WorldWideScience

Sample records for elastoplasticity

  1. Elastoplasticity theory

    CERN Document Server

    Hashiguchi, Koichi

    2014-01-01

    This book was written to serve as the standard textbook of elastoplasticity for students, engineers and researchers in the field of applied mechanics. The present second edition is improved thoroughly from the first edition by selecting the standard theories from various formulations and models, which are required to study the essentials of elastoplasticity steadily and effectively and will remain universally in the history of elastoplasticity. It opens with an explanation of vector-tensor analysis and continuum mechanics as a foundation to study elastoplasticity theory, extending over various strain and stress tensors and their rates. Subsequently, constitutive equations of elastoplastic and viscoplastic deformations for monotonic, cyclic and non-proportional loading behavior in a general rate and their applications to metals and soils are described in detail, and constitutive equations of friction behavior between solids and its application to the prediction of stick-slip phenomena are delineated. In additi...

  2. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-thomsen, Søren; Ditlevsen, Ove Dalager

    1996-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  3. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-Thomsen, S.; Ditlevsen, Ove Dalager

    1999-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  4. Foundations of elastoplasticity subloading surface model

    CERN Document Server

    Hashiguchi, Koichi

    2017-01-01

    This book is the standard text book of elastoplasticity in which the elastoplasticity theory is comprehensively described from the conventional theory for the monotonic loading to the unconventional theory for the cyclic loading behavior. Explanations of vector-tensor analysis and continuum mechanics are provided first as a foundation for elastoplasticity theory, covering various strain and stress measures and their rates with their objectivities. Elastoplasticity has been highly developed by the creation and formulation of the subloading surface model which is the unified fundamental law for irreversible mechanical phenomena in solids. The assumption that the interior of the yield surface is an elastic domain is excluded in order to describe the plastic strain rate due to the rate of stress inside the yield surface in this model aiming at the prediction of cyclic loading behavior, although the yield surface enclosing the elastic domain is assumed in all the elastoplastic models other than the subloading surf...

  5. Elastoplasticity theory

    CERN Document Server

    Hashiguchi, Koichi

    2009-01-01

    This book details the mathematics and continuum mechanics necessary as a foundation of elastoplasticity theory. It explains physical backgrounds with illustrations and provides descriptions of detailed derivation processes..

  6. Modelling of elasto-plastic material behaviour

    International Nuclear Information System (INIS)

    Halleux, J.P.

    1981-01-01

    The present report describes time-independent elasto-plastic material behaviour modelling techniques useful for implementation in fast structural dynamics computer programs. Elasto-plastic behaviour is characteristic for metallic materials such as steel and is thus of particular importance in the study of reactor safety-related problems. The classical time-independent elasto-plastic flow theory is recalled and the fundamental incremental stress-strain relationships are established for strain rate independent material behaviour. Some particular expressions useful in practice and including reversed loading are derived and suitable computational schemes are shwon. Modelling of strain rate effects is then taken into account, according to experimental data obtained from uniaxial tension tests. Finally qualitative strain rate history effects are considered. Applications are presented and illustrate both static and dynamic material behaviour

  7. Elasto-plastic strain analysis by a semi-analytical method

    Indian Academy of Sciences (India)

    Non-uniform taper bar; rotating disk; elasto-plastic strain analysis; loaded natural frequency. ... The location of initiation of elasto-plastic front and its growth are found to be functions of geometry of the bar and loading ... Sadhana | News.

  8. A parametric study of strength reduction factors for elasto-plastic ...

    Indian Academy of Sciences (India)

    A parametric study of strength reduction factors for elasto-plastic oscillators ... motion duration, earthquake magnitude, geological site conditions, and epicentral distance in case of (non-degrading) elasto-plastic oscillators. ... Sadhana | News.

  9. Investigation on method of elasto-plastic analysis for piping system (benchmark analysis)

    International Nuclear Information System (INIS)

    Kabaya, Takuro; Kojima, Nobuyuki; Arai, Masashi

    2015-01-01

    This paper provides method of an elasto-plastic analysis for practical seismic design of nuclear piping system. JSME started up the task to establish method of an elasto-plastic analysis for nuclear piping system. The benchmark analyses have been performed in the task to investigate on method of an elasto-plastic analysis. And our company has participated in the benchmark analyses. As a result, we have settled on the method which simulates the result of piping exciting test accurately. Therefore the recommended method of an elasto-plastic analysis is shown as follows; 1) An elasto-plastic analysis is composed of dynamic analysis of piping system modeled by using beam elements and static analysis of deformed elbow modeled by using shell elements. 2) Bi-linear is applied as an elasto-plastic property. Yield point is standardized yield point multiplied by 1.2 times, and second gradient is 1/100 young's modulus. Kinematic hardening is used as a hardening rule. 3) The fatigue life is evaluated on strain ranges obtained by elasto-plastic analysis, by using the rain flow method and the fatigue curve of previous studies. (author)

  10. A new approach for elasto-plastic finite strain analysis of cantilever ...

    Indian Academy of Sciences (India)

    A new approach for elasto-plastic finite strain analysis of cantilever beams subjected to uniform bending moment ... Curvature; deflection curve; cantilever beam; elasto-plastic analysis; tapered beam subjected to tipmoment; ... Sadhana | News.

  11. Construction of elasto-plastic boundaries using conservation laws

    OpenAIRE

    Senashov, S.; Filyushina, E.; Gomonova, O.

    2015-01-01

    The solution of elasto-plastic problems is one of the most complicated and actual problems of solid mechanics. Traditionally, these problems are solved by the methods of complex analysis, calculus of variations or semi-inverse methods. Unfortunately, all these methods can be applied to a limited number of problems only. In this paper, a technique of conservation laws is used. This technique allows constructing analytical formulas to determine the elasto-plastic boundary for a wide class of pr...

  12. Elastoplasticity: A link between giant vibrations and overdamped motion

    International Nuclear Information System (INIS)

    Noerenberg, W.

    1984-08-01

    Elastoplasticity of finite Fermi systems results from a non-markovian coupling between collective and intrinsic degrees of freedom and subsequent equilibration essentially due to two-body collisions. Within a transport-theoretical approach referred to as dissipative diabatic dynamics (DDD), elastoplasticity forms the link between giant vibrations and overdamped motion of nuclei. Observable effects resulting from this non-markovian behaviour in nucleus-nucleus collisions are discussed. (orig.)

  13. Elastoplasticity analysis of the nails used in long bone fractures

    International Nuclear Information System (INIS)

    Paterson, R; Paterson, A; Miralles, M T; Del Sel, G; Del Sel, N

    2011-01-01

    Elastoplastic endomedullary nail-insertion system in long bone fractures is a method which allows generating forces, moments, frictions and stress states in parts of the bone previously selected. Adding previous knowledge on the distribution of forces and acting moments over the bone fragments to be threaded, as well as on the elastoplastic and mechanical properties of the nails to be inserted (designing a special, specific structure for each case), the results, coming from 26 years of applying this technique, have been promising. It is from this perspective that we call this threading and anchoring procedure 'Selective Tension System' (STS). Physicochemical analyses and mechanical trials on elastoplastic nails used in the osteosynthesis in long bone fractures are presented. The magnitude of the forces produced by flattening the nails and the reacting forces at both ends are measured. It is expected that the evidence provided on the elastic variability of these nails will be useful as guidance on the availability and choice of the elastoplastic combinations that best fit each patient.

  14. Elasto-plastic behavior of pipe subjected to steady axial load and cyclic bending

    International Nuclear Information System (INIS)

    Yao Yanping; Lu Mingwan; Zhang Xiong

    2004-01-01

    The elasto-plastic behavior of a pipe subjected to a steady axial force and a cyclic bending moment is studied. By using two parameters c and d, which describe the elasto-plastic interfaces of beam cross-section, the boundary curve equations between various types of elasto-plastic behavior, such as shakedown, plastic fatigue, ratcheting, and plastic collapse, are derived. The results are applicable for beams of any cross-section with two orthogonal axes of symmetry. As a result, the load regime diagram for a pipe is obtained, which gives an intuitive picture of the elasto-plastic behavior of the pipe under a given combination of constant axial load and cyclic bending moment

  15. Theory of and effects from elastoplasticity in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Technische Hochschule Darmstadt

    1985-02-01

    Elastoplasticity of finite Fermi systems results from a coherent coupling between collective and intrinsic degrees of freedom and subsequent equilibration essentially due to two-body collisions. Within a non-markovian transport-theoretical approach referred to as dissipative diabatic dynamics (DDD), elastoplastical forms the link between giant vibrations and overdamped motion of nuclear. Obersvable effects resulting from this non-markovian behaviour in nucleus-nucleus collisions are discussed. (orig.)

  16. Earthquake excited elasto-plastic structures

    DEFF Research Database (Denmark)

    Randrup-thomsen, Søren; Heuer, R.

    1996-01-01

    Studies of the single degree of freedom elasto-plastic oscillator is well-known in the literature. Some of these works use an associated linear system to describe special features in non-linear domains. One very successful work of this kind uses the socalled Slepian model process related to the a...

  17. Elasto-plastic analysis using an efficient formulation of the finite element method

    International Nuclear Information System (INIS)

    Aamodt, B.; Mo, O.

    1975-01-01

    Based on the flow theory of plasticity, the von Mises or the Tresca yield criterion and the isotropic hardening law, an incremental stiffness relationship can be established for a finite element model of the elasto-plastic structure. However, instead of including all degrees of freedom and all finite elements of the total model in a nonlinear solution process, a separation of elastic and plastic parts of the structure can be carried out. Such a separation can be obtained by identifying elastic parts of the structure as 'elastic' superelements and elasto-plastic parts of the structure as 'elasto-plastic' superelements. Also, it may be of advantage to use several levels of superelements in modelling the elastic parts of the structure. The solution of the nonlinear equations is performed utilizing a combination of load incrementation and equilibrium iterations. In this connection, a comparative numerical study of the Newton-Raphson iteration scheme, the initial stress method, and modified Newton-Raphson iteration schemes is presented. The present method of analysis is demonstrated for two larger examples of elasto-plastic analysis. Firstly, an elasto-plastic analysis of a plate with a central hole and subjected to tensile forces is carried out. The results are compared with experimental values. Secondly, a three dimensional analysis of a thick plate with a central through-crack subjected to tensile forces is considered. The variation through the plate thickness of the size of the plastic zones at the crack tip is studied. The numerical examples show that the present method is a powerful and efficient tool in elasto-plastic analysis

  18. Discrete Element Simulation of Elastoplastic Shock Wave Propagation in Spherical Particles

    Directory of Open Access Journals (Sweden)

    M. Shoaib

    2011-01-01

    Full Text Available Elastoplastic shock wave propagation in a one-dimensional assembly of spherical metal particles is presented by extending well-established quasistatic compaction models. The compaction process is modeled by a discrete element method while using elastic and plastic loading, elastic unloading, and adhesion at contacts with typical dynamic loading parameters. Of particular interest is to study the development of the elastoplastic shock wave, its propagation, and reflection during entire loading process. Simulation results yield information on contact behavior, velocity, and deformation of particles during dynamic loading. Effects of shock wave propagation on loading parameters are also discussed. The elastoplastic shock propagation in granular material has many practical applications including the high-velocity compaction of particulate material.

  19. Cyclic compressive creep-elastoplastic behaviors of in situ TiB_2/Al-reinforced composite

    International Nuclear Information System (INIS)

    Zhang, Qing; Zhang, Weizheng; Liu, Youyi; Guo, BingBin

    2016-01-01

    This paper presents a study on the cyclic compressive creep-elastoplastic behaviors of a TiB_2-reinforced aluminum matrix composite (ZL109) at 350 °C and 200 °C. According to the experimental results, under cyclic elastoplasticity and cyclic coupled compressive creep-elastoplasticity, the coupled creep will cause changes in isotropic stress and kinematic stress. Isotropic stress decreases with coupled creep, leading to cyclic softening. Positive kinematic stress, however, increases with coupled creep, leading to cyclic hardening. Transmission electron microscopy (TEM) observations of samples under cyclic compressive creep-elastoplasticity with different temperatures and strain amplitudes indicate that more coupled creep contributes to more subgrain boundaries but fewer intracrystalline dislocations. Based on the macro tests and micro observations, the micro mechanism of compressive creep's influence on cyclic elastoplasticity is elucidated. Dislocations recovering with coupled creep leads to isotropic softening, whereas subgrain structures created by coupled creep lead to kinematic hardening during cyclic deformation.

  20. An anisotropic elastoplasticity model implemented in FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Miles Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Canfield, Thomas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-12

    Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the material will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.

  1. Reliability of Elasto-Plastic Structural Systems

    DEFF Research Database (Denmark)

    Delmar, M. V.; Sørensen, John Dalsgaard

    1990-01-01

    This paper proposes a method for generating safety margins and failure mode equations for elasto-plastic structures where interaction of load effects is taken into account. Structural failure is defined by large nodal displacements or plastic collapse. A branch-and-bound technique is used...

  2. Adaptive tuning of elasto-plastic damper

    DEFF Research Database (Denmark)

    Høgsberg, Jan Riess; Krenk, Steen

    2007-01-01

    the damper parameter(s) with respect to the magnitude of the damper motion. The procedure is demonstrated in terms of the bilinear elasto-plastic damper model, and optimality corresponds to maximum modal damping. A parametric solution for the damping ratio is obtained by a two-component system reduction...

  3. On short cracks that depart from elastoplastic notch tips

    Directory of Open Access Journals (Sweden)

    Verônica Miquelin Machado

    2017-07-01

    Full Text Available The behavior of short cracks that depart from elastoplastic notch tips is modeled to estimate the stresses required to initiate and to propagate cracks in notched structural components, and to evaluate the size of tolerable crack-like defects under general loading conditions. This analysis can model both fatigue and environmentally assisted cracking problems; can evaluate notch sensitivity in both cases; and can as well be used to establish design or acceptance criteria for tolerable non-propagating crack-like defects in such cases. The growth of short cracks is assumed driven by the applied stresses and by the stress gradient ahead the notch tip, and supported by the material resistances to crack initiation and to long crack propagation by fatigue or EAC. In the elastoplastic case, the stress gradient ahead of the notch tip is quantified by a J-field to consider the short crack behavior. The tolerable short crack predictions made by this model are evaluated by suitable fatigue and EAC tests of notched specimens specially designed to start nonpropagating cracks from the notch tips, both under elastic and elastoplastic conditions.

  4. Tangent stiffness matrices for projection methods in elasto-plasticity

    International Nuclear Information System (INIS)

    Gruttmann, F.; Stein, E.

    1988-01-01

    In classical elastoplasticity with v. Mises yield condition and associate flow rule it is necessary to integrate the plastic strain rate. The radial return integration algorithm is employed to calculate elastoplastic stresses. In the context of the finite element method, the formulation and numerical solution of nonlinear problems in continuum mechanics is based on the weak form of the momentum balance equation (principle of virtual work). The solution of the nonlinear equations is achieved by the Newton-Raphson method in which a sequence of linear problems is solved. If the linear problem is obtained by consistent linearization one gets a quadratic rate of convergence. (orig.) [de

  5. Quasistatic elastoplasticity via Peridynamics: existence and localization

    Science.gov (United States)

    Kružík, Martin; Mora-Corral, Carlos; Stefanelli, Ulisse

    2018-04-01

    Peridynamics is a nonlocal continuum mechanical theory based on minimal regularity on the deformations. Its key trait is that of replacing local constitutive relations featuring spacial differential operators with integrals over differences of displacement fields over a suitable positive interaction range. The advantage of such perspective is that of directly including nonregular situations, in which discontinuities in the displacement field may occur. In the linearized elastic setting, the mechanical foundation of the theory and its mathematical amenability have been thoroughly analyzed in the last years. We present here the extension of Peridynamics to linearized elastoplasticity. This calls for considering the time evolution of elastic and plastic variables, as the effect of a combination of elastic energy storage and plastic energy dissipation mechanisms. The quasistatic evolution problem is variationally reformulated and solved by time discretization. In addition, by a rigorous evolutive Γ -convergence argument we prove that the nonlocal peridynamic model converges to classic local elastoplasticity as the interaction range goes to zero.

