WorldWideScience

Sample records for electric field application

  1. Electric Potential and Electric Field Imaging with Applications

    Science.gov (United States)

    Generazio, Ed

    2016-01-01

    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  2. Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions

    Science.gov (United States)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of

  3. Gastric applications of electrical field stimulation.

    LENUS (Irish Health Repository)

    Hogan, Aisling M

    2012-02-01

    Advances in clinical applications of electricity have been vast since the launch of Hayman\\'s first cardiac pacemaker more than 70 years ago. Gastric electrical stimulation devices have been recently licensed for treatment of gastroparesis and preliminary studies examining their potential for use in refractory obesity yield promising results.

  4. Electric Fields in Composite Dielectrics and their Applications

    CERN Document Server

    Takuma, Tadasu

    2010-01-01

    An accurate quantitative picture of electric field distribution is essential in many electrical and electronic applications. In composite dielectric configurations composed of multiple dielectrics, anomalous or unexpected behavior of electric fields may appear when a solid dielectric is in contact with a conductor or another solid dielectric. The electric field near the contact point may become higher than the original field not only in the surrounding medium but also in the solid dielectric. Theoretically it may become infinitely high, depending on the contact angle. Although these characteri

  5. Pulsed electric fields (PEF applications on wine production: A review

    Directory of Open Access Journals (Sweden)

    Ozturk Burcu

    2017-01-01

    Full Text Available Novel techniques have been searched in the last decades as a result of increasing demand for high quality food products. Non-thermal processing technologies, such as pulsed electric fields (PEF have been improved to achieve inhibition of deleterious effects on quality-related compounds. The working principle of PEF is based on the application of pulses of high voltage (typically above 20 kV/cm up to 70 kV/cm to liquid foods placed between two electrodes. Pulsed electric fields technique has also been studied in winemaking process. Certain positive influences of PEF on vinification have been reported as elimination of pathogenic microorganisms, reduction of maceration time, increase in phenolic compounds extraction , acceleration of wine aging and inactivation of oxidative enzymes. The aim of this review is to summarize the potential applications of PEF in winemaking and to express its effects on quality of wine.

  6. Electric Potential and Electric Field Imaging with Dynamic Applications: 2017 Research Award Innovation

    Science.gov (United States)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  7. Electric field analysis

    CERN Document Server

    Chakravorti, Sivaji

    2015-01-01

    This book prepares newcomers to dive into the realm of electric field analysis. The book details why one should perform electric field analysis and what are its practical implications. It emphasizes both the fundamentals and modern computational methods of electric machines. The book covers practical applications of the numerical methods in high voltage equipment, including transmission lines, power transformers, cables, and gas insulated systems.

  8. End-shorting and electric field in edge plasmas with application to field-reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, Loren C.

    2002-01-01

    The shorting of open field lines where they intersect external boundaries strongly modifies the transverse electric field all along the field lines. The modified electric field is found by an extension of the familiar Boltzmann relation for the electric potential. This leads to a prediction of the electric drift. Flow generation by electrical shorting is applied here to three aspects of elongated field-reversed configurations: plasma rotation rate; the particle-loss spin-up mechanism; and the sustainability of the rotating magnetic field current drive method

  9. The Present Situation and Trend of Wearable Equipment in Electric Field Application

    Directory of Open Access Journals (Sweden)

    Guangwei Shao

    2017-01-01

    Full Text Available With the innovation of mobile internet technology and intelligent terminal technology, the wearable equipment has been gradually applied in various industries. Through the typical application of wearable equipment, the characteristics of wearable equipment technology and application are summarized. Based on the analysis of power field business application and technology, combined with the demand of electric field management, the design situation of the wearable equipment in electric field service is designed, and the future development direction of electric field wear can be forecasted.

  10. Changing the direction and orientation of electric field during electric pulses application improves plasmid gene transfer in vitro.

    Science.gov (United States)

    Pavlin, Mojca; Haberl, Sasa A; Rebersek, Matej; Miklavcic, Damijan; Kanduser, Masa

    2011-09-12

    Gene electrotransfer is a physical method used to deliver genes into the cells by application of short and intense electric pulses, which cause destabilization of cell membrane, making it permeable to small molecules and allows transfer of large molecules such as DNA. It represents an alternative to viral vectors, due to its safety, efficacy and ease of application. For gene electrotransfer different electric pulse protocols are used in order to achieve maximum gene transfection, one of them is changing the electric field direction and orientation during the pulse delivery. Changing electric field direction and orientation increase the membrane area competent for DNA entry into the cell. In this video, we demonstrate the difference in gene electrotransfer efficacy when all pulses are delivered in the same direction and when pulses are delivered by changing alternatively the electric field direction and orientation. For this purpose tip with integrated electrodes and high-voltage prototype generator, which allows changing of electric field in different directions during electric pulse application, were used. Gene electrotransfer efficacy is determined 24h after pulse application as the number of cells expressing green fluorescent protein divided with the number of all cells. The results show that gene transfection is increased when the electric field orientation during electric pulse delivery is changed.

  11. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  12. Electric Field Measurement of the Living Human Body for Biomedical Applications: Phase Measurement of the Electric Field Intensity

    Directory of Open Access Journals (Sweden)

    Ichiro Hieda

    2013-01-01

    Full Text Available The authors are developing a technique for conducting measurements inside the human body by applying a weak electric field at a radio frequency (RF. Low RF power is fed to a small antenna, and a similar antenna located 15–50 cm away measures the electric field intensity. Although the resolution of the method is low, it is simple, safe, cost-effective, and able to be used for biomedical applications. One of the technical issues suggested by the authors' previous studies was that the signal pattern acquired from measurement of a human body was essentially different from that acquired from a phantom. To trace the causes of this difference, the accuracy of the phase measurements was improved. This paper describes the new experimental system that can measure the signal phase and amplitude and reports the results of experiments measuring a human body and a phantom. The results were analyzed and then discussed in terms of their contribution to the phase measurement.

  13. Application of electrical conductivity to predict field strength for ...

    African Journals Online (AJOL)

    The ground electrical conductivity in Ondo State, Southwestern Nigeria, has been measured using electrical resistivity method. The Wenner arrangement of electrodes was used for the measurement. Results obtained show that the average ground conductivity for different soil types in the state is 3.02±0.29mS/m. This value ...

  14. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  15. Multiple-Cylindrical Electrode System for Rotational Electric Field Generation in Particle Rotation Applications

    Directory of Open Access Journals (Sweden)

    Prateek Benhal

    2015-07-01

    Full Text Available Lab-on-a-chip micro-devices utilizing electric field-mediated particle movement provide advantages over current cell rotation techniques due to the flexibility in configuring micro-electrodes. Recent technological advances in micro-milling, three-dimensional (3D printing and photolithography have facilitated fabrication of complex micro-electrode shapes. Using the finite-element method to simulate and optimize electric field induced particle movement systems can save time and cost by simplifying the analysis of electric fields within complex 3D structures. Here we investigated different 3D electrode structures to obtain and analyse rotational electric field vectors. Finite-element analysis was conducted by an electric current stationary solver based on charge relaxation theory. High-resolution data were obtained for three-, four-, six- and eight-cylindrical electrode arrangements to characterize the rotational fields. The results show that increasing the number of electrodes within a fixed circular boundary provides larger regions of constant amplitude rotational electric field. This is a very important finding in practice, as larger rotational regions with constant electric field amplitude make placement of cells into these regions, where cell rotation occurs, a simple task – enhancing flexibility in cell manipulation. Rotation of biological particles over the extended region would be useful for biotechnology applications which require guiding cells to a desired location, such as automation of nuclear transfer cloning.

  16. Future of AI application to electric power field

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hideo; Sakaguchi, Toshiaki (The Tokyo Electric Power Co., Inc., Tokyo, Japan Mitsubishi Electric Corp., Tokyo (Japan))

    1989-08-20

    This report forecasts the future of applying ES (Expert System) to the power system based on the trend of an information treating technology and a social economy. The future power system will definitely find more advanced systems of the automatization and the business mechanization, and highly advanced communication and information system. Forecast tells that the 21st. Century will see the more highly informationalized system which may be called a computer-integrated power system. Then, the expert system will play an essential role. Up to this time, the front scene has been the application of ES to the power system, but the application of the robotics is also an important problem among the AI technologies. Application to the operation of monitoring, patrolling and operation is a problem of the future. Technical items to be researched and developed in the power system are a means of know-how expression and a large scale software system development. 8 refs., 1 fig.

  17. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Tachibana, M. [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 (Japan); Kojima, K. [Department of Education, Yokohama Soei University, 1 Miho-tyou, Midori-ku, Yokohama, 226-0015 (Japan)

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  18. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  19. An Overview on Magnetic Field and Electric Field Interactions with Ice Crystallisation; Application in the Case of Frozen Food

    Directory of Open Access Journals (Sweden)

    Piyush Kumar Jha

    2017-10-01

    Full Text Available Ice nucleation is a stochastic process and it is very difficult to be controlled. Freezing technologies and more specifically crystallisation assisted by magnetic, electric and electromagnetic fields have the capability to interact with nucleation. Static magnetic field (SMF may affect matter crystallisation; however, this is still under debate in the literature. Static electric field (SEF has a significant effect on crystallisation; this has been evidenced experimentally and confirmed by the theory. Oscillating magnetic field induces an oscillating electric field and is also expected to interact with water crystallisation. Oscillating electromagnetic fields interact with water, perturb and even disrupt hydrogen bonds, which in turn are thought to increase the degree of supercooling and to generate numerous fine ice crystals. Based on the literature, it seems that the frequency has an influence on the above-mentioned phenomena. This review article summarizes the fundamentals of freezing under magnetic, electric and electromagnetic fields, as well as their applicability and potentials within the food industry.

  20. An assessment of potential applications with pulsed electric field in wines

    Directory of Open Access Journals (Sweden)

    Drosou Foteini

    2017-01-01

    Full Text Available Pulsed electric fields (PEF is a non-thermal processing technology that uses instantaneous, pulses of high voltage for a short period in the range of milliseconds to microseconds; the application of high intensity electric field on toasted wood chips leads to a quick diffusion of extractable molecules. Currently most PEF studies, in the field of oenology, have been focusing on the application of PEF as a pretreatment of grape musts by examining the microbial inactivation and the enhancement of polyphenol extraction. In this study a post-treatment of wine is introduced as method to enhance the wood flavor in the wine with a green noninvasive technology. Major phenolic aldehydes that have been identified as the characteristic compounds of oak volatile compounds were selected as markers and were analyzed instrumentally to compare the influence of PEF processing to non-treated samples. PEF treated samples brought about higher concentrations of the examined oak compounds in the samples treated with PEF, which may explain the advantages of its application. The modulation of the intensity of the electric field and the period of pulses influenced the concentrations of the volatile phenols that were leached out. Differences found between the assayed treatments indicate that PEF application could be a potential practice for a rapid extraction of volatile compounds from oak.

  1. Standard Practices for Usage of Inductive Magnetic Field Probes with Application to Electric Propulsion Testing

    Science.gov (United States)

    Polzin, Kurt A.; Hill, Carrie S.; Turchi, Peter J.; Burton, Rodney L.; Messer, Sarah; Lovberg, Ralph H.; Hallock, Ashley K.

    2013-01-01

    Inductive magnetic field probes (also known as B-dot probes and sometimes as B-probes or magnetic probes) are often employed to perform field measurements in electric propulsion applications where there are time-varying fields. Magnetic field probes provide the means to measure these magnetic fields and can even be used to measure the plasma current density indirectly through the application of Ampere's law. Measurements of this type can yield either global information related to a thruster and its performance or detailed, local data related to the specific physical processes occurring in the plasma. Results of the development of a standard for B-dot probe measurements are presented, condensing the available literature on the subject into an accessible set of rules, guidelines, and techniques to standardize the performance and presentation of future measurements.

  2. Electrical field: a historical review of its application and contributions in wastewater sludge dewatering.

    Science.gov (United States)

    Mahmoud, Akrama; Olivier, Jérémy; Vaxelaire, Jean; Hoadley, Andrew F A

    2010-04-01

    Electric field-assisted dewatering, also called electro-dewatering, is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. Electro-dewatering is not a new idea, but the practical industrial applications have been limited to niche areas in soil mechanics, civil engineering, and the ceramics industry. Recently, it has received great attention, specially, in the fields of fine-particle sludge, gelatinous sludge, sewage sludge, pharmaceutical industries, food waste and bull kelp, which could not be successfully dewatered with conventional mechanical methods. This review focuses on the scientific and practical aspects of the application of an electrical field in laboratory/industrial dewatering, and discusses this in relation to conventional dewatering techniques. A comprehensive bibliography of research in the electro-dewatering of wastewater sludges is included. As the fine-particle suspensions possess a surface charge, usually negative, they are surrounded by a layer with a higher density of positive charges, the electric double layer. When an electric field is applied, the usually negative charged particles move towards the electrode of the opposite charge. The water, commonly with cations, is driven towards the negative electrode. Electro-dewatering thus involves the well-known phenomena of electrophoresis, electro-osmosis, and electromigration. Following a detailed outline of the role of the electric double layer and electrokinetic phenomena, an analysis of the components of applied voltage and their significance is presented from an electrochemical viewpoint. The aim of this elementary analysis is to provide a fundamental understanding of the different process variables and configurations in order to

  3. Electric Field Imaging

    Data.gov (United States)

    National Aeronautics and Space Administration — NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields....

  4. Investigation of real field application issues for resistive type SFCLs for distribution electric power networks

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, S.B. [School of Information and Communication Engineering, Sungkyunkwan University, Suwon-shi, Gyeonggi-do 440-746 (Korea, Republic of); Lee, B.W., E-mail: bangwook@hanyang.ac.k [School of Electrical Engineering and Computer Science, Hanyang University, Ansan-shi, Gyeonggi-do 426-791 (Korea, Republic of)

    2010-11-01

    Conventional electric power networks were designed and operated not considering fault current limiting devices. Therefore, the performance and characteristics of resistive superconducting fault current limiter (SFCL) should be reviewed considering the coordination with other electric circuit protecting devices. In this paper, real field application issues of resistive SFCL were investigated considering utilities' demands and coordination with other protection devices. Pure resistive SFCL and hybrid resistive SFCL were compared in order to determine suitable solutions for electric power systems. SFCLs were modeled and analyzed using electro-magnetic transients program (EMTP) and their performances were compared to identify the adaptability to the conventional power networks. Consequently, Simulation results showed that hybrid resistive SFCL have more advantages than pure resistive SFCL considering the requirements and specification for the distribution networks.

  5. Investigation of real field application issues for resistive type SFCLs for distribution electric power networks

    Science.gov (United States)

    Rhee, S. B.; Lee, B. W.

    2010-11-01

    Conventional electric power networks were designed and operated not considering fault current limiting devices. Therefore, the performance and characteristics of resistive superconducting fault current limiter (SFCL) should be reviewed considering the coordination with other electric circuit protecting devices. In this paper, real field application issues of resistive SFCL were investigated considering utilities' demands and coordination with other protection devices. Pure resistive SFCL and hybrid resistive SFCL were compared in order to determine suitable solutions for electric power systems. SFCLs were modeled and analyzed using electro-magnetic transients program (EMTP) and their performances were compared to identify the adaptability to the conventional power networks. Consequently, Simulation results showed that hybrid resistive SFCL have more advantages than pure resistive SFCL considering the requirements and specification for the distribution networks.

  6. Electric field imaging

    Science.gov (United States)

    Smith, Joshua Reynolds

    The physical user interface is an increasingly significant factor limiting the effectiveness of our interactions with and through technology. This thesis introduces Electric Field Imaging, a new physical channel and inference framework for machine perception of human action. Though electric field sensing is an important sensory modality for several species of fish, it has not been seriously explored as a channel for machine perception. Technological applications of field sensing, from the Theremin to the capacitive elevator button, have been limited to simple proximity detection tasks. This thesis presents a solution to the inverse problem of inferring geometrical information about the configuration and motion of the human body from electric field measurements. It also presents simple, inexpensive hardware and signal processing techniques for makin the field measurements, and several new applications of electric field sensing. The signal processing contribution includes synchronous undersampling, a narrowband, phase sensitive detection technique that is well matched to the capabilities of contemporary microcontrollers. In hardware, the primary contributions are the School of Fish, a scalable network of microcontroller-based transceive electrodes, and the LazyFish, a small footprint integrated sensing board. Connecting n School of Fish electrodes results in an array capable of making heterodyne measurements of any or all n(n - 1) off-diagonal entries in the capacitance matrix. The LazyFish uses synchronous undersampling to provide up to 8 high signal- to-noise homodyne measurements in a very small package. The inverse electrostatics portion of the thesis presents a fast, general method for extracting geometrical information about the configuration and motion of the human body from field measurements. The method is based on the Sphere Expansion, a novel fast method for generating approximate solutions to the Laplace equation. Finally, the thesis describes a variety

  7. Development of the female voxel phantom, NAOMI, and its application to calculations of induced current densities and electric fields from applied low frequency magnetic and electric fields

    International Nuclear Information System (INIS)

    Dimbylow, Peter

    2005-01-01

    This paper outlines the development of a 2 mm resolution voxel model, NAOMI (aNAtOMIcal model), designed to be representative of the average adult female. The primary medical imaging data were derived from a high-resolution MRI scan of a 1.65 m tall, 23 year old female subject with a mass of 58 kg. The model was rescaled to a height of 1.63 m and a mass of 60 kg, the dimensions of the International Commission on Radiological Protection reference adult female. There are 41 tissue types in the model. The application of NAOMI to the calculations of induced current densities and electric fields from applied low frequency magnetic and electric fields is described. Comparisons are made with values from the male voxel model, NORMAN. The calculations were extended from 50 Hz up to 10 MHz. External field reference levels are compared with the ICNIRP guidelines

  8. Ephemeral Electric Potential and Electric Field Sensor

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    Systems, methods, and devices of the various embodiments provide for the minimization of the effects of intrinsic and extrinsic leakage electrical currents enabling true measurements of electric potentials and electric fields. In an embodiment, an ephemeral electric potential and electric field sensor system may have at least one electric field sensor and a rotator coupled to the electric field sensor and be configured to rotate the electric field sensor at a quasi-static frequency. In an embodiment, ephemeral electric potential and electric field measurements may be taken by rotating at least one electric field sensor at a quasi-static frequency, receiving electrical potential measurements from the electric field sensor when the electric field sensor is rotating at the quasi-static frequency, and generating and outputting images based at least in part on the received electrical potential measurements.

  9. General solution for calculating polarization electric fields in the auroral ionosphere and application examples

    Science.gov (United States)

    Amm, O.; Fujii, R.; VanhamäKi, H.; Yoshikawa, A.; Ieda, A.

    2013-05-01

    We devise an approach to calculate the polarization electric field in the ionosphere, when the ionospheric conductances, the primary (modeled) or the total (measured) electric field, and the Cowling efficiency are given. In contrast to previous studies, our approach is a general solution which is not limited to specific geometrical setups, and all parameters may have any kind of spatial dependence. The solution technique is based on spherical elementary current (vector) systems (SECS). This way, we avoid the need to specify explicit boundary conditions for the searched polarization electric field of its potential which would be required if the problem was solved in a differential equation approach. Instead, we solve an algebraic matrix equation, and the implicit boundary condition that the divergence of the polarization electric field vanishes outside our analysis area is sufficient. In order to illustrate our theory, we then apply it to two simple models of auroral electrodynamic situations, the first being a mesoscale strong conductance enhancement in the early morning sector within a relatively weak southward primary electric field, and a morning sector auroral arc with only a weak conductance enhancement, but a large southward primary electric field at the poleward flank of the arc. While the significance of the polarization electric field for maximum Cowling efficiency is large for the first case, it is rather minor for the second one. Both models show that the polarization electric field effect may not only change the magnitude of the current systems but also their overall geometry. Furthermore, the polarization electric field may extend into regions where the primary electric field is small, thus even dominating the total electric field in these regions. For the first model case, the total Joule heating integrated over the analysis area decreases by a factor of about 4 for maximum Cowling efficiency as compared to the case of vanishing Cowling efficiency

  10. Desalination of a brick by application of an electric DC field

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Rörig-Dalgaard, Inge

    2009-01-01

    Salts in masonry can cause various problems as decay of the masonry itself, lost adhesion of plaster and hygroscopic moisture. Chlorides are among the most common building salts and the present paper is focused on removal of chlorides from a brick in an applied electric field as a step towards...... developing an electrochemical desalination method for brick masonry. Experiments were conducted in laboratory scale with one type of bricks that were contaminated with either NaCl or KCl through submersion in salt solutions prior to application of current. It was seen that NaCl was slower supplied...

  11. Development results of portable gamma-radiation HPGe spectrometer with electric cooling for field applications

    International Nuclear Information System (INIS)

    Kondrat'ev, V.; Loshevich, E.; Pchelintsev, A.; Sokolov, A.; Gostilo, V.

    2015-01-01

    The paper presents development results of a portable spectrometer based on high purity germanium (HPGe spectrometer) with Stirling electric cooler for field applications. The spectrometer cryostat allows installation of HPGe coaxial detectors with efficiency up to 40% and planar detectors with sensitive area up to 3000 mm2. The detector cooling time is not more than 8 hours. Despite the mechanical vibrations due to electric cooler operation, the obtained energy resolution of the spectrometer with coaxial detector of 10% efficiency was less than 1,0 and 2,0 keV by energies 122 and 1332 keV accordingly. Miniature processor device (Android) allows control for all operation modes of the spectrometer, provides self diagnostics, initial procession, indication and spectra accumulation

  12. Earth's electric field

    International Nuclear Information System (INIS)

    Kelley, M.C.

    1978-01-01

    The earth becomes charged during thunderstorm activity and discharges through the weak conducting atmosphere. Balloon and rocket studies infer that a high altitude electric field penetrates virtually unattenuated through the atmosphere, at least as far as balloon heights. The field has two primary sources. At low and mid latitudes, interaction between the earth's magnetic field and the neutral wind creates electric fields. At latitudes above 60 0 , the high altitude electrical structure is dominated by the interaction between the solar wind and the earth's magnetic field. The auroral light is emitted by atmospheric atoms and molecules excited by electrons with potentials of many thousands volts. The potentials are induced by the solar wind. Recent satellite data shows that the electrons get this energy by passing through a localized electric field about 6000 km above the auroral zone. Several rocket and satellite experiments used to study the earth's electric field are discussed

  13. Study of hydrogenated amorphous silicon devices under intense electric field: application to nuclear detection

    International Nuclear Information System (INIS)

    Ilie, A.

    1996-01-01

    The goal of this work was the study, development and optimization of hydrogenated amorphous silicon (a-Si:H) devices for use in detection of ionizing radiation in applications connected to the nuclear industry. Thick p-i-n devices, capable of withstanding large electric fields (up to 10 6 V/cm) with small currents (nA/cm 2 ), were proposed and developed. In order to decrease fabrication time, films were made using the 'He diluted' PECVD process and compared to standard a-Si:H films. Aspects connected to specific detector applications as well as to the fundamental physics of a-Si:H were considered: the internal electric field technique, in which the depletion charge was measured as a function of the applied bias voltage; study of the leakage current of p-i-n devices permitted us to demonstrate different regimes: depletion, field-enhanced thermal generation and electronic injection across the p layer. The effect of the electric field on the thermal generation of the carriers was studied considering the Poole-Frenkel and tunneling mechanisms. A model was developed taking under consideration the statistics of the correlated states and electron-phonon coupling. The results suggest that mechanisms not included in the 'standard model' of a Si:h need to be considered, such as defect relaxation, a filed-dependent mobility edge etc...; a new metastable phenomenon, called 'forming', induced by prolonged exposure to a strong electric field, was observed and studied. It is characterized by marked decrease of the leakage current and the detector noise, and increase in the breakdown voltage, as well as an improvement of carrier collection efficiency. This forming process appears to be principally due to an activation of the dopants in the p layer; finally, the capacity of thick p-i-n a Si:H devices to detect ionizing radiation has been evaluated. We show that it is possible, with 20-50 micron thick p-i-n devices, to detect the full spectrum of alpha and beta particles. With an

  14. Application of high voltage electric field (HVEF) drying technology in potato chips

    International Nuclear Information System (INIS)

    Bai, Yaxiang; Shi, Hua; Yang, Yaxin

    2013-01-01

    In order to improve the drying efficiency and qualities of vegetable by high voltage electric field (HVEF), potato chips as a representative of vegetable was dried using a high voltage electric drying systems at 20°C. The shrinkage rate, water absorption and rehydration ratio of dried potato chips were measured. The results indicated that the drying rate of potato chips was significantly improved in the high voltage electric drying systems. The shrinkage rate of potato chips dried by high voltage electric field was 1.1% lower than that by oven drying method. And the rehydration rate of high voltage electric field was 24.6% higher than that by oven drying method. High voltage electric field drying is very advantageous and can be used as a substitute for traditional drying method.

  15. Application of a flow generated by IR laser and AC electric field in micropumping and micromixing

    International Nuclear Information System (INIS)

    Nakano, M; Mizuno, A

    2008-01-01

    In this paper, it is described that measurement of fluid flow generated by simultaneous operation of an infrared (IR) laser and AC electric field in a microfabricated channel. When an IR laser (1026 nm) was focused under an intense AC electric field, a circulating flow was generated around the laser focus. The IR laser and the electric field generate two flow patterns of the electrohydrodynamicss. When the laser focus is placed at the center of the gap between electrodes, the flow pattern is parallel to the AC electric field toward electrodes from the centre. On the other hand, when the laser focus is placed close to one of the electrodes, one directional flow is generated. First flow pattern can be used as a micromixer and the second one as a micropump. Flow velocity profiles of the two flow patterns were measured as a function of the laser power, intensity of the AC electric field and AC frequency.

  16. Changing the Direction and Orientation of Electric Field During Electric Pulses Application Improves Plasmid Gene Transfer in vitro

    OpenAIRE

    Pavlin, Mojca; Haberl, Saša; Reberšek, Matej; Miklavčič, Damijan; Kandušer, Maša

    2011-01-01

    Gene electrotransfer is a physical method used to deliver genes into the cells by application of short and intense electric pulses, which cause destabilization of cell membrane, making it permeable to small molecules and allows transfer of large molecules such as DNA. It represents an alternative to viral vectors, due to its safety, efficacy and ease of application. For gene electrotransfer different electric pulse protocols are used in order to achieve maximum gene transfection, one of them ...

  17. Cryosurgery with Pulsed Electric Fields

    Science.gov (United States)

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  18. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  19. General method for calculating polarization electric fields produced by auroral Cowling mechanism and application examples

    Science.gov (United States)

    Vanhamäki, Heikki; Amm, Olaf; Fujii, Ryo; Yoshikawa, Aki; Ieda, Aki

    2013-04-01

    The Cowling mechanism is characterized by the generation of polarization space charges in the ionosphere in consequence of a partial or total blockage of FAC flowing between the ionosphere and the magnetosphere. Thus a secondary polarization electric field builds up in the ionosphere, which guarantees that the whole (primary + secondary) ionospheric current system is again in balance with the FAC. In the Earth's ionosphere the Cowling mechanism is long known to operate in the equatorial electrojet, and several studies indicate that it is important also in auroral current systems. We present a general method for calculate the secondary polarization electric field, when the ionospheric conductances, the primary (modeled) or the total (measured) electric field, and the Cowling efficiency are given. Here the Cowling efficiency is defined as the fraction of the divergent Hall current canceled by secondary Pedersen current. In contrast to previous studies, our approach is a general solution which is not limited to specific geometrical setups (like an auroral arc), and all parameters may have any kind of spatial dependence. The solution technique is based on spherical elementary current (vector) systems (SECS). This way, we avoid the need to specify explicit boundary conditions for the searched polarization electric field or its potential, which would be required if the problem was solved in a differential equation approach. Instead, we solve an algebraic matrix equation, for which the implicit boundary condition that the divergence of the polarization electric field vanishes outside our analysis area is sufficient. In order to illustrate the effect of Cowling mechanism on ionospheric current systems, we apply our method to two simple models of auroral electrodynamic situations: 1) a mesoscale strong conductance enhancement in the early morning sector within a relatively weak southward primary electric field, 2) a morning sector auroral arc with only a weak conductance

  20. Electric field measurements in high pressure discharges

    International Nuclear Information System (INIS)

    Mitko, S.V.; Ochkin, V.N.; Serdyuchenko, A.Yu.; Tskhai, S.N.

    2001-01-01

    Electric fields define a wide range of interactions and phenomena at different phases of matter both on micro- and macro-level. Investigation of electric fields behavior provides a key for understanding of these phenomena and their application

  1. Electric field and radio frequency measurements for rocket engine health monitoring applications

    Science.gov (United States)

    Valenti, Elizabeth L.

    1992-01-01

    Electric-field (EF) and radio-frequency (RF) emissions generated in the exhaust plumes of the diagnostic testbed facility thruster (DTFT) and the SSME are examined briefly for potential applications to plume diagnostics and engine health monitoring. Hypothetically, anomalous engine conditions could produce measurable changes in any characteristic EF and RF spectral signatures identifiable with a 'healthly' plumes. Tests to determine the presence of EF and RF emissions in the DTFT and SSME exhaust plumes were conducted. EF and RF emissions were detected using state-of-the-art sensors. Analysis of limited data sets show some apparent consistencies in spectral signatures. Significant emissions increases were detected during controlled tests using dopants injected into the DTFT.

  2. A Study of Composite Strengthening Through Application of an Electric Field (PREPRINT)

    National Research Council Canada - National Science Library

    Sierakowski, Robert L; Telichev, Igor Y; Zhupanska, Olesya I

    2006-01-01

    .... We have analyzed the effects promoting this phenomenon: coupling of mechanical and electromagnetic fields and Joule heat effects and develop an experimental setup for impact tests of the composites carrying an electric current...

  3. A Study of Composite Strengthening Through Application of an Electric Field

    National Research Council Canada - National Science Library

    Sierakowski, Robert L; Telichev, Igor Y; Zhupanska, Olesya I

    2006-01-01

    .... We have analyzed the effects promoting this phenomenon: coupling of mechanical and electromagnetic fields and Joule heat effects and develop an experimental setup for impact tests of the composites carrying an electric current...

  4. [Effects of electric and electromagnetic fields on cell differentiation and application in orthopedic and trauma surgery].

    Science.gov (United States)

    Hinsenkamp, M

    2011-01-01

    The discovery of the dynamic electrical properties of bone is at the origin of the therapeutical application of the electromagnetic fields in Orthopaedics and Traumatology. The first empirical treatment of non-union, fresh fractures and osteonecroses allowed the observation of several effects which, without justifying a systematic clinical application, encouraged further fundamental research. The results of this work realized during 35 years are summarized in the present article. After exposure to specific electromagnetic fields, we observed a modification of the DNA activity and an increased production of RNA. During enchondral ossification, the amount of acid GAGS increased faster and the ossification of the primary ossification point is accelerated. On fresh fractures, the rigidity of the callus increased faster. Finally, the microarrays analyses show an upregulation of mRNA involved in cellular differentiation and proliferation. The mRNA responsible of the production of BMP-2 is significantly increased, explaining the main results observed after the expense of experimental models of the bond tissues. All the observed results are in favour of an acceleration of the cellular differentiation at the expense of the proliferation.

  5. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications.

    Science.gov (United States)

    Khan, Farid Ullah

    For wireless sensor node (WSN) applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters' wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V) and rechargeable battery (Nickel-Cadmium, 3.8 V) are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented.

  6. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications

    Directory of Open Access Journals (Sweden)

    Farid Ullah Khan

    2016-01-01

    Full Text Available For wireless sensor node (WSN applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters’ wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V and rechargeable battery (Nickel-Cadmium, 3.8 V are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented.

  7. Electrical discharge machining of carbon nanomaterials in air: machining characteristics and the advanced field emission applications

    International Nuclear Information System (INIS)

    Ok, Jong Girl; Kim, Bo Hyun; Chung, Do Kwan; Sung, Woo Yong; Lee, Seung Min; Lee, Se Won; Kim, Wal Jun; Park, Jin Woo; Chu, Chong Nam; Kim, Yong Hyup

    2008-01-01

    A reliable and precise machining process, electrical discharge machining (EDM), was investigated in depth as a novel method for the engineering of carbon nanomaterials. The machining characteristics of EDM applied to carbon nanomaterials 'in air' were systematically examined using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The EDM process turned out to 'melt' carbon nanomaterials with the thermal energy generated by electrical discharge, which makes both the materially and geometrically unrestricted machining of nanomaterials possible. Since the EDM process conducted in air requires neither direct contact nor chemical agents, it protects the carbon nanomaterial workpieces against physical damage and unnecessary contamination. From this EDM method, several advanced field emission applications including 'top-down' patterning and the creative lateral comb-type triode device were derived, while our previously reported study on emission uniformity enhancement by the EDM method was also referenced. The EDM method has great potential as a clean, effective and practical way to utilize carbon nanomaterials for various uses

  8. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications

    Science.gov (United States)

    2016-01-01

    For wireless sensor node (WSN) applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters' wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V) and rechargeable battery (Nickel-Cadmium, 3.8 V) are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented. PMID:27579343

  9. Application of Learning Methods to Local Electric Field Distributions in Defected Dielectric Materials

    Science.gov (United States)

    Ferris, Kim; Jones, Dumont

    2014-03-01

    Local electric fields reflect the structural and dielectric fluctuations in a semiconductor, and affect the material performance both for electron transport and carrier lifetime properties. In this paper, we use the LOCALF methodology with periodic boundary conditions to examine the local electric field distributions and its perturbations for II-VI (CdTe, Cd(1-x)Zn(x)Te) semiconductors, containing Te inclusions and small fluctuations in the local dielectric susceptibility. With inclusion of the induced-field term, the electric field distribution shows enhancements and diminishments compared to the macroscopic applied field, reflecting the microstructure characteristics of the dielectric. Learning methods are applied to these distributions to assess the spatial extent of the perturbation, and determine an electric field defined defect size as compared to its physical dimension. Critical concentrations of defects are assessed in terms of defect formation energies. This work was supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded contract/IAA HSHQDC-08-X-00872-e. This support does not constitute an express or implied endorsement on the part of the Gov't.

  10. A novel application of pulsed electric field (PEF) processing for improving glutathione (GSH) antioxidant activity.

    Science.gov (United States)

    Wang, Jia; Wang, Ke; Wang, Ying; Lin, Songyi; Zhao, Ping; Jones, Gregory

    2014-10-15

    Glutathione (GSH) was treated by pulsed electric field (PEF) processing to investigate its effect on antioxidant activity. The antioxidant activity of GSH was evaluated using 2,2-diphenyl-1-picrylhydrazy (DPPH) radical inhibition. A Box-Behnken design (BBD) with three independent variables, which were concentration, electric field intensity and pulse frequency was used to establish the regression equation of second-order response surface. Optimal conditions were as follows: GSH concentration 8.86mg/mL, electric field intensity 9.74kV/cm and pulse frequency 2549.08Hz. The DPPH radical inhibition increased from 81.83% to 97.40%. Near-infrared spectroscopy (NIR) and mid-infrared spectroscopy (MIR) were used to analyse the change of structure and functional groups of GSH. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Conjugated ionomers for photovoltaic applications: electric field driven charge separation in organic photovoltaics. Final Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Lonergan, Mark [Univ. of Oregon, Eugene, OR (United States)

    2015-05-29

    Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been the polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.

  12. Challenges Found When Patterning Semiconducting Polymers with Electric Fields for Organic Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Fernando A. de Castro

    2012-01-01

    Full Text Available A material-independent, contactless structuring method of semiconducting organic materials for the fabrication of interface-enhanced bilayer solar cells is not available so far. Patterning of thin films using electrohydrodynamic instabilities possesses many desired characteristics and has convincingly been used as a simple method to structure and replicate patterns of nonconducting polymers on submicrometer length scales. However, the applicability of this technique to a wider range of materials has not been demonstrated yet. Here, we report attempts to structure poly(p-phenylene vinylene in a similar way. We found that thin films of poly(2-methoxy-5-(2′-ethylhexyl-oxy-1,4-phenylene-vinylene (MEH-PPV and poly(2-methoxy-5-(3′,7′-dimethyloctyloxy-1,4-phenylene-vinylene (MDMO-PPV could not be destabilized at all in the limited accessible range of the experimental parameters set by the delicate chemical nature of these materials. We discuss failure origins and present possible loopholes for the patterning of semiconducting polymers using electric fields.

  13. Plasma-electric field controlled growth of oriented graphene for energy storage applications

    Science.gov (United States)

    Ghosh, Subrata; Polaki, S. R.; Kamruddin, M.; Jeong, Sang Mun; (Ken Ostrikov, Kostya

    2018-04-01

    It is well known that graphene grows as flat sheets aligned with the growth substrate. Oriented graphene structures typically normal to the substrate have recently attracted major attention. Most often, the normal orientation is achieved in a plasma-assisted growth and is believed to be due to the plasma-induced in-built electric field, which is usually oriented normal to the substrate. This work focuses on the effect of an in-built electric field on the growth direction, morphology, interconnectedness, structural properties and also the supercapacitor performance of various configurations of graphene structures and reveals the unique dependence of these features on the electric field orientation. It is shown that tilting of growth substrates from parallel to the normal direction with respect to the direction of in-built plasma electric field leads to the morphological transitions from horizontal graphene layers, to oriented individual graphene sheets and then interconnected 3D networks of oriented graphene sheets. The revealed transition of the growth orientation leads to a change in structural properties, wetting nature, types of defect in graphitic structures and also affects their charge storage capacity when used as supercapacitor electrodes. This simple and versatile approach opens new opportunities for the production of potentially large batches of differently oriented and structured graphene sheets in one production run.

  14. The change of electric potentials in the oral cavity after application of extremely low frequency pulsed magnetic field

    Directory of Open Access Journals (Sweden)

    Piotr Skomro

    2012-12-01

    Full Text Available Electric potentials occurring in the oral cavity deserve attention as they may cause various diseases and subjective feelings, which are very difficult to treat. The aim of this study was to evaluate the electric potentials within the oral cavity in patients with metal fillings and metal prosthetic restorations, after using a pulsed electromagnetic field. The study was carried out on 84 patients. The Viofor JPS Classic device was used in the treatment. It generates a pulsed electromagnetic field with low induction of the extremely low frequency (ELF range. Average values of electric potentials in the preliminary test were about the same in both groups; they were 148.8 mV and 145.5 mV. After another appliance of ELF fields there was found a steady decline in the average value of electric potentials in the study group. This decrease was statistically highly significant, while mean values of electric potentials in the control group were characterized by a slightly upward tendency. The obtained statistically significant reduction of electric potentials in the oral cavity of patients having metal fillings and metal prosthetic restorations, after application of the Viofor JPS Classic device, implies a huge impact of ELF pulsed electromagnetic field on inhibition of electrochemical processes, as well as on inhibition of dental alloy corrosion. 

  15. Tripolar electric field Structure in guide field magnetic reconnection

    Science.gov (United States)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  16. Novel Field Test Equipment for Lithium-Ion Batteries in Hybrid Electrical Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Goran Lindbergh

    2011-04-01

    Full Text Available Lifetime testing of batteries for hybrid-electrical vehicles (HEV is usually performed in the lab, either at the cell, module or battery pack level. Complementary field tests of battery packs in vehicles are also often performed. There are, however, difficulties related to field testing of battery-packs. Some examples are cost issues and the complexity of continuously collecting battery performance data, such as capacity fade and impedance increase. In this paper, a novel field test equipment designed primarily for lithium-ion battery cell testing is presented. This equipment is intended to be used on conventional vehicles, not hybrid vehicles, as a cheaper and faster field testing method for batteries, compared to full scale HEV testing. The equipment emulates an HEV environment for the tested battery cell by using real time vehicle sensor information and the existing starter battery as load and source. In addition to the emulated battery cycling, periodical capacity and pulse testing capability are implemented as well. This paper begins with presenting some background information about hybrid electrical vehicles and describing the limitations with today’s HEV battery testing. Furthermore, the functionality of the test equipment is described in detail and, finally, results from verification of the equipment are presented and discussed.

  17. Electric field-assisted sintering of nanocrystalline hydroxyapatite for biomedical applications

    Science.gov (United States)

    Tran, Tien Bich

    consistent during varied heating rate (50--400ºC/min) and varied pressure application (25--90 MPa) studies. While in vitro cytocompatibility studies using MG63 osteoblast-like cells demonstrated the biocompatibility of the FAST-processed specimens, bioactivity was sensitive to processing parameters. Since extensive dehydroxylation reduces the surface charge of the sintered materials, apatite deposition during simulated body fluid immersion only occurred when dehydroxylation was mild---i.e., on specimens sintered at low temperatures (800--900ºC) or for short periods. Microstructural investigations revealed that HA sintered at temperatures above 900ºC under an applied electric field contained nanometric residual pores in grain interiors, as well as micron-sized dehydroxylation-related pores at grain boundaries and grain boundary junctions. These larger pores were responsible for the increasing embrittlement of specimens sintered at higher temperatures. Although grain size dependence could not be found in the 60--100 nm grain size range, fracture toughness (KIC = 1.92 MPa√m, maximum) increased with decreasing sintering temperature. Results from the suite of investigations conducted demonstrate that biocompatible and bioactive nanocrystalline hydroxyapatite with enhanced mechanical properties can be efficiently manufactured by field-assisted sintering under controlled processing conditions.

  18. A New Method for Immobilization of His-Tagged Proteins with the Application of Low-Frequency AC Electric Field.

    Science.gov (United States)

    Takahashi, Shunsuke; Kishi, Kazuki; Hiraga, Ryota; Hayashi, Kazuki; Mamada, Youhei; Oshige, Masahiko; Katsura, Shinji

    2018-03-05

    Continued advancement of protein array, bioelectrode, and biosensor technologies is necessary to develop methods for higher amount and highly oriented immobilization activity of proteins. In pursuit of these goals, we developed a new immobilization method by combining electrostatic transport and subsequent molecular diffusion of protein molecules. Our developed immobilization method is based on a model that transports proteins toward the substrate surface due to steep concentration gradient generated by low-frequency AC electric field. The immobilization of the maximum amounts can be obtained by the application of the AC voltage of 80 Vpp, 20 Hz both for His-tagged Green Fluorescent Protein (GFP) and Discosoma sp. Red Fluorescent Protein (DsRed), used as model proteins. The amounts of the immobilized His-tagged GFP and DsRed were approximately seven-fold higher than that in the absence of the application of low-frequency AC electric field. Furthermore, the positively and negatively charged His-tagged GFP at acidic and alkaline pH were immobilized by applying of low-frequency AC electric field, whereas the non-charged His-tagged GFP at the pH corresponding to its isoelectric point (pI) was not immobilized. Therefore, unless the pH is equal to pI, the immobilization of electrically charged proteins was strongly enhanced through electrostatic transport and subsequent molecular diffusion.

  19. A New Method for Immobilization of His-Tagged Proteins with the Application of Low-Frequency AC Electric Field

    Directory of Open Access Journals (Sweden)

    Shunsuke Takahashi

    2018-03-01

    Full Text Available Continued advancement of protein array, bioelectrode, and biosensor technologies is necessary to develop methods for higher amount and highly oriented immobilization activity of proteins. In pursuit of these goals, we developed a new immobilization method by combining electrostatic transport and subsequent molecular diffusion of protein molecules. Our developed immobilization method is based on a model that transports proteins toward the substrate surface due to steep concentration gradient generated by low-frequency AC electric field. The immobilization of the maximum amounts can be obtained by the application of the AC voltage of 80 Vpp, 20 Hz both for His-tagged Green Fluorescent Protein (GFP and Discosoma sp. Red Fluorescent Protein (DsRed, used as model proteins. The amounts of the immobilized His-tagged GFP and DsRed were approximately seven-fold higher than that in the absence of the application of low-frequency AC electric field. Furthermore, the positively and negatively charged His-tagged GFP at acidic and alkaline pH were immobilized by applying of low-frequency AC electric field, whereas the non-charged His-tagged GFP at the pH corresponding to its isoelectric point (pI was not immobilized. Therefore, unless the pH is equal to pI, the immobilization of electrically charged proteins was strongly enhanced through electrostatic transport and subsequent molecular diffusion.

