resources use efficiencies. According to little knowledge on relation between soil electrical conductivity and yield of maize, beside the environmental concerns about nitrogen consumption and need to replace chemical nitrogen by ecological inputs, this study designed and aimed to evaluate agroecological characteristics of corn and some soil characteristics as affected by application of organic and biological fertilizers under field conditions. Materials and Methods In order to probing the possibility of grain yield and soil nitrogen estimation via measurement of soil properties, a field experiment was conducted during growing season 2010 at Research Station, Ferdowsi University of Mashhad, Iran. A randomized complete block design (RCBD with three replications was used. Treatments included: 1- manure (30 ton ha-1, 2-vermicompost (10 ton ha-1, 3- nitroxin (containing Azotobacter sp. and Azospirillum sp., inoculation was done according to Kennedy et al., 4- nitrogen as urea (400 kg ha-1 and 5- control (without fertilizer. Studied traits were soil pH, soil EC, soil respiration rate, N content of soil and maize yield. Soil respiration rate was measured using equation 1: CO2= (V0- V× N×22 Equation 1 In which V0 is the volume of consumed acid for control treatment titration, V is of the volume of consumed acid for sample treatment

  20. XI Scientific Conference Selected Issues of Electrical Engineering and Electronics (WZEE)

    CERN Document Server

    Mazur, Damian; Analysis and Simulation of Electrical and Computer Systems

    2015-01-01

    This book presents the selected results of the XI Scientific Conference Selected Issues of Electrical Engineering and Electronics (WZEE) which was held in Rzeszów and Czarna, Poland on September 27-30, 2013. The main aim of the Conference was to provide academia and industry to discuss and present the latest technological advantages and research results and to integrate the new interdisciplinary scientific circle in the field of electrical engineering, electronics and mechatronics. The Conference was organized by the Rzeszów Division of Polish Association of Theoretical and Applied Electrical Engineering (PTETiS) in cooperation with Rzeszów University of Technology, the Faculty of Electrical and Computer Engineering and Rzeszów University, the Faculty of Mathematics and Natural Sciences.  

  1. The integrated North American electricity market : a bi-national model for securing a reliable supply of electricity

    International Nuclear Information System (INIS)

    Egan, T.

    2004-03-01

    The 50 million people who experienced the power blackout on August 14, 2003 in southern Ontario and the U.S. Midwest and Northeast understood how vital electricity is in our day-to-day lives, but they also saw the resiliency of the North American electricity system. More than 65 per cent of the power generation was restored to service within 12 hours and no damage was caused to the generation or transmission facilities. Although the interconnected North American electricity system is among the most reliable in the world, it is threatened by an aging infrastructure, lack of new generation and transmission to meet demand, and growing regulatory pressures. This report suggests that any measures that respond to the threat of ongoing reliability should be bi-national in scope due to the interconnected nature of the system. Currently, the market, regulatory and administrative systems are different in each country. The full engagement and cooperation of both Canada and the United States is important to ensure future cross-border trade and power reliability. The Canadian Electricity Association proposes the following 7 measures: (1) support an open debate on all the supply options available to meet growing power demands, (2) promote bi-national cooperation in the construction of new transmission capacity to ensure a reliable continental electricity system, (3) examine opportunities for bi-national cooperation for investment in advanced transmission technologies and transmission research and development, (4) promote new generation technology and demand-side measures to relieve existing transmission constraints and reduce the need for new transmission facilities, (5) endorse a self-governing international organization for developing and enforcing mandatory reliability standards for the electricity industry, (6) coordinate measures to promote critical infrastructure protection, and (7) harmonize U.S. and Canadian efforts to streamline or clarify regulation of electricity

  2. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents

    International Nuclear Information System (INIS)

    Li, Song; Feng, Guang; Cummings Peter, T; Zhang, Pengfei; Fulvio Pasquale, F; Hillesheim Patrick, C; Dai, Sheng

    2014-01-01

    The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance–electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation. (paper)

  3. Electric power globalization and reforming

    International Nuclear Information System (INIS)

    Soares Neto, Jose Lino

    1999-01-01

    The central issue of debate was the need to align the energy sector's options and organization with changing global patterns of economic and social development, characterized by the increasing role played by the private sector, greater integration in the world economy, and new economic and social priorities such as efficiency, decentralization, deregulation, and a closer attention to environmental issues. The aim of the work was to define the economic and political forces of the electric power sector regulation restructuring

  4. Exploring Novel Spintronic Responses from Advanced Functional Organic Materials

    Science.gov (United States)

    2015-11-12

    States in Organic Semiconductors Bin Hu Brazil -MRS meeting, Campos do Jordao, September 30 – October 04, 2013 (10) Magneto-Optic, Magneto-Electric, and...Photovoltaic Processes in Organic Solar Cells Bin Hu 2013 TechConnect World, National Innovation Summit and National SBIR Conference, Gaylord Hotel , National

  5. Complex life forms may arise from electrical processes

    Directory of Open Access Journals (Sweden)

    Elson Edward C

    2010-06-01

    Full Text Available Abstract There is still not an appealing and testable model to explain how single-celled organisms, usually following fusion of male and female gametes, proceed to grow and evolve into multi-cellular, complexly differentiated systems, a particular species following virtually an invariant and unique growth pattern. An intrinsic electrical oscillator, resembling the cardiac pacemaker, may explain the process. Highly auto-correlated, it could live independently of ordinary thermodynamic processes which mandate increasing disorder, and could coordinate growth and differentiation of organ anlage.

  6. Prices on electricity and transmission of electricity

    International Nuclear Information System (INIS)

    2002-01-01

    This publication contains data on prices of electric energy and transmission of electricity valid on 1 January 2002. The purpose is to illustrate the price changes on the electricity market in terms of prices for different customer categories. All companies holding network concessions for areas and all companies trading in electricity are included in this report, which is produced on an annual basis. The prices for transmission services 1 January 2002 were on the whole unchanged compared to the preceding year. For households the mean annual cost was SEK 856 for flats, SEK 4,194 one- or two-family houses with electric heating and SEK 1,881 without electric heating. (1 SEK ∼ 0.1 USD). Electricity prices rose considerably on 1 January 2002 compared to the year before. The mean price per kWh for households according to standard agreement was SEK 0.356 for deliveries to flats, SEK 0.296 for apartments in one- or two-family houses with electric heating and SEK 0.316 without electric heating. That means that the mean annual cost increased by SEK 171 for flats. For one- or two-family houses with electric heating, costs increased by SEK 1,424, and by SEK 379 for those houses without electric heating. The high costs of electricity may be explained in part by the development on the Nordic Power Exchange (Nord Pool), where the spot price increased by 75 per cent during 2001. The price development for household customers during 1996-2002 is shown in a diagram

  7. Final touch for a new electricity supervision system; Siste finpuss for nytt eltilsyn

    Energy Technology Data Exchange (ETDEWEB)

    Valestrand, Morten

    2006-07-01

    The local electricity supervision in Norway has up until now been organized in an unclear manner. A new regime is about to be established, and will provide the electricity industry with clearer regulations. DSB (Directorate for Civil Protection and Emergency Planning) will have the supervisory control, and the local supervising authority (DLE) will be managed by the network companies.

  8. The structure of the electricity market in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schiffer, H.W.

    1989-01-01

    The power industry in the Federal Republic of Germany can be subdivided into the three subareas of public electricity supply, industrial power generation, and electricity supply to the Federal Railways. The most important sector, public electricity supply, is organized in private companies. Its special characteristics are its decentralized, pluralistic structure. The public electricity supply sector is made up of approximately 1000 firms, half of which only have a market share of approx. 1%, however. 89% of the total deliveries of useful electricity come from the 91 largest companies; the 26 biggest firms are responsible for 64% of the total deliveries of useful electricity. In terms of electricity generation, the two largest firms contribute 43%, the 25 largest, 72%, and the 116 largest, 99%. The firms in the public electricity supply sector contributed well over 80% of the total electricity production in 1988 of approx. 425 billion kWh. Since its origins late in the past century, the public power industry has been arranged in a comprehensive network of agreements restricting competition. At the distribution level, for instance, the supply regions of the electricity utilities are divided up by agreements excluding competition, so-called demarcation agreements. (orig.) [de

  9. On the electricity shortage, price and electricity theft nexus

    International Nuclear Information System (INIS)

    Jamil, Faisal

    2013-01-01

    Pakistan is facing severe electricity shortfall of its history since 2006. Several measures have been implemented in order to mitigate electricity shortage. The focus has been on raising the installed capacity of electricity generation and transmission. The present policy results in expensive thermal electricity generation mostly using expensive and environmentally hazardous furnace oil and inability of utilities to recover their cost of supply although there is unprecedented rise in electricity tariffs. This study concentrates on the electricity demand and traces the relationship between electricity shortfalls, tariff rate and electricity theft in the background of recent electricity crisis using the data for the period 1985–2010. We employed the Granger causality test through error correction model and out-of-sample causality through variance decomposition method. Empirical evidence shows that electricity theft greatly influences electricity shortfalls through lowering investment and inefficient use of electricity. The study concludes that electricity crisis cannot be handled without combating rampant electricity theft in the country. - Highlights: ► The study investigates relationship among electricity outages, price and electricity theft. ► It employed Johansen approach, ECM and variance decomposition analysis. ► Empirical evidence shows that electricity theft causes outages and rising tariff rates. ► Variance decomposition analysis results are slightly different from ECM

  10. Organic solution-processible electroluminescent molecular glasses for non-doped standard red OLEDs with electrically stable chromaticity

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Xiaoman; Zuo, Weiwei; Liu, Yingliang, E-mail: liuylxn@sohu.com; Zhang, Zhenru; Zeng, Cen; Xu, Shengang; Cao, Shaokui, E-mail: caoshaokui@zzu.edu.cn

    2015-10-15

    Highlights: • The D–A–D electroluminescent molecular glasses are synthesized. • Non-doped red electroluminescent film is fabricated by spin-coating. • Red OLED shows stable wavelength, luminous efficiency and chromaticity. • CIE1931 coordinate is in accord with standard red light in PAL system. - Abstract: Organic light-emitting molecular glasses (OEMGs) are synthesized through the introduction of nonplanar donor and branched aliphatic chain into electroluminescent emitters. The target OEMGs are characterized by {sup 1}H NMR, {sup 13}C NMR, IR, UV–vis and fluorescent spectra as well as elemental analysis, TG and DSC. The results indicated that the optical, electrochemical and electroluminescent properties of OEMGs are adjusted successfully by the replacement of electron-donating group. The non-doped OLED device with a standard red electroluminescent emission is achieved by spin-coating the THF solution of OEMG with a triphenylamine moiety. This non-doped red OLED device takes on an electrically stable electroluminescent performance, including the stable maximum electroluminescent wavelength of 640 nm, the stable luminous efficiency of 2.4 cd/A and the stable CIE1931 coordinate of (x, y) = (0.64, 0.35), which is basically in accord with the CIE1931 coordinate (x, y) = (0.64, 0.33) of standard red light in PAL system.

  11. Inactivation of Pseudomonas fluorescens in skim milk by combinations of pulsed electric fields and organic acids.

    Science.gov (United States)

    Fernández-Molina, Juan J; Altunakar, Bilge; Bermúdez-Aguirre, Daniela; Swanson, Barry G; Barbosa-Cánovas, Gustavo V

    2005-06-01

    Pseudomonas fluorescens suspended in skim milk was inactivated by application of pulsed electric fields (PEF) either alone or in combination with acetic or propionic acid. The initial concentration of microorganisms ranged from 10(5) to 10(6) CFU/ml. Addition of acetic acid and propionic acid to skim milk inactivated 0.24 and 0.48 log CFU/ml P. fluorescens, respectively. Sets of 10, 20, and 30 pulses were applied to the skim milk using exponentially decaying pulses with pulse lengths of 2 micros and pulse frequencies of 3 Hz. Treatment temperature was maintained between 16 and 20 degrees C. In the absence of organic acids, PEF treatment of skim milk at field intensities of 31 and 38 kV/cm reduced P. fluorescens populations by 1.0 to 1.8 and by 1.2 to 1.9 log CFU/ml, respectively. Additions of acetic and propionic acid to the skim milk in a pH range of 5.0 to 5.3 and PEF treatment at 31, 33, and 34 kV/cm, and 36, 37, and 38 kV/cm reduced the population of P. fluorescens by 1.4 and 1.8 log CFU/ml, respectively. No synergistic effect resulted from the combination of PEF with acetic or propionic acid.

  12. Printing method for organic light emitting device lighting

    Science.gov (United States)

    Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Kim, Snag-Gi; Hong, Kyung-Jin; So, Soon-Yeol

    2013-03-01

    Organic Light Emitting Device (OLED) has a characteristic to change the electric energy into the light when the electric field is applied to the organic material. OLED is currently employed as a light source for the lighting tools because research has extensively progressed in the improvement of luminance, efficiency, and life time. OLED is widely used in the plate display device because of a simple manufacture process and high emitting efficiency. But most of OLED lighting projects were used the vacuum evaporator (thermal evaporator) with low molecular. Although printing method has lower efficiency and life time of OLED than vacuum evaporator method, projects of printing OLED actively are progressed because was possible to combine with flexible substrate and printing technology. Printing technology is ink-jet, screen printing and slot coating. This printing method allows for low cost and mass production techniques and large substrates. In this research, we have proposed inkjet printing for organic light-emitting devices has the dominant method of thick film deposition because of its low cost and simple processing. In this research, the fabrication of the passive matrix OLED is achieved by inkjet printing, using a polymer phosphorescent ink. We are measured optical and electrical characteristics of OLED.

  13. Green electricity - experiences from USA; Groen el - erfarenheter fraan USA

    Energy Technology Data Exchange (ETDEWEB)

    Graens, N

    1995-10-01

    Environmental concern has opened a market for electric power produced from renewable energy sources in USA. A number of American electric utilities have responded to the interest from the public and offered green electricity at a price somewhat above the normal rates. Most of these programs, that have existed for a few years, have succeeded quite well, giving the utilities better relations to their customers and experiences from marketing new products. The customers have been satisfied and shown enthusiasm for the new product. The present report reviews the attitudes to and drive behind green electricity from/relative to utilities, customers, environmental organizations and authorities. The programs and experiences of the utilities are described, and the prospects for green power on a deregulated market are discussed. Speculations about market responses to green power in Sweden are also made. 37 refs, 13 figs

  14. Cardiomyocyte differentiation of embryonic stem cells on the surface of organic semiconductors.

    Science.gov (United States)

    Caserta, Sergio; Barra, Mario; Manganelli, Genesia; Tomaiuolo, Giovanna; Filosa, Stefania; Cassinese, Antonio; Guido, Stefano

    2013-06-25

    Electrically active supports provide new horizons for bio-sensing and artificial organ design. Cell-based electrochemical biosensors can be used as bio-microactuators, applied to the biorobotics. Microchip-based bioassay systems can provide real-time cell analysis for preclinical drug design or for intelligent drug delivery devices. In regenerative medicine, electrically active supports can be used as bio-reactors to monitor cell activity, optimize the stem cell differentiation and control cell and tissue morphology. Biocompatibility and direct interaction of the electrically active surface with the cell surface is a critical aspect of this technology.
 In this work embryonic stem cells (AK7 ES) have been cultivated on the surface of thin films achieved through the evaporation of two aromatic compounds (T6 and PDI-8CN2 ) of particular interest for the fabrication of organic field-effect transistors (OFET). One of the potential advantages offered by the application of OFETs as bio-electronic supports is that they represent a powerful tool for the detection of bio-signals because their electrically active surface is an organic film.
 The cell morphology on T6 and PDI-8CN2 surface shows to be similar to the usual cell appearance, as obtained when standard culture support (petri dish) are employed. Moreover, our experimental results demonstrate that stem cells can be lead to differentiation up to "beating" cardiomyocytes even on these electrically-active organic films.
 This investigation encourages the perspective to develop OFET-based biosensors in order to accurately characterize stem cells during the cardiac differentiation process and eventually increase their differentiation efficiency.

  15. Probing dynamic interfaces in organic electronics

    NARCIS (Netherlands)

    Mathijssen, S.G.J.

    2010-01-01

    Organic semiconductors are emerging in solar cells, photodetectors, light-emitting diodes and field-effect transistors. The main advantages are the electrical transport properties that can be tailored by chemical design, and their mechanical flexibility. Applications are foreseen in the field of

  16. Effects of transverse electric field and heterogeneity of a poorly electrically conducting fluid saturated nanoporous zeolites acquiring smart material properties

    International Nuclear Information System (INIS)

    Rudraiah, N.; Ranganna, G.; Shilpa, P.

    2013-01-01

    In this paper we explain a Mathematical Model involving Darcy linear drag, Forchheimer quadratic drag, horizontal density gradient and the variation of electrical conductivity due to organic substances dissolved in a heterogeneous Boussinesq poorly conducting couple stress fluid flow (PCPCSFF) through Nano Porous Zeolites regarded as densely packed porous media. Initially, the flow is at rest and set in motion due to initial piecewise horizontal concentration gradient. Analytical solutions, for electric potential using the Maxwell field equations and for velocity and density using nonlinear Darcy – Forchheimer equation in the presence of couple stress and electric force are obtained using the method of time series evolution. The analytical solutions for streamlines and density are computed for different values of time, t, for a particular value of electric number W 1 and couple stress parameter β and the results are depicted graphically in figures 1 and 2. From these figures we found that the streamlines are closer in the region of x 0 and the density profiles are concentrated in the lower region and develop curvature in the presence of electric field and couple stress parameter. The physical reason for the nature of streamlines and density profiles are given in the last section and some important conclusions are drawn. (author)

  17. Electrical impedance tomography: topology optimization

    International Nuclear Information System (INIS)

    Miranda, Lenine Campos

    2013-01-01

    The Electrical Impedance Tomography (EIT) is a study of body parts who use electric current. Is studied through computers resistance or conductivity of these parts, producing an image used for medical diagnosis. A body is wrapped in a blanket placed with small electrodes and receivers of electric current, potential difference. Based on data obtained from a series of measurements at the electrodes, one by one, sending and receiving, you can perform a numerical phantom, where each 'voxel' of the image formed computationally represents the impedance of biological tissue. In Brazil, studies on electrical impedance tomography (EIT) has not yet started. Such equipment are measured tensions - potential difference - between each electrode / sensor one by one, as a way to Simple Combinatorial Analysis. The sequence and the way it is measured strains are in the final image quality. Finite Element Method Interactive, whose algorithm is based on Dialectical Method. We use an initial function with the objective of maximizing the data quantitatively, for better qualitative analysis. Topology Optimization methods are used to improve the image reconstruction. Currently the study is quite primitive related to the theory that shows how to power the new science studied. The high quality images requires a difficulty in obtaining. This work is not intended for detailed for analysis in any tissue or organ specific, but in general terms. And the formation of the 2D image. 3D need a reconstructor to part. (author)

  18. Interactions of pulsed electric fields with living organisms

    International Nuclear Information System (INIS)

    Vezinet, R.; Joly, J.C.; Meyer, O.; Gilbert, C.; Fourrier-Lamer, A.; Silve, A.; Mir, L.M.; Rols, M.P.; Chopinet, L.; Teissie, J.; Roux, D.