  6. Elastoplastic State of an Elliptical Cylindrical Shell with a Circular Hole

    Science.gov (United States)

    Storozhuk, E. A.; Chernyshenko, I. S.; Pigol', O. V.

    2017-11-01

    Static problems for an elastoplastic elliptical cylindrical shell with a circular hole are formulated and a numerical method for solving it is developed. The basic equations are derived using the Kirchhoff-Love theory of deep shells and the theory of small elastoplastic strains. The method employs the method of additional stresses and the finite-element method. The influence of plastic strains and geometrical parameters of the shell subject to internal pressure on the distributions of stresses, strains, and displacements in the zone of their concentration is studied.

  7. A 3D elasto-plastic soil model for lateral buckling analysis

    DEFF Research Database (Denmark)

    Hededal, Ole; Strandgaard, Torsten

    2008-01-01

    Modeling the lay-down of pipelines and subsequently the in- service conditions for a pipeline involves definition of a pipe-soil interaction model. A generalized true 3D elasto-plastic spring element based on an anisotropic hardening/degradation model for sliding is presented. The basis...... for the model is the elasto-plastic framework. A generic format is selected, allowing different yield criteria and flow rules to be implemented in a simple way. The model complies to a finite element format allowing it to be directly implemented into a standard finite element code. Examples demonstrating...

  8. Elasto-plastic contact problems with heat exchange

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Petrov, A.

    2015-01-01

    Roč. 22, April (2015), s. 551-567 ISSN 1468-1218 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : elasto-plasticity * heat equation * hysteresis operators Subject RIV: BA - General Mathematics Impact factor: 2.238, year: 2015 http://www.sciencedirect.com/science/article/pii/S1468121814001278

  9. Application of generalized function to dynamic analysis of elasto-plastic thick plates

    International Nuclear Information System (INIS)

    Zheng, D.; Weng, Z.

    1987-01-01

    The elasto-plastic dynamic analysis of thick plates is of great significance to the research and the design on an anti-seismic structure and an anti-explosive structure. In this paper, the derivative of δ-function is handled by using the generalized function. The dynamic influence coefficient of thick plates in deduced. A dynamic response of elasto-plastic thick plates its material has hardening behaviour considered, is analysed by using known elastic solutions. The general expressions for the dynamic response of elasto-plastic rectangular thick plates subjected arbitrary loads are given. Detailed computations are performed for the square plates of various height-span ratios. The results are compared with those obtained from the improved theory and the classical theory of plates. The modification of the classical deflection theory for plates is employed. The increment analysis is used for calculations. The yield function is considered as a function of inplane and transverse shear stresses. (orig./GL)

  10. Finite element analysis of large elasto-plastic deformation for sealing ring in nuclear pressure vessel

    International Nuclear Information System (INIS)

    Xiao Xuejian; Chen Ruxin

    1995-02-01

    Based on the R. Hills incremental virtual power principle and the elasto-plastic constitution equation for large deformation and by considering physical nonlinear, geometric nonlinear and thermal effects, a plane and axisymmetric finite element equation for thermal large elasto-plastic deformation has been established in the Euler description. The corresponding analysis program ATLEPD has been also complied for thermal large elasto-plastic deformation process of O-ring in RPV. The variations of stress, strain, contact specific pressure, mesh deformation and the aspects of spring back in upsetting and spring back process have been also investigated. Numerical results are fairly consistent with experimental ones. (5 figs., 4 tabs.)

  11. Thermo-magneto-elastoplastic coupling model of metal magnetic memory testing method for ferromagnetic materials

    Science.gov (United States)

    Shi, Pengpeng; Zhang, Pengcheng; Jin, Ke; Chen, Zhenmao; Zheng, Xiaojing

    2018-04-01

    Metal magnetic memory (MMM) testing (also known as micro-magnetic testing) is a new non-destructive electromagnetic testing method that can diagnose ferromagnetic materials at an early stage by measuring the MMM signal directly on the material surface. Previous experiments have shown that many factors affect MMM signals, in particular, the temperature, the elastoplastic state, and the complex environmental magnetic field. However, the fact that there have been only a few studies of either how these factors affect the signals or the physical coupling mechanisms among them seriously limits the industrial applications of MMM testing. In this paper, a nonlinear constitutive relation for a ferromagnetic material considering the influences of temperature and elastoplastic state is established under a weak magnetic field and is used to establish a nonlinear thermo-magneto-elastoplastic coupling model of MMM testing. Comparing with experimental data verifies that the proposed theoretical model can accurately describe the thermo-magneto-elastoplastic coupling influence on MMM signals. The proposed theoretical model can predict the MMM signals in a complex environment and so is expected to provide a theoretical basis for improving the degree of quantification in MMM testing.

  12. Finite cover method with mortar elements for elastoplasticity problems

    Science.gov (United States)

    Kurumatani, M.; Terada, K.

    2005-06-01

    Finite cover method (FCM) is extended to elastoplasticity problems. The FCM, which was originally developed under the name of manifold method, has recently been recognized as one of the generalized versions of finite element methods (FEM). Since the mesh for the FCM can be regular and squared regardless of the geometry of structures to be analyzed, structural analysts are released from a burdensome task of generating meshes conforming to physical boundaries. Numerical experiments are carried out to assess the performance of the FCM with such discretization in elastoplasticity problems. Particularly to achieve this accurately, the so-called mortar elements are introduced to impose displacement boundary conditions on the essential boundaries, and displacement compatibility conditions on material interfaces of two-phase materials or on joint surfaces between mutually incompatible meshes. The validity of the mortar approximation is also demonstrated in the elastic-plastic FCM.

  13. Elastoplastic reaction of a container to water freezing

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel

    2010-01-01

    Roč. 135, č. 4 (2010), s. 423-441 ISSN 0862-7959 R&D Projects: GA ČR GAP201/10/2315 Institutional research plan: CEZ:AV0Z10190503 Keywords : phase transition * water * ice * energy * entropy * elastoplastic boundary Subject RIV: BA - General Mathematics http://www.dml.cz/dmlcz/140833

  14. Bolt-Grout Interactions in Elastoplastic Rock Mass Using Coupled FEM-FDM Techniques

    Directory of Open Access Journals (Sweden)

    Debasis Deb

    2010-01-01

    Full Text Available Numerical procedure based on finite element method (FEM and finite difference method (FDM for the analysis of bolt-grout interactions are introduced in this paper. The finite element procedure incorporates elasto-plastic concepts with Hoek and Brown yield criterion and has been applied for rock mass. Bolt-grout interactions are evaluated based on finite difference method and are embedded in the elasto-plastic procedures of FEM. The experimental validation of the proposed FEM-FDM procedures and numerical examples of a bolted tunnel are provided to demonstrate the efficacy of the proposed method for practical applications.

  15. Measurement of elasto-plastic deformations by speckle interferometry

    Science.gov (United States)

    Bova, Marco; Bruno, Luigi; Poggialini, Andrea

    2010-09-01

    In the paper the authors present an experimental equipment for elasto-plastic characterization of engineering materials by tensile tests. The stress state is imposed to a dog bone shaped specimen by a testing machine fixed on the optical table and designed for optimizing the performance of a speckle interferometer. All three displacement components are measured by a portable speckle interferometer fed by three laser diodes of 50 mW, by which the deformations of a surface of about 6×8 mm2 can be fully analyzed in details. All the equipment is driven by control electronics designed and realized on purpose, by which it is possible to accurately modify the intensity of the illumination sources, the position of a PZT actuator necessary for applying phase-shifting procedure, and the overall displacement applied to the specimen. The experiments were carried out in National Instrument LabVIEW environment, while the processing of the experimental data in Wolfram Mathematica environment. The paper reports the results of the elasto-plastic characterization of a high strength steel specimen.

  16. Fatigue accumulation in a thermo-visco-elastoplastic plate

    Czech Academy of Sciences Publication Activity Database

    Eleuteri, M.; Kopfová, J.; Krejčí, Pavel

    2014-01-01

    Roč. 19, č. 7 (2014), s. 2091-2109 ISSN 1531-3492 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : elastoplastic plate * Prandtl-Ishlinskii operator * material fatigue Subject RIV: BA - General Mathematics Impact factor: 0.768, year: 2014 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=10182

  17. Elastoplastic analysis by optimization

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Zouain, N.

    1983-01-01

    Three variational formulations for the elastoplastic analysis are presented. One of them is related to the rate of the state of stress tensor field and corresponds to the minimization with linear constraints of a quadratic functional. The second one is related to the velocity field and is expressed as the minimum without constraints of a nondifferentiable functional. These two classical variational formulations are unable to take into account the mechanical constraints that the stress field must be plastically admissible during all the loadoing process. The third variational formulation is expressed in terms of the stresses and mathematically corresponds to an evolutionary variational iniquality. A simple problem is also presented in order to show the algorithm for the approximate solution for the last variational formulation. (Author) [pt

  18. Determination of parameters in elasto-plastic models of aluminium.

    NARCIS (Netherlands)

    Meuwissen, M.H.H.; Oomens, C.W.J.; Baaijens, F.P.T.; Petterson, R.; Janssen, J.D.; Sol, H.; Oomens, C.W.J.

    1997-01-01

    A mixed numerical-experimental method is used to determine parameters in elasto-plastic constitutive models. An aluminium plate of non-standard geometry is mounted in a uniaxial tensile testing machine at which some adjustments are made to carry out shear tests. The sample is loaded and the total

  19. The elastoplastic response of and moisture diffusion through a vinyl ester resin-clay nanocomposite

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville; Gupta, R.K.

    2002-01-01

    Experimental data are reported on the elastoplastic response of and moisture diffusion through a vinyl ester resin–montmorillonite clay nanocomposite with various amounts of filler. Two simple models are developed for the elastoplastic behavior of a nanocomposite and for the anomalous diffusion...... of penetrant molecules. Adjustable parameters in the constitutive equations are found by fitting the observations. It is revealed that some critical concentration of filler exists (about 1 wt.-%): in the sub-critical region of concentrations, molecular mobility of the host polymer strongly decreases...

  20. A new approach for elasto-plastic finite strain analysis of cantilever ...

    Indian Academy of Sciences (India)

    GЦKHAN T TAYYAR

    mental kinematic theories are not well selected according to the expected deflection. ... elasto-plastic behavior to curvature-based kinematic dis- placement theory (KDT) [11]. In KDT ..... transportation and exploitation of sea resources. London:.

  1. Anisotropic Elastoplastic Damage Mechanics Method to Predict Fatigue Life of the Structure

    Directory of Open Access Journals (Sweden)

    Hualiang Wan

    2016-01-01

    Full Text Available New damage mechanics method is proposed to predict the low-cycle fatigue life of metallic structures under multiaxial loading. The microstructure mechanical model is proposed to simulate anisotropic elastoplastic damage evolution. As the micromodel depends on few material parameters, the present method is very concise and suitable for engineering application. The material parameters in damage evolution equation are determined by fatigue experimental data of standard specimens. By employing further development on the ANSYS platform, the anisotropic elastoplastic damage mechanics-finite element method is developed. The fatigue crack propagation life of satellite structure is predicted using the present method and the computational results comply with the experimental data very well.

  2. Internal Stress in a Model Elasto-Plastic Fluid

    OpenAIRE

    Ooshida, Takeshi; Sekimoto, Ken

    2004-01-01

    Plastic materials can carry memory of past mechanical treatment in the form of internal stress. We introduce a natural definition of the vorticity of internal stress in a simple two-dimensional model of elasto-plastic fluids, which generates the internal stress. We demonstrate how the internal stress is induced under external loading, and how the presence of the internal stress modifies the plastic behavior.

  3. Properties and simplifications of constitutive time-discretized elastoplastic operators

    Czech Academy of Sciences Publication Activity Database

    Sysala, Stanislav

    2014-01-01

    Roč. 94, č. 3 (2014), s. 233-255 ISSN 0044-2267 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : elastoplasticity * convex analysis * projection, semismoothness Subject RIV: BA - General Mathematics Impact factor: 1.162, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/zamm.201200056/pdf

  4. A new approach to solve elastoplastic dynamic piping problems

    International Nuclear Information System (INIS)

    Leite de Andrade, J.E.; Guerreiro Ribeiro, S.V.

    1981-01-01

    A new method to perform the elastoplastic dynamic analysis of pipes is presented here, in which the pipe is analysed as a beam, and a bilinear eleastic-plastic behavior for the material is assumed. Pipe whip restraints are simulated as spring of bilinear elastic-plastic behavior with the provision for considering viscous damping. A numerical method was implemented in which plastic strain is treated as equivalent applied (force or moment) excitations, reducing the elastoplastic analysis of the structure to an elastic analysis of the same structure with a set of additional applied excitations. So the stiffness matrix and the eigenvectors do not vary with time. This procedure allows the response of the system to be computed by using dynamic influence coefficients, which are calculated from the elastic solution. For those structures whose dynamic elastic solutions are known in closed form, the present scheme seems to be very attractive, e.g., simple supported and cantilever beams. For those structures with unknown analytical elastic solutions, the finite element method will provide them. (orig./GL)

  5. Experimental and Modelling Investigations of the Coupled Elastoplastic Damage of a Quasi-brittle Rock

    Science.gov (United States)

    Zhang, Jiu-Chang

    2018-02-01

    Triaxial compression tests are conducted on a quasi-brittle rock, limestone. The analyses show that elastoplastic deformation is coupled with damage. Based on the experimental investigation, a coupled elastoplastic damage model is developed within the framework of irreversible thermodynamics. The coupling effects between the plastic and damage dissipations are described by introducing an isotropic damage variable into the elastic stiffness and yield criterion. The novelty of the model is in the description of the thermodynamic force associated with damage, which is formulated as a state function of both elastic and plastic strain energies. The latter gives a full consideration on the comprehensive effects of plastic strain and stress changing processes in rock material on the development of damage. The damage criterion and potential are constructed to determine the onset and evolution of damage variable. The return mapping algorithms of the coupled model are deduced for three different inelastic corrections. Comparisons between test data and numerical simulations show that the coupled elastoplastic damage model is capable of describing the main mechanical behaviours of the quasi-brittle rock.