  20. An electric field in a gravitational field

    International Nuclear Information System (INIS)

    Harpaz, Amos

    2005-01-01

    The behaviour of an electric field in a gravitational field is analysed. It is found that due to the mass (energy) of the electric field, it is subjected to gravity and it falls in the gravitational field. This fall curves the electric field, a stress force (a reaction force) is created, and the interaction of this reaction force with the static charge gives rise to the creation of radiation

  1. Magnetic Field Sensors Based on Giant Magnetoresistance (GMR Technology: Applications in Electrical Current Sensing

    Directory of Open Access Journals (Sweden)

    Càndid Reig

    2009-10-01

    Full Text Available The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR, from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications.

  2. Effect of the application of an electric field on the performance of a two-phase loop device: preliminary results

    International Nuclear Information System (INIS)

    Creatini, F; Di Marco, P; Filippeschi, S; Fioriti, D; Mameli, M

    2015-01-01

    In the last decade, the continuous development of electronics has pointed out the need for a change in mind with regard to thermal management. In the present scenario, Pulsating Heat Pipes (PHPs) are novel promising two-phase passive heat transport devices that seem to meet all present and future thermal requirements. Nevertheless, PHPs governing phenomena are quite unique and not completely understood. In particular, single closed loop PHPs manifest several drawbacks, mostly related to the reduction of device thermal performance and reliability, i.e. the occurrence of multiple operational quasi-steady states. The present research work proposes the application of an electric field as a technique to promote the circulation of the working fluid in a preferential direction and stabilize the device operation. The tested single closed loop PHP is made of a copper tube with an inner tube diameter equal to 2.00 mm and filled with pure ethanol (60% filling ratio). The electric field is generated by a couple of wire-shaped electrodes powered with DC voltage up to 20 kV and laid parallel to the longitudinal axis of the glass tube constituting the adiabatic section. Although the electric field intensity in the working fluid region is weakened both by the polarization phenomenon of the working fluid and by the interposition of the glass tube, the experimental results highlight the influence of the electric field on the device thermal performance and encourage the continuation of the research in this direction. (paper)

  3. Theory and applications of internal photoemission in the MOS system at low electric fields

    Science.gov (United States)

    Przewlocki, Henryk M.

    2001-08-01

    A new theory is presented of the photoelectric phenomena, which take place in UV illuminated MOS structures, in the presence of weak electric fields (|E|photoelectric measurement methods of the MOS system parameters. Two of such methods are shortly presented. The first is the measurement method of the φMS factor of the MOS system, which has already been fully verified experimentally and has been shown to be the most accurate of the existing methods of this parameter determination. The second is the method to determine trapping properties of the dielectric in the MOS system, which is currently being optimized and verified experimentally.

  4. Electromagnetic Field Modeling of Transcranial Electric and Magnetic Stimulation: Targeting, Individualization, and Safety of Convulsive and Subconvulsive Applications

    Science.gov (United States)

    Deng, Zhi-De

    The proliferation of noninvasive transcranial electric and magnetic brain stimulation techniques and applications in recent years has led to important insights into brain function and pathophysiology of brain-based disorders. Transcranial electric and magnetic stimulation encompasses a wide spectrum of methods that have developed into therapeutic interventions for a variety of neurological and psychiatric disorders. Although these methods are at different stages of development, the physical principle underlying these techniques is the similar. Namely, an electromagnetic field is induced in the brain either via current injection through scalp electrodes or via electromagnetic induction. The induced electric field modulates the neuronal transmembrane potentials and, thereby, neuronal excitability or activity. Therefore, knowledge of the induced electric field distribution is key in the design and interpretation of basic research and clinical studies. This work aims to delineate the fundamental physical limitations, tradeoffs, and technological feasibility constraints associated with transcranial electric and magnetic stimulation, in order to inform the development of technologies that deliver safer, and more spatially, temporally, and patient specific stimulation. Part I of this dissertation expounds on the issue of spatial targeting of the electric field. Contrasting electroconvulsive therapy (ECT) and magnetic seizure therapy (MST) configurations that differ markedly in efficacy, side effects, and seizure induction efficiency could advance our understanding of the principles linking treatment parameters and therapeutic outcome and could provide a means of testing hypotheses of the mechanisms of therapeutic action. Using the finite element method, we systematically compare the electric field characteristics of existing forms of ECT and MST. We introduce a method of incorporating a modality-specific neural activation threshold in the electric field models that can

  5. Modeling of stresses and electric fields in piezoelectric multilayer: Application to multi quantum wells

    Directory of Open Access Journals (Sweden)

    Dhaneshwar Mishra

    2017-07-01

    Full Text Available Exact closed-form expressions have been derived for the stresses and the electric fields induced in piezoelectric multilayers deposited on a substrate with lattice misfit and thermal expansion coefficient mismatch. The derived formulations can model any number of layers using recursive relations that minimize the computation time. A proper rotation matrix has been utilized to generalize the expressions so that they can be used for various growth orientations with each layer having hexagonal crystal symmetry. As an example, the influence of lattice misfit and thermal expansion coefficient mismatch on the state of electroelastic fields in different layers of GaN multi quantum wells has been examined. A comparison with the finite element analysis results showed very close agreement. The analytical expressions developed herein will be useful in designing optoelectronic devices as well as in predicting defect density in multi quantum wells.

  6. A quantum molecular similarity analysis of changes in molecular electron density caused by basis set flotation and electric field application

    Science.gov (United States)

    Simon, Sílvia; Duran, Miquel

    1997-08-01

    Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed.

  7. Electric Fields for Flame Extinguishment

    Science.gov (United States)

    1993-03-01

    ethylene-air and methane-air flames, the application of a DC field of 0.5 kV/cm increased the burning velocity by close to a factor of two. Salamandra and...flame surface area and thus the velocity, but Jaggers and von Engel also saw physical perturbations in flame fronts with no electric field. Salamandra ...Conductivity in Propane-Air Flames by Using Rydberg State Stark Spectroscopy," Proc. Combustion Inst., Fall (1990). 12. Salamandra , G.D., and Mairov, N.I

  8. Pulsed electric field increases reproduction.

    Science.gov (United States)

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  9. Electrical applications 2

    CERN Document Server

    Tyler, David W

    1998-01-01

    Electrical Applications 2 covers the BTEC NII level objectives in Electrical Applications U86/330. To understand the applications, a knowledge of the underlying principles is needed and these are covered briefly in the text. Key topics discussed are: the transmission and distribution of electrical energy; safety and regulations; tariffs and power factor correction; materials and their applications in the electrical industry; transformers; DC machines; illumination; and fuse protection. Included in each chapter are worked examples which should be carefully worked through before progressing to t

  10. Electricity markets theories and applications

    CERN Document Server

    Lin, Jeremy

    2017-01-01

    Electricity Markets: Theories and Applications offers students and practitioners a clear understanding of the fundamental concepts of the economic theories, particularly microeconomic theories, as well as information on some advanced optimization methods of electricity markets. The authors--noted experts in the field--cover the basic drivers for the transformation of the electricity industry in both the United States and around the world and discuss the fundamentals of power system operation, electricity market design and structures, and electricity market operations. The text also explores advanced topics of power system operations and electricity market design and structure including zonal versus nodal pricing, market performance and market power issues, transmission pricing, and the emerging problems electricity markets face in smart grid and micro-grid environments. The authors also examine system planning under the context of electricity market regime. They explain the new ways to solve problems with t...

  11. Electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Falthammar, C.G.

    1989-01-01

    Electric field measurements on the satellites GEOS-1, GEOS-2, ISEE-1, and Viking have extended the empirical knowledge of electric fields in space so as to include the outer regions of the magnetosphere. While the measurements confirm some of the theoretically expected properties of the electric fields, they also reveal unexpected features and a high degree of complexity and variability. The existence of a magnetospheric dawn-to-dusk electric field, as expected on the basis of extrapolation from low altitude measurements, is confirmed in an average sense. However, the actual field exhibits large spatial and temporal variations, including strong fields of inductive origin. At the magnetopause, the average (dawn-to-dusk directed) tangential electric field component is typically obscured by irregular fluctuations of larger amplitude. The magnetic-field aligned component of the electric field, which is of particular importance for ionosphere-magnetosphere coupling and for auroral acceleration, is even now very difficult to measure directly. However, the data from electric field measurements provide further support for the conclusion, based on a variety of evidence, that a non-vanishing magnetic-field aligned electric field exists in the auroral acceleration region

  12. Electroinduction disk sensor of electric field strength

    Science.gov (United States)

    Biryukov, S. V.; Korolyova, M. A.

    2018-01-01

    Measurement of the level of electric fields exposure to the technical and biological objects for a long time is an urgent task. To solve this problem, the required electric field sensors with specified metrological characteristics. The aim of the study is the establishment of theoretical assumptions for the calculation of the flat electric field sensors. It is proved that the accuracy of the sensor does not exceed 3% in the spatial range 0source field that allows you to design better quality sensors used in different measuring systems of wide application.

  13. Divergent effect of electric fields on the mechanical property of water-filled carbon nanotubes with an application as a nanoscale trigger

    Science.gov (United States)

    Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hongwu; Chen, Zhen

    2018-01-01

    Polar water molecules exhibit extraordinary phenomena under nanoscale confinement. Through the application of an electric field, a water-filled carbon nanotube (CNT) that has been successfully fabricated in the laboratory is expected to have distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is observed that a longitudinal electric field enhances, but the transverse electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The divergent effect of the electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transverse electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply nonuniform pressure on nanochannels. Based on pre-strained water-filled CNTs, we designed a nanoscale trigger with an evident and rapid height change initiated by switching the direction of the electric field. The reported finding provides a foundation for an electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices.

  14. Application of the nuclear liquid drop model to a negative hydrogen ion in the strong electric field of a laser

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Kornyushin, Y. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)]. E-mail: yurik@vms.huji.ac.il

    2000-09-01

    The nuclear liquid drop model is applied to describe some basic properties of a negative hydrogen ion in the strong electric field of a laser. The equilibrium ionic size, energy and polarizability of the ion are calculated. Collective modes of the dipole oscillations are considered. A barrier which arises in a strong electric field is studied. The barrier vanishes at some large value of the electric field, which is defined as a critical value. The dependence of the critical field on frequency is studied. At frequencies {omega}{>=}({omega}{sub d}/2{sup 1/2}) ({omega}{sub d} is the frequency of the dipole oscillations of the electronic cloud relative to the nucleus) the barrier remains for any field. At high frequencies a 'stripping' mechanism for instability arises. At the resonant frequency a rather low amplitude of the electric field causes the 'stripping' instability. (author)

  15. Electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1989-12-01

    The electric field plays an important role in the complex plasma system called the magnetosphere. In spite of this, direct measurement of this quantity are still scarce except in its lowest-altitude part, i.e. the ionosphere. The large scale ionospheric electric field has been determined from measurement on the ground and in low satellite orbit. For most of the magnetosphere, our concepts of the electric field have mostly been based on theoretical considerations and extrapolations of the ionspheric electric field. Direct, in situ, electric field measurements in the outer parts of the magnetosphere have been made only relatively recently. A few satellite missions. most recently the Viking mission, have extended the direct empirical knowledge so as to include major parts of the magnetosphere. These measurements have revealed a number of unexpected features. The actual electric field has been found to have unexpectedly strong space and time variations, which reflect the dynamic nature of the system. Examples are give of measured electric fields in the plasmasphere, the plasmasheet, the neutral sheet, the magnetotail, the flanks of the magnetosphere, the dayside magnetopause and the auroral acceleration region. (author)

  16. Electric & Magnetic Fields

    Science.gov (United States)

    ... Health Lead Mercury Mold Nanomaterials Ozone Perfluorinated Chemicals Pesticides Radon Soy Infant Formula Styrene Water Pollution Weather ... 102-486, Section 2118) Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields - ...

  17. Advanced Electric Field Deployment Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Electric Field Deployment Systems provide prototype design, analysis, fabrication, and testing of advance electric field deployers (or booms) that are...

  18. Fields of nuclear power application

    International Nuclear Information System (INIS)

    Laue, H.J.

    1975-01-01

    The paper deals with nuclear power application in fields different from electricity generation, i.e. district heating, sea water desalination, coal gasification and nuclear splitting of water. (RW) [de

  19. Recent Advances and Applications of Pulsed Electric Fields (PEF to Improve Polyphenol Extraction and Color Release during Red Winemaking

    Directory of Open Access Journals (Sweden)

    Arianna Ricci

    2018-03-01

    Full Text Available Pulsed electric fields (PEF technology is an innovative food processing system and it has been introduced in relatively recent times as a pre-treatment of liquid and semi-solid food. Low cost-equipment and short processing time, coupled to the effectiveness in assisting the extraction of valuable compounds from vegetable tissues, makes PEF a challenging solution for the industrial red winemaking; a tailored PEF-assisted maceration was demonstrated to promote an increase in wine color quality and an improvement in the polyphenolic profile. Despite the application of PEF has been studied and the positive effects in selected wine varieties were demonstrated on batch and pilot-scale systems, there is a need for a more detailed characterization of the impact in different grapes, and for a better understanding of potential undesirable side-effects. This review aims to summarize the state of the art in view of a detailed feasibility study, to promote the introduction of PEF technology in the oenological industry.

  20. Design of an electrically small circularly polarised turnstile antenna and its application to near-field wireless power transfer

    DEFF Research Database (Denmark)

    Yoon, Ick-Jae; Ling, Hao

    2014-01-01

    An electrically small circularly polarised antenna is designed and applied to near-field wireless power transfer as a means of alleviating orientation dependence. The antenna is miniaturised from a spl lambda//2-turnstile antenna by utilising the top loading and multiple folding techniques. A loc...

  1. Field Models in Electricity and Magnetism

    CERN Document Server

    Barba, Paolo Di; Wiak, S

    2008-01-01

    Covering the development of field computation in the past forty years, Field Models in Electricity and Magnetism intends to be a concise, comprehensive and up-to-date introduction to field models in electricity and magnetism, ranging from basic theory to numerical applications. The approach assumed throughout the whole book is to solve field problems directly from partial differential equations in terms of vector quantities. Theoretical issues are illustrated by practical examples. In particular, a single example is solved by different methods so that, by comparison of results, limitations and advantages of the various methods are made clear. The subjects of the synthesis of fields and of the optimal design of devices, which are growing in research and so far have not been adequately covered in textbooks, are developed in addition to more classical subjects of analysis. Topics covered include: vector fields: electrostatics, magnetostatics, steady conduction; analytical methods for solving boundary-value probl...

  2. Electric fields and quantum wormholes

    NARCIS (Netherlands)

    Engelhardt, D.; Freivogel, B.; Iqbal, N.

    2015-01-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a

  3. Apparatuses and methods for generating electric fields

    Science.gov (United States)

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  4. Magnetic resonance electrical impedance tomography for determining electric field distribution during electroporation

    International Nuclear Information System (INIS)

    Kranjc, Matej; Miklavcic, Damijan; Bajd, Franci; Serša, Igor

    2013-01-01

    Electroporation is a phenomenon caused by externally applied electric field to cells that results in an increase of cell membrane permeability to various molecules. Accurate coverage of the tissue with a sufficiently large electric field presents one of the most important conditions for successful membrane permeabilization. Applications based on electroporation would greatly benefit with a method for monitoring the electric field, especially if it could be done in situ. As the membrane electroporation is a consequence of an induced transmembrane potential, which is directly proportional to the local electric field, we have been investigating current density imaging and magnetic resonance electrical impedance tomography techniques to determine the electric field distribution during electroporation. In this paper, we present comparison of current density and electric field distribution in an agar phantom and in a liver tissue exposed to electroporation pulses. As expected, a region of increased electrical conductivity was observed in the liver tissue exposed to sufficiently high electric field but not in agar phantom.

  5. Influence of electrical fields and asymmetric application of mucilage on curvature of primary roots of Zea mays

    Science.gov (United States)

    Marcum, H.; Moore, R.

    1990-01-01

    Primary roots of Zea mays cv. Yellow Dent growing in an electric field curve towards the anode. Roots treated with EDTA and growing in electric field do not curve. When root cap mucilage is applied asymmetrically to tips of vertically-oriented roots, the roots curve toward the mucilage. Roots treated with EDTA curve toward the side receiving mucilage and toward blocks containing 10 mM CaCl2, but not toward "empty" agar blocks or the cut surfaces of severed root tips. These results suggest that 1) free calcium (Ca) is necessary for root electrotropism, 2) mucilage contains effector(s) that induce gravitropiclike curvature, and 3) mucilage can replace gravitropic effectors chelated by EDTA. These results are consistent with the hypothesis that the downward movement of gravitropic effectors to the lower sides of tips of horizontally-oriented roots occurs at least partially in the apoplast.

  6. Ion and electron injection in ionosphere and magnetosphere. Application to the parallel electric field measurement in auroral zones

    International Nuclear Information System (INIS)

    Pirre, M.

    1982-11-01

    New methods of measuring parallel electric field in auroral zones are investigated in this thesis. In the studied methods, artificial injection of ions Li + and electrons from a spacecraf is used. Measurements obtained during the ARAKS experiment are also presented. The behaviour of the ionospheric plasma located few hundred meters from a 0,5A electron beam injected in ionosphere from a rocket is studied, together with the behaviour of a Cs plasma artificially injected from the same spacecraft [fr

  7. Electric Fields and Enzyme Catalysis.

    Science.gov (United States)

    Fried, Stephen D; Boxer, Steven G

    2017-06-20

    What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.

  8. Atomic emission spectroscopy in high electric fields

    International Nuclear Information System (INIS)

    Bailey, J.E.; Filuk, A.B.; Carlson, A.L.

    1995-01-01

    Pulsed-power driven ion diodes generating quasi-static, ∼10 MV/cm, 1-cm scale-length electric fields are used to accelerate lithium ion beams for inertial confinement fusion applications. Atomic emission spectroscopy measurements contribute to understanding the acceleration gap physics, in particular by combining time- and space-resolved measurements of the electric field with the Poisson equation to determine the charged particle distributions. This unique high-field configuration also offers the possibility to advance basic atomic physics, for example by testing calculations of the Stark-shifted emission pattern, by measuring field ionization rates for tightly-bound low-principal-quantum-number levels, and by measuring transition-probability quenching

  9. Mutagenic Potential of Direct Current Electric Fields

    National Research Council Canada - National Science Library

    Obringer, John

    1997-01-01

    .... EMF can be subdivided into either electric fields (E-field) or magnetic fields (B-field). Our research used a reverse mutagenesis bacteriophage T4D model to quantitatively study the effects of direct current E-fields...

  10. Electric Field Effects in RUS Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  11. Electrical field of electrical appliances versus distance: A preliminary analysis

    International Nuclear Information System (INIS)

    Mustafa, Nur Badariah Ahmad; Nordin, Farah Hani; Ismail, Fakaruddin Ali Ahmad; Alkahtani, Ammar Ahmed; Balasubramaniam, Nagaletchumi; Hock, Goh Chin; Shariff, Z A M

    2013-01-01

    Every household electrical appliance that is plugged in emits electric field even if it is not operating. The source where the appliance is plugged into and the components of household electrical appliance contribute to electric field emission. The electric field may cause unknown disturbance to the environment or also affect the human health and the effect might depends on the strength of the electric field emitted by the appliance. This paper will investigate the strength of the electric field emitted by four different electrical appliances using spectrum analyser. The strength will be captured at three different distances; (i) 1m (ii) 2m and (iii) 3m and analysis of the strength of the electrical field is done based on the three different distances. The measurement results show that the strength of the electric field is strongest when it is captured at 1m and the weakest at 3m from the electrical appliance. The results proved that the farther an object is located from the electrical appliance; the less effect the magnetic field has.

  12. Dynamical interplay between fluctuations, electric fields and ...

    Indian Academy of Sciences (India)

    interplay between fluctuation in gradients, turbulent transport and radial electric fields has shown that these parameters ... electric fields and density fluctuations, ΓE¢B(t) = ˜n(t) ˜Eθ (t)/B. The poloidal electric field has been .... transport increases and the system performs a relaxation which tends to drive the plasma back to the ...

  13. Do neutrons feel electric fields?

    International Nuclear Information System (INIS)

    Klein, Tony; Werner, Sam

    1991-01-01

    An accounts is given of the results of a co-operative research carried out at the University of Melbourne in Australia and the University of Missouri, Columbia in the United States on the physics of neutrons and their interactions as a test of fundamental principles in quantum mechanics and electrodynamics. In particular it comments on the verification of the Aharonov-Casher effect in electric as well as magnetic fields in the case of neutral particles. It was demonstrated that neutrons have a magnetic moment which precess and acquire phase shifts when exposed to magnetic fields. The sign of the measured phase shift agreed with the theoretical prediction and the magnitude was within one and a half standard deviations of it. 12 refs., 4 figs

  14. Phonon-assisted transitions in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Hassan, A.R.

    1980-05-01

    A theory of the effect of a crossed electric, E, and magnetic, H, fields in the indirect transitions in semiconductors is developed. A semi-classical treatment is adopted where the electric field is considered as a small perturbation. A numerical application to GaP gives the limiting values of E/H valid to this approach. (author)

  15. Heavy metal multilayers for switching of magnetic unit via electrical current without magnetic field, method and applications

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qinli; Li, Yufan; Chien, Chia-ling

    2018-02-20

    Provided is an electric-current-controllable magnetic unit, including: a substrate, an electric-current channel disposed on the substrate, the electric-current channel including a composite heavy-metal multilayer comprising at least one heavy-metal; a capping layer disposed over the electric-current channel; and at least one ferromagnetic layer disposed between the electric-current channel and the capping layer.

  16. Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm

    CERN Document Server

    Djurabekova, Flyura; Pohjonen, Aarne; Nordlund, Kai

    2011-01-01

    The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields, as well as the general behavior of a metal surface in this condition. However, the derivation of analytical models does not include explicitly the structural properties of metals, missing the link between the instantaneous effects owing to the applied field and the consequent response observed in the metal surface as a result of an extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting on the partially...

  17. Colloidal Switches by Electric and Magnetic Fields.

    Science.gov (United States)

    Demirörs, Ahmet Faik; Beltramo, Peter J; Vutukuri, Hanumantha Rao

    2017-05-24

    External electric and magnetic fields have already been proven to be a versatile tool to control the particle assembly; however, the degree of control of the dynamics and versatility of the produced structures is expected to increase if both can be implemented simultaneously. For example, while micromagnets can rapidly assemble superparamagnetic particles, repeated, rapid disassembly or reassembly is not trivial because of the remanence and coercivity of metals used in such applications. Here, an interdigitated design of micromagnet and microfabricated electrodes enables rapid switching of colloids between their magnetic and electric potential minima. Active control over colloids between two such adjacent potential minima enables a fast on/off mechanism, which is potentially important for optical switches or display technologies. Moreover, we demonstrate that the response time of the colloids between these states is on the order of tens of milliseconds, which is tunable by electric field strength. By carefully designing the electrode pattern, our strategy enables the switchable assembly of single particles down to few microns and also hierarchical assemblies containing many particles. Our work on precise dynamic control over the particle position would open new avenues to find potential applications in optical switches and display technologies.

  18. An Electric Field Test Using the MRI

    Czech Academy of Sciences Publication Activity Database

    Fiala, P.; Bartušek, Karel

    2008-01-01

    Roč. 4, č. 7 (2008), s. 701-705 ISSN 1931-7360 Institutional research plan: CEZ:AV0Z20650511 Keywords : MRI * electric field * numerical modeling Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  19. Electric fields in plasmas under pulsed currents

    International Nuclear Information System (INIS)

    Tsigutkin, K.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Y.; Fruchtman, A.; Commisso, R. J.

    2007-01-01

    Electric fields in a plasma that conducts a high-current pulse are measured as a function of time and space. The experiment is performed using a coaxial configuration, in which a current rising to 160 kA in 100 ns is conducted through a plasma that prefills the region between two coaxial electrodes. The electric field is determined using laser spectroscopy and line-shape analysis. Plasma doping allows for three-dimensional spatially resolved measurements. The measured peak magnitude and propagation velocity of the electric field is found to match those of the Hall electric field, inferred from the magnetic-field front propagation measured previously

  20. Numerical simulation of electric field assisted sintering

    Science.gov (United States)

    McWilliams, Brandon A.

    A fully coupled thermal-electric-sintering finite element model was developed and implemented to explore electric field assisted sintering techniques (FAST). FAST is a single step processing operation for producing bulk materials from powders, in which the powder is heated by the application of electric current under pressure. This process differs from other powder processing techniques such as hot isostatic pressing (HIP) and traditional press and sinter operations where the powder or compact is heated externally, in that the powder is heated directly as a result of internal Joule heating (for conductive powders) and/or by direct conduction from the die and punches. The overall result is much more efficient heating which allows heating rates of >1000°C/min to be achieved which is desirable for sintering bulk nanocrystalline and other novel high performance materials. Previous modeling efforts on FAST have only considered the thermal-electric aspect of the problem and have neglected densification. In addition to the introduction of a sintering model, a detailed thermal-electric study of process parameters was carried out in order to identify key system variables and quantify their effect on the overall system response and subsequent thermal history of a consolidated sample. This analysis was compared to empirical data from a parallel experimental study and shown to satisfactorily predict the observed trends. This model was then integrated with a phenomenologically based sintering model to capture the densification of the sample. This fully coupled model was used to predict densification kinetics under FAST like conditions and examine the evolution of material properties as the sample transitions from a loose powder to a fully dense compact and the resulting effect on the electrical and thermal fields within the compact. This model was also used to explore the effect of non-uniform thermal, electrical, stress and density fields on the final geometry and local

  1. Two devices for atmospheric electric field measurement

    International Nuclear Information System (INIS)

    Colombet, Andre; Hubert, Pierre.

    1977-02-01

    Two instruments installed at St Privat d'Allier for electric field measurement in connection with the rocket triggered lighting experiment program are described. The first one is a radioactive probe electrometer used as a warning device. The second is a field mill used for tape recording of electric field variation during the triggering events. Typical examples of such records are given [fr

  2. Pulsed electric fields for pasteurization: defining processing conditions

    Science.gov (United States)

    Application of pulsed electric fields (PEF) technology in food pasteurization has been extensively studied. Optimal PEF treatment conditions for maximum microbial inactivation depend on multiple factors including PEF processing conditions, production parameters and product properties. In order for...

  3. Tripolar electric field Structure in guide field magnetic reconnection

    OpenAIRE

    S. Fu; S. Huang; M. Zhou; B. Ni; X. Deng

    2018-01-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplit...

  4. Mutagenic Potential of Alternating Current Electric Fields

    National Research Council Canada - National Science Library

    Obringer, John

    1997-01-01

    .... EMF can be subdivided into either electric fields (E-field) or magnetic fields (B-field). Our research used a reverse mutagenesis bacteriophage T4D model to quantitatively study the effects of E-fields on a molecular genetic level...

  5. Double-edged effect of electric field on the mechanical property of water-filled carbon nanotubes with an application to nanoscale trigger.

    Science.gov (United States)

    Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hong Wu; Chen, Zhen

    2017-11-08

    Polar water molecules would exhibit extraordinary phenomena under nanoscale confinement. By means of electric field, the water-filled carbon nanotube (CNT) that has been successfully fabricated in laboratory is expected to make distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is found that the longitudinal electric field enhances but the transversal electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The double-edged effect of electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transversal electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply the nonuniform pressure on nanochannels. Based on a pre-strained water-filled CNTs, we design a nanoscale trigger with the evident and rapid height change started through switching the direction of electric field. The reported finding lays a foundation for the electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices. © 2017 IOP Publishing Ltd.

  6. Radial electric fields for improved tokamak performance

    International Nuclear Information System (INIS)

    Downum, W.B.

    1981-01-01

    The influence of externally-imposed radial electric fields on the fusion energy output, energy multiplication, and alpha-particle ash build-up in a TFTR-sized, fusing tokamak plasma is explored. In an idealized tokamak plasma, an externally-imposed radial electric field leads to plasma rotation, but no charge current flows across the magnetic fields. However, a realistically-low neutral density profile generates a non-zero cross-field conductivity and the species dependence of this conductivity allows the electric field to selectively alter radial particle transport

  7. Electric Field in Materials, Containing Conductive Nanofibers

    OpenAIRE

    Kornyushin, Yuri

    2010-01-01

    Concentrated electric field and its energy in materials, containing nanofibers, are discussed. It is shown that the electric field in the vicinity of the end of a fiber is proportional to the external applied field and to the fiber length, whilst it is inversely proportional to the fiber diameter. Specific electrostatic energy of a fiber in a sample under the action of external applied field is calculated. This energy appears to be negative and proportional to the ratio of the fiber length to...

  8. Absolute technique for measuring internal electric fields in InGaN/GaN light-emitting diodes by electroreflectance applicable to all crystal orientations

    Science.gov (United States)

    Tanikawa, Tomoyuki; Shojiki, Kanako; Katayama, Ryuji; Kuboya, Shigeyuki; Matsuoka, Takashi; Honda, Yoshio; Amano, Hiroshi

    2017-08-01

    The internal electric fields in III-polar (0001), N-polar (000\\bar{1}), and semipolar (10\\bar{1}1) InGaN/GaN light-emitting diodes were investigated by electroreflectance (ER) spectroscopy. The ER spectra reflected the difference in the direction and strength of internal electric fields. Phase analyses of the ER signal revealed that only III-polar InGaN wells have the opposite direction of the internal electric field at zero bias voltage; this finding is in good agreement with the results of numerical analyses. Quantitative analyses of internal electric fields were conducted by the linewidth analyses of ER spectra. Our experimental results indicate that the absolute value of internal electric fields can be measured from ER spectra.

  9. Rotating artificial gauge magnetic and electric fields

    OpenAIRE

    Lembessis, V. E.; Alqarni, A.; Alshamari, S.; Siddig, A.; Aldossary, O. M.

    2016-01-01

    We consider the creation of artificial gauge magnetic and electric fields created when a two-level atom interacts with an optical Ferris wheel light field.These fields have the spatial structure of the optical Ferris wheel field intensity profile. If this optical field pattern is made to rotate in space then we have the creation of artificial electromagnetic fields which propagate in closed paths. The properties of such fields are presented and discussed

  10. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value

  11. Variation of surface electric field during geomagnetic disturbed ...

    Indian Academy of Sciences (India)

    Atmospheric electric field; magnetic storm; magnetosphere; ionosphere; global electrical circuit. J. Earth Syst. Sci. 124, No. 8, December 2015, pp. ... cycle, climate and air pollution is insufficient for extensive applications. Hence, the ..... frequency radars monitoring plasma flow in the polar ionosphere. The network database ...

  12. Application of low-frequency alternating current electric fields via interdigitated electrodes: effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells.

    Science.gov (United States)

    McCullen, Seth D; McQuilling, John P; Grossfeld, Robert M; Lubischer, Jane L; Clarke, Laura I; Loboa, Elizabeth G

    2010-12-01

    Electric stimulation is known to initiate signaling pathways and provides a technique to enhance osteogenic differentiation of stem and/or progenitor cells. There are a variety of in vitro stimulation devices to apply electric fields to such cells. Herein, we describe and highlight the use of interdigitated electrodes to characterize signaling pathways and the effect of electric fields on the proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs). The advantage of the interdigitated electrode configuration is that cells can be easily imaged during short-term (acute) stimulation, and this identical configuration can be utilized for long-term (chronic) studies. Acute exposure of hASCs to alternating current (AC) sinusoidal electric fields of 1 Hz induced a dose-dependent increase in cytoplasmic calcium in response to electric field magnitude, as observed by fluorescence microscopy. hASCs that were chronically exposed to AC electric field treatment of 1 V/cm (4 h/day for 14 days, cultured in the osteogenic differentiation medium containing dexamethasone, ascorbic acid, and β-glycerol phosphate) displayed a significant increase in mineral deposition relative to unstimulated controls. This is the first study to evaluate the effects of sinusoidal AC electric fields on hASCs and to demonstrate that acute and chronic electric field exposure can significantly increase intracellular calcium signaling and the deposition of accreted calcium under osteogenic stimulation, respectively.

  13. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  14. Enhanced fog collection with electric fields

    Science.gov (United States)

    Damak, Maher; Mahmoudi, Seyed Reza; Varanasi, Kripa

    2015-11-01

    Fog harvesting is a promising source of fresh water in remote areas. However, the efficiency of current collectors, consisting in fine meshes standing perpendicularly to the wind, is dramatically low. Fog-laden flows generally have low Stokes numbers, which leads to the deviation of fog droplets in the vicinity of the mesh wires. Here, we propose to overcome this aerodynamic limitation using a combination of electric fields and specific collecting surfaces. We show that our system largely increases the fog collection efficiency. We study the trajectories of individual particles and use the results to derive a model to predict the collection efficiency of the system. We finally identify and quantify the mechanisms that can limit the collection of fog particles. The understanding of these mechanisms leads us to construct a design chart that can be used to determine the optimal design parameters that should be used in fog collection applications as a function of the field conditions.

  15. Electric field-based technologies for valorization of bioresources.

    Science.gov (United States)

    Rocha, Cristina M R; Genisheva, Zlatina; Ferreira-Santos, Pedro; Rodrigues, Rui; Vicente, António A; Teixeira, José A; Pereira, Ricardo N

    2018-04-01

    This review provides an overview of recent research on electrotechnologies applied to the valorization of bioresources. Following a comprehensive summary of the current status of the application of well-known electric-based processing technologies, such as pulsed electric fields (PEF) and high voltage electrical discharges (HVED), the application of moderate electric fields (MEF) as an extraction or valorization technology will be considered in detail. MEF, known by its improved energy efficiency and claimed electroporation effects (allowing enhanced extraction yields), may also originate high heating rates - ohmic heating (OH) effect - allowing thermal stabilization of waste stream for other added-value applications. MEF is a simple technology that mostly makes use of green solvents (mainly water) and that can be used on functionalization of compounds of biological origin broadening their application range. The substantial increase of MEF-based plants installed in industries worldwide suggests its straightforward application for waste recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  17. Electric field mapping and auroral Birkeland currents

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Larson, D.J.

    1989-01-01

    Magnetic field lines, electric fields and equipotentials have been mapped throughout the magnetosphere in the vicinity of strong Birkeland currents. It was found that a uniform electric field at either the ionospheric or the equatorial end of a field line can map to a highly structured field at the other end if strong Birkeland currents are located nearby. The initiation of sheet currents of the region 1 - region 2 scale size and intensity resulted in magnetic field line displacements of about 1/2 hour in local time between equatorial and ionospheric end points. As a result, a uniform dawn to dusk electric field at the equator mapped to an ionospheric electric field with strong inward pointing components in the dusk hemisphere. Similar distortions were produced by Birkeland currents associated with narrow east-west-aligned auroral arcs. A specific model for the auroral current system, based on ionospheric measurements during a large substorm, was used to study effects seen during disturbed periods. An iterative procedure was developed to generate a self-consistent current system even in the presence of highly twisted field lines. The measured ionospheric electric field was projected tot he equatorial plane in the presence of the model Birkeland current system. Several physical processes were seen to influence ionospheric and equatorial electric fields, and the associated plasma convection, during a substorm

  18. Electric Field Generation in Martian Dust Devils

    Science.gov (United States)

    Barth, Erika L.; Farrell, William M.; Rafkin, Scot C. R.

    2015-01-01

    Terrestrial dust devils are known to generate electric fields from the vertical separation of charged dust particles. The particles present within the dust devils on Mars may also be subject to similar charging processes and so likely contribute to electric field generation there as well. However, to date, no Marsin situ instrumentation has been deployed to measure electric field strength. In order to explore the electric environment of dust devils on Mars, the triboelectric dust charging physics from the MacroscopicTriboelectric Simulation (MTS) code has been coupled to the Mars Regional Atmospheric ModelingSystem (MRAMS). Using this model, we examine how macroscopic electric fields are generated within martian dust disturbances and attempt to quantify the time evolution of the electrodynamical system.Electric fields peak for several minutes within the dust devil simulations. The magnitude of the electric field is a strong function of the size of the particles present, the average charge on the particles and the number of particles lifted. Varying these parameters results in peak electric fields between tens of millivolts per meter and tens of kilovolts per meter.

  19. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    Science.gov (United States)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  20. Nanomechanical electric and electromagnetic field sensor

    Science.gov (United States)

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  1. Distributions of electric and elastic fields at domain boundaries

    International Nuclear Information System (INIS)

    Novak, Josef; Fousek, Jan; Maryska, Jiri; Marvan, Milan

    2005-01-01

    In this paper we describe the application of the finite element method (FEM) in modelling spatial distributions of electric and elastic fields in a ferroelectric crystals with two domains separated by a 90 deg. domain wall. The domain boundary is idealized as a two-dimensional defect in an electro-elastic continuum. It represents the source of inhomogenity and internal distortion in both elastic and electric fields. The main results are distributions of electric field, strain and mechanical force along the domain boundary

  2. Interferometric methods for mapping static electric and magnetic fields

    DEFF Research Database (Denmark)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi

    2014-01-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity...... on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p–n junctions in semiconductors, quantized magnetic flux in superconductors......) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data....

  3. Electrical machines & their applications

    CERN Document Server

    Hindmarsh, J

    1984-01-01

    A self-contained, comprehensive and unified treatment of electrical machines, including consideration of their control characteristics in both conventional and semiconductor switched circuits. This new edition has been expanded and updated to include material which reflects current thinking and practice. All references have been updated to conform to the latest national (BS) and international (IEC) recommendations and a new appendix has been added which deals more fully with the theory of permanent-magnets, recognising the growing importance of permanent-magnet machines. The text is so arra

  4. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  5. Synthesis and electrical field-assisted sintering behaviour of yttria ...

    Indian Academy of Sciences (India)

    The 3YSZ nanopowders with mean particle size of 12 nm can be densified in 1 h at 800 ∘ C, by the application of a d.c. electrical field. Under a constant d.c. electrical field, the current density through the specimen of 3YSZ rose rapidly when the temperature increased to a certain value. In the sintering process, the current ...

  6. ELECTRIC AND MAGNETIC FIELDS ELECTRIC AND GASOLINE-POWERED VEHICLES.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m -1 for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m -1 for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Optimal control applications in electric power systems

    CERN Document Server

    Christensen, G S; Soliman, S A

    1987-01-01

    Significant advances in the field of optimal control have been made over the past few decades. These advances have been well documented in numerous fine publications, and have motivated a number of innovations in electric power system engineering, but they have not yet been collected in book form. Our purpose in writing this book is to provide a description of some of the applications of optimal control techniques to practical power system problems. The book is designed for advanced undergraduate courses in electric power systems, as well as graduate courses in electrical engineering, applied mathematics, and industrial engineering. It is also intended as a self-study aid for practicing personnel involved in the planning and operation of electric power systems for utilities, manufacturers, and consulting and government regulatory agencies. The book consists of seven chapters. It begins with an introductory chapter that briefly reviews the history of optimal control and its power system applications and also p...

  8. Electric field replaces gravity in laboratory

    Science.gov (United States)

    Gorgolewski, S.

    For several years experiments in physical laboratories and in the fitotron have shown that one can replace gravitational field with electrical fields for plants. First obvious experiments in strong electrical fields in the MV/m regi on show that any materials and living plants respond immediately to Coulomb forces. Such fields are found in nature during thunderstorms. One has to be very careful in handling such strong fields for safety reasons. The fair weather global electrical field is about 20,000 times weaker. The coulomb forces are proportional to the square of the field strength and are thus 400 milion times weaker for a field of the order of 100 V/m.Yet it was found that some plants respond to such "weak" fields. We must remember that the electrical field is a factor of 10 38 times stronger than gravitational interaction. In plants we have dissociated in water mineral salts and the ions are subject to such ernormous forces. It was shown and published that the positive charges in the air in fields of the order of 3kV/m enhance lettuce growth by a factor of four relative to fields about 30 times weaker (100V/m). Reversal of the field polarity reverses the direction of plant growth and retards the plant's growth. Such fields overpower the gravitropism in the laboratory. More so horizontal electrical field is othogonal to gravity, now the fields do not see each other. Lettuce now growth horizontally ignoring the gravitational field. We can thus select the plants whose electrotropism even in the laboratory overwhelms gravity. This is important for the long space flights that we must grow vegetarian food for the crew. The successful harvesting of wheat in orbit does not contradict our experimental findings because wheat is not electrotropic like all plants from the grass family. The results of fitotron experiments with kV/m electrical fields are richly illustrated with colour digital photographs. We also subjected the candle flame to very strong horizontal

  9. ESTIMATING ELECTRIC FIELDS FROM VECTOR MAGNETOGRAM SEQUENCES

    International Nuclear Information System (INIS)

    Fisher, G. H.; Welsch, B. T.; Abbett, W. P.; Bercik, D. J.

    2010-01-01

    Determining the electric field distribution on the Sun's photosphere is essential for quantitative studies of how energy flows from the Sun's photosphere, through the corona, and into the heliosphere. This electric field also provides valuable input for data-driven models of the solar atmosphere and the Sun-Earth system. We show how observed vector magnetogram time series can be used to estimate the photospheric electric field. Our method uses a 'poloidal-toroidal decomposition' (PTD) of the time derivative of the vector magnetic field. These solutions provide an electric field whose curl obeys all three components of Faraday's Law. The PTD solutions are not unique; the gradient of a scalar potential can be added to the PTD electric field without affecting consistency with Faraday's Law. We then present an iterative technique to determine a potential function consistent with ideal MHD evolution; but this field is also not a unique solution to Faraday's Law. Finally, we explore a variational approach that minimizes an energy functional to determine a unique electric field, a generalization of Longcope's 'Minimum Energy Fit'. The PTD technique, the iterative technique, and the variational technique are used to estimate electric fields from a pair of synthetic vector magnetograms taken from an MHD simulation; and these fields are compared with the simulation's known electric fields. The PTD and iteration techniques compare favorably to results from existing velocity inversion techniques. These three techniques are then applied to a pair of vector magnetograms of solar active region NOAA AR8210, to demonstrate the methods with real data. Careful examination of the results from all three methods indicates that evolution of the magnetic vector by itself does not provide enough information to determine the true electric field in the photosphere. Either more information from other measurements, or physical constraints other than those considered here are necessary to find

  10. Vacuum instability in a random electric field

    International Nuclear Information System (INIS)

    Krive, I.V.; Pastur, L.A.

    1984-01-01

    The reaction of the vacuum on an intense spatially homogeneous random electric field is investigated. It is shown that a stochastic electric field always causes a breakdown of the boson vacuum, and the number of pairs of particles which are created by the electric field increases exponentially in time. For the choice of potential field in the form of a dichotomic random process we find in explicit form the dependence of the average number of pairs of particles on the time of the action of the source of the stochastic field. For the fermion vacuum the average number of pairs of particles which are created by the field in the lowest order of perturbation theory in the amplitude of the random field is independent of time

  11. Numerical Study of Electric Field Enhanced Combustion

    KAUST Repository

    Han, Jie

    2016-12-26

    Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments have been carried out to study electric field enhanced combustion, they are not sufficient to explain how the ions in a flame are affected by an electric field. It is therefore necessary to investigate the problem through numerical simulations. In the present work, the electric structure of stabilized CH4/air premixed flames at atmospheric pressure within a direct current field is studied using numerical simulations. This study consists of three parts. First, the transport equations are derived from the Boltzmann kinetic equation for each individual species. Second, a general method for computing the diffusivity and mobility of ions in a gas mixture is introduced. Third, the mechanisms for neutral and charged species are improved to give better predictions of the concentrations of charged species, based on experimental data. Following from this, comprehensive numerical results are presented, including the concentrations and fluxes of charged species, the distributions of the electric field and electric potential, and the electric current-voltage relation. Two new concepts introduced with the numerical results are the plasma sheath and dead zone in the premixed flame. A reactive plasma sheath and a Boltzmann relation sheath are discovered in the region near the electrodes. The plasma sheath penetrates into the flame gas when a voltage is applied, and penetrating further if the voltage is higher. The zone outside the region of sheath penetration is defined as the dead zone. With the two concepts, analytical solutions for the electric field, electric potential and current-voltage curve are derived. The solutions directly describe the electric structure of a premixed flame subject to a DC field. These analytical solutions

  12. Effects of pulsed electric field on ULQ and RFP plasmas

    International Nuclear Information System (INIS)

    Watanabe, M.; Saito, K.; Suzuki, T.