    2013-01-01

    Biologists are more and more involved in the study of the interactions of electromagnetic fields with human body for therapeutics and health applications. In this article we present 4 studies. The first study concerns the interaction between the electromagnetic field and the biochemical reaction of the hydrolysis of the acetylcholine, a primary neurotransmitter of the human body. It has been shown that a progressive slowing-down of the reaction appears when the pulse repetition frequency increases. The second study is dedicated to the effects of electromagnetic pulses at the cell membrane level. We know that electromagnetic pulses can alter the permeability of the cell membrane. We have used rectangular electromagnetic pulses to allow chemicals to enter the cell. In the case of cancer treatment the efficiency of a chemicals like bleomycin can be largely increased. The third study is dedicated to the use of 2 electromagnetic pulses of different duration to optimize gene transfer into the cell nucleus. The last study focuses on the analysis of plant reactions when facing electromagnetic pulses. An experiment performed on a sunflower shows that despite high electric fields no electro-physiological response of the plant has been measured when the sunflower was submitted to electromagnetic pulses

  19. Acceleration of organic removal and electricity generation from dewatered oily sludge in a bioelectrochemical system by rhamnolipid addition.

    Science.gov (United States)

    Zhang, Yunshu; Zhao, Qingliang; Jiang, Junqiu; Wang, Kun; Wei, Liangliang; Ding, Jing; Yu, Hang

    2017-11-01

    Conversion of biomass energy of dewatered oily sludge to electricity is the rate-limiting process in bioelectrochemical system (BES). In this study, 2mgg -1 rhamnolipids were added to dewatered oily sludge, resulting in a significant enhancement in maximum power density from 3.84±0.37 to 8.63±0.81Wm -3 , together with an increase in total organic carbon (TOC) and total petroleum hydrocarbon (TPH) removal from 24.52±4.30 to 36.15±2.79mgg -1 and 29.51±3.30 to 39.80±2.47mgg -1 , respectively. Rhamnolipids can also enhance the solubilization and promote the hydrolysis of dewatered oily sludge with increases in SOCD from 14.93±2.44 to 18.40±0.08mgg -1 and VFAs from 1.02±0.07 to 1.39±0.12mgg -1 . Furthermore, bacteria related to substrate degradation were predominant in dewatered oily sludge, and bacteria related to the sulfate/sulfide cycle were significantly enriched by rhamnolipid addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of the electric field during annealing of organic light emitting diodes for improving its on/off ratio.

    Science.gov (United States)

    Sharma, Rahul K; Katiyar, Monica; Rao, I V Kameshwar; Unni, K N Narayanan; Deepak

    2016-01-28

    If an organic light emitting diode is to be used as part of a matrix addressed array, it should exhibit low reverse leakage current. In this paper we present a method to improve the on/off ratio of such a diode by simultaneous application of heat and electric field post device fabrication. A green OLED with excellent current efficiency was seen to be suffering from a poor on/off ratio of 10(2). After examining several combinations of annealing along with the application of a reverse bias voltage, the on/off ratio of the same device could be increased by three orders of magnitude, specifically when the device was annealed at 80 °C under reverse bias (-15 V) followed by slow cooling also under the same bias. Simultaneously, the forward characteristics of the device were relatively unaffected. The reverse leakage in the OLED is mainly due to the injection of minority carriers in the hole transport layer (HTL) and the electron transport layer (ETL), in this case, of holes in tris-(8-hydroxyquinoline)aluminum(Alq3) and electrons in 4,4',4''-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-MTDATA). Hence, to investigate these layers adjacent to the electrodes, we fabricated their single layer devices. The possibility of bulk traps present adjacent to electrodes providing states for injection was ruled out after estimating the trap density both before and after the reverse biased annealing. The temperature independent current in reverse bias ruled out the possibility of thermionic injection. The origin of the reverse bias current is attributed to the availability of interfacial hole levels in Alq3 at the cathode work function level in the as-fabricated device; the suppression of the same being attributed to the fact that these levels in Alq3 are partly removed after annealing under an electric field.

  1. Comparative requirements for electric energy for production of hydrogen fuel and/or recharging of battery electric automobile fleets in New Zealand and the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Paul [Stanford University, Stanford, CA 94305 (United States); Leaver, Jonathan D. [Department of Civil Engineering, Unitec NZ, Auckland 1142 (New Zealand)

    2010-10-15

    Within the current outlook for sustainable electric energy supply with concomitant reduction in emission of greenhouse gases, accelerated attention is focusing on the long-term development of hydrogen fuel cell and all-electric battery vehicles to provide alternative fuels to replace petroleum-derived fuels for automotive national fleets. The potential varies significantly between large industrially developed nations and smaller industrially developing nations. The requirement for additional electric energy supply from low-specific energy renewable resources and high-specific energy nuclear resources depends strongly on individual national economic, environmental, and political factors. Analysis of the additional electric energy supply required for the two potential large-scale technologies for fueling future national transportation sectors is compared for a large Organization for Economic Co-operation and Development (OECD) nation (USA) with a small OECD nation (New Zealand), normalized on a per-capita basis. (author)

  2. Electrical characteristics of top contact pentacene organic thin film

    Indian Academy of Sciences (India)

    Organic thin film transistors (OTFTs) were fabricated using pentacene as the active layer with two different gate dielectrics, namely SiO2 and poly(methyl methacrylate) (PMMA), in top contact geometry for comparative studies. OTFTs with SiO2 as dielectric and gold deposited on the rough side of highly doped silicon (n+ -Si) ...

  3. High Intensity Organic Light-emitting Diodes

    Science.gov (United States)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  4. Ion beam effects in organic molecular solids and polymers

    International Nuclear Information System (INIS)

    Venkatesan, T.; Calcagno, L.; Elman, B.S.; Foti, G.

    1987-01-01

    In general ion implantation leads to irreversible changes in organic films and hence it is important to understand the damage mechanisms in these solids. Most of the technology based on irradiation effects in organics must somehow make use of the fact that the chemistry of the organic films is easily changed. This chapter is organized to explore the various ion induced chemical changes in the organic films followed by a description of the optical and electrical property changes produced in the films due to the ion irradiation

  5. Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.

    Science.gov (United States)

    Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y

    2002-01-01

    To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.

  6. Agricultural Electricity. Electric Motors. Student Manual.

    Science.gov (United States)

    Benson, Robert T.

    Addressed to the student, this manual, which includes supplementary diagrams, discusses the following topics and principles: Electromagnetic fields, electromagnets, parts of an electric motor, determining speed of an electric motor, types of electric motors in common use (split-phase, capacitor, repulsion-induction, three-phase), the electric…

  7. Time dependence of electrical bioimpedance on porcine liver and kidney under a 50 Hz ac current

    International Nuclear Information System (INIS)

    Spottorno, J; Rivero, G; Venta, J de la; Multigner, M; Alvarez, L; Santos, M

    2008-01-01

    The purpose of this work is to study the changes of the bioimpedance from its 'in vivo' value to the values measured in a few hours after the excision from the body. The evolution of electrical impedance with time after surgical extraction has been studied on two porcine organs: the liver and the kidney. Both in vivo and ex vivo measurements of electrical impedance, measuring its real and imaginary components, have been performed. The in vivo measurements have been carried out with the animal anaesthetized. The ex vivo measurements have been made more than 2 h after the extraction of the organ. The latter experiment has been carried out at two different stabilized temperatures: at normal body temperature and at the standard preservation temperature for transplant surgery. The measurements show a correlation between the biological evolution and the electrical bioimpedance of the organs, which increases from its in vivo value immediately after excision, multiplying its value by 2 in a few hours

  8. Time dependence of electrical bioimpedance on porcine liver and kidney under a 50 Hz ac current

    Energy Technology Data Exchange (ETDEWEB)

    Spottorno, J; Rivero, G; Venta, J de la [Instituto de Magnetismo Aplicado (ADIF-UCM-CSIC), PO Box 155, Las Rozas, Madrid 28230 (Spain); Multigner, M [Departamento de Fisica de Materiales, UCM, Ciudad Universitaria, 28040 Madrid (Spain); Alvarez, L; Santos, M [Centro de Investigacion Biomedica en Red en BioingenierIa, Biomateriales y Nanomedicina (CIBER-BBN), Madrid (Spain)

    2008-03-21

    The purpose of this work is to study the changes of the bioimpedance from its 'in vivo' value to the values measured in a few hours after the excision from the body. The evolution of electrical impedance with time after surgical extraction has been studied on two porcine organs: the liver and the kidney. Both in vivo and ex vivo measurements of electrical impedance, measuring its real and imaginary components, have been performed. The in vivo measurements have been carried out with the animal anaesthetized. The ex vivo measurements have been made more than 2 h after the extraction of the organ. The latter experiment has been carried out at two different stabilized temperatures: at normal body temperature and at the standard preservation temperature for transplant surgery. The measurements show a correlation between the biological evolution and the electrical bioimpedance of the organs, which increases from its in vivo value immediately after excision, multiplying its value by 2 in a few hours.

  9. evaluation of electricity consumer's behaviour towards electricity ...

    African Journals Online (AJOL)

    Energy efficiency and sustainability: evaluation of electricity consumer's behaviour towards electricity usage and energy conservation. ... Remember me ... particularly about electricity consumer's attitudes, behaviour and practices with respect ...

  10. Influence of incoherent twin boundaries on the electrical properties of β-Ga2O3 layers homoepitaxially grown by metal-organic vapor phase epitaxy

    Science.gov (United States)

    Fiedler, A.; Schewski, R.; Baldini, M.; Galazka, Z.; Wagner, G.; Albrecht, M.; Irmscher, K.

    2017-10-01

    We present a quantitative model that addresses the influence of incoherent twin boundaries on the electrical properties in β-Ga2O3. This model can explain the mobility collapse below a threshold electron concentration of 1 × 1018 cm-3 as well as partly the low doping efficiency in β-Ga2O3 layers grown homoepitaxially by metal-organic vapor phase epitaxy on (100) substrates of only slight off-orientation. A structural analysis by transmission electron microscopy (TEM) reveals a high density of twin lamellae in these layers. In contrast to the coherent twin boundaries parallel to the (100) plane, the lateral incoherent twin boundaries exhibit one dangling bond per unit cell that acts as an acceptor-like electron trap. Since the twin lamellae are thin, we consider the incoherent twin boundaries to be line defects with a density of 1011-1012 cm-2 as determined by TEM. We estimate the influence of the incoherent twin boundaries on the electrical transport properties by adapting Read's model of charged dislocations. Our calculations quantitatively confirm that the mobility reduction and collapse as well as partly the compensation are due to the presence of twin lamellae.

  11. Electrical characterization of organic thin film transistors and alternative device architectures

    Science.gov (United States)

    Newman, Christopher R.

    In the last 10--15 years, organic semiconductors have evolved from experimental curiosities into viable alternatives for practical applications involving large-area and low-cost electronics such as display backplanes, electronic paper, radio frequency identification (RFID) tags, and solar cells. Many of the initially-stated goals in this field have been achieved; organic semconductors have demonstrated performance comparable to or greater than amorphous silicon (a-Si), the entrenched technology for most of the applications listed above. At present, the major obstacles remaining to commercialization of devices based on organic semiconductors involve material stability, processing considerations and optimization of the other device components (e.g. metal contacts and dielectric materials). Despite these technical achievements, significant gaps remain in our understanding of the underlying transport physics in these devices. This thesis summarizes experiments performed on organic field-effect transistors (OFETs) in an attempt to address some of these knowledge gaps. The FET, in addition to being a very useful device for practical applications (such as the driving elements in pixel backplanes), is also a very flexible architecture from an experimental standpoint. The presence of a capacitively-coupled gate electrode allows the investigation of transport physics as a function of carrier concentration. For devices in which non-idealities (i.e. carrier traps) largely dictate the observed characteristics, this is a very useful feature. Although practical OFETs are fabricated as conventional single-gate structures on an organic thin film (OTFTs), more exotic structures can often provide insights that standard OTFTs cannot. Specifically, single-crystal OFETs allow the investigation of carrier transport in the absence of grain boundaries, and double-gated OTFTs facilitate the investigation and comparison of properties across two discrete interfaces. One of the remaining

  12. Smart and secure charging of electric vehicles in public parking spaces

    OpenAIRE

    Strobbe, Matthias; Mets, Kevin; Tahon, Mathieu; Tilman, M; Spiessens, F; Gheerardyn, J; De Craemer, K; Vandael, S; Geebelen, K; Lagaisse, B; Claessens, B; Develder, Chris

    2012-01-01

    Governments worldwide are starting to give incentives to promote the use of (hybrid) electrical vehicles to achieve cleaner and more energy-efficient road transport with a low carbon footprint. Through tax/VAT reductions and free additional services — such as free parking, and/or battery charging or lower traffic congestion taxes — private users, public organizations and car fleet operators are stimulated to adopt the plug-in (hybrid) electrical vehicle (PHEV). This upcoming breakthrough of P...

  13. Organic heterostructures deposited by MAPLE on AZO substrate

    Science.gov (United States)

    Socol, M.; Preda, N.; Stanculescu, A.; Breazu, C.; Florica, C.; Stanculescu, F.; Iftimie, S.; Girtan, M.; Popescu-Pelin, G.; Socol, G.

    2017-09-01

    Organic heterostructures based on poly(3-hexylthiophene) (P3HT) and fullerene (C60) as blends or multilayer were deposited on Al:ZnO (AZO) by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. The AZO layers were obtained by Pulsed Laser Deposition (PLD) on glass substrate, the high quality of the films being reflected by the calculated figure of merit. The organic heterostructures were investigated from morphological, optical and electrical point of view by atomic force microscopy (AFM), UV-vis spectroscopy, photoluminescence (PL) and current-voltage (I-V) measurements, respectively. The increase of the C60 content in the blend heterostructure has as result a high roughness. Compared with the multilayer heterostructure, those based on blends present an improvement in the electrical properties. Under illumination, the highest current value was recorded for the heterostructure based on the blend with the higher C60 amount. The obtained results showed that MAPLE is a useful technique for the deposition of the organic heterostructures on AZO as transparent conductor electrode.

  14. Optimising the inactivation of grape juice spoilage organisms by pulse electric fields.

    Science.gov (United States)

    Marsellés-Fontanet, A Robert; Puig, Anna; Olmos, Paola; Mínguez-Sanz, Santiago; Martín-Belloso, Olga

    2009-04-15

    The effect of some pulsed electric field (PEF) processing parameters (electric field strength, pulse frequency and treatment time), on a mixture of microorganisms (Kloeckera apiculata, Saccharomyces cerevisiae, Lactobacillus plantarum, Lactobacillus hilgardii and Gluconobacter oxydans) typically present in grape juice and wine were evaluated. An experimental design based on response surface methodology (RSM) was used and results were also compared with those of a factorially designed experiment. The relationship between the levels of inactivation of microorganisms and the energy applied to the grape juice was analysed. Yeast and bacteria were inactivated by the PEF treatments, with reductions that ranged from 2.24 to 3.94 log units. All PEF parameters affected microbial inactivation. Optimal inactivation of the mixture of spoilage microorganisms was predicted by the RSM models at 35.0 kV cm(-1) with 303 Hz pulse width for 1 ms. Inactivation was greater for yeasts than for bacteria, as was predicted by the RSM. The maximum efficacy of the PEF treatment for inactivation of microorganisms in grape juice was observed around 1500 MJ L(-1) for all the microorganisms investigated. The RSM could be used in the fruit juice industry to optimise the inactivation of spoilage microorganisms by PEF.

  15. Electric Vehicle Interaction at the Electrical Circuit Level

    Science.gov (United States)

    2018-01-01

    The objective of the Electric Vehicle Interaction at the Electrical Circuit Level project was to investigate electric vehicle (EV) charging as a means of mitigating transient over-voltages (TOVs) on the circuit level electric utility distribution gri...

  16. Suppression and utilization of spurious pulse occurence in organic GM-counters

    International Nuclear Information System (INIS)

    Narita, Y.; Igarashi, R.; Akagami, H.; Ozawa, Y.

    1979-01-01

    The authors have made a study of suppression and utilization of spurious pulse occurrence in organic GM-counters. Almost all spurious pulses in the organic GM-counter are the delayed pulses which occur being dependent upon the radiation intensity. The occurrence rate of the delayed pulses against the radiation intensity is affected by the intensity of the electric field in the vicinity of the cathode of the GM-counter. The occurrence of the delayed pulses can be suppressed when the electric field in the vicinity of the cathode is kept at high value. On the contrary, the occurrence of the delayed pulses can be utilized for the dosimetry of the pulsed radiation by means of increasing the space of the weak electric field in the GM-counter. (Auth.)

  17. Electric Transport Phenomena of Nanocomposite Organic Polymer Thin Films

    Science.gov (United States)

    Jira, Nicholas C.; Sabirianov, Ildar; Ilie, Carolina C.

    We discuss herein the nanocomposite organic thin film diodes for the use of plasmonic solar cells. This experimental work follows the theoretical calculations done for plasmonic solar cells using the MNPBEM toolbox for MatLab. These calculations include dispersion curves and amount of light scattering cross sections for different metallic nanoparticles. This study gives us clear ideas on what to expect from different metals, allowing us to make the best choice on what to use to obtain the best results. One specific technique for light trapping in thin films solar cells utilizes metal nanoparticles on the surface of the semiconductor. The characteristics of the metal, semiconductor interface allows for light to be guided in between them causing it to be scattered, allowing for more chances of absorption. The samples were fabricated using organic thin films made from polymers and metallic nanoparticles, more specifically Poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate) copolymer and silver or gold nanoparticles. The two fabrication methods applied include spin coating and Langmuir-Blodgett technique. The transport properties are obtained by analyzing the I-V curves. We will also discuss the resistance, resistivity, conductance, density of charge carriers. SUNY Oswego SCAC Grant.

  18. Bumble Bees (Bombus terrestris use mechanosensory hairs to detect electric fields

    Directory of Open Access Journals (Sweden)

    Sutton Gregory

    2016-01-01

    Full Text Available Bees and flowers have an intricate relationship which benefits both organisms. Plants provide nectar bees, in turn, distribute pollen to fertilize plants. To make pollination work, flowers need a mechanism to incentivize individual bees to visit only a single species of flower. Flowers, like modern advertising agencies, use multiple senses to create a floral ‘brand’ that is easily recognized. Size, smell, colour, touch, and even temperature are used to allow bees to differentiate between flower species. Recently, a new sense has been found that is usable by bees to differentiate flowers, an ‘electric sense’: they can identify flowers based only on the flower’s electric field. This new sense provides a novel example of how flowers differentiate themselves to bees and has obvious implications for how bees and flowers interact with the electrical world around us. Bumble bees detect this electric field by using their body hairs, which bend in the presence of electric charge.

  19. Strategic capacity withholding through failures in the German-Austrian electricity market

    International Nuclear Information System (INIS)

    Bergler, Julian; Heim, Sven; Hüschelrath, Kai

    2017-01-01

    In electricity day-ahead markets organized as uniform price auction, a small reduction in supply in times of high demand can cause substantial increases in price. We use a unique data set of failures of generation capacity in the German-Austrian electricity market to investigate the relationship between electricity spot prices and generation failures. Differentiating between strategic and non-strategic failures, we find a positive impact of prices on non-usable marginal generation capacity for strategic failures only. Our empirical analysis therefore provides evidence for the existence of strategic capacity withholding through failures suggesting further monitoring efforts by public authorities to effectively reduce the likelihood of such abuses of a dominant position. - Highlights: • We investigate the relationship between electricity spot prices and generation failures. • Announced (non-strategic) failures are found to decrease with increasing price. • Unannounced (strategic) failures of marginal technologies increase with increasing price. • Our evidence is consistent with the presence of capacity withholding strategies in the German-Austrian electricity market.

  20. Electron donation characteristics and interplays of major volatile fatty acids from anaerobically fermented organic matters in bioelectrochemical systems.