  6. Investigation of optimal seismic design methodology for piping systems supported by elasto-plastic dampers. Part 1. Evaluation functions

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Michiue, Masashi; Fujita, Katsuhisa

    2009-01-01

    In this study, the optimal seismic design methodology that can consider the structural integrity of not only the piping systems but also elasto-plastic supporting devices is developed. This methodology employs a genetic algorithm and can search the optimal conditions such as the supporting location, capacity and stiffness of the supporting devices. Here, a lead extrusion damper is treated as a typical elasto-plastic damper. Four types of evaluation functions are considered. It is found that the proposed optimal seismic design methodology is very effective and can be applied to the actual seismic design for piping systems supported by elasto-plastic dampers. The effectiveness of the evaluation functions is also clarified. (author)

  7. New results from dissipative diabatic dynamics and nuclear elastoplasticity

    International Nuclear Information System (INIS)

    Noerenberg, W.; Technische Hochschule Darmstadt

    1986-10-01

    I present new results about dissipative diabatic dynamics and nuclear elastoplasticity, in particular on a self-consistent diabatic formulation, on first numerical calculations of dissipative diabatic dynamics in two collective degrees of freedom, on quasi-elastic recoil in central nucleus-nucleus collisions, on the diabatic hindrance of fusion reactions and on the diabatic emission of nucleons in central nucleus-nucleus collisions. (orig./HSI)

  8. Elastoplastic Stability and Failure Analysis of FGM Plate with Temperature Dependent Material Properties under Thermomechanical Loading

    Directory of Open Access Journals (Sweden)

    Kanishk Sharma

    Full Text Available Abstract The present paper explores the stability and failure response of elastoplastic Ni/Al2O3 functionally graded plate under thermomechanical load using non-linear finite element formulation based on first-order shear deformation theory and von-Karman’s nonlinear kinematics. The temperature dependent thermoelastic material properties of FGM plate are varied in the thickness direction by controlling the volume fraction of the constituent materials (i.e., ceramic and metal with a power law, and Mori-Tanaka homogenization scheme is applied to evaluate the properties at a particular thickness coordinate of FGM plate. The elastoplastic behavior of FGM plate is assumed to follow J2-plasticity with isotropic hardening, wherein the ceramic phase is considered to be elastic whereas the metal is assumed to be elastic-plastic in accordance with the Tamura-Tomota-Ozawa model. Numerical studies are conducted to examine the effects of material and geometrical parameters, viz. material in-homogeneity, slenderness and aspect ratios on the elastoplastic bucking and postbuckling behavior and the failure response of FGM plate. It is revealed that material gradation affects the stability and failure behavior of FGM plate considerably. Furthermore, it is also concluded that FGM plate with elastic material properties exhibits only stable equilibrium path, whereas the elastoplastic FGM plate shows destabilizing response after the ultimate failure point.

  9. Elasto-plastic hardening models adjustment to ferritic, austenitic and austenoferritic Rebar

    International Nuclear Information System (INIS)

    Hortigóna, B.; Gallardo, J.M.; Nieto-García, E.J.; López, J.A.

    2017-01-01

    The elastoplastic behaviour of steel used for structural member fabrication has received attention to facilitate a mechanical-resistant design. New Zealand and South African standards have adopted various theoretical approaches to describe such behaviour in stainless steels. With respect to the building industry, describing the tensile behaviour of steel rebar used to produce reinforced concrete structures is of interest. Differences compared with the homogenous material described in the above mentioned standards and related literatures are discussed in this paper. Specifically, the presence of ribs and the TEMPCORE® technology used to produce carbon steel rebar may alter the elastoplastic model. Carbon steel rebar is shown to fit a Hollomon model giving hardening exponent values on the order of 0.17. Austenitic stainless steel rebar behaviour is better described using a modified Rasmussen model with a free fitted exponent of 6. Duplex stainless steel shows a poor fit to any previous model. [es

  10. Elasto-plastic torsion problem as an infinity Laplace's equation

    Directory of Open Access Journals (Sweden)

    Ahmed Addou

    2006-12-01

    Full Text Available In this paper, we study a perturbed infinity Laplace's equation, the perturbation corresponds to an Leray-Lions operator with no coercivity assumption. We consider the case where data are distributions or $L^{1}$ elements. We show that this problem has an unique solution which is the solution to the variational inequality arising in the elasto-plastic torsion problem, associated with an operator $A$.

  11. Mathematical theory of elastic and elasto-plastic bodies an introduction

    CERN Document Server

    Necas, J

    2013-01-01

    The book acquaints the reader with the basic concepts and relations of elasticity and plasticity, and also with the contemporary state of the theory, covering such aspects as the nonlinear models of elasto-plastic bodies and of large deflections of plates, unilateral boundary value problems, variational principles, the finite element method, and so on.

  12. An evolution infinity Laplace equation modelling dynamic elasto-plastic torsion

    Science.gov (United States)

    Messelmi, Farid

    2017-12-01

    We consider in this paper a parabolic partial differential equation involving the infinity Laplace operator and a Leray-Lions operator with no coercitive assumption. We prove the existence and uniqueness of the corresponding approached problem and we show that at the limit the solution solves the parabolic variational inequality arising in the elasto-plastic torsion problem.

  13. Elasto-plastic bond mechanics of embedded fiber optic sensors in concrete under uniaxial tension with strain localization

    Science.gov (United States)

    Li, Qingbin; Li, Guang; Wang, Guanglun

    2003-12-01

    Brittleness of the glass core inside fiber optic sensors limits their practical usage, and therefore they are coated with low-modulus softer protective materials. Protective coatings absorb a portion of the strain, and hence part of the structural strain is sensed. The study reported here corrects for this error through development of a theoretical model to account for the loss of strain in the protective coating of optical fibers. The model considers the coating as an elasto-plastic material and formulates strain transfer coefficients for elastic, elasto-plastic and strain localization phases of coating deformations in strain localization in concrete. The theoretical findings were verified through laboratory experimentation. The experimental program involved fabrication of interferometric optical fiber sensors, embedding within mortar samples and tensile tests in a closed-loop servo-hydraulic testing machine. The elasto-plastic strain transfer coefficients were employed for correction of optical fiber sensor data and results were compared with those of conventional extensometers.

  14. The Numerical Simulation of the Crack Elastoplastic Extension Based on the Extended Finite Element Method

    Directory of Open Access Journals (Sweden)

    Xia Xiaozhou

    2013-01-01

    Full Text Available In the frame of the extended finite element method, the exponent disconnected function is introduced to reflect the discontinuous characteristic of crack and the crack tip enrichment function which is made of triangular basis function, and the linear polar radius function is adopted to describe the displacement field distribution of elastoplastic crack tip. Where, the linear polar radius function form is chosen to decrease the singularity characteristic induced by the plastic yield zone of crack tip, and the triangle basis function form is adopted to describe the displacement distribution character with the polar angle of crack tip. Based on the displacement model containing the above enrichment displacement function, the increment iterative form of elastoplastic extended finite element method is deduced by virtual work principle. For nonuniform hardening material such as concrete, in order to avoid the nonsymmetry characteristic of stiffness matrix induced by the non-associate flowing of plastic strain, the plastic flowing rule containing cross item based on the least energy dissipation principle is adopted. Finally, some numerical examples show that the elastoplastic X-FEM constructed in this paper is of validity.

  15. A unified model of hydride cracking based on elasto-plastic energy release rate over a finite crack extension

    International Nuclear Information System (INIS)

    Zheng, X.J.; Metzger, D.R.; Sauve, R.G.

    1995-01-01

    A fracture criterion based on energy balance is proposed for elasto-plastic cracking at hydrides in zirconium, assuming a finite length of crack advance. The proposed elasto-plastic energy release rate is applied to the crack initiation at hydrides in smooth and notched surfaces, as well as the subsequent delayed hydride cracking (DHC) considering limited crack-tip plasticity. For a smooth or notched surface of an elastic body, the fracture parameter is related to the stress intensity factor for the initiated crack. For DHC, a unique curve relates the non-dimensionalized elasto-plastic energy release rate with the length of crack extension relative to the plastic zone size. This fracture criterion explains experimental observations concerning DHC in a qualitative manner. Quantitative comparison with experiments is made for fracture toughness and DHC tests on specimens containing certain hydride structures; very good agreement is obtained. ((orig.))

  16. Numerical calculation models of the elastoplastic response of a structure under seismic action

    International Nuclear Information System (INIS)

    Edjtemai, Nima.

    1982-06-01

    Two digital calculation models developed in this work have made it possible to analyze the exact dynamic behaviour of ductile structures with one or several degrees of liberty, during earthquakes. With the first model, response spectra were built in the linear and non-linear fields for different absorption and ductility values and two types of seismic accelerograms. The comparative study of these spectra made it possible to check the validity of certain hypotheses suggested for the construction of elastoplastic spectra from corresponding linear spectra. A simplified method of non-linear seismic calculation based on the modal analysis and the spectra of elastoplastic response was then applied to structures with a varying number of degrees of liberty. The results obtained in this manner were compared with those provided by an exact calculation provided by the second digital model developed by us [fr

  17. A TFETI domain decomposition solver for elastoplastic problems

    Czech Academy of Sciences Publication Activity Database

    Čermák, M.; Kozubek, T.; Sysala, Stanislav; Valdman, J.

    2014-01-01

    Roč. 231, č. 1 (2014), s. 634-653 ISSN 0096-3003 Institutional support: RVO:68145535 Keywords : elastoplasticity * Total FETI domain decomposition method * Finite element method * Semismooth Newton method Subject RIV: BA - General Mathematics Impact factor: 1.551, year: 2014 http://ac.els-cdn.com/S0096300314000253/1-s2.0-S0096300314000253-main.pdf?_tid=33a29cf4-996a-11e3-8c5a-00000aacb360&acdnat=1392816896_4584697dc26cf934dcf590c63f0dbab7

  18. Finite element elasto-plastic analysis of thin walled structures of reinforced concrete as applied to reactor facilities

    International Nuclear Information System (INIS)

    Fujita, F.; Tsuboi, Y.

    1981-01-01

    The authors developed a new program of elasto-plastic analysis of reinforced concrete shells, in which the simplest model of shell element and an orthotropic constitutive relation are adopted, and verified its validity with reference to the results of model experiments of containers and box-wall structures with various loading conditions. For the two-dimensional stress-strain relationship of concrete, an orthotropic nonlinear formula proposed by one of the authors was adopted. For concrete, the octahedral shear failure and tension cut-off criteria were also imposed. The Kirchhoff-Love's assumptions were assumed to be valid for the whole range of the analysis and the layered approach of elasto-plastic stiffness evaluation. Derivation of the shell element is outlined with examination of its accuracy in elastic range and the assumption of elasto-plastic material property and the procedure of nonlinear analysis are described. As examples, the method is applied to the analysis of a cylindrical container and a box-wall structure. Comparison of the computed results with the corresponding experimental data indicates the applicability of the proposed method. (orig./HP)

  19. Robust and efficient handling of yield surface discontinuities in elasto-plastic finite element calculations

    DEFF Research Database (Denmark)

    Clausen, Johan Christian; Damkilde, Lars; Andersen, Lars Vabbersgaard

    2015-01-01

    Purpose – The purpose of this paper is to present several methods on how to deal with yield surface discontinuities. The explicit formulations, first presented by Koiter (1953), result in multisingular constitutive matrices which can cause numerical problems in elasto-plastic finite element...... documented in the literature all present “easy” calculation examples, e.g. low friction angles and few elements. The amendments presented in this paper result in robust elasto-plastic computations, making the solution of “hard” problems possible without introducing approximations in the yield surfaces...... calculations. These problems, however, are not documented in previous literature. In this paper an amendment to the Koiter formulation of the constitutive matrices for stress points located on discontinuities is proposed. Design/methodology/approach – First, a review of existing methods of handling yield...

  20. Modelling Elasto-Plastic Behaviour of Human Single Trabecula-Comparison with Bending Test

    Czech Academy of Sciences Publication Activity Database

    Zlamal, P.; Jiroušek, Ondřej; Doktor, Tomáš; Kytýř, Daniel

    2012-01-01

    Roč. 45, S1 (2012), s. 479-479 ISSN 0021-9290 R&D Projects: GA ČR(CZ) GAP105/10/2305 Institutional support: RVO:68378297 Keywords : digital image correlation * elasto-plastic material model * FEM * three-point bending * trabecular bone Subject RIV: FI - Traumatology, Orthopedics Impact factor: 2.716, year: 2012

  1. An Efficient Formulation of the Elasto-plastic Constitutive Matrix on Yield Surface Corners

    DEFF Research Database (Denmark)

    Clausen, Johan; Andersen, Lars; Damkilde, Lars

    2009-01-01

    A formulation for the elasto-plastic constitutive matrices on discontinuities on yield surfaces is presented, for use in finite element calculations. The formulation entails no rounding of the yield surface or the plastic potential, as it is done in most other formulations, and therefore exact an...

  2. Contribution to research on the elastic and elastoplastic behavior of porous materials

    International Nuclear Information System (INIS)

    Frappier, J.-C.

    1979-11-01

    This three-part study concerns the mechanical behavior of porous materials. Part one, a bibliographical survey on the mechanical properties of porous materials, deals in turn with the following subjects: elastic properties, elasto-plastic boundary, plastic flow laws, fracture behavior and characterization methods. Part two is devoted to elastic behavior, giving the results of an experimental study on the elastic properties of a sintered nickel within a wide porosity range (5% to 55%) and establishing a theoretical law for the prediction of such characteristics; apart from the total porosity fraction and the elastic properties of the matrix this law can integrate parameters which represent the morphology of the material and may be determined empirically or by a modelisation, also proposed, of the structure of the material. Part three describes elastoplastic, behavior and includes experimental results obtained on sintered nickel in cases of simple mechanical stress, the demonstration - based on energy considerations of a theoretical plasticity criterion accounting for the substance, a theoretical definition of the plastic Poisson's ratio and the establishment of flow laws associated with this criterion [fr

  3. Experimental studies of the crack behaviour during elastoplastic deformations of materials

    International Nuclear Information System (INIS)

    Hollstein, R.

    1982-01-01

    In C-, SEN- and WOL X-samples of the materials StE 460 (Ni-V), 22NiCr37, and 30CrNiMo8 a transition from linear elasticity to elastoplastic behaviour is observed with increasing temperature. Before crack propagation can be observed, a stretching zone at the crack tip is formed, which depends on the material and the stress conditions. (DG) [de

  4. A Dissipation Gap Method for full-field measurement-based identification of elasto-plastic material parameters

    KAUST Repository

    Blaysat, Benoî t; Florentin, É ric; Lubineau, Gilles; Moussawi, Ali

    2012-01-01

    and especially the main technical keypoint of building the admissible fields are described in detail. The approach is then illustrated through the identification of heterogeneous isotropic elasto-plastic properties. The basic numerical features highlighted

  5. Application of a modified semismooth Newton method to some elasto-plastic problems

    Czech Academy of Sciences Publication Activity Database

    Sysala, Stanislav

    2012-01-01

    Roč. 82, č. 10 (2012), s. 2004-2021 ISSN 0378-4754 R&D Projects: GA ČR GA105/09/1830 Institutional support: RVO:68145535 Keywords : elasto-plasticity * hardening * Incremental finite element method * Semismooth Newton method * damping Subject RIV: BA - General Mathematics Impact factor: 0.836, year: 2012 http://www.sciencedirect.com/science/article/pii/S0378475412001292

  6. The development of design method of nuclear piping system supported by elasto-plastic support structures (part 2)

    International Nuclear Information System (INIS)

    Endo, R.; Murota, M.; Kawabata, J-I.; Hirose, J.; Nekomoto, Y.; Takayama, Y.; Kobayashi, H.