    1997-01-01

    Dynamo activity and self-organization processes are investigated using the application of pulsed poloidal and toroidal electric fields on ULQ and RFP plasmas. Synchronized to the application of the pulsed electric fields, the remarkable responses of the several plasma parameters are observed. The plasma has a preferential magnetic field structure, and the external perturbation activates fluctuation to maintain the structure through dynamo effect. This process changes the total dissipation with the variation of magnetic helicity in the system, showing that self organization accompanies an enhanced dissipation. (author)

  13. Control of magnetism by electric fields

    Science.gov (United States)

    Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

    2015-03-01

    The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field.

  14. Electric and magnetic fields in medicine and biology

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Papers Include: The effects of low frequency (50 Hz) magnetic fields on neuro-chemical transmission in vitro; Morphological changes in E Coli subjected to DC electrical fields; An investigation of some claimed biological effects of electromagnetic fields; Electrical phenomena and bone healing - a comparison of contemporary techniques; Clinical evaluations of a portable module emitting pulsed RF energy; The design, construction and performance of a magnetic nerve stimulator; The principle of electric field tomography and its application to selective read-out of information from peripheral nerves; Applied potential tomography - clinical applications; Impendance imaging using a linear electrode array; Mathematics as an aid to experiment: human body currents induced by power frequency electric fields; Effects of electric field near 750KV transmission line and protection against their harmful consequences; Leukemia and electromagnetic fields: a case-control study; Overhead power lines and childhood cancer; Magnetic measurement of nerve action currents - a new intraoperative recording technique; The potential use of electron spin resonance or impedance measurement to image neuronal electrical activity in the human brain

  15. Electropumping of water with rotating electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; De Luca, Sergio; Todd, Billy

    2013-01-01

    exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum...

  16. Nanoscale electron manipulation in metals with intense THz electric fields

    Science.gov (United States)

    Takeda, Jun; Yoshioka, Katsumasa; Minami, Yasuo; Katayama, Ikufumi

    2018-03-01

    Improved control over the electromagnetic properties of metals on a nanoscale is crucial for the development of next-generation nanoelectronics and plasmonic devices. Harnessing the terahertz (THz)-electric-field-induced nonlinearity for the motion of electrons is a promising method of manipulating the local electromagnetic properties of metals, while avoiding undesirable thermal effects and electronic transitions. In this review, we demonstrate the manipulation of electron delocalization in ultrathin gold (Au) films with nanostructures, by intense THz electric-field transients. On increasing the electric-field strength of the THz pulses, the transmittance in the THz-frequency region abruptly decreases around the percolation threshold. The observed THz-electric-field-induced nonlinearity is analysed, based on the Drude-Smith model. The results suggest that ultrafast electron delocalization occurs by electron tunnelling across the narrow insulating bridge between the Au nanostructures, without material breakdown. In order to quantitatively discuss the tunnelling process, we perform scanning tunnelling microscopy with carrier-envelope phase (CEP)-controlled single-cycle THz electric fields. By applying CEP-controlled THz electric fields to the 1 nm nanogap between a metal nanotip and graphite sample, many electrons could be coherently driven through the quantum tunnelling process, either from the nanotip to the sample or vice versa. The presented concept, namely, electron tunnelling mediated by CEP-controlled single-cycle THz electric fields, can facilitate the development of nanoscale electron manipulation, applicable to next-generation ultrafast nanoelectronics and plasmonic devices.

  17. ICE PLASMA WAVE ELECTRIC FIELD MEASUREMENT DATA

    Data.gov (United States)

    National Aeronautics and Space Administration — The Plasma Wave Data were submitted to National Space Science Data Center after the Principal Investigator's death (Scarf) by S. Chang of TRW. For the electric field...

  18. Axial Field Electric Motor and Method

    National Research Council Canada - National Science Library

    Cho, Chahee P

    2007-01-01

    .... A hybrid field, brushless, permanent magnet electric motor utilizing a rotor with two sets of permanent magnets oriented such that the flux produced by the two sets of magnets is perpendicular to each...

  19. Inductive electric field at the magnetopause

    International Nuclear Information System (INIS)

    Heikkila, W.J.

    1982-01-01

    The electric field data for two crossings of the magnetopause by ISEE-1 on November 20, 1977, have been analyzed with high time resolution. In both cases the electric field has a negative dawn-dusk component in the boundary layer, so it must reverse somewhere within the current layer to the positive value outside. If there is a component parallel to the moving magnetopause current it is small, and by no means obvious. In the case of the exit crossing from the boundary layer to the magnetosheath the data show that the electric field vector is turning for about two seconds at roughly the satellite spin rate; this changing direction suggests that the electric field has a curl. Such a curl could be caused by a travelling localized perturbation of the magnetopause surface current associated with impulsive plasma transport through the magnetopause

  20. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  1. Electrical contacts principles and applications

    CERN Document Server

    Slade, Paul G

    2013-01-01

    Covering the theory, application, and testing of contact materials, Electrical Contacts: Principles and Applications, Second Edition introduces a thorough discussion on making electric contact and contact interface conduction; presents a general outline of, and measurement techniques for, important corrosion mechanisms; considers the results of contact wear when plug-in connections are made and broken; investigates the effect of thin noble metal plating on electronic connections; and relates crucial considerations for making high- and low-power contact joints. It examines contact use in switch

  2. Erythrocytes in alternating electric fields

    International Nuclear Information System (INIS)

    Morariu, V.V.; Chifu, A.; Simplaceanu, T.; Frangopol, P.T.

    1983-02-01

    The elastic and inelastic deformation of erythrocytes induced by alternating fields and the suggestion that moderate field intensities (1.2 kV/cm) when continuously applied can cause lysis by a different mechanism compared to the action of short intense field pulses is presented. The different experimental conditions can be used to approach various properties of the membrane such as those related to the dielectric polarization of the membrane or to the interfacial polarization, leading to the inelastic deformation of the cells. (authors)

  3. Molecular dynamics in high electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Apostol, M., E-mail: apoma@theory.nipne.ro; Cune, L.C.

    2016-06-15

    Highlights: • New method for rotation molecular spectra in high electric fields. • Parametric resonances – new features in spectra. • New elementary excitations in polar solids from dipolar interaction (“dipolons”). • Discussion about a possible origin of the ferroelectricity from dipolar interactions. - Abstract: Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called “dipolons”); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  4. Molecular dynamics in high electric fields

    International Nuclear Information System (INIS)

    Apostol, M.; Cune, L.C.

    2016-01-01

    Highlights: • New method for rotation molecular spectra in high electric fields. • Parametric resonances – new features in spectra. • New elementary excitations in polar solids from dipolar interaction (“dipolons”). • Discussion about a possible origin of the ferroelectricity from dipolar interactions. - Abstract: Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called “dipolons”); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  5. Neuronal coupling by endogenous electric fields: Cable theory and applications to coincidence detector neurons in the auditory brainstem

    OpenAIRE

    Goldwyn, Joshua H.; Rinzel, John

    2015-01-01

    The ongoing activity of neurons generates a spatially- and time-varying field of extracellular voltage ($V_e$). This $V_e$ field reflects population-level neural activity, but does it modulate neural dynamics and the function of neural circuits? We provide a cable theory framework to study how a bundle of model neurons generates $V_e$ and how this $V_e$ feeds back and influences membrane potential ($V_m$). We find that these "ephaptic interactions" are small but not negligible. The model neur...

  6. Electric Field-Responsive Mesoporous Suspensions: A Review

    Directory of Open Access Journals (Sweden)

    Seung Hyuk Kwon

    2015-12-01

    Full Text Available This paper briefly reviews the fabrication and electrorheological (ER characteristics of mesoporous materials and their nanocomposites with conducting polymers under an applied electric field when dispersed in an insulating liquid. Smart fluids of electrically-polarizable particles exhibit a reversible and tunable phase transition from a liquid-like to solid-like state in response to an external electric field of various strengths, and have potential applications in a variety of active control systems. The ER properties of these mesoporous suspensions are explained further according to their dielectric spectra in terms of the flow curve, dynamic moduli, and yield stress.

  7. A high-performance electric field detector for space missions

    Science.gov (United States)

    Badoni, D.; Ammendola, R.; Bertello, I.; Cipollone, P.; Conti, L.; De Santis, C.; Diego, P.; Masciantonio, G.; Picozza, P.; Sparvoli, R.; Ubertini, P.; Vannaroni, G.

    2018-04-01

    We present the prototype of an Electric Field Detector (EFD) for space applications, that has been developed in the framework of the Chinese-Italian collaboration on the CSES (China Seismo-Electromagnetic Satellite) forthcoming missions. In particular CSES-1 will be placed in orbit in the early 2018. The detector consists of spherical probes designed to be installed at the tips of four booms deployed from a 3-axes stabilized satellite. The instrument has been conceived for space-borne measurements of electromagnetic phenomena such as ionospheric waves, lithosphere-atmosphere-ionosphere-magnetosphere coupling and anthropogenic electromagnetic emissions. The detector allows to measure electric fields in a wide band of frequencies extending from quasi-DC up to about 4 MHz , with a sensitivity of the order of 1 μV / m in the ULF band. With these bandwidth and sensitivity, the described electric field detector represents a very performing and updated device for electric field measurements in space.

  8. Application of a SQUID to Measurement of Somatically Evoked Fields: Transient Responses to Electrical Stimulation of the Median Nerve,

    Science.gov (United States)

    1980-06-15

    such as the movement of ions in the intercellular space along apical dendrites of pyramidal cells, may be res- ponsible for the SEF. In the light of its...D.: Biomagnetism , in B.B. Schwartz and S. Foner, Eds., Superconductor Applications: SQUIDs and Machines. Plenum, New York (1977). 4. Gray, H

  9. Electropumping of water with rotating electric fields.

    Science.gov (United States)

    De Luca, Sergio; Todd, B D; Hansen, J S; Daivis, Peter J

    2013-04-21

    Pumping of fluids confined to nanometer dimension spaces is a technically challenging yet vitally important technological application with far reaching consequences for lab-on-a-chip devices, biomimetic nanoscale reactors, nanoscale filtration devices and the like. All current pumping mechanisms require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum of the fluid. By selectively tuning the degree of hydrophobicity of the solid walls one can generate a net unidirectional flow. Our results for the linear streaming and angular velocities of the confined water are in general agreement with the extended hydrodynamical theory for this process, though also suggest refinements to the theory are required. These numerical experiments confirm that this new concept for pumping of polar nanofluids can be employed under laboratory conditions, opening up significant new technological possibilities.

  10. Electrically induced magnetic fields; a consistent approach

    Science.gov (United States)

    Batell, Brian; Ferstl, Andrew

    2003-09-01

    Electromagnetic radiation exists because changing magnetic fields induce changing electric fields and vice versa. This fact often appears inconsistent with the way some physics textbooks solve particular problems using Faraday's law. These types of problems often ask students to find the induced electric field given a current that does not vary linearly with time. A typical example involves a long solenoid carrying a sinusoidal current. This problem is usually solved as an example or assigned as a homework exercise. The solution offered by many textbooks uses the approximation that the induced, changing electric field produces a negligible magnetic field, which is only valid at low frequencies. If this approximation is not explicitly acknowledged, then the solution appears inconsistent with the description of electromagnetic radiation. In other cases, when the problem is solved without this approximation, the electric and magnetic fields are derived from the vector potential. We present a detailed calculation of the electric and magnetic fields inside and outside the long solenoid without using the vector potential. We then offer a comparison of our solution and a solution given in an introductory textbook.

  11. PENERAPAN PULSED ELECTRIC FIELD PADA PASTEURISASI SARI BUAH APEL VARIETAS ANA: KAJIAN KARAKTERISTIK NILAI GIZI, SIFAT FISIK, SIFAT KIMIAWI DAN MIKROBIA TOTAL Application of Pulsed Electric Field in Pasteurization of Apple Juice of Ana Cultivar : Study on

    Directory of Open Access Journals (Sweden)

    La Choviya Hawa

    2012-05-01

    Full Text Available Apple juice, extracted from apple of ana cultivar , was pasteurized using a pulsed electric field (PEF method. The aimof this research was to analyze the changes on nutritional, physical and chemical properties and total microbes from apple juice after pasteurization. The research was conducted from July until Oktober 2009 located in Malang. The PEF treatment was carried out using treatment time variation for 10, 20, 30, 40, 50 and 60 seconds. Several parameters of vitamin A and C, water content, density, pH, total soluable solid and total microbes were observed. The results showed that PEF treatment did not significantly change nutritional, physical and chemical properties and total microbes after pasteurization with PEF in compared with no treatment pasteurization. The highest degradation was found in treatment time for 60 seconds, i.e. 93.53 %. ABSTRAK Sari buah apel, yang diekstrak dari apel varietas ana, dipasteurisasi dengan metode pulsed electric field (PEF. Tujuanpenelitian ini adalah untuk mengetahui perubahan karakteristik nilai gizi, sifat fisik, kimiawi dan total mikrobia sari buah apel sesudah dipasteurisasi. Penelitian dilaksanakan bulan Juli sampai dengan Oktober 2009 di Malang. Penelitian ini menggunakan variasi waktu pengolahan 10, 20, 30, 40, 50 dan 60 detik. Parameter pengamatan yaitu vitamin A dan C, kadar air, berat jenis, pH, total padatan terlarut dan total mikrobia. Hasil penelitian menunjukkan bahwa nilai gizi, sifat fisik dan kimiawi dari sari apel  tidak mengalami perubahan signifikan dibandingkan sari apel tanpa perlakuan PEF. Penurunan total mikrobia terbesar pada waktu perlakuan 60 detik dengan efektivitas pembunuhan sebesar 93,53%.

  12. Detection of electric field around field-reversed configuration plasma

    International Nuclear Information System (INIS)

    Ikeyama, Taeko; Hiroi, Masanori; Nogi, Yasuyuki; Ohkuma, Yasunori

    2010-01-01

    Electric-field probes consisting of copper plates are developed to measure electric fields in a vacuum region around a plasma. The probes detect oscillating electric fields with a maximum strength of approximately 100 V/m through a discharge. Reproducible signals from the probes are obtained with an unstable phase dominated by a rotational instability. It is found that the azimuthal structure of the electric field can be explained by the sum of an n=2 mode charge distribution and a convex-surface electron distribution on the deformed separatrix at the unstable phase. The former distribution agrees with that anticipated from the diamagnetic drift motions of plasma when the rotational instability occurs. The latter distribution suggests that an electron-rich plasma covers the separatrix.

  13. Neuronal coupling by endogenous electric fields: cable theory and applications to coincidence detector neurons in the auditory brain stem.

    Science.gov (United States)

    Goldwyn, Joshua H; Rinzel, John

    2016-04-01

    The ongoing activity of neurons generates a spatially and time-varying field of extracellular voltage (Ve). This Ve field reflects population-level neural activity, but does it modulate neural dynamics and the function of neural circuits? We provide a cable theory framework to study how a bundle of model neurons generates Ve and how this Ve feeds back and influences membrane potential (Vm). We find that these "ephaptic interactions" are small but not negligible. The model neural population can generate Ve with millivolt-scale amplitude, and this Ve perturbs the Vm of "nearby" cables and effectively increases their electrotonic length. After using passive cable theory to systematically study ephaptic coupling, we explore a test case: the medial superior olive (MSO) in the auditory brain stem. The MSO is a possible locus of ephaptic interactions: sounds evoke large (millivolt scale)Vein vivo in this nucleus. The Ve response is thought to be generated by MSO neurons that perform a known neuronal computation with submillisecond temporal precision (coincidence detection to encode sound source location). Using a biophysically based model of MSO neurons, we find millivolt-scale ephaptic interactions consistent with the passive cable theory results. These subtle membrane potential perturbations induce changes in spike initiation threshold, spike time synchrony, and time difference sensitivity. These results suggest that ephaptic coupling may influence MSO function. Copyright © 2016 the American Physiological Society.

  14. Positrons trapped in polyethylene: Electric field effect

    International Nuclear Information System (INIS)

    Bertolaccini, M.; Bisi, A.; Gambarini, G.; Zappa, L.

    1978-01-01

    The intensity of the iot 2 -component of positrons annihilated in polyethylene is found to increase with increasing electric field, while the formation probability of the positron state responsible for this component remains independent of the field. (orig.) 891 HPOE [de

  15. Tunable terahertz optical properties of graphene in dc electric fields

    Science.gov (United States)

    Dong, H. M.; Huang, F.; Xu, W.

    2018-03-01

    We develop a simple theoretical approach to investigate terahertz (THz) optical properties of monolayer graphene in the presence of an external dc electric field. The analytical results for optical coefficients such as the absorptance and reflectivity are obtained self-consistently on the basis of a diagrammatic self-consistent field theory and a Boltzmann equilibrium equation. It is found that the optical refractive index, reflectivity and conductivity can be effectively tuned by not only a gate voltage but also a driving dc electric field. This study is relevant to the applications of graphene as advanced THz optoelectronic devices.

  16. Electrosensitization Increases Antitumor Effectiveness of Nanosecond Pulsed Electric Fields In Vivo

    OpenAIRE

    Muratori, Claudia; Pakhomov, Andrei G.; Heller, Loree; Casciola, Maura; Gianulis, Elena; Grigoryev, Sergey; Xiao, Shu; Pakhomova, O. N.

    2017-01-01

    Nanosecond pulsed electric fields are emerging as a new modality for tissue and tumor ablation. We previously reported that cells exposed to pulsed electric fields develop hypersensitivity to subsequent pulsed electric field applications. This phenomenon, named electrosensitization, is evoked by splitting the pulsed electric field treatment in fractions (split-dose treatments) and causes in vitro a 2- to 3-fold increase in cytotoxicity. The aim of this study was to show the benefit of split-d...

  17. Microfluidic Screening of Electric Fields for Electroporation

    Science.gov (United States)

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-02-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes.

  18. Parallel electric fields from ionospheric winds

    International Nuclear Information System (INIS)

    Nakada, M.P.

    1987-01-01

    The possible production of electric fields parallel to the magnetic field by dynamo winds in the E region is examined, using a jet stream wind model. Current return paths through the F region above the stream are examined as well as return paths through the conjugate ionosphere. The Wulf geometry with horizontal winds moving in opposite directions one above the other is also examined. Parallel electric fields are found to depend strongly on the width of current sheets at the edges of the jet stream. If these are narrow enough, appreciable parallel electric fields are produced. These appear to be sufficient to heat the electrons which reduces the conductivity and produces further increases in parallel electric fields and temperatures. Calculations indicate that high enough temperatures for optical emission can be produced in less than 0.3 s. Some properties of auroras that might be produced by dynamo winds are examined; one property is a time delay in brightening at higher and lower altitudes

  19. Particle creation by peak electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Gavrilov, S.P. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)

    2016-08-15

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially increasing and another exponentially decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered. (orig.)

  20. Pulsed electric field processing for fruit and vegetables

    Science.gov (United States)

    This month’s column reviews the theory and current applications of pulsed electric field (PEF) processing for fruits and vegetables to improve their safety and quality. This month’s column coauthor, Stefan Toepfl, is advanced research manager at the German Institute of Food Technologies and professo...

  1. Magnetic field-aligned electric potentials in nonideal plasma flows

    Science.gov (United States)

    Schindler, K.; Hesse, M.; Birn, J.

    1991-01-01

    The electric field component parallel to the magnetic field arising from plasma flows which violate the frozen-in field condition of ideal magnetohydrodynamics is discussed. The quantity of interest is the potential U = integral E parallel ds where the integral is extended along field lines. It is shown that U can be directly related to magnetic field properties, expressed by Euler potentials, even when time-dependence is included. These results are applicable to earth's magnetosphere, to solar flares, to aligned-rotator models of compact objects, and to galactic rotation. On the basis of order-of-magnitude estimates, these results support the view that parallel electric fields associated with nonideal plasma flows might play an important role in cosmic particle acceleration.

  2. The Bloch equation with terms induced by an electric field

    Science.gov (United States)

    Garbacz, Piotr

    2018-01-01

    The Bloch equation of the nuclear magnetization of spin-1/2 nuclei in molecules, which have permanent electric dipole moments μe that are placed simultaneously in a magnetic field B and an electric field E, is derived. It is shown that if the principal components of the nuclear magnetic shielding tensor σ and the dipole moment μe are known, then the measurement of the transverse component to the magnetic field B of the nuclear magnetization, which is induced by the application of the electric field oscillating at the half of the spin precession frequency, allows determining the orientation of the dipole moment μe with respect to the principal axis system of the symmetric part of the tensor σ. Four-component relativistic density functional theory computations, which have been performed for several molecules containing heavy nuclei, i.e., 207Pb, 205Tl, 199Hg, 195Pt, and 125Te, indicate that coefficients of the relaxation matrix perturbed by the electric field E are in favorable cases of the order of 1000 pm2 V-2 T-2. Therefore, the spin dynamics is perturbed at experimentally observable levels for the strengths of electric and magnetic fields E = 5 kV/mm and B = 10 T, respectively.

  3. Electric field assisted nanocolloidal gold deposition

    NARCIS (Netherlands)

    Kooij, Ernst S.; Brouwer, E.A.M.; Poelsema, Bene

    2007-01-01

    The deposition of nanocolloidal gold particles under the influence of an externally applied electric field is studied in situ by means of spectroscopic ellipsometry. The variation of the relative coverage with time, as a function of applied potential, is determined using a principal component

  4. Pulsed Electric Field treatment of packaged food

    NARCIS (Netherlands)

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal

  5. Moderate and high intensity pulsed electric fields

    NARCIS (Netherlands)

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for

  6. Dynamical interplay between fluctuations, electric fields and ...

    Indian Academy of Sciences (India)

    similarity in the scaling properties of the probability distribution function (PDF) of turbulent transport has been observed in the plasma edge region in fusion plasmas. The investigation of the dynamical interplay between fluctuation in gradients, turbulent transport and radial electric fields has shown that these parameters are ...

  7. Spontaneous electric fields in solid films: spontelectrics

    DEFF Research Database (Denmark)

    Field, David; Plekan, Oksana; Cassidy, Andrew

    2013-01-01

    When dipolar gases are condensed at sufficiently low temperature onto a solid surface, they form films that may spontaneously exhibit electric fields in excess of 108V/m. This effect, called the ‘spontelectric effect’, was recently revealed using an instrument designed to measure scattering...

  8. Plasma instabilities in high electric fields

    DEFF Research Database (Denmark)

    Morawetz, K.; Jauho, Antti-Pekka

    1994-01-01

    expression is derived for the nonequilibrium dielectric function epsilon(K, omega). For certain values of momenta K and frequency omega, Imepsilon(K, omega) becomes negative, implying a plasma instability. This new instability exists only for strong electric fields, underlining its nonequilibrium origin....

  9. Topology Optimized Nanostrips for Electric Field Enhancements

    DEFF Research Database (Denmark)

    Vester-Petersen, Joakim; Christiansen, Rasmus E.; Julsgaard, Brian

    energy photons are converted to higher energy photons able to bridge the band gap energy and contribute the energy generation. The upconversion process in erbium is inefficient under the natural solar irradiation, and without any electric field enhancements of the incident light, the process...

  10. Silicon Photomultiplier Performance in High ELectric Field

    Science.gov (United States)

    Montoya, J.; Morad, J.

    2016-12-01

    Roughly 27% of the universe is thought to be composed of dark matter. The Large Underground Xenon (LUX) relies on the emission of light from xenon atoms after a collision with a dark matter particle. After a particle interaction in the detector, two things can happen: the xenon will emit light and charge. The charge (electrons), in the liquid xenon needs to be pulled into the gas section so that it can interact with gas and emit light. This allows LUX to convert a single electron into many photons. This is done by applying a high voltage across the liquid and gas regions, effectively ripping electrons out of the liquid xenon and into the gas. The current device used to detect photons is the photomultiplier tube (PMT). These devices are large and costly. In recent years, a new technology that is capable of detecting single photons has emerged, the silicon photomultiplier (SiPM). These devices are cheaper and smaller than PMTs. Their performance in a high electric fields, such as those found in LUX, are unknown. It is possible that a large electric field could introduce noise on the SiPM signal, drowning the single photon detection capability. My hypothesis is that SiPMs will not observe a significant increase is noise at an electric field of roughly 10kV/cm (an electric field within the range used in detectors like LUX). I plan to test this hypothesis by first rotating the SiPMs with no applied electric field between two metal plates roughly 2 cm apart, providing a control data set. Then using the same angles test the dark counts with the constant electric field applied. Possibly the most important aspect of LUX, is the photon detector because it's what detects the signals. Dark matter is detected in the experiment by looking at the ratio of photons to electrons emitted for a given interaction in the detector. Interactions with a low electron to photon ratio are more like to be dark matter events than those with a high electron to photon ratio. The ability to

  11. Nanosecond KTN varifocal lens without electric field induced phase transition

    Science.gov (United States)

    Zhu, Wenbin; Chao, Ju-Hung; Chen, Chang-Jiang; Campbell, Adrian; Henry, Michael; Yin, Stuart (Shizhuo); Hoffman, Robert C.

    2017-08-01

    This paper presents a nanosecond speed KTN varifocal lens. The tuning principle of varifocal lens is based on the high-speed refractive index modulation from the nanosecond speed tunable electric field. A response time on the order of nanoseconds was experimentally demonstrated, which is the fastest varifocal lens reported so far. The results confirmed that the tuning speed of the KTN varifocal lens could be significantly increased by avoiding the electric field induced phase transition. Such a nanosecond speed varifocal lens can be greatly beneficial for a variety of applications that demand high speed axial scanning, such as high-resolution 3D imaging and high-speed 3D printing.

  12. Modeling electric fields in two dimensions using computer aided design

    International Nuclear Information System (INIS)

    Gilmore, D.W.; Giovanetti, D.

    1992-01-01

    The authors describe a method for analyzing static electric fields in two dimensions using AutoCAD. The algorithm is coded in LISP and is modeled after Coloumb's Law. The software platform allows for facile graphical manipulations of field renderings and supports a wide range of hardcopy-output and data-storage formats. More generally, this application is representative of the ability to analyze data that is the solution to known mathematical functions with computer aided design (CAD)

  13. Plasmasheet boundary electric fields during substorms

    International Nuclear Information System (INIS)

    Pedersen, A.

    1985-01-01

    Electric field data from the ISEE-1 and GEOS-2 satellites have been studied during two substorms when ISEE-1 was in a favourable position in the magneto-tail and GEOS-2 was in the afternoon/evening sector of the geostationary orbit. Both electric field measurements were carried out with spherical double probes, separately by 73.5 m on ISEE-1, and 42 m on GEOS-2. In one case GEOS-2, in the afternoon sector, detected an increase of the dawn-to-dusk electric field during plasmasheet thinning and approximately 10 minutes prior to a substorm expansion. At the time of this expansion ISEE-1 was most likely near an X-line, on the Earthward side and detected Earthward antiE x antiB velocities, in excess of 500 km s -1 . In another example ISEE-1 was most likely near an X-line, on the tailward side, and observed tailward antiE x antiB velocities which were followed, 5-20 minutes later, by characteristic oscillating electric fields (time scales of 10s-30s) on GEOS-2 near 23 local time. Such signatures have on many occasions been connected with observations of westward travelling surges near the GEOS-2 conjugated area in Scandinavia. The ISEE-1 observations of large-dawn-to-dusk electric fields were concentrated to the outer boundary of the plasmasheet, and in the case of the westward travelling surge. GEOS-2 was most likely at the inner, Earthward edge of the plasmasheet. Time delays between ISEE-1 and GEOS-2 indicate a propagation velocity comparable to the antiE x antiB velocity

  14. Tikekar superdense stars in electric fields

    Science.gov (United States)

    Komathiraj, K.; Maharaj, S. D.

    2007-04-01

    We present exact solutions to the Einstein-Maxwell system of equations with a specified form of the electric field intensity by assuming that the hypersurface {t=constant} are spheroidal. The solution of the Einstein-Maxwell system is reduced to a recurrence relation with variable rational coefficients which can be solved in general using mathematical induction. New classes of solutions of linearly independent functions are obtained by restricting the spheroidal parameter K and the electric field intensity parameter α. Consequently, it is possible to find exact solutions in terms of elementary functions, namely, polynomials and algebraic functions. Our result contains models found previously including the superdense Tikekar neutron star model [J. Math. Phys. 31, 2454 (1990)] when K=-7 and α=0. Our class of charged spheroidal models generalize the uncharged isotropic Maharaj and Leach solutions [J. Math. Phys. 37, 430 (1996)]. In particular, we find an explicit relationship directly relating the spheroidal parameter K to the electromagnetic field.

  15. Application of the finite-field coupled-cluster method to calculate molecular properties relevant to electron electric-dipole-moment searches

    Science.gov (United States)

    Abe, M.; Prasannaa, V. S.; Das, B. P.

    2018-03-01

    Heavy polar diatomic molecules are currently among the most promising probes of fundamental physics. Constraining the electric dipole moment of the electron (e EDM ), in order to explore physics beyond the standard model, requires a synergy of molecular experiment and theory. Recent advances in experiment in this field have motivated us to implement a finite-field coupled-cluster (FFCC) approach. This work has distinct advantages over the theoretical methods that we had used earlier in the analysis of e EDM searches. We used relativistic FFCC to calculate molecular properties of interest to e EDM experiments, that is, the effective electric field (Eeff) and the permanent electric dipole moment (PDM). We theoretically determine these quantities for the alkaline-earth monofluorides (AEMs), the mercury monohalides (Hg X ), and PbF. The latter two systems, as well as BaF from the AEMs, are of interest to e EDM searches. We also report the calculation of the properties using a relativistic finite-field coupled-cluster approach with single, double, and partial triples' excitations, which is considered to be the gold standard of electronic structure calculations. We also present a detailed error estimate, including errors that stem from our choice of basis sets, and higher-order correlation effects.

  16. Study of hydrogenated amorphous silicon devices under intense electric field: application to nuclear detection; Etude de dispositifs electroniques en silicium amorphe hydrogene sous fort champ electrique: application a la detection nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Ilie, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Technologies Avancees]|[Paris-11 Univ., 91 - Orsay (France)

    1996-12-31

    The goal of this work was the study, development and optimization of hydrogenated amorphous silicon (a-Si:H) devices for use in detection of ionizing radiation. Thick p-i-n devices, capable of withstanding large electric fields (up to 10{sup 6} V/cm) with small currents (nA/cm{sup 2}), were developed. To decrease fabrication time, films were made using the `He diluted` PECVD process and compared to standard a-Si:H films. Aspects connected to specific detector applications as well as to the fundamental physics of a-Si:H were considered: the internal electric field technique, in which the depletion charge was measured as a function of the applied bias voltage; study of the leakage current of p-i-n devices permitted us to demonstrate different regimes: depletion, field-enhanced thermal generation and electronic injection across the p layer. The effect of the electric field on the thermal generation of the carriers was studied considering the Poole-Frenkel and tunneling mechanisms. A model was developed taking under consideration the statistics of the correlated states and electron-phonon coupling. The results suggest that mechanisms not included in the `standard model` of a Si:h need to be considered, such as defect relaxation, a filed-dependent mobility edge etc...; a new metastable phenomenon, induced by prolonged exposure to a strong electric field, was observed and studied. It is characterized by marked decrease of the leakage current and the detector noise, and increase in the breakdown voltage, as well as an improvement of carrier collection efficiency. This forming process appears to be principally due to an activation of the dopants in the p layer; finally, the capacity of thick p-i-n a Si:H devices to detect ionizing radiation has been evaluated. We show that it is possible, with 20-50 micron thick p-i-n devices, to detect the full spectrum of alpha and beta particles. With an appropriate converter, neutron detection then becomes possible. (author). 137 refs.

  17. Controlling the conductivity of amorphous LaAlO3/SrTiO3 interfaces by in-situ application of an electric field during fabrication

    DEFF Research Database (Denmark)

    Trier, Felix; Amoruso, S.; Christensen, Dennis Valbjørn

    2013-01-01

    Amorphous-LaAlO3/SrTiO3 interfaces present metallic conductivity similar to those found in their all-crystalline counterparts. Here, the conductivity of amorphous-LaAlO3/SrTiO3 interfaces is modified by an external electric field applied in-situ with a biased truncated cone electrode (−10 V ≤ Vbias...

  18. Electrical and magnetic fields of the power supply

    International Nuclear Information System (INIS)

    2017-01-01

    The availability of electrical energy in all areas of life is guaranteed by a widely ramified power grid. When electricity is transported, magnetic fields are created in addition to the electrical fields. In this brochure one will learn more about the causes and effects of electrical and magnetic fields as well as protection concepts and preventive measures. [de

  19. Electric field stimulation setup for photoemission electron microscopes.

    Science.gov (United States)

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures.

  20. Deviation from Ohm's law in electric field assisted capillary liquid chromatography.

    Science.gov (United States)

    Eriksson, Björn O; Andersson, Magnus B O; Blomberg, Lars G

    2003-08-22

    Earlier studies of electric field assisted LC (EF-LC) have shown that the effect on charged analytes of the application of an electric field over a capillary LC column is relatively small. Charged analytes can only be affected by the electric field while present in the mobile phase, which makes the effective time for influence of the electric field t(0) independent of retention time. Because the charged analytes only can be affected for a short time the electric field strength ought to be high in order to increase the impact of the electric field on the separation. We have, however, found that only a relatively low electric field strength can be used in EF-LC when pressure is used as main driving force. The useful field strength was limited by a dramatic increase in the current. This increase in current was found to origin from an increased concentration of buffer ions that have an electrophoretic mobility towards the pumped flow.

  1. Fourier analysis of polar cap electric field and current distributions

    Science.gov (United States)

    Barbosa, D. D.

    1984-01-01

    A theoretical study of high-latitude electric fields and currents, using analytic Fourier analysis methods, is conducted. A two-dimensional planar model of the ionosphere with an enhanced conductivity auroral belt and field-aligned currents at the edges is employed. Two separate topics are treated. A field-aligned current element near the cusp region of the polar cap is included to investigate the modifications to the convection pattern by the east-west component of the interplanetary magnetic field. It is shown that a sizable one-cell structure is induced near the cusp which diverts equipotential contours to the dawnside or duskside, depending on the sign of the cusp current. This produces characteristic dawn-dusk asymmetries to the electric field that have been previously observed over the polar cap. The second topic is concerned with the electric field configuration obtained in the limit of perfect shielding, where the field is totally excluded equatorward of the auroral oval. When realistic field-aligned current distributions are used, the result is to produce severely distorted, crescent-shaped equipotential contours over the cap. Exact, analytic formulae applicable to this case are also provided.

  2. Pulsed Electric Fields for Biological Weapons Defense

    Science.gov (United States)

    2008-09-30

    including Staphylococcus, a-hemolytic Streptococcus, Actinomyces, and Candida species. , 12% 0.1 % ° F R 3 R2 R3 .0 E R5:2 % R5: 32...pulsed electric field. Pore formation in these simulations of homogeneous lipid bilayers is a molecular process , an extension of water defects into...and Bianco, A. (2006). Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Letters 6, 1522-8

  3. Workshop on Biophysics of Transmembrane Electric Fields

    Science.gov (United States)

    1990-11-15

    the viscosity of the solution. It means that diffusional stage is important. It is known that inulin inhibit osmotical lysis of the cells. In our...experiments we see no inhibition of ET by inulin . So, osmotic influx is not important for ET. Than we had shown that ET depends on time interval t between...high-resolution recording techniques will be mandatory. Marine elasmobranch fishes detect dc and low-frequency electric fields as weak as 5 nV/cm. The

  4. Collapse of DNA in ac Electric Fields

    Science.gov (United States)

    Zhou, Chunda; Reisner, Walter W.; Staunton, Rory J.; Ashan, Amir; Austin, Robert H.; Riehn, Robert

    2011-06-01

    We report that double-stranded DNA collapses in the presence of ac electric fields at frequencies of a few hundred Hertz, and does not stretch as commonly assumed. In particular, we show that confinement-stretched DNA can collapse to about one quarter of its equilibrium length. We propose that this effect is based on finite relaxation times of the counterion cloud, and the subsequent partitioning of the molecule into mutually attractive units. We discuss alternative models of those attractive units.

  5. Collapse of DNA in ac electric fields.

    Science.gov (United States)

    Zhou, Chunda; Reisner, Walter W; Staunton, Rory J; Ashan, Amir; Austin, Robert H; Riehn, Robert

    2011-06-17

    We report that double-stranded DNA collapses in the presence of ac electric fields at frequencies of a few hundred Hertz, and does not stretch as commonly assumed. In particular, we show that confinement-stretched DNA can collapse to about one quarter of its equilibrium length. We propose that this effect is based on finite relaxation times of the counterion cloud, and the subsequent partitioning of the molecule into mutually attractive units. We discuss alternative models of those attractive units.

  6. Tunable electric properties of bilayer InSe with different interlayer distances and external electric field

    Science.gov (United States)

    Shang, Jimin; Pan, Longfei; Wang, Xiaoting; Li, Jingbo; Wei, Zhongming

    2018-03-01

    Using density functional theory we explore the band structure of bilayer Indium selenide (InSe), and we find that the van der Waals interaction has significant effects on the electric and optical properties. We then explore the tuning electronic properties by different interlayer distances and by an external vertical electric field. Our results demonstrate that the band gaps of bilayer InSe can be continuously tuned by different interlayer coupling. With decreasing interlayer distances, the tunable band gaps of bilayer decrease linearly, owing to the enhancement of the interlayer interaction. Additionally, the band structure of bilayer InSe under external vertical fields is discussed. The presence of a small external electric field can make a new spatial distribution of electron-hole pairs. A well separation based on the electrons and holes, localized in different layers can be obtained using this easy method. These properties of bilayer InSe indicates potential applications in designing new optoelectronic devices.

  7. Switched reluctance drives for electric vehicle applications

    OpenAIRE

    Andrada Gascón, Pedro; Torrent Burgués, Marcel; Blanqué Molina, Balduino; Perat Benavides, Josep Ignasi

    2003-01-01

    Electric vehicles are the only alternative for a clean, efficient and environmentally friendly urban transport system. With the increasing interest in electric drives for electric vehicle propulsion. This paper first tries to explain why the switched reluctance drive is a strong candidate for electric vehicle applications. It then gives switched reluctance drive design guidelines for battery or fuel cell operated electric vehicles. Finally, it presents the design and simulation of a switched ...

  8. Electric and magnetic fields at power frequencies.

    Science.gov (United States)

    Miller, Anthony B; Green, Lois M

    2010-01-01

    Exposures to electric and magnetic fields are among the most ubiquitous exposures that the Canadian population experiences. Sources of electric and magnetic field exposures may be occupational or residential and include proximity to certain types of electrical equipment, transmission and distribution power lines as well as appliance use. The early studies of children tended toward a consistent association between risks for leukemia and brain cancer and residential proximity to power lines having high wire configuration. More recent studies-and studies which have attempted to improve upon the measurement of exposure by using calculated fields, point-in-time or personal monitoring-have been inconsistent, with some suggesting increased risk and others not. Occupational exposures have suggested an increase in risk for leukemia, and to a lesser extent brain cancer and Non-Hodgkin lymphoma. However, studies of residential exposures and cancer in adults generally have suggested no effect. Laboratory work has been unable to demonstrate a biological mechanism which might explain the epidemiological findings. In spite of extensive efforts over the past 20 years and many expert reviews, it has been difficult to reach consensus regarding the carcinogenic effects of electric and magnetic fields. Exposure assessment has proven to be complex, and agreement on the relevant exposure metric has not yet been obtained. There is justification to question whether point-in-time measures in homes are appropriate indices of the relevant etiological exposure, as they fail to account for changes over time, peak exposures or time-varying fields. Nevertheless, it is probably desirable to err on the side of caution in not placing too much weight on the inconsistencies. The IARC has classified EMF as a "possible carcinogen" which refers to the circumstances where there is limited evidence of carcinogenicity in humans and inadequate evidence in experimental animals. The IARC review indicated

  9. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.

    2017-07-21

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  10. Extremely low frequency electric fields and cancer: assessing the evidence.

    Science.gov (United States)

    Kheifets, Leeka; Renew, David; Sias, Glenn; Swanson, John

    2010-02-01

    Much of the research and reviews on extremely low frequency (ELF) electric and magnetic fields (EMFs) have focused on magnetic rather than electric fields. Some have considered such focus to be inappropriate and have argued that electric fields should be part of both epidemiologic and laboratory work. This paper fills the gap by systematically and critically reviewing electric-fields literature and by comparing overall strength of evidence for electric versus magnetic fields. The review of possible mechanisms does not provide any specific basis for focusing on electric fields. While laboratory studies of electric fields are few, they do not indicate that electric fields should be the exposure of interest. The existing epidemiology on residential electric-field exposures and appliance use does not support the conclusion of adverse health effects from electric-field exposure. Workers in close proximity to high-voltage transmission lines or substation equipment can be exposed to high electric fields. While there are sporadic reports of increase in cancer in some occupational studies, these are inconsistent and fraught with methodologic problems. Overall, there seems little basis to suppose there might be a risk for electric fields, and, in contrast to magnetic fields, and with a possible exception of occupational epidemiology, there seems little basis for continued research into electric fields. (c) 2009 Wiley-Liss, Inc.

  11. Wind/Hybrid Electricity Applications

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Lori [Iowa Department of Natural Resources, Des Moines, IA (United States)

    2001-03-01

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  12. Stimuli-Responsive Polymer-Clay Nanocomposites under Electric Fields

    Science.gov (United States)

    Piao, Shang Hao; Kwon, Seung Hyuk; Choi, Hyoung Jin

    2016-01-01

    This short Feature Article reviews electric stimuli-responsive polymer/clay nanocomposites with respect to their fabrication, physical characteristics and electrorheological (ER) behaviors under applied electric fields when dispersed in oil. Their structural characteristics, morphological features and thermal degradation behavior were examined by X-ray diffraction pattern, scanning electron microscopy and transmission electron microscopy, and thermogravimetric analysis, respectively. Particular focus is given to the electro-responsive ER characteristics of the polymer/clay nanocomposites in terms of the yield stress and viscoelastic properties along with their applications. PMID:28787852

  13. Stimuli-Responsive Polymer-Clay Nanocomposites under Electric Fields

    Directory of Open Access Journals (Sweden)

    Shang Hao Piao

    2016-01-01

    Full Text Available This short Feature Article reviews electric stimuli-responsive polymer/clay nanocomposites with respect to their fabrication, physical characteristics and electrorheological (ER behaviors under applied electric fields when dispersed in oil. Their structural characteristics, morphological features and thermal degradation behavior were examined by X-ray diffraction pattern, scanning electron microscopy and transmission electron microscopy, and thermogravimetric analysis, respectively. Particular focus is given to the electro-responsive ER characteristics of the polymer/clay nanocomposites in terms of the yield stress and viscoelastic properties along with their applications.

  14. Electrohydrodynamics of a compound vesicle under an AC electric field

    Science.gov (United States)

    Priti Sinha, Kumari; Thaokar, Rochish M.

    2017-07-01

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius λ {{R}o} , is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  15. Energy method and virtual work, application to the calculation of local forces in conjunction with magnetic and electric fields; Methode energetique et travaux virtuels, application au calcul des forces locales associees aux champs magnetique et electrique

    Energy Technology Data Exchange (ETDEWEB)

    Barre, O.; Brochet, P. [Ecole Centrale de Lille, L2EP, 59 (France)

    2006-06-15

    The knowledge of the mechanical effects generated by the magnetic fields on the bodies is obligatory to calculate the mechanical power delivered by the electric machines. During the design, it is also important to know the distribution of these efforts on the components of these machines. The energy method provides formulations to calculate this distribution. Two experiments, based on the electric and magnetic fields, are presented. The first one evaluates the accuracy of this approach and the second confirms its universality. (authors)

  16. Electric field gradients in copper alloys

    International Nuclear Information System (INIS)

    Whalley, L.R.

    1974-02-01

    The electric field gradients at Cu atoms which are near neighbors to the nickel impurity in a dilute CuNi alloy were measured. The technique used is zero field pure quadrupole resonance which was first demonstrated by Redfield [Redfield, Phys. Rev. 130, 589 (1963)]. The measured electric field gradients for this alloy system are 4.1 x 10 23 cm -3 , 0.84 x 10 23 cm -3 , 0.46 x 10 23 cm -3 and 0.146 x 10 23 cm -3 . These measured values are compared with the values calculated by Beal-Monod [Beal-Monod, Phys. Rev. 164, 360 (1967)]. In addition the following alloy systems were measured; CuCo, CuFe, and CuV. The nuclear relaxation of the alloys was measured but no satellite structure was detected. Results of these measurements show the similarity of the interactions measured here to the interactions in CuZn measured by Redfield. Since nickel has an unfilled 3d shell in its electronic structure, magnetic interactions in the CuNi alloy might be expected. Magnetic interactions were not found. Like the nickel alloy, the zinc alloy with copper exhibits no magnetic effects. (U.S.)