    Science.gov (United States)

    Zhang, Zhiqiang; Li, Jiamiao; Hao, Xiaoxuan; Gu, Zaoli; Xia, Siqing

    2018-02-23

    Anaerobic fermentation liquid of waste organic matters (WOMs) is rich in volatile fatty acids (VFAs), which can be treated with bioelectrochemical systems for both electrical energy recovery and organics removal. In this work, four major VFAs in the fermented WOMs supernatant were selected to examine their electron donation characteristics for power output and their complicated interplays in microbial fuel cells (MFCs). Results indicated a priority sequence of acetate, propionate, n-butyrate and i-valerate when served as the sole electron donor for electricity generation. The MFC solely fed with acetate showed the highest coulombic efficiency and power density, and the longest period for electricity production. When two of the VFAs were added with equal proportion, both acids contributed positively to electricity generation, while the selective or competitive use of substrates by diverse microorganisms behaved as an antagonism effect to prolong the degradation time of each VFA. When acetate and propionate, the preferable substrates for electricity generation, were mixed in various proportions, their large concentration difference led to improved electrical performance but decreased organic removal rate.

  1. Light-emission from in-situ grown organic nanostructures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Kjelstrup-Hansen, Jakob; Rubahn, Horst-Günter

    2011-01-01

    Organic crystalline nanofibers made from phenylene-based molecules exhibit a wide range of extraordinary optical properties such as intense, anisotropic and polarized luminescence that can be stimulated either optically or electrically, waveguiding and random lasing. For lighting and display...... of morphological characterization and demonstrate how appropriate biasing with an AC gate voltage enables electroluminescence from these in-situ grown organic nanostructures....

  2. A New Energy Source for Organic Synthesis in Europa's Surface Ice

    Science.gov (United States)

    Borucki, Jerome G.; Khare, Bishun; Cruikshank, Dale P.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Colored regions on Jupiter's satellite Europa and other icy bodies in the outer Solar System may be contaminated by organic macromolecular solid material that is produced when surface ices are exposed to electrical energy. Hypervelocity meteorite impacts and fracture release tidal and tectonic stresses in icy crusts in the form of electrical discharges, which provide the energy for in situ synthesis of the organic solids. We report measurements of electrical discharge, light emission, and magnetic phenomena in hypervelocity impacts into ice with projectiles with V approx. 5 km/s. Part of the projectile's kinetic energy is converted into electrical potential, while the mechanical disruption of the impact also releases stress energy as light, heat, electrical, and magnetic fields as secondary emissions. These newly recognized energy sources suggest that the dark material in the area of impact craters are tholins generated from the energy of the impacts and that well up from the fracture zone. Large pools of liquid water would persist under the meteorite crater for thousands of years, with the potential for prebiotic chemistry to take place at an accelerated rate due to energy pumped in from the secondary emissions.

  3. Electric and Plug-In Hybrid Electric Fleet Vehicle Testing | Transportation

    Science.gov (United States)

    Research | NREL Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations How Electric and Plug-In Hybrid Electric Vehicles plugging the vehicle into an electric power source. PHEVs are powered by an internal combustion engine that

  4. On hybridising lettuce seedlings with nanoparticles and the resultant effects on the organisms' electrical characteristics.

    Science.gov (United States)

    Gizzie, Nina; Mayne, Richard; Patton, David; Kendrick, Paul; Adamatzky, Andrew

    2016-09-01

    Lettuce seedlings are attracting interest in the computing world due to their capacity to become hybrid circuit components, more specifically, in the creation of living 'wires'. Previous studies have shown that seedlings can be hybridised with gold nanoparticles and withstand mild electrical currents. In this study, lettuce seedlings were hybridised with a variety of metallic and non-metallic nanomaterials: carbon nanotubes, graphene oxide, aluminium oxide and calcium phosphate. Toxic effects and the following electrical properties were monitored: mean potential, resistance and capacitance. Macroscopic observations revealed only slight deleterious health effects after administration with one variety of particle, aluminium oxide. Mean potential in calcium phosphate-hybridised seedlings showed a considerable increase when compared with the control, whereas those administered with graphene oxide showed a small decrease; there were no notable variations across the remaining treatments. Electrical resistance decreased substantially in graphene oxide-treated seedlings whereas slight increases were shown following calcium phosphate and carbon nanotubes applications. Capacitance showed no considerable variation across treated seedlings. These results demonstrate that use of some nanomaterials, specifically graphene oxide and calcium phosphate, may be towards biohybridisation purposes including the generation of living 'wires'. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Free-Standing Organic Transistors and Circuits with Sub-Micron Thicknesses

    Science.gov (United States)

    Fukuda, Kenjiro; Sekine, Tomohito; Shiwaku, Rei; Morimoto, Takuya; Kumaki, Daisuke; Tokito, Shizuo

    2016-01-01

    The realization of wearable electronic devices with extremely thin and flexible form factors has been a major technological challenge. While substrates typically limit the thickness of thin-film electronic devices, they are usually necessary for their fabrication and functionality. Here we report on ultra-thin organic transistors and integrated circuits using device components whose substrates that have been removed. The fabricated organic circuits with total device thicknesses down to 350 nm have electrical performance levels close to those fabricated on conventional flexible substrates. Moreover, they exhibit excellent mechanical robustness, whereby their static and dynamic electrical characteristics do not change even under 50% compressive strain. Tests using systematically applied compressive strains reveal that these free-standing organic transistors possess anisotropic mechanical stability, and a strain model for a multilayer stack can be used to describe the strain in this sort of ultra-thin device. These results show the feasibility of ultimate-thin organic electronic devices using free-standing constructions. PMID:27278828

  6. Can Electricity Powered Vehicles Serve Traveler Needs?

    Directory of Open Access Journals (Sweden)

    Jianhe Du

    2013-06-01

    Full Text Available Electric vehicles (EV, Hybrid Electric Vehicles (HEV or Plug-in Hybrid Electric Vehicles (PHEV are believed to be a promising substitute for current gas-propelled vehicles. Previous research studied the attributes of different types of EVs and confirmed their advantages. The feasibility of EVs has also been explored using simulation, retrospective survey data, or a limited size of field travel data. In this study, naturalistic driving data collected from more than 100 drivers during one year are used to explore naturalistic driver travel patterns. Typical travel distance and time and qualified dwell times (i.e., the typical required EV battery recharging time between travels as based on most literature findings are investigated in this study. The viability of electric cars is discussed from a pragmatic perspective. The results of this research show that 90 percent of single trips are less than 25 miles; approximately 70 percent of the average annual daily travel is less than 60 miles. On average there are 3.62 trips made between four-hour dwell times as aggregated to 60 minutes and 50 miles of travel. Therefore, majority of trips are within the travel range provided by most of the currently available EVs. A well-organized schedule of recharging will be capable of covering even more daily travels.

  7. International nuclear energy organizations; Internationale Organisationen auf dem Gebiet der Kernenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    The publication on International nuclear energy organizations describes the scope of work of the following organizations: IAEA, EURATOM, OECD-NEA, ENSREG, WANO, INSCEAR and ICRO. The issues covered by the organizations include nuclear electricity generation, radiation protection, nuclear safeguards, nuclear liability, public information, reactor safety, radioactive waste management, non-proliferation, marketing, safety technology, utility requirements, effects of nuclear radiation.

  8. Organic materials for fusion-reactor applications

    International Nuclear Information System (INIS)

    Hurley, G.F.; Coltman, R.R. Jr.

    1983-09-01

    Organic materials requirements for fusion-reactor magnets are described with reference to the temperature, radiation, and electrical and mechanical stress environment expected in these magnets. A review is presented of the response to gamma-ray and neutron irradiation at low temperatures of candidate organic materials; i.e. laminates, thin films, and potting compounds. Lifetime-limiting features of this response as well as needed testing under magnet operating conditions not yet adequately investigated are identified and recomendations for future work are made

  9. Proposal for a directive for the promotion of electricity based on renewable energy sources

    International Nuclear Information System (INIS)

    2000-04-01

    The amended ''Directives concerning common rules for the internal markets in electricity and natural gas'', adopted in June 2003, organizes the future framework of electricity and gas, making all European consumers eligible, from 2004 onwards and at the latest by 2007 for the domestic sector, as well as integrating some components related to general interest services. Energie-Cites gives in this document its opinion and its expectations concerning this proposal for a directive for the promotion of electricity based on renewable energy sources. (A.L.B.)

  10. Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

    Science.gov (United States)

    2016-06-01

    block (expander) that allows gas expansion and converts the energy into rotational work, • an electric induction generator driven from the power block...is in the form of waste heat – thermal energy emitted via hot exhaust and heat removal systems associated with engine and other electric generator ...than 250 ºC), improves energy efficiency by reducing energy consumption associated with electrical generation and reduces greenhouse gas emissions

  11. Choice between hierarchy and market: Case of Central Electricity Generating Board's reorganization

    International Nuclear Information System (INIS)

    Caroli, M.

    1992-01-01

    Through the use of the 'Organization and Market' theoretical approach, this article outlines CEGB's reorganization to evaluate this experience under the strategic planning and operating effectiveness perspectives. The first part synthesizes the basic points of the 1990 reform which divided CEGB into three different companies and separated the control of the generation of electric power from its transport. The second part summarizes the main considerations about conditions of efficiency of vertical integration and disintegration, according to the 'Organization and Market' approach. By utilizing the conclusions highlighted in the first two parts of this article, the third one studies the effects of CEGB's vertical disintegration on the level of competition in power generation market; on CEGB's strategic effectiveness and operative efficiency; and on transactional costs in the electric power industry. CEGB's reorganization does not seem to have had a relevantly positive effect on competition, while it has caused a strategic burden and a significant increase of transactional costs in the exchange of electricity between the generator and the transmitter

  12. Charge-transfer mobility and electrical conductivity of PANI as conjugated organic semiconductors.

    Science.gov (United States)

    Zhang, Yahong; Duan, Yuping; Song, Lulu; Zheng, Daoyuan; Zhang, Mingxing; Zhao, Guangjiu

    2017-09-21

    The intramolecular charge transfer properties of a phenyl-end-capped aniline tetramer (ANIH) and a chloro-substituted derivative (ANICl) as organic semiconductors were theoretically studied through the first-principles calculation based on the Marcus-Hush theory. The reorganization energies, intermolecular electronic couplings, angular resolution anisotropic mobilities, and density of states of the two crystals were evaluated. The calculated results demonstrate that both ANIH and ANICl crystals show the higher electron transfer mobilities than the hole-transfer mobilities, which means that the two crystals should prefer to function as n-type organic semiconductors. Furthermore, the angle dependence mobilities of the two crystals show remarkable anisotropic character. The maximum mobility μ max of ANIH and ANICl crystals is 1.3893 and 0.0272 cm 2 V -1 s -1 , which appear at the orientation angles near 176°/356° and 119°/299° of a conducting channel on the a-b reference plane. It is synthetically evaluated that the ANIH crystal possesses relatively lower reorganization energy, higher electronic coupling, and electron transfer mobility, which means that the ANIH crystal may be the more ideal candidate as a high performance n-type organic semiconductor material. The systematic theoretical studies on organic crystals should be conducive to evaluating the charge-transport properties and designing higher performance organic semiconductor materials.

  13. Solar thermal organic rankine cycle for micro-generation

    Science.gov (United States)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  14. Electrical energy sources for organic synthesis on the early earth

    Science.gov (United States)

    Chyba, Christopher; Sagan, Carl

    1991-01-01

    It is pointed out that much of the contemporary origin-of-life research uses the original estimates of Miller and Urey (1959) for terrestrial energy dissipation by lightning and coronal discharges being equal to 2 x 10 to the 19th J/yr and 6 x 10 to the 19th J/yr, respectively. However, data from experiments that provide analogues to naturally-occurring lightning and coronal discharges indicate that lightning energy yields for organic synthesis (nmole/J) are about one order of magnitude higher than the coronal discharge yields. This suggests that, on early earth, organic production by lightning may have dominated that due to coronal emission. New values are recommended for lightning and coronal discharge dissipation rates on the early earth, 1 x 10 to the 18th J/yr and 5 x 10 to the 17th J/yr, respectively.

  15. The gas and electric power markets opening in Europe, the implementation of the regulation authorities

    International Nuclear Information System (INIS)

    2001-12-01

    Because the gas and the electric power are not simple goods, the opening of their market needs a whole reflexion where the governments must be involved. To analyse this opening, this report presents in a first part the traditional organization of the gas and electric power sectors marked by the strong presence of the government and the end of this organization at the end of the years 1980. It details then the new regulation, the operators and the effects of the competition. In a last part it provides propositions for the institutional framework in France. (A.L.B.)

  16. Improvement in crystallization and electrical properties of barium strontium titanate thin films by gold doping using metal-organic deposition method

    International Nuclear Information System (INIS)

    Wang, H.-W.; Nien, S.-W.; Lee, K.-C.; Wu, M.-C.

    2005-01-01

    The effect of gold (Au) on the crystallization, dielectric constant and leakage current density of barium strontium titanate (BST) thin films was investigated. BST thin films with various gold concentrations were prepared via a metal-organic deposition process. The X-ray diffraction shows enhanced crystallization as well as expanded lattice constants for the gold-doped BST films. Thermal analysis reveals that the gold dopant induces more complete decomposition of precursor for the doped films than those of undoped ones. The leakage current density of BST films is greatly reduced by the gold dopant over a range of biases (1-5 V). The distribution of gold was confirmed by electron energy loss spectroscopy and found to be inside the BST grains, not in the grain-boundaries. Gold acted as a catalyst, inducing the nucleation of crystallites and improving the crystallinity of the structure. Its addition is shown to be associated to the improvement of the electrical properties of BST films

  17. New Quebec renewable energy organization

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, D.; Salaff, S.

    1998-04-01

    The recent formation of the Quebec Association for the Production of Renewable Energy (l`Association quebecoise de la production d`energie renouvelable - AQPER) was announced. The Association is becoming the centre of the Quebec private electricity generation industry. By communicating the industry`s message to the public the organization gives much needed visibility to renewable resources, new forms of energy and sustainable development. The new group is an outgrowth of the former Quebec Association of Private Hydroelectricity Producers. In its new reincarnation, the organization represents all forms of renewables, small and medium hydro, wind, solar, forest and agricultural biomass and urban waste. With deregulation of the electricity market, specifically the creation of the Regie de l`energie` in Quebec, the wider role is a welcome boost for renewable energy development in the province. In one of its first actions the AQPER recommended that all hydroelectric sites up to 50 MW be reserved for development exclusively by the private sector, in conformity with the Quebec energy policy announced in 1996.

  18. Electricity market models and RES integration: The Greek case

    International Nuclear Information System (INIS)

    Simoglou, Christos K.; Biskas, Pandelis N.; Vagropoulos, Stylianos I.; Bakirtzis, Anastasios G.

    2014-01-01

    This paper presents an extensive analysis of the Greek electricity market for the next 7-year period (2014–2020) based on an hour-by-hour simulation considering five different RES technologies, namely wind, PV, small hydro, biomass and CHP with emphasis on PV integration. The impact of RES penetration on the electricity market operation is evaluated under two different models regarding the organization of the Greek wholesale day-ahead electricity market: a mandatory power pool for year 2014 (current market design) and a power exchange for the period 2015–2020 (Target Model). An integrated software tool is used for the simulation of the current and the future day-ahead market clearing algorithm of the Greek wholesale electricity market. Simulation results indicate the impact of the anticipated large-scale RES integration, in conjunction with each market model, on specific indicators of the Greek electricity market in the long-term. - Highlights: • Analysis of the Greek electricity market for the next 7-year period (2014–2020) based on hour-by-hour simulation. • Five different RES technologies are considered with emphasis on PV integration. • A power pool (for 2014) and a power exchange (for 2015–2020) are considered. • Various market indicators are used for the analysis of the impact of the RES integration on the Greek electricity market. • Two alternative tariff schemes for the compensation of the new ground-mounted PV units from 2015 onwards are investigated

  19. Electric power production contra electricity savings

    International Nuclear Information System (INIS)

    Schleisner, L.; Grohnheit, P.E.; Soerensen, H.

    1991-01-01

    The expansion of electricity-producing plants has, in Denmark until now, taken place in accordance with the demand for electricity. Recently, it has been suggested that the cost of the further development of such systems is greater than the cost of instigating and carrying out energy conservation efforts. The aim of the project was to evaluate the consequences for power producing plants of a reduction of the electricity consumption of end-users. A method for the analysis of the costs involved in the system and operation of power plants contra the costs that are involved in saving electricity is presented. In developing a model of this kind, consideration is given to the interplay of the individual saving project and the existing or future electricity supply. Thus it can be evaluated to what extent it would be advisable to substitute investments in the development of the capacity of the power plants with investments in the reduction of electricity consumption by the end users. This model is described in considerable detail. It will be tested in representative situations and locations throughout the Nordic countries. (AB) 17 refs

  20. Electrical properties of in-situ grown and transferred organic nanofibers

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Madsen, Morten; Kjelstrup-Hansen, Jakob

    2010-01-01

    Para-hexaphenylene (p6P) molecules have the ability to self-assemble into organic nanofibers, which exhibit a range of interesting optical and optoelectronic properties such as intense, polarized luminescence, waveguiding and lasing. The nanofibers are typically grown on specific single...

  1. Playing the electric light orchestra--how electrical stimulation of visual cortex elucidates the neural basis of perception.

    Science.gov (United States)

    Cicmil, Nela; Krug, Kristine

    2015-09-19

    Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the 'causal map' of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making.

  2. Playing the electric light orchestra—how electrical stimulation of visual cortex elucidates the neural basis of perception

    Science.gov (United States)

    Cicmil, Nela; Krug, Kristine

    2015-01-01

    Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the ‘causal map′ of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making. PMID:26240421

  3. Bilateral maculopathy following electrical burn: case report

    Directory of Open Access Journals (Sweden)

    Leandro Dario Faustino

    Full Text Available CONTEXT: Electrical burns are an important etiology in dealing with patients suffering from burns. In situations of extensive deep lesions of multiple organs and systems affecting young and economically active people, there is a need for expensive multidisciplinary treatment, with a high socioeconomic cost for the community. Among the permanent injuries that explain this high cost, eye injuries stand out, since they are widely disabling. Although rare, lesions of the posterior segment of the eye are associated with higher incidence of major sequelae, and thus deserve special attention for dissemination and discussion of the few cases observed.CASE REPORT: The authors report the case of a patient who suffered high-voltage electrical burns and presented bilateral maculopathy, which evolved with a need for a surgical approach to repair retinal detachment and permanent low visual acuity.CONCLUSION: This report highlights the rarity of the etiology of maculopathy and the need for campaigns for prevention not only of burns in general, but also especially of electrical burns.

  4. Progress on EPRI electrical equipment qualification research

    International Nuclear Information System (INIS)

    Sliter, G.E.