    1995-01-01

    The conventional seismic design method of nuclear piping system is very conservative because of the accumulation of various safety factors in the design process, and nuclear piping systems are thought to have a large safety margin. Considering this situations, research program was promoted to furthermore rationalize nuclear power plants by reducing the amount of support structures and reducing the piping's seismic response through vibration energy absorption resulting from the elasto-plastic behavior of piping support structures. The research had the following three stages. In the first stage, we selected conventional piping support structures in light-water reactors that exhibited elasto-plastic behavior, and studied the effect of displacement and the vibration frequency on the stiffness and on the energy absorption by testing these models. In the second stage, vibration tests were performed using piping models with support structures on shaking tables. The piping vibration characteristics were clarified by sinusoidal sweep tests and the piping response characteristics by seismic wave vibration tests when the support structures were in an elasto-plastic condition. In the third stage, a general method was developed to evaluate the characteristics of a variety of support structures in the tests. A simplified analysis method was also developed to evaluate the piping seismic response using the piping model test result. To expand the results mentioned above, we also established a new seismic design method of piping systems that allowed support structures to have elasto-plastic behavior. This paper reports the newly developed seismic design method based on the results of experiments conducted under the joint research program of Japanese electric power companies (The Japan Atomic Power Co., Hokkaido EPC, Tohoku EPC, Tokyo EPC, Chubu EPC, Hokuriku EPC, Kansai EPC, Chugoku EPC, Shikoku EPC, Kyushu EPC) and nuclear plant makers (Hitachi Ltd., Toshiba Co., MHI Ltd., HEC Ltd

  7. Experimental identification of elastoplastic behavior of heterogeneous materials under complex loadings

    International Nuclear Information System (INIS)

    Madani, Tarik

    2015-01-01

    The present work follows a first approach where a strategy for identifying the shape and the parameters of cohesive-zone laws has been developed for homogeneous materials. The extension of this method to heterogeneous material requires the knowledge of the local stress state. The study aims at developing a local characterization method for mechanical properties and stresses. This method is based on the constitutive equation gap principles and relies on the knowledge of mechanical kinematic fields and particularly of the strain fields. These fields are obtained by the numerical differentiation of displacement fields measured by digital image correlation. This identification method is based on the iterative minimization of an energy norm involving the secant elastoplastic tensor. Various numerical simulations were used to illustrate the performances of the procedure for locally identifying heterogeneous property fields, and to characterize its robustness and its stability with respect to noise to the values of the algorithm initialization parameter and to the mesh refinement. Finally, various experimental tests with different specimen geometries were performed and a test has been developed to obtain a controlled heterogeneous initial state. The multilinear elastoplastic identification results showed the ability of the method to identify the local behavior properties on heterogeneous materials. (author)

  8. An Exact Implementation Of The Hoek–Brown Criterion For Elasto-Plastic Finite Element Calculations

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2007-01-01

    A simple stress update algorithm for generalised Hoek-Brown plasticity is presented. It is intended for use in elasto-plastic finite element computations and utilises the return mapping concept for computing the stress increment belonging to a given increment in strain at a material point. In the...

  9. Simplified elastoplastic fatigue analysis

    International Nuclear Information System (INIS)

    Autrusson, B.; Acker, D.; Hoffmann, A.

    1987-01-01

    Oligocyclic fatigue behaviour is a function of the local strain range. The design codes ASME section III, RCC-M, Code Case N47, RCC-MR, and the Guide issued by PNC propose simplified methods to evaluate the local strain range. After having briefly described these simplified methods, we tested them by comparing the results of experimental strains with those predicted by these rules. The experiments conducted for this study involved perforated plates under tensile stress, notched or reinforced beams under four-point bending stress, grooved specimens under tensile-compressive stress, and embedded grooved beams under bending stress. They display a relative conservatism depending on each case. The evaluation of the strains of rather inaccurate and sometimes lacks conservatism. So far, the proposal is to use the finite element codes with a simple model. The isotropic model with the cyclic consolidation curve offers a good representation of the real equivalent strain. There is obviously no question of representing the cycles and the entire loading history, but merely of calculating the maximum variation in elastoplastic equivalent deformations with a constant-rate loading. The results presented testify to the good prediction of the strains with this model. The maximum equivalent strain will be employed to evaluate fatigue damage

  10. Existence and uniqueness results for a class of dynamic elasto-plastic contact problems

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Petrov, A.

    2013-01-01

    Roč. 408, č. 1 (2013), s. 125-139 ISSN 0022-247X R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : contact with friction * elasto-plasticity * hysteresis operators Subject RIV: BA - General Mathematics Impact factor: 1.119, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022247X13004952

  11. A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures

    Science.gov (United States)

    Peng, Heng; Liu, Yinghua; Chen, Haofeng

    2018-05-01

    In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.

  12. The development of the design method of nuclear piping system supported by elasto-plastic support structures (Part 1)

    International Nuclear Information System (INIS)

    Endo, R.; Murota, M.; Kawahata, J.-I.; Sato, T.; Mekomoto, Y.; Takayama, Y.; Kobayashi, H.; Hirose, J.

    1993-01-01

    The conventional aseismic design method of nuclear piping system is very conservative because of the accumulation of various safety factors in the design process, and nuclear piping systems are thought to have a large safety margin. Considering this situation, we promoted research to further rationalize nuclear power plants by reducing the amount of support structures and reducing the piping seismic response through vibration energy absorption resulting from the elasto-plastic behavior of piping support structures. The research has the following three stages. In the first stage, we select conventional piping support structures in Japanese light-water reactors that exhibit elasto-plastic behavior, and study the displacement dependency and the vibration frequency dependency on the stiffness and the energy absorption by testing their model. In the second stage, we make a piping test model with support structures whose characteristics have already been obtained, and perform vibration tests on a shaking table. In this way, we analyze the piping vibration characteristics by sinusoidal wave sweep tests and the piping response characteristics by seismic wave vibration tests, when the support structures are in an elasto-plastic condition. In the third stage, a general method is developed to evaluate the characteristics of the support structures obtained in the tests and it is applied to the evaluation of the characteristics of general support structures. A simplified analysis method is developed to evaluate the piping seismic response using the piping model test result. To expand the results mentioned above, we are developing a seismic design method of piping systems that allows support structures to have elasto-plastic behaviour. This paper reports the results of experiments conducted under the joint research program of Japanese electric power companies with support elements in the first stage and those with piping models in the second stage

  13. Geometrical foundations of continuum mechanics an application to first- and second-order elasticity and elasto-plasticity

    CERN Document Server

    Steinmann, Paul

    2015-01-01

    This book illustrates the deep roots of the geometrically nonlinear kinematics of generalized continuum mechanics in differential geometry. Besides applications to first- order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating for generalized models of continuum mechanics such as second-order (gradient-type) elasticity and elasto-plasticity.   After a motivation that arises from considering geometrically linear first- and second- order crystal plasticity in Part I several concepts from differential geometry, relevant for what follows, such as connection, parallel transport, torsion, curvature, and metric for holonomic and anholonomic coordinate transformations are reiterated in Part II. Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics are considered. There various concepts of differential geometry, in particular aspects related to compatibility, are generically applied to the kinematics of first- and second- order geometrically nonlinear con...

  14. Initial postbuckling analysis of elastoplastic thin-shear structures

    Science.gov (United States)

    Carnoy, E. G.; Panosyan, G.

    1984-01-01

    The design of thin shell structures with respect to elastoplastic buckling requires an extended analysis of the influence of initial imperfections. For conservative design, the most critical defect should be assumed with the maximum allowable magnitude. This defect is closely related to the initial postbuckling behavior. An algorithm is given for the quasi-static analysis of the postbuckling behavior of structures that exhibit multiple buckling points. the algorithm based upon an energy criterion allows the computation of the critical perturbation which will be employed for the definition of the critical defect. For computational efficiency, the algorithm uses the reduced basis technique with automatic update of the modal basis. The method is applied to the axisymmetric buckling of cylindrical shells under axial compression, and conclusions are given for future research.

  15. Simplified elastoplastic methods of analysing fatigue in notches

    International Nuclear Information System (INIS)

    Autrusson, B.

    1993-01-01

    The aim of this study is to show the state of the art concerning methods of mechanical analysis available in the literature for evaluating notch root elastoplastic strain. The components of fast breeder reactors are subjected to numerous thermal transients, which can cause fatigue failure. To prevent this from happening, it is necessary to know the local strain range and to use it to estimate the number of cycles to crack initiation. Practical methods have been developed for the calculation of the local strain range, and have led to the drafting of design rules. Direct methods of determining the local strain range of the 'inelastic analysis' type have also been described. In conclusion a series of recommendations is made on the applicability and the conservatism of these methods

  16. A new criterion for elasto-plastic transition in nanomaterials: Application to size and composite effects on Cu-Nb nanocomposite wires

    International Nuclear Information System (INIS)

    Thilly, Ludovic; Van Petegem, Steven; Renault, Pierre-Olivier; Lecouturier, Florence; Vidal, Vanessa; Schmitt, Bernd; Van Swygenhoven, Helena

    2009-01-01

    Nanocomposite wires composed of a multi-scale Cu matrix embedding Nb nanotubes are cyclically deformed in tension under synchrotron radiation in order to follow the X-ray peak profiles (position and width) during mechanical testing. The evolution of elastic strains vs. applied stress suggests the presence of phase-specific elasto-plastic regimes. The nature of the elasto-plastic transition is uncovered by the 'tangent modulus' analysis and correlated to the microstructure of the Cu channels and the Nb nanotubes. Finally, a new criterion for the determination of the macroyield stress is given as the stress to which the macroscopic work hardening, θ a = dσ a /dε 0 , becomes smaller than one third of the macroscopic elastic modulus.

  17. ELASTOPLASTICIDAD DE UN SUELO FRANCO ARENOSO DE SABANA I SANDY LOAM SAVANNA SOIL ELASTOPLASTICITY

    Directory of Open Access Journals (Sweden)

    Américo Hossne García

    2018-04-01

    Full Text Available The knowledge of elastoplastic properties is important for calculating soil elastic and plastic deformations experienced by static or dynamic loads generated, for example, by farm implements and root growth. The objective of this study was to determine the soil elastoplastic parameters: Young’s modulus (E, the shear modulus (G, bulk modulus (K and Poisson’s ratio (υ of a sandy-loam soil from a savanna in Monagas State, Venezuela. Triaxial tests and regression analyses were used to interpret the variance between them. The results show that E varied from 4693.39 to 36669.35 kPa; G from 700 to 5000 kPa; K from 500 to 2000 kPa and υ had a value of 0.50. It is concluded that these soils are incompressible under plastic conditions, i.e. easily deformable. The Poisson’s ratio varied significantly with soil water content. The Young modulus, bulk modulus and the shear modulus showed high variation with respect to water content. Both the Young’s modulus and Poisson’s ratio increased, at low soil water content, with the rise in chamber pressure .

  18. Cyclic Elastoplastic Performance of Aluminum 7075-T6 Under Strain- and Stress-Controlled Loading

    Science.gov (United States)

    Agius, Dylan; Wallbrink, Chris; Kourousis, Kyriakos I.

    2017-12-01

    Elastoplastic investigations of aerospace aluminum are important in the development of an understanding of the possible cyclic transient effects and their contribution to the material performance under cyclic loading. Cyclic plasticity can occur in an aerospace aluminum component or structure depending on the loading conditions and the presence of external and internal discontinuities. Therefore, it is vital that the cyclic transient effects of aerospace aluminum are recognized and understood. This study investigates experimentally the cyclic elastoplastic performance of aluminum 7075-T6 loaded in symmetric strain control, and asymmetric stress and strain control. A combination of cyclic hardening and softening was noticed from high strain amplitude symmetric strain-controlled tests and at low stress amplitude asymmetric stress-controlled tests. From asymmetric strain control results, the extent of mean stress relaxation depended on the size of the strain amplitude. Additionally, saturation of the ratcheting strain (plastic shakedown) was also found to occur during asymmetric stress control tests. The experimental results were further analyzed using published microstructure research from the past two decades to provide added explanation of the micro-mechanism contribution to the cyclic transient behavior.

  19. An Element Free Galerkin method for an elastoplastic coupled to damage analysis

    Directory of Open Access Journals (Sweden)

    Sendi Zohra

    2016-01-01

    Full Text Available In this work, a Meshless approach for nonlinear solid mechanics is developed based on the Element Free Galerkin method. Furthermore, Meshless is combined with an elastoplastic model coupled to ductile damage. The efficiency of the proposed methodology is evaluated through various numerical examples. Besides these, two-dimensional tensile tests under several boundary conditions were studied and solved by a Dynamic-Explicit resolution scheme. Finally, the results obtained from the numerical simulations are analyzed and critically compared with Finite Element Method results.

  20. A new criterion for elasto-plastic transition in nanomaterials: Application to size and composite effects on Cu-Nb nanocomposite wires

    Energy Technology Data Exchange (ETDEWEB)

    Thilly, Ludovic, E-mail: ludovic.thilly@univ-poitiers.fr [PHYMAT, University of Poitiers, SP2MI, 86962 Futuroscope (France); Van Petegem, Steven [Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland); Renault, Pierre-Olivier [PHYMAT, University of Poitiers, SP2MI, 86962 Futuroscope (France); Lecouturier, Florence [Laboratoire National des Champs Magnetiques Pulses, UPS-INSA-CNRS, 31400 Toulouse (France); Vidal, Vanessa [CROMeP, ENSTIMAC, Campus Jarlard, 81013 Albi (France); Schmitt, Bernd; Van Swygenhoven, Helena [Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland)

    2009-06-15

    Nanocomposite wires composed of a multi-scale Cu matrix embedding Nb nanotubes are cyclically deformed in tension under synchrotron radiation in order to follow the X-ray peak profiles (position and width) during mechanical testing. The evolution of elastic strains vs. applied stress suggests the presence of phase-specific elasto-plastic regimes. The nature of the elasto-plastic transition is uncovered by the 'tangent modulus' analysis and correlated to the microstructure of the Cu channels and the Nb nanotubes. Finally, a new criterion for the determination of the macroyield stress is given as the stress to which the macroscopic work hardening, {theta}{sub a} = d{sigma}{sub a}/d{epsilon}{sub 0}, becomes smaller than one third of the macroscopic elastic modulus.

  1. A unified approach to the analysis and design of elasto-plastic structures with mechanical contact

    Science.gov (United States)

    Bendsoe, Martin P.; Olhoff, Niels; Taylor, John E.

    1990-01-01

    With structural design in mind, a new unified variational model has been developed which represents the mechanics of deformation elasto-plasticity with unilateral contact conditions. For a design problem formulated as maximization of the load carrying capacity of a structure under certain constraints, the unified model allows for a simultaneous analysis and design synthesis for a whole range of mechanical behavior.

  2. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model.

    Science.gov (United States)

    Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun

    2017-11-01

    A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.

  3. Gaussian white noise excited elasto-Plastic oscillator of several degrees of freedom

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Randrup-thomsen, Søren

    1996-01-01

    this restriction the obtained Slepian model results fit well with the results obtained by direct response simulations. Also it is observed that the restriction gets less importance for decreasing intensity of the white noise excitation. Keywords: Random vibrations, Slepian models, MDOF elasto-plastic oscillator......The Slepian model process method has turned out to be a powerful tool to obtain accurate approximations to the long run probability distributions of the plastic displacements of a one degree of freedom linear elastic-ideal plastic oscillator (EPO) subject to stationary Gaussian white noise...

  4. Evolution of swelling pressure of cohesive-frictional, rough and elasto-plastic granulates

    OpenAIRE

    Luding, Stefan; Bauer, Erich; Jiang, Mingjing; Liu, Fang; Bolton, Malcolm

    2010-01-01

    The subject of this study is the modeling of the evolution of the swell-ing pressure of granulates with cohesive-frictional, rough and elasto-plastic “mi-croscopic” contact properties. The spherical particles are randomly arranged in a periodic cubic space with a fixed volume so that an increase of the particle size – i.e. swelling that can be caused by intake of some fluid – is accompanied by a de-crease of the void space. An analytical function is proposed that properly de-scribes the (macr...

  5. Finite element analysis of elasto-plastic tee joints

    International Nuclear Information System (INIS)

    Powell, G.H.

    1974-09-01

    The theory and computational procedures used in the computer program B169TJ/EP for the analysis of elasto-plastic tee joints are described, and detailed user's guide is presented. The program is particularly applicable to joints conforming to the ANSI B16.9 Manufacturing Standard, but can also be applied to other joint geometries. The joint may be loaded by internal pressure and by arbitrary combinations of applied forces and moments at the ends of the branch and run pipes, and the loading sequence may be arbitrary. The joint material is assumed to yield according to the von Mises criterion, and to exhibit either linear kinematic hardening or nonlinear isotropic hardening after yield. The program makes use of the finite element and mesh generation procedures previously applied in the elastic stress analysis program B16.9TJ/ SA, with minor modifications. (U.S.)