  17. Biological effects of electrical and magnetic fields

    International Nuclear Information System (INIS)

    Thibault de Boesinghe, L. de

    1979-01-01

    A review is made by the author of the literature about the biological effects of electrical and magnetic fields. A distinction is made between the observations made on man and the experience on animals. The results do not allow to reach a uniform conclusion. The used methodology is furthermore often open for discussion. One fundamental question remains: is there or not a threshold value. The question may be asked if objective modifications would not better come out in the light of systematical programs studies. This review of the literature gives results which anyway justify a systematic study of this subject. (author)

  18. Modelling electricity forward markets by ambit fields

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Fred Espen Benth, Fred Espen; Veraart, Almut

    This paper proposes a new modelling framework for electricity forward markets, which is based on ambit fields. The new model can capture many of the stylised facts observed in energy markets. One of the main differences to the traditional models lies in the fact that we do not model the dynamics......, but the forward price directly, where we focus on models which are stationary in time. We give a detailed account on the probabilistic properties of the new model and we discuss martingale conditions and change of measure within the new model class. Also, we derive a model for the spot price which is obtained...... from the forward model through a limiting argument....

  19. Electrostatic air filters generated by electric fields

    International Nuclear Information System (INIS)

    Bergman, W.; Biermann, A.H.; Hebard, H.D.; Lum, B.Y.; Kuhl, W.D.

    1981-01-01

    This paper presents theoretical and experimental findings on fibrous filters converted to electrostatic operation by a nonionizing electric field. Compared to a conventional fibrous filter, the electrostatic filter has a higher efficiency and a longer, useful life. The increased efficiency is attributed to a time independent attraction between polarized fibers and charged, polarized particles and a time dependent attraction between charged fibers and charged, polarized particles. The charge on the fibers results from a dynamic process of charge accumulation due to the particle deposits and a charge dissipation due to the fiber conductivity

  20. Nonlinear relaxation field in charged systems under high electric fields

    International Nuclear Information System (INIS)

    Morawetz, K.

    2000-01-01

    The influence of an external electric field on the current in charged systems is investigated. The results from the classical hierarchy of density matrices are compared with the results from the quantum kinetic theory. The kinetic theory yields a systematic treatment of the nonlinear current beyond linear response. To this end the dynamically screened and field-dependent Lenard-Balescu equation is integrated analytically and the nonlinear relaxation field is calculated. The classical linear response result known as Debye - On-Sager relaxation effect is only obtained if asymmetric screening is assumed. Considering the kinetic equation of one specie the other species have to be screened dynamically while the screening with the same specie itself has to be performed statically. Different other approximations are discussed and compared. (author)

  1. Analytical results for crystalline electric field eigenvalues of trivalent rare-earth ions using computer algebra: application to the magnetism of PrX2 (X=Mg, Al, Ru, Rh, Pt)

    International Nuclear Information System (INIS)

    Sobral, R.R.; Guimaraes, A.P.; Silva, X.A. da

    1994-01-01

    The eigenvalues of the Crystalline Electric Field (CEF) Hamiltonian with cubic symmetry are analytically obtained for trivalent rare-earth ions of ground state J=5/2, 7/2, 4, 9/2, 6, 15/2 and 8, via a Computer Algebra approach. In the presence of both CEF and an effective exchange field, Computer Algebra still allows a partial factorization of the characteristic polynomial equation associated to the total Hamiltonian, a result of interest to the study of the magnetic behavior of rare-earth intermetallics. An application to the PrX 2 intermetallic compounds (X=Mg, Al, Ru, Rh, Pt) is reported. ((orig.))

  2. Controlling Positronium Annihilation with Electric Fields.

    Science.gov (United States)

    Alonso, A M; Cooper, B S; Deller, A; Hogan, S D; Cassidy, D B

    2015-10-30

    We show that the annihilation dynamics of excited positronium (Ps) atoms can be controlled using parallel electric and magnetic fields. To achieve this, Ps atoms were optically excited to n=2 sublevels in fields that were adjusted to control the amount of short-lived and long-lived character of the resulting mixed states. Inclusion of the former offers a practical approach to detection via annihilation radiation, whereas the increased lifetimes due to the latter can be exploited to optimize resonance-enhanced two-photon excitation processes (e.g., 1^{3}S→2^{3}P→nS/nD), either by minimizing losses through intermediate state decay, or by making it possible to separate the excitation laser pulses in time. In addition, photoexcitation of mixed states with a 2^{3}S_{1} component represents an efficient route to producing long-lived pure 2^{3}S_{1} atoms via single-photon excitation.

  3. Electric-field induced magnetization reversal using multiferroics

    Science.gov (United States)

    Trassin, Morgan

    2012-02-01

    Controlling magnetism using solely electric fields is interesting not only from a fundamental standpoint, but presents great potential for ultimately low energy consumption logic and memory. The evidence of the electrically controllable antiferromagnetic ordering in the multiferroic magnetoelectric bismuth ferrite (BiFeO3) drew an increasing interest in the pursuit for new emerging devices. To use such functionality for device applications, deterministic control not only of antiferromagnetism, but also ferromagnetism is essential. To achieve this goal, a ferromagnet/multiferroic heterostructure has been proposed based on the combination of magnetoelectric coupling in BiFeO3 and exchange coupling between magnetic materials and offers a new pathway for the electrical control of magnetism. By combination of a piezoresponse force microscopy, photoemission electron microscopy and anisotropic magnetoresistance measurements, we demonstrated the non-volatile reversal of a CoFe layer magnetization induced solely by the application of an electric field at room temperature. This 180 degree rotation of the magnetization of the ferromagnetic layer is mediated by a strong interfacial coupling. The correlation between the ferroelectric state in the multiferroic layer and the CoFe ferromagnetic domain architecture is evidenced. The projection of this strong magnetoelectric coupling in an out-of-plane configuration, allowing the reduction by an order of magnitude of voltage required, will be discussed. Our results show the high potential of magnetoelectric-based heterostructures for future low energy consumption data storage devices.

  4. The induced electric field distribution in the solar atmosphere

    International Nuclear Information System (INIS)

    Chen Rong; Yang Zhi-Liang; Deng Yuan-Yong

    2013-01-01

    A method of calculating the induced electric field is presented. The induced electric field in the solar atmosphere is derived by the time variation of the magnetic field when the accumulation of charged particles is neglected. In order to derive the spatial distribution of the magnetic field, several extrapolation methods are introduced. With observational data from the Helioseismic and Magnetic Imager aboard NASA's Solar Dynamics Observatory taken on 2010 May 20, we extrapolate the magnetic field from the photosphere to the upper atmosphere. By calculating the time variation of the magnetic field, we can get the induced electric field. The derived induced electric field can reach a value of 10 2 V cm −1 and the average electric field has a maximum point at the layer 360 km above the photosphere. The Monte Carlo method is used to compute the triple integration of the induced electric field.

  5. Influence of relative humidity on analyzing electric field exposure using ELF electric field measurements.

    Science.gov (United States)

    Korpinen, Leena H; Kuisti, Harri A; Tarao, Hiroo; Elovaara, Jarmo A

    2013-07-01

    The objective of the study was to investigate the influence of humidity on analyzing electric field exposure using extremely low frequency (ELF) electric field measurements. The study included 322 measurements in a climate room. We used two commercial three-axis meters, EFA-3 and EFA-300, and employed two measurement techniques in the climate room where we varied the temperature from 15 to 25 °C, the relative humidity from 55% to 95%, and the electric field from 1 to 25 kV/m. We calculated Pearson correlations between humidity and percentage errors for all data and for data at different levels of humidity. When the relative humidity was below 70%, the results obtained by the different measurement methods in terms of percentage errors were of the same order of magnitude for the considered temperatures and field strength, but the results were less reliable when the relative humidity was higher than 80%. In the future, it is important to take humidity into account when electric field measurement results will be compared to the values given in different exposure guidelines. Copyright © 2013 Wiley Periodicals, Inc.

  6. Enhanced Dielectronic Recombination in Crossed Electric and Magnetic Fields

    International Nuclear Information System (INIS)

    Robicheaux, F.; Pindzola, M.S.

    1997-01-01

    The dependence of the dielectronic recombination cross section on crossed electric and magnetic fields is described. The enhancement of this cross section due to a static electric field is further increased when a magnetic field is added perpendicular to the electric field. Calculation of this field induced enhancement is presented for a realistic atomic model, and the mechanism for the enhancement is discussed. copyright 1997 The American Physical Society

  7. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  8. Inhibition of brain tumor cell proliferation by alternating electric fields

    International Nuclear Information System (INIS)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun; Koh, Eui Kwan

    2014-01-01

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields

  9. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    International Nuclear Information System (INIS)

    Bao, Sun; Fu-Shen, Chen

    2009-01-01

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive impulse electric field measurement. The integrated optical sensor is based on a Mach–Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The maximal detectable electric field range (−75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation

  10. Development and application of an empirical formula for the high temperature behavior of ferroelectric ceramics switched by electric field at room temperature

    Directory of Open Access Journals (Sweden)

    Dae Won Ji

    2017-05-01

    Full Text Available The strain changes during temperature rise of a poled lead titanate zirconate rectangular parallelepiped switched by electric field at room temperature are obtained by integrating thermal expansion coefficients that are measured using an invar-specimen. By estimating and analyzing pyroelectric and thermal expansion coefficients, first-order differential equations are constructed for polarization and strain changes during temperature increase. The solutions to the differential equations are found and used to calculate the high temperature behavior of the materials. It is shown that the predictions are well compared with measured responses. Finally, the developed formulae are applied to calculate strain butterfly loops from a polarization hysteresis loop at a high temperature.

  11. Current Status of Non-Electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Shin, Young Joon; Lee, Jun; Lee, Tae Hoon

    2009-05-01

    IAEA Technical Meeting(I3-TM-37394) on 'Non-Electric Applications of Nuclear Energy' has been successfully held from March 3 to 6 in 2009 at KAERI/INTEC. The 24 experts from 12 countries participated in this meeting and provided 17 presentations and their opinions and comments in desalination, hydrogen production, and heat application sessions. All of the participants from 12 countries agreed that nuclear power should be the potential carbon-free energy source to replace crude oil and reduce greenhouse gas emissions in the fields of non-electric applications such as desalination, hydrogen production, district heating, and industrial processes applications

  12. Electrical properties of two-dimensional thin films of the ferroelectric material Polyvinylidene Fluoride as a function of electric field

    Energy Technology Data Exchange (ETDEWEB)

    Belouadah, R., E-mail: r_belouadah74@yahoo.f [Departement de physique, Universite de M' sila, PB 116 Ichebilia, M' sila (Algeria); Laboratoire des Systemes Integres a base de Capteurs, Ecole Normale Superieure B.P 92 Kouba, Alger (Algeria); Kendil, D.; Bousbiat, E. [Laboratoire des Systemes Integres a base de Capteurs, Ecole Normale Superieure B.P 92 Kouba, Alger (Algeria); Guyomar, D.; Guiffard, B. [Laboratoire de Genie Electrique et Ferroelectricite, INSA-Lyon, Bat. Gustave Ferrie, 8 rue de la Physique, Villeurbanne (France)

    2009-06-01

    The study of the electrical properties of two-dimensional ferroelectric materials is very interesting because of the many possible applications relating to effects on their polarization properties. In this work we study the effect of a sinusoidal electric field on the dielectric and electrical properties of uni-axially and biaxially stretched polyvinylidene fluoride (PVDF) films. We have determined the polarization current, remanent polarization, maximal polarization, the hysteresis loop and coercive field as a function of applied electric field amplitude. The most interesting effects are the electric field (E) dependences of the resistivity. It is shown that for the biaxially stretched PVDF sample, the resistivity is almost constant, whereas for the uni-axially stretched specimen, a large decrease of resistivity is observed.

  13. Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field

    International Nuclear Information System (INIS)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with mono-vacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Variation of surface electric field during geomagnetic disturbed ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 8. Variation of surface electric field ... Diurnal variation of surface electric field measured at Maitri shows a similar variation with worldwide thunderstorm activity, whereas the departure of the field is observed during disturbed periods. This part of the field ...

  15. Control of the radial electric field shear by modification of the magnetic field configuration in LHD

    International Nuclear Information System (INIS)

    Ida, K.; Yoshinuma, M.; Yokoyama, M.

    2005-01-01

    Control of the radial electric field, E r , is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. In general, the radial electric field can be controlled by changing the collisionality, and positive or negative electric fields have been obtained by decreasing or increasing the electron density, respectively. Although the sign of the radial electric field can be controlled by changing the collisionality, modification of the magnetic field is required to achieve further control of the radial electric field, especially to produce a strong radial electric field shear. In the Large Helical Device (LHD) the radial electric field profiles are shown to be controlled by the modification of the magnetic field by (1) changing the radial profile of the effective helical ripples, ε h (2) creating a magnetic island with an external perturbation field coil and (3) changing the local island divertor coil current

  16. Control of the radial electric field shear by modification of the magnetic field configuration in LHD

    International Nuclear Information System (INIS)

    Ida, K.; Yoshinuma, M.; Yokoyama, M.

    2005-01-01

    Control of the radial electric field, E γ , is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. In general, the radial electric field can be controlled by changing the collisionality, and positive or negative electric field have been obtained by decreasing or increasing the electron density, respectively. Although the sign of the radial electric field can be controlled by changing the collisionality, modification of the magnetic field is required to achieve further control of the radial electric field, especially producing a strong radial electric field shear. In the Large Helical Device (LHD) the radial electric field profiles are shown to be controlled by the modification of the magnetic field by 1) changing the radial profile of the helical ripples, ε h , 2) creating a magnetic island with an external perturbation field coil and 3) changing the local island divertor coil current. (author)

  17. Liquid methanol under a static electric field

    Science.gov (United States)

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-01

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm-1) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  18. Liquid methanol under a static electric field

    Energy Technology Data Exchange (ETDEWEB)

    Cassone, Giuseppe, E-mail: giuseppe.cassone@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France); Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Giaquinta, Paolo V., E-mail: paolo.giaquinta@unime.it [Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); Saija, Franz, E-mail: saija@ipcf.cnr.it [CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Saitta, A. Marco, E-mail: marco.saitta@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France)

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm{sup −1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  19. Review of the Dynamics of Coalescence and Demulsification by High-Voltage Pulsed Electric Fields

    Directory of Open Access Journals (Sweden)

    Ye Peng

    2016-01-01

    Full Text Available The coalescence of droplets in oil can be implemented rapidly by high-voltage pulse electric field, which is an effective demulsification dehydration technological method. At present, it is widely believed that the main reason of pulse electric field promoting droplets coalescence is the dipole coalescence and oscillation coalescence in pulse electric field, and the optimal coalescence pulse electric field parameters exist. Around the above content, the dynamics of high-voltage pulse electric field promoting the coalescence of emulsified droplets is studied by researchers domestically and abroad. By review, the progress of high-voltage pulse electric field demulsification technology can get a better understanding, which has an effect of throwing a sprat to catch a whale on promoting the industrial application.

  20. High electric field conduction in low-alkali boroaluminosilicate glass

    Science.gov (United States)

    Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.

    2018-02-01

    Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.

  1. Simulating electric field interactions with polar molecules using spectroscopic databases.

    Science.gov (United States)

    Owens, Alec; Zak, Emil J; Chubb, Katy L; Yurchenko, Sergei N; Tennyson, Jonathan; Yachmenev, Andrey

    2017-03-24

    Ro-vibrational Stark-associated phenomena of small polyatomic molecules are modelled using extensive spectroscopic data generated as part of the ExoMol project. The external field Hamiltonian is built from the computed ro-vibrational line list of the molecule in question. The Hamiltonian we propose is general and suitable for any polar molecule in the presence of an electric field. By exploiting precomputed data, the often prohibitively expensive computations associated with high accuracy simulations of molecule-field interactions are avoided. Applications to strong terahertz field-induced ro-vibrational dynamics of PH 3 and NH 3 , and spontaneous emission data for optoelectrical Sisyphus cooling of H 2 CO and CH 3 Cl are discussed.

  2. Can Lucifer Yellow Indicate Correct Permeability of Biological Cell Membrane under An Electric and Magnetic Field?

    OpenAIRE

    Pourmirjafari Firoozabadi, Tahereh; Shankayi, Zeinab; Izadi, Azam; Pourmirjafari Firoozabadi, Seyed Mohammad

    2015-01-01

    The effect of external magnetic and electric fields, in the range of electroporation and magnetoporation, on Lucifer Yellow (LY) fluorescence in the absence of cells is studied. Electric-field-induced quenching and magnetic field-induced increase are observed for fluorescence intensity of LY. Regard to the fact that the variation of field-induced fluorescence, even in the absence of cells, can be observed, the application of LY, as a marker, is debatable in electroporation and magnetoporation...

  3. Can Lucifer Yellow Indicate Correct Permeability of Biological Cell Membrane under An Electric and Magnetic Field?

    Science.gov (United States)

    Pourmirjafari Firoozabadi, Tahereh; Shankayi, Zeinab; Izadi, Azam; Pourmirjafari Firoozabadi, Seyed Mohammad

    2015-01-01

    The effect of external magnetic and electric fields, in the range of electroporation and magnetoporation, on Lucifer Yellow (LY) fluorescence in the absence of cells is studied. Electric-field-induced quenching and magnetic field-induced increase are observed for fluorescence intensity of LY. Regard to the fact that the variation of field-induced fluorescence, even in the absence of cells, can be observed, the application of LY, as a marker, is debatable in electroporation and magnetoporation techniques.

  4. Effects of electric fields on ultracold Rydberg atom interactions

    International Nuclear Information System (INIS)

    Cabral, J S; Kondo, J M; Goncalves, L F; Marcassa, L G; Nascimento, V A; Booth, D; Tallant, J; Schwettmann, A; Overstreet, K R; Sedlacek, J; Shaffer, J P

    2011-01-01

    The behaviour of interacting ultracold Rydberg atoms in both constant electric fields and laser fields is important for designing experiments and constructing realistic models of them. In this paper, we briefly review our prior work and present new results on how electric fields affect interacting ultracold Rydberg atoms. Specifically, we address the topics of constant background electric fields on Rydberg atom pair excitation and laser-induced Stark shifts on pair excitation.

  5. Technical Note: Computation of Electric Field Strength Necessary for ...

    African Journals Online (AJOL)

    Obviously, electric field is established by this charge. The effects of this field on the objects lying within its vicinity depend on its intensity. In this paper, the electric field of 33kV overhead line is considered. The aim of the paper is to determine the maximum electric field strength or potential gradient, E of the 33kV overhead ...

  6. Electrical actuators applications and performance

    CERN Document Server

    De Fornel, Bernard

    2013-01-01

    This helpful resource covers a large range of information regarding electrical actuators. In particular, robustness, a very problematic issue, is fully explored in a dedicated chapter. The text also deals with he estimate of non-measurable mechanical variables by examining the estimate of load moment, then observation of the positioning of a command without mechanical sensor. Finally, it examines the conditions needed to measure variables and real implementation of numerical algorithms. This is a key working resource for electrical engineers.

  7. Electric field theory based approach to search-direction line definition in image segmentation: application to optimal femur-tibia cartilage segmentation in knee-joint 3-D MR

    Science.gov (United States)

    Yin, Y.; Sonka, M.

    2010-03-01

    A novel method is presented for definition of search lines in a variety of surface segmentation approaches. The method is inspired by properties of electric field direction lines and is applicable to general-purpose n-D shapebased image segmentation tasks. Its utility is demonstrated in graph construction and optimal segmentation of multiple mutually interacting objects. The properties of the electric field-based graph construction guarantee that inter-object graph connecting lines are non-intersecting and inherently covering the entire object-interaction space. When applied to inter-object cross-surface mapping, our approach generates one-to-one and all-to-all vertex correspondent pairs between the regions of mutual interaction. We demonstrate the benefits of the electric field approach in several examples ranging from relatively simple single-surface segmentation to complex multiobject multi-surface segmentation of femur-tibia cartilage. The performance of our approach is demonstrated in 60 MR images from the Osteoarthritis Initiative (OAI), in which our approach achieved a very good performance as judged by surface positioning errors (average of 0.29 and 0.59 mm for signed and unsigned cartilage positioning errors, respectively).

  8. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Rajnak, Michal; Kopcansky, Peter; Timko, Milan [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Petrenko, Viktor I. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Kyiv Taras Shevchenko National University, Volodymyrska Street 64, Kyiv 01033 (Ukraine); Avdeev, Mikhail V. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Ivankov, Olexandr I. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Kyiv Taras Shevchenko National University, Volodymyrska Street 64, Kyiv 01033 (Ukraine); Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudniy 141700 (Russian Federation); Feoktystov, Artem [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching (Germany); Dolnik, Bystrik; Kurimsky, Juraj [Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia)

    2015-08-17

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  9. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    Science.gov (United States)

    Rajnak, Michal; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj; Kopcansky, Peter; Timko, Milan

    2015-08-01

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  10. Electric toothbrushes induce electric current in fixed dental appliances by creating magnetic fields

    OpenAIRE

    Kameda, Takashi; Ohkumura, Kazuo; Ishii, Nozomu; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto

    2012-01-01

    Magnetic fields can represent a health problem, especially low frequency electromagnetic fields sometimes induced by electric current in metallic objects worn or used in or on the body (as opposed to high frequency electromagnetic fields that produce heat). Electric toothbrushes are widely used because of their convenience, but the electric motors that power them may produce electromagnetic waves. In this study, we showed that electric toothbrushes generate low frequency (1-2000 Hz) magnetic ...

  11. Plasma Flows in Crossed Magnetic and Electric Fields

    International Nuclear Information System (INIS)

    Belikov, A.G.

    2005-01-01

    The effect of the magnitude and direction of an external electric field on the plasma flowing through a magnetic barrier is studied by numerically solving two-fluid MHD equations. The drift velocity of the plasma flow and the distribution of the flow electrons over transverse velocities are found to depend on the magnitude and direction of the electric field. It is shown that the direction of the induced longitudinal electric field is determined by the direction of the external field and that the electric current generated by the plasma flow significantly disturbs the barrier field

  12. Two-photon indirect transitions in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Hassan, A.R.

    1980-05-01

    A semiclassical theory of the effect of a crossed electric, E, and magnetic, H, fields in the phonon-assisted one- and two-photon transitions is presented. The approach we follow treats the electric field as a small perturbation in the presence of a magnetic field. The behaviour is essentially of magnetic field type. The effect of the electric field is to reduce the indirect gap, the Landau levels spacing and to destroy the Landau selection rules. One- and two-photon absorption coefficients have the same energetic behaviour. A numerical application to GaP gives the limiting value of E/H valid in this approach. (author)

  13. Nanosecond pulsed electric field ablation of hepatocellular carcinoma.

    Science.gov (United States)

    Beebe, Stephen J; Chen, Xinhua; Liu, Jie A; Schoenbach, Karl H

    2011-01-01

    Hepatocellular carcinoma often evades effective therapy and recurrences are frequent. Recently, nanosecond pulsed electric field (nsPEF) ablation using pulse power technology has emerged as a local-regional, non-thermal, and non-drug therapy for skin cancers. In the studies reported here we use nsPEFs to ablate murine, rat and human HCCs in vitro and an ectopic murine Hepa 1-6 HCC in vivo. Using pulses with 60 or 300 ns and electric fields as high as 60 kV/cm, murine Hepa 1-6, rat N1S1 and human HepG2 HCC are readily eliminated with changes in caspase-3 activity. Interestingly caspase activities increase in the mouse and human model and decrease in the rat model as electric field strengths are increased. In vivo, while sham treated control mice survived an average of 15 days after injection and before humane euthanasia, Hepa 1-6 tumors were eliminated for longer than 50 days with 3 treatments using one hundred pulses with 100 ns at 55 kV/cm. Survival was 40% in mice treated with 30 ns pulses at 55 kV/cm. This study demonstrates that nsPEF ablation is not limited to effectively treating skin cancers and provides a rationale for treating orthotopic hepatocellular carcinoma in pre-clinical applications and ultimately in clinical trials.

  14. AC Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  15. Ferromagnetism controlled by electric field in tilted phosphorene nanoribbon

    Science.gov (United States)

    Farooq, M. Umar; Hashmi, Arqum; Hong, Jisang

    2016-01-01

    Study on phosphorene nanoribbon was mostly focused on zigzag and armchair structures and no ferromagnetic ground state was observed in these systems. Here, we investigated the magnetic property of tilted black phosphorene nanoribbons (TPNRs) affected by an external electric field. We also studied the edge passivation effect on the magnetism and thermal stability of the nanoribbons. The pure TPNR displayed an edge magnetic state, but it disappeared in the edge reconstructed TPNR due to the self-passivation. In addition, we found that the bare TPNR was mechanically unstable because an imaginary vibration mode was obtained. However, the imaginary vibration mode disappeared in the edge passivated TPNRs. No edge magnetism was observed in hydrogen and fluorine passivated TPRNs. In contrast, the oxygen passivated TPNR was more stable than the pure TPNR and the edge-to-edge antiferromagntic (AFM) ground state was obtained. We found that the magnetic ground state could be tuned by the electric field from antiferromagnetic (AFM) to ferromagnetic (FM) ground state. Interestingly, the oxygen passivated TPNR displayed a half-metallic state at a proper electric field in both FM and AFM states. This finding may provoke an intriguing issue for potential spintronics application using the phosphorene nanoribbons. PMID:27189417

  16. Electrostatic suppression of the Leidenfrost state using AC electric fields

    Science.gov (United States)

    Ozkan, Onur; Shahriari, Arjang; Bahadur, Vaibhav

    2017-10-01

    The formation of a vapor layer at the solid-liquid interface at high temperatures (Leidenfrost phenomenon) degrades heat transfer substantially. Application of an electric field in this vapor layer can fundamentally eliminate the Leidenfrost state by electrostatically attracting liquid towards the surface. This study analyzes the influence of AC electric fields on electrostatic suppression of the Leidenfrost state; previous studies have only utilized DC electric fields. In particular, the influence of the frequency of the AC waveform on Leidenfrost state suppression is analyzed using high speed visualization of liquid-vapor instabilities and heat transfer measurements of evaporating droplets. It is seen that the extent of suppression is reduced with increasing AC frequency. At sufficiently high frequencies, the influence of an applied voltage is completely negated, and electrostatic suppression of the Leidenfrost state can be completely eliminated. A first-order electromechanical model is used to explain the frequency-dependent reduction in the electrostatic attraction force on the Leidenfrost droplet. Overall, this work highlights the importance of AC frequency as a tool to control the extent of suppression and the boiling heat transfer rate.

  17. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  18. Electric field enhancement at multiple densities in laser-irradiated ...

    Indian Academy of Sciences (India)

    Abstract. The electric field enhancement inside a nanotube irradiated by intense ultrashort laser pulse (≪1 ps) is calculated. The hollowness of the nanotubes determines the field enhancement and the electron density at which such structures exhibit resonance. The electric field in a nano- tube plasma is shown to be ...

  19. Field-Induced Superconductivity in Electric Double Layer Transistors

    NARCIS (Netherlands)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be

  20. ion in crossed gradient electric and magnetic fields

    Indian Academy of Sciences (India)

    Photodetachment cross-section for variousexternal fields and the laser polarization are calculated and displayed. A comparison with the photodetachment cross-section in crossed uniform electric and magnetic fields or in a single gradient electric field has been made.The agreement of our results with the above two special ...

  1. International symposium on Electron-magnetic fields in mechatronics, electrical and electronique engineering

    CERN Document Server

    Krawczyk, Andrzej; Dolezel, Ivo

    2008-01-01

    Includes contributions on electromagnetic fields in electrical engineering which intends at joining theory and practice. This book helps the world-wide electromagnetic community, both academic and engineering, in understanding electromagnetism itself and its application to technical problems.

  2. Computation of induced electric field for the sacral nerve activation

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Hattori, Junya; Laakso, Ilkka; Takagi, Airi; Shimada, Takuo

    2013-01-01

    The induced electric field/current in the sacral nerve by stimulation devices for the treatment of bladder overactivity is investigated. Implanted and transcutaneous electrode configurations are considered. The electric field induced in the sacral nerve by the implanted electrode is largely affected by its surrounding tissues, which is attributable to the variation in the input impedance of the electrode. In contrast, the electric field induced by the transcutaneous electrode is affected by the tissue conductivity and anatomical composition of the body. In addition, the electric field induced in the subcutaneous fat in close proximity of the electrode is comparable with the estimated threshold electric field for pain. These computational findings explain the clinically observed weakness and side effect of each configuration. For the transcutaneous stimulator, we suggest that the electrode contact area be increased to reduce the induced electric field in the subcutaneous fat. (paper)

  3. Problems related to macroscopic electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Faelthammar, C.

    1977-01-01

    The macroscopic electric fields in the magnetosphere originate from internal as well as external sources. The fields are intimately coupled with the dynamics of magnetospheric plasma convection. They also depend on the complicated electrical properties of the hot collisionless plasma. Macroscopic electric fields are responsible for some important kinds of energization of charged particles that take place in the magnetosphere and affect not only particles of auroral energy but also, by multistep processes, trapped high-energy particles. A particularly interesting feature of magnetospheric electric fields is that they can have substantial components along the geomagnetic field, as has recently been confirmed by observations. Several physical mechanisms have been identified by which such electric fields can be supported even when collisions between particles are negligible. Comments are made on the magnetic mirror effect, anomalous resistivity, the collisionless thermoelectric effect, and electric double layers, emphasizing key features and differences and their significance in the light of recent observational data

  4. Influence of the oscillating electric field on the photodetachment of H− ion in a static electric field

    International Nuclear Information System (INIS)

    Wang, De-hua

    2017-01-01

    Highlights: • The photodetachment of H − in an oscillating electric field has been studied using the time-dependent closed orbit theory. • An analytical formula for calculating the photodetachement cross section has been put forward. • Our study provides a clear physical picture for the photodetachment of negative ion in an oscillating electric filed. • Our work is useful in guiding the experimental research for the photodetachment dynamics in the time-dependent field. - Abstract: Using the time-dependent closed orbit theory, we study the photodetachment of H − ion in a time-dependent electric field. The photodetachment cross section is specifically studied in the presence of a static electric field plus an oscillating electric field. We find that the photodetachment of negative ion in the time-dependent electric field becomes much more complicated than the case in a static electric field. The oscillating electric field can weaken the photodetachment cross section greatly when the strength of the oscillating electric field is less than the static electric field. However, as the strength of the oscillating electric field is larger than the static electric field, four types of closed orbits are identified for the detached electron, which makes the oscillating amplitude in the photodetachment cross section gets increased again. The connection between the detached electron’s closed orbit with the oscillating cross section is analyzed quantitatively. This study provides a clear and intuitive picture for the understanding of the connections between quantum and classical description for the time-dependent Hamiltonian systems and may guide the future experimental research for the photodetachment dynamics in the time-dependent electric field.

  5. Reorganization of microfilament structure induced by ac electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Cho, M.R.; Thatte, H.S.; Golan, D.E. [Harvard Medical School, Boston, MA (United States); Lee, R.C. [Univ. of Chicago, IL (United States)

    1996-11-01

    AC electric fields induce redistribution of integral membrane proteins. Cell-surface receptor redistribution does not consistently follow electric field lines and depends critically on the frequency of the applied ac electric fields, suggesting that mechanisms other than electroosmosis are involved. We hypothesized that cytoskeletal reorganization is responsible for electric field-induced cell-surface receptor redistribution, and used fluorescence video microscopy to study the reorganization of microfilaments in human hepatoma (Hep3B) cells exposed to low-frequency electric fields ranging in strength from 25 mV/cm to 20 V/cm (peak to peak). The frequency of the applied electric field was varied from 1 to 120 Hz and the field exposure duration from 1 to 60 min. In control cells, cytoplasmic microfilaments were aligned in the form of continuous parallel cables along the longitudinal axis of the cell. Exposure of cells to ac electric fields induced alterations in microfilament structure in a manner that depended on the frequency of the applied field. A 1 or 10 Hz ac field caused microfilament reorganization from continuous, aligned cable structures to discontinuous globular patches. In contrast, the structure of microfilaments in cells exposed to 20-120 Hz electric fields did not offer from that in control cells. The extent of microfilament reorganization increased nonlinearly with the electric field strength. The characteristic time for microfilament reorganization in cells exposed to a 1 Hz, 20 V/cm electric field was {approx} 5 min. Applied ac electric fields could initiate signal transduction cascades, which in turn cause reorganization of cytoskeletal structures. 39 refs., 5 figs., 1 tab.

  6. Measurements of the vertical atmospheric electric field and of the electrical conductivity with stratospheric balloons

    Science.gov (United States)

    Iversen, I. B.; Madsen, M. M.; Dangelo, N.

    1985-01-01

    Measurements of the atmospheric (vertical) electric field with balloons in the stratosphere are reported. The atmospheric electrical conductivity is also measured and the current density inferred. The average vertical current shows the expected variation with universal time and is also seen to be influenced by external (magnetospheric) electric fields.

  7. Measurement of electric fields in the H-1NF heliac

    International Nuclear Information System (INIS)

    James, B.W.; Howard, J.

    1999-01-01

    There are a number of laser induced fluorescence techniques which can be used to measure internal plasma electric fields. It is planned to use a technique based on Stark mixing of energy levels in a supersonic beam containing metastable helium atoms to measure radial electric fields in H-1NF. Enhanced values of radial electric field are associated with improved confinement modes in H-1NF and other magnetically confined plasmas

  8. Natural factor impact on atmospheric electric field variations in Kamchatka

    OpenAIRE

    Firstov Pavel; Cherneva Nina; Akbashev Rinat

    2017-01-01

    The paper briefly describes a site network which registers atmospheric electric field strength (AEF V’). The scheme of natural processes affecting the formation of the local atmospheric electric field is considered. AEF V’ disturbances on ground flux meters are described. They were recorded when two eruptive clouds from Shiveluch volcano eruption were passing by. Key words: atmospheric electric field, potential gradient, electrostatic flux meter, volcanic clouds

  9. Measurement of full-field deformation induced by a dc electrical field in organic insulator films

    Directory of Open Access Journals (Sweden)

    Boudou L.

    2010-06-01

    Full Text Available Digital image correlation method (DIC using the correlation coefficient curve-fitting for full-field surface deformation measurements of organic insulator films is investigated in this work. First the validation of the technique was undertaken. The computer-generated speckle images and the measurement of coefficient of thermal expansion (CTE of aluminium are used to evaluate the measurement accuracy of the technique. In a second part the technique is applied to measure the mechanical deformation induced by electrical field application to organic insulators. For that Poly(ethylene naphthalene 2,6-dicarboxylate (PEN thin films were subjected to DC voltage stress and DIC provides the full-field induced deformations of the test films. The obtained results show that the DIC is a practical and robust tool for better comprehension of mechanical behaviour of the organic insulator films under electrical stress.

  10. Fermentation Assisted by Pulsed Electric Field and Ultrasound: A Review

    Directory of Open Access Journals (Sweden)

    Leandro Galván-D’Alessandro

    2018-01-01

    Full Text Available Various novel techniques are proposed to improve process efficiency, quality, and safety of fermented food products. Ultrasound and pulsed electric field (PEF are versatile technologies that can be employed in conjunction with fermentation processes to enhance process efficiency and production rates by improving mass transfer and cell permeability. The aim of this review is to highlight current and potential applications of ultrasound and PEF techniques in food fermentation processes. Their effects on microbial enzymes, along with mechanisms of action, are also discussed.

  11. Nano-Electric Field TechnologY (NEFTY)

    Science.gov (United States)

    Kintner, Paul M.

    2000-01-01

    The NEFTY SR&T grant was focused on the development of novel electric field boom systems for sounding rocket applications. A "yo-yo"-type boom that unwraps from a rotating and damped axel was analyzed through a simulation with Prof. Psiaki of Mechanical and Aerospace Engineering at Cornell University. The basic parameters of the analysis were evaluated and validated on a spinning platform prototyping system developed at Cornell University. The full "yo-yo"-type boom system is being developing for the SIERRA sounding rocket flight scheduled for a January 2002 launch. The principal results from this study were published.

  12. Multistate nonvolatile straintronics controlled by a lateral electric field

    International Nuclear Information System (INIS)

    Iurchuk, V; Doudin, B; Kundys, B

    2014-01-01

    We present a multifunctional and multistate permanent memory device based on lateral electric field control of a strained surface. Sub-coercive electrical writing of a remnant strain of a PZT substrate imprints stable and rewritable resistance changes on a CoFe overlayer. A proof-of-principle device, with the simplest resistance strain gage design, is shown as a memory cell exhibiting 17-memory states of high reproducibility and reliability for nonvolatile operations. Magnetoresistance of the film also depends on the cell state, and indicates a rewritable change of magnetic properties persisting in the remnant strain of the substrate. This makes it possible to combine strain, magnetic and resistive functionalities in a single memory element, and suggests that sub-coercive stress studies are of interest for straintronics applications. (fast track communication)

  13. Multistate nonvolatile straintronics controlled by a lateral electric field.

    Science.gov (United States)

    Iurchuk, V; Doudin, B; Kundys, B

    2014-07-23

    We present a multifunctional and multistate permanent memory device based on lateral electric field control of a strained surface. Sub-coercive electrical writing of a remnant strain of a PZT substrate imprints stable and rewritable resistance changes on a CoFe overlayer. A proof-of-principle device, with the simplest resistance strain gage design, is shown as a memory cell exhibiting 17-memory states of high reproducibility and reliability for nonvolatile operations. Magnetoresistance of the film also depends on the cell state, and indicates a rewritable change of magnetic properties persisting in the remnant strain of the substrate. This makes it possible to combine strain, magnetic and resistive functionalities in a single memory element, and suggests that sub-coercive stress studies are of interest for straintronics applications.

  14. Electric rail gun application to space propulsion

    International Nuclear Information System (INIS)

    Barber, J.P.

    1979-01-01

    The paper examines the possibility of using the DC electric gun principles as a space vehicle propulsion system, capable of producing intermediate thrust levels. The application of an electromagnetic launch technique, called the DC electric rail gun, to the space propulsion concept of O'Neill, is examined. It is determined that the DC electric rail gun offers very high projectile accelerations and a very significant potential for reducing the size and mass of a reaction motor for space application. A detailed description of rail gun principles is given and some simple expressions for the accelerating force, gun impedance, power supply requirements, and system performance are discussed

  15. Linear electric field time-of-flight ion mass spectrometer

    Science.gov (United States)

    Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  16. Acanthamoeba Migration in an Electric Field

    Science.gov (United States)

    Rudell, Jolene Chang; Gao, Jing; Sun, Yuxin; Sun, Yaohui; Chodosh, James; Schwab, Ivan; Zhao, Min

    2013-01-01

    Purpose. We investigated the in vitro response of Acanthamoeba trophozoites to electric fields (EFs). Methods. Acanthamoeba castellanii were exposed to varying strengths of an EF. During EF exposure, cell migration was monitored using an inverted microscope equipped with a CCD camera and the SimplePCI 5.3 imaging system to capture time-lapse images. The migration of A. castellanii trophozoites was analyzed and quantified with ImageJ software. For analysis of cell migration in a three-dimensional culture system, Acanthamoeba trophozoites were cultured in agar, exposed to an EF, digitally video recorded, and analyzed at various Z focal planes. Results. Acanthamoeba trophozoites move at random in the absence of an EF, but move directionally in response to an EF. Directedness in the absence of an EF is 0.08 ± 0.01, while in 1200 mV/mm EF, directedness is significantly higher at −0.65 ± 0.01 (P Acanthamoeba move directionally in a three-dimensional (3D) agar system as well when exposed to an EF. Conclusions. Acanthamoeba trophozoites move directionally in response to an EF in a two-dimensional and 3D culture system. Acanthamoeba trophozoite migration is also voltage-dependent, with increased directionality with increasing voltage. This may provide new treatment modalities for Acanthamoeba keratitis. PMID:23716626

  17. Surface electric fields for North America during historical geomagnetic storms

    Science.gov (United States)

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  18. Perovskite nickelates as electric-field sensors in salt water

    Science.gov (United States)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri; Kotiuga, Michele; Dura, Joseph A.; Cherukara, Mathew; Zhou, Hua; Freeland, John W.; Li, Jiarui; Sutarto, Ronny; He, Feizhou; Wu, Chongzhao; Zhu, Jiaxin; Sun, Yifei; Ramadoss, Koushik; Nonnenmann, Stephen S.; Yu, Nanfang; Comin, Riccardo; Rabe, Karin M.; Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2018-01-01

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications. The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO3. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures.

  19. Perovskite nickelates as electric-field sensors in salt water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri; Kotiuga, Michele; Dura, Joseph A.; Cherukara, Mathew; Zhou, Hua; Freeland, John W.; Li, Jiarui; Sutarto, Ronny; He, Feizhou; Wu, Chongzhao; Zhu, Jiaxin; Sun, Yifei; Ramadoss, Koushik; Nonnenmann, Stephen S.; Yu, Nanfang; Comin, Riccardo; Rabe, Karin M.; Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2017-12-18

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications(1-4). The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO35-7. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures

  20. Effect of applied DC electric fields in flame spread over polyethylene-coated electrical wire

    KAUST Repository

    Jin, Young Kyu

    2011-03-01

    We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ±7 kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet. © 2011 The Korean Society of Mechanical Engineers.

  1. Manipulation of nano-entities in suspension by electric fields

    Science.gov (United States)

    Fan, Donglei

    Nanoscale entities, including nanospheres, nanodisks, nanorings, nanowires and nanotubes are potential building blocks for nanoscale devices. Among them, nanowires is an important type of nanoparticles, due to the potential application in microelectronics and bio-diagnosis. Manipulation of nanowires in suspension has been a formidable problem. As described in this thesis, using AC electric fields applied to strategically designed microelectrodes, nanowires in suspension can be driven to align, to chain, to accelerate in directions parallel and perpendicular to its orientation, to concentrate onto designated places, and to disperse in a controlled manner with high efficiency despite an extremely low Reynolds number at the level of 10-5. Randomly oriented nanowires in suspension can be rapidly assembled into extended nonlinear structures within seconds. We show that both the electric field and its gradient play the essential roles of aligning and transporting the nanowires into scaffolds according to the electric field distributions inherent to the geometry of the microelectrodes. The assembling efficiency depends strongly on the frequency of the applied AC voltages and varies as square of the voltage. Furthermore, nanowires have been rotated by AC electric fields applied to strategically designed electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 25000 rpm), definite chirality, and total angle of rotation. This new method has been used to controllably rotate magnetic and non-magnetic nanowires as well as multi-wall carbon nanotubes. We have also produced a micromotor using a rotating nanowire that can drive particles into circular motion. This has application to microfluidic devices, micro-stirrers, and micro electromechanical systems (MEMS). To move and place nanowires onto designated locations with high precision, electrophoretic force has been combined with dielectrophoretic force to

  2. Numerical simulation of the leaky dielectric microdroplet generation in electric fields

    Science.gov (United States)

    Kamali, Reza; Manshadi, Mohammad Karim Dehghan

    2016-07-01

    Microdroplet generation has a vast range of applications in the chemical, biomedical, and biological sciences. Several devices are applied to produce microdroplets, such as Co-flow, T-junction and Flow-focusing. The important point in the producing process is controlling the separated fluid volume in these devices. On the other hand, a large number of liquids, especially aqueous one, are influenced by electric or magnetic fields. As a consequence, an electric field could be used in order to affect the separated fluid volume. In this study, effects of an electric field on the microdroplet generation in a Co-flow device are investigated numerically. Furthermore, effects of some electrical properties such as permittivity on the separating process of microdroplets are studied. Leaky dielectric and perfect dielectric models are used in this investigation. According to the results, in the microdroplet generating process, leaky dielectric fluids show different behaviors, when an electric field is applied to the device. In other words, in a constant electric field strength, the volume of generated microdroplets can increase or decrease, in comparison with the condition without the electric field. However, for perfect dielectric fluids, droplet volume always decreases with increasing the electric field strength. In order to validate the numerical method of this study, deformation of a leaky dielectric droplet in an electric field is investigated. Results are compared with Taylor theoretical model.