    1983-01-01

    The objective of EPRI's electrical equipment qualification research program is to provide technical assistance to utilities in meeting nuclear plant safety requirements in a manner consistent with the state of the art. This paper reports progress on several research projects including: radiation effects studies, which compile data on degradation of organic materials in electrical equipment exposed to operational and accident radiation doses; the Equipment Qualification Data Bank, which is a remotely accessible computer system for disseminating qualification information on in-plant equipment, seismic data, and materials data; an aging/seismic correlation program, which is providing test data showing that, in many cases, age degradation has a negligibly small effect on the performance of electrical components under seismic excitation; a review of condition monitoring techniques, which has identified surveillance methods for measuring key performance parameters that have the potential for predicting remaining equipment life; and large-scale hydrogen burn equipment response tests, which are providing data to assess the ability of equipment to remain functional during and after hydrogen burning in postulated degraded core accidents

  5. Influence of the active layer pattern on the electrical characteristics of organic inverters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hyun; Kwon, Jin-Hyuk; Bae, Jin-Hyuk [Kyungpook National University, Daegu (Korea, Republic of); Park, Jae-Hoon; Baang, Sung-Keun [Hallym University, Chuncheon (Korea, Republic of)

    2014-12-15

    We describe the importance of a patterned active layer for the fine driving of organic inverters. In the case of a non-patterned inverter, the capacitance as a function of the applied bias in an organic capacitor structure exhibits a slow saturation nature due to the slow movement of charge carriers. Hence, during the operation of organic inverters with non-patterned active layers, the voltage gains inevitably exhibit lower values whereas higher gains are achieved in the case of sharply-patterned pentacene layers. These results suggest that the patterning of the active layer can be a decisive factor for realizing high-performance electronic circuits based on organic semiconductors.

  6. Solar energy for electricity and fuels

    OpenAIRE

    Ingan?s, Olle; Sundstr?m, Villy

    2015-01-01

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorga...

  7. Energy, Exergy and Performance Analysis of Small-Scale Organic Rankine Cycle Systems for Electrical Power Generation Applicable in Rural Areas of Developing Countries

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-01-01

    Full Text Available This paper introduces the concept of installing a small-scale organic Rankine cycle system for the generation of electricity in remote areas of developing countries. The Organic Rankine Cycle Systems (ORC system uses a commercial magnetically-coupled scroll expander, plate type heat exchangers and plunger type working fluid feed pump. The heat source for the ORC system can be solar energy. A series of laboratory tests were conducted to confirm the cycle efficiency and expander power output of the system. Using the actual system data, the exergy destruction on the system components and exergy efficiency were assessed. Furthermore, the results of the variations of system energy and exergy efficiencies with different operating parameters, such as the evaporating and condensing pressures, degree of superheating, dead state temperature, expander inlet temperature and pressure ratio were illustrated. The system exhibited acceptable operational characteristics with good performance under a wide range of conditions. A heat source temperature of 121 °C is expected to deliver a power output of approximately 1.4 kW. In addition, the system cost analysis and financing mechanisms for the installation of the ORC system were discussed.

  8. Situational analysis for the current status of the electric vehicle industry : a report for presentation to the Electric Vehicle Industry Steering Committee of Natural Resources Canada

    International Nuclear Information System (INIS)

    Fleet, B.; Li, J.K.; Gilbert, R.

    2008-01-01

    This paper outlined the status of the electric vehicle industry in Canada. While the low energy density of electric batteries has prevented the widespread adoption of electric-powered vehicles, new developments in nickel metal hydride (Ni-MH) batteries have provided a 3- to 4-fold increase in energy density than lead-acid batteries. The Ni-MH batteries have enabled the emergence of hybrid automobiles that use electric motors to supplement or provide traction with internal combustion engine (ICE) generators that power the motors or charge batteries. Plug-in hybrids use batteries that can be charged from the electricity grid or by on-board generators. Lithium-based batteries contain twice the amount of energy density as Ni-MH batteries, and are now being upscaled for use in plug-in hybrids. Canada has many assets that favour the development of electric vehicle technology as it has a high degree of urbanization, and a widely diversified electric supply. Canada is also a major player in EV technology, and a world leader in renewable electricity generation. However, considerable investment and leadership is needed in order to foster EV technology in Canada. It was concluded that an EV industry can be developed by facilitating collaboration among organizations currently promoting sustainable transportation, identifying potential centres of engineering and technological excellence, and defining markets relevant to a Canadian EV industry. 32 refs., 6 tabs., 4 figs

  9. Organic semiconductor growth and morphology considerations for organic thin-film transistors.

    Science.gov (United States)

    Virkar, Ajay A; Mannsfeld, Stefan; Bao, Zhenan; Stingelin, Natalie

    2010-09-08

    Analogous to conventional inorganic semiconductors, the performance of organic semiconductors is directly related to their molecular packing, crystallinity, growth mode, and purity. In order to achieve the best possible performance, it is critical to understand how organic semiconductors nucleate and grow. Clever use of surface and dielectric modification chemistry can allow one to control the growth and morphology, which greatly influence the electrical properties of the organic transistor. In this Review, the nucleation and growth of organic semiconductors on dielectric surfaces is addressed. The first part of the Review concentrates on small-molecule organic semiconductors. The role of deposition conditions on film formation is described. The modification of the dielectric interface using polymers or self-assembled mono-layers and their effect on organic-semiconductor growth and performance is also discussed. The goal of this Review is primarily to discuss the thin-film formation of organic semiconducting species. The patterning of single crystals is discussed, while their nucleation and growth has been described elsewhere (see the Review by Liu et. al).([¹]) The second part of the Review focuses on polymeric semiconductors. The dependence of physico-chemical properties, such as chain length (i.e., molecular weight) of the constituting macromolecule, and the influence of small molecular species on, e.g., melting temperature, as well as routes to induce order in such macromolecules, are described.

  10. Electrical coupling between hippocampal astrocytes in rat brain slices.

    Science.gov (United States)

    Meme, William; Vandecasteele, Marie; Giaume, Christian; Venance, Laurent

    2009-04-01

    Gap junctions in astrocytes play a crucial role in intercellular communication by supporting both biochemical and electrical coupling between adjacent cells. Despite the critical role of electrical coupling in the network organization of these glial cells, the electrophysiological properties of gap junctions have been characterized in cultures while no direct evidence has been sought in situ. In the present study, gap-junctional currents were investigated using simultaneous dual whole-cell patch-clamp recordings between astrocytes from rat hippocampal slices. Bidirectional electrotonic coupling was observed in 82% of the cell pairs with an average coupling coefficient of 5.1%. Double patch-clamp analysis indicated that junctional currents were independent of the transjunctional voltage over a range from -100 to +110 mV. Interestingly, astrocytic electrical coupling displayed weak low-pass filtering properties compared to neuronal electrical synapses. Finally, during uncoupling processes triggered by either the gap-junction inhibitor carbenoxolone or endothelin-1, an increase in the input resistance in the injected cell paralleled the decrease in the coupling coefficient. Altogether, these results demonstrate that hippocampal astrocytes are electrically coupled through gap-junction channels characterized by properties that are distinct from those of electrical synapses between neurons. In addition, gap-junctional communication is efficiently regulated by endogenous compounds. This is taken to represent a mode of communication that may have important implications for the functional role of astrocyte networks in situ.

  11. Size effect on organic optoelectronics devices: Example of photovoltaic cell efficiency

    International Nuclear Information System (INIS)

    Pandey, A.K.; Nunzi, J.M.; Ratier, B.; Moliton, A.

    2008-01-01

    Electromagnetic study of organic photovoltaic cells design shows that electrical parameters depend drastically on the active area geometry: we theoretically show that electrical parameters are altered when the cell length becomes greater than one centimeter. Experimental verification is provided with simple molecular heterojunction cells with areas from 0.03 to 0.78 cm 2

  12. Organic against inorganic electrodes grown onto polymer substrates for flexible organic electronics applications

    International Nuclear Information System (INIS)

    Logothetidis, S.; Laskarakis, A.

    2009-01-01

    One of the most challenging topics in the area of organic electronic devices is the growth of transparent electrodes onto flexible polymeric substrates that will be characterized by enhanced conductivity in combination with high optical transparency. An essential aspect for these materials is their synthesis and/or microstructure which define the transparency, the stability and the interfacial chemistry which in turn determine the performance and stability of the organic electronic devices, such as organic light emitting diodes, organic photovoltaics, etc. In this work, we will discuss the latest advances in the growth of organic (e.g. PEDOT:PSS) and inorganic (e.g. zinc oxide-ZnO, indium tin oxide-ITO) conductive materials and their deposition onto flexible polymeric substrates. We will compare the optical, structural, nano-mechanical and nano-topographical properties of the inorganic and organic materials and we investigate the effect of their structure on their properties and functionality. In the case of the organic conductive materials, we will discuss the effects of PEDOT:PSS weight ratios and the various spin speeds on their optical and electrical properties. Furthermore, in the case of ZnO the growth mechanisms, interface phenomena, crystallinity and optical properties of ZnO thin films grown onto polymer and hybrid (inorganic-organic) flexible substrates will be also discussed.

  13. Peptide Assembly-Driven Metal-Organic Framework (MOF) Motors for Micro Electric Generator

    Science.gov (United States)

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L.; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu

    2014-01-01

    Peptide-MOF motors, whose motions are driven by anisotropic surface gradients created via peptide self-assembly around nanopores of MOFs, can rotate microscopic rotors and magnet fast enough to generate electric power of 0.1 µW. To make the peptide-MOF generator recyclable, a new MOF is applied as a host motor engine, which has a more rigid framework with higher H2O affinity so that peptide release occurs more efficiently via guest exchange without the destruction of MOF. PMID:25418936

  14. Effect of temperature and humidity on electrical properties of organic semiconductor orange dye films deposited from solution

    International Nuclear Information System (INIS)

    Karimov, K.S.; Babadzhanov, A.; Turaeva, M.A.; Marupov, R.; Ahmed, M.M.; Khalid, F.A.; Khan, M.N.; Zakaullah, Kh.; Moiz, S.A.

    2003-01-01

    In this study the effect of temperature and humidity on electrical properties of organic semiconductor orange dye (OD) have been examined. Thin films of OD (C/sub 17/H/sub 17/N/sub 5/O/sub 2/) were deposited from 10 wt. % aqueous solution on gold and conductive glass (SnO/sub 2/) substrates. The films were grown at room temperature under normal gravity conditions, i.e., 1 g and in a spin coater up to an angular speed of 1000 RPM. Two different types of structures: surface Ga/OD/Au and sandwich AVOD/SnO/sub 2/ were fabricated and their DC and low frequency AC characteristics were evaluated for the temperature range 30-70 deg. C at ambient humidity of 50-80 %. It was observed that the sandwich structure of OD films show rectification behavior whilst the conductivity of all devices are temperature and humidity dependent. Observed room temperature activation energy for OD films was 0.30 eV which showed an increase up to 0.51 eV as a function of temperature. It was found that certain sandwich structures are more sensitive to humidity than others and the observed resistance to humidity ratio for Au/OD/Au was 5.4 whereas for Au/OD/Ga samples it was 5.0. (author)

  15. Maple prepared organic heterostructures for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Stanculescu, A.; Socol, M. [National Institute of Materials Physics, 105 bis Atomistilor Street, P.O. Box MG-7, Bucharest-Magurele (Romania); Socol, G.; Mihailescu, I.N. [Plasma and Radiation Physics, National Institute for Laser, P.O. Box MG-36, Bucharest-Magurele (Romania); Girtan, M. [Universite d' Angers, Laboratoire de Photonique d' Angers, Angers (France); Stanculescu, F. [University of Bucharest, Faculty of Physics, Str. Atomistilor nr. 405, P.O. Box MG-11, Bucharest-Magurele (Romania)

    2011-09-15

    In this study, we present the deposition of ZnPc, Alq3, and PTCDA thin films using Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. We also report the realisation of multilayer structures, made by the successive application of MAPLE. The films have been characterized by spectroscopic (UV-VIS and Photoluminescence) and microscopic (SEM and AFM) methods, and the effect of different deposition conditions such as fluence, number of pulses, and target concentration on the properties has been analysed. This paper also presents some investigations on the electrical conduction in sandwich type structures ITO or Si/organic layer/Au or Cu and ITO/double organic layer/Cu, emphasising the dominant effect of the height of the energetic barriers at the inorganic/organic and organic/organic interfaces. (orig.)

  16. Maple prepared organic heterostructures for photovoltaic applications

    Science.gov (United States)

    Stanculescu, A.; Socol, M.; Socol, G.; Mihailescu, I. N.; Girtan, M.; Stanculescu, F.

    2011-09-01

    In this study, we present the deposition of ZnPc, Alq3, and PTCDA thin films using Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. We also report the realisation of multilayer structures, made by the successive application of MAPLE. The films have been characterized by spectroscopic (UV-VIS and Photoluminescence) and microscopic (SEM and AFM) methods, and the effect of different deposition conditions such as fluence, number of pulses, and target concentration on the properties has been analysed. This paper also presents some investigations on the electrical conduction in sandwich type structures ITO or Si/organic layer/Au or Cu and ITO/double organic layer/Cu, emphasising the dominant effect of the height of the energetic barriers at the inorganic/organic and organic/organic interfaces.

  17. Organizational culture and knowledge management in the electric power generation industry

    Science.gov (United States)

    Mayfield, Robert D.

    Scarcity of knowledge and expertise is a challenge in the electric power generation industry. Today's most pervasive knowledge issues result from employee turnover and the constant movement of employees from project to project inside organizations. To address scarcity of knowledge and expertise, organizations must enable employees to capture, transfer, and use mission-critical explicit and tacit knowledge. The purpose of this qualitative grounded theory research was to examine the relationship between and among organizations within the electric power generation industry developing knowledge management processes designed to retain, share, and use the industry, institutional, and technical knowledge upon which the organizations depend. The research findings show that knowledge management is a business problem within the domain of information systems and management. The risks associated with losing mission critical-knowledge can be measured using metrics on employee retention, recruitment, productivity, training and benchmarking. Certain enablers must be in place in order to engage people, encourage cooperation, create a knowledge-sharing culture, and, ultimately change behavior. The research revealed the following change enablers that support knowledge management strategies: (a) training - blended learning, (b) communities of practice, (c) cross-functional teams, (d) rewards and recognition programs, (e) active senior management support, (f) communication and awareness, (g) succession planning, and (h) team organizational culture.

  18. Inhibition of the voltage-dependent chloride channel of Torpedo electric organ by diisopropylfluorophosphate and its reversal by oximes

    International Nuclear Information System (INIS)

    Abalis, I.M.; Chiang, P.K.; Wirtz, R.A.; Andre, R.G.

    1986-01-01

    Diisopropylfluorophosphate (DFP), a potent organophosphate inhibitor of cholinesterases, was found to inhibit the specific binding of [ 35 S]t-butylbicyclophosphorothionate (TBPS), specific chloride channels ligand, to the electric organ membranes of Torpedo, with a Ki of 21 +/- 3 μM. The binding sites of [ 35 S]TBPS in the Torpedo membranes were found not to be GABA receptors or nicotinic acetylcholine receptors as previously described. Interestingly, a stimulation of the binding of [ 35 S]TBPS was observed in the presence of atropine and three oximes, monopyridinium oxime 2-PAM, bispyridinium bis-oxime TMB-4 and H-oxime HI-6. The maximal stimulation was 300-500% of control, after which, the stimulation was reversed at higher concentrations. The three oximes protected by more than 95% the inhibition by 1 mM DFP of the binding of [ 35 S]TBPS to the voltage-dependent chloride channel. However, atropine protected only 20% of the inhibited channel. These results, thus, suggest that the protection against the toxic effects of DFP or other anticholinesterase agents by the tested oximes may not be solely a result of the reactivation of cholinesterases but also the protection of the voltage-dependent chloride channel

  19. Laser ablation of titanium in liquid in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.

  20. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    Science.gov (United States)

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  1. The restructuring of the Brazilian electric power sector and the universal access to the electric power service

    International Nuclear Information System (INIS)

    Santos, Rosana Rodrigues dos; Mercedes, Sonia Seger P.; Sauer, Ildo Luis

    1999-01-01

    The central issue of debate was the need to align the energy sector's options and organization with changing global patterns of economic and social development, characterized by the increasing role played by the private sector, greater integration in the world economy, and new economic and social priorities such as efficiency, decentralization, deregulation, and a closer attention to environmental issues. The aim of the work was to overview the restructuring of the Brazilian electric power sector. Tariffs are also commented

  2. Electricity consumption and electricity saving in the Swedish households

    Energy Technology Data Exchange (ETDEWEB)

    Bernstroem, B M; Eklund, Y; Sjoeberg, L

    1997-03-01

    The objective of the present study is to determine which factors influence electricity consumption behavior of Swedish households, the level of knowledge about electricity use and the willingness to pay for the use of electricity. In Sweden, as in many other developed countries, the need for electric power is constantly increasing. The major reason for this increase in electricity consumption is the lifestyle of a modern society. A feature in the nuclear power discussion is that the government in Sweden is having a hard time to establish how to phase-out all nuclear power plants by 2010. An additional major change in Swedish energy policy is the deregulation of the electricity market, which started in the beginning of 1996. There is an increased demand for strategies to save electricity among households. The results of this study stress the difficulties in reducing electricity consumption and to develop new electricity saving strategies in Sweden 125 refs, 6 figs, 21 tabs

  3. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  4. The changing structure of the electric power industry, 1970--1991

    International Nuclear Information System (INIS)

    1993-01-01

    Section 205(a)(2) of the Department of Energy Organization Act of 1977 (Public Law 95--91) requires the Administrator of the Energy information Administration (EIA) to carry out a central, comprehensive, and unified energy data information program that will collect, evaluate, assemble, analyze, and disseminate data and information relevant to energy resources, reserves, production, demand, technology, and related economic and statistical information. To assist in meeting these responsibilities in the area of electric power, EIA has prepared this report, The Changing Structure of the Electric Power Industry, 1970--1991. The purpose of the this report is to provide a comprehensive overview of the ownership of the US electric power industry over the past two decades, with emphasis on the major changes that have occurred, their causes, and their effects

  5. Organ doses from computerized tomography examinations

    Energy Technology Data Exchange (ETDEWEB)

    Janeczek, J.

    1995-12-31

    Estimates of mean organs doses from five typical computerized tomography (CT) examinations were obtained. Measurements were done using Rando-Alderson anthropomorphic phantom and thermoluminescent dosemeters (TLD). Radiation dose distributions within a phantom has been measured for each examination and results were used for organ dose calculation. Doses to organs specified by ICPR 60 Recommendations were measured for five CT scanners (CT/T8800, CT 9800, CT MAX - made by General Electric; CT 1200 SX - made by Picker; SOMATOM 2 - made by Siemens). Dose distributions from scattered radiation were measured and indicate that scattered radiation dose to thyroid and eye lens can be reduced by proper examination limits setting. The lowest mean organ doses were obtained from CT/T8800 scanner. More advanced scanners using high intensity continuous radiation were giving higher organ doses. (author). 23 refs, 6 figs, 13 tabs.

  6. Organ doses from computerized tomography examinations

    International Nuclear Information System (INIS)

    Janeczek, J.

    1995-01-01

    Estimates of mean organs doses from five typical computerized tomography (CT) examinations were obtained. Measurements were done using Rando-Alderson anthropomorphic phantom and thermoluminescent dosemeters (TLD). Radiation dose distributions within a phantom has been measured for each examination and results were used for organ dose calculation. Doses to organs specified by ICPR 60 Recommendations were measured for five CT scanners (CT/T8800, CT 9800, CT MAX - made by General Electric; CT 1200 SX - made by Picker; SOMATOM 2 - made by Siemens). Dose distributions from scattered radiation were measured and indicate that scattered radiation dose to thyroid and eye lens can be reduced by proper examination limits setting. The lowest mean organ doses were obtained from CT/T8800 scanner. More advanced scanners using high intensity continuous radiation were giving higher organ doses. (author). 23 refs, 6 figs, 13 tabs

  7. Batch tests of a microbial fuel cell for electricity generation from spent organic extracts from hydrogenogenic fermentation of organic solid wastes

    International Nuclear Information System (INIS)

    Carmona-Martinez, A.; Solorza-Feria, O.; Poggi-Varaldo, H. M.