  6. Time between plastic displacements of elasto-plastic oscillators subject to Gaussian white noise

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Ditlevsen, Ove Dalager

    2001-01-01

    A one degree of freedom elasto-plastic oscillator subject to stationary Gaussian white noise has a plastic displacement response process of intermittent character. During shorter or longer time intervals the oscillator vibrates within the elastic domain without undergoing any plastic displacements...... between the clumps of plastic displacements. This is needed for a complete description of the plastic displacement process. A quite accurate fast simulation procedure is presented based on an amplitude model to determine the short waiting times in the transient regime of the elastic vibrations existing...

  7. Elasto-plastic response of multi-story shear wall structures

    International Nuclear Information System (INIS)

    Mizutani, M.; Yamazaki, F.

    1987-01-01

    A Monte Carlo simulation study is carried out. The relationship between the elastoplastic and linear response for multi-DOF systems is developed based on the results of the simulation study. Several 6-story shear wall structures are considered as structural models which represent typical nuclear power plant buildings. A bilinear force-displacement relationship is assumed for each story. A number of artificial earthquakes based on the Kanai-Tajimi power spectrum and trapezoidal envelope function are used as the input ground motion. The least square method is introduced for the purpose of evaluating the median relationship between the ductility factor and linear response from the simulated data and also evaluating the deviation from this median relationship. This relationship derived for the 6-story buildings is compared with the currently used energy absorption factor and the simulation results for Zion auxiliary building model. (orig./HP)

  8. The calculation of dissipated work, elastoplastic cyclic stress and cyclic strain in a structure

    International Nuclear Information System (INIS)

    Wang Xucheng; Xie Yihuan.

    1986-01-01

    With the development of the reactor technique, there is being an increasing interest in the calculation of elastoplastic response of a structure to its complex loading. This paper introduces a constitutive relation of a material for discribing unloading property, and uses it in an analysis of a real structure under a cyclic loading. The results, which include cyclic stress, cyclic strain and dissipated work, are meaningful in the researches of the structure behavior under complex loading and of the structural safety

  9. Investigation of optimal seismic design methodology for piping systems supported by elasto-plastic dampers. Part. 2. Applicability for seismic waves with various frequency characteristics

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Michiue, Masashi; Fujita, Katsuhisa

    2010-01-01

    In this study, the applicability of a previously developed optimal seismic design methodology, which can consider the structural integrity of not only piping systems but also elasto-plastic supporting devices, is studied for seismic waves with various frequency characteristics. This methodology employs a genetic algorithm and can search the optimal conditions such as the supporting location and the capacity and stiffness of the supporting devices. Here, a lead extrusion damper is treated as a typical elasto-plastic damper. Numerical simulations are performed using a simple piping system model. As a result, it is shown that the proposed optimal seismic design methodology is applicable to the seismic design of piping systems subjected to seismic waves with various frequency characteristics. The mechanism of optimization is also clarified. (author)

  10. Molecular dynamics simulation on the elastoplastic properties of copper nanowire under torsion

    Science.gov (United States)

    Yang, Yong; Li, Ying; Yang, Zailin; Zhang, Guowei; Wang, Xizhi; Liu, Jin

    2018-02-01

    Influences of different factors on the torsion properties of single crystal copper nanowire are studied by molecular dynamics method. The length, torsional rate, and temperature of the nanowire are discussed at the elastic-plastic critical point. According to the average potential energy curve and shear stress curve, the elastic-plastic critical angle is determined. Also, the dislocation at elastoplastic critical points is analyzed. The simulation results show that the single crystal copper nanowire can be strengthened by lengthening the model, decreasing the torsional rate, and lowering the temperature. Moreover, atoms move violently and dislocation is more likely to occur with a higher temperature. This work mainly describes the mechanical behavior of the model under different states.

  11. An elastoplastic homogenization procedure for predicting the settlement of a foundation on a soil reinforced by columns

    OpenAIRE

    ABDELKRIM, Malek; DE BUHAN, Patrick

    2007-01-01

    This paper presents an elastoplastic homogenization method applied to a soil reinforced by regularly distributed columns. According to this method, the composite reinforced soil is regarded, from a macroscopic point of view, as a homogeneous anisotropic continuous medium, the elastic as well as plastic properties of which can be obtained from the solution to an auxiliary problem attached to the reinforced soil representative cell. Based upon an approximate solution to this problem, in which p...

  12. Some micromechanical models of elastoplastic behaviors of porous geomaterials

    Directory of Open Access Journals (Sweden)

    W.Q. Shen

    2017-02-01

    Full Text Available Some micromechanics-based constitutive models are presented in this study for porous geomaterials. These micro-macro mechanical models focus on the effect of porosity and the inclusions on the macroscopic elastoplastic behaviors of porous materials. In order to consider the effect of pores and the compressibility of the matrix, some macroscopic criteria are presented firstly for ductile porous medium having one population of pores with different types of matrix (von Mises, Green type, Mises–Schleicher and Drucker–Prager. Based on different homogenization techniques, these models are extended to the double porous materials with two populations of pores at different scales and a Drucker–Prager solid phase at the microscale. Based on these macroscopic criteria, complete constitutive models are formulated and implemented to describe the overall responses of typical porous geomaterials (sandstone, porous chalk and argillite. Comparisons between the numerical predictions and experimental data with different confining pressures or different mineralogical composites show the capabilities of these micromechanics-based models, which take into account the effects of microstructure on the macroscopic behavior and significantly improve the phenomenological ones.

  13. Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions

    Science.gov (United States)

    Herrmann, Christoph; Schoof, Ephraim; Schneider, Daniel; Schwab, Felix; Reiter, Andreas; Selzer, Michael; Nestler, Britta

    2018-04-01

    We introduce a small strain elasto-plastic multiphase-field model according to the mechanical jump conditions. A rate-independent J_2 -plasticity model with linear isotropic hardening and without kinematic hardening is applied exemplary. Generally, any physically nonlinear mechanical model is compatible with the subsequently presented procedure. In contrast to models with interpolated material parameters, the proposed model is able to apply different nonlinear mechanical constitutive equations for each phase separately. The Hadamard compatibility condition and the static force balance are employed as homogenization approaches to calculate the phase-inherent stresses and strains. Several verification cases are discussed. The applicability of the proposed model is demonstrated by simulations of the martensitic transformation and quantitative parameters.

  14. Elasto-plastic stress/strain at notches, comparison of test and approximative computations

    International Nuclear Information System (INIS)

    Beste, A.; Seeger, T.

    1979-01-01

    The lifetime of cyclically loaded components is decisively determined by the value of the local load in the notch root. The determination of the elasto-plastic notch-stress and-strain is therefore an important element of recent methods of lifetime determination. These local loads are normally calculated with the help of approximation formulas. Yet there are no details about their accuracy. The basic construction of the approximation formulas is presented, along with some particulars. The use of approximations within the fully plastic range and for material laws which show a non-linear stress-strain (sigma-epsilon-)-behaviour from the beginning is explained. The use of approximation for cyclic loads is particularly discussed. Finally, the approximations are evaluated in terms of their exactness. The test results are compared with the results of the approximation calculations. (orig.) 891 RW/orig. 892 RKD [de

  15. Auxetic hexachiral structures with wavy ligaments for large elasto-plastic deformation

    Science.gov (United States)

    Zhu, Yilin; Wang, Zhen-Pei; Hien Poh, Leong

    2018-05-01

    The hexachiral structure is in-plane isotropic in small deformation. When subjected to large elasto-plastic deformation, however, the hexachiral structure tends to lose its auxeticity and/or isotropy—properties which are desirable in many potential applications. The objective of this study is to improve these two mechanical properties, without significantly compromising the effective yield stress, in the regime with significant material and geometrical nonlinearity effects. It is found that the deformation mechanisms underlying the auxeticity and isotropy properties of a hexachiral structure are largely influenced by the extent of rotation of the central ring in a unit cell. To facilitate the development of this deformation mechanism, an improved design with wavy ligaments is proposed. The improved performance of the proposed hexachiral structure is demonstrated. An initial study on possible applications as a protective material is next carried out, where the improved hexachiral design is shown to exhibit higher specific energy absorption capacity compared to the original design, as well as standard honeycomb structures.

  16. 3D finite element model of elastoplastic contact on the double sinus rough surface

    International Nuclear Information System (INIS)

    Hagege, H; Bouvier, S; Mazeran, P-E; Bigerelle, M

    2011-01-01

    One of the objectives in the field of tribology is to solve the mechanical stress-displacement problem involved by rough contacts. In our approach, the surface chosen is a 256-256 μm 2 3D sinusoidal shape (amplitude 4.5μm, wavelength 50μm) with an elastoplastic constitutive behaviour. The constitutive law combines isotropic and kinematic hardening and is experimentally identified from 316L steel sheets. The FEM deformable surface is crushed then uncrushed by a rigid flat surface: stresses, contact pressure and plastic cumulated strain are computed. We investigate the results sensitivity with respect to the level of in-plane refinement. At last, we conclude on some guidelines for 3D finite elements modelling of rough surfaces.

  17. Homogenized Finite Element Analysis on Effective Elastoplastic Mechanical Behaviors of Composite with Imperfect Interfaces

    Directory of Open Access Journals (Sweden)

    Wu-Gui Jiang

    2014-12-01

    Full Text Available A three-dimensional (3D representative volume element (RVE model was developed for analyzing effective mechanical behavior of fiber-reinforced ceramic matrix composites with imperfect interfaces. In the model, the fiber is assumed to be perfectly elastic until its tensile strength, and the ceramic material is modeled by an elasto-plastic Drucker-Prager constitutive law. The RVE model is then used to study the elastic properties and the tensile strength of composites with imperfect interfaces and validated through experiments. The imperfect interfaces between the fiber and the matrix are taken into account by introducing some cohesive contact surfaces. The influences of the interface on the elastic constants and the tensile strengths are examined through these interface models.

  18. Variation of the Young's modulus with plastic strain applying to elastoplastic software

    International Nuclear Information System (INIS)

    Morestin, F.; Boivin, M.

    1993-01-01

    Work hardening of steel involves modifications of the elastic properties of the material, for instance, an increase of its yield stress. It may be also the cause of an appreciable decrease of the Young's modulus. This property decreases as plastic strain increases. Experiments with a microcomputer controlled tensile test machine indicated that diminution could reach more than 10% of the initial value, after only 5% of plastic strain. In spite of this fact, lots of elastoplastic softwares don't combine the decrease of the Young's modulus with plastification though it may involve obvious differences among results. As an application we have developed a software which computes the deformation of steel sheet in press forming, after springback. This software takes into account the decrease of the Young's modulus and its results are very close to experimental values. Quite arbitrarily, we noticed a recovery of the Young's modulus of plastified specimens after few days but not for all steels tested. (author)

  19. A uniaxial cyclic elastoplastic constitutive law with a discrete memory variable

    International Nuclear Information System (INIS)

    Taheri, S.

    1991-01-01

    At present, the study on cyclic elastoplastic constitutive laws is focused on nonproportional loading, but for uniaxial loading, some problems still exist. For example, the possibility for a law to describe simultaneously the ratcheting in nonsymmetrical load-controlled test, elastic and plastic shakedown in symmetrical and nonsymmetrical ones. Here a law is presented, which in addition to previous phenomena, describes the cyclic hardening in a pushpull test, the cyclic softening after overloading and also the dependence of cyclic strain-stress curves on the history of loading. These are the usual properties of 316 stainless steel at room temperature. This law uses an internal discrete memory variable: the plastic strain at the last unloading. On the other hand, the choice of all macroscopic variables is justified by a microscopic analysis. This law has been also extended to a three-dimensional case. Regarding the microstructure under cyclic loading, plastic shakedown and ratcheting are discussed. The definition of macroscopic variables taking account of microstructure and uniaxial constitutive law are described. (K.I.)

  20. The effects of polymers' visco-elastoplastic properties on the micro cavities filling step of hot embossing process

    Science.gov (United States)

    Cheng, Gang; Barrière, Thierry

    2018-05-01

    The hot embossing process has been widely used in the manufacturing of polymer components, especially for the fabrication of micro or nano components. The significant advantage of the hot embossing process compared to the traditional injection moulding process is the excellent effective filling ratio for the high aspect ratio components and large surface structural components. The lack of material behavior modeling and numerical simulation limits the further development the hot embossing process, especially at the micro and nano scales. In this paper, a visco-elastoplastic behavior law has been proposed to describe the amorphous thermoplastic polymer mechanical properties in the hot embossing processing temperature range, which is lightly above their glass transition temperature. Uniaxial compression tests have been carried out in order to investigate the amorphous thermoplastic polymers properties. The material parameters in the visco-elastoplastic model have been identified according to the experimental results. A 3D numerical model has been created in the simulation software, which is based on the finite element method. The numerical simulation of the filling step of the hot embossing process has been effectuated by taking into account the viscous, elastic and plastic behaviors of thermoplastic polymers. The micro hot embossing process has been carried out using horizontal injection compression moulding equipment. A complete compression mould tool, equipped with the heating system, the cooling system, the ejection system and the vacuum system, has been designed and elaborated for this research work. The microfluidic devices based on the amorphous thermoplastic polymers have been successfully elaborated by hot embossing process. Proper agreement between the numerical simulation and the experimental elaboration has been obtained.

  1. Combining vibrational linear-by-part dynamics and kinetic-based decoupling of the dynamics for multiple elastoplastic smooth impacts

    Energy Technology Data Exchange (ETDEWEB)

    Barjau, Ana, E-mail: ana.barjau@upc.edu; Batlle, Joaquim A., E-mail: agullo.batlle@upc.edu; Font-Llagunes, Josep M., E-mail: josep.m.font@upc.edu [Universitat Politècnica de Catalunya, Department of Mechanical Engineering and Biomedical Engineering Research Centre (Spain)

    2015-11-15

    This article proposes a linear-by-part approach for elastoplastic 3D multiple-point smooth impacts in multibody systems with perfect constraints. The model is an extension of a previous version, restricted to the perfectly elastic case, able to account for the high sensitivity to initial conditions and for redundancy without assuming any particular collision sequence (Barjau et al., Multibody Syst. Dyn. 31:497–517, 2014). Energy losses associated with compression and expansion in percussive analysis is a matter as complex as the physical phenomena involved, at the nanoscale level, for different materials. Simplified models can be developed for specific purposes, which can retain the most relevant trends of internal damping and at the same time be suitable for a particular analytical approach of impact mechanics. In the context of this article, energy dissipation due to material deformation is introduced through a linear-by-part elastoplastic model consisting on two elementary sets of springs and dry-friction dampers. The first set accounts for inelastic behavior (energy loss without permanent indentation), whereas the second one introduces plasticity (that is, permanent indentation). In inelastic and plastic collisions, instantaneous unilateral constraints may appear, thus reducing the number of degrees of freedom (DOF) of the system. The calculation of the corresponding normal contact force at the constrained points is then necessary in order to detect whether the constraint holds or disappears (either because a new compression or an expansion phase starts, or because contact is lost). Different simulated application examples are presented and thoroughly discussed.