  3. Application of non-invasive low strength pulsed electric field to EGCG treatment synergistically enhanced the inhibition effect on PANC-1 cells.

    Science.gov (United States)

    Hsieh, Chih-Hsiung; Lu, Chueh-Hsuan; Chen, Wei-Ting; Ma, Bo-Lun; Chao, Chih-Yu

    2017-01-01

    Traditional therapies for pancreatic cancer are usually expensive and likely to cause side effects, and most patients have the risk of recurrence and suffering pain. Here, we investigated combination treatment of epigallocatechin-3-gallate (EGCG) and non-invasive low strength pulsed electric field (PEF) on the human pancreatic cell line PANC-1. Cells were cultured in various concentrations of EGCG and exposed to trains of PEF. The results showed that the low strength PEF alone or single treatment with low concentration of EGCG did not obviously affect the cell proliferation and migration in PANC-1. However, the EGCG-induced inhibitions of cell viability and migration ability in PANC-1 were dramatically enhanced by the further exposure of low strength PEF (60 V/cm). In particular, the same combination treatment caused less inhibition of cell viability in non-malignant HEK293 cells. We also found the combination treatment significantly decreased the ratio of Bcl-2/Bax protein and increased caspase activity in PANC-1 cells, resulting in the promotion of apoptotic responses, evidenced by chromatin condensation. The findings of the present study reveal the synergistic reactions in the combination treatment may severely disturb mitochondria, enhance the intrinsic pathway transduction, and effectively induce apoptosis; moreover, the migration and invasion of PANC-1 cancer cells were also significantly suppressed. Since normal cells are less sensitive to this combination treatment, and the non-invasive PEF could be modified to focus on a specific location, this treatment may serve as a promising method for anti-cancer therapy.

  4. Controlled deposition of drops on edible film using an AC-electric field

    Science.gov (United States)

    Shen, Yueyang; Bryndza, John; Motamedvaziri, Shilan; Khusid, Boris

    2008-11-01

    We present a drop-based technique for the deposition of drug dosages onto an edible film. Unlike the common approach to utilize DC electric fields and metal nozzles, we use a nozzle made of an electrically insulating material and apply an AC electric field to form drops. Experiments were conducted on polyethylene glycol (PEG)-based solutions over a broad range of the applied frequency and the applied peak-to-peak voltage. Presented results demonstrate the various drop formation regimes observed as a function of the field strength and frequency. We discuss the mechanism of the drop formation in an insulating nozzle caused by the application of an AC field.

  5. Improving carotenoid extraction from tomato waste by pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Elisa eLuengo

    2014-08-01

    Full Text Available In this investigation, the influence of the application of Pulsed Electric Fields (PEF of different intensities (3-7 kV/cm and 0-300 μs on the carotenoid extraction from tomato peel and pulp in a mixture of hexane:acetone:ethanol was studied with the aim of increasing extraction yield or reducing the percentage of the less green solvents in the extraction medium. According to the cellular disintegration index, the optimum treatment time for the permeabilization of tomato peel and pulp at different electric field strengths was 90 µs. The PEF permeabilization of tomato pulp did not significantly increase the carotenoid extraction. However, a PEF-treatment at 5 kV/cm improved the carotenoid extraction from tomato peel by 39 % as compared with the control in a mixture of hexane:ethanol:acetone (50:25:25. Further increments of electric field from 5 to 7 kV/cm did not increase significantly the extraction of carotenoids. . The presence of acetone in the solvent mixture did not positively affect the carotenoid extraction when the tomato peels were PEF-treated. Response surface methodology was used to determine the potential of PEF for reducing the percentage of hexane in a hexane:ethanol mixture. The application of a PEF-treatment allowed reducing the hexane percentage from 45 to 30 % without affecting the carotenoid extraction yield. The antioxidant capacity of the extracts obtained from tomato peel was correlated with the carotenoid concentration and it was not affected by the PEF-treatment.

  6. Variation of surface electric field during geomagnetic disturbed ...

    Indian Academy of Sciences (India)

    storm current generators, through the ionosphere, and down to the Earth's surface in the fair ... Atmospheric electric field; magnetic storm; magnetosphere; ionosphere; global electrical circuit. J. Earth Syst. Sci. 124, No. 8, December ... electrical conductivity of the ice surface is in sev- eral orders of magnitude higher than that ...

  7. Cloaking magnetic field and generating electric field with topological insulator and superconductor bi-layer sphere

    Science.gov (United States)

    Xu, Jin

    2017-12-01

    When an electric field is applied on a topological insulator, not only the electric field is generated, but also the magnetic field is generated, vice versa. I designed topological insulator and superconductor bi-layer magnetic cloak, derived the electric field and magnetic field inside and outside the topological insulator and superconductor sphere. Simulation and calculation results show that the applied magnetic field is screened by the topological insulator and superconductor bi-layer, and the electric field is generated in the cloaked region.

  8. Electrical solitons theory, design, and applications

    CERN Document Server

    Ricketts, David S

    2010-01-01

    The dominant medium for soliton propagation in electronics, nonlinear transmission line (NLTL) has found wide application as a testbed for nonlinear dynamics and KdV phenomena as well as for practical applications in ultra-sharp pulse/edge generation and novel nonlinear communication schemes in electronics. While many texts exist covering solitons in general, there is as yet no source that provides a comprehensive treatment of the soliton in the electrical domain.Drawing on the award winning research of Carnegie Mellon's David S. Ricketts, Electrical Solitons Theory, Design, and Applications i

  9. Growth inhibition of Staphylococcus aureus induced by low-frequency electric and electromagnetic fields.

    Science.gov (United States)

    Obermeier, Andreas; Matl, Florian Dominik; Friess, Wolfgang; Stemberger, Axel

    2009-05-01

    Magnetic field therapy is an established technique in the treatment of pseudarthrosis. In cases of osteomylitis, palliation is also observed. This study focuses on the impact of different electric and electromagnetic fields on the growth of Staphylococcus aureus by in vitro technologies. Cultures of Staphylococcus aureus in fluid and gel-like medium were exposed to a low-frequency electromagnetic field, an electromagnetic field combined with an additional electric field, a sinusoidal electric field and a static electric field. In gel-like medium no significant difference between colony-forming units of exposed samples and non-exposed references was detected. In contrast, Staphylococcus aureus concentrations in fluid medium could clearly be reduced under the influence of the four different applied fields within 24 h of experiment. The strongest effects were observed for the direct current electric field which could decrease CFU/ml of 37%, and the low-frequency electromagnetic field with additional induced electric alternating field with a decrease of Staphylococci concentration by 36%. The effects of the electromagnetic treatment on Staphylococci within fluid medium are significantly higher than in gel-like medium. The application of low-frequency electromagnetic fields corroborates clinical situations of bone infections during magnetic field therapy. Copyright 2009 Wiley-Liss, Inc.

  10. Shielding of an oscillating electric field by a hollow conductor

    Science.gov (United States)

    Aguirregabiria, J. M.; Hernández, A.; Rivas, M.

    1996-08-01

    The electric and magnetic fields for a hollow conducting sphere located in a slowly varying uniform electric field background are computed to first-order in a power series expansion in the field frequency. These results are used to define an equivalent RC circuit and to test the circuit approach which is often used in electromagnetic compatibility (EMC). The case of an infinite cylindrical conducting tube under the influence of the same external field is also analyzed.

  11. Static and low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Thommesen, G.; Tynes, T.

    1994-01-01

    The biological effects of exposure to low frequency electric and magnetic fields are reviewed with the objective of summarizing effects directly relevant to considerations of the health and safety of exposed people. Static and low frequency electric and magnetic fields may elicit biological reactions. Whether exposure to such fields may affect human health at field strengths present in everyday or occupational life is still unsettled. There is unsufficient knowledge to establish any dose concept relevant to health risk. 196 refs., 6 tabs

  12. Electric Field Measurements At The Magnetopause

    Science.gov (United States)

    Lindqvist, P.-A.; Dunlop, M.

    The quasi-thermal noise (QTN) is due to the thermal motions of the particles, which produce electrostatic fluctuations. This noise is detected by any sensitive receiver at the ports of an electric antenna immersed in a plasma and can be used to measure in-situ the plasma density, temperature and bulk velocity. The basic reason is that this noise can be formally calculated as a function of both the particle velocity distribu- tions and the antenna geometry. So, conversely, the "spectroscopy" of this noise re- veals the local plasma properties. This method is routinely used on various spacecraft (Ulysses, Wind) in the solar wind or in planetary magnetospheres/ionospheres (Image at Earth, Cassini at Venus, Earth and soon at Saturn). This method has the advantage of being relatively immune to spacecraft potential and photoelectrons pertubations, since it senses a large plasma volume. It provides an accurate measurement of the electron density (a few %) because it is based on the detection of the strong signal peak near the local plasma frequency (which is close to a resonance for electrostatic waves). We will show that QTN may be as well adapted to measure 1) magnetized (anisotropic) plasmas (and deduce the magnetic field strength), 2) suprathermal or non-thermal component (as for example a kappa distribution), and 3) a wide range of core temperature, i.e from ~10 eV, as in the solar wind, to rather low temperatures (tron density and temperature for comparison with our models of Mercury/solar wind interaction.

  13. Lunar electric fields, surface potential and associated plasma sheaths

    Science.gov (United States)

    Freeman, J. W.; Ibrahim, M.

    1975-01-01

    A review is given of studies of the electric-field environment of the moon. Surface electric potentials are reported for the dayside and terminator regions, electron and ion densities in the plasma sheath adjacent to each surface-potential regime are evaluated, and the corresponding Debye lengths are estimated. The electric fields, which are approximated by the surface potential over the Debye length, are shown to be at least three orders of magnitude higher than the pervasive solar-wind electric field and to be confined to within a few tens of meters of the lunar surface.

  14. Fetal exposure to low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Cech, R; Leitgeb, N; Pediaditis, M

    2007-01-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary

  15. Deriving the geomagnetically induced electric field at the Earth's surface from the time derivative of the vertical magnetic field

    Science.gov (United States)

    Vanhamäki, Heikki; Viljanen, Ari; Pirjola, Risto; Amm, Olaf

    2013-09-01

    We present a new method for estimating the geomagnetically induced electric field at the Earth's surface directly from the time derivative of the vertical magnetic field, without any need for additional information about the Earth's electric conductivity. This is a simplification compared to the presently used calculation methods, which require both the magnetic variation field and ground conductivity model as input data. The surface electric field is needed e.g. in modeling Geomagnetically Induced Currents (GIC) that flow in man-made conductor systems, such as gas and oil pipelines or high-voltage power grids. We solve the induced electric field directly from Faraday's law, by representing the magnetic variation field in terms of external equivalent current and taking time derivative of the associated vector potential. This gives an approximative solution, where the divergence-free part of the electric field is reproduced accurately (at least in principle), but the curl-free part related to lateral variations in ground conductivity is completely neglected. We test the new calculation method with several realistic models of typical ionospheric current systems, as well as actual data from the Baltic Electromagnetic Array Research (BEAR) network. We conclude that the principle of calculating the (divergence-free part of the) surface electric field from time derivative of the vertical magnetic field is sound, and the method works reasonably well also in practice. However, practical applications may be rather limited as the method seems to require data from a quite dense and spatially extended magnetometer network.

  16. Clay-Oil Droplet Suspensions in Electric Field

    OpenAIRE

    Kjerstad, Knut Brøndbo

    2012-01-01

    Silicone oil droplets containing synthetic smectite clay submerged in another immiscible organic oil have been studied by observing clay particle movement, oil circulation and drop deformation when an electric field is applied. Results show how electric field strength, electrohydrodynamics, dielectric and conductive properties determines the fluid flow, clay particle formation and drop deformation.

  17. Effect of a background electric field on the Hagedorn temperature

    International Nuclear Information System (INIS)

    Ferrer, E.J.; Incera, V. de la; Fradkin, E.S.

    1990-07-01

    We compute the one-loop free energy of the open neutral string gas in a constant electromagnetic background. Starting from this result we show that the Hagedorn temperature of this hot string gas depends on the background electric field. The larger the electric field, the lower the Hagedorn temperature is. (author). 13 refs

  18. High field electrical behaviour in lithium–phospho–vanadate glass ...

    Indian Academy of Sciences (India)

    Keywords. High field electrical behaviour; lithium–phospho–vanadate glass system. 1. Introduction. High field electrical switching behaviour is one of the fascinating properties in oxide glasses, since it exhibits reversible threshold and irreversible memory states. Several investigations have been initiated to study switching ...

  19. High School Students' Representations and Understandings of Electric Fields

    Science.gov (United States)

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  20. A simplified model of polar cap electric fields

    International Nuclear Information System (INIS)

    D'Angelo, N.

    1977-01-01

    A simple-minded 'model' is used in order to visualize the gross features of polar cap electric fields, in particular the 'diode' effect which had emerged already from earlier observations and the asymmetry between the electric fields observed on the dawn and dusk sides of the polar cap, which depends on Bsub(y)

  1. Effect of electric field (at different temperatures) on germination of ...

    African Journals Online (AJOL)

    Chickpea (Cicer arietinum) seeds were exposed to electric field from zero to 1300 V for 15 min at three different temperatures (13, 16 and 19°C). It was found that the exposure of chickpea seeds to the electric field caused a change in water uptake capacity (and its coefficient) as compared to control. A new theoretical model ...

  2. Incompressible Einstein–Maxwell fluids with specified electric fields

    Indian Academy of Sciences (India)

    The Einstein–Maxwell equations describing static charged spheres with uniform density and variable electric field intensity are studied. The special case of constant electric field is also studied. The evolution of the model is governed by a hypergeometric differential equation which has a general solution in terms of special ...

  3. Study of electric field pulsation in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S; Itoh, K

    2011-01-01

    A model for the experimental results of the periodic oscillation of the electric field, so-called the electric field pulsation, observed in the Compact Helical Device (Fujisawa et al 1998 Phys. Rev. Lett. 81 2256) and the Large Helical Device (Shimizu et al 2010 Plasma Fusion Res. 5 S1015) is presented. A self-generated oscillation of the radial electric field is shown as the simulation result in helical plasmas. The reduction of the anomalous transport diffusivity in the core region is observed due to the strong shear of the radial electric field when the positive electric field is shown in the core region in the periodic oscillation of E r . Two different time scales are found in the self-generated oscillation, which are the transport time scale and the fast time scale at the transition of the radial electric field. This oscillation because of the hysteresis characteristic is attributed to the electric field pulsation observed in helical plasmas. The parameter region of the condition for the self-generated oscillation is derived. It is shown that the multiple solutions of the radial electric field for the ambipolar condition are necessary but not sufficient for obtaining the self-generated oscillation.

  4. Electric and Magnetic Fields | RadTown USA | US EPA

    Science.gov (United States)

    2018-03-07

    Electromagnetic fields (EMF) are a combination of electric and magnetic fields of energy that surround any electrical device when it is plugged in and turned on. Scientific experiments have not clearly shown whether or not exposure to EMF increases cancer risk. Scientists continue to study the issue.

  5. Effect of an electric field on the properties of BN Möbius stripes

    Energy Technology Data Exchange (ETDEWEB)

    Lemos de Melo, J. [Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900 João Pessoa, PB (Brazil); Azevedo, S., E-mail: sazevedo@fisica.ufpb.br [Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900 João Pessoa, PB (Brazil); Kaschny, J.R. [Instituto Federal da Bahia, Campus Vitória da Conquista, Av. Amazonas 3150, 45075-265 Vitória da conquista, BA (Brazil)

    2014-09-15

    In the present work, we present a first-principles study on the effects of an external electric field on the structural stability and electronic properties of boron nitride Möbius stripes with armchair and zigzag chirality. The calculation results indicate that the gap energy can be remarkably reduced by the application of an external field. Such reduction is in principle attributed to the occurrence of Stark effect, which significance depends on the orientation of the applied field relative to the stripe axis. Moreover, the electric field produces significant changes on dipole momentum of the structure and induces a negative shift on the calculated total energy, reducing the obtained formation energy. - Highlights: • The gap energy is remarkably reduced by the application of an external field. • The electric field produces significant changes on dipole momentum. • The field induces a negative shift on the total energy due to Stark effect.

  6. Electrical Engineers' Perceptions on Education--Electromagnetic Field Theory and Its Connection to Working Life

    Science.gov (United States)

    Keltikangas, K.; Wallen, H.

    2010-01-01

    This paper investigates electrical engineers' perceptions on their education in Finland, with particular emphasis on the basic electromagnetic field theory courses and their applicability in working life, using two online surveys (n = 99 and n = 120). The answers show a reasonably good satisfaction with the electrical engineering studies in…

  7. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-04-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received attention recently, since it could modulate flames appreciably even for the cases when direct current (DC) has minimal effects. In this study, the effect of AC electric fields on small coflow diffusion flames is focused with applications of various laser diagnostic techniques. Flow characteristics of baseline diffusion flames, which corresponds to stationary small coflow diffusion flames when electric field is not applied, were firstly investigated with a particular focus on the flow field in near-nozzle region with the buoyancy force exerted on fuels due to density differences among fuel, ambient air, and burnt gas. The result showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle exit. Nozzle heating effect influenced this near-nozzle flow-field particularly among lighter fuels. Numerical simulations were also conducted and the results showed that a fuel inlet boundary condition with a fully developed velocity profile for cases with long fuel tubes should be specified inside the fuel tube to obtain satisfactory agreement in both the flow and temperature fields with those from experiment. With sub-critical AC applied to the baseline flames, particle image velocimetry (PIV), light scattering, laser-induced incandescence (LII), and laser-induced fluores- cence (LIF) techniques were adopted to identify the flow field and the structures of OH, polycyclic aromatic hydrocarbons (PAHs), soot zone. Under certain AC condi- tions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered from the

  8. Pricing and Application of Electric Storage

    Science.gov (United States)

    Zhao, Jialin

    Electric storage provides a vehicle to store power for future use. It contributes to the grids in multiple aspects. For instance, electric storage is a more effective approach to provide electricity ancillary services than conventional methods. Additionally, electric storage, especially fast-responding units, allows owners to implement high-frequency power transactions in settings such as the 5-min real-time trading market. Such high-frequency power trades were limited in the past. However, as technology advances, the power markets have evolved. For instance, the California Independent System Operator now supports the 5-min real-time trading and the hourly day-ahead ancillary services bidding. Existing valuation models of electric storage were not designed to accommodate these recent market developments. To fill this gap, I focus on the fast-responding grid-level electric storage that provides both the real-time trading and the day-ahead ancillary services bidding. To evaluate such an asset, I propose a Monte Carlo Simulation-based valuation model. The foundation of my model is simulations of power prices. This study develops a new simulation model of electric prices. It is worth noting that, unlike existing models, my proposed simulation model captures the dependency of the real-time markets on the day-ahead markets. Upon such simulations, this study investigates the pricing and the application of electric storage at a 5-min granularity. Essentially, my model is a Dynamic Programming system with both endogenous variables (i.e., the State-of-Charge of electric storage) and exogenous variables (i.e., power prices). My first numerical example is the valuation of a fictitious 4MWh battery. Similarly, my second example evaluates the application of two units of 2MWh batteries. By comparing these two experiments, I investigate the issues related to battery configurations, such as the impacts of splitting storage capability on the valuation of electric storage.

  9. Electric field numerical simulation of disc type electrostatic spinning spinneret

    Science.gov (United States)

    Wei, L.; Deng, ZL; Qin, XH; Liang, ZY

    2018-01-01

    Electrospinning is a new type of free-end spinning built on electric field. Different from traditional single needle spinneret, in this study, a new disc type free surface spinneret is used to produce multiple jets, this will greatly improve production efficiency of nanofiber. The electric-field distribution of spinneret is the crux of the formation and trajectory of jets. In order to probe the electric field intensity of the disc type spinneret, computational software of Ansoft Maxwell 12 is adopted for a precise and intuitive analysis. The results showed that the whole round cambered surface of the spinning solution at edge of each layer of the spinneret with the maximum curvature has the highest electric field intensity, and through the simulation of the electric field distribution of different spinneret parameters such as layer, the height and radius of the spinneret. Influences of various parameters on the electrostatic spinning are obtained.

  10. Electric Field Simulation of Surge Capacitors with Typical Defects

    Science.gov (United States)

    Zhang, Chenmeng; Mao, Yuxiang; Xie, Shijun; Zhang, Yu

    2018-03-01

    The electric field of power capacitors with different typical defects in DC working condition and impulse oscillation working condition is studied in this paper. According to the type and location of defects and considering the influence of space charge, two-dimensional models of surge capacitors with different typical defects are simulated based on ANSYS. The distribution of the electric field inside the capacitor is analyzed, and the concentration of electric field and its influence on the insulation performance are obtained. The results show that the type of defects, the location of defects and the space charge all affect the electric field distribution inside the capacitor in varying degrees. Especially the electric field distortion in the local area such as sharp corners and burrs is relatively larger, which increases the probability of partial discharge inside the surge capacitor.

  11. Dynamic Magnetic Field Applications for Materials Processing

    Science.gov (United States)

    Mazuruk, K.; Grugel, Richard N.; Motakef, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Magnetic fields, variable in time and space, can be used to control convection in electrically conducting melts. Flow induced by these fields has been found to be beneficial for crystal growth applications. It allows increased crystal growth rates, and improves homogeneity and quality. Particularly beneficial is the natural convection damping capability of alternating magnetic fields. One well-known example is the rotating magnetic field (RMF) configuration. RMF induces liquid motion consisting of a swirling basic flow and a meridional secondary flow. In addition to crystal growth applications, RMF can also be used for mixing non-homogeneous melts in continuous metal castings. These applied aspects have stimulated increasing research on RMF-induced fluid dynamics. A novel type of magnetic field configuration consisting of an axisymmetric magnetostatic wave, designated the traveling magnetic field (TMF), has been recently proposed. It induces a basic flow in the form of a single vortex. TMF may find use in crystal growth techniques such as the vertical Bridgman (VB), float zone (FZ), and the traveling heater method. In this review, both methods, RMF and TMF are presented. Our recent theoretical and experimental results include such topics as localized TMF, natural convection dumping using TMF in a vertical Bridgman configuration, the traveling heater method, and the Lorentz force induced by TMF as a function of frequency. Experimentally, alloy mixing results, with and without applied TMF, will be presented. Finally, advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, will be discussed.

  12. Neural fields theory and applications

    CERN Document Server

    Graben, Peter; Potthast, Roland; Wright, James

    2014-01-01

    With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...

  13. Evaluation of the induced electric field and compliance procedure for a wireless power transfer system in an electrical vehicle.

    Science.gov (United States)

    Laakso, Ilkka; Hirata, Akimasa

    2013-11-07

    In this study, an induced electric field in a human body is evaluated for the magnetic field leaked from a wireless power transfer system for charging an electrical vehicle. The magnetic field from the wireless power transfer system is modelled computationally, and its effectiveness is confirmed by comparison with the field measured in a previous study. The induced electric field in a human standing around the vehicle is smaller than the allowable limit prescribed in international guidelines, although the magnetic field strength in the human body is locally higher than the allowable external field strength. Correlation between the external magnetic field and the induced electric field is confirmed to be reasonable at least in the standing posture, which is the case discussed in the international standard. Based on this finding, we discussed and confirmed the applicability of a three-point magnetic field measurement at heights of 0.5, 1.0, and 1.5 m for safety compliance.

  14. Electrospinning of Polyacrylonitrile Nanofibers and Simulation of Electric Field via Finite Element method

    Directory of Open Access Journals (Sweden)

    Hadi Samadian

    2017-04-01

    Full Text Available Objective(s: Since the electric field is the main driving force in electrospinning systems, the modeling and analysis of electric field distribution are critical to the nanofibers production. The aim of this study was modeling of the electric field and investigating the various parameters on polyacrylonitrile (PAN nanofibers morphology and diameter. Methods: The electric field profile at the nozzle and electrospinning zone was evaluated by Finite Element Method. The morphology and diameter of nanofibers were examined by Scanning electron microscopy (SEM. Results: The results of the electric field analysis indicated that the electric field was concentrated at the tip of the nozzle. Moreover, in the spinning direction, the electric field was concentrated at the surface of the spinneret and decayed rapidly toward the surface of the collector. Increasing polymer solution concentration from 7 to 11wt.% led to increasing nanofibers diameter form 77.76 ± 19.44 to 202.42 ± 36.85. Conclusions: Base on our results, it could be concluded that concentration of the electric field at the tip of the nozzle is high and initiates jet and nanofibers formation. PAN nanofibers can be transformed to carbon nanofibers which have various applications in biomedicine.

  15. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    1998-12-01

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  16. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  17. Electric field-mediated processing of polymer blend solutions

    Science.gov (United States)

    Wnek, G. E.; Krause, S.

    1993-01-01

    Multiphase polymer blends in which the minor phases are oriented in a desired direction may demonstrate unique optical, electrical, and mechanical properties. While morphology development in shear fields was studied extensively, little work has focused on effects of electric fields on phase structure. The use of electric fields for blend morphology modulation with particular attention given to solvent casting of blends in d.c. fields was explored. Both homopolymer blends (average phase sizes of several microns) and diblock copolymer/homopolymer blends (average phase sizes of hundreds of Angstroms) were investigated. Summarized are important observations and conclusions.

  18. Electric Field Effects on Photoluminescence of CdSe Nanoparticles in a PMMA Film

    Directory of Open Access Journals (Sweden)

    Takakazu Nakabayashi

    2014-06-01

    Full Text Available External electric field effects on spectra and decay of photoluminescence (PL as well as on absorption spectra were measured for CdSe nanoparticles in a poly(methyl methacrylate (PMMA film. Electrophotoluminescence (E-PL spectra as well as electroabsorption spectra show a remarkable Stark shift which depends on the particle size, indicating a large electric dipole moment in the first exciton state. The E-PL spectra also show that PL of CdSe is quenched by application of electric fields, and the magnitude of the field-induced quenching becomes larger with increasing size. The PL decay profiles observed in the absence and presence of electric field show that the field-induced quenching of PL mainly originates from the field-induced decrease in population of the emitting state prepared through the relaxation from the photoexcited state.

  19. Influence of Electric Fields on Biofouling of Carbonaceous Electrodes.

    Science.gov (United States)

    Pandit, Soumya; Shanbhag, Sneha; Mauter, Meagan; Oren, Yoram; Herzberg, Moshe

    2017-09-05

    Biofouling commonly occurs on carbonaceous capacitive deionization electrodes in the process of treating natural waters. Although previous work reported the effect of electric fields on bacterial mortality for a variety of medical and engineered applications, the effect of electrode surface properties and the magnitude and polarity of applied electric fields on biofilm development has not been comprehensively investigated. This paper studies the formation of a Pseudomonas aeruginosa biofilm on a Papyex graphite (PA) and a carbon aerogel (CA) in the presence and the absence of an electric field. The experiments were conducted using a two-electrode flow cell with a voltage window of ±0.9 V. The CA was less susceptible to biofilm formation compared to the PA due to its lower surface roughness, lower hydrophobicity, and significant antimicrobial properties. For both positive and negative applied potentials, we observed an inverse relationship between biofilm formation and the magnitude of the applied potential. The effect is particularly strong for the CA electrodes and may be a result of cumulative effects between material toxicity and the stress experienced by cells at high applied potentials. Under the applied potentials for both electrodes, high production of endogenous reactive oxygen species (ROS) was indicative of bacterial stress. For both electrodes, the elevated specific ROS activity was lowest for the open circuit potential condition, elevated when cathodically and anodically polarized, and highest for the ±0.9 V cases. These high applied potentials are believed to affect the redox potential across the cell membrane and disrupt redox homeostasis, thereby inhibiting bacterial growth.

  20. Electric Field-Assisted Pressureless Sintering of Ceramic Protonic Conductors

    DEFF Research Database (Denmark)

    Muccillo, R.; Esposito, Vincenzo; Zanetti De Florio, Daniel

    2017-01-01

    -5 A the electric current pulse amplitude. The sintering experiments were carried out in ambient atmosphere with the pellets positioned inside a vertical dilatometer furnace with Pt-Ir electrodes connected either to a power supply for applying the electric field or to an impedance analyzer for collecting [-Z''(ω) x......Gadolinium, yttrium and samarium-doped barium cerate (BCGd, BCY and BCSm, respectively) polycrystalline green pellets were submitted to electric field-assisted pressureless sintering experiments isothermally in the temperature range 800-1200oC under 100-200 V cm-1 electric fields, limiting to 1...... of the electrical conductivity of flash sintered specimens. Joule heating is assumed to be the primary effect of the electric current pulse through the specimens. Improved grain-to-grain contact and the removal of depleted chemical species due to Joule heating at the space charge region are proposed, respectively...

  1. Laser ablation of titanium in liquid in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.

  2. Should we be afraid of magnetic fields related to electricity?

    International Nuclear Information System (INIS)

    Souques, M.

    2009-01-01

    After having recalled that the main sources of 50 Hz electric field are high voltage lines while such a field around any electrical equipment is null because of a presence of insulation, the author comments the magnetic field level at the vicinity of common electrical equipment (refrigerator, hi-fi, computer, television, and so on) and at some distance (30 or 100 meters) of high-voltage and low-voltage lines. She comments the knowledge on the effects of exposure to a 50 Hz magnetic field, and recalls that a publication suggested in 1979 that there was a risk of leukaemia for children living close to electrical lines. More recent studies proposed to apply to magnetic fields an existing classification of products with respect to cancer risk (known, likely, possible, insufficient knowledge, not carcinogen). Some studies put the risk of leukaemia associated to magnetic fields into question again

  3. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    Directory of Open Access Journals (Sweden)

    Charlie Huveneers

    Full Text Available Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1, using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1 the behaviour of 18 white sharks (Carcharodon carcharias near a static bait, and (2 the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  4. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.

    Science.gov (United States)

    Grossman, Nir; Bono, David; Dedic, Nina; Kodandaramaiah, Suhasa B; Rudenko, Andrii; Suk, Ho-Jun; Cassara, Antonino M; Neufeld, Esra; Kuster, Niels; Tsai, Li-Huei; Pascual-Leone, Alvaro; Boyden, Edward S

    2017-06-01

    We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Determinants of the electric field during transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Opitz, Alexander; Paulus, Walter; Will, Susanne

    2015-01-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field...... over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect...... fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant...

  6. Electric field measurements at subcritical, oblique bow shock crossings

    International Nuclear Information System (INIS)

    Wygant, J.R.; Bensadoun, M.; Mozer, F.S.

    1987-01-01

    Electric field measurements at oblique, subcritical bow shock crossings are presented from the ISEE 1 University of California, Berkeley, double-probe electric field experiment. The measurements averaged over the 3-s spin period of the spacecraft provide the first observations of the large-scale (100 km) laminar oscillations in the longitudinal component of the electric field associated with the whistler precursor which is characteristic of these dispersive shocks. The amplitude of the oscillations increases from ∼0.5 mV/m to a maximum of 6 mV/m across the magnetic ramp of the shock (directed along the shock normal). The calculated electric potential drops across the shocks varied from 340 to 550 volts, which is 40-60% of the observed loss of kinetic energy associated with the bulk flow of the ions. These measurements suggest that at these shocks the additional deceleration of incident ions is due to the Lorentz force. The contributions to the normal component of the large-scale electric field at the shock due to the parallel and perpendicular components (relative to the magnetic field) of the electric field are evaluated. It is shown that the perpendicular component of the electric field dominates, accounting for most of the cross-shock potential, but that there is a nonnegligible parallel component. This large-scale parallel component has a magnitude of 1-2 mV/m which sometimes results in a potential well for electrons with a depth of ∼150 eV. It is experimentally demonstrated that the dominance of the perpendicular over the parallel component of the electric field resulted in a correlation between the longitudinal component of the large-scale electric field and the fluctuations in the magnetic field component perpendicular to the coplanarity plane

  7. Electric conductivity of TlInTe2 monocrystal in strong electric fields

    International Nuclear Information System (INIS)

    Zarbaliev, M.M.; Godzhaev, Eh.M.; Gadzhiev, V.A.

    1980-01-01

    Electric condUctivity of the TlInTe 2 single crystal in strong electric fields has been studied in the range of 77-300 K. The electron part of the TlInTe 2 dielectric constant has been found to be 4. The dependence of the activation energy of current carriers on the electric field strength is constructed and the value of the activation energy of current carriers in the absence of an electric field is determined by the extrapolation method. The results of the experiments are in good agreement with the Frenkel-Pool theory, and this affords grounds for asserting that the obtained dependences of electric conductivity on temperature and the electric field strength are defined by variation in the current carrier concentration due to action of the thermal-electron ionization mechanism

  8. Nonpremixed flame in a counterflow under electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-08

    Electrically assisted combustion has been studied in order to control or improve flame characteristics, and emphasizing efficiency and emission regulation. Many phenomenological observations have been reported on the positive impact of electric fields on flame, however there is a lack of detailed physical mechanisms for interpreting these. To clarify the effects of electric fields on flame, I have investigated flame structure, soot formation, and flow field with ionic wind electrical current responses in nonpremixed counterflow flames. The effects of direct current (DC) electric field on flame movement and flow field was also demonstrated in premixed Bunsen flames. When a DC electric field was applied to a lower nozzle, the flames moved toward the cathode side due to Lorentz force action on the positive ions, soot particles simultaneously disappeared completely and laser diagnostics was used to identify the results from the soot particles. To understand the effects of an electric field on flames, flow visualization was performed by Mie scattering to check the ionic wind effect, which is considered to play an important role in electric field assisted combustion. Results showed a bidirectional ionic wind, with a double-stagnant flow configuration, which blew from the flame (ionic source) toward both the cathode and the anode. This implies that the electric field affects strain rate and the axial location of stoichiometry, important factors in maintaining nonpremixed counterflow flames; thus, soot formation of the counterflow flame can also be affected by the electric field. In a test of premixed Bunsen flames having parallel electrodes, flame movement toward the cathode and bidirectional ionic wind were observed. Using PIV measurement it was found that a created radial velocity caused by positive ions (i.e. toward a cathode), was much faster than the velocity toward the anode. Even in a study of alternating current (AC) electric fields, bidirectional ionic wind could

  9. Electric field mapping inside metallized film capacitors

    DEFF Research Database (Denmark)

    Nielsen, Dennis Achton; Popok, Vladimir; Pedersen, Kjeld

    2015-01-01

    Failure mode and effect analysis (FMEA) is an important step in the reliability assessment process of electric components. It provides knowledge of the physics of failure of a component that has been subjected to a given stress profile. This knowledge enables improvement of the component robustness...... of the metallization stripes had lost contact to the end-spray. Thus, it is shown that the surface electric potential distributions on micro-sectioned film capacitors can be obtained through KPFM analysis. We have, from KPFM measurements, shown that the degraded capacitors under investigation had suffered from...

  10. Assessment of multiple frequency ELF electric and magnetic field exposure

    Science.gov (United States)

    Leitgeb, N.

    2008-01-01

    Electromagnetic fields both in daily life and at workplaces exhibit increasingly complex frequency spectra. Present spectral assessment rules proved to be too conservative for health risk assessment. This is because they are based on the assumption that cells would react like linear systems in terms of responding to a sum of frequencies by a sum of independent responses to each individual frequency. Based on numerical investigations with the Hodgkin-Huxley and the Frankenhaeuser-Huxley nerve cell models, it could be shown that accounting for the nonlinear behaviour of cellular excitation processes avoids considerable overestimation of simultaneous exposures to multiple frequency ELF electric and magnetic fields. Besides this, it could be shown that the role of phase relationships is less important than that assumed so far. The present assessment rules lead to non-compliances of marketed electric appliances. For general application, a nonlinear biology-based assessment (NBBA) rule has been proposed, validated and proven advantageous compared with ICNIRP's rule. While staying conservative it avoids unnecessary overestimation and demonstrates compliance even in cases of suspected non-conformities. It is up to responsible bodies to decide upon the adoption of this proposal and the potential need for implementing additional or reducing the already incorporated safety factors.

  11. Universal features of particle motion in ac electric fields

    Science.gov (United States)

    Niemeyer, L.; Seeger, M.

    2015-11-01

    Mobile particles present as contaminants in high voltage gas insulated switchgear (GIS) may constitute a risk for insulation failure. The understanding of their motion in the electric field of the insulation gap is therefore essential for quality control in manufacturing, commissioning and in service monitoring. Published research on particle motion in ac electric fields has shown that this rather complex process depends on numerous parameters, many of which remain unknown under practical conditions. This renders modelling, generalization of experimental data and practical application difficult. The scope of this paper therefore is to develop a unified description of particle motion which minimizes the number of controlling parameters, enables the comparison of experimental data and allows simple interpretation relations to be derived. This is achieved by making the controlling equations dimensionless with an appropriate choice of reference values and by using simplifying assumptions for the specific conditions prevailing in GIS. The resulting generalized description of the process can then be summarized in the form of 2D patterns (dynamic maps). Approximate scaling relations are derived between specific features of these patterns and particle-related parameters. A reference case is discussed in detail. The non-linear character of the equation of motion suggests that the particle motion may be a deterministic process with chaotic features. This is confirmed by a preliminary chaos-theoretical analysis of the process.

  12. Investigation of thin manganite films at strong pulsed electric and magnetic fields

    OpenAIRE

    Cimmperman, Piotras

    2006-01-01

    The main aim of this work was to investigate electrical conductivity of La-Ca(Sr)-MnO thin films at high pulsed electric and magnetic fields and to clear up the possibilities to use these materials for high pulsed magnetic field sensor and fault current limiter applications. The dissertation consists of the preface, six chapters, summary and main conclusions, references, list of publications and abstract (in Lithuanian). The main objectives of the work, scientific novelty, goals, valida...

  13. Longitudinal and transverse electric field measurements in resonant cavities

    International Nuclear Information System (INIS)

    Tong Dechun; Chen Linfeng; Zheng Xiaoyue

    1994-01-01

    The paper presents a measuring technique for the electric field distribution of high order modes in resonant cavities. A perturbing bead-like cage made with metallic wires are developed for S-band field measurements, which can be used to detect a small electric field component in the presence of other strong electric or magnetic field components (That means high sensitivity and high directivity). In order to avoid orientation error for the cage with very high directivity, two parallel threads were used for supporting the perturbing cage. A simple mechanical set-up is described. The cage can be driven into the cavity on-axis or off-axis in any azimuth for the longitudinal and transverse electric field measurements

  14. Galvanotactic behavior of Tetrahymena pyriformis under electric fields

    International Nuclear Information System (INIS)

    Kim, Dal Hyung; Kim, Paul Seung Soo; Kim, Min Jun; Lee, Kyoungwoo; Kim, JinSeok

    2013-01-01

    Tetrahymena pyriformis, a eukaryotic ciliate, swims toward a cathode in straight or cross-shaped microchannels under an applied electric field, a behavioral response called cathodal galvanotaxis. In straight channel experiments, a one-dimensional electric field was applied, and the galvanotactic swimming behavior of Tetrahymena pyriformis was observed and described in detail while the polarity of this field is switched. In most individual cases, the cell would immediately switch its direction toward the cathode; however, exceptional cases have been observed where cells exhibit a turning delay or do not turn after a polarity switch. In cross-channel experiments, feedback control using vision-based tracking was used to steer a cell in the microchannel intersection using a two-dimensional electric field generated by four electrodes placed at four ends of the cross channel. The motivation for this work is to study the swimming behavior of Tetrahymena pyriformis as a microrobot under the control of electric fields. (paper)

  15. COMPUTATION OF ELECTRIC FIELD STRENGTH NECESSARY ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... Department of Electrical and Electronic Engineering, Michael Okpara University of Agriculture, Umudike,. P.M.B. 7267, Umuahia, Abia State, .... System Analysis. McGraw-Hill, Inc., 1994. 7. Lucian Dascalescu, Patrick Ribardiere, Claude Du- vanaud, Jean-Marie Paillot. Electrostatic Discharges form Charged ...

  16. Dynamical interplay between fluctuations, electric fields and ...

    Indian Academy of Sciences (India)

    An empirical similarity in the scaling properties of the probability distribution function (PDF) of turbulent transport has been observed in the plasma edge region in fusion plasmas. The investigation of the dynamical interplay between fluctuation in gradients, turbulent transport and radial electric fields has shown that these ...

  17. [Mechanism of ablation with nanosecond pulsed electric field].

    Science.gov (United States)

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  18. Nonlinear piezoelectricity in epitaxial ferroelectrics at high electric fields.

    Science.gov (United States)

    Grigoriev, Alexei; Sichel, Rebecca; Lee, Ho Nyung; Landahl, Eric C; Adams, Bernhard; Dufresne, Eric M; Evans, Paul G

    2008-01-18

    Nonlinear effects in the coupling of polarization with elastic strain have been predicted to occur in ferroelectric materials subjected to high electric fields. Such predictions are tested here for a PbZr0.2Ti0.8O3 ferroelectric thin film at electric fields in the range of several hundred MV/m and strains reaching up to 2.7%. The piezoelectric strain exceeds predictions based on constant piezoelectric coefficients at electric fields from approximately 200 to 400 MV/m, which is consistent with a nonlinear effect predicted to occur at corresponding piezoelectric distortions.

  19. Initial plasma production by induction electric field on QUEST tokamak

    International Nuclear Information System (INIS)

    Hasegawa, Makoto; Nakamura, Kazuo; Sato, Kohnosuke

    2007-01-01

    Induction electric field by center solenoid coil plays a roll to produce initial plasma. According to Townsend avalanche theory, minimum electric field for plasma breakdown depends on neutral gas pressure and connection length. On QUEST spherical tokamak, a connection length is evaluated as 966m on null point neighborhood with coil current ratio I PF26 /I CS =0.1, and induction electric field considering eddy current of vacuum vessel is evaluated as about 0.1 V/m on null point neighborhood. With Townsend avalanche theory, these values manage to produce initial plasma on QUEST. (author)

  20. Effects of a static electric field on nonsequential double ionization

    International Nuclear Information System (INIS)

    Li Hongyun; Wang Bingbing; Li Xiaofeng; Fu Panming; Chen Jing; Liu Jie; Jiang Hongbing; Gong Qihuang; Yan Zongchao

    2007-01-01

    Using a three-dimensional semiclassical method, we perform a systematic analysis of the effects of an additional static electric field on nonsequential double ionization (NSDI) of a helium atom in an intense, linearly polarized laser field. It is found that the static electric field influences not only the ionization rate, but also the kinetic energy of the ionized electron returning to the parent ion, in such a way that, if the rate is increased, then the kinetic energy of the first returning electron is decreased, and vice versa. These two effects compete in NSDI. Since the effect of the static electric field on the ionization of the first electron plays a more crucial role in the competition, the symmetric double-peak structure of the He 2+ momentum distribution parallel to the polarization of the laser field is destroyed. Furthermore, the contribution of the trajectories with multiple recollisions to the NSDI is also changed dramatically by the static electric field. As the static electric field increases, the trajectories with two recollisions, which start at the time when the laser and the static electric field are in the same direction, become increasingly important for the NSDI

  1. Electric field effects on fluorescence of the green fluorescent protein

    Science.gov (United States)

    Nakabayashi, Takakazu; Kinjo, Masataka; Ohta, Nobuhiro

    2008-05-01

    External electric field effects on state energy and photoexcitation dynamics have been examined for a mutant of UV-excited green fluorescent protein (GFPuv5) in a PVA film. The electrofluorescence spectrum of GFPuv5 is reproduced by a linear combination between the fluorescence spectrum and its second derivative spectrum, indicating the field-induced fluorescence quenching and the difference in electric dipole moment between the fluorescent state and the ground state. The direct measurements of the field-induced change in fluorescence decay show that the field-induced quenching results from the field-induced increase in the rate of the non-radiative process from the fluorescent state.