    2009-01-01

    Hydrogenogenic fermentative processes of organic solid wastes produce spent solids that contain substantial concentrations of low molecular weight organic acids and solvents. The spent solids can be extracted with wastewater to give a stream containing concentrated, degradable organic compounds. (Author)

  8. Environmental management in the Hydro-Electric Commission

    International Nuclear Information System (INIS)

    Scanlon, A.

    1995-01-01

    The Tasmanian Hydro Electric Commission (HEC) is a large and diverse organization, providing electricity generation, transmission, distribution and retail services throughout Tasmania. It is a significant manager of Tasmania's land and water resources and, as a consequence, has important environmental responsibilities. This paper outlines the background to conflict with the environmental movement over power generation development projects in south western Tasmania and the development of an environmental policy. As part of the environmental policy, the HEC has prepared environmental reviews, audits and risk assessment and is currently developing and implementing a comprehensive environmental management system. The HEC sees the introduction of the environmental management system as demonstrating a commitment to continuing environmental improvement and in establishing itself as a Tasmanian and national leader in the area of environmental management. 1 tab., 2 figs., 4 refs

  9. Electrical field of electrical appliances versus distance: A preliminary analysis

    International Nuclear Information System (INIS)

    Mustafa, Nur Badariah Ahmad; Nordin, Farah Hani; Ismail, Fakaruddin Ali Ahmad; Alkahtani, Ammar Ahmed; Balasubramaniam, Nagaletchumi; Hock, Goh Chin; Shariff, Z A M

    2013-01-01

    Every household electrical appliance that is plugged in emits electric field even if it is not operating. The source where the appliance is plugged into and the components of household electrical appliance contribute to electric field emission. The electric field may cause unknown disturbance to the environment or also affect the human health and the effect might depends on the strength of the electric field emitted by the appliance. This paper will investigate the strength of the electric field emitted by four different electrical appliances using spectrum analyser. The strength will be captured at three different distances; (i) 1m (ii) 2m and (iii) 3m and analysis of the strength of the electrical field is done based on the three different distances. The measurement results show that the strength of the electric field is strongest when it is captured at 1m and the weakest at 3m from the electrical appliance. The results proved that the farther an object is located from the electrical appliance; the less effect the magnetic field has.

  10. The insertion perspective of electric power independent producer in the Brazilian electric power sector; A perspectiva da insercao do produtor independente de energia eletrica no setor eletrico brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Borelli, Alessio Bento; Bermann, Celio [Sao Paulo Univ., SP (Brazil). Programa Interunidades de Pos-Graduacao em Energia]. E-mail: mborelli@netpoint.com.br; cbermann@iee.usp.br

    1999-07-01

    The central issue of debate was the need to align the energy sector's options and organization with changing global patterns of economic and social development, characterized by the increasing role played by the private sector, greater integration in the world economy, and new economic and social priorities such as efficiency, decentralization, deregulation, and a closer attention to environmental issues. The aim of this work is to evaluate the electric power independent producer participation in Brazilian electric power sector.

  11. Brain hemorrhage after electrical burn injury: Case report and probable mechanism.

    Science.gov (United States)

    Axayacalt, Gutierrez Aceves Guillermo; Alejandro, Ceja Espinosa; Marcos, Rios Alanis; Inocencio, Ruiz Flores Milton; Alfredo, Herrera Gonzalez Jose

    2016-01-01

    High-voltage electric injury may induce lesion in different organs. In addition to the local tissue damage, electrical injuries may lead to neurological deficits, musculoskeletal damage, and cardiovascular injury. Severe vascular damage may occur making the blood vessels involved prone to thrombosis and spontaneous rupture. Here, we present the case of a 39-year-old male who suffered an electrical burn with high tension wire causing intracranial bleeding. He presented with an electrical burn in the parietal area (entry zone) and the left forearm (exit zone). The head tomography scan revealed an intraparenchimatous bleeding in the left parietal area. In this case, the electric way was the scalp, cranial bone, blood vessels and brain, upper limb muscle, and skin. The damage was different according to the dielectric property in each tissue. The injury was in the scalp, cerebral blood vessel, skeletal muscle, and upper limb skin. The main damage was in brain's blood vessels because of the dielectric and geometric features that lead to bleeding, high temperature, and gas delivering. This is a report of a patient with an electric brain injury that can be useful to elucidate the behavior of the high voltage electrical current flow into the nervous system.

  12. A Framework for Organizing Current and Future Electric Utility Regulatory and Business Models

    Energy Technology Data Exchange (ETDEWEB)

    Satchwell, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cappers, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fadrhonc, Emily Martin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-01

    Many regulators, utilities, customer groups, and other stakeholders are reevaluating existing regulatory models and the roles and financial implications for electric utilities in the context of today’s environment of increasing distributed energy resource (DER) penetrations, forecasts of significant T&D investment, and relatively flat or negative utility sales growth. When this is coupled with predictions about fewer grid-connected customers (i.e., customer defection), there is growing concern about the potential for serious negative impacts on the regulated utility business model. Among states engaged in these issues, the range of topics under consideration is broad. Most of these states are considering whether approaches that have been applied historically to mitigate the impacts of previous “disruptions” to the regulated utility business model (e.g., energy efficiency) as well as to align utility financial interests with increased adoption of such “disruptive technologies” (e.g., shareholder incentive mechanisms, lost revenue mechanisms) are appropriate and effective in the present context. A handful of states are presently considering more fundamental changes to regulatory models and the role of regulated utilities in the ownership, management, and operation of electric delivery systems (e.g., New York “Reforming the Energy Vision” proceeding).

  13. Pricing electricity for sustainability : climate change and Canada's electricity sector

    International Nuclear Information System (INIS)

    2010-01-01

    The electricity sector is Canada's largest single source of greenhouse gas (GHG) emissions. This paper discussed electricity and carbon pricing approaches to reducing GHG emissions in the electricity sector. An overview of the links between electricity pricing and climate change was presented, and current and emerging trends in electricity pricing related to encouraging energy conservation were reviewed. Market prices and failures were discussed. Approaches to pricing electricity included an increase in block prices; time-of-use prices; demand-side management and energy efficiency; and carbon pricing in Canada and electricity pricing signals. The study showed that several provincial utilities in Canada are experimenting with market-based pricing approaches for electricity and carbon that may help to reduce GHG emissions over time. Concerns over electricity supply and the negative environmental impacts of electricity production may lead to the full social pricing of electricity in some regions of Canada. 46 refs., 3 tabs., 5 figs.

  14. Photovoltaic rural electrification and the electric power utility. Workshop. [Selected Papers

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz, J. M.; Villasenor, F.; Urrutia, M. [eds.] [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    This document contains the national and international programs about photovoltaic systems for rural electrification and the electric power utility experiences about PV programs. The IERE Workshop was hold from May 8 to 12, 1995 in Cocoyoc, Mexico. It was organized by the Electrical Research Institute of Mexico (Instituto de Investigaciones Electricas (IIE)) and the U.S. Electric Power Research Institute (EPRI). The Workshop was attended by 38 delegates from 13 countries [Espanol] Este documento contiene los programas nacionales e internacionales sobre electrificacion fotovoltaica rural y las experiencias en programas fotovoltaicos de empresas electricas. El taller de trabajo IERE fue realizado los dias del 8 al 12 de mayo de 1995 en Cocoyoc, Mexico. Fue organizado por el Instituto de Investigaciones Electricas (IIE) y el U.S. Electric Power Research Institute (EPRI) (Instituto de Investigaciones de Energia Electrica de Estados Unidos). A este taller de trabajo asistieron 38 delegados de 13 paises

  15. The prerequisite for competition in the restructured wholesale Saudi electricity market

    International Nuclear Information System (INIS)

    Al-Muhawesh, Tareq A.; Qamber, Isa S.

    2008-01-01

    Protection of customers against monopoly is the first and main objective of the Saudi Electricity and Co-generation Regulatory Authority (ECRA). The second important objective, as recommended by the present study, is regulating natural monopoly businesses [Saudi electricity national grid (SENG) and Saudi electricity distribution (SED)] in addition to promoting real competition in competitive businesses [power supply providers (PSPs) and customer service providers (CSPs)]. Another four main objectives of ECRA are to promote the efficient use of energy and natural resources, to ensure a reasonable rate of return for PSPs and CSPs and at the same time to be fair to end-users, to ensure reasonable charges to SENG and SED services to be adequate for them to run the organization in a break-even manner and to maintain the system's security and reliability. The present paper discusses the way to improve and restructure the Saudi electricity market

  16. Photovoltaic rural electrification and the electric power utility. Workshop. [Selected Papers

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz, J M; Villasenor, F; Urrutia, M [eds.; Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    This document contains the national and international programs about photovoltaic systems for rural electrification and the electric power utility experiences about PV programs. The IERE Workshop was hold from May 8 to 12, 1995 in Cocoyoc, Mexico. It was organized by the Electrical Research Institute of Mexico (Instituto de Investigaciones Electricas (IIE)) and the U.S. Electric Power Research Institute (EPRI). The Workshop was attended by 38 delegates from 13 countries [Espanol] Este documento contiene los programas nacionales e internacionales sobre electrificacion fotovoltaica rural y las experiencias en programas fotovoltaicos de empresas electricas. El taller de trabajo IERE fue realizado los dias del 8 al 12 de mayo de 1995 en Cocoyoc, Mexico. Fue organizado por el Instituto de Investigaciones Electricas (IIE) y el U.S. Electric Power Research Institute (EPRI) (Instituto de Investigaciones de Energia Electrica de Estados Unidos). A este taller de trabajo asistieron 38 delegados de 13 paises

  17. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianyong; Li, Jinhua, E-mail: lijinhua@sjtu.edu.cn; Chen, Quanpeng; Bai, Jing; Zhou, Baoxue

    2013-11-15

    Highlights: • A dual photoelcetrode PFC for converting hazardous organics into electricity. • The PFC possesses high cell performance operating in various model compounds. • Parameters were studied for optimization of the PFC performance. • Significant removal rate of chroma was observed in azo dyes solutions. -- Abstract: Direct discharging great quantities of organics into water-body not only causes serious environmental pollution but also wastes energy sources. In this paper, a solar responsive dual photoelectrode photocatalytic fuel cell (PFC{sup 2}) based on TiO{sub 2}/Ti photoanode and Cu{sub 2}O/Cu photocathode was designed for hazardous organics treatment with simultaneous electricity generation. Under solar irradiation, the interior bias voltage produced for the Fermi level difference between photoelectrodes drives photoelectrons of TiO{sub 2}/Ti photoanode to combine with photoholes of Cu{sub 2}O/Cu photocathode through external circuit thus generating electricity. In the meantime, organics are decomposed by photoholes remained at TiO{sub 2}/Ti photoanode. By using various hazardous organics including azo dyes as model pollutants, the PFC showed high converting performance of organics into electricity. For example, in 0.05 M phenol solution, a short-circuit current density 0.23 mA cm{sup −2}, open-circuit voltage 0.49 V, maximum power output 0.36 10{sup −4} W cm{sup −2} was achieved. On the other hand, removal rate of chroma reached 67%, 87% and 63% in 8 h for methyl orange, methylene blue, Congo red, respectively.

  18. Double-sided auction mechanism design in electricity based on maximizing social welfare

    International Nuclear Information System (INIS)

    Zou Xiaoyan

    2009-01-01

    An efficient electricity double-sided auction mechanism should control market power and enhance the social welfare of the electricity market. Based on this goal, the paper designs a new double-sided auction mechanism. In the new mechanism, the social welfare contribution of each participant plays a pivotal role, because this contribution is the critical factor in market clearing, payment settling, and transaction matching rules. In particular, each winner of the auction can gain transfer payments according to his contribution to social welfare in the electricity market, and this gives the mechanism the ability to control the market power of some participants. At the same time, this mechanism ensures that the market organizer balances his budget. We then conduct a theoretical and empirical analysis based on the Spanish electricity market. Both of the results show that compared to the uniform-pricing mechanism, the new mechanism can reduce market power of participants and enhance the social welfare of the electricity market.

  19. CDIO – The steam engine powering the electric grid

    DEFF Research Database (Denmark)

    Træholt, Chresten; Holbøll, Joachim; Thomsen, Ole Cornelius

    2011-01-01

    In building the new DTU B.Eng programme [1] one of the pilots on the 4’th semester is the Design-build project course in Electric Energy Systems. In this course, which is the last Designbuild course many of the CDIO Syllabus bullets [2] are addressed starting with problem identification and formu......In building the new DTU B.Eng programme [1] one of the pilots on the 4’th semester is the Design-build project course in Electric Energy Systems. In this course, which is the last Designbuild course many of the CDIO Syllabus bullets [2] are addressed starting with problem identification...... and formulation, experimental inquiry and modelling, finally leading to planning and solution. The goal is to acquire the skills that are needed for an engineer within electric power engineering to analyse a given task, define the necessary steps to solve the task, organize him/her self and others and finally...... solve the task with success. The concrete work is built up around a miniaturized electric energy system powered by a steam engine. The system mimics an essential sub-section of a real electric power system. The process is realised with a combination of optional lectures, optional exercises, 3 set...

  20. Distributed Electrical Energy Systems: Needs, Concepts, Approaches and Vision

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Jun [University of Denver; Gao, Wenzhong [University of Denver; Zheng, Xinhu [University of Minnesota; Yang, Liuqing [Colorado State University; Hao, Jun [University of Denver; Dai, Xiaoxiao [University of Denver

    2017-09-01

    Intelligent distributed electrical energy systems (IDEES) are featured by vast system components, diversifled component types, and difficulties in operation and management, which results in that the traditional centralized power system management approach no longer flts the operation. Thus, it is believed that the blockchain technology is one of the important feasible technical paths for building future large-scale distributed electrical energy systems. An IDEES is inherently with both social and technical characteristics, as a result, a distributed electrical energy system needs to be divided into multiple layers, and at each layer, a blockchain is utilized to model and manage its logic and physical functionalities. The blockchains at difierent layers coordinate with each other and achieve successful operation of the IDEES. Speciflcally, the multi-layer blockchains, named 'blockchain group', consist of distributed data access and service blockchain, intelligent property management blockchain, power system analysis blockchain, intelligent contract operation blockchain, and intelligent electricity trading blockchain. It is expected that the blockchain group can be self-organized into a complex, autonomous and distributed IDEES. In this complex system, frequent and in-depth interactions and computing will derive intelligence, and it is expected that such intelligence can bring stable, reliable and efficient electrical energy production, transmission and consumption.

  1. Electricity generation from digitally printed cyanobacteria.

    Science.gov (United States)

    Sawa, Marin; Fantuzzi, Andrea; Bombelli, Paolo; Howe, Christopher J; Hellgardt, Klaus; Nixon, Peter J

    2017-11-06

    Microbial biophotovoltaic cells exploit the ability of cyanobacteria and microalgae to convert light energy into electrical current using water as the source of electrons. Such bioelectrochemical systems have a clear advantage over more conventional microbial fuel cells which require the input of organic carbon for microbial growth. However, innovative approaches are needed to address scale-up issues associated with the fabrication of the inorganic (electrodes) and biological (microbe) parts of the biophotovoltaic device. Here we demonstrate the feasibility of using a simple commercial inkjet printer to fabricate a thin-film paper-based biophotovoltaic cell consisting of a layer of cyanobacterial cells on top of a carbon nanotube conducting surface. We show that these printed cyanobacteria are capable of generating a sustained electrical current both in the dark (as a 'solar bio-battery') and in response to light (as a 'bio-solar-panel') with potential applications in low-power devices.

  2. Pentacene Excitons in Strong Electric Fields.

    Science.gov (United States)

    Kuhnke, Klaus; Turkowski, Volodymyr; Kabakchiev, Alexander; Lutz, Theresa; Rahman, Talat S; Kern, Klaus

    2018-02-05

    Electroluminescence spectroscopy of organic semiconductors in the junction of a scanning tunneling microscope (STM) provides access to the polarizability of neutral excited states in a well-characterized molecular geometry. We study the Stark shift of the self-trapped lowest singlet exciton at 1.6 eV in a pentacene nanocrystal. Combination of density functional theory (DFT) and time-dependent DFT (TDDFT) with experiment allows for assignment of the observation to a charge-transfer (CT) exciton. Its charge separation is perpendicular to the applied field, as the measured polarizability is moderate and the electric field in the STM junction is strong enough to dissociate a CT exciton polarized parallel to the applied field. The calculated electric-field-induced anisotropy of the exciton potential energy surface will also be of relevance to photovoltaic applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electric circuit theory applied electricity and electronics

    CERN Document Server

    Yorke, R

    1981-01-01

    Electric Circuit Theory provides a concise coverage of the framework of electrical engineering. Comprised of six chapters, this book emphasizes the physical process of electrical engineering rather than abstract mathematics. Chapter 1 deals with files, circuits, and parameters, while Chapter 2 covers the natural and forced response of simple circuit. Chapter 3 talks about the sinusoidal steady state, and Chapter 4 discusses the circuit analysis. The fifth chapter tackles frequency response of networks, and the last chapter covers polyphase systems. This book will be of great help to electrical

  4. Organic solvents in electromembrane extraction: recent insights

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Gjelstad, Astrid; Pedersen-Bjergaard, Stig

    2016-01-01

    the introduction. Under the influence of an electrical field, EME is based on electrokinetic migration of the analytes through a supported liquid membrane (SLM), which is an organic solvent immobilized in the pores of the polymeric membrane, and into the acceptor solution. Up to date, close to 150 research...... articles with focus on EME have been published. The current review summarizes the performance of EME with different organic solvents and discusses several criteria for efficient solvents in EME. In addition, the authors highlight their personal perspective about the most promising organic solvents for EME...... and have indicated that more fundamental work is required to investigate and discover new organic solvents for EME....

  5. Carbon nanotube-coated silicone as a flexible and electrically conductive biomedical material

    International Nuclear Information System (INIS)

    Matsuoka, Makoto; Akasaka, Tsukasa; Totsuka, Yasunori; Watari, Fumio

    2012-01-01

    Artificial cell scaffolds that support cell adhesion, growth, and organization need to be fabricated for various purposes. Recently, there have been increasing reports of cell patterning using electrical fields. We fabricated scaffolds consisting of silicone sheets coated with single-walled (SW) or multi-walled (MW) carbon nanotubes (CNTs) and evaluated their electrical properties and biocompatibility. We also performed cell alignment with dielectrophoresis using CNT-coated sheets as electrodes. Silicone coated with 10 μg/cm 2 SWCNTs exhibited the least sheet resistance (0.8 kΩ/sq); its conductivity was maintained even after 100 stretching cycles. CNT coating also improved cell adhesion and proliferation. When an electric field was applied to the cell suspension introduced on the CNT-coated scaffold, the cells became aligned in a pearl-chain pattern. These results indicate that CNT coating not only provides electro-conductivity but also promotes cell adhesion to the silicone scaffold; cells seeded on the scaffold can be organized using electricity. These findings demonstrate that CNT-coated silicone can be useful as a biocompatible scaffold. - Highlights: ► We fabricated a CNT-coated silicone which has conductivity and biocompatibility. ► The conductivity was maintained after 100 cycles of stretching. ► CNT coatings enabled C2C12 cells adhere to the silicone surface. ► Cells were aligned with dielectrophoresis between CNT-coated silicone surfaces.