  2. A thermo-elastoplastic model for soft rocks considering structure

    Science.gov (United States)

    He, Zuoyue; Zhang, Sheng; Teng, Jidong; Xiong, Yonglin

    2017-11-01

    In the fields of nuclear waste geological deposit, geothermy and deep mining, the effects of temperature on the mechanical behaviors of soft rocks cannot be neglected. Experimental data in the literature also showed that the structure of soft rocks cannot be ignored. Based on the superloading yield surface and the concept of temperature-deduced equivalent stress, a thermo-elastoplastic model for soft rocks is proposed considering the structure. Compared to the superloading yield surface, only one parameter is added, i.e. the linear thermal expansion coefficient. The predicted results and the comparisons with experimental data in the literature show that the proposed model is capable of simultaneously describing heat increase and heat decrease of soft rocks. A stronger initial structure leads to a greater strength of the soft rocks. Heat increase and heat decrease can be converted between each other due to the change of the initial structure of soft rocks. Furthermore, regardless of the heat increase or heat decrease, a larger linear thermal expansion coefficient or a greater temperature always leads to a much rapider degradation of the structure. The degradation trend will be more obvious for the coupled greater values of linear thermal expansion coefficient and temperature. Lastly, compared to heat decrease, the structure will degrade more easily in the case of heat increase.

  3. On Compression of a Heavy Compressible Layer of an Elastoplastic or Elastoviscoplastic Medium

    Science.gov (United States)

    Kovtanyuk, L. V.; Panchenko, G. L.

    2017-11-01

    The problem of deformation of a horizontal plane layer of a compressible material is solved in the framework of the theory of small strains. The upper boundary of the layer is under the action of shear and compressing loads, and the no-slip condition is satisfied on the lower boundary of the layer. The loads increase in absolute value with time, then become constant, and then decrease to zero.Various plasticity conditions are consideredwith regard to the material compressibility, namely, the Coulomb-Mohr plasticity condition, the von Mises-Schleicher plasticity condition, and the same conditions with the viscous properties of the material taken into account. To solve the system of partial differential equations for the components of irreversible strains, a finite-difference scheme is developed for a spatial domain increasing with time. The laws of motion of elastoplastic boundaries are presented, the stresses, strains, rates of strain, and displacements are calculated, and the residual stresses and strains are found.

  4. A Numerical Simulation of Elastoplastic Contact Analysis of Compressor by Overspeeding

    Directory of Open Access Journals (Sweden)

    Aihua Liao

    2014-04-01

    Full Text Available This study analyzes the stress distribution of 3D elastoplastic contact problems by using the FE parametric quadratic programming (PQP method derived from a 3D FE model based on parametric variational principle (PVP. We numerically analyze a 24-blade compressor by combining centrifugal loading with interference-fit one. To accelerate computation, calculation is simplified by structural modeling via multisubstructuring, aiming to deal with FE-simulated computer aided design (CAD conveniently. We then analyze the relationships between the maximum residual stresses of the compressor posterior to prestressing and overspeed rpms, and we also study the distribution and magnitude of the contact stresses of the compressor in working conditions after overspeed prestressing. Moreover, we thoroughly discuss the distribution and magnitude of the contact stresses of shaft-shaft sleeve-impeller in working conditions. Relative displacement can be prevented and contact stress can be kept uniform due to the nonuniform initial amount of interference in overspeed prestressing. This paper summarizes the FEM simulation results and provides reference data for improving the design and processing of compressor impellers, indicating that overspeed is indispensable in manufacture.

  5. A new coupled elastoplastic damage model for clay-stone and its parameter identification

    International Nuclear Information System (INIS)

    Jia, S.P.; Chen, W.Z.; Yu, H.D.; Li, X.L.; Sillen, X.

    2010-01-01

    Document available in extended abstract form only. In Belgium, the Boom Clay is considered as a potential host rock for the geological disposal of the high level nuclear waste and is intensively studied from hydro-mechanical point of view. Laboratory tests on Boom clay shown that the Boom clay presents very complex stress strain behaviour. Undrained triaxial tests indicated often a hardening behaviour at small deformation and softening at larger deformation. It is not easy to give an explicit function to describe the stress-strain behaviour under triaxial stress state. The mechanical characteristics are obviously affected by the porosity, fractures growth, water content, and stress, etc., four stages can be usually distinguished from the stress-strain curve of Boom Clay, named as OA, AB, BC and CD. 1) Stage OA, the relation between stress and strain is linear. This stage is elastic state, and point A is called as yield strength σ c0 . 2) Stage AB, the weak fractures in the rock appear, develop and cumulate gradually. Point B is called peak strength σ cu . 3) Stage BC, peak strength is reached and stress reduces with the increasing of strain, up to the residual strength. This stage is called strain softening and point C is the residual strength σ cr . The axial pressure causes the fracture developing and strength reducing. 4) Stage CD, the final strength doesn't reduce obviously with the development of plastic deformation. This stage is called plastic flow. Obviously, The conventional elasto-plastic constitutive model can not describe the mechanical behaviours of Boom Clay. Based on damage mechanics theory, an new elasto-plastic damage constitutive model is put forward and applied to Boom Clay, which can describe the complex stress-strain behaviour of clay. It is described as follows: stage OA with an elastic model, stage AB with elastic damage model, stage BC and stage CD with plastic damage model. The complete process curve of stress-strain can be divided

  6. Effect of 3D fractal dimension on contact area and asperity interactions in elastoplastic contact

    Directory of Open Access Journals (Sweden)

    Abdeljalil Jourani

    2016-05-01

    Full Text Available Few models are devoted to investigate the effect of 3D fractal dimension Ds on contact area and asperity interactions. These models used statistical approaches or two-dimensional deterministic simulations without considering the asperity interactions and elastic–plastic transition regime. In this study, a complete 3D deterministic model is adopted to simulate the contact between fractal surfaces which are generated using a modified two-variable Weierstrass–Mandelbrot function. This model incorporates the asperity interactions and considers the different deformation modes of surface asperities which range from entirely elastic through elastic-plastic to entirely plastic contact. The simulations reveal that the elastoplastic model is more appropriate to calculate the contact area ratio and pressure field. It is also shown that the influence of the asperity interactions cannot be neglected, especially at lower fractal dimension Ds and higher load.

  7. Approximate seismic analysis of piping or equipment mounted on elastoplastic structures

    International Nuclear Information System (INIS)

    Villaverde, R.

    1990-01-01

    A simple approximate procedure is presented to estimate the maximum response of equipment, piping, or any other light secondary system mounted on nonlinear structures subjected to earthquake ground motions. The procedure is based on the consideration of structure and equipment as an integrated combined system, and on a response spectrum method for the analysis of nonlinear multistory structures. It is formulated in terms of the initial dynamic properties of the independent structure and equipment components, and the nonlinear response spectrum of a specified earthquake ground motion. It may be applied to any linear multiple-degree-of-freedom secondary system connected at one or two arbitrary points of a multistory structure. It fully takes into account the interaction between primary and secondary systems and the nonclassical damping character of structure-equipment systems. It is restricted, however, to structures with elastoplastic load-deformation behaviour and to those cases in which the mass of the secondary system is small in comparison with the mass of the structure. Its accuracy is evaluated by means of a comparative study with the numerical integration solutions of a number of idealized systems. In this comparative study, the proposed procedure estimates the numerical integration solutions with an average error of about 2 per cent. (author)

  8. Non-affine deformation in microstructure selection in solids II: Elastoplastic theory for the dynamics of solid state transformations

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Arya; Bhattacharya, Jayee; Sengupta, Surajit [S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Calcutta 700 098 (India); Rao, Madan [Raman Research Institute, C V Raman Avenue, Bangalore 560 080 (India)

    2008-09-10

    We study the nucleation dynamics of a model solid state transformation and the criterion for microstructure selection. Using a molecular dynamics (MD) simulation, we had shown that the dynamics of the solid is accompanied by the creation of transient non-affine zones (NAZ), which evolve with the rapidly moving transformation front. Guided by our MD results, we formulate a dynamical continuum theory of solid state transformation, which couples the elastic strain to the non-affine deformation. We demonstrate that our elastoplastic description recovers all qualitative features of the MD simulation. We construct a dynamical phase diagram for microstructure selection, including regimes where martensite or ferrite obtains, in addition to making several testable predictions.

  9. An anisotropic elastoplastic constitutive formulation generalised for orthotropic materials

    Science.gov (United States)

    Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.

    2018-03-01

    This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill's yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic-plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic-plastic constitutive model is the introduction of anisotropic effect in the Mie-Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie-Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \\varvec{ψ} tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic-plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and {895 ms}^{-1} impact velocities is performed. A good agreement is obtained in each test.

  10. A Dissipation Gap Method for full-field measurement-based identification of elasto-plastic material parameters

    KAUST Repository

    Blaysat, Benoît

    2012-05-18

    Using enriched data such as displacement fields obtained from digital image correlation is a pathway to the local identification of material parameters. Up to now, most of the identification techniques for nonlinear models are based on Finite Element Updating Methods. This article explains how an appropriate use of the Dissipation Gap Method can help in this context and be an interesting alternative to these classical techniques. The Dissipation Gap Methods rely on the concept of error in dissipation that has been used mainly for the verification of finite element simulations. We provide here an original application of these founding developments to the identification of material parameters for nonlinear behaviors. The proposed technique and especially the main technical keypoint of building the admissible fields are described in detail. The approach is then illustrated through the identification of heterogeneous isotropic elasto-plastic properties. The basic numerical features highlighted through these simple examples demonstrate this approach to be a promising tool for nonlinear identification. © 2012 John Wiley & Sons, Ltd.

  11. Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton

    Science.gov (United States)

    Pan, Peng-Zhi; Feng, Xia-Ting; Huang, Xiao-Hua; Cui, Qiang; Zhou, Hui

    2009-05-01

    This paper aims at a numerical study of coupled thermal, hydrological and mechanical processes in the excavation disturbed zones (EDZ) around nuclear waste emplacement drifts in fractured crystalline rocks. The study was conducted for two model domains close to an emplacement tunnel; (1) a near-field domain and (2) a smaller wall-block domain. Goodman element and weak element were used to represent the fractures in the rock mass and the rock matrix was represented as elasto-visco-plastic material. Mohr-Coulomb criterion and a non-associated plastic flow rule were adopted to consider the viscoplastic deformation in the EDZ. A relation between volumetric strain and permeability was established. Using a self-developed EPCA2D code, the elastic, elasto-plastic and creep analyses to study the evolution of stress and deformations, as well as failure and permeability evolution in the EDZ were conducted. Results indicate a strong impact of fractures, plastic deformation and time effects on the behavior of EDZ especially the evolution of permeability around the drift.

  12. An adaptive EFG-FE coupling method for elasto-plastic contact of rough surfaces

    International Nuclear Information System (INIS)

    Liu Lan; Liu Geng; Tong Ruiting; Jin Saiying

    2010-01-01

    Differing from Finite Element Method, the meshless method does not need any mesh information and can arrange nodes freely which is perfectly suitable for adaptive analysis. In order to simulate the contact condition factually and improve computational efficiency, an adaptive procedure for Element-free Galerkin-Finite Element (EFG-FE) coupling contact model is established and developed to investigate the elastoplastic contact performance for engineering rough surfaces. The local adaptive refinement strategy combined with the strain energy gradient-based error estimation model is employed. The schemes, including principle explanation, arithmetic analysis and programming realization, are introduced and discussed. Furthermore, some related parameters on adaptive convergence criterion are researched emphatically, including adaptation-stop criterion, refinement or coarsening criterion which are guided by the relative error in total strain energy with two adjacent stages. Based on pioneering works of the EFG-FE coupling method for contact problems, an adaptive EFG-FE model for asperity contact is studied. Compared with the solutions obtained from the uniform refinement model, the adaptation results indicate that the adaptive method presented in this paper is capable of solving asperity contact problems with excellent calculation accuracy and computational efficiency.

  13. Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems

    KAUST Repository

    Frohne, Jö rg; Heister, Timo; Bangerth, Wolfgang

    2015-01-01

    © 2016 John Wiley & Sons, Ltd. Quasi-static elastoplastic contact problems are ubiquitous in many industrial processes and other contexts, and their numerical simulation is consequently of great interest in accurately describing and optimizing production processes. The key component in these simulations is the solution of a single load step of a time iteration. From a mathematical perspective, the problems to be solved in each time step are characterized by the difficulties of variational inequalities for both the plastic behavior and the contact problem. Computationally, they also often lead to very large problems. In this paper, we present and evaluate a complete set of methods that are (1) designed to work well together and (2) allow for the efficient solution of such problems. In particular, we use adaptive finite element meshes with linear and quadratic elements, a Newton linearization of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear solvers. Through a sequence of numerical experiments, we show the performance of these methods. This includes highly accurate solutions of a three-dimensional benchmark problem and scaling our methods in parallel to 1024 cores and more than a billion unknowns.

  14. Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems

    KAUST Repository

    Frohne, Jörg

    2015-08-06

    © 2016 John Wiley & Sons, Ltd. Quasi-static elastoplastic contact problems are ubiquitous in many industrial processes and other contexts, and their numerical simulation is consequently of great interest in accurately describing and optimizing production processes. The key component in these simulations is the solution of a single load step of a time iteration. From a mathematical perspective, the problems to be solved in each time step are characterized by the difficulties of variational inequalities for both the plastic behavior and the contact problem. Computationally, they also often lead to very large problems. In this paper, we present and evaluate a complete set of methods that are (1) designed to work well together and (2) allow for the efficient solution of such problems. In particular, we use adaptive finite element meshes with linear and quadratic elements, a Newton linearization of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear solvers. Through a sequence of numerical experiments, we show the performance of these methods. This includes highly accurate solutions of a three-dimensional benchmark problem and scaling our methods in parallel to 1024 cores and more than a billion unknowns.

  15. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench

    Science.gov (United States)

    Zhou, Zhiyuan; Lin, Jian

    2018-06-01

    We investigated variations in the elasto-plastic deformation of the subducting plate along the Mariana Trench through an analysis of flexural bending and normal fault characteristics together with geodynamic modeling. Most normal faults were initiated at the outer-rise region and grew toward the trench axis with strikes mostly subparallel to the local trench axis. The average trench relief and maximum fault throws were measured to be significantly greater in the southern region (5 km and 320 m, respectively) than the northern and central regions (2 km and 200 m). The subducting plate was modeled as an elasto-plastic slab subjected to tectonic loading at the trench axis. The calculated strain rates and velocities revealed an array of normal fault-like shear zones in the upper plate, resulting in significant faulting-induced reduction in the deviatoric stresses. We then inverted for solutions that best fit the observed flexural bending and normal faulting characteristics, revealing normal fault penetration to depths of 21, 20, and 32 km beneath the seafloor for the northern, central, and southern regions, respectively, which is consistent with the observed depths of the relocated normal faulting earthquakes in the central Mariana Trench. The calculated deeper normal faults of the southern region might lead to about twice as much water being carried into the mantle per unit trench length than the northern and central regions. We further calculated that normal faulting has reduced the effective elastic plate thickness Te by up to 52% locally in the southern region and 33% in both the northern and central regions. The best-fitting solutions revealed a greater apparent angle of the pulling force in the southern region (51-64°) than in the northern (22-35°) and central (20-34°) regions, which correlates with a general southward increase in the seismically-determined dip angle of the subducting slab along the Mariana Trench.

  16. Study of elastoplastic deformations self-fretting of flat cylinders by mandrelling

    International Nuclear Information System (INIS)

    Caron, Roger

    1974-04-01

    An application of the theory of thick tubes to the special case of flat cylinders which have been self-fretted by mandrelling, is presented. The following materials were used: 1 - a soft steel, XC 18 F, considered to be perfectly elastoplastic; 2 - an alloyed steel, 35 NCD 16, designated consolidable. In the first case, the slip trajectories observed on the polished cylinder surface enabled the plastic deformation region to be defined. It was found, in particular, that the average value of the mean boundary radius at the maximum pressure differs very little from that determined using basic formulas. In the second case, the plastic deformations uniformly affect the internal layers, and privileged trajectories do not exist in this region. On the other hand, the ε θ and ε r expansion curves (from deformation measurements), are continuous from the inner radius to the outer radius; the boundary radius was thus localized from considerations of its correspondence with the ε θ -ε r (shearing deformation) at the elastic limit of the material. This characteristic was determined from measurements made using a test piece provided for this purpose. The radii obtained with this method agree with the theoretical radii over only 4/5 of the total deformation, the uncertainty region being taken into consideration. The maximum value of this parameter was determined in such a way as to obtain a return to a completely elastic rest position. (author) [fr

  17. Stress Analysis of a TRISO Coated Particle Fuel by Using ABAQUS Finite Element Visco-Elastoplastic Solutions

    International Nuclear Information System (INIS)

    Cho, Moon Sung; Kim, Y. M.; Lee, Y. W.