  2. AC Application of HTS Conductors in Highly Dynamic Electric Motors

    International Nuclear Information System (INIS)

    Oswald, B; Best, K-J; Setzer, M; Duffner, E; Soell, M; Gawalek, W; Kovalev, L K

    2006-01-01

    Based on recent investigations we design highly dynamic electric motors up to 400 kW and linear motors up to 120 kN linear force using HTS bulk material and HTS tapes. The introduction of HTS tapes into AC applications in electric motors needs fundamental studies on double pancake coils under transversal magnetic fields. First theoretical and experimental results on AC field distributions in double-pancake-coils and corresponding AC losses will be presented. Based on these results the simulation of the motor performance confirms extremely high power density and efficiency of both types of electric motors. Improved characteristics of rare earth permanent magnets used in our motors at low temperatures give an additional technological benefit

  3. Enhanced electrical conductivity in graphene and boron nitride nanoribbons in large electric fields

    Science.gov (United States)

    Chegel, Raad

    2018-02-01

    Based on data of density function theory (DFT) as the input of tight binding model, the electrical conductivity (σ(T)) of graphene nanoribbos (GNRs) and Boron Nitride nanoribbos (BNNRs) under external electric fields with different wide are studied using the Green's function method. The BNNRs are wide band gap semiconductor and they are turned into metal depending on their electric field strength. The σ(T) shows increasing in low temperature region and after reaching the maximum value, it will decrease in high temperature region. In lower temperature ranges, the electrical conductivity of the GNRs is greater than that of the BNNRs. In a low temperature region, the σ(T) of GNRs increases linearly with temperature unlike the BNNRs. The electrical conductivity are strongly dependent on the electric field strength.

  4. Effects of an Electric Field on White Sharks: In Situ Testing of an Electric Deterrent

    Science.gov (United States)

    Huveneers, Charlie; Rogers, Paul J.; Semmens, Jayson M.; Beckmann, Crystal; Kock, Alison A.; Page, Brad; Goldsworthy, Simon D.

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks. PMID:23658766

  5. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    Science.gov (United States)

    Huveneers, Charlie; Rogers, Paul J; Semmens, Jayson M; Beckmann, Crystal; Kock, Alison A; Page, Brad; Goldsworthy, Simon D

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  6. Moving antiphase boundaries using an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Vaideeswaran, Kaushik, E-mail: kaushik.vaideeswaran@alumni.epfl.ch; Shapovalov, Konstantin; Yudin, Petr V.; Setter, Nava [Ceramics Laboratory, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne (Switzerland); Tagantsev, Alexander K. [Ceramics Laboratory, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne (Switzerland); Ferroics Laboratory, Ioffe Physical Technical Institute, 194021 St. Petersburg (Russian Federation)

    2015-11-09

    Antiphase boundaries (APBs) are unique domain walls that may demonstrate switchable polarization in otherwise non-ferroelectric materials such as SrTiO{sub 3} and PbZrO{sub 3}. The current study explores the possibility of displacing such domain walls at the nanoscale. We suggest the possibility of manipulating APBs using the inhomogeneous electric field of an Atomic Force Microscopy (AFM) tip with an applied voltage placed in their proximity. The displacement is studied as a function of applied voltage, film thickness, and initial separation of the AFM tip from the APB. It is established, for example, that for films with thickness of 15 nm, an APB may be attracted under the tip with a voltage of 25 V from initial separation of 30 nm. We have also demonstrated that the displacement is appreciably retained after the voltage is removed, rendering it favorable for potential applications.

  7. The bee, the flower and the electric field

    Directory of Open Access Journals (Sweden)

    Robert Daniel

    2016-01-01

    Full Text Available Insects use several different senses to forage on flowers, and detect floral cues such as color, shape, pattern, humidity and chemical volatiles. This presentation will present our discovery of a previously unappreciated sensory capacity in bumblebees (Bombus terrestris: the detection of floral electric fields. We show that these floral fields act as informational cues, and that they can be affected by the visit of naturally electrically charged bees. Like visual cues, floral electric fields exhibit variations in pattern and structure, which can be discriminated by bumblebees. We also show that such electric field information contributes to the complex array of floral cues that together improve a pollinator’s memory of floral rewards. Floral electric fields arise from complex interactions with the surrounding atmosphere, an interaction between plants and their environment that not well understood. Because floral electric fields can change within seconds, this new sensory modality - electrostatic field detection- may facilitate rapid and dynamic communication between flowers and their pollinators.

  8. Mutagenic Potential of Alternating Current Electric Fields

    National Research Council Canada - National Science Library

    Obringer, John

    1997-01-01

    .... Statistical analysis of the data indicated that there was no significant difference (p=> 0.05) in the mutagenic rate of phages grown in the presence of A/C E-fields compared to the controls except at a field-strength of 1053 V/M...

  9. Ion transport under the effect of an electric field in porous medium: application to the separation of rare earths by focalization electrophoresis

    International Nuclear Information System (INIS)

    Vieira-Nunes, A.I.

    1999-01-01

    Trivalent ions of rare earth elements have very similar properties and their difficult separation each from another is usually carried out by liquid-liquid extraction or ion exchange. Focalization electrophoresis represents an alternative route to the usual techniques. The purpose of this work consisted of the fundamental investigation of ion transport phenomena in electrophoretic processes. Focalization electrophoresis is suitable for separation of amphoteric species such as rare earth ions, using a pH gradient in the cell and upon addition of a complexed agent e. g. EDTA. This technique relies upon the difference in iso-electrical points of the considered species, being under the form of free cation near the anode, and in the form of anionic complexed species closer to the cathode. Rare earth species are submitted to the antagonist effects of diffusion and migration, enabling their focalization to occur at the iso-electrical point, corresponding to nil value of their effective mobility. Following a literature survey on rare earth elements and electrophoresis processes, the document describes theoretical and experimental investigations of complexation equilibria of some rare earth elements, namely lanthanum, neodymium, praseodymium and cerium, depending on pH. Values for the iso-electrical points could be estimated. Transport and focalization phenomena in view of rare earth separation, are dealt in the last chapter. Investigations were first carried out without forced circulation of the electrolyte solution and the transient behavior of the system allowed operating conditions to be design and built-up of a continuous device, more suitable to separation, and provided with 42 potential and 42 temperature sensors: the results of the preliminary runs, in form of variable profiles, are presented and discussed. (author)

  10. Stimuli-Responsive Polymer-Clay Nanocomposites under Electric Fields

    OpenAIRE

    Piao, Shang Hao; Kwon, Seung Hyuk; Choi, Hyoung Jin

    2016-01-01

    This short Feature Article reviews electric stimuli-responsive polymer/clay nanocomposites with respect to their fabrication, physical characteristics and electrorheological (ER) behaviors under applied electric fields when dispersed in oil. Their structural characteristics, morphological features and thermal degradation behavior were examined by X-ray diffraction pattern, scanning electron microscopy and transmission electron microscopy, and thermogravimetric analysis, respectively. Particul...

  11. Anomalous electric field changes and high flash rate beneath a ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 5. Anomalous electric field changes and high flash rate beneath a thunderstorm in northeast India ... Further,all electric field changes after a lightning discharge indicates the presence of strong Lower Positive Charge Centers (LPCC)in the active and ...

  12. Communication: Control of chemical reactions using electric field gradients.

    Science.gov (United States)

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  13. Roles of electric field on toroidal magnetic confinement

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Sanuki, Heiji; Fukuyama, Atsushi.

    1992-11-01

    Theoretical research on the influence of the electric field on the toroidal magnetic confinement is surveyed. The static electric field is first described. Physics pictures on the generation of the radial electric field and the influence on the confinement are shown. Neoclassical effects as well as the nonclassical processes are discussed. Emphasis is made on the connection with the improved confinement. Convective cell, i.e. the nonuniform potential on the magnetic surface is also discussed. The roles of the fluctuating electric field are then reviewed. The progress in the recent theories on the anomalous transport is addressed. Through these surveys, the impact of the experiments using the heavy ion beam probes on the modern plasma physics is illustrated. (author) 66 refs

  14. Electric field effects in hyperexcitable neural tissue: A review

    International Nuclear Information System (INIS)

    Durand, D.M.

    2003-01-01

    Uniform electric fields applied to neural tissue can modulate neuronal excitability with a threshold value of about 1mV mm -1 in normal physiological conditions. However, electric fields could have a lower threshold in conditions where field sensitivity is enhanced, such as those simulating epilepsy. Uniform electrical fields were applied to hippocampal brain slices exposed to picrotoxin, high potassium or low calcium solutions. The results in the low calcium medium show that neuronal activity can be completely blocked in 10% of the 30 slices tested with a field amplitude of 1mV mm -1 . These results suggest that the threshold for this effect is clearly smaller than 1mV mm -1 . The hypothesis that the extracellular resistance could affect the sensitivity to the electrical fields was tested by measuring the effect of the osmolarity of the extracellular solution on the efficacy of the field. A 10% decrease on osmolarity resulted in a 56% decrease ( n =4) in the minimum field required for full suppression. A 14% in osmolarity produced an 81% increase in the minimum field required for full suppression. These results show that the extracellular volume can modulate the efficacy of the field and could lower the threshold field amplitudes to values lower than ∼1mmV mm -. (author)

  15. Electric power system applications of optimization

    CERN Document Server

    Momoh, James A

    2008-01-01

    Introduction Structure of a Generic Electric Power System  Power System Models  Power System Control Power System Security Assessment  Power System Optimization as a Function of Time  Review of Optimization Techniques Applicable to Power Systems Electric Power System Models  Complex Power Concepts Three-Phase Systems Per Unit Representation  Synchronous Machine Modeling Reactive Capability Limits Prime Movers and Governing Systems  Automatic Gain Control Transmission Subsystems  Y-Bus Incorporating the Transformer Effect  Load Models  Available Transfer Capability  Illustrative Examples  Power

  16. Increasing Electric Field Strength of Polymer Capacitors (Preprint)

    Science.gov (United States)

    2017-10-31

    AFRL-RX-WP-JA-2017-0496 INCREASING ELECTRIC FIELD STRENGTH OF POLYMER CAPACITORS (PREPRINT) Fahima Ouchen KBRWyle James Grote...POLYMER CAPACITORS (PREPRINT) 5a. CONTRACT NUMBER FA8650-15-D-5518 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) 1) Fahima...ABSTRACT (Maximum 200 words) Increased electric field breakdown in several polymer-based capacitor dielectrics, including biaxially oriented

  17. Effect of longitudinal electric fields on electrostatic electron cyclotron waves

    Energy Technology Data Exchange (ETDEWEB)

    Brinca, A.L.; Dysthe, K.B. (Instituto Superior Tecnico, Lisbon (Portugal). Centro de Electrodinamica)

    1983-02-01

    The influence of static parallel electric fields on the characteristics of obliquely propagating electron Bernstein waves is studied. Analysis of the equilibrium state defines the range of validity of the adopted model, (a collisionless, locally homogeneous medium described by the Vlasov and Poisson equations). An iterative method yields the modified dispersion relation whose numerical solution, for an idealized medium, suggests the relevance of the effects induced by static parallel electric fields in natural plasmas.

  18. Electric field distribution in polymer light-emitting electrochemical cells

    Science.gov (United States)

    deMello; Halls; Graham; Tessler; Friend

    2000-07-10

    We use electroabsorption spectroscopy and modeling studies to probe the electric field in light-emitting electrochemical cells. At room temperature and constant applied bias, the steady-state internal field is zero for a range of biases. However, when the ions are frozen in place by cooling under steady bias, and the bias is subsequently changed, the profile of the electric potential resembles a typical p-n junction.

  19. Polymer composites with graphene nanofillers: electrical properties and applications.

    Science.gov (United States)

    Tjong, Sie Chin

    2014-02-01

    Graphene with extraordinary high elastic modulus and excellent electrical conductivity has good prospects for use as the filler material for fabricating novel polymer composites designed for electrostatic discharge and EMI shielding protection, field emission, gas sensor, and fuel cell applications. Large amounts of graphene oxide (GO) can be obtained by wet chemical oxidation of graphite into a mixture of concentrated sulfuric acid, sodium nitrate and potassium permanganate. Accordingly, carbon atoms in the basal plane and edges of GO are decorated with oxygenated functional groups, forming an electrical insulator. To restore electrical conductivity, chemical reduction or thermal annealing is needed to eliminate oxygenated groups of GO. However, such treatments induce internal defects and remove oxygenated atoms of GO partially. The remnant-oxygenated groups affect electrical conductivity of graphene greatly. Nevertheless, reduced graphene oxide and thermally reduced graphene oxide are sufficiently conductive to form polymer nanocomposites at very low percolation threshold. This review provides the fundamentals and state-of-the-art developments in the fabrication methods and electrical property characterizations as well as the applications of novel graphene/polymer nanocomposites. Particular attention is paid to their processing-structural-electrical property relationships.

  20. A Review of the Responses of Two- and Three-Dimensional Engineered Tissues to Electric Fields

    Science.gov (United States)

    Hronik-Tupaj, Marie

    2012-01-01

    The application of external biophysical signals is one approach to tissue engineering that is explored less often than more traditional additions of exogenous biochemical and chemical factors to direct cell and tissue outcomes. The study of bioelectromagnetism and the field of electrotherapeutics have evolved over the years, and we review biocompatible electric stimulation devices and their successful application to tissue growth. Specifically, information on capacitively coupled alternating current, inductively coupled alternating current, and direct current devices is described. Cell and tissue responses from the application of these devices, including two- and three-dimensional in vitro studies and in vivo studies, are reviewed with regard to cell proliferation, adhesion, differentiation, morphology, and migration and tissue function. The current understanding of cellular mechanisms related to electric stimulation is detailed. The advantages of electric stimulation are compared with those pf other techniques, and areas in which electric fields are used as an adjuvant therapy for healing and regeneration are discussed. PMID:22046979

  1. Possibilities for application of solar electricity in Macedonia

    International Nuclear Information System (INIS)

    Ristov, M.; Peshevski, V.; Kocev, K.

    1996-01-01

    In this paper solar global irradiation in R. Macedonia is estimated and some favorable fields for photovoltaic application are emphasized. By means of Angstrom's equation and using solar hour duration data for seven locations, mean daily horizontal surface solar energy is calculated. Obtained average value on whole territory is 4,2 kWh/m 2 day. On fixed tilt active surface (β=35 0 ) solar flux would be increased approximately 15%. Possible fields for photovoltaic systems applications are: rural electrification, water pumping in mountain areas and supplying of Tv and radio relay station. In case of small village standard electrification, due to inevitable distribution network over sizing, the price of electricity is around 2,5 $/kWh. If photovoltaic system is used for the same purpose, the electricity would amount 35 c/kWh. (author). 7 refs., 4 tabs., 1 ill

  2. Vacuum radiation induced by time dependent electric field

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-04-01

    Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  3. The chromatographic separation of particles using optical electric fields

    DEFF Research Database (Denmark)

    Javier Alvarez, Nicolas; Jeppesen, Claus; Yvind, Kresten

    2013-01-01

    We introduce a new field-flow fractionation (FFF) technique, whereby molecules are separated based on their differential interaction (dielectrophoresis (DEP)) with optical electric fields, i.e. electric fields with frequencies in the visible and near-infrared range. The results show that a parallel...... array of axially non-uniform optical fields yielding an attractive potential (positive-DEP-FFF) is advantageous for the separation of polymers, biomolecules, and nanoparticles over very short distances. Furthermore, positive-DEP-FFF yields superior selectivity and resolution compared to conventional...

  4. Vacuum radiation induced by time dependent electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo, E-mail: zhangbolfrc@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Gu, Yu-qiu, E-mail: yqgu@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China)

    2017-04-10

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  5. Effect of the radial electric field on turbulence

    International Nuclear Information System (INIS)

    Carreras, B.A.; Lynch, V.E.

    1990-01-01

    For many years, the neoclassical transport theory for three- dimensional magnetic configurations, such as magnetic mirrors, ELMO Bumpy Tori (EBTs), and stellarators, has recognized the critical role of the radial electric field in the confinement. It was in these confinement devices that the first experimental measurements of the radial electric field were made and correlated with confinement losses. In tokamaks, the axisymmetry implies that the neoclassical fluxes are ambipolar and, as a consequence, independent of the radial electric field. However, axisymmetry is not strict in a tokamak with turbulent fluctuations, and near the limiter ambipolarity clearly breaks down. Therefore, the question of the effect of the radial electric field on tokamak confinement has been raised in recent years. In particular, the radial electric field has been proposed to explain the transition from L-mode to H-mode confinement. There is some initial experimental evidence supporting this type of explanation, although there is not yet a self-consistent theory explaining the generation of the electric field and its effect on the transport. Here, a brief review of recent results is presented. 27 refs., 4 figs

  6. Spiking patterns of a hippocampus model in electric fields

    International Nuclear Information System (INIS)

    Men Cong; Wang Jiang; Qin Ying-Mei; Wei Xi-Le; Deng Bin; Che Yan-Qiu

    2011-01-01

    We develop a model of CA3 neurons embedded in a resistive array to mimic the effects of electric fields from a new perspective. Effects of DC and sinusoidal electric fields on firing patterns in CA3 neurons are investigated in this study. The firing patterns can be switched from no firing pattern to burst or from burst to fast periodic firing pattern with the increase of DC electric field intensity. It is also found that the firing activities are sensitive to the frequency and amplitude of the sinusoidal electric field. Different phase-locking states and chaotic firing regions are observed in the parameter space of frequency and amplitude. These findings are qualitatively in accordance with the results of relevant experimental and numerical studies. It is implied that the external or endogenous electric field can modulate the neural code in the brain. Furthermore, it is helpful to develop control strategies based on electric fields to control neural diseases such as epilepsy. (interdisciplinary physics and related areas of science and technology)

  7. Static electric field enhancement in nanoscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Márquez-Mijares, Maykel, E-mail: mmarquez@instec.cu [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Avenida Salvador Allende 1110, Quinta de los Molinos, La Habana (Cuba)

    2016-08-28

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  8. Interactions of pulsed electric fields with living organisms

    International Nuclear Information System (INIS)

    Vezinet, R.; Joly, J.C.; Meyer, O.; Gilbert, C.; Fourrier-Lamer, A.; Silve, A.; Mir, L.M.; Rols, M.P.; Chopinet, L.; Teissie, J.; Roux, D.

    2013-01-01

    Biologists are more and more involved in the study of the interactions of electromagnetic fields with human body for therapeutics and health applications. In this article we present 4 studies. The first study concerns the interaction between the electromagnetic field and the biochemical reaction of the hydrolysis of the acetylcholine, a primary neurotransmitter of the human body. It has been shown that a progressive slowing-down of the reaction appears when the pulse repetition frequency increases. The second study is dedicated to the effects of electromagnetic pulses at the cell membrane level. We know that electromagnetic pulses can alter the permeability of the cell membrane. We have used rectangular electromagnetic pulses to allow chemicals to enter the cell. In the case of cancer treatment the efficiency of a chemicals like bleomycin can be largely increased. The third study is dedicated to the use of 2 electromagnetic pulses of different duration to optimize gene transfer into the cell nucleus. The last study focuses on the analysis of plant reactions when facing electromagnetic pulses. An experiment performed on a sunflower shows that despite high electric fields no electro-physiological response of the plant has been measured when the sunflower was submitted to electromagnetic pulses

  9. Controlling dielectrics with the electric field of light.

    Science.gov (United States)

    Schultze, Martin; Bothschafter, Elisabeth M; Sommer, Annkatrin; Holzner, Simon; Schweinberger, Wolfgang; Fiess, Markus; Hofstetter, Michael; Kienberger, Reinhard; Apalkov, Vadym; Yakovlev, Vladislav S; Stockman, Mark I; Krausz, Ferenc

    2013-01-03

    The control of the electric and optical properties of semiconductors with microwave fields forms the basis of modern electronics, information processing and optical communications. The extension of such control to optical frequencies calls for wideband materials such as dielectrics, which require strong electric fields to alter their physical properties. Few-cycle laser pulses permit damage-free exposure of dielectrics to electric fields of several volts per ångström and significant modifications in their electronic system. Fields of such strength and temporal confinement can turn a dielectric from an insulating state to a conducting state within the optical period. However, to extend electric signal control and processing to light frequencies depends on the feasibility of reversing these effects approximately as fast as they can be induced. Here we study the underlying electron processes with sub-femtosecond solid-state spectroscopy, which reveals the feasibility of manipulating the electronic structure and electric polarizability of a dielectric reversibly with the electric field of light. We irradiate a dielectric (fused silica) with a waveform-controlled near-infrared few-cycle light field of several volts per angström and probe changes in extreme-ultraviolet absorptivity and near-infrared reflectivity on a timescale of approximately a hundred attoseconds to a few femtoseconds. The field-induced changes follow, in a highly nonlinear fashion, the turn-on and turn-off behaviour of the driving field, in agreement with the predictions of a quantum mechanical model. The ultrafast reversibility of the effects implies that the physical properties of a dielectric can be controlled with the electric field of light, offering the potential for petahertz-bandwidth signal manipulation.

  10. Action potential propagation: ion current or intramembrane electric field?

    Science.gov (United States)

    Martí, Albert; Pérez, Juan J; Madrenas, Jordi

    2018-01-01

    The established action potential propagation mechanisms do not satisfactorily explain propagation on myelinated axons given the current knowledge of biological channels and membranes. The flow across ion channels presents two possible effects: the electric potential variations across the lipid bilayers (action potential) and the propagation of an electric field through the membrane inner part. The proposed mechanism is based on intra-membrane electric field propagation, this propagation can explain the action potential saltatory propagation and its constant delay independent of distance between Ranvier nodes in myelinated axons.

  11. Electric field and temperature effects in irradiated MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, M. A. G., E-mail: marcilei@fei.edu.br; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A. [Centro Universitário da FEI, São Bernardo do Campo, S.P. (Brazil); Aguiar, Vitor A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H. [Instituto de Física da USP, São Paulo, S.P. (Brazil)

    2016-07-07

    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices.

  12. Electric Field Effect on Magnetization of an Fe Ultrathin Film

    Science.gov (United States)

    Kawaguchi, Masashi; Shimamura, Kazutoshi; Ono, Shimpei; Fukami, Shunsuke; Matsukura, Fumihiro; Ohno, Hideo; Chiba, Daichi; Ono, Teruo

    2012-06-01

    We show the effect of an applied electric field on the magnetization of an Fe ultrathin film. An electric double layer was formed at the interface between an ionic liquid and the Fe layer by the accumulation of ions caused by applying a gate voltage, and a large electric field was exerted on the Fe film surface. The saturation magnetization increased when the electron density at the Fe surface increased. A change in the saturation magnetization of ˜50% was observed by applying a gate voltage of +/-2 V.

  13. Critical electric field for maximum tunability in nonlinear dielectrics

    Science.gov (United States)

    Akdogan, E. K.; Safari, A.

    2006-09-01

    The authors develop a self-consistent thermodynamic theory to compute the critical electric field at which maximum tunability is attained in a nonlinear dielectric. They then demonstrate that the stored electrostatic free energy functional has to be expanded at least up to the sixth order in electric field so as to define the critical field, and show that it depends solely on the fourth and sixth order permittivities. They discuss the deficiency of the engineering tunability metric in describing nonlinear dielectric phenomena, introduce a critical field renormalized tunability parameter, and substantiate the proposed formalism by computing the critical electric field for prototypical 0.9Pb(Mg1/3,Nb2/3)-0.1PbTiO3 and Ba(Ti0.85,Sn0.15)O3 paraelectrics.

  14. Electric fields in nonhomogeneously doped silicon. Summary of simulations

    International Nuclear Information System (INIS)

    Kotov, I.V.; Humanic, T.J.; Nouais, D.; Randel, J.; Rashevsky, A.

    2006-01-01

    Variations of the doping concentration inside a silicon device result in electric field distortions. These distortions, 'parasitic' fields, have been observed in Silicon Drift Detectors [D. Nouais, et al., Nucl. Instr. and Meth. A 501 (2003) 119; E. Crescio, et al., Nucl. Instr. and Meth. A 539 (2005) 250]. Electric fields inside a silicon device can be calculated for a given doping profile. In this study, the ATLAS device simulator. [Silvaco International, 4701 Patrick Henry Drive, Bldg.2, Santa Clara, CA 95054, USA and s imulation/atlas.html>] was used to calculate the electric field inside an inhomogeneously doped device. Simulations were performed for 1D periodic doping profiles. Results show strong dependence of the parasitic field strength on the 'smoothness' of the doping profile

  15. Electric fields in nonhomogeneously doped silicon. Summary of simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V. [Ohio State University, Columbus, OH 43210 (United States)]. E-mail: kotov@mps.ohio-state.edu; Humanic, T.J. [Ohio State University, Columbus, OH 43210 (United States); Nouais, D. [INFN, Sezione di Torino, I-10125 Turin (Italy); Randel, J. [Ohio State University, Columbus, OH 43210 (United States); Rashevsky, A. [INFN, Sezione di Triste, I-34127 Trieste (Italy)

    2006-11-30

    Variations of the doping concentration inside a silicon device result in electric field distortions. These distortions, 'parasitic' fields, have been observed in Silicon Drift Detectors [D. Nouais, et al., Nucl. Instr. and Meth. A 501 (2003) 119; E. Crescio, et al., Nucl. Instr. and Meth. A 539 (2005) 250]. Electric fields inside a silicon device can be calculated for a given doping profile. In this study, the ATLAS device simulator. [Silvaco International, 4701 Patrick Henry Drive, Bldg.2, Santa Clara, CA 95054, USA and ] was used to calculate the electric field inside an inhomogeneously doped device. Simulations were performed for 1D periodic doping profiles. Results show strong dependence of the parasitic field strength on the 'smoothness' of the doping profile.

  16. Sparse Reconstruction of Electric Fields from Radial Magnetic Data

    International Nuclear Information System (INIS)

    Yeates, Anthony R.

    2017-01-01

    Accurate estimates of the horizontal electric field on the Sun’s visible surface are important not only for estimating the Poynting flux of magnetic energy into the corona but also for driving time-dependent magnetohydrodynamic models of the corona. In this paper, a method is developed for estimating the horizontal electric field from a sequence of radial-component magnetic field maps. This problem of inverting Faraday’s law has no unique solution. Unfortunately, the simplest solution (a divergence-free electric field) is not realistically localized in regions of nonzero magnetic field, as would be expected from Ohm’s law. Our new method generates instead a localized solution, using a basis pursuit algorithm to find a sparse solution for the electric field. The method is shown to perform well on test cases where the input magnetic maps are flux balanced in both Cartesian and spherical geometries. However, we show that if the input maps have a significant imbalance of flux—usually arising from data assimilation—then it is not possible to find a localized, realistic, electric field solution. This is the main obstacle to driving coronal models from time sequences of solar surface magnetic maps.

  17. New Method for Solving Inductive Electric Fields in the Ionosphere

    Science.gov (United States)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  18. Sparse Reconstruction of Electric Fields from Radial Magnetic Data

    Energy Technology Data Exchange (ETDEWEB)

    Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, Durham, DH1 3LE (United Kingdom)

    2017-02-10

    Accurate estimates of the horizontal electric field on the Sun’s visible surface are important not only for estimating the Poynting flux of magnetic energy into the corona but also for driving time-dependent magnetohydrodynamic models of the corona. In this paper, a method is developed for estimating the horizontal electric field from a sequence of radial-component magnetic field maps. This problem of inverting Faraday’s law has no unique solution. Unfortunately, the simplest solution (a divergence-free electric field) is not realistically localized in regions of nonzero magnetic field, as would be expected from Ohm’s law. Our new method generates instead a localized solution, using a basis pursuit algorithm to find a sparse solution for the electric field. The method is shown to perform well on test cases where the input magnetic maps are flux balanced in both Cartesian and spherical geometries. However, we show that if the input maps have a significant imbalance of flux—usually arising from data assimilation—then it is not possible to find a localized, realistic, electric field solution. This is the main obstacle to driving coronal models from time sequences of solar surface magnetic maps.

  19. Electric Field Encephalography as a tool for functional brain research: a modeling study.

    Directory of Open Access Journals (Sweden)

    Yury Petrov

    Full Text Available We introduce the notion of Electric Field Encephalography (EFEG based on measuring electric fields of the brain and demonstrate, using computer modeling, that given the appropriate electric field sensors this technique may have significant advantages over the current EEG technique. Unlike EEG, EFEG can be used to measure brain activity in a contactless and reference-free manner at significant distances from the head surface. Principal component analysis using simulated cortical sources demonstrated that electric field sensors positioned 3 cm away from the scalp and characterized by the same signal-to-noise ratio as EEG sensors provided the same number of uncorrelated signals as scalp EEG. When positioned on the scalp, EFEG sensors provided 2-3 times more uncorrelated signals. This significant increase in the number of uncorrelated signals can be used for more accurate assessment of brain states for non-invasive brain-computer interfaces and neurofeedback applications. It also may lead to major improvements in source localization precision. Source localization simulations for the spherical and Boundary Element Method (BEM head models demonstrated that the localization errors are reduced two-fold when using electric fields instead of electric potentials. We have identified several techniques that could be adapted for the measurement of the electric field vector required for EFEG and anticipate that this study will stimulate new experimental approaches to utilize this new tool for functional brain research.

  20. High electric field phenomena in insulation

    Science.gov (United States)

    Laghari, J. R.; Sarjeant, W. J.

    1989-01-01

    The present study extends previous work to include electron radiation-induced changes in monoisopropyl biphenyl (MIPB)-impregnated polypropylene film as well as the effects of neutron/gamma radiation on dry polypropylene films. Effects that were quite similar were induced by both electron and neutron radiation on the properties of interest of the polypropylene films. Impregnation of the film with MIPB had a mitigatory effect on the degradation of the properties. This report also contains the results of a simultaneous electrical and thermal aging study of a capacitor-grade polypropylene film. The data obtained in this study was fitted to models that will enable realistic prediction of lifetimes under operating conditions.

  1. Time development of electric fields and currents in space plasmas

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2006-05-01

    Full Text Available Two different approaches, referred to as Bu and Ej, can be used to examine the time development of electric fields and currents in space plasmas based on the fundamental laws of physics. From the Bu approach, the required equation involves the generalized Ohm's law with some simplifying assumptions. From the Ej approach, the required equation can be derived from the equation of particle motion, coupled self-consistently with Maxwell's equation, and the definition of electric current density. Recently, some strong statements against the Ej approach have been made. In this paper, we evaluate these statements by discussing (1 some limitations of the Bu approach in solving the time development of electric fields and currents, (2 the procedure in calculating self-consistently the time development of the electric current in space plasmas without taking the curl of the magnetic field in some cases, and (3 the dependency of the time development of magnetic field on electric current. It is concluded that the Ej approach can be useful to understand some magnetospheric problems. In particular, statements about the change of electric current are valid theoretical explanations of change in magnetic field during substorms.

  2. Electric field control of emergent electrodynamics in quantum spin ice

    Science.gov (United States)

    Lantagne-Hurtubise, Étienne; Bhattacharjee, Subhro; Moessner, R.

    2017-09-01

    We study the coupling between conventional (Maxwell) and emergent electrodynamics in quantum spin ice, a 3+1-dimensional U (1 ) quantum spin liquid. We find that a uniform electric field can be used to tune the properties of both the ground state and excitations of the spin liquid. In particular, it induces emergent birefringence, rendering the speed of the emergent light anisotropic and polarization-dependent. A sufficiently strong electric field triggers a quantum phase transition into new U (1 ) quantum spin liquid phases, which trap emergent electric π fluxes. The flux patterns of these new phases depend on the direction of the electric field. Strikingly, some of the canonical pinch points in the spin structure factor, characteristic of classical spin ice, emerge near the phase transition, while they are absent in the quantum spin liquid phases. Estimating the electric field strength required, we find that this transition is potentially accessible experimentally. Finally, we propose a minimal mechanism by which an oscillating electric field can generate emergent radiation inside a quantum spin ice material with non-Kramers spin doublets.

  3. Time development of electric fields and currents in space plasmas

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2006-05-01

    Full Text Available Two different approaches, referred to as Bu and Ej, can be used to examine the time development of electric fields and currents in space plasmas based on the fundamental laws of physics. From the Bu approach, the required equation involves the generalized Ohm's law with some simplifying assumptions. From the Ej approach, the required equation can be derived from the equation of particle motion, coupled self-consistently with Maxwell's equation, and the definition of electric current density. Recently, some strong statements against the Ej approach have been made. In this paper, we evaluate these statements by discussing (1 some limitations of the Bu approach in solving the time development of electric fields and currents, (2 the procedure in calculating self-consistently the time development of the electric current in space plasmas without taking the curl of the magnetic field in some cases, and (3 the dependency of the time development of magnetic field on electric current. It is concluded that the Ej approach can be useful to understand some magnetospheric problems. In particular, statements about the change of electric current are valid theoretical explanations of change in magnetic field during substorms.

  4. Surface states in an external electric field

    International Nuclear Information System (INIS)

    Steslicka, M.

    1975-10-01

    Under conditions typical for field ion microscopy, true surface states can exist. Their shift towards higher energies can be quite significant and, moreover, additional surface levels at still higher energies can appear. The latter can play an important role in the process of tunneling of image gas electrons into surface states

  5. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    Science.gov (United States)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  6. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  7. On a Correlation between the Ionospheric Electric Field and the Time Derivative of the Magnetic Field

    Directory of Open Access Journals (Sweden)

    R. R. Ilma

    2012-01-01

    Full Text Available A correlation of the ionospheric electric field and the time derivative of the magnetic field was noticed over thirty years ago and has yet to be explained. Here we report on another set of examples during the superstorm of November 2004. The electric field in the equatorial ionosphere, measured with the Jicamarca incoherent scatter radar, exhibited a 3 mV/m electric field pulse that was not seen in the interplanetary medium. It was, however, accompanied by a correlation with the time derivative of the magnetic field measured at two points in Peru. Our inclination was to assume that the field was inductive. However, the time scale of the pulse was too short for the magnetic field to penetrate the crust of the Earth. This means that the area threaded by ∂B/∂t was too small to create the observed electric field by induction. We suggest that the effect was caused by a modulation of the ring current location relative to the Earth due to the electric field. This electric field is required, as the magnetic field lines are considered frozen into the plasma in the magnetosphere. The closer location of the ring current to the Earth in turn increased the magnetic field at the surface.

  8. Optimized design of micromachined electric field mills to maximize electrostatic field sensitivity

    OpenAIRE

    Zhou, Yu; Shafai, Cyrus

    2016-01-01

    This paper describes the design optimization of a micromachined electric field mill, in relation to maximizing its output signal. The cases studied are for a perforated electrically grounded shutter vibrating laterally over sensing electrodes. It is shown that when modeling the output signal of the sensor, the differential charge on the sense electrodes when exposed to vs. visibly shielded from the incident electric field must be considered. Parametric studies of device dimensions show that t...

  9. Electric and magnetic fields at extremely low frequencies

    International Nuclear Information System (INIS)

    Anderson, L.E.; Kaune, W.T.

    1989-01-01

    Whole-body exposure to extremely low frequency (ELF, 30-300 Hz) electric fields may involve effects related to stimulation of the sensory apparatus at the body surface (hair vibration, possible direct neural stimulation) and effects within the body caused by the flow of current. Magnetic fields may interact predominantly by the induction of internal current flow. Biological effects observed in a living organism may depend on the electric fields induced inside the body, possibly on the magnetic fields penetrating into the body, and on the fields acting at the surface of the body. Areas in which effects have been observed often appear to be associated with the nervous system, including altered neuronal excitability and neurochemical changes, altered hormone levels, changes in behavioural responses, and changes in biological rhythms. No studies unequivocably demonstrate deleterious effects of ELF electric or magnetic field exposure on mammalian reproduction and development, but several suggest such effects. Exposure to ELF electric and magnetic fields does produce biological effects. However, except for fields strong enough to induce current densities above the threshold for the stimulation of nerve tissues, there is no consensus as to whether these effects constitute a hazard to human health. Human data from epidemiological studies, including reported effects on cancer promotion, congenital malformations, reproductive performance and general health, though somewhat suggestive of adverse health effects, are not conclusive. 274 refs, 13 figs, 6 tabs

  10. Production of pulsed electric fields using capacitively coupled electrodes

    Science.gov (United States)

    Kendall, B. R. F.; Schwab, F. A. S.

    1980-01-01

    It is shown that pulsed electric fields can be produced over extended volumes by taking advantage of the internal capacitances in a stacked array of electrodes. The design, construction, and performance of practical arrays are discussed. The prototype arrays involved fields of 100-1000 V/cm extending over several centimeters. Scaling to larger physical dimensions is straightforward.

  11. High field electrical behaviour in lithium–phospho–vanadate glass ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 1. High field ... The high field electrical switching behaviour of lithium–phospho–vanadate glasses has been studied by determining the current–voltage characteristics. The investigated glasses exhibit temperature, thickness and composition dependent trends.

  12. Abnormally large magnetospheric electric field on 9 November 2004 ...

    Indian Academy of Sciences (India)

    There was a solar event around 1850 UT on 9th November 2004, associated with an abnormally large solar wind flow pressure and large southward interplanetary magnetic field, causing an abnormally large prompt penetration electric field between 1850 and 2100 UT. Abnormally large vertical F-region drifts by Jicamarca ...

  13. Field in Focus with a Maximum Longitudinal Electric Component

    NARCIS (Netherlands)

    Urbach, H.P.; Pereira, S.F.

    2008-01-01

    Closed formulas are presented for the field in the lens pupil for which the longitudinal electric component at the focal point is larger than any other focused field with the same power. The fullwidth-at-half-maximum of the squared amplitude of the maximum longitudinal component is 15% to 30% less

  14. Relativistic Bosons in Time-Harmonic Electric Fields

    Science.gov (United States)

    Buhucianu, Ovidiu; Dariescu, Marina-Aura; Dariescu, Ciprian

    2012-02-01

    In the present paper, we consider a bi-dimensional thin sample, placed in a strong harmonically oscillating electric field and a static magnetic induction, both directed along the normal to the sample's plane. The Klein-Gordon equation describing the relativistic bosons leads to a Mathieu's type equation for the temporal part of the wave functions. It follows that, for the electric field pulsation inside a computable range, depending on the external fields intensities, the amplitude functions are turning from oscillatory to exponentially growing modes. For ultra-relativistic particles, one can recover the periodic stationary amplitude behavior.

  15. Conductivity of impurity graphene nanoribbons and gate electric field

    Science.gov (United States)

    Konobeeva, Natalia; Belonenko, Mikhail

    2017-12-01

    In this paper, we investigate the influence of a gate electric field on the tunneling current for the contact of impurity graphene nanoribbon with a metal or quantum dots. Based on the Hamiltonian for graphene in the tight-binding approximation, the density of states is calculated, which allows us to obtain a tunneling current. We analyze the effect of the field magnitude on the detecting possibility of an impurity in the graphene nanoribbon. A sufficient change of current-voltage characteristic (CVC) of the contact is observed, with an increase in the constant electric field applied parallel to the nanoribbon plane.

  16. 3D electric field calculation with surface charge method

    International Nuclear Information System (INIS)

    Yamada, S.

    1992-01-01

    This paper describes an outline and some examples of three dimensional electric field calculations with a computer code developed at NIRS. In the code, a surface charge method is adopted because of it's simplicity in the mesh establishing procedure. The charge density in a triangular mesh is assumed to distribute with a linear function of the position. The electric field distribution is calculated for a pair of drift tubes with the focusing fingers on the opposing surfaces. The field distribution in an acceleration gap is analyzed with a Fourier-Bessel series expansion method. The calculated results excellently reproduces the measured data with a magnetic model. (author)

  17. Nanoscale x-ray magnetic circular dichroism probing of electric-field-induced magnetic switching in multiferroic nanostructures

    Science.gov (United States)

    Zhao, T.; Scholl, A.; Zavaliche, F.; Zheng, H.; Barry, M.; Doran, A.; Lee, K.; Cruz, M. P.; Ramesh, R.

    2007-03-01

    The magnetic structure as well as its response to an external electric field were studied in ferrimagnetic CoFe2O4 nanopillars embedded in an epitaxial ferroelectric BiFeO3 film using photoemission electron microscopy and x-ray magnetic circular dichroism. Magnetic switching was observed in both Co and Fe magnetic sublattices after application of an electric field. About 50% of the CoFe2O4 nanopillars were measured to switch their magnetization with the electric field, implying an elastic-mediated electric-field-induced magnetic anisotropy change.

  18. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min Suk

    2012-12-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  19. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm Jr., Martin C.; Austen Jr., William G.; Yarmush, Martin L.

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  20. Ionization and recombination in attosecond electric field pulses

    International Nuclear Information System (INIS)

    Dimitrovski, Darko; Solov'ev, Eugene A.; Briggs, John S.

    2005-01-01

    Based on the results of a previous communication [Dimitrovski et al., Phys. Rev. Lett. 93, 083003 (2004)], we study ionization and excitation of a hydrogenic atom from the ground and first excited states in short electric field pulses of several cycles. A process of ionization and recombination which occurs periodically in time is identified, for both small and extremely large peak electric field strengths. In the limit of large electric peak fields closed-form analytic expressions for the population of the initial state after single- and few-cycle pulses are derived. These formulas, strictly valid for asymptotically large momentum transfer from the field, give excellent agreement with fully numerical calculations for all momentum transfers

  1. Manipulation of red blood cells with electric field

    Science.gov (United States)

    Saboonchi, Hossain; Esmaeeli, Asghar

    2009-11-01

    Manipulation of bioparticles and macromolecules is the central task in many biological and biotechnological processes. The current methods for physical manipulation takes advantage of different forces such as acoustic, centrifugal, magnetic, electromagnetic, and electric forces, as well as using optical tweezers or filtration. Among all these methods, however, the electrical forces are particularly attractive because of their favorable scale up with the system size which makes them well-suited for miniaturization. Currently the electric field is used for transportation, poration, fusion, rotation, and separation of biological cells. The aim of the current research is to gain fundamental understanding of the effect of electric field on the human red blood cells (RBCs) using direct numerical simulation. A front tracking/finite difference technique is used to solve the fluid flow and electric field equations, where the fluid in the cell and the blood (plasma) is modeled as Newtonian and incompressible, and the interface separating the two is treated as an elastic membrane. The behavior of RBCs is investigated as a function of the controlling parameters of the problem such as the strength of the electric field.

  2. C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis.

    Science.gov (United States)

    Martínez, Juan Manuel; Luengo, Elisa; Saldaña, Guillermo; Álvarez, Ignacio; Raso, Javier

    2017-09-01

    This paper assesses the application of pulsed electric fields (PEF) to the fresh biomass of Artrhospira platensis in order to enhance the extraction of C-phycocyanin into aqueous media. Electroporation of A. platensis depended on both electric field strength and treatment duration. The minimum electric field intensity for detecting C-phycocyanin in the extraction medium was 15kV/cm after the application of a treatment time 150μs (50 pulses of 3μs). However higher electric field strength were required when shorter treatment times were applied. Response surface methodology was used in order to investigate the influence of electric field strength (15-25kV/cm), treatment time (60-150μs), and temperature of application of PEF (10-40°C) on C-phycocyanin extraction yield (PEY). The increment of the temperature PEF treatment reduced the electric field strength and the treatment time required to obtain a given PEY and, consequently decreased the total specific energy delivered by the treatment. For example, the increment of temperature from 10°C to 40°C permitted to reduce the electric field strength required to extract 100mg/g d w of C-phycocyanin from 25 to 18kV/cm, and the specific energy input from 106.7 to 67.5kJ/Kg. Results obtained in this investigation demonstrated PEF's potential for selectively extraction C-phycocyanin from fresh A. platensis biomass. The purity of the C-phycocyanin extract obtained from the electroporated cells was higher than that obtained using other techniques based on the cell complete destruction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Electric Field Enhancement and Light Transmission in Cylindrical Nanoholes

    Energy Technology Data Exchange (ETDEWEB)

    Shuford, Kevin L [ORNL; Ratner, Mark A. [Northwestern University, Evanston; Gray, Stephen K. [Argonne National Laboratory (ANL); Schatz, George C. [Northwestern University, Evanston

    2007-01-01

    The properties of electric fields in subwavelength cylindrical apertures are examined upon excitation by a far-field source. We find that the largest enhancements are localized at the edge of the aperture, close to its rim. Both the entrance and exit rims of the hole can produce intense fields, although at long wavelengths thick slabs lead to smaller fields at the exit rim. The fields display a two lobe angular pattern characteristic of a radiating dipole in the near field. The influence of aperture size and slab thickness on field enhancement is presented. Although there is often a connection between peak transmission and peak field, the two rarely occur at the same wavelength. Enhancements in the electric field intensity can be increased by an order of magnitude by adding a grooved structure around the aperture, which acts as a grating and permits coupling to surface plasmon polaritons. Our results indicate that nanohole systems can be optimized to yield large electric field enhancements, making them an attractive medium for surface enhanced spectroscopies.

  4. Realistic Electric Field Mapping of Anisotropic Muscle During Electrical Stimulation Using a Combination of Water Diffusion Tensor and Electrical Conductivity.