  6. An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond

    NARCIS (Netherlands)

    Bajracharya, S.; Sharma, M.; Mohanakrishna, Gunda; Benneton, Xochitl Dominguez; Strik, D.P.B.T.B.; Sarma, Priyangshu M.; Pant, Deepak

    2016-01-01

    Bioelectrochemical systems (BESs) are unique systems capable of converting chemical energy into electrical energy (and vice-versa) while employing microbes as catalysts. Such organic wastes including low-strength wastewaters and lignocellulosic biomass were converted into electricity with microbial

  7. The record of electrical and communication engineering conversazione Tohoku University Volume 63, No. 3

    Science.gov (United States)

    1995-05-01

    English abstracts contained are from papers authored by the research staff of the Research Institute of Electrical Communication and the departments of Electrical Engineering, Electrical Communications, Electronic Engineering, and Information Engineering, Tohoku University, which originally appeared in scientific journals in 1994. The abstracts are organized under the following disciplines: electromagnetic theory; physics; fundamental theory of information; communication theory and systems; signal and image processing; systems control; computers; artificial intelligence; recording; acoustics and speech; ultrasonic electronics; antenna, propagation, and transmission; optoelectronics and optical communications; quantum electronics; superconducting materials and applications; magnetic materials and magnetics; semiconductors; electronic materials and parts; electronic devices and integrated circuits; electronic circuits; medical electronics and bionics; measurements and applied electronics; electric power; and miscellaneous.

  8. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)

    2004-05-01

    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  9. From public good to private exploitation : electricity deregulation, privatization and continental integration

    International Nuclear Information System (INIS)

    Griffin Cohen, M.

    2002-07-01

    A study was conducted to examine the initiative of the World Trade Organization (WTO) on energy taking place through negotiations on the General Agreement on Trade in Services (GATS), which coincide with the U.S. drive for integrated continental energy policy. These negotiations will affect the nature of the electricity industry in Canada. It was noted that if the U.S. proposal for energy in GATS succeeds, it would support complete electricity deregulation, privatization of power generation, and full-scale continental pricing. This report includes several chapters. The chapter on electricity deregulation deals with changes in the electricity industry and the U.S. drive for energy. The GATS chapter describes the main features of GATS and what it covers, including general obligations, disciplines and negotiations. The chapter on the electricity industry in Canada describes major features, major electrical utilities, exports and the state of deregulation in Canada's 10 provinces. The chapter on GATS implications for electrical utilities focused on deregulation and market power, the implications for developing nations and general environmental issues. It was cautioned that if a Canadian agreement were to include electricity as a covered industry, it could erode the security of supply, drive prices up and have negative consequences for energy conservation. 137 refs., 8 tabs

  10. Fabrication of combinatorial nm-planar electrode array for high throughput evaluation of organic semiconductors

    International Nuclear Information System (INIS)

    Haemori, M.; Edura, T.; Tsutsui, K.; Itaka, K.; Wada, Y.; Koinuma, H.

    2006-01-01

    We have fabricated a combinatorial nm-planar electrode array by using photolithography and chemical mechanical polishing processes for high throughput electrical evaluation of organic devices. Sub-nm precision was achieved with respect to the average level difference between each pair of electrodes and a dielectric layer. The insulating property between the electrodes is high enough to measure I-V characteristics of organic semiconductors. Bottom-contact field-effect-transistors (FETs) of pentacene were fabricated on this electrode array by use of molecular beam epitaxy. It was demonstrated that the array could be used as a pre-patterned device substrate for high throughput screening of the electrical properties of organic semiconductors

  11. A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Khasan S. Karimov

    2013-03-01

    Full Text Available In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O-based humidity sensor. Silver thin films (thickness ~200 nm were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.

  12. Organic solar cells theory, experiment, and device simulation

    CERN Document Server

    Tress, Wolfgang

    2014-01-01

    This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author's dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on

  13. Electricity market 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The electricity markets in the Nordic countries have undergone major changes since the electricity market reform work was started in the early 1990s. Sweden, Norway and Finland have had a common electricity market since 1996. The work of also reforming the Danish electricity market was begun in the year 2000. The objective of the electricity market reform is to introduce increased competition, to give the consumers greater freedom of choice and also, by open and expanded trade in electricity, create the conditions for efficient pricing. The Swedish National Energy Administration is the supervisory authority as specified in the Electricity Act, and one of the tasks entrusted to it by the Government is to follow developments on the electricity market and to regularly compile and report current market information. The purpose of the 'Electricity market 2001' publication is to meet the need for generalized and readily accessible information on the conditions on the Nordic market. Iceland is not included in the description. The publication also includes summaries of information from recent years concerning electricity generation and utilization in the Nordic countries, the structure of the electricity market from the players' perspective, trade in electricity in the Nordic countries and in Northern Europe, electricity prices in the Nordic and other countries, and the impact of the electricity sector on the environment. The publication contains data on electricity generation and use during the past years, structure of the electricity market, trade in electricity in the Nordic countries and northern Europe, electricity prices in the Nordic countries and other countries as well as impact of electricity generation system on the environment.

  14. Electricity market 2001

    International Nuclear Information System (INIS)

    2001-09-01

    The electricity markets in the Nordic countries have undergone major changes since the electricity market reform work was started in the early 1990s. Sweden, Norway and Finland have had a common electricity market since 1996. The work of also reforming the Danish electricity market was begun in the year 2000. The objective of the electricity market reform is to introduce increased competition, to give the consumers greater freedom of choice and also, by open and expanded trade in electricity, create the conditions for efficient pricing. The Swedish National Energy Administration is the supervisory authority as specified in the Electricity Act, and one of the tasks entrusted to it by the Government is to follow developments on the electricity market and to regularly compile and report current market information. The purpose of the 'Electricity market 2001' publication is to meet the need for generalized and readily accessible information on the conditions on the Nordic market. Iceland is not included in the description. The publication also includes summaries of information from recent years concerning electricity generation and utilization in the Nordic countries, the structure of the electricity market from the players' perspective, trade in electricity in the Nordic countries and in Northern Europe, electricity prices in the Nordic and other countries, and the impact of the electricity sector on the environment. The publication contains data on electricity generation and use during the past years, structure of the electricity market, trade in electricity in the Nordic countries and northern Europe, electricity prices in the Nordic countries and other countries as well as impact of electricity generation system on the environment

  15. The directive on ''internal market of electric power'': a satisfactory balance

    International Nuclear Information System (INIS)

    1996-01-01

    The european directive on the ''internal market for electric power'' has allowed for the first time the implementation of harmonized regulations among european partners concerning the operation of electric utilities and systems in Europe, while taking into consideration the subsidiarity principles to which France is very much attached and finding an equilibrium between the status-quo based on national or regional monopolies and a global deregulation inspired by ultra-liberal views coming from Britain or the US. The main consequences on France's energy policy and organization are discussed

  16. Ambiguities on electric and magnetic fields for an extended gauge model

    International Nuclear Information System (INIS)

    Colatto, L.P.; Doria, R.M.

    1990-01-01

    Generalized electric and magnetic fields in a system containing N-potential fields in the same U (1) - group are obtained. Bianchi identities, equations of motions, conserved charges and Lorentz forces are developed in association to each of these fields. Such facts confirm that the same parameter α (x) is able to organize the presence of distinct fields. The physics generated from the minimal action principle is independent of the initial definition for the electric (magnetic) field. Nevertheless, such a choice reveals differences in the Bianchi identity context. (author)

  17. Mapping Charge Carrier Density in Organic Thin-Film Transistors by Time-Resolved Photoluminescence Lifetime Studies

    DEFF Research Database (Denmark)

    Leißner, Till; Jensen, Per Baunegaard With; Liu, Yiming

    2017-01-01

    The device performance of organic transistors is strongly influenced by the charge carrier distribution. A range of factors effect this distribution, including injection barriers at the metal-semiconductor interface, the morphology of the organic film, and charge traps at the dielectric/organic...... interface or at grain boundaries. In our comprehensive experimental and analytical work we demonstrate a method to characterize the charge carrier density in organic thin-film transistors using time-resolved photoluminescence spectroscopy. We developed a numerical model that describes the electrical...... and optical responses consistently. We determined the densities of free and trapped holes at the interface between the organic layer and the SiO2 gate dielectric by comparison to electrical measurements. Furthermore by applying fluorescence lifetime imaging microscopy we determine the local charge carrier...

  18. Electric drives

    CERN Document Server

    Boldea, Ion

    2005-01-01

    ENERGY CONVERSION IN ELECTRIC DRIVESElectric Drives: A DefinitionApplication Range of Electric DrivesEnergy Savings Pay Off RapidlyGlobal Energy Savings Through PEC DrivesMotor/Mechanical Load MatchMotion/Time Profile MatchLoad Dynamics and StabilityMultiquadrant OperationPerformance IndexesProblemsELECTRIC MOTORS FOR DRIVESElectric Drives: A Typical ConfigurationElectric Motors for DrivesDC Brush MotorsConventional AC MotorsPower Electronic Converter Dependent MotorsEnergy Conversion in Electric Motors/GeneratorsPOWER ELECTRONIC CONVERTERS (PECs) FOR DRIVESPower Electronic Switches (PESs)The

  19. Nonthermal plasma technology for organic destruction

    International Nuclear Information System (INIS)

    Heath, W.O.; Birmingham, J.G.

    1995-01-01

    Pacific Northwest Laboratory (PNL) is investigating the use of nonthermal, electrically driven plasmas for destroying organic contaminants near ambient temperatures and pressures. Three different plasma systems have been developed to treat organics in air, water, and soil. These systems are the gas-phase corona reactor (GPCR) for treating air, the liquid phase corona reactor for treating water, and the in-situ corona for treating soils. This paper focuses on the GPCR as an alternative to other air purification technologies for treating off-gasses from remedial action efforts and industrial emissions

  20. Electricity Theory

    International Nuclear Information System (INIS)

    Gong, Ha Soung

    2006-12-01

    The text book composed of five parts, which are summary of this book, arrangement of electricity theory including electricity nad magnetism, a direct current, and alternating current. It has two dictionary electricity terms for a synonym. The last is an appendix. It is for preparing for test of officer, electricity engineer and fire fighting engineer.

  1. Halopentacenes: Promising Candidates for Organic Semiconductors

    International Nuclear Information System (INIS)

    Gong-He, Du; Zhao-Yu, Ren; Ji-Ming, Zheng; Ping, Guo

    2009-01-01

    We introduce polar substituents such as F, Cl, Br into pentacene to enhance the dissolubility in common organic solvents while retaining the high charge-carrier mobilities of pentacene. Geometric structures, dipole moments, frontier molecule orbits, ionization potentials and electron affinities, as well as reorganization energies of those molecules, and of pentacene for comparison, are successively calculated by density functional theory. The results indicate that halopentacenes have rather small reorganization energies (< 0.2 eV), and when the substituents are in position 2 or positions 2 and 9, they are polarity molecules. Thus we conjecture that they can easily be dissolved in common organic solvents, and are promising candidates for organic semiconductors. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  2. Electric Motor-Generator for a Hybrid Electric Vehicle

    OpenAIRE

    Odvářka, Erik; Mebarki, Abdeslam; Gerada, David; Brown, Neil; Ondrůšek, Čestmír

    2009-01-01

    Several topologies of electrical machines can be used to meet requirements for application in a hybrid electric vehicle. This paper describes process of an electric motor-generator selection, considering electromagnetic, thermal and basic control design. The requested electrical machine must develop 45 kW in continuous operation at 1300 rpm with field weakening capability up to 2500 rpm. Both radial and axial flux topologies are considered as potential candidates. A family of axial flux machi...

  3. Electrical contracting

    CERN Document Server

    Neidle, Michael

    2013-01-01

    Electrical Contracting, Second Edition is a nine-chapter text guide for the greater efficiency in planning and completing installations for the design, installation and control of electrical contracts. This book starts with a general overview of the efficient cabling and techniques that must be employed for safe wiring design, as well as the cost estimation of the complete electrical contract. The subsequent chapters are devoted to other electrical contracting requirements, including electronic motor control, lighting, and electricity tariffs. A chapter focuses on the IEE Wiring Regulations an

  4. Electric currents couple spatially separated biogeochemical processes in marine sediment

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik

    2010-01-01

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact 1, 2, 3, 4 . Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can...... be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...

  5. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies.

    Science.gov (United States)

    Dai, Yu; Du, Jun; Yang, Qing; Zhang, Jianxun

    2014-09-01

    Compared to traditional open surgery, minimally invasive surgery (MIS) allows for a more rapid and less painful recovery. However, the lack of significant haptic feedback in MIS can make tissue discrimination difficult. This paper tests a noninvasive electrical impedance sensor for in vivo discrimination of tissue types in MIS. The sensor consists of two stainless steel spherical electrodes used to measure the impedance spectra over the frequency range of 200 kHz to 5 MHz. The sensor helps ensure free movement on an organ surface and prevents soft tissues from being injured during impedance measurement. Since the recorded electrical impedance is correlated with the force pressed on the electrode and the mechanical property of the tissue, the electrode-tissue contact impedance is calculated theoretically. We show that the standard deviation of the impedance ratio at each frequency point is sufficient to distinguish different tissue types. Both in vitro experiment in a pig kidney and in vivo experiment in rabbit organs were performed to demonstrate the feasibility of the electrical impedance sensor. The experimental results indicated that the sensor, used with the proposed data-processing method, provides accurate and reliable biological tissue discrimination. © 2014 Wiley Periodicals, Inc.

  6. 30 CFR 77.500 - Electric power circuits and electric equipment; deenergization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuits and electric equipment... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.500 Electric power circuits and electric equipment; deenergization. Power circuits and electric equipment shall be deenergized before work is done on...

  7. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  8. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  9. Stability of carbon-bearing phases in coal on the passage of weak electric current

    International Nuclear Information System (INIS)

    Pivnyak, G.G.; Sobolev, V.V.; Baskevich, A.S.

    2012-01-01

    According to data of the electron paramagnetic resonance, infrared spectroscopy, X-ray analysis, and other methods, mobile radicals and gas have formed in coal on the passage of weak electric current. The quantum-mechanical estimation of the stability of coal organic mass components under the action of weak electric current is offered. It is established that the hydrocarbon and carbon chains are the most probable phase which is destroyed the first.

  10. Electrically conductive carbon fibre-reinforced composite for aircraft lightning strike protection

    Science.gov (United States)

    Katunin, Andrzej; Krukiewicz, Katarzyna; Turczyn, Roman; Sul, Przemysław; Bilewicz, Marcin

    2017-05-01

    Aircraft elements, especially elements of exterior fuselage, are subjected to damage caused by lightning strikes. Due to the fact that these elements are manufactured from polymeric composites in modern aircraft, and thus, they cannot conduct electrical charges, the lightning strikes cause burnouts in composite structures. Therefore, the effective lightning strike protection for such structures is highly desired. The solution presented in this paper is based on application of organic conductive fillers in the form of intrinsically conducting polymers and carbon fabric in order to ensure electrical conductivity of whole composite and simultaneously retain superior mechanical properties. The presented studies cover synthesis and manufacturing of the electrically conductive composite as well as its characterization with respect to mechanical and electrical properties. The performed studies indicate that the proposed material can be potentially considered as a constructional material for aircraft industry, which characterizes by good operational properties and low cost of manufacturing with respect to current lightning strike protection materials solutions.

  11. A Kind of Energy Storage Technology: Metal Organic Frameworks

    OpenAIRE

    Ozturk, Zeynel; Kose, D. A.; Asan, A.; Ozturk, B.

    2016-01-01

    For last fifteen years energy has been transferred by using electricity and as an energy carrier media electricity has some disadvantages like its wire need for transportation and its being non-storable for large amounts. To store more energy safely and for transportation it easily, new storing medias and devices are needed. For easy and safe energy transport there are many technologies and some of these contain hydrogen energy. Metal hydrides, carbon nanotubes, metal organic frameworks (MOFs...

  12. Enhanced electricity system analysis for decision making - A reference book

    International Nuclear Information System (INIS)

    2000-01-01

    (ESCAP), the International Atomic Energy Agency (IAEA), the International Bank for Reconstruction and Development (IBRD/World Bank), the International Institute for Applied Systems Analysis (IIASA), the Nuclear Energy Agency of the OECD (OECD/NEA), the Organization of Petroleum Exporting Countries (OPEC), the United Nations Industrial Development Organization (UNIDO) and the World Meteorological Organization (WMO). The main elements and achievements of the DECADES project are described in the different chapters of this book. Additional details are provided in the chapter references and in the bibliography. The Joint Steering Committee for the DECADES project hopes that this book will contribute to the process of strengthening and improving capabilities for the design and implementation of sustainable strategies in the power sector, in particular in developing countries and countries in transition to market economies. The reference book has been prepared with the assistance of many contributors, coming from national and international organizations active in the field of electricity system analysis. The initial drafting of the different chapters and annexes was carried out by highly qualified experts (see the list of contributors to preparation, drafting and review) who served as leading or contributing authors, drawing from their experience and know-how on the subject matter. The draft chapters prepared by the lead authors and contributors were harmonised and technically edited jointly by staff members of: the IAEA Planning and Economic Studies Section, the Nuclear Development Division of the OECD Nuclear Energy Agency, and the Industry and Energy Department of the World Bank (IBRD)

  13. Electric vehicle system for charging and supplying electrical power

    Science.gov (United States)

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  14. Electric engineering introduction

    International Nuclear Information System (INIS)

    An, Byeong Won; Eom, Sang Ho

    1999-03-01

    It is divided into nine chapters, which includes electricity theory such as structure of material and current, nature of electricity, static, magnetic force and magnetic attraction, attraction of current and a storage battery, electric circuit on a direct current circuit, single phase circuit and 3-phase current circuit electricity machine like DC generator, DC motor, alternator, electric transformer, single-phase induction motor, 3-phase induction motor, synchronous motor, synchro electric machine, semiconductor such as diode, transistor, FET, UJT, silicon symmetrical switch, electronic circuit like smoothing circuit and Bistable MV. circuit, automatic control, measurement of electricity, electric application and safety.

  15. Transient phenomena in electrical power systems

    CERN Document Server

    Venikov, V A; Higinbotham, W

    1964-01-01

    Electronics and Instrumentation, Volume 24: Transient Phenomena in Electrical Power Systems presents the methods for calculating the stability and the transient behavior of systems with forced excitation control. This book provides information pertinent to the analysis of transient phenomena in electro-mechanical systems.Organized into five chapters, this volume begins with an overview of the principal requirements in an excitation system. This text then explains the electromagnetic and electro-mechanical phenomena, taking into account the mutual action between the components of the system. Ot

  16. Synthesis and characterization of electrical conducting nanoporous carbon structures

    International Nuclear Information System (INIS)

    El Mir, L.; Kraiem, S.; Bengagi, M.; Elaloui, E.; Ouederni, A.; Alaya, S.

    2007-01-01

    Nanoporous organic xerogel compounds were prepared by sol-gel method from pyrogallol-formaldehyde (PF) mixtures in water using perchloric acid as catalyst. The preparation conditions of electrical conducting carbon (ECC) structures were explored by changing the pyrolysis temperature. The effect of this preparation parameters on the structural and electrical properties of the obtained ECCs were studied, respectively, by thermogravimetric analysis (TGA), nitrogen adsorption isotherms, IR spectroscopy and electrical conductivity measurements. The analysis of the obtained results revealed that, the polymeric insulating phase was transformed progressively with pyrolysis temperature into carbon conducting phase; this means the formation of long continuous conducting path for charge carriers when the carbon microparticles inside the structure agglomerated with thermal treatment and the samples exhibited tangible percolation behaviour where the percolation threshold can be determined by pyrolysis temperature. The temperature-dependent conductivity and the I(V) characteristics of the obtained ECC structures show a non-ohmic behaviour. The results obtained from TGA and differential thermal analyser (DTA) thermograms, scanning electron microscope (SEM) and transmission electron microscope (TEM) micrographs, IR spectroscopy and X-ray diffraction revealed that, the obtained ECC structures consist of amorphous and nanoporous electrical conducting carbon materials

  17. Electricity market competition and nuclear power

    International Nuclear Information System (INIS)

    Varley, C.; Paffenbarger, J.