    2006-01-01

    The fundamental design for a gas-cooled reactor relies on an understanding of the behavior of a coated particle fuel. KAERI, which has been carrying out the Korean VHTR (Very High Temperature modular gas cooled Reactor) Project since 2004, is developing a fuel performance analysis code for a VHTR named COPA (COated Particle fuel Analysis). A validation of COPA was attempted by comparing its benchmark results with the visco-elastic solutions obtained from the ABAQUS code calculations for the IAEA-CRP-6 TRISO coated particle benchmark problems involving a creep, swelling, and pressure. However, the ABAQUS finite element model used for the above-mentioned analysis did not consider the material nonlinearity of the SiC coating layer that showed stress levels higher than the assumed yield point of the material. In this study, a consideration of the material nonlinearity is included in the ABAQUS model to obtain the visco-elastoplastic solutions and the results are compared with the visco-elastic solutions obtained from the previous ABAQUS model

  18. Development of a computer code 'CRACK' for elastic and elastoplastic fracture mechanics analysis of 2-D structures by finite element technique

    International Nuclear Information System (INIS)

    Dutta, B.K.; Kakodkar, A.; Maiti, S.K.

    1986-01-01

    The fracture mechanics analysis of nuclear components is required to ensure prevention of sudden failure due to dynamic loadings. The linear elastic analysis near to a crack tip shows presence of stress singularity at the crack tip. The simulation of this singularity in numerical methods enhance covergence capability. In finite element technique this can be achieved by placing mid nodes of 8 noded or 6 noded isoparametric elements, at one fourth ditance from crack tip. Present report details this characteristic of finite element, implementation of this element in a code 'CRACK', implementation of J-integral to compute stress intensity factor and solution of number of cases for elastic and elastoplastic fracture mechanics analysis. 6 refs., 6 figures. (author)

  19. Three-dimensional elasto-plastic soil modelling and analysis of sauropod tracks

    Directory of Open Access Journals (Sweden)

    Eugenio Sanz

    2016-06-01

    Full Text Available This paper reports the use of FEA (Finite Element Analysis to model dinosaur tracks. Satisfactory reproductions of sauropod ichnites were simulated using 3D numerical models of the elasto-plastic behaviour of soils. Though the modelling was done of ichnites in situ at the Miraflores I tracksite (Soria, Spain, the methodology could be applied to other tracksites to improve their ichnological interpretation and better understand how the type and state of the trodden sediment at the moment the track is created is a fundamental determinant of the morphology of the ichnite. The results obtained explain why the initial and commonly adopted hypothesis—that soft sediments become progressively more rigid and resistant at depth—is not appropriate at this tracksite. We explain why it is essential to consider a more rigid superficial layer (caused by desiccation overlying a softer layer that is extruded to form a displacement rim. Adult sauropods left trackways behind them. These tracks could be filled up with water due to phreatic level was close to the ground surface. The simulation provides us with a means to explain the differences between similar tracks (of different depths; with or without displacement rims in the various stratigraphic layers of the tracksite and to explain why temporary and variable conditions of humidity lead to these differences in the tracks. The simulations also demonstrate that track depth alone is insufficient to differentiate true tracks from undertracks and that other discrimination criteria need to be taken into account. The scarcity of baby sauropod tracks is explained because they are shallow and easily eroded.

  20. On elastic and elastoplastic analysis of tube junction problems by coupling of the FEM to BEM technique

    International Nuclear Information System (INIS)

    Cen, Z.; Du, Q.

    1987-01-01

    The tube junction structures have been widely adopted for nuclear engineering usages, so have been for many other technologies. In application of the finite element method to stress analysis for such a three dimensional complex structures, it is necessary to subdivide the regions of stress concentration into very refined meshes. In this paper, schemes for incoporating the finite element equation as a natural boundary condition into boundary integral equation have been employed. The relevant formulae and some of the details of treatments have been given. For the nozzle junction: The 3D isoparametric finite elements with 8-20 nodes containing additional internal degrees of freedom have been employed for the cylindrical shell parts which remain at elastic stage and with less stress gradients, while for the junction part with high stress gradients, the boundary integration technique of 8 nodes 2D isoparametric boundary elements has been used and the volumetric integral elements of 8 nodes have been used for the elastoplastic incremental computations. (orig./GL)

  1. AN EXACT ELASTO-PLASTIC SOLUTION OF METAL-MATRIX COMPOSITE CANTILEVER BEAM LOADED BY A SINGLE FORCE AT ITS FREE END

    Directory of Open Access Journals (Sweden)

    Onur SAYMAN

    2001-03-01

    Full Text Available In the present study, an elastic-plastic stress analysis is carried out in a metal matrix composite cantilever beam loaded by a single force at its free end. A composite consisting of stainless-steel reinforced aluminium was produced for this work. The orientation angle of the fibers is chosen as 0°, 30°, 45°, 60° and 90°. The material is assumed to be perfectly plastic in the elasto-plastic solution. An analytical solution is performed for satisfying both the governing differential equation in the plane stress case and boundary conditions for small plastic deformations. The solution is carried out under the assumption of the Bernoulli-Navier hypotheses. The composite material is assumed as hardening linearly. The Tsai-Hill theory is used as a yield criterion.

  2. Polycarbonate as an Elasto-Plastic Material Model for Simulation of the Microstructure Hot Imprint Process

    Directory of Open Access Journals (Sweden)

    Rokas Šakalys

    2013-08-01

    Full Text Available The thermal imprint process of polymer micro-patterning is widely applied in areas such as manufacturing of optical parts, solar energy, bio-mechanical devices and chemical chips. Polycarbonate (PC, as an amorphous polymer, is often used in thermoforming processes because of its good replication characteristics. In order to obtain replicas of the best quality, the imprint parameters (e.g., pressure, temperature, time, etc. must be determined. Therefore finite element model of the hot imprint process of lamellar periodical microstructure into PC has been created using COMSOL Multiphysics. The mathematical model of the hot imprint process includes three steps: heating, imprinting and demolding. The material properties of amorphous PC strongly depend on the imprint temperature and loading pressure. Polycarbonate was modelled as an elasto-plastic material, since it was analyzed below the glass transition temperature. The hot imprint model was solved using the heat transfer and the solid stress-strain application modes with thermal contact problem between the mold and polycarbonate. It was used for the evaluation of temperature and stress distributions in the polycarbonate during the hot imprint process. The quality of the replica, by means of lands filling ratio, was determined as well.

  3. An Elasto-Plastic Damage Model for Rocks Based on a New Nonlinear Strength Criterion

    Science.gov (United States)

    Huang, Jingqi; Zhao, Mi; Du, Xiuli; Dai, Feng; Ma, Chao; Liu, Jingbo

    2018-05-01

    The strength and deformation characteristics of rocks are the most important mechanical properties for rock engineering constructions. A new nonlinear strength criterion is developed for rocks by combining the Hoek-Brown (HB) criterion and the nonlinear unified strength criterion (NUSC). The proposed criterion takes account of the intermediate principal stress effect against HB criterion, as well as being nonlinear in the meridian plane against NUSC. Only three parameters are required to be determined by experiments, including the two HB parameters σ c and m i . The failure surface of the proposed criterion is continuous, smooth and convex. The proposed criterion fits the true triaxial test data well and performs better than the other three existing criteria. Then, by introducing the Geological Strength Index, the proposed criterion is extended to rock masses and predicts the test data well. Finally, based on the proposed criterion, a triaxial elasto-plastic damage model for intact rock is developed. The plastic part is based on the effective stress, whose yield function is developed by the proposed criterion. For the damage part, the evolution function is assumed to have an exponential form. The performance of the constitutive model shows good agreement with the results of experimental tests.

  4. Finite element evaluation of elasto-plastic accommodation energies during solid state transformations: Coherent, spherical precipitate in finite matrix

    International Nuclear Information System (INIS)

    Sen, S.; Balasubramaniam, R.; Sethuraman, R.

    1996-01-01

    The molar volume difference between the matrix and the precipitate phases in the case of solid state phase transformations results in the creation of stain energy in the system due to the misfit strains. A finite element model based on the initial strain approach is proposed to evaluate elasto-plastic accommodation energies during solid state transformation. The three-dimensional axisymmetric model has been used to evaluate energies as a function of transformation for α-β hydrogen transformations in the Nb-H system. The transformation has been analyzed for the cases of transformation progressing both from the center to surface and from the surface to center of the system. The effect of plastic deformation has been introduced to make the model realistic, specifically to the Nb-NbH phase transformation which involves a 4% linear misfit strain. It has been observed that plastic deformation reduces the strain energies compared to the linear elastic analysis

  5. An Optimized Elasto-Plastic Subgrade Reaction For Modeling The Response Of A Nonlinear Foundation For A Structural Analysis

    Directory of Open Access Journals (Sweden)

    Ray Richard Paul

    2015-09-01

    Full Text Available Geotechnical and structural engineers are faced with a difficult task when their designs interact with each other. For complex projects, this is more the norm than the exception. In order to help bridge that gap, a method for modeling the behavior of a foundation using a simple elasto-plastic subgrade reaction was developed. The method uses an optimization technique to position 4-6 springs along a pile foundation to produce similar load deflection characteristics that were modeled by more sophisticated geotechnical finite element software. The methodology uses an Excel spreadsheet for accepting user input and delivering an optimized subgrade spring stiffness, yield, and position along the pile. In this way, the behavior developed from the geotechnical software can be transferred to the structural analysis software. The optimization is achieved through the solver add-in within Excel. Additionally, a beam on a nonlinear elastic foundation model is used to compute deflections of the optimized subgrade reaction configuration.

  6. Static Buckling Model Tests and Elasto-plastic Finite Element Analysis of a Pile in Layers with Various Thicknesses

    Science.gov (United States)

    Okajima, Kenji; Imai, Junichi; Tanaka, Tadatsugu; Iida, Toshiaki

    Damage to piles in the liquefied ground is frequently reported. Buckling by the excess vertical load could be one of the causes of the pile damage, as well as the lateral flow of the ground and the lateral load at the pile head. The buckling mechanism is described as a complicated interaction between the pile deformation by the vertical load and the earth pressure change cased by the pile deformation. In this study, series of static buckling model tests of a pile were carried out in dried sand ground with various thickness of the layer. Finite element analysis was applied to the test results to verify the effectiveness of the elasto-plastic finite element analysis combining the implicit-explicit mixed type dynamic relaxation method with the return mapping method to the pile buckling problems. The test results and the analysis indicated the possibility that the buckling load of a pile decreases greatly where the thickness of the layer increases.

  7. Structural and elastoplastic properties of β -Ga2O3 films grown on hybrid SiC/Si substrates

    Science.gov (United States)

    Osipov, A. V.; Grashchenko, A. S.; Kukushkin, S. A.; Nikolaev, V. I.; Osipova, E. V.; Pechnikov, A. I.; Soshnikov, I. P.

    2018-04-01

    Structural and mechanical properties of gallium oxide films grown on (001), (011) and (111) silicon substrates with a buffer layer of silicon carbide are studied. The buffer layer was fabricated by the atom substitution method, i.e., one silicon atom per unit cell in the substrate was substituted by a carbon atom by chemical reaction with carbon monoxide. The surface and bulk structure properties of gallium oxide films have been studied by atomic-force microscopy and scanning electron microscopy. The nanoindentation method was used to investigate the elastoplastic characteristics of gallium oxide, and also to determine the elastic recovery parameter of the films under study. The ultimate tensile strength, hardness, elastic stiffness constants, elastic compliance constants, Young's modulus, linear compressibility, shear modulus, Poisson's ratio and other characteristics of gallium oxide have been calculated by quantum chemistry methods based on the PBESOL functional. It is shown that all these properties of gallium oxide are essentially anisotropic. The calculated values are compared with experimental data. We conclude that a change in the silicon orientation leads to a significant reorientation of gallium oxide.

  8. A three dimensional elastoplastic cyclic constitutive law with a semi discrete variable and a ratchetting stress

    International Nuclear Information System (INIS)

    Geyer, P.; Proix, J.M.; Jayet-Gendrot, S.; Schoenberger, P.; Taheri, S.

    1995-01-01

    The study of cyclic elastoplastic constitutive law is, at the moment, focused on non proportional loadings, but for uniaxial loadings some problems remain, as for example the ability for a law to describe simultaneously ratcheting (constant increment of strain) in non symmetrical ones. We propose a law with a discrete memory variable, the plastic strain at the last unloading, and a ratchetting stress which, in addition to previous phenomena, describes the other hand the choice of all macroscopic variables is justified by a microscopic analysis. The extension to 3D situations of this law is proposed. The discrete nature of the memory leads to discontinuity problems for some loading paths, a modification is then proposed which uses a differential evolution law. For large enough uniaxial cycles, the uniaxial law is nevertheless recovered. An incremental form of he implicit evolution problem is given, and we describe the implementation of this model in the Code Aster a thermomechanical structural software using the f.e.m. developed at Electricite de France. For a 316 stainless steel we present comparisons between experiments and numerical results in uniaxial and biaxial ratchetting and non proportional strain controlled test (circular, square, stair loading). (authors). 13 refs., 10 figs

  9. Elasto-plastic benchmark calculations. Step 1: verification of the numerical accuracy of the computer programs

    International Nuclear Information System (INIS)

    Corsi, F.

    1985-01-01

    In connection with the design of nuclear reactors components operating at elevated temperature, design criteria need a level of realism in the prediction of inelastic structural behaviour. This concept leads to the necessity of developing non linear computer programmes, and, as a consequence, to the problems of verification and qualification of these tools. Benchmark calculations allow to carry out these two actions, involving at the same time an increased level of confidence in complex phenomena analysis and in inelastic design calculations. With the financial and programmatic support of the Commission of the European Communities (CEE) a programme of elasto-plastic benchmark calculations relevant to the design of structural components for LMFBR has been undertaken by those Member States which are developing a fast reactor project. Four principal progressive aims were initially pointed out that brought to the decision to subdivide the Benchmark effort in a calculations series of four sequential steps: step 1 to 4. The present document tries to summarize Step 1 of the Benchmark exercise, to derive some conclusions on Step 1 by comparison of the results obtained with the various codes and to point out some concluding comments on the first action. It is to point out that even if the work was designed to test the capabilities of the computer codes, another aim was to increase the skill of the users concerned

  10. Experimental and Finite Element Analysis of Asymmetric Rolling of 6061 Aluminum Alloy Using Two-Scale Elasto-Plastic Constitutive Relation

    Directory of Open Access Journals (Sweden)

    Wronski M.

    2017-12-01

    Full Text Available The goal of this work was theoretical and experimental study of micro- and macroscopic mechanical fields of 6061 aluminum alloy induced by the asymmetric rolling process. Two-scale constitutive law was used by implementing an elasto-plastic self-consistent scheme into the Finite Element code (ABAQUS/Explicit. The model was applied to study the asymmetric rolling. Such a deformation process induces heterogeneous mechanical fields that were reproduced by the model thanks to the crystallographic nature of constitutive law used. The studied material was processed, at room temperature, in one rolling pass to 36% reduction. The resulting material modifications were compared with predictions of the two-scale model. Namely, the calculated textures were compared with experimental ones determined by X-ray diffraction. Especially, detailed quantitative analysis of texture variation across the sample thickness was done. The influence of this texture variation on plastic anisotropy was studied. The advantages of asymmetric rolling process over symmetric one were identified. The main benefits are a nearly homogeneous crystallographic texture, reduced rolling normal forces and homogenization of plastic anisotropy through the sample thickness.