    Science.gov (United States)

    Choi, Bup Kyung; Oh, Tong In; Sajib, Saurav Zk; Kim, Jin Woong; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-04-01

    To realistically map the electric fields of biological tissues using a diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) method to estimate tissue response during electrical stimulation. Imaging experiments were performed using chunks of bovine muscle. Two silver wire electrodes were positioned inside the muscle tissue for electrical stimulation. Electric pulses were applied with a 100-V amplitude and 100-μs width using a voltage stimulator. During electrical stimulation, we collected DT-MREIT data from a 3T magnetic resonance imaging scanner. We adopted the projected current density method to calculate the electric field. Based on the relation between the water diffusion tensor and the conductivity tensor, we computed the position-dependent scale factor using the measured magnetic flux density data. Then, a final conductivity tensor map was reconstructed using the multiplication of the water diffusion tensor and the scale factor. The current density images from DT-MREIT data represent the internal current flows that exist not only in the electrodes but also in surrounding regions. The reconstructed electric filed map from our anisotropic conductivity tensor with the projected current density shows coverage that is more than 2 times as wide, and higher signals in both the electrodes and surrounding tissues, than the previous isotropic method owing to the consideration of tissue anisotropy. An electric field map obtained by an anisotropic reconstruction method showed different patterns from the results of the previous isotropic reconstruction method. Since accurate electric field mapping is important to correctly estimate the coverage of the electrical treatment, future studies should include more rigorous validations of the new method through in vivo and in situ experiments.

  5. Advanced electrical and electronics materials processes and applications

    CERN Document Server

    Gupta, K M

    2015-01-01

    This comprehensive and unique book is intended to cover the vast and fast-growing field of electrical and electronic materials and their engineering in accordance with modern developments.   Basic and pre-requisite information has been included for easy transition to more complex topics. Latest developments in various fields of materials and their sciences/engineering, processing and applications have been included. Latest topics like PLZT, vacuum as insulator, fiber-optics, high temperature superconductors, smart materials, ferromagnetic semiconductors etc. are covered. Illustrations and exa

  6. Gene delivery in conjunction with gold nanoparticle and tumor treating electric field

    Science.gov (United States)

    Tiwari, Pawan K.; Soo Lee, Yeon

    2013-08-01

    The advances in electrotherapy to treat the diseased biological cell instigate its extension in gene therapy through the delivery of gene into the nucleus. The objective of this study is to investigate the application of moderate intensity alternating electric field, also known as tumor treating electric field on a carrier system consisting of a charged gene complex conjugated to the surface of a gold nanoparticle. The gene delivery mechanism relies on the magnitude and direction of the induced electric field inside the cytoplasm in presence of carrier system. The induced electric field strength is significant in breaking the gene complex-gold nanoparticle bonding, and exerting an electric force pushing the charged gene into the nucleus. The electric force orientation is dependent on the aspect ratio (AR) of the gold nanoparticle and a relationship between them is studied via Maxwell two-dimensional (2D) finite element simulation analyzer. The development of charge density on the surface of carrier system and the required electric field strength to break the bonding are investigated utilizing the Gouy-Chapman-Grahame-Stern (GCGS) theoretical model. A carrier system having the aspect ratio of the gold nanoparticle in the range 1 < AR ≤ 5 and AR = 1 are substantial delivering cationic and anionic genes into the nucleus, respectively.

  7. Alternating current electric field effects on neural stem cell viability and differentiation.

    Science.gov (United States)

    Matos, Marvi A; Cicerone, Marcus T

    2010-01-01

    Methods utilizing stem cells hold tremendous promise for tissue engineering applications; however, many issues must be worked out before these therapies can be routinely applied. Utilization of external cues for preimplantation expansion and differentiation offers a potentially viable approach to the use of stem cells in tissue engineering. The studies reported here focus on the response of murine neural stem cells encapsulated in alginate hydrogel beads to alternating current electric fields. Cell viability and differentiation was studied as a function of electric field magnitude and frequency. We applied fields of frequency (0.1-10) Hz, and found a marked peak in neural stem cell viability under oscillatory electric fields with a frequency of 1 Hz. We also found an enhanced propensity for astrocyte differentiation over neuronal differentiation in the 1 Hz cultures, as compared to the other field frequencies we studied. Published 2010 American Institute of Chemical Engineers

  8. Relationships between the Birkeland currents, ionospheric currents, and electric fields

    International Nuclear Information System (INIS)

    Bleuler, E.; Li, C.H.; Nisbet, J.S.

    1982-01-01

    Calculations are made of the currents and electric fields in the ionosphere by using a global model of the electron densities including conjugate coupling along field lines. Incoherent scatter and rocket measurements of high-latitude electron densities have been used to derive realistic variations of the polar conductivities as a function of magnetic activity. The Birkeland currents have been specified in terms of three indices, the total current into and out of the hemisphere, the ratio of the magnitudes of the currents in the AM and PM sectors, R/sub ap/ , and R 12 , the ratio of the magnitudes of the currents in region 1 and 2. The relationship between these parameters of the Birkeland current systems and the auroral electrojet indices AE, AL, and AU is examined as well as the polar cap potential and the electric field at lower latitudes. The cusp currents have been modeled in relation to the interplanetary magnetic field and calculations are given of their effect on electric field and current patterns. One aim of this study is to produce a mathematical model of the currents, electric fields and energy inputs produced by field aligned currents that is consistent with, and specifiable in terms of, measured geophysical indices

  9. Carrier heating in disordered conjugated polymers in electric field

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2010-01-26

    The electric field dependence of charge carrier transport and the effect of carrier heating in disordered conjugated polymers were investigated. A parameter-free multiscale methodology consisting of classical molecular dynamics simulation for the generation of the atomic structure, large system electronic structure and electron-phonon coupling constants calculations and the procedure for extracting the bulk polymer mobility, was used. The results suggested that the mobility of a fully disordered poly(3-hexylthiophene) (P3HT) polymer increases with electric field which is consistent with the experimental results on samples of regiorandom P3HT and different from the results on more ordered regioregular P3HT polymers, where the opposite trend is often observed at low electric fields. We calculated the electric field dependence of the effective carrier temperature and showed however that the effective temperature cannot be used to replace the joint effect of temperature and electric field, in contrast to previous theoretical results from phenomenological models. Such a difference was traced to originate from the use of simplified Miller-Abrahams hopping rates in phenomenological models in contrast to our considerations that explicitly take into account the electronic state wave functions and the interaction with all phonon modes.

  10. Composite micro-sphere optical resonators for electric field measurement

    Science.gov (United States)

    Stubblefield, J.; Womack, D.; Ioppolo, T.; Ayaz, U.; Otugen, M. V.

    2012-02-01

    Polymer-based, multi-layered dielectric microspheres are investigated for high-resolution electric field sensing. The external electric field induces changes in the morphology of the spheres, leading to shifts in the whispering gallery modes (WGMs). Light from a distributed feedback (DFB) laser is sidecoupled into the microspheres using a tapered section of a single mode optical fiber to interrogate the optical modes. The base material of these multi-layered spheres is polydimethylsiloxane (PDMS). Three microsphere geometries are investigated: (1) cores comprised of a 60:1 volumetric ratio of PDMS-to-curing agent mixture that are mixed with varying amounts of barium titanate (BaTiO3) nano particles, (2) cores comprised of 60:1 PDMS that are coated with a thin layer of 60:1 PDMS that is mixed with varying amounts of barium titanate and (3) a composite Carbon Black-BaTiO3 prototype. The outermost layer for all sphere geometries is a thin coat of 60:1 PDMS which serves as the shell waveguide. Light from the tapered laser is coupled into this outermost shell that provides high optical quality factor WGM (Q ~ 106). The microspheres are poled for several hours at electric fields of ~ 1 MV/m to increase their sensitivity to electric field. Preliminary results show that electric fields of the order of 100 V/m can be detected using these composite micro-resonators.

  11. Probing electric field control of magnetism using ferromagnetic resonance

    Science.gov (United States)

    Zhou, Ziyao; Trassin, Morgan; Gao, Ya; Gao, Yuan; Qiu, Diana; Ashraf, Khalid; Nan, Tianxiang; Yang, Xi; Bowden, S. R.; Pierce, D. T.; Stiles, M. D.; Unguris, J.; Liu, Ming; Howe, Brandon M.; Brown, Gail J.; Salahuddin, S.; Ramesh, R.; Sun, Nian X.

    2015-01-01

    Exchange coupled CoFe/BiFeO3 thin-film heterostructures show great promise for power-efficient electric field-induced 180° magnetization switching. However, the coupling mechanism and precise qualification of the exchange coupling in CoFe/BiFeO3 heterostructures have been elusive. Here we show direct evidence for electric field control of the magnetic state in exchange coupled CoFe/BiFeO3 through electric field-dependent ferromagnetic resonance spectroscopy and nanoscale spatially resolved magnetic imaging. Scanning electron microscopy with polarization analysis images reveal the coupling of the magnetization in the CoFe layer to the canted moment in the BiFeO3 layer. Electric field-dependent ferromagnetic resonance measurements quantify the exchange coupling strength and reveal that the CoFe magnetization is directly and reversibly modulated by the applied electric field through a ~180° switching of the canted moment in BiFeO3. This constitutes an important step towards robust repeatable and non-volatile voltage-induced 180° magnetization switching in thin-film multiferroic heterostructures and tunable RF/microwave devices.

  12. Electric field poling 2G V/m to improve piezoelectricity of PVDF thin film

    Science.gov (United States)

    Hartono, Ambran; Darwin, Ramli, Satira, Suparno; Djamal, Mitra; Herman

    2016-03-01

    Polyvinylidene fluoride (PVDF) is a polymer with unique characteristics i.e. piezoelectric and ferrroelectric properties. Piezoelectric propertiesof PVDF are determined by the fraction of β-phase structure. Several optimization methods have been developed to improve the piezoelectric properties of PVDF. One of our research efforts is to improve the piezoelectricity of PVDF by electric poling with high electric field 2G V/m. The application of high electric field performed on PVDF films with a thickness of 1 1m. Each sample was made with a deep coating method, with annealing temperature 70°C-110°C. Based on the XRD characterization, we have obtained value of β-fraction of samples after poling are: 56%, 61%, 77%, 81% and 83%, respectively. Therefore, high electric field poling has been able to improve the piezoelectric properties of PVDF films. The PVDF with good piezoelectric properties are potential can did a tes for piezoelectric sensors and actuators devices.

  13. Flow, current, and electric field in omnigenous stellarators

    Science.gov (United States)

    Landreman, Matt

    2011-10-01

    An omnigenous magnetic field is one in which all collisionless drift orbits are confined. Omnigenity is a less restrictive condition than quasisymmetry, for a magnetic field can be omnigenous without being quasisymmetric, whereas all quasisymmetric fields are omnigenous. Even though an omnigenous stellarator is generally fully three-dimensional, we have derived concise, explicit expressions for the bootstrap current, ion flow, and radial electric field in these devices in the long-mean-free-path regime, as well as expressions for the collisionality-independent Pfirsch-Schlüter current and flow in these devices. The radial electric field is determined in a manner that is consistent with intrinsic ambipolarity in the quasisymmetric limit. This electric field turns out to be independent of the details of the magnetic field geometry. The flow and current expressions involve only one more term than known expressions for quasisymmetric plasmas, but our results apply to a much larger class of stellarators. If the B contours of an omnigenous field close poloidally, the bootstrap current vanishes,. As a result, the drive for MHD instability is reduced, and the magnetic field optimization is less sensitive to the pressure profile. Stellarators that are optimized for maximal alpha-particle confinement will be approximately omnigenous, so our analytic results may give new insight into the physics of advanced stellarators. Supported by US DoE contract DE-FG02-91ER-54109.

  14. Structure and viscosity of a transformer oil-based ferrofluid under an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Rajnak, M., E-mail: rajnak@saske.sk [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Timko, M.; Kopcansky, P.; Paulovicova, K. [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Tothova, J.; Kurimsky, J.; Dolnik, B.; Cimbala, R. [Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Avdeev, M.V. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Petrenko, V.I. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Taras Shevchenko Kyiv National University, Volodymyrska Street 64, 01601 Kyiv (Ukraine); Feoktystov, A. [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching (Germany)

    2017-06-01

    Various structural changes of ferrofluids have been intensively studied under external magnetic fields. In this work we present an experimental evidence of similar changes induced by an electric field. In the context of the electric field effect on ferrofluids structure, we studied a simple ferrofluid consisting of iron oxide nanoparticles coated with oleic acid and dispersed in transformer oil. The structural changes have been observed both on macroscopic and microscopic scale. We also demonstrate a remarkable impact of the electric field on the ferrofluid viscosity in relation to the reported structural changes. It was found that the electric field induced viscosity changes are analogous to the magnetoviscous effect. These changes and the electroviscous effect are believed to stem from the dielectric permittivity contrast between the iron oxide nanoparticles and transformer oil, giving rise to the effective electric polarization of the nanoparticles. It is highlighted that this electrorheological effect should be considered in studies of ferrofluids for high voltage engineering applications, as it can have impact on the thermomagnetic convection or the dielectric breakdown performance. - Highlights: • An experimental evidence of the electric field induced structural changes in a ferrofluid is presented. • An electroviscous effect in the transformer oil-based ferrofluid is shown. • The dielectric contrast between the particles and the carrier fluid is the key factor. • The potential impact on the thermomagnetic convection of ferrofluids in power transformers is highlighted.

  15. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    DEFF Research Database (Denmark)

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually...... reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode...... arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 m...

  16. Resistance switching induced by electric fields in manganite thin films

    International Nuclear Information System (INIS)

    Villafuerte, M; Juarez, G; Duhalde, S; Golmar, F; Degreef, C L; Heluani, S P

    2007-01-01

    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of 0.5 Ca 0.5 MnO 3 (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results

  17. Electric Field Structures in Thin Films: Formation and Properties

    DEFF Research Database (Denmark)

    Cassidy, Andrew; Plekan, Oksana; Balog, Richard

    2014-01-01

    by combining layers of different spontelectric materials. This is demonstrated using the spontelectric materials nitrous oxide, toluene, isoprene, isopentane, and CF2Cl2. These yield a variety of tailored electric field structures, with individual layers harboring fields between 107 and 108 V/m. Fields may......A newly discovered class of molecular materials, so-called “spontelectrics”, display spontaneous electric fields. Here we show that the novel properties of spontelectrics can be used to create composite spontelectrics, illustrating how electric fields in solid films may be structured on the nanoscale...

  18. Electrosensitization Increases Antitumor Effectiveness of Nanosecond Pulsed Electric Fields In Vivo.

    Science.gov (United States)

    Muratori, Claudia; Pakhomov, Andrei G; Heller, Loree; Casciola, Maura; Gianulis, Elena; Grigoryev, Sergey; Xiao, Shu; Pakhomova, O N

    2017-01-01

    Nanosecond pulsed electric fields are emerging as a new modality for tissue and tumor ablation. We previously reported that cells exposed to pulsed electric fields develop hypersensitivity to subsequent pulsed electric field applications. This phenomenon, named electrosensitization, is evoked by splitting the pulsed electric field treatment in fractions (split-dose treatments) and causes in vitro a 2- to 3-fold increase in cytotoxicity. The aim of this study was to show the benefit of split-dose treatments for in vivo tumor ablation by nanosecond pulsed electric field. KLN 205 squamous carcinoma cells were embedded in an agarose gel or grown subcutaneously as tumors in mice. Nanosecond pulsed electric field ablations were produced using a 2-needle probe with a 6.5-mm interelectrode distance. In agarose gel, splitting a pulsed electric field dose of 300, 300-ns pulses (20 Hz, 4.4-6.4 kV) in 2 equal fractions increased cell death up to 3-fold compared to single-train treatments. We then compared the antitumor effectiveness of these treatments in vivo. At 24 hours after treatment, sensitizing tumors by a split-dose pulsed electric field exposure (150 + 150, 300-ns pulses, 20 Hz, 6.4 kV) caused a 4- and 2-fold tumor volume reduction as compared to sham and single-train treatments, respectively. Tumor volume reduction that exceeds 75% was 43% for split-dose-treated animals compared to only 12% for single-dose treatments. The difference between the 2 experimental groups remained statistically significant for at least 1 week after the treatment. The results show that electrosensitization occurs in vivo and can be exploited to assist in vivo cancer ablation.

  19. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation.

    Science.gov (United States)

    Pelletier, Simon J; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2014-12-07

    The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  20. Phenomenon of the time-reversal violating magnetic field generation by a static electric field in a medium and vacuum

    OpenAIRE

    Baryshevsky, Vladimir G.

    1999-01-01

    It is shown that the T- and P-odd weak interactions yield to the existence of both electric field and magnetic (directed along the electric field) field around an electric charge. Similarly the assotiated magnetic field is directed along the vector of strength of stationary gravitational field.

  1. Electric-field effects on reactions between oxides

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.T.; Gilliss, S.R.; Carter, C.B. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemical Engineering and Materials Science

    1998-12-31

    Thin films of In{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} have been deposited on (001) MgO using pulsed-laser deposition (PLD). These thin-film diffusion couples were then reacted in an applied electric field at elevated temperatures. In this type of solid-state reaction, both the reaction rate and the interfacial stability are affected by the transport properties of the reacting ions. The electric field provides a very large external driving force that influences the diffusion of the cations in the constitutive layers. This induced ionic current causes changes in the reaction rates, interfacial stability and distribution of the phases. Through the use of electron microscopy techniques the reaction kinetics and interface morphology have been investigated in these spinel-forming systems, to gain a better understanding of the influence of an electric field on solid-state reactions.

  2. Electric-field effects on reactions between oxides

    International Nuclear Information System (INIS)

    Johnson, M.T.; Gilliss, S.R.; Carter, C.B.

    1998-01-01

    Thin films of In 2 O 3 and Fe 2 O 3 have been deposited on (001) MgO using pulsed-laser deposition (PLD). These thin-film diffusion couples were then reacted in an applied electric field at elevated temperatures. In this type of solid-state reaction, both the reaction rate and the interfacial stability are affected by the transport properties of the reacting ions. The electric field provides a very large external driving force that influences the diffusion of the cations in the constitutive layers. This induced ionic current causes changes in the reaction rates, interfacial stability and distribution of the phases. Through the use of electron microscopy techniques the reaction kinetics and interface morphology have been investigated in these spinel-forming systems, to gain a better understanding of the influence of an electric field on solid-state reactions

  3. Pulsed electric field sensor based on original waveform measurement

    International Nuclear Information System (INIS)

    Ma Liang; Wu Wei; Cheng Yinhui; Zhou Hui; Li Baozhong; Li Jinxi; Zhu Meng

    2010-01-01

    The paper introduces the differential and original waveform measurement principles for pulsed E-field, and develops an pulsed E-field sensor based on original waveform measurement along with its theoretical correction model. The sensor consists of antenna, integrator, amplifier and driver, optic-electric/electric-optic conversion module and transmission module. The time-domain calibration in TEM cell indicates that, its risetime response is shorter than 1.0 ns, and the output pulse width at 90% of the maximum amplitude is wider than 10.0 μs. The output amplitude of the sensor is linear to the electric field intensity in a dynamic range of 20 dB. The measurement capability can be extended to 10 V/m or 50 kV/m by changing the system's antenna and other relative modules. (authors)

  4. The electric field of a uniformly charged cubic shell

    Science.gov (United States)

    McCreery, Kaitlin; Greenside, Henry

    2018-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.

  5. Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.

    2002-01-01

    A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjusted to the sheath. The width of the region is of order V(subscript T)/omega, where V(subscript T) is the electron thermal velocity, and w is frequency of the electric field. The presence of the electric field in the transition region results in a cooling of the energetic electrons and an additional heating of the cold electrons in comparison with the case when the transition region is neglected

  6. Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich

    2002-01-18

    A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjusted to the sheath. The width of the region is of order V(subscript T)/omega, where V(subscript T) is the electron thermal velocity, and w is frequency of the electric field. The presence of the electric field in the transition region results in a cooling of the energetic electrons and an additional heating of the cold electrons in comparison with the case when the transition region is neglected.

  7. Effects of pulsed electric fields on DNA of human lymphocytes.

    Science.gov (United States)

    Delimaris, J; Tsilimigaki, S; Messini-Nicolaki, N; Ziros, E; Piperakis, S M

    2006-11-01

    The effects of pulsed electric fields of low frequency (50 Hz) on DNA of human lymphocytes were investigated. The influence of additional external factors, such as hydrogen peroxide (H2O2) and gamma-irradiation, as well as the repair efficiency in these lymphocytes, was also evaluated. The comet assay, a very sensitive and rapid method for detecting DNA damage at the single cells level was the method used. A significant amount of damage was observed after exposure to the electric fields, compared to the controls. After 2 h incubation at 37 degrees C, a proportion of damage was repaired. H2O2 and gamma-irradiation increased the damage to lymphocytes exposed to pulsed electric fields according to the dose used, while the amount of the repair was proportional to the damage.

  8. Conductivity and electric field variations with altitude in the stratosphere

    Science.gov (United States)

    Holzworth, Robert H.

    1991-01-01

    Data regarding electric field, derived current density, and conductivity are presented for two balloons from the Electrodynamics of the Middle Atmosphere experiment which underwent the longest period of daily altitude variation. The magnetic L values range from 4.3 to 9.5 for the 18 days of Southern Hemisphere statistics, and the average conductivity and vertical electric fields are given. Simultaneous measurements of the average conductivity scale height and the vertical electric-field scale height indicate that vertical current density does not vary with altitude in the 10-28-km range. The measured conductivity varies significantly at a given altitude on a particular day, and some conductivity data sets are similar to other measurements between 10 and 30 km. Comparisons of the measured data to predictions from models of stratospheric conductivity demonstrate significant discrepancies.

  9. Properties of partially ionized hydrogen plasmas in high electric fields

    International Nuclear Information System (INIS)

    Morawetz, K.

    1993-03-01

    In this thesis the fundamental equations of many-particle quantum-statistics of nonequilibrium are treated in respect to arbitrary high electric fields. Generalizations are found for the T-matrix approximation as well as for the shielded potential approximation valid for any field strength. These result in a non-Markovian behavior of the obtained collision integrals, also known as intra-collisional-field-effect (ICFE), and in a broadening of the energy conservation, the so-called collisional broadening (CB), caused by applied electric fields. In linear response it is shown in a new way, how the Debye-Onsager relaxation effect can be rederived from these collision integrals. Furthermore the complete quantum result is presented. Both effects, ICFE and CB, contribute to the right classical limit. The quantum result yields an surprising maximum of this field effects in dependence of the interacting mass ratio, which may be important in exciton-plasmas and semiconductors. (orig.)

  10. An explanation for parallel electric field pulses observed over thunderstorms

    Science.gov (United States)

    Kelley, M. C.; Barnum, B. H.

    2009-10-01

    Every electric field instrument flown on sounding rockets over a thunderstorm has detected pulses of electric fields parallel to the Earth's magnetic field associated with every strike. This paper describes the ionospheric signatures found during a flight from Wallops Island, Virginia, on 2 September 1995. The electric field results in a drifting Maxwellian corresponding to energies up to 1 eV. The distribution function relaxes because of elastic and inelastic collisions, resulting in electron heating up to 4000-5000 K and potentially observable red line emissions and enhanced ISR electron temperatures. The field strength scales with the current in cloud-to-ground strikes and falls off as r -1 with distance. Pulses of both polarities are found, although most electric fields are downward, parallel to the magnetic field. The pulse may be the reaction of ambient plasma to a current pulse carried at the whistler packet's highest group velocity. The charge source required to produce the electric field is very likely electrons of a few keV traveling at the packet velocity. We conjecture that the current source is the divergence of the current flowing at mesospheric heights, the phenomenon called an elve. The whistler packet's effective radiated power is as high as 25 mW at ionospheric heights, comparable to some ionospheric heater transmissions. Comparing the Poynting flux at the base of the ionosphere with flux an equal distance away along the ground, some 30 db are lost in the mesosphere. Another 10 db are lost in the transition from free space to the whistler mode.

  11. Magnetic fluid droplet in a harmonic electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kvasov, D., E-mail: kvasovdmitry@gmail.com [Lomonosov Moscow State University, Moscow (Russian Federation); Naletova, V. [Lomonosov Moscow State University, Moscow (Russian Federation); Beketova, E.; Dikanskii, Yu. [North-Caucasus Federal University, Stavropol (Russian Federation)

    2017-06-01

    A magnetic fluid droplet immersed in oil in an applied harmonic electric field is studied experimentally and theoretically. It is shown that deformations of the droplet observed experimentally are not described by the well-known theory. New double-layer droplet model which describes experimental data well is proposed. - Highlights: • The magnetic fluid droplet in the oil in a harmonic electric field is studied. • The paradoxical flattening effect of the droplet is observed experimentally. • For explaining this effect the model of the double-layer droplet is proposed. • Numerical and experimental data coincide qualitatively and quantitatively.

  12. Electric field effects in scanning tunneling microscope imaging

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Quaade, Ulrich; Grey, Francois

    1998-01-01

    We present a high-voltage extension of the Tersoff-Hamann theory of scanning tunneling microscope (STM) images, which includes the effect of the electric field between the tip and the sample. The theoretical model is based on first-principles electronic structure calculations and has no adjustable...... parameters. We use the method to calculate theoretical STM images of the monohydrate Si(100)-H(2x1) surface with missing hydrogen defects at -2V and find an enhanced corrugation due to the electric field, in good agreement with experimental images....

  13. Reduced dielectric response in spatially varying electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2015-01-01

    In this paper, the dynamical equation for polarization is derived. From this the dielectric response to a spatially varying electric field is analyzed showing a reduced response due to flux of polarization in the material. This flux is modeled as a diffusive process through linear constitutive...... relations between the flux and the gradient of the polarization. Comparison between the theory and molecular dynamics simulations confirms this effect. The effect is significant for small length scale electric field variations and the inclusion of the flux is thus important in nanoscale modeling...

  14. Dependence of electric field on STM tip preparation

    DEFF Research Database (Denmark)

    Huang, D.H.; Grey, Francois; Aono, M.

    1998-01-01

    Voltage pulses applied between an STM tip and a surface can modify the surface on the nanometer scale due to electric-field-induced evaporation. However, at present, different groups have achieved surface modification with quite different bias conditions, and it is still difficult to obtain high...... reproducibility in such experiments. In this paper, we measure the tip displacement during a pulse at constant tunnelling current, and deduce that the electric field produced by the pulse depends in a systematic way on tip preparation, The results show how differences in tip preparation can be a major source...

  15. Effect of AC electric fields on flame spread over electrical wire

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The effect of electric fields on the characteristics of flame spread over insulated electrical wire has been investigated experimentally by varying AC voltage and frequency applied to the wire in the normal gravity condition. The polyethylene (PE) insulated electrical wire was placed horizontally on electrically non-conducting posts and one end of the wire was connected to the high voltage terminal. Thus, the electrical system is the single electrode configuration. The wire was ignited at one end and the flame spread rate along the wire has been measured from the images using a video camera. Two distinct regimes existed depending on the applied AC frequency. In the low frequency regime, the flame spread rate decreased with the frequency and voltage. While in the high frequency regime, it decreased initially with voltage and then increased. At high frequency, the spread rate was even over that without applying electric fields. This result implies that fire safety codes developed without considering the effect of electric fields may require modifications. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  16. Electric field as a novel switch for magnetization of Fe/graphene system

    International Nuclear Information System (INIS)

    Yun, Kyung-Han; Lee, Minho; Chung, Yong-Chae

    2014-01-01

    The magnetic property of a graphene-adsorbed Fe adatom was observed under an external electric field effect (−0.3–0.3 eV/Å) using density functional theory (DFT) calculations. In this study, it was demonstrated that the magnetic moment of Fe on graphene was changed linearly according to the electric field. The density of states and differential planar-averaged charge-density indicated that the changing electronic structure was due to a redistribution of valence electrons under external electric field that induces a continuous change in the localized magnetic moment of the Fe adatom. This research suggests that the magnetic property of the adatom on graphene is tunable by an electric field. Furthermore, these results may be applicable to the spintronic memory device industry. - Highlights: • E-field effect on the magnetic property of Fe/graphene was investigated. • Magnetic moment of Fe adatom changed continuously according to E-field. • Change in magnetic property is caused by the charge redistribution in Fe/graphene system. • Understanding of E-field effect offers a clear view for spintronics applications

  17. AC electric field assisted orientational photorefractive effect in C60-doped nematic liquid crystal

    International Nuclear Information System (INIS)

    Sun Xiudong; Pei Yanbo; Yao Fengfeng; Zhang Jianlong; Hou Chunfeng

    2007-01-01

    Photorefractive gratings were produced in a C 60 -doped nematic liquid crystal cell under the application of two coherent beams and a nonbiased sinusoidal ac electric field. The beam coupling and diffraction of the ac electric field assisted gratings were studied systematically. A stable asymmetric energy transference was obtained. Diffraction was observed when the angle (between the normal of the cell and the bisector of the writing beams) was 0 0 , and the dependence of diffraction efficiency on the peak-to-peak value of the ac voltage was similar to that at an incidence angle of 45 0 , suggesting that the role of the ac field was to facilitate the charge separation, and the space-charge field (SCF) originated predominantly from the diffusion of the ac electric field assisted photo-induced carriers under the application of nonuniform illumination and an applied ac field. The grating was produced by director reorientation induced by the cooperation of the SCF and the applied ac electric field. A self-erasing phenomenon was observed in this cell. An explanation in terms of the movement of two kinds of carriers with opposite signs was proposed

  18. The effect of stationary and sweeping frequency AC electric fields on frost crystal removal on a cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Tudor, V. [US Naval Academy, Annapolis, MD (United States). Advanced Thermal Systems Laboratory, Mechanical Engineering Department; Ohadi, M. [University of Maryland, College Park, MD (United States). Smart and Small Thermal Systems Laboratory, Mechanical Engineering Department

    2006-06-15

    The effect of stationary and sweeping frequency AC electric fields on frost crystals growth and frost control/removal on a cold plate was studied for the first time in this paper. The main results of this study showed that the presence of AC electric fields can greatly affect both the frost crystals growth pattern and mass accumulation on cold surfaces. The ice surface electrical properties and basic electrostatics were used to explain the main findings in this paper. Up to 46% frost reduction was obtained when the electric field frequency spanned 370Hz to 7.5kHz while the applied voltage was 14.5kV. Two different sets of environmental conditions were tested, which showed that the plate temperature placed an important effect on frost crystals growth under electric fields. An optimum application time of the AC electric fields was found based on least frost mass accumulation on the cold plate. (author)

  19. Measurements of middle-atmosphere electric fields and associated electrical conductivities

    Science.gov (United States)

    Hale, L. C.; Croskey, C. L.; Mitchell, J. D.

    1981-01-01

    A simple antenna for measuring the vertical electric field in the 'middle atmosphere' has been flown on a number of rocket-launched parachute-borne payloads. The data from the first nine such flights, launched under a variety of geophysical conditions, are presented, along with electrical conductivities measured simultaneously. The data include indications of layered peaks of several volts per meter in the mesospheric field at high and low latitudes in situations of relatively low conductivity. During an auroral 'REP' event the electric field reversed direction in the lower stratosphere, accompanied by a substantial enhancement in conductivity. The data generally do not confirm speculations based only on the extension of the thunderstorm circuit from below or the mapping of ionospheric and magnetospheric fields from above, but seem to require, in addition, internal generation processes in the middle atmosphere.

  20. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    International Nuclear Information System (INIS)

    Walsh, D. A.; Snedden, E. W.; Jamison, S. P.

    2015-01-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators

  1. Transient tropospheric electric fields resulting from sudden changes in ionospheric conductivity

    Science.gov (United States)

    Dejnakarintra, M.; Inan, U. S.; Carpenter, D. L.

    1985-01-01

    Electric field mapping in the earth's atmosphere has been a research subject for more than 20 years. The present paper is concerned with the downward mapping of an ionospheric electric field into the troposphere following a 'sudden' - change in the atmospheric conductivity profile. The formulation is limited to the case of a static magnetic field which is vertical to the earth's surface. The obtained results are, therefore, most applicable at high latitudes. It is assumed that the 'sudden' change occurs within a fraction of a second and is sustained for a time of the order of at least several seconds. It is pointed out that such changes in ionospheric conductivity can occur as a result of sudden solar particle events (SPE) or particle precipitation into the lower ionosphere. Attention is given to theory, electric field calculations, and the obtained results.

  2. Electrical Properties of Composite Materials with Electric Field-Assisted Alignment of Nanocarbon Fillers

    Science.gov (United States)

    Yakovenko, Olena; Matzui, Ludmila; Danylova, Ganna; Zadorozhnii, Victor; Vovchenko, Ludmila; Perets, Yulia; Lazarenko, Oleksandra

    2017-07-01

    The article reports about electric field-induced alignment of the carbon nanoparticles embedded in epoxy matrix. Optical microscopy was performed to consider the effect of the electric field magnitude and configuration, filler morphology, and aspect ratio on alignment process. Characteristic time of aligned network formation was compared with modeling predictions. Carbon nanotube and graphite nanoplatelet rotation time was estimated using an analytical model based on effective medium approach. Different depolarization factor was applied according to the geometries of the particle and electric field. Solid nanocomposites were fabricated by using AC electric field. We have investigated concentration dependence of electrical conductivity of graphite nanoplatelets/epoxy composites using two-probe technique. It was established that the electrical properties of composites with random and aligned filler distribution are differ by conductivity value at certain filler content and distinguish by a form of concentration dependence of conductivity for fillers with different morphology. These differences were explained in terms of the dynamic percolation and formation of various conductive networks: chained in case of graphite nanoplatelets and crossed framework in case of carbon nanotubes filler.

  3. Spacecraft Electrical Connector Selection and Application Processes

    Science.gov (United States)

    Iannello, Chris; Davis, Mitchell I; Kichak, Robert A.; Slenski, George

    2009-01-01

    This assessment was initiated by the NASA Engineering & Safety Center (NESC) after a number of recent "high profile" connector problems, the most visible and publicized of these being the problem with the Space Shuttle's Engine Cut-Off System cryogenic feed-thru connector. The NESC commissioned a review of NASA's connector selection and application processes for space flight applications, including how lessons learned and past problem records are fed back into the processes to avoid recurring issues. Team members were primarily from the various NASA Centers and included connector and electrical parts specialists. The commissioned study was conducted on spacecraft connector selection and application processes at NASA Centers. The team also compared the NASA spacecraft connector selection and application process to the military process, identified recent high profile connector failures, and analyzed problem report data looking for trends and common occurrences. The team characterized NASA's connector problem experience into a list of top connector issues based on anecdotal evidence of a system's impact and commonality between Centers. These top issues are as follows, in no particular rank order: electrically shorted, bent and/or recessed contact pins, contact pin/socket contamination leading to electrically open or intermittencies, connector plating corrosion or corrosion of connector components, low or inadequate contact pin retention forces, contact crimp failures, unmated connectors and mis-wiring due to workmanship errors during installation or maintenance, loose connectors due to manufacturing defects such as wavy washer and worn bayonet retention, damaged connector elastomeric seals and cryogenic connector failure. A survey was also conducted of SAE Connector AE-8C1 committee members regarding their experience relative to the NASA concerns on connectors. The most common responses in order of occurrence were contact retention, plating issues, worn-out or damaged

  4. Effects of the reconnection electric field on crescent electron distribution functions in asymmetric guide field reconnection

    Science.gov (United States)

    Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.

    2017-12-01

    In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the

  5. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    Science.gov (United States)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-11-01

    We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  6. Electric field tuning of phase separation in manganite thin films

    KAUST Repository

    Lourembam, James

    2014-01-29

    In this paper, we investigate the electric field effect on epitaxial Pr0.65(Ca0.75Sr0.25)0.35MnO3 thin films in electric double-layer transistors. Different from the conventional transistors with semiconducting channels, the sub(micrometer)-scale phase separation in the manganite channels is expected to result in inhomogeneous distribution of mobile carriers and local enhancement of electric field. The field effect is much larger in the low-temperature phase separation region compared to that in the high-temperature polaron transport region. Further enhancement of electroresistance is achieved by applying a magnetic field, and a 250% modulation of resistance is observed at 80 K, equivalent to an increase of the ferromagnetic metallic phase fraction by 0.51%, as estimated by the general effective medium model. Our results illustrate the complementary nature of electric and magnetic field effects in phase-separated manganites, providing insights on such novel electronic devices based on complex oxides.

  7. Plasmasphere and ring current electric fields observed by GEOS 2

    International Nuclear Information System (INIS)

    Schmidt, R.; Pedersen, A.

    1988-01-01

    The electric field double probe data from GEOS 2 have been statistically examined to study the consecutive passage of the afternoon plasmaspheric bulge and the trough at the geostationary orbit. It was found that the average location of the bulge depends on the magnetic activity and was encountered at earlier local times for higher magnetospheric activity. Within the bulge the electric field showed very frequently a typical directional change from dawnward outside to duskward inside the bulge. The magnitude of the magnetic field was frequently much smaller near the outbound crossing of the plasmaspheric bulge than is expected from a long-term average. The E x B/B-squared drift pointed azimuthally eastward prior to the encounter of the bulge and rotated into the sunward direction within the bulge. Following its passage through the dense, cold plasma in the bulge, GEOS 2 encountered a hot and tenuous plasma sheet-type plasma in the trough that occasionally corrupted the electric field measurements. Generally, the electric field in the trough is much smaller than in the bulge. A possible cause of the sunward plasma flow within the bulge is discussed on the basis of these data. 13 references

  8. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces.

    Science.gov (United States)

    Taniyama, Tomoyasu

    2015-12-23

    By taking advantage of the coupling between magnetism and ferroelectricity, ferromagnetic (FM)/ferroelectric (FE) multiferroic interfaces play a pivotal role in manipulating magnetism by electric fields. Integrating the multiferroic heterostructures into spintronic devices significantly reduces energy dissipation from Joule heating because only an electric field is required to switch the magnetic element. New concepts of storage and processing of information thus can be envisioned when the electric-field control of magnetism is a viable alternative to the traditional current based means of controlling magnetism. This article reviews some salient aspects of the electric-field effects on magnetism, providing a short overview of the mechanisms of magneto-electric (ME) coupling at the FM/FE interfaces. A particular emphasis is placed on the ME effect via interfacial magneto-elastic coupling arising from strain transfer from the FE to FM layer. Recent results that demonstrate the electric-field control of magnetic anisotropy, magnetic order, magnetic domain wall motion, and etc are described. Obstacles that need to be overcome are also discussed for making this a reality for future device applications.

  9. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces

    International Nuclear Information System (INIS)

    Taniyama, Tomoyasu

    2015-01-01

    By taking advantage of the coupling between magnetism and ferroelectricity, ferromagnetic (FM)/ferroelectric (FE) multiferroic interfaces play a pivotal role in manipulating magnetism by electric fields. Integrating the multiferroic heterostructures into spintronic devices significantly reduces energy dissipation from Joule heating because only an electric field is required to switch the magnetic element. New concepts of storage and processing of information thus can be envisioned when the electric-field control of magnetism is a viable alternative to the traditional current based means of controlling magnetism. This article reviews some salient aspects of the electric-field effects on magnetism, providing a short overview of the mechanisms of magneto-electric (ME) coupling at the FM/FE interfaces. A particular emphasis is placed on the ME effect via interfacial magneto-elastic coupling arising from strain transfer from the FE to FM layer. Recent results that demonstrate the electric-field control of magnetic anisotropy, magnetic order, magnetic domain wall motion, and etc are described. Obstacles that need to be overcome are also discussed for making this a reality for future device applications. (topical review)

  10. Electric field and interface charge extraction in field-plate assisted RESURF devices

    NARCIS (Netherlands)

    Boksteen, B.K.; Heringa, Anco; Ferrara, A.; Steeneken, Peter G.; Schmitz, Jurriaan; Hueting, Raymond Josephus Engelbart

    2015-01-01

    A methodology for extracting the lateral electric field (Ex) in the drain extension of thin silicon-on-insulator high-voltage field-plate assisted reduced surface field (RESURF) devices is detailed including its limits and its accuracy. Analytical calculations and technology computer-aided design

  11. Extraction of the Electric Field in Field Plate Assisted RESURF Devices

    NARCIS (Netherlands)

    Boksteen, B.K.; Dhar, S.; Heringa, A.; Koops, G.E.J.; Hueting, Raymond Josephus Engelbart

    2012-01-01

    It has previously been reported that the lateral electric field (Ex) in the drain extension of thin SOI HV (700V) field plate assisted RESURF devices can be extracted from their ID-VD characteristics in the subthreshold regime. In this work the prerequisites for valid field extraction and the

  12. Some effects of favorable and adverse electric fields on pool boiling in dielectric fluids

    International Nuclear Information System (INIS)

    Masson, Viviana

    2001-01-01

    The effects of the application of an electric field on pool boiling in dielectric fluids were studied in this work.Two different geometries were used: one which is favorable to the bubble detachment (favorable electric field) and other which attract the bubbles toward the heater (adverse electric field).In the favorable electric field experiments, the void fraction and impact rate were calculated from the measured indicator function.Those parameters were obtained varying the probe-heater distance and the power to the heater.The results show a reduction of the void fraction with increasing applied voltage, probably caused by the combination of the dielectrophoretic force and a smaller bubble size due to the electric field application. Also, the impact rate decreases when a voltage is applied and the heat fluxes are close to the critical heat flux (CHF).On the other hand, the impact rate increases with voltage for moderate heat fluxes.Another interesting result is the approximately exponential decay of the void fraction and impact rate with the distance to the heater. Both the void fraction and the impact rate grow with heat flux if the heat fluxes are moderate, with or without applied voltage.For highest heat fluxes the void fraction still grows with heat flux if there are no applied electric fields while decreases with heat flux when there is an applied voltage. Similar behavior is observed in the impact rate.The boiling regimes was measured with adverse electric fields using two techniques.The heat transfer in the nucleate boiling regime was measured on an electrically powered heater.The results in these experiments show a reduction in the CHF of 10 % for saturation conditions and 10 kV of applied voltage, and a reduction of up to 40 % for 20 oC of liquid subcooling.The boiling curve corresponding to the transition and film boiling was performed with quenching experiments.An increase in the heat flux was achieved when an electric field was applied in spite of the

  13. Effect of pulsed electric field on the germination of barley seeds

    DEFF Research Database (Denmark)

    Dymek, Katarzyna; Dejmek, Petr; Panarese, Valentina

    2012-01-01

    This study explores metabolic responses of germinating barley seeds upon the application of pulsed electric fields (PEF). Malting barley seeds were steeped in aerated water for 24 h and PEF-treated at varying voltages (0 (control), 110, 160, 240, 320, 400 and 480 V). The seeds were then allowed...

  14. Calculation of the Magnetic Fields of the Electric Power Line

    Directory of Open Access Journals (Sweden)

    Patsiuk V.

    2016-12-01

    Full Text Available The task of calculation of per unit length parameters of multi-conductor electrical overhead transmission lines has been treated in the paper. The calculation of distribution of electric and magnetic fields has been performed by means of the finite volume method for entire span of the line. The theoretical justification of the method for calculation the parameters of electromagnetic field taking into account the change of the vector of magnetic potential along the line has been given. The problems of electrostatic and magnetostatic for a single electric conductor and unlimited long conductor with current have been solved. For the inner and total inductivities of a single conductor under the current have been obtained relationships and drawn dependences. Dependence between the speeds of light and of electromagnetic wave’s propagation has been presented. Based on the characteristics of distribution of electric and magnetic fields of multi-conductor lines has been provided the method of calculation of the matrix of own and mutual capacitances and inductivities the calculated values of per unit length parameters of compact 110 kV electric line which is in concordance with one of basic physical constant – the speed of light.

  15. Design of Electric Field Sensors for Measurement of Electromagnetic Pulse

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2014-01-01

    Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.

  16. Nonlinear dynamics of semiconductors in strong THz electric fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun

    weak THz and near infrared pulses as probes. Firstly, an intense THz pulse is used to study THz-induced impact ionization (IMI) dynamics in silicon. Local field enhancement by metallic dipole antenna arrays has been used to generate strong electric fields of several MV/cm in the hot spots near...... uniquely. Finally it is demonstrated for the first time that SiC can be tailored to have extremely fast THz-induced nonlinear behavior in moderate THz electric fields by addition of appropriate dopants. A 4H-SiC sample with high concentrations of nitrogen and boron dopants shows a nonlinear THz......In this thesis, we investigate nonlinear interactions of an intense terahertz (THz) field with semiconductors, in particular the technologically relevant materials silicon and silicon carbide. We reveal the time-resolved dynamics of the nonlinear processes by pump-probe experiments that involve...