    1999-01-01

    Throughout the world, the Organization for Economic Cooperation and Development (OECD) member countries' governments are promoting competitive electricity markets. In particular, there is a move away from administrative price-setting by government institutions to market price-setting through the introduction of competition. Today this is often focused on competition in generation. However, competition among final electricity suppliers and distributors to provide effective consumer choice is a further step that governments are likely to pursue as experience with market reform grows. This competitive environment will undoubtedly impact upon the nuclear generation industry. Competition will provide an opportunity to reinvigorate nuclear power; it will improve the transparency of energy policy-making and the policy framework for nuclear power; it will spur innovation in existing plants and help prospects for new plant build; and provide a strong impetus for cost reduction and innovation. This paper discusses these issues in detail. It looks at the potential benefits and challenges to the nuclear generation industry arising from an increasingly competitive market. (author)

  18. Economic analysis of electric heating based on critical electricity price

    Science.gov (United States)

    Xie, Feng; Sun, Zhijie; Zhou, Xinnan; Fu, Chengran; Yang, Jie

    2018-06-01

    The State Grid Corporation of China proposes an alternative energy strategy, which will make electric heating an important task in the field of residential electricity consumption. This article takes this as the background, has made the detailed introduction to the inhabitant electric heating technology, and take the Zhangjiakou electric panels heating technology as an example, from the expense angle, has carried on the analysis to the electric panels heating economy. In the field of residential heating, electric panels operating costs less than gas boilers. After customers implying energy-saving behavior, electric panels operating cost is even lower than coal-fired boilers. The critical price is higher than the execution price, which indicates that the economic performance of the electric panels is significantly higher than that of the coal boiler.

  19. Electricity market 2000

    Energy Technology Data Exchange (ETDEWEB)

    Korsfeldt, T.; Petsala, B.

    2000-08-01

    The electricity markets in the Nordic countries have undergone major changes since the electricity market reform work was started in the early 1990s. Sweden, Norway and Finland have a common electricity market since 1996.The work of also reforming the Danish electricity market was begun in the year 2000. The objective of the electricity market reform is to introduce increased competition,to give the consumers greater freedom of choice and also, by open and expanded trade in electricity, create the conditions for efficient pricing. The Swedish National Energy Administration is the supervisory authority as specified in the Electricity Act, and one of the tasks entrusted to it by the Government is to follow developments on the electricity market and to regularly compile and report current market information. The purpose of the present publication is to meet the need for generalized and readily accessible information on the conditions on the Nordic markets.The publication includes summaries of information from recent years concerning electricity generation and utilization in the Nordic countries, the structure of the electricity market from the players' perspective trade in electricity in the Nordic countries and in Northern Europe, electricity prices in the Nordic and other countries, and the impact of the electricity sector on the environment.

  20. Electricity market 2000

    International Nuclear Information System (INIS)

    Korsfeldt, T.; Petsala, B.

    2000-08-01

    The electricity markets in the Nordic countries have undergone major changes since the electricity market reform work was started in the early 1990s. Sweden, Norway and Finland have a common electricity market since 1996.The work of also reforming the Danish electricity market was begun in the year 2000. The objective of the electricity market reform is to introduce increased competition,to give the consumers greater freedom of choice and also, by open and expanded trade in electricity, create the conditions for efficient pricing. The Swedish National Energy Administration is the supervisory authority as specified in the Electricity Act, and one of the tasks entrusted to it by the Government is to follow developments on the electricity market and to regularly compile and report current market information. The purpose of the present publication is to meet the need for generalized and readily accessible information on the conditions on the Nordic markets.The publication includes summaries of information from recent years concerning electricity generation and utilization in the Nordic countries, the structure of the electricity market from the players' perspective trade in electricity in the Nordic countries and in Northern Europe, electricity prices in the Nordic and other countries, and the impact of the electricity sector on the environment

  1. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    Science.gov (United States)

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  2. AutoCAD electrical 2016 for electrical control designers

    CERN Document Server

    Tickoo, Sham

    2016-01-01

    The AutoCAD Electrical 2016 for Electrical Control Designers textbook has been written to assist the engineering students and the practicing designers who are new to AutoCAD Electrical. Using this textbook, the readers can learn the application of basic tools required for creating professional electrical control drawings with the help of AutoCAD Electrical. Keeping in view the varied requirements of the users, this textbook covers a wide range of tools and features such as schematic drawings, Circuit Builder, panel drawings, parametric and nonparametric PLC modules, stand-alone PLC I/O points, ladder diagrams, point-to-point wiring diagrams, report generation, creation of symbols, and so on. This will help the readers to create electrical drawings easily and effectively. Special emphasis has been laid on the introduction of concepts, which have been explained using text and supported with graphical examples. The examples and tutorials used in this book ensure that the users can relate the information provided...

  3. Economic aspects of grid connected solar electricity generation

    International Nuclear Information System (INIS)

    Pharabod, F.

    1993-01-01

    Experience gained with available solar thermal technologies enlighten on options for research and development on solar electricity generation. The proposed analysis of new solar technologies concerns market, costs and profit viewpoint: - Systems under development have to fit with consumers' needs and utilities' specifications, technology is not the only item to study. - Expense headings depend on technological options and operation procedures such as size of the plant, solar only or hybrid concept. - Anticipation of revenues highly depends on direct insolation quality and on local conditions for introducing the electric power generated into the network: daily direct insolation measurements and annual local load curve are prerequisite data. Strategic advantages regarding environment and sustainable development are to be pointed out, specially in industrialized countries or for projects including financing institutions. As far as generating electric power on the grid is a major challenge in the development of a number of countries in the sun belt, cooperation between industrialized and developing countries, under the auspices of international organization, has to be promoted. (Author) 12 refs

  4. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  5. Electrical installations technology

    CERN Document Server

    Whitfield, J F

    1968-01-01

    Electrical Installations Technology covers the syllabus of the City and Guilds of London Institute course No. 51, the "Electricians B Certificate”. This book is composed of 15 chapters that deal with basic electrical science and electrical installations. The introductory chapters discuss the fundamentals and basic electrical principles, including the concept of mechanics, heat, magnetic fields, electric currents, power, and energy. These chapters also explore the atomic theory of electric current and the electric circuit, conductors, and insulators. The subsequent chapter focuses on the chemis

  6. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.

    Science.gov (United States)

    Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo

    2017-02-01

    Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. European utility requirements: common rules to design next LWR plants in an open electricity market

    International Nuclear Information System (INIS)

    Berbey, Pierre; Ingemarsson, Karl-Fredrik

    2004-01-01

    The major European electricity producers want to keep able to build new nuclear power plants and they believe 3. generation LWRs would be the most adapted response to their needs in the first decades of this century. Producing a common European Utility Requirement (EUR) document has been one of the basic tasks towards this objective. In this common frame, standardized and competitive LWR NPPs could be developed and offered to the investors. This idea is now well supported by all the other actors on the European electricity market: vendors, regulators, grid managers, administrations although in the competitive and unified European electricity market that is emerging, the electricity producers' stakes are more and more different from the other electricity business actors'. The next term objectives of the electricity producers involved in EUR are focused on negotiating common rules of the game together with the regulators. This covers the nuclear safety approaches, the conditions requested to connect a plant to a HV grid, as well as the design standards. Discussions are going on between the EUR organization and all the corresponding bodies to develop stabilized and predictable design rules that would meet the constraints of nuclear electricity generation in this new environment. Finally there cannot be competition without competitors. The EUR organization has proven to be the right place to establish trustful relationship between the vendors and their potential customers, through fair assessment of the proposed designs performance vs. the utility needs. This will be continued and developed with the main vendors present in Europe, so as to keep alive a list of 4 to 6 designs 'qualified', i.e. showing an acceptable score of non-compliance vs. EUR. (authors)

  8. Electricity consumption and economic growth: A cross-country analysis

    International Nuclear Information System (INIS)

    Yoo, Seung-Hoon; Lee, Joo-Suk

    2010-01-01

    Electricity has been the foundation of economic growth, and constitutes one of the vital infra-structural inputs in socio-economic development. The world faces a surge in demand for electricity that is driven by such powerful forces as population growth, extensive urbanization, industrialization, and the rise in the standard of living. This paper attempts to ascertain whether there is a systematic relationship between electricity consumption and economic growth. To this end, we use a large set of data that spans 88 countries during the period, 1975-2004. A statistically significant inverted-U-shaped relationship between per-capita consumption of electricity and per-capita income is detected. Nevertheless, by using a purchasing power parity that is much higher than the per-capita income of all the countries in the world, the level of per-capita income is estimated at the peak point of per-capita electricity consumption to be $61,379 in 2000 constant international dollars. Moreover, we segment the sample into Organization for Economic Cooperation and Development (OECD) countries and non-OECD countries, and separately analyze the developed and developing countries. The separate estimation shows that even though the peak income is higher than the average per-capita income, a statistically significant inverted-U-shaped relationship is found in OECD and developed countries but not in non-OECD and developing countries.

  9. Electricity consumption and economic growth: A cross-country analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung-Hoon, E-mail: shyoo@hoseo.ed [Department of International Area Studies, Hoseo University, 268 Anseo-Dong, Cheonan, Chungnam 330-713 (Korea, Republic of); Lee, Joo-Suk, E-mail: leejoosuk@hoseo.ed [Department of International Area Studies, Hoseo University, 268 Anseo-Dong, Cheonan, Chungnam 330-713 (Korea, Republic of)

    2010-01-15

    Electricity has been the foundation of economic growth, and constitutes one of the vital infra-structural inputs in socio-economic development. The world faces a surge in demand for electricity that is driven by such powerful forces as population growth, extensive urbanization, industrialization, and the rise in the standard of living. This paper attempts to ascertain whether there is a systematic relationship between electricity consumption and economic growth. To this end, we use a large set of data that spans 88 countries during the period, 1975-2004. A statistically significant inverted-U-shaped relationship between per-capita consumption of electricity and per-capita income is detected. Nevertheless, by using a purchasing power parity that is much higher than the per-capita income of all the countries in the world, the level of per-capita income is estimated at the peak point of per-capita electricity consumption to be $61,379 in 2000 constant international dollars. Moreover, we segment the sample into Organization for Economic Cooperation and Development (OECD) countries and non-OECD countries, and separately analyze the developed and developing countries. The separate estimation shows that even though the peak income is higher than the average per-capita income, a statistically significant inverted-U-shaped relationship is found in OECD and developed countries but not in non-OECD and developing countries.

  10. Electricity consumption and economic growth. A cross-country analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung-Hoon; Lee, Joo-Suk [Department of International Area Studies, Hoseo University, 268 Anseo-Dong, Cheonan, Chungnam 330-713 (Korea)

    2010-01-15

    Electricity has been the foundation of economic growth, and constitutes one of the vital infra-structural inputs in socio-economic development. The world faces a surge in demand for electricity that is driven by such powerful forces as population growth, extensive urbanization, industrialization, and the rise in the standard of living. This paper attempts to ascertain whether there is a systematic relationship between electricity consumption and economic growth. To this end, we use a large set of data that spans 88 countries during the period, 1975-2004. A statistically significant inverted-U-shaped relationship between per-capita consumption of electricity and per-capita income is detected. Nevertheless, by using a purchasing power parity that is much higher than the per-capita income of all the countries in the world, the level of per-capita income is estimated at the peak point of per-capita electricity consumption to be $61,379 in 2000 constant international dollars. Moreover, we segment the sample into Organization for Economic Cooperation and Development (OECD) countries and non-OECD countries, and separately analyze the developed and developing countries. The separate estimation shows that even though the peak income is higher than the average per-capita income, a statistically significant inverted-U-shaped relationship is found in OECD and developed countries but not in non-OECD and developing countries. (author)

  11. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Bassett, R.R. [Sandia National Labs., Albuquerque, NM (United States); Briasco, S. [Los Angeles City Dept. of Water and Power, CA (United States)] [and others

    1996-08-01

    Goals of the site operator program include field evaluation of electric vehicles (EVs) in real-world applications and environments, advancement of electric vehicle technologies, development of infrastructure elements necessary to support significant EV use, and increasing the awareness and acceptance of EVs by the public. The site operator program currently consists of 11 participants under contract and two other organizations with data-sharing agreements with the program. The participants (electric utilities, academic institutions, Federal agencies) are geographically dispersed within US and their vehicles see a broad spectrum of service conditions. Current EV inventories of the site operators exceeds 250 vehicles. Several national organizations have joined DOE to further the introduction and awareness of EVs, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for EVs; (2) DOE, DOT, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of EVs. Current focus of the program is collection and dissemination of EV operations and performance data to aid in the evaluation of real- world EV use. This report contains several sections with vehicle evaluation as a focus: EV testing results, energy economics of EVs, and site operators activities.

  12. Long-term impacts of battery electric vehicles on the German electricity system

    Science.gov (United States)

    Heinrichs, H. U.; Jochem, P.

    2016-05-01

    The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.

  13. The effect of metal-buffer bilayer drain/source electrodes on the operational stability of the organic field effect transistors

    International Nuclear Information System (INIS)

    Karimi-Alavijeh, H.R.; Ehsani, A.

    2015-01-01

    In this paper, we have investigated experimentally the effect of different drain/source (D/S) electrodes and charge injection buffer layers on the electrical properties and operational stability of a stilbene organic field effect transistor (OFET). The results show that the organic buffer layer of copper phthalocyanine (CuPc) considerably improves the electrical properties of the transistors, but has a negligible effect on their temporal behavior. On the other hand, inorganic metal-oxide buffer layer of molybdenum oxide (MoO 3 ) drastically changes both the electrical properties and operational stability. The functionalities of this metal-oxide tightly depend on the properties of the D/S metallic electrodes. OFETs with Al/MoO 3 as the bilayer D/S electrodes have the best electrical properties: field effect mobility μ eff = 0.32 cm 2 V −1 s −1 and threshold voltage V TH = − 5 V and the transistors with Ag/MoO 3 have the longest operational stability. It was concluded that the chemical stability of the metal/metal-oxide or metal/organic interfaces of the bilayer D/S electrodes determine the operational stability of the OFETs. - Highlights: • The effect of buffer layers on the performance of the stilbene OFETs has been investigated. • Inorganic buffer layer improved the electrical and temporal behaviors simultaneously. • Organic buffer layer only changes the electrical properties. • Chemical stability of the interfaces determines the operational stability of the transistor

  14. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-04-01

    Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.

  15. Cheat Electricity? The Political Economy of Green Electricity Delivery on the Dutch Market for Households and Small Business

    OpenAIRE

    J. A. M. Hufen

    2016-01-01

    The European Commission’s renewable energy directive introduced a market-based Guarantees of Origin (GO)-trade system that gives consumers the choice of buying “real” green energy. This has been successful, as the market share of Dutch households that buy green energy grew to 64% in 2015. However, societal organizations are dissatisfied with the green energy offered, categorizing it as “cheat” electricity. This article aims to solve this riddle of a successful product created under the GO-tra...

  16. Enhancing the performance of organic thin-film transistors using an organic-doped inorganic buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Su, Shui-Hsiang, E-mail: shsu@isu.edu.tw; Wu, Chung-Ming; Kung, Shu-Yi; Yokoyama, Meiso

    2013-06-01

    Organic thin-film transistors (OTFTs) with various buffer layers between the active layer and source/drain electrodes were investigated. The structure was polyethylene terephthalate/indium-tin oxide/poly(methyl methacrylate) (PMMA)/pentacene/buffer layer/Au (source/drain). V{sub 2}O{sub 5}, 4,4′,4″-tris{N,(3-methylpheny)-N-phenylamino}-triphenylamine (m-MTDATA) and m-MTDATA-doped V{sub 2}O{sub 5} films were utilized as buffer layers. The electrical performances of OTFTs in terms of drain current, threshold voltage, mobility and on/off current ratio have been determined. As a result, the saturation current of − 40 μA is achieved in OTFTs with a 10% m-MTDATA-doped V{sub 2}O{sub 5} buffer layer at a V{sub GS} of − 60 V. The on/off current ratio reaches 2 × 10{sup 5}, which is approximately double of the device without a buffer layer. The energy band diagrams of the electrode/buffer layer/pentacene were measured using ultra-violet photoelectron spectroscopy. The improvement in electrical characteristics of the OTFTs is attributable to the weakening of the interface dipole and the lowering of the barrier to enhance holes transportation from the source electrode to the active layer. - Highlights: • A buffer layer enhances the performance of organic thin-film transistors (OTFTs). • The buffer layer consists of organic-doped inorganic material. • Interface dipole is weakened at the active layer/electrodes interface of OTFTs.

  17. Doping of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Luessem, B.; Riede, M.; Leo, K. [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2013-01-15

    The understanding and applications of organic semiconductors have shown remarkable progress in recent years. This material class has been developed from being a lab curiosity to the basis of first successful products as small organic LED (OLED) displays; other areas of application such as OLED lighting and organic photovoltaics are on the verge of broad commercialization. Organic semiconductors are superior to inorganic ones for low-cost and large-area optoelectronics due to their flexibility, easy deposition, and broad variety, making tailor-made materials possible. However, electrical doping of organic semiconductors, i.e. the controlled adjustment of Fermi level that has been extremely important to the success of inorganic semiconductors, is still in its infancy. This review will discuss recent work on both fundamental principles and applications of doping, focused primarily to doping of evaporated organic layers with molecular dopants. Recently, both p- and n-type molecular dopants have been developed that lead to efficient and stable doping of organic thin films. Due to doping, the conductivity of the doped layers increases several orders of magnitude and allows for quasi-Ohmic contacts between organic layers and metal electrodes. Besides reducing voltage losses, doping thus also gives design freedom in terms of transport layer thickness and electrode choice. The use of doping in applications like OLEDs and organic solar cells is highlighted in this review. Overall, controlled molecular doping can be considered as key enabling technology for many different organic device types that can lead to significant improvements in efficiencies and lifetimes. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Doping of organic semiconductors

    International Nuclear Information System (INIS)

    Luessem, B.; Riede, M.; Leo, K.

    2013-01-01

    The understanding and applications of organic semiconductors have shown remarkable progress in recent years. This material class has been developed from being a lab curiosity to the basis of first successful products as small organic LED (OLED) displays; other areas of application such as OLED lighting and organic photovoltaics are on the verge of broad commercialization. Organic semiconductors are superior to inorganic ones for low-cost and large-area optoelectronics due to their flexibility, easy deposition, and broad variety, making tailor-made materials possible. However, electrical doping of organic semiconductors, i.e. the controlled adjustment of Fermi level that has been extremely important to the success of inorganic semiconductors, is still in its infancy. This review will discuss recent work on both fundamental principles and applications of doping, focused primarily to doping of evaporated organic layers with molecular dopants. Recently, both p- and n-type molecular dopants have been developed that lead to efficient and stable doping of organic thin films. Due to doping, the conductivity of the doped layers increases several orders of magnitude and allows for quasi-Ohmic contacts between organic layers and metal electrodes. Besides reducing voltage losses, doping thus also gives design freedom in terms of transport layer thickness and electrode choice. The use of doping in applications like OLEDs and organic solar cells is highlighted in this review. Overall, controlled molecular doping can be considered as key enabling technology for many different organic device types that can lead to significant improvements in efficiencies and lifetimes. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Comparison of pulsed corona plasma and pulsed electric fields for the decontamination of water containing Legionella pneumophila as model organism.