  17. Inactivation of Listeria monocytogenes in milk by pulsed electric field.

    Science.gov (United States)

    Reina, L D; Jin, Z T; Zhang, Q H; Yousef, A E

    1998-09-01

    Pasteurized whole, 2%, and skim milk were inoculated with Listeria monocytogenes Scott A and treated with high-voltage pulsed electric field (PEF). The effects of milk composition (fat content) and PEF parameters (electric field strength, treatment time, and treatment temperature) on the inactivation of the bacterium were studied. No significant differences were observed in the inactivation of L. monocytogenes Scott A in three types of milk by PEF treatment. With treatment at 25 degrees C, 1- to 3-log reductions of L. monocytogenes were observed. PEF lethal effect was a function of field strength and treatment time. Higher field strength or longer treatment time resulted in a greater reduction of viable cells. A 4-log reduction of the bacterium was obtained by increasing the treatment temperature to 50 degrees C. Results indicate that the use of a high-voltage PEF is a promising technology for inactivation of foodborne pathogens.

  18. Control of colloids with gravity, temperature gradients, and electric fields

    CERN Document Server

    Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M

    2003-01-01

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  19. Transport and radial electric field in torus plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Masao; Nakajima, Noriyoshi; Sugama, Hideo [National Inst. for Fusion Science, Toki, Gifu (Japan); Maluckov, Aleksandra A. [University of Nis, Prirodno-Matematicki Fakultet, FR (Yugoslavia); Satake, Shinsuke [Graduate University for Advanced Studies, Hayama, Kanagawa (Japan)

    2002-12-01

    Transport phenomena in torus plasmas are discussed focusing on the generation of the neoclassical radial electric field. A sophisticated {delta}f Monte Carlo particle simulation code 'FORTEC' is developed including the effect of finite orbit width (FOW), which is the non-local property of the plasma transport. It will be shown that the neoclassical radial electric field in the axisymmetric tokamak is generated due to this FOW effect. The Lagrangian approach is applied to construct a non-local transport theory in the region of near-axis. The reduction of the heat diffusivity toward the axis will be shown. From a statistical point of view, diffusion processes are studied in the presence of irregular magnetic fields. It is shown that the diffusion processes are non-local in almost all the cases if there are some irregularities in the magnetic field. (author)

  20. Electric field vector measurements in a surface ionization wave discharge

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Adamovich, Igor V; Lempert, Walter R; Böhm, Patrick S; Czarnetzki, Uwe

    2015-01-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ∼100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns −1 . The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (∼100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ∼1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen

  1. Local electric field screening in bi-layer graphene devices

    Directory of Open Access Journals (Sweden)

    Vishal ePanchal

    2014-02-01

    Full Text Available We present experimental studies of both local and macroscopic electrical effects in uniform single- (1LG and bi-layer graphene (2LG devices as well as in devices with non-uniform graphene coverage, under ambient conditions. DC transport measurements on sub-micron scale Hall bar devices were used to show a linear rise in carrier density with increasing amounts of 2LG coverage. Electrical scanning gate microscopy was used to locally top gate uniform and non-uniform devices in order to observe the effect of local electrical gating. We experimentally show a significant level of electric field screening by 2LG. We demonstrate that SGM technique is an extremely useful research tool for studies of local screening effects, which provides a complementary view on phenomena that are usually considered only within a macroscopic experimental scheme.

  2. The Physics of Electric Field Effect Thermoelectric Devices

    OpenAIRE

    Sandomirsky, V.; Butenko, A. V.; Levin, R.; Schlesinger, Y.

    2001-01-01

    We describe here a novel approach to the subject of thermoelectric devices. The current best thermoelectrics are based on heavily doped semiconductors or semimetal alloys. We show that utilization of electric field effect or ferroelectric field effect, not only provides a new route to this problem, bypassing the drawbacks of conventional doping, but also offers significantly improved thermoelectric characteristics. We present here model calculation of the thermoelectric figure of merit in thi...

  3. Fluorescence excitation studies of molecular photoionization in external electric fields

    International Nuclear Information System (INIS)

    Poliakoff, E.D.; Dehmer, J.L.; Parr, A.C.; Leroi, G.E.

    1985-01-01

    Using molecular nitrogen as an example, we show that fluorescence excitation spectroscopy can be used to measure partial photoionization cross sections of free molecules in external electric fields. The production of the N 2 + (B 2 Σ/sub u/ + ) state was studied and the threshold for this process was found to shift linearly with the square root of the applied field. This behavior is compared with the hydrogenic case and with previously studied systems

  4. Fast electric field waveforms and near-surface electric field images of lightning discharges detected on Mt. Aragats in Armenia

    International Nuclear Information System (INIS)

    Chilingarian, A.; Khanikyants, Y.; Kozliner, L.; Soghomonyan, S.

    2016-01-01

    We present the observational data on fast electric waveforms that are detected at 3200 m altitudes above sea level on Mt. Aragats in Armenia during thunderstorms. We analyse the relations of these forms with count rates of particle flux (during Thunderstorm Ground Enhancements -TGEs); to the slow disturbance of the near-surface electrostatic field; and to the lightning location data from the World Wide Lightning Location Network (WWLLN). An observed negative lightning that decreases a negative charge overhead often abruptly terminates TGEs. By analysing the recorded fast electric field waveforms and comparing them with similar classified waveforms reported previously, we could identify the type and polarity of the observed lightnings. (author)

  5. Direct numerical simulation of noninvasive channel healing in electrical field

    KAUST Repository

    Wang, Yi

    2017-11-25

    Noninvasive channel healing is a new idea to repair the broken pipe wall, using external electric fields to drive iron particles to the destination. The repair can be done in the normal operation of the pipe flow without any shutdown of the pipeline so that this method can be a potentially efficient and safe technology of pipe healing. However, the real application needs full knowledge of healing details. Numerical simulation is an effective method. Thus, in this research, we first established a numerical model for noninvasive channel healing technology to represent fluid–particle interaction. The iron particles can be attached to a cracking area by external electrostatic forces or can also be detached by mechanical forces from the fluid. When enough particles are permanently attached on the cracking area, the pipe wall can be healed. The numerical criterion of the permanent attachment is discussed. A fully three-dimensional finite difference framework of direct numerical simulation is established and applied to different cases to simulate the full process of channel healing. The impact of Reynolds number and particle concentration on the healing process is discussed. This numerical investigation provides valuable reference and tools for further simulation of real pipe healing in engineering.

  6. First principle DFT study of electric field effects on the characteristics of bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sabzyan, Hassan; Sadeghpour, Narges [Isfahan Univ. (Iran, Islamic Republic of). Dept. of Chemistry

    2017-04-01

    First principle density functional theory methods, local density and Perdew-Burke-Ernzerhof generalized gradient approximations with Goedecker pseudopotential (LDA-G and PBE-G), are used to study the electric field effects on the binding energy and atomic charges of bilayer graphene (BLG) at the Γ point of the Brillouin zone based on two types of unit cells (α and β) containing n{sub C}=8-32 carbon atoms. Results show that application of electric fields of 4-24 V/nm strengths reduces the binding energies and induces charge transfer between the two layers. The transferred charge increases almost linearly with the strength of the electric field for all sizes of the two types of unit cells. Furthermore, the charge transfer calculated with the α-type unit cells is more sensitive to the electric field strength. The calculated field-dependent contour plots of the differential charge densities of the two layers show details of charge density redistribution under the influence of the electric field.

  7. C/NOFS Observations of AC Electric Field Fields Associated with Equatorial Spread-F

    Science.gov (United States)

    Pfaff, R.; Liebrecht, C.

    2009-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set in which to acquire detailed knowledge of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations, primarily gathered within the ELF band (1 Hz to 250 Hz) on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The data will be used to explore the anisotropy/isotropy of the waves, their wavelength and phase velocity, as well as their spectral distributions. When analyzed in conjunction with the driving DC electric fields and detailed plasma number density measurements, the combined data reveal important information concerning the instability mechanisms themselves. We also present high resolution, vector measurements of intense lower hybrid waves that have been detected on numerous occasions by the VEFI burst memory VLF electric field channels.

  8. Electric field enhancement at multiple densities in laser-irradiated ...

    Indian Academy of Sciences (India)

    Vol. 79, No. 3. — journal of. September 2012 physics pp. 443–456. Electric field enhancement at multiple densities in laser-irradiated nanotube plasma ...... Phys. Lett. 90, 141502 (2007). [23] H M Milchberg, S J McNaught and E Parra, Phys. Rev. E64, 056402 (2001). [24] J Jha and M Krishnamurthy, Appl. Phys. Lett.

  9. Pulsed electric field (PEF)research at USDA, ARS, ERRC

    Science.gov (United States)

    This article summarizes the effects of pulsed electric fields on the microbiological safety and quality aspects of various liquid food matrices, obtained at USDA, ARS, Eastern Regional Research Center under CRIS Project No. 1935-41420-013-00D, Processing Intervention Technologies for Enhancing the S...

  10. Pulsed and streamer discharges in air above breakdown electric field

    NARCIS (Netherlands)

    A.B. Sun (Anbang); H.J. Teunissen (Jannis); U. M. Ebert (Ute)

    2013-01-01

    htmlabstractA 3D particle model is developed to investigate the streamer formation in electric fields above the breakdown threshold, in atmospheric air (1bar, 300 Kelvin). Adaptive particle management, adaptive mesh refinement and parallel computing techniques are used in the code. Photoionization

  11. Evaluations of electric field in laser-generated pulsed plasma

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Gammino, S.; Láska, Leoš; Krása, Josef; Rohlena, Karel; Wolowski, J.

    2006-01-01

    Roč. 56, Suppl. B (2006), B580-B585 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /22./. Prague, 26.06.2006-29.06.2006] Institutional research plan: CEZ:AV0Z10100523 Keywords : electric field in plasma * debye length * plasma temperature * plasma density Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.568, year: 2006

  12. Impact of electric field on Hofmeister effects in aggregation of ...

    Indian Academy of Sciences (India)

    interactions between colloidal minerals. Keywords. Electric field; Hofmeister effects; ionic polarization; colloidal minerals; electrostatic interaction. 1. Introduction. Aggregation and dissociation of colloidal and mineral particles is a corner stone issue in a variety of disci- plines.1,2 According to the Derjaguin, Landau, Verwey.

  13. Electric field enhancement at multiple densities in laser-irradiated ...

    Indian Academy of Sciences (India)

    The electric field in a nanotube plasma is shown to be resonantly enhanced at multiple densities during the two phases of interaction: the ionization phase and the hydrodynamic expansion phase. It is further shown that by a proper choice of hollowness of the nanotubes, a continued occurrence of the resonance over a ...

  14. Conductivity of Graphene Nanoribbon Affected by DC Electric Field

    Science.gov (United States)

    Konobeev, N. N.; Belonenko, M. B.

    2018-01-01

    The paper focuses on the calculation of the density of states based on the electron hopping Hamiltonian of graphene using the direct Hamiltonian diagonalization. The density of states is then recalculated into the tunneling current arising between graphene nanoribbon and contact metal. It is shown that the dc electric field applied in parallel to the nanoribbon plane modifies the properties of the tunneling current.

  15. Cubic to hexagonal phase transition induced by electric field

    Czech Academy of Sciences Publication Activity Database

    Giacomelli, F. C.; Silveira, N.; Nallet, F.; Černoch, Peter; Steinhart, Miloš; Štěpánek, Petr

    2010-01-01

    Roč. 43, č. 9 (2010), s. 4261-4267 ISSN 0024-9297 R&D Projects: GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505 Keywords : order to order transition (OOT) * electric field * block copolymers Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.838, year: 2010

  16. Synthesis and electrical field-assisted sintering behaviour of yttria ...

    Indian Academy of Sciences (India)

    Synthesis and electrical field-assisted sintering behaviour of yttria-stabilized tetragonal ZrO2 nanopowders by polyacrylamide gel method. XINGHUA SU. ∗. , BENPAN WANG, JIE ZHOU and HAOYU SUN. School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China. MS received 5 May 2015; ...

  17. Electric field distribution and simulation of avalanche formation due ...

    Indian Academy of Sciences (India)

    Abstract. Electric field distributions and their role in the formation of avalanche due to the passage of heavy ions in parallel grid avalanche type wire chamber detectors are evaluated using a Monte Carlo simulation. The relative merits and demerits of parallel and crossed wire grid configurations are studied. It is found that ...

  18. Numerical investigation of space charge electric field for a sheet ...

    Indian Academy of Sciences (India)

    Numerical investigation of space charge electric field for a sheet electron beam between two conducting planes. ARTI GOKHALE, PREETI VYAS, J PANIKAR, Y CHOYAL and K P MAHESHWARI. School of Physics, Devi Ahilya University, Khandwa Road, Indore 452 017, India. MS received 26 June 2000; revised 12 April ...

  19. New exact models for anisotropic matter with electric field

    Indian Academy of Sciences (India)

    Jefta M Sunzu

    2017-09-05

    Sep 5, 2017 ... elementary functions. The graphical plots generated for the matter variables and the electric field are well behaved. We also generate relativistic stellar masses consistent with observations. Keywords. Einstein–Maxwell equations; anisotropy; charged matter; equation of state. PACS Nos 04.20.Jb; 04.40.

  20. New exact models for anisotropic matter with electric field

    Indian Academy of Sciences (India)

    2017-09-05

    Sep 5, 2017 ... We can also obtain particular anisotropic models obtained by Maharaj, Sunzu, and Ray. The exact solutions corresponding to our models are found explicitly in terms of elementary functions. The graphical plots generated for the matter variables and the electric field are well behaved. We also generate ...

  1. Complex Colloidal Structures by Self-assembly in Electric Fields

    NARCIS (Netherlands)

    Vutukuri, H.R.

    2012-01-01

    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing

  2. Enhancement of the Performance of a Transfer Field Electric ...

    African Journals Online (AJOL)

    This paper reports the enhancement of the output power and power factor of a transfer field machine operating in the asynchronous mode by direct capacitance injection into the auxiliary winding of the machine, which is electrically isolated from the main winding but magnetically coupled to it. It is shown that by proper ...

  3. Incompressible Einstein–Maxwell fluids with specified electric fields

    Indian Academy of Sciences (India)

    strated that uniform density spheres with constant electric field intensity are not realizable with isotropic pressures. This highlights the necessity of studying the criteria for physical admissability of gravitating spheres in general relativity which are solutions to the Einstein–Maxwell equations. Keywords. Einstein–Maxwell ...

  4. ANALYTICAL EXPRESSION FOR THE ELECTRIC FIELD OF THE ...

    African Journals Online (AJOL)

    30 juin 2012 ... ANALYTICAL EXPRESSION FOR THE ELECTRIC FIELD OF THE SINGLE. MODE LASER HOMOGENEOUS BROADENING IN THE PULSE REGIME. S. Ayadi. Laboratoire d'électronique quantique. Faculté de physique. USTHB BP N 32. El Alia Bab Ezzouar Alger. Received: 25 November 2012 / Accepted: ...

  5. Electrical field stimulation-induced excitatory responses of ...

    African Journals Online (AJOL)

    effect of the endothelium on electrical field stimulation (EFS)-induced excitatory responses of pulmonary artery segments from pulmonary hypertensive rats. Methods: Pulmonary hypertension was induced in rats with a single dose of monocrotaline (60 mg/kg) and 21 days later, arterial rings were set up for isometric tension ...

  6. Holographic gratings in photorefractive polymers without external electric field

    DEFF Research Database (Denmark)

    Kukhtarev, N.; Lyuksyutov, S.; Buchhave, Preben

    1997-01-01

    Using anomalous large diffusion we report a recording of reflection type gratings in a PVK-based photorefractive polymer without any external electric field. The diffraction efficiency of the gratings was measured to be 7%. An efficient modulation of beams during two-beam coupling up to 12...

  7. Electric field distribution and simulation of avalanche formation due ...

    Indian Academy of Sciences (India)

    Electric field distributions and their role in the formation of avalanche due to the passage of heavy ions in parallel grid avalanche type wire chamber detectors are evaluated using a Monte Carlo simulation. The relative merits and demerits of parallel and crossed wire grid configurations are studied. It is found that the crossed ...

  8. A Charged Particle in Perpendicular Electric and Magnetic Fields

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/reso/021/11/1043-1045. Keywords. Relativity, electric and magnetic fields, cycloid, Lorentz transformation. Abstract. Author Affiliations. B A Bhargava1 Adithi Udupa1 P Jayanth Vyasanakere2. BSc III Year, St. Joseph's College, Bengaluru 560 027. Department of Physics, University College ...

  9. Electric field deformation in diamond sensors induced by radiation defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de; Boegelspacher, Felix; Dierlamm, Alexander; Mueller, Thomas; Steck, Pia [Institut fuer Experimentelle Kernphysik (IEKP), Karlsruher Institut fuer Technologie (KIT) (Germany); Dabrowski, Anne; Guthoff, Moritz [CERN (Switzerland)

    2016-07-01

    The BCML system is a beam monitoring device in the CMS experiment at the LHC. As detectors 32 poly-crystalline CVD diamond sensors are positioned in a ring around the beam pipe at a distance of ±1.8 m and ±14.4 m from the interaction point. The radiation hardness of the diamond sensors in terms of measured signal during operation was significantly lower than expected from laboratory measurements. At high particle rates, such as those occurring during the operation of the LHC, a significant fraction of the defects act as traps for charge carriers. This space charge modifies the electrical field in the sensor bulk leading to a reduction of the charge collection efficiency (CCE). A diamond irradiation campaign was started to investigate the rate dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the Transient Current Technique, the CCE was measured. The experimental results were used to create an effective trap model that takes the radiation damage into account. Using this trap model the rate dependent electrical field deformation and the CCE were simulated with the software ''SILVACO TCAD''. This talk compares the experimental measurement results with the simulations.

  10. Sensing electric and magnetic fields with Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Wildermuth, Stefan; Hofferberth, S.; Lesanovsky, Igor

    2006-01-01

    We experimentally demonstrate that one-dimensional Bose-Einstein condensates brought close to microfabricated wires on an atom chip are a very sensitive sensor for magnetic and electric fields reaching a sensitivity to potential variations of ∼ 10-14 eV at 3 μm spatial resolution. We measure a two...

  11. Effect of external electric field on Cyclodextrin-Alcohol adducts

    Indian Academy of Sciences (India)

    Effect of external electric fields on the interaction energy between cyclodextrin and alcohol was analyzed in the light of density functional theory (DFT) and density functional reactivity theory (DFRT). Stability of the cyclodextrin-alcohol adducts was measured in terms of DFT based reactivity descriptor, global hardness, ...

  12. Tool for the control management of electric and magnetic fields of electrical companies

    International Nuclear Information System (INIS)

    Arnera, Patricia; Barbieri, Beatriz

    2008-01-01

    The use of electricity involves a wide range of activities that, because of its diversity, characteristics and relative importance causes different environmental impacts during the extraction, processing, transport and consuming activities. It is the role of the government to elaborate the rules for the incorporation of environmental aspects in the different segments of the market for different electrical energy sources and in all the stages of the process, from the initial evaluation to the construction and exploitation phases. Among the environmental key aspects to considerate, are the electric and magnetic fields, in which society has taken special interest as they are believed to be involved in health hazard. The faculties of the regulatory authority are dictate regulations and technique procedures to be fulfilled by the agents, and check their compliance. In the course of time since the mentioned obligations, the authority has gathered information regarding electric and magnetic fields that includes those planned in the Companies Environmental Planning and those obtained ad-hoc in the role of controller. In order to systematize this information, a data base has been designed considering different types of electric installations, the company which they belong to, equipment used in the measurements, representative layouts with measure points and profiles of the electric and magnetic fields that were obtained. (author)

  13. Medical applications of electromagnetic fields

    Science.gov (United States)

    Lai, Henry C.; Singh, Narendra P.

    2010-04-01

    In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.

  14. Unpinning of rotating spiral waves in cardiac tissues by circularly polarized electric fields

    Science.gov (United States)

    Feng, Xia; Gao, Xiang; Pan, De-Bei; Li, Bing-Wei; Zhang, Hong

    2014-04-01

    Spiral waves anchored to obstacles in cardiac tissues may cause lethal arrhythmia. To unpin these anchored spirals, comparing to high-voltage side-effect traditional therapies, wave emission from heterogeneities (WEH) induced by the uniform electric field (UEF) has provided a low-voltage alternative. Here we provide a new approach using WEH induced by the circularly polarized electric field (CPEF), which has higher success rate and larger application scope than UEF, even with a lower voltage. And we also study the distribution of the membrane potential near an obstacle induced by CPEF to analyze its mechanism of unpinning. We hope this promising approach may provide a better alternative to terminate arrhythmia.

  15. A Method of Slowing and Cooling Molecules and Neutral Atoms Using Time Varying Electric Field Gradients

    Science.gov (United States)

    Gould, Harvey; Maddi, Jason; Dinneen, Timothy

    2000-06-01

    Time-invariant electric field gradients have long been used to deflect beams of molecules and neutral atoms. However, time-varying electric field gradients can also be used to accelerate, slow [1,2], cool [2], or bunch these same beams. The possible applications include slowing and cooling thermal beams of molecules and atoms, launching cold atoms from a trap into a fountain, beam transport, and measuring atomic dipole polarizabilities. [1] H.L. Bethlem, G. Berden, and G Meijer, Phys. Rev. Lett. 83, 1588 (1999). [2] J. A. Maddi, T.P. Dinneen, and H. Gould, Phys. Rev. A60, 3882 (1999).

  16. Design of exposure systems for ELF electric field bioeffects research

    International Nuclear Information System (INIS)

    Kaune, W.T.; Decker, J.R.; Phillips, R.D.; Gillis, M.F.

    1978-01-01

    Two systems for exposure and sham-exposure of large numbers of rats and mice to uniform, vertical, 60-Hz electric fields have been constructed. The rat system contains four racks of four rectangular 1.0m x 2.2m exposure-electrodes that are stacked vertically with a separation between adjacent electrodes of 0.41 m. Any two of the four exposure racks may be energized to a maximum field strength of 150 kV/m. Each exposure electrode is equipped with 24 Lexan cages, each of which holds a single rat. The cage floor is a stainless steel screen that serves as one electrode. The system for watering animals is contained entirely within the electrode and does not protrude above the cage's floor, thereby preventing distortion of the exposure field and electrical shock or discharge as the animal drinks. The total capacity of the system is 288 rats. A similar system of two racks of five electrodes each is used to expose as many as 450 mice to fields at a maximum strength of 150 kV/m while sham exposing an equal number. Measurements of the electric field reveal an overall uniformity within 4% over the area to be occupied by experimental animals. The field inside a Lexan cage is reduced by about 3%. No corona-discharge has been detected. Measurements of ozone concentration in the rat and mouse exposure systems show no difference from background levels. Harmonic distortion has been eliminated by damping and filtering the high-voltage supply. Animals housed in close proximity are partially shielded from the electric field; the total body current in a rat model is reduced by 35 ± 5% when rats are placed in adjacent cages. (author)

  17. Electric field driven orbital order-disorder transition in LaMnO3

    International Nuclear Information System (INIS)

    Bhattacharya, Dipten

    2012-01-01

    The external stimulation such as mechanical pressure magnetic field, electric field, and optical pulse driven phase transition and concomitant gigantic response in physical properties in terms of orders of magnitude jump in electrical resistivity, magnetization, thermoelectric power, or optical constants etc in strongly correlated electron systems has fascinated the researchers for more than two decades now. The underlying physics is nontrivial and the application potential is enormous. We report here our observation of pulsed electric field driven orbital order-disorder transition in canonical orbital ordered system LaMnO 3 . The LaMnO 3 , with orthorhombic crystallographic structure (space group Pbnm), possesses A-type magnetic order below T N (∼ 140 K) and C-type orbital order, with ordering of active 3d 3x 2 -r 2 /3d 3y 2 -r 2 orbitals within a plane and stacking across the plane, below Too (∼ 750 K). We have studied the electrical current-voltage characteristics as well as the differential thermal scans across a wide temperature range 80-800 K under pulsed field on a high quality single crystal of LaMnO 3 . We show how under pulsed electric field, T00 shifts towards lower temperature and the latent heat of the transition decreases monotonically. We also show that the electrical resistivity jumps by more than five orders of magnitude beyond a threshold electric field a low temperature (∼ 80 K). The field driven transition turns out to be originating electro-migration of lattice defects and consequent depinning of orbital domains. The orbital order in LaMnO 3 is not a continuum. It is granular because of interaction with lattice strain, defects, or even interference between Jahn-Teller and MnO 6 tilt order. The domains are pinned by the defects. The electric field driven migration leads to depinning transition. The model of depinning of charge density waves appears to be fitting the data observed in the present case closely, since the orbital order in La

  18. Electric field mediated non-volatile tuning magnetism in CoPt/PMN-PT heterostructure for magnetoelectric memory devices

    Science.gov (United States)

    Yang, Y. T.; Li, J.; Peng, X. L.; Wang, X. Q.; Wang, D. H.; Cao, Q. Q.; Du, Y. W.

    2016-02-01

    We report a power efficient non-volatile magnetoelectric memory in the CoPt/(011)PMN-PT heterostructure. Two reversible and stable electric field induced coercivity states (i.e., high-HC or low-HC) are obtained due to the strain mediated converse magnetoelectric effect. The reading process of the different coercive field information written by electric fields is demonstrated by using a magnetoresistance read head. This result shows good prospects in the application of novel multiferroic devices.

  19. Heating of Particulates by RF Magnetic Field and RF Electric Field

    Science.gov (United States)

    Tang, Wilkin; Bosman, Herman; Lau, Y. Y.; Gilgenbach, R. M.

    2004-11-01

    Microwave heating is an important industrial heating process for certain niche applications such as the sintering of ceramics and rubber vulcanization, and has potential uses in the treatment of mineral ores, heating of reagents and catalysts in chemical reactions, and regeneration of molecular sieves. Here, we examine microwave heating by placing a small, spherical particulate of a general complex permittivity and permeability at the center of a perfectly conducting spherical cavity. The dispersion relation for both the TE mode and TM mode is solved exactly. The damping rates of these modes immediately give the degree of absorption by the rf electric field and by the rf magnetic field, over a wide range of parameters, and from quasi-static to very high frequencies. It is found that, in general, whenever the resistive skin depth is much less than the radius of the particulate, heating by the rf magnetic field always dominates, whether the particulate is magnetic or nonmagnetic. Simple scaling laws have been derived and will be presented [H. Bosman et al., APL (to be published)].

  20. h-Adaptive Mesh Generation using Electric Field Intensity Value as a Criterion (in Japanese)

    OpenAIRE

    Toyonaga, Kiyomi; Cingoski, Vlatko; Kaneda, Kazufumi; Yamashita, Hideo

    1994-01-01

    Finite mesh divisions are essential to obtain accurate solution of two dimensional electric field analysis. It requires the technical knowledge to generate a suitable fine mesh divisions. In electric field problem, analysts are usually interested in the electric field intensity and its distribution. In order to obtain electric field intensity with high-accuracy, we have developed and adaptive mesh generator using electric field intensity value as a criterion.

  1. Schwinger pair production by electric field coupled to inflaton

    Science.gov (United States)

    Geng, Jia-Jia; Li, Bao-Fei; Soda, Jiro; Wang, Anzhong; Wu, Qiang; Zhu, Tao

    2018-02-01

    We analytically investigate the Schwinger pair production in the de Sitter background by using the uniform asymptotic approximation method, and show that the equation of motion in general has two turning points, and the nature of these points could be single, double, real or complex, depending on the choice of the free parameters involved in the theory. Different natures of these points lead to different electric currents. In particular, when β ≡ m2/H2‑9/4 is positive, both turning points are complex, and the electric current due to the Schwinger process is highly suppressed, where m and H denote, respectively, the mass of the particle and the Hubble parameter. For the turning points to be real, it is necessary to have β < 0, and the more negative of β, the easier to produce particles. In addition, when β < 0, we also study the particle production when the electric field E is very weak. We find that the electric current in this case is proportional to E1/2 ‑ √|β|, which is strongly enhanced in the weak electric field limit when m < √2 H.

  2. Electric-field effects in optically generated spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2009-05-25

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  3. Estimating of pulsed electric fields using optical measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Timothy McGuire; Chantler, Gary.

    2013-09-01

    We performed optical electric field measurements ion nanosecond time scales using the electrooptic crystal beta barium borate (BBO). Tests were based on a preliminary bench top design intended to be a proofofprinciple stepping stone towards a modulardesign optical Efield diagnostic that has no metal in the interrogated environment. The long term goal is to field a modular version of the diagnostic in experiments on large scale xray source facilities, or similarly harsh environments.

  4. Analysis of the temporal electric fields in lossy dielectric media

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C

    1991-01-01

    The time-dependent electric fields associated with lossy dielectric media are examined. The analysis illustrates that, with respect to the basic time constant, these lossy media can take a considerable time to attain a steady-state condition. Time-dependent field enhancement factors are considered......, and inherent surface-charge densities quantified. The calculation of electrostatic forces on a free, lossy dielectric particle is illustrated. An extension to the basic analysis demonstrates that, on reversal of polarity, the resultant tangential field at the interface could play a decisive role...

  5. Steady electric fields and currents elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    2013-01-01

    Steady Electric Fields and Currents, Volume 1 is an introductory text to electromagnetism and potential theory. This book starts with the fields associated with stationary charges and unravels the stationary condition to allow consideration of the flow of steady currents in closed circuits. The opening chapter discusses the experimental results that require mathematical explanation and discussion, particularly those referring to phenomena that question the validity of the simple Newtonian concepts of space and time. The subsequent chapters consider steady-state fields, electrostatics, dielectr

  6. Directed self-assembly of colloidal dumbbells with an electric field.

    Science.gov (United States)

    Demirörs, Ahmet Faik; Johnson, Patrick M; van Kats, Carlos M; van Blaaderen, Alfons; Imhof, Arnout

    2010-09-21

    We demonstrate the assembly of colloidal particles with the shape of diatomic molecules ("dumbbells") into crystals that we study with confocal microscopy. The literature on the preparation of nonspherical colloidal particles has grown steadily. Assembly of these particles into regular three-dimensional crystalline lattices, however, is rarely, if ever, achieved and has not yet been studied quantitatively in 3D real space. We find that, by application of an electric field, such particles assemble quite readily. By varying the particle aspect ratio, range of interactions, and electric field strength, we find several different crystal structures of which three have never before been observed. Moreover, the electric field can be used to switch between different structures and manipulate/switch the photonic properties. Moreover, our work sheds light on fundamental questions related to the self-assembly of nonspherical particles.

  7. Dynamic characteristics of non-ideal plasmas in an external high frequency electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, V M [Department of Theoretical Physics, I. I. Mechnikov Odessa National University, 65026 Odessa (Ukraine); Djuric, Z [Silvaco Data System, Silvaco Technology Centre, Compass Point, St. Ives PE27 5JL (United Kingdom); Mihajlov, A A [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Sakan, N M [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Tkachenko, I M [Department of Applied Mathematics, ETSII, Polytechnic University of Valencia, Camino de Vera s/n, Valencia 46022 (Spain)

    2004-07-21

    The dynamic electric conductivity, dielectric permeability and refraction and reflection coefficients of a completely ionized gaseous plasma in a high frequency (HF) external electric field are calculated. These results are obtained within the self-consistent field approach developed earlier for the static conductivity determination. The plasma electron density, N{sub e}, and temperature, T, varied within the following limits: 10{sup 19} {<=} N{sub e} {<=} 10{sup 21} cm{sup -3} and 2 x 10{sup 4} {<=} T {<=} 10{sup 6} K, respectively. The external electric field frequency, f, varied in the range 3 GHz{<=} f {<=} 0.05{omicron}{sub p}, where {omicron}{sub p} is the circular plasma frequency. Thus, the upper limit for f is either in the microwave or in the far infrared frequency band. The final results are shown in a parameterized form, suitable for laboratory applications.

  8. Dynamic characteristics of non-ideal plasmas in an external high frequency electric field

    International Nuclear Information System (INIS)

    Adamyan, V M; Djuric, Z; Mihajlov, A A; Sakan, N M; Tkachenko, I M

    2004-01-01

    The dynamic electric conductivity, dielectric permeability and refraction and reflection coefficients of a completely ionized gaseous plasma in a high frequency (HF) external electric field are calculated. These results are obtained within the self-consistent field approach developed earlier for the static conductivity determination. The plasma electron density, N e , and temperature, T, varied within the following limits: 10 19 ≤ N e ≤ 10 21 cm -3 and 2 x 10 4 ≤ T ≤ 10 6 K, respectively. The external electric field frequency, f, varied in the range 3 GHz≤ f ≤ 0.05ο p , where ο p is the circular plasma frequency. Thus, the upper limit for f is either in the microwave or in the far infrared frequency band. The final results are shown in a parameterized form, suitable for laboratory applications

  9. Transverse conductivity of a relativistic plasma in oblique electric and magnetic fields

    Science.gov (United States)

    Melia, Fulvio; Fatuzzo, Marco

    1991-01-01

    Resistive tearing in a primary candidate for flares occurring in stressed magnetic fields. Its possible application to the strongly magnetized environments (Hz about 10 to the 12th G) near the surface of neutron stars, particularly as a mechanism for generating the plasma heating and particle acceleration leading to gamma-ray bursts, has motivated a quantum treatment of this process, which requires knowledge of the electrical conductivity sigma of a relativistic gas in a new domain (i.e., that of a low-density n/e/) plasma in oblique electric and magnetic fields. This paper discusses the mathematical formalism for calculating sigma and present numerical results for a wide range of parameter values. The results indicate that sigma depends very strongly on both the applied electric and magnetic fields.

  10. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field

    Science.gov (United States)

    Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan

    2017-04-01

    Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.

  11. ELF magnetic fields in electric and gasoline-powered vehicles.

    Science.gov (United States)

    Tell, R A; Sias, G; Smith, J; Sahl, J; Kavet, R

    2013-02-01

    We conducted a pilot study to assess magnetic field levels in electric compared to gasoline-powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline-powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline-powered vehicle and at least one electric vehicle, enabling intra-model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40-1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline-powered cars (P electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross-section of electric-type vehicles. Copyright © 2012 Wiley Periodicals, Inc.

  12. Electrical field stimulation improves bone mineral density in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    A.P.R. Lirani-Galvão

    2006-11-01

    Full Text Available Osteoporosis and its consequent fractures are a great social and medical problem mainly occurring in post-menopausal women. Effective forms of prevention and treatment of osteoporosis associated with lower costs and the least side effects are needed. Electrical fields are able to stimulate osteogenesis in fractures, but little is known about their action on osteoporotic tissue. The aim of the present study was to determine by bone densitometry the effects of electrical stimulation on ovariectomized female Wistar rats. Thirty rats (220 ± 10 g were divided into three groups: sham surgery (SHAM, bilateral ovariectomy (OVX and bilateral ovariectomy + electrical stimulation (OVX + ES. The OVX + ES group was submitted to a 20-min session of a low-intensity pulsed electrical field (1.5 MHz, 30 mW/cm² starting on the 7th day after surgery, five times a week (total = 55 sessions. Global, spine and limb bone mineral density were measured by dual-energy X-ray absorptiometry (DXA Hologic 4500A before surgery and at the end of protocol (84 days after surgery. Electrical stimulation improved (P < 0.05 global (0.1522 ± 0.002, spine (0.1502 ± 0.003, and limb (0.1294 ± 0.003 g/cm² bone mineral density compared to OVX group (0.1447 ± 0.001, 0.1393 ± 0.002, and 0.1212 ± 0.001, respectively. The OVX + ES group also showed significantly higher global bone mineral content (9.547 ± 0.114 g when compared to both SHAM (8.693 ± 0.165 g and OVX (8.522 ± 0.207 g groups (P < 0.05. We have demonstrated that electrical fields stimulate osteogenesis in ovariectomized female rats. Their efficacy in osteoporosis remains to be demonstrated.

  13. Pulsed laser deposition of semiconductor-ITO composite films on electric-field-applied substrates

    International Nuclear Information System (INIS)

    Narazaki, Aiko; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki; Yabe, Akira; Sasaki, Takeshi; Koshizaki, Naoto

    2002-01-01

    The DC electric-field effect on the crystallinity of II-VI semiconductor in composite systems has been investigated for CdS-ITO films fabricated via alternative pulsed laser deposition (PLD) of CdS and indium tin oxide (ITO) on electric-field-applied substrates. The alternative laser ablation was performed under irradiation of ArF excimer laser in mixture gas of helium and oxygen. The application of electric-field facilitated the preferential crystal-growth of CdS in nanometer scale at low pressure, whereas all the films grown without the field were amorphous. There is a large difference in the crystallization between the films grown on field-applied and heated substrates; the latter showed the crystal-growth with random orientations. This difference indicates that the existence of electric-field has an influence on the transformation from amorphous to crystalline phase of CdS. The driving force for the field-induced crystallization is also discussed in the light of the Joule heat

  14. Communication: Polarizable polymer chain under external electric field in a dilute polymer solution

    International Nuclear Information System (INIS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Kiselev, M. G.

    2015-01-01

    We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such “field-induced” globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification

  15. Alternative current source based Schottky contact with additional electric field

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2017-07-01

    Additional electric field (AEF) in the Schottky contacts (SC) that covered the peripheral contact region wide and the complete contact region narrow (as TMBS diode) SC. Under the influence of AEF is a redistribution of free electrons produced at certain temperatures of the semiconductor, and is formed the space charge region (SCR). As a result of the superposition of the electric fields SCR and AEF occurs the resulting electric field (REF). The REF is distributed along a straight line perpendicular to the contact surface, so that its intensity (and potential) has a minimum value on the metal surface and the maximum value at a great distance from the metal surface deep into the SCR. Under the influence of AEF as a sided force the metal becomes negative pole and semiconductor - positive pole, therefore, SC with AEF becomes an alternative current source (ACS). The Ni-nSi SC with different diameters (20-1000 μm) under the influence of the AEF as sided force have become ACS with electromotive force in the order of 0.1-1.0 mV, which are generated the electric current in the range of 10-9-10-7 A, flowing through the external resistance 1000 Ohm.

  16. Investigation of Axial Electric Field Measurements with Grounded-Wire TEM Surveys

    Science.gov (United States)

    Zhou, Nan-nan; Xue, Guo-qiang; Li, Hai; Hou, Dong-yang

    2018-01-01

    The grounded-wire transient electromagnetic (TEM) surveying is often performed along the equatorial direction with its observation lines paralleling to the transmitting wire with a certain transmitter-receiver distance. However, such method takes into account only the equatorial component of the electromagnetic field, and a little effort has been made on incorporating the other major component along the transmitting wire, here denoted as axial field. To obtain a comprehensive understanding of its fundamental characteristics and guide the designing of the corresponding observation system for reliable anomaly detection, this study for the first time investigates the axial electric field from three crucial aspects, including its decay curve, plane distribution, and anomaly sensitivity, through both synthetic modeling and real application to one major coal field in China. The results demonstrate a higher sensitivity to both high- and low-resistivity anomalies by the electric field in axial direction and confirm its great potentials for robust anomaly detection in the subsurface.

  17. Process Control of Pre-Sowing Seed Treatment by Pulsed Electric Field

    Directory of Open Access Journals (Sweden)

    Starodubtseva Galina Petrovna

    2018-03-01

    Full Text Available Presented paper investigates the application of a line voltage changer to an installation for pre-sowing seed treatment by pulsed electric field (PEF in order to increase the sowing quality of seeds and to suppress pathogenic microflora. The installation comprises an AC voltage regulator, a high voltage source, a voltage inverter, a working chamber for seed treatment, a control unit, and current and voltage sensors. The proposed installation differs from the existing apparatuses as it automatically provides the transformation of the pulsed electric field parameters by constant monitoring of power processes in a layer of treated seeds and feedback sending to the control unit. Seed treatment efficiency depends on the dose being determined by the parameters of electric field, namely, intensity in the seed layer, pulse duration, pulse repetition frequency, and seed treatment time. The parameters of rational treatment were determined, and the minimum treatment dose was calculated on the basis of results from the laboratory tests on the effect of pulsed electric field on sowing qualities of winter wheat seeds. It was experimentally confirmed that the proposed installation provides automatic transformation of electric field parameters depending on the changes taking place in the seed layer on the example of seeds with different moisture content maintaining the necessary treatment dose, ensuring the stability and repeatability of results.

  18. The Effect of Uniform and Non-Uniform Electric Fields on Flame Propagation

    Science.gov (United States)

    Moriya, Shinichi; Yoshida, Koji; Shoji, Hideo; Iijima, Akira

    The purpose of this study is to elucidate flame propagation behavior under the application of uniform and non-uniform electric fields by using a constant volume vessel. Two electrodes are attached to the ceiling and the bottom of the combustion chamber and electric fields are applied in the direction of the chamber's vertical axis. A Nd:YAG laser is used to apply laser-induced breakdown for igniting the mixture at the center of the combustion chamber. A homogeneous propane-air mixture is supplied at three equivalence ratios of 0.7, 1.0 and 1.5 and ignited under atmospheric pressure and room temperature. Under a uniform electric field, the premixed flame rapidly propagates both upward and downward, forming a cylindrically shaped flame front. The maximum combustion pressure decreases with increasing input voltage because the flame front reaches the chamber wall rapidly and the heat loss to electrodes increases. However, the combustion duration is little affected by the input voltage. In a non-uniform electric field, the flame propagation velocity in the downward direction increases. Combustion is markedly enhanced when the input voltage is larger than 12 kV because a brush corona discharge occurs and intense turbulence is generated at the flame front. For both uniform and non-uniform electric fields, the horizontal flame velocity is almost the same.

  19. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes.

    Science.gov (United States)

    Yusupov, M; Van der Paal, J; Neyts, E C; Bogaerts, A

    2017-04-01

    Strong electric fields are known to affect cell membrane permeability, which can be applied for therapeutic purposes, e.g., in cancer therapy. A synergistic enhancement of this effect may be accomplished by the presence of reactive oxygen species (ROS), as generated in cold atmospheric plasmas. Little is known about the synergy between lipid oxidation by ROS and the electric field, nor on how this affects the cell membrane permeability. We here conduct molecular dynamics simulations to elucidate the dynamics of the permeation process under the influence of combined lipid oxidation and electroporation. A phospholipid bilayer (PLB), consisting of di-oleoyl-phosphatidylcholine molecules covered with water layers, is used as a model system for the plasma membrane. We show how oxidation of the lipids in the PLB leads to an increase of the permeability of the bilayer to ROS, although the permeation free energy barriers still remain relatively high. More importantly, oxidation of the lipids results in a drop of the electric field threshold needed for pore formation (i.e., electroporation) in the PLB. The created pores in the membrane facilitate the penetration of reactive plasma species deep into the cell interior, eventually causing oxidative damage. This study is of particular interest for plasma medicine, as plasma generates both ROS and electric fields, but it is also of more general interest for applications where strong electric fields and ROS both come into play. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Electric field driven evolution of topological domain structure in hexagonal manganites

    Science.gov (United States)

    Yang, K. L.; Zhang, Y.; Zheng, S. H.; Lin, L.; Yan, Z. B.; Liu, J.-M.; Cheong, S.-W.

    2017-10-01

    Controlling and manipulating the topological state represents an important topic in condensed matters for both fundamental researches and applications. In this work, we focus on the evolution of a real-space topological domain structure in hexagonal manganites driven by electric field, using the analytical and numerical calculations based on the Ginzburg-Landau theory. It is revealed that the electric field drives a transition of the topological domain structure from the type-I pattern to the type-II one. In particular, it is identified that a high electric field can enforce the two antiphase-plus-ferroelectric (AP +FE ) domain walls with Δ Φ =π /3 to approach each other and to merge into one domain wall with Δ Φ = 2 π /3 eventually if the electric field is sufficiently high, where Δ Φ is the difference in the trimerization phase between two neighboring domains. Our simulations also reveal that the vortex cores of the topological structure can be disabled at a sufficiently high critical electric field by suppressing the structural trimerization therein, beyond which the vortex core region is replaced by a single ferroelectric domain without structural trimerization (Q = 0 ). Our results provide a stimulating reference for understanding the manipulation of real-space topological domain structure in hexagonal manganites.