    Science.gov (United States)

    Banaschik, Robert; Burchhardt, Gerhard; Zocher, Katja; Hammerschmidt, Sven; Kolb, Juergen F; Weltmann, Klaus-Dieter

    2016-12-01

    Pulsed corona plasma and pulsed electric fields were assessed for their capacity to kill Legionella pneumophila in water. Electrical parameters such as in particular dissipated energy were equal for both treatments. This was accomplished by changing the polarity of the applied high voltage pulses in a coaxial electrode geometry resulting in the generation of corona plasma or an electric field. For corona plasma, generated by high voltage pulses with peak voltages of +80kV, Legionella were completely killed, corresponding to a log-reduction of 5.4 (CFU/ml) after a treatment time of 12.5min. For the application of pulsed electric fields from peak voltages of -80kV a survival of log 2.54 (CFU/ml) was still detectable after this treatment time. Scanning electron microscopy images of L. pneumophila showed rupture of cells after plasma treatment. In contrast, the morphology of bacteria seems to be intact after application of pulsed electric fields. The more efficient killing for the same energy input observed for pulsed corona plasma is likely due to induced chemical processes and the generation of reactive species as indicated by the evolution of hydrogen peroxide. This suggests that the higher efficacy and efficiency of pulsed corona plasma is primarily associated with the combined effect of the applied electric fields and the promoted reaction chemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Book of abstracts of 10th International Conference on Nuclear Option in Countries with Small and Medium Electricity Grids

    International Nuclear Information System (INIS)

    2014-01-01

    The International Conference "Nuclear Option in Countries with Small and Medium Electricity Grids" is the tenth in a series of meetings on the same topics organized biennially by the Croatian Nuclear Society. This topical conference was initiated in 1996 and the first conference took place in Opatija, the following seven in Dubrovnik and the last one in Zadar. This year, it again takes place in Zadar. The conference is organized with intention to focus on specific aspects of usage of nuclear energy for electricity production in small and medium sized countries. Importance of international cooperation for the assessment of the nuclear option has been recognised by the International Atomic Energy Agency (IAEA). As a result of this recognition, the Conference is organized in co-operation with IAEA. Croatian State Office for Radiological and Nuclear Safety and University of Zagreb, Faculty of Electrical Engineering and Computing have also participated in Conference organization. Session topics reflect some current emphasis, such as country energy needs, new reactor technologies, operation and safety of the operating nuclear power plants. The conference also focuses on the exchange of experience and co-operation in the fields of fuel cycle, radioactive waste management, regulatory practice and liability.

  1. The history of 10 years of electrical safety

    International Nuclear Information System (INIS)

    1984-12-01

    This book describes the foundation course of Korea electrical power corporation, including the process of the establishment with difficulty in the early period, growth through the rough passage, maintain of stability with voluntary service for public benefit. Next it deals with the management of the organization, and personnel management, financial affairs the management of business, examination for safety. The last part is an appendix for the administration law of each deportment.

  2. Electrical appliance energy consumption control methods and electrical energy consumption systems

    Science.gov (United States)

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  3. Electrical appliance energy consumption control methods and electrical energy consumption systems

    Science.gov (United States)

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  4. Electricity and generator availability in LMIC hospitals: improving access to safe surgery.

    Science.gov (United States)

    Chawla, Sagar; Kurani, Shaheen; Wren, Sherry M; Stewart, Barclay; Burnham, Gilbert; Kushner, Adam; McIntyre, Thomas

    2018-03-01

    Access to reliable energy has been identified as a global priority and codified within United Nations Sustainable Goal 7 and the Electrify Africa Act of 2015. Reliable hospital access to electricity is necessary to provide safe surgical care. The current state of electrical availability in hospitals in low- and middle-income countries (LMICs) throughout the world is not well known. This study aimed to review the surgical capacity literature and document the availability of electricity and generators. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic search for surgical capacity assessments in LMICs in MEDLINE, PubMed, and World Health Organization Global Health Library was performed. Data regarding electricity and generator availability were extracted. Estimated percentages for individual countries were calculated. Of 76 articles identified, 21 reported electricity availability, totaling 528 hospitals. Continuous electricity availability at hospitals providing surgical care was 312/528 (59.1%). Generator availability was 309/427 (72.4%). Estimated continuous electricity availability ranged from 0% (Sierra Leone and Malawi) to 100% (Iran); estimated generator availability was 14% (Somalia) to 97.6% (Iran). Less than two-thirds of hospitals providing surgical care in 21 LMICs have a continuous electricity source or have an available generator. Efforts are needed to improve electricity infrastructure at hospitals to assure safe surgical care. Future research should look at the effect of energy availability on surgical care and patient outcomes and novel methods of powering surgical equipment. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Electrical and optical co-stimulation in the deaf white cat

    Science.gov (United States)

    Cao, Zhiping; Xu, Yingyue; Tan, Xiaodong; Suematsu, Naofumi; Robinson, Alan; Richter, Claus-Peter

    2018-02-01

    Spatial selectivity of neural stimulation with photons, such as infrared neural stimulation (INS) is higher than the selectivity obtained with electrical stimulation. To obtain more independent channels for stimulation in neural prostheses, INS may be implemented to better restore the fidelity of the damaged neural system. However, irradiation with infrared light also bares the risk of heat accumulation in the target tissue with subsequent neural damage. Lowering the threshold for stimulation could reduce the amount of heat delivered to the tissue and the risk for subsequent tissue damage. It has been shown in the rat sciatic nerve that simultaneous irradiation with infrared light and the delivery of biphasic sub-threshold electrical pulses can reduce the threshold for INS [1]. In this study, deaf white cats have been used to test whether opto-electrical co-stimulation can reduce the stimulation threshold for INS in the auditory system too. The cochleae of the deaf white cats have largely reduced spiral ganglion neuron counts and significant degeneration of the organ of Corti and do not respond to acoustic stimuli. Combined electrical and optical stimulation was used to demonstrate that simultaneous stimulation with infrared light and biphasic electrical pulses can reduce the threshold for stimulation.

  6. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuit and electric equipment... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.509 Electric power circuit and electric equipment; deenergization. [Statutory Provisions] All...

  7. Virtual Power Plants of Electric Vehicles in Sustainable Smart Electricity Markets

    NARCIS (Netherlands)

    M.T. Kahlen (Micha)

    2017-01-01

    markdownabstractThe batteries of electric vehicles can be used as Virtual Power Plants to balance out frequency deviations in the electricity grid. Carsharing fleet owners have the options to charge an electric vehicle's battery, discharge an electric vehicle's battery, or keep an electric vehicle

  8. Implementation of Optical Characterization for Flexible Organic Electronics Applications

    Science.gov (United States)

    Laskarakis, A.; Logothetidis, S.

    One of the most rapidly evolving sectors of the modern science and technology is the flexible organic electronic devices (FEDs) that are expected to significantly improve and revolutionize our everyday life. The FED application includes the generation of electricity by renewable sources (by organic photovoltaic cells - OPVs), power storage (thin film batteries), the visualization of information (by organic displays), the working and living environment (ambient lighting, sensors), safety, market (smart labels, radio frequency identification tags - RFID), textiles (smart fabrics with embedded display and sensor capabilities), as well as healthcare (smart sensors for vital sign monitoring), etc. Although there has been important progresses in inorganic-based Si devices, there are numerous advances in the organic (semiconducting, conducting), inorganic, and hybrid (organic-inorganic) materials that exhibit desirable properties and stability, and in the synthesis and preparation methods. The understanding of the organic material properties can lead to the fast progress of the functionality and performance of FEDs. The investigation of the optical properties of these materials can promote the understanding of the optical, electrical, structural properties of organic semiconductors and electrodes and can contribute to the optimization of the synthesis process and the tuning of their structure and morphology. In this chapter, we will describe briefly some of the advances toward the implementation of optical characterization methods, such as Spectroscopic Ellipsometry (SE) from the infrared to the visible and ultraviolet spectral region for the study of materials (flexible polymer substrates, barrier layers, transparent electrodes) to be used for application in the fabrication of FEDs.

  9. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell.

    Science.gov (United States)

    Li, Jianyong; Li, Jinhua; Chen, Quanpeng; Bai, Jing; Zhou, Baoxue

    2013-11-15

    Direct discharging great quantities of organics into water-body not only causes serious environmental pollution but also wastes energy sources. In this paper, a solar responsive dual photoelectrode photocatalytic fuel cell (PFC(2)) based on TiO2/Ti photoanode and Cu2O/Cu photocathode was designed for hazardous organics treatment with simultaneous electricity generation. Under solar irradiation, the interior bias voltage produced for the Fermi level difference between photoelectrodes drives photoelectrons of TiO2/Ti photoanode to combine with photoholes of Cu2O/Cu photocathode through external circuit thus generating electricity. In the meantime, organics are decomposed by photoholes remained at TiO2/Ti photoanode. By using various hazardous organics including azo dyes as model pollutants, the PFC showed high converting performance of organics into electricity. For example, in 0.05 M phenol solution, a short-circuit current density 0.23 mA cm(-2), open-circuit voltage 0.49 V, maximum power output 0.3610(-4)W cm(-2) was achieved. On the other hand, removal rate of chroma reached 67%, 87% and 63% in 8h for methyl orange, methylene blue, Congo red, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Study of Electrical Transport Properties of Thin Films Used as HTL and as Active Layer in Organic Solar Cells, through Impedance Spectroscopy Measurements

    Directory of Open Access Journals (Sweden)

    Camilo A. Otalora

    2016-01-01

    Full Text Available Impedance spectroscopy (IS is used for studying the electrical transport properties of thin films used in organic solar cells with structure ITO/HTL/active layer/cathode, where PEDOT:PSS (poly(3,4-ethylenedioxythiophene:polystyrene sulfonic acid and CuPC (tetrasulfonated copper-phthalocyanine were investigated as HTL (hole transport layer and P3HT:PCBM (poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester blends prepared from mesitylene and chlorobenzene based solutions were studied as active layer and Ag and Al were used as cathode. The study allowed determining the influence of the type of solvent used for the preparation of the active layer as well as the speed at which the solvents are removed on the carriers mobility. The effect of exposing the layer of P3HT to the air on its mobility was also studied. It was established that samples of P3HT and P3HT:PCBM prepared using mesitylene as a solvent have mobility values significantly higher than those prepared from chlorobenzene which is the solvent most frequently used. It was also determined that the mobility of carriers in P3HT films strongly decreases when this sample is exposed to air. In addition, it was found that the electrical properties of P3HT:PCBM thin films can be improved by removing the solvent slowly which is achieved by increasing the pressure inside the system of spin-coating during the film growth.

  11. Microbial Fuel Cells using Mixed Cultures of Wastewater for Electricity Generation

    International Nuclear Information System (INIS)

    Zain, S.M; Roslani, N.S.; Hashim, R.; Anuar, N.; Suja, F.; Basi, N.E.A.; Anuar, N.; Daud, W.R.W.

    2011-01-01

    Fossil fuels (petroleum, natural gas and coal) are the main resources for generating electricity. However, they have been major contributors to environmental problems. One potential alternative to explore is the use of microbial fuel cells (MFCs), which generate electricity using microorganisms. MFCs uses catalytic reactions activated by microorganisms to convert energy preserved in the chemical bonds between organic molecules into electrical energy. MFC has the ability to generate electricity during the wastewater treatment process while simultaneously treating the pollutants. This study investigated the potential of using different types of mixed cultures (raw sewage, mixed liquor from the aeration tank and return waste activated sludge) from an activated sludge treatment plant in MFCs for electricity generation and pollutant removals (COD and total kjeldahl nitrogen, TKN). The MFC in this study was designed as a dual-chambered system, in which the chambers were separated by a Nafion TM membrane using a mixed culture of wastewater as a bio catalyst. The maximum power density generated using activated sludge was 9.053 mW/ cm 2 , with 26.8 % COD removal and 40 % TKN removal. It is demonstrated that MFC offers great potential to optimize power generation using mixed cultures of wastewater. (author)

  12. Study of influence on micro-fabricated resistive switching organic ...

    Indian Academy of Sciences (India)

    3Northwest Electric Power Design Institute of China Power Engineering Consulting Group, Xi'an,. Shaanxi ... gives rise to an important application of organic thin film devices as ... This C-AFM measurement system is consisted with an AFM.

  13. High-resolution charge carrier mobility mapping of heterogeneous organic semiconductors

    Science.gov (United States)

    Button, Steven W.; Mativetsky, Jeffrey M.

    2017-08-01

    Organic electronic device performance is contingent on charge transport across a heterogeneous landscape of structural features. Methods are therefore needed to unravel the effects of local structure on overall electrical performance. Using conductive atomic force microscopy, we construct high-resolution out-of-plane hole mobility maps from arrays of 5000 to 16 000 current-voltage curves. To demonstrate the efficacy of this non-invasive approach for quantifying and mapping local differences in electrical performance due to structural heterogeneities, we investigate two thin film test systems, one bearing a heterogeneous crystal structure [solvent vapor annealed 5,11-Bis(triethylsilylethynyl)anthradithiophene (TES-ADT)—a small molecule organic semiconductor] and one bearing a heterogeneous chemical composition [p-DTS(FBTTh2)2:PC71BM—a high-performance organic photovoltaic active layer]. TES-ADT shows nearly an order of magnitude difference in hole mobility between semicrystalline and crystalline areas, along with a distinct boundary between the two regions, while p-DTS(FBTTh2)2:PC71BM exhibits subtle local variations in hole mobility and a nanoscale domain structure with features below 10 nm in size. We also demonstrate mapping of the built-in potential, which plays a significant role in organic light emitting diode and organic solar cell operation.

  14. Productivity in Swedish electricity retail distribution

    International Nuclear Information System (INIS)

    Hjalmarsson, L.; Veiderpass, A.

    1992-01-01

    This paper examines productivity growth in electricity retail distribution in Sweden in a multiple output-multiple input framework. The approach used is nonparametric Data Envelopment Analysis (DEA). Productivity is measured by means of the Malmquist index. Productivity comparisons are made between different types of ownership and between different service areas. The study indicates a high rate of productivity growth, due to economics of density, when measured over a period of 17 years. The results show no significant differences in productivity growth between different types of ownership or economic organization. (20 refs., 1 fig., 4 tabs.)

  15. The effect of polymer type on electric breakdown strength on a nanosecond time scale

    Institute of Scientific and Technical Information of China (English)

    Zhao Liang; Su Jian-Cang; Pan Ya-Feng; Zhang Xi-Bo

    2012-01-01

    Based on the concepts of fast polarization,effective electric field and electron impact ionization criterion,the effect of polymer type on electric breakdown strength (EBD) on a nanosecond time scale is investigated,and a formula that qualitatively characterizes the relation between the electric breakdown strength and the polymer type is derived.According to this formula,it is found that the electric breakdown strength decreases with an increase in the effective relative dielectric constants of the polymers.By calculating the effective relative dielectric constants for different types of polymers,the theoretical relation for the electric breakdown strengths of common polymers is predicted.To verify the prediction,the polymers of PE (polyethylene),PTFE (polytetrafluoroethelene),PMMA (organic glass) and Nylon are tested with a nanosecond-pulse generator.The experimental result shows EBD (PTFE) > EBD (PMMA) > EBD (Nylon) > EBD (PE).This result is consistent with the theoretical prediction.

  16. Electric Car Special

    Energy Technology Data Exchange (ETDEWEB)

    Zoethout, T.; Belin, H.; Verwijs, H.; Nicola, S.; De Saint Jacob, Y.; Gatermann, R.

    2009-09-15

    In six articles, two columns and two interviews a part of this issue is dedicated to electric car developments: about winners and losers in the electric car race; a unique business model to rolling out the electric car by the electric battery company Better Place and the automobile industry Renault Nissan; interview with entrepreneur Shai Agassi of the Indian company Better Place; the development of electric cars in Germany; interview with Jean-Jacques Chanaron, an economist specialising in innovation management and a firm believer in electric cars; start of mass production of electric vehicles at the Japanese Nissan automobile industry; the constraints in Sweden in developing fuel-efficient automobiles; plans for 1 million electric or hybrid cars by 2025 in the Netherlands.

  17. Electrical transformer handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Horne, D. (eds.)

    2005-07-01

    This handbook is a valuable user guide intended for electrical engineering and maintenance personnel, electrical contractors and electrical engineering students. It provides current information on techniques and technologies that can help extend the life of transformers. It discusses transformer testing, monitoring, design, commissioning, retrofitting and other elements involved in keeping electrical transformers in safe and efficient operation. It demonstrates how a power transformer can be put to use and common problems faced by owners. In addition to covering control techniques, testing and maintenance procedures, this handbook covers the power transformer; control electrical power transformer; electrical power transformer; electrical theory transformer; used electrical transformer; down electrical step transformer; electrical manufacturer transformer; electrical picture transformer; electrical transformer work; electrical surplus transformer; current transformer; step down transformer; voltage transformer; step up transformer; isolation transformer; low voltage transformer; toroidal transformer; high voltage transformer; and control power transformer. The handbook includes articles from leading experts on overcurrent protection of transformers; ventilated dry-type transformers; metered load factors for low-voltage, and dry-type transformers in buildings. The maintenance of both dry-type or oil-filled transformers was discussed with reference to sealing, gaskets, oils, moisture and testing. The adoption of dynamic load practices was also discussed along with the reclamation or recycling of used lube oil, transformer dielectric fluids and aged solid insulation. A buyer's guide and directory of transformer manufacturers and suppliers was also included. refs., tabs., figs.

  18. Plug-in electric vehicles integrating fluctuating renewable electricity

    Energy Technology Data Exchange (ETDEWEB)

    Dallinger, David

    2013-11-01

    This paper examines a method to model plug-in electric vehicles as part of the power system and presents results for the contribution of plug-in electric vehicles to balance the fluctuating electricity generation of renewable energy sources. The scientific contribution includes: - A novel approach to characterizing fluctuating generation. This allows the detailed comparison of results from energy analysis and is the basis to describe the effect of electricity from renewable energy sources and plug-in electric vehicles on the power system. - The characterization of mobile storage, which includes the description of mobility behavior using probabilities and battery discharging costs. - The introduction of an agent-based simulation approach, coupling energy markets and distributed grids using a price-based mechanism design. - The description of an agent with specific driving behavior, battery discharging costs and optimization algorithm suitable for real plug-in vehicles and simulation models. - A case study for a 2030 scenario describing the contribution of plug-in electric vehicles to balance generation from renewable energy sources in California and Germany.

  19. Electrical safety guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  20. Time-dependent simulation of organic light-emitting diodes

    International Nuclear Information System (INIS)

    Sharifi, M J

    2009-01-01

    Several methods to simulate the behavior of organic light-emitting diodes (OLEDs) have been proposed in the past. In this paper, we develop a previous method, based on the master equation, in order to allow the simulation of time-dependent behavior and transient states. The calculation algorithm of the program that we have written is described. The time-dependent behaviors of two simple monolayer devices and of a more complicated three-layer device were simulated by means of this program, and the results are discussed. The results show that the turn-off speed of an OLED might be very slow, especially in the case of a multilayer device. This behavior is related to the low mobility of the organic material in weak electric fields. An interesting feature of the time behavior is pointed out, whereby the recombination rate may become considerably larger after the falling edge of an applied voltage pulse. Moreover, the validity of the transient electro-luminescent method for measuring carrier mobility in organic material has been examined by means of simulation. The results show that there is some inconsistency especially in high electric fields