  11. Finite element analysis of the biaxial cyclic tensile loading of the elastoplastic plate with the central hole: asymptotic regimes

    Science.gov (United States)

    Turkova, Vera; Stepanova, Larisa

    2018-03-01

    For elastistoplastic structure elements under cyclic loading three types of asymptotic behavior are well known: shakedown, cyclic plasticity or ratcheting. In structure elements operating in real conditions ratcheting must always be excluded since it caused the incremental fracture of structure by means of the accumulation of plastic strains. In the present study results of finite-element (FEM) calculations of the asymptotical behavior of an elastoplastic plate with the central circular and elliptic holes under the biaxial cyclic loading for three different materials are presented. Incremental cyclic loading of the sample with stress concentrator (the central hole) is performed in the multifunctional finite-element package SIMULIA Abaqus. The ranges of loads found for shakedown, cyclic plasticity and ratcheting are presented. The results obtained are generalized and analyzed. Convenient normalization is suggested. The chosen normalization allows us to present all computed results, corresponding to separate materials, within one common curve with minimum scattering of the points. Convenience of the generalized diagram consists in a possibility to find an asymptotical behavior of an inelastic structure for materials for which computer calculations were not made.

  12. A Generalized Orthotropic Elasto-Plastic Material Model for Impact Analysis

    Science.gov (United States)

    Hoffarth, Canio

    Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of deformation, damage and failure. There are numerous material models that have been developed to analyze the dynamic impact response of polymer matrix composites. However, there are key features that are missing in those models that prevent them from providing accurate predictive capabilities. In this dissertation, a general purpose orthotropic elasto-plastic computational constitutive material model has been developed to predict the response of composites subjected to high velocity impacts. The constitutive model is divided into three components - deformation model, damage model and failure model, with failure to be added at a later date. The deformation model generalizes the Tsai-Wu failure criteria and extends it using a strain-hardening-based orthotropic yield function with a non-associative flow rule. A strain equivalent formulation is utilized in the damage model that permits plastic and damage calculations to be uncoupled and capture the nonlinear unloading and local softening of the stress-strain response. A diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The overall framework is driven by experimental tabulated temperature and rate-dependent stress-strain data as well as data that characterizes the damage matrix and failure

  13. Rock Failure Analysis Based on a Coupled Elastoplastic-Logarithmic Damage Model

    Science.gov (United States)

    Abdia, M.; Molladavoodi, H.; Salarirad, H.

    2017-12-01

    The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response and irreversible behavior in particular under high in-situ stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause the frictional sliding. During this process, the net number of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage process is stiffness degradation, dilatation and softening response. In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution & plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model has been programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental Oolitic limestone rock behavior was simulated based on the developed

  14. Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models

    Science.gov (United States)

    González, C.; Segurado, J.; LLorca, J.

    2004-07-01

    The deformation of a composite made up of a random and homogeneous dispersion of elastic spheres in an elasto-plastic matrix was simulated by the finite element analysis of three-dimensional multiparticle cubic cells with periodic boundary conditions. "Exact" results (to a few percent) in tension and shear were determined by averaging 12 stress-strain curves obtained from cells containing 30 spheres, and they were compared with the predictions of secant homogenization models. In addition, the numerical simulations supplied detailed information of the stress microfields, which was used to ascertain the accuracy and the limitations of the homogenization models to include the nonlinear deformation of the matrix. It was found that secant approximations based on the volume-averaged second-order moment of the matrix stress tensor, combined with a highly accurate linear homogenization model, provided excellent predictions of the composite response when the matrix strain hardening rate was high. This was not the case, however, in composites which exhibited marked plastic strain localization in the matrix. The analysis of the evolution of the matrix stresses revealed that better predictions of the composite behavior can be obtained with new homogenization models which capture the essential differences in the stress carried by the elastic and plastic regions in the matrix at the onset of plastic deformation.

  15. Elastoplastic constitutive models parameters for unsaturated compacted bentonite sand buffer (BSB)

    International Nuclear Information System (INIS)

    Priyanto, D.; Man, A.; Dixon, D.; Blatz, J.

    2010-01-01

    Document available in extended abstract form only. Compacted Bentonite-Sand Buffer (BSB) material is one of the clay based sealing-system components proposed for use in a Canadian Deep Geological Repository (DGR) for used nuclear fuel. BSB is a 50:50 mixture (by dry mass) of bentonite and well-graded silica sand, compacted to a dry density of at least 1.67 Mg/m 3 . Numerical modelling of the evolution of a DGR requires defining of the Hydro-Mechanical (HM) parameters of the BSB. The objective of this paper is to determine the parameters that are needed to utilize an elastoplastic model to describe the BSB. The parameters of the Basic Barcelona Model (BBM) for BSB are determined based on the results of laboratory tests done under both water-saturated and unsaturated conditions. The BBM utilizes three key stress-state variables: net mean stress (p), deviatoric stress (q), and suction (s). Modification of the BBM to improve the prediction of the BSB behaviour is made based on these laboratory test results. Pre-consolidation stress (p o ), stiffness parameters due to changes in p in elastic (?) and plastic (λ(s)) ranges are determined from triaxial test results under isotropic loading, unloading and constant mass conditions with suctions in the range of 0-125 MPa. An increase of s results in an increase of p o and a decrease of λ(s) for s < 30 MPa, and constant po and λ(s) for s > 30 MPa. These data are used to determine the LC-Line. Blatz (2000) and Anderson (2003) concluded that the BSB has clay-dominated behaviour for s < 30 MPa and sand-dominated behaviour for s > 30 MPa. Based on this conclusion, the hardening parameter so of the suction increase yield curve is equal to 30 MPa. Using a measured s-v relationship from shrinkage tests, stiffness parameters for changes in s in the elastic range (?s) are approximately ∼ 0.065 and in the plastic range (λs) are approximately ∼ 0, which is different from the original BBM featuring λs > ?s. The tensile strength

  16. Elasto-plastic model for transversely isotropic Tournemire shale based on microstructure approach

    International Nuclear Information System (INIS)

    Abdi, H.; Evgin, E.; Fall, M.; Nguyen, T.S.; Labrie, D.; Barnichon, J.D.; Su, G.; Simon, R.

    2012-01-01

    Document available in extended abstract form only. Argillaceous formations being considered as potential host rocks for the geological disposal of nuclear wastes are usually characterized by the presence of bedding planes, resulting in anisotropy of their strength and deformation properties. A laboratory program of uniaxial tests, triaxial tests, cyclic tests, and Brazilian tests with concurrent monitoring of acoustic emission was performed in order to determine the above properties. The experimental results and their interpretation are presented in detail in a companion paper (Abdi et al., 2012, in these proceedings). Typical results from triaxial tests indicate the following behaviour: 1. There is a strong dependence of the stress-strain behaviour with the loading orientation with respect to the bedding planes. 2. There are four distinct zones of the stress strain curve: a crack and/or bedding closure zone; an elastic zone, a plastic zone with strain hardening, and a collapse zone after the peak that leads abruptly to a residual strength value. 3. There is damage, especially after the peak, resulting in the degradation of the stiffness as shown by unloading-reloading cycles. In order to reproduce the above behaviour, we adopted a classical elasto-plastic framework. In the elastic range, the transversely isotropic nature of the material is taken into account by the adoption of an elastic stiffness matrix that requires five independent elastic constants. These elastic constants show degradation with the accumulated damage. Using the deviatoric plastic strain as a measure of damage, we expressed functional relationships for these constants, using the results of cyclic triaxial tests. For the plastic behaviour, we used a Mohr-Coulomb yield criterion which takes into account the relative orientation of the applied stress and the bedding planes, and also strain hardening and softening. In this work we used the deviatoric plastic strain as the hardening parameter in

  17. Integrating a logarithmic-strain based hyper-elastic formulation into a three-field mixed finite element formulation to deal with incompressibility in finite-strain elasto-plasticity

    International Nuclear Information System (INIS)

    Dina Al Akhrass; Bruchon, Julien; Drapier, Sylvain; Fayolle, Sebastien

    2014-01-01

    This paper deals with the treatment of incompressibility in solid mechanics in finite-strain elasto-plasticity. A finite-strain model proposed by Miehe, Apel and Lambrecht, which is based on a logarithmic strain measure and its work-conjugate stress tensor is chosen. Its main interest is that it allows for the adoption of standard constitutive models established in a small-strain framework. This model is extended to take into account the plastic incompressibility constraint intrinsically. In that purpose, an extension of this model to a three-field mixed finite element formulation is proposed, involving displacements, a strain variable and pressure as nodal variables with respect to standard finite element. Numerical examples of finite-strain problems are presented to assess the performance of the formulation. To conclude, an industrial case for which the classical under-integrated elements fail is considered. (authors)

  18. Analysis of AHWR downcomer piping supported on elastoplastic dampers and subjected to normal and earthquake loadings

    International Nuclear Information System (INIS)

    Dubey, P.N.; Reddy, G.R.; Vaze, K.K.; Ghosh, A.K.

    2010-05-01

    Three layouts have been considered for AHWR downcomer for codal qualification in order to ensure its structural integrity under normal and occasional loads. In addition to codal qualification a good piping layout should have less number of bends and weld joints in order to reduce the in-service inspection cost. Less number of bends will reduce the pressure drop in natural circulation and lesser number of weld joints will reduce the total time of in-service inspection that finally reduces the radiation dose to the workers. Conventional seismic design approach of piping with snubbers leads to high cost, maintenance and possible locking causing undue higher thermal stress during normal operation. New seismic supports in the form of Elasto-Plastic Damper (EPD) are the best suited for nuclear piping because of their simple design, low cost, passive nature and ease in installation. In this report the characteristics of EPD obtained from theory, finite element analysis and tests have been presented and comparison has also been made among the three. Analysis method and code qualification of AHWR downcomer piping considering the loadings due to normal operating and occasional loads such as earthquake have been discussed in detail. This report also explains the concept of single support and multi-support response spectrum analysis methods. The results obtained by using both types of supports i.e. conventional and EPD supports have been compared and use of EPD supports in AHWR downcomer pipe is recommended. (author)

  19. Development of seismic design method for piping system supported by elastoplastic damper. 3. Vibration test of three-dimensional piping model and its response analysis

    International Nuclear Information System (INIS)

    Namita, Yoshio; Kawahata, Jun-ichi; Ichihashi, Ichiro; Fukuda, Toshihiko.

    1995-01-01

    Component and piping systems in current nuclear power plants and chemical plants are designed to employ many supports to maintain safety and reliability against earthquakes. However, these supports are rigid and have a slight energy-dissipating effect. It is well known that applying high-damping supports to the piping system is very effective for reducing the seismic response. In this study, we investigated the design method of the elastoplastic damper [energy absorber (EAB)] and the seismic design method for a piping system supported by the EAB. Our final goal is to develop technology for applying the EAB to the piping system of an actual plant. In this paper, the vibration test results of the three-dimensional piping model are presented. From the test results, it is confirmed that EAB has a large energy-dissipating effect and is effective in reducing the seismic response of the piping system, and that the seismic design method for the piping system, which is the response spectrum mode superposition method using each modal damping and requires iterative calculation of EAB displacement, is applicable for the three-dimensional piping model. (author)

  20. Mechanical evolution of transpression zones affected by fault interactions: Insights from 3D elasto-plastic finite element models

    Science.gov (United States)

    Nabavi, Seyed Tohid; Alavi, Seyed Ahmad; Mohammadi, Soheil; Ghassemi, Mohammad Reza

    2018-01-01

    The mechanical evolution of transpression zones affected by fault interactions is investigated by a 3D elasto-plastic mechanical model solved with the finite-element method. Ductile transpression between non-rigid walls implies an upward and lateral extrusion. The model results demonstrate that a, transpression zone evolves in a 3D strain field along non-coaxial strain paths. Distributed plastic strain, slip transfer, and maximum plastic strain occur within the transpression zone. Outside the transpression zone, fault slip is reduced because deformation is accommodated by distributed plastic shear. With progressive deformation, the σ3 axis (the minimum compressive stress) rotates within the transpression zone to form an oblique angle to the regional transport direction (∼9°-10°). The magnitude of displacement increases faster within the transpression zone than outside it. Rotation of the displacement vectors of oblique convergence with time suggests that transpression zone evolves toward an overall non-plane strain deformation. The slip decreases along fault segments and with increasing depth. This can be attributed to the accommodation of bulk shortening over adjacent fault segments. The model result shows an almost symmetrical domal uplift due to off-fault deformation, generating a doubly plunging fold and a 'positive flower' structure. Outside the overlap zone, expanding asymmetric basins subside to 'negative flower' structures on both sides of the transpression zone and are called 'transpressional basins'. Deflection at fault segments causes the fault dip fall to less than 90° (∼86-89°) near the surface (∼1.5 km). This results in a pure-shear-dominated, triclinic, and discontinuous heterogeneous flow of the transpression zone.

  1. Introduction of damage in an elasto-plastic model for unsaturated geo-materials

    International Nuclear Information System (INIS)

    Le Pense, S.; Pouya, A.; Gatmiri, B.

    2012-01-01

    experimental observations. But care must be taken when considering a pressure-dependent shear modulus to respect thermodynamical consistency. The application of the same principle gives us a simple way of coupling plastic and damage behaviours. As proposed by Ju (Ju 1989), the damaged constitutive stress is introduced in classical plasticity equations for unsaturated soils. We take as a basis the model developed by Sheng (Sheng et al. 2004). We won't consider hydraulic hysteresis. The numerical implementation is made by explicit stress integration with adaptative Sub-stepping. Very few propositions have been made until now to model damage, or damage coupled with plasticity in unsaturated geo-materials. When the numerical implementation of our model will be completed, we will apply it to soils and rocks used in the context of radioactive waste disposal. We will then be able to study whether the incorporation of damage into an unsaturated soil elasto-plastic model gives results in better adequation with experimental results

  2. Structural damages prevention of the ITER vacuum vessel and ports by elasto-plastic analysis with regards to RCC-MR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jean-Marc, E-mail: jean-marc.martinez@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Jun, Chang Hoon; Portafaix, Christophe; Alekseev, Alexander; Sborchia, Carlo; Choi, Chang-Ho [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Albin, Vincent [SOM Calcul – Groupe ORTEC, 121 ancien Chemin de Cassis – Immeuble Grand Pré, 13009 Marseille (France); Borrelly, Stephane [Sogeti High Tech, RE2, 180 rue René Descartes, Le Millenium – Bat C, 13857 Aix en Provence (France); Cambazar, Magali [Assystem EOS, 117 rue Jacquard, 84120 Pertuis (France); Gaucher, Thomas [SOM Calcul – Groupe ORTEC, 121 ancien Chemin de Cassis – Immeuble Grand Pré, 13009 Marseille (France); Sfarni, Samir; Tailhardat, Olivier [Assystem EOS, 117 rue Jacquard, 84120 Pertuis (France)

    2015-10-15

    Highlights: • ITER vacuum vessel (VV) is a part of the first barrier to confine the plasma. • ITER VV as NPE necessitates a third party organization authorized by the French nuclear regulator to assure design, fabrication, and conformance testing and quality assurance, i.e. ANB. • Several types of damages have to be prevented in order to guarantee the structural integrity with regards to RCC-MR. • It is usual to employ non-linear analysis when the “classical” elastic analysis reaches its limit of linear application. • Several structural analyses were performed with many different global and local models of the whole ITER VV. - Abstract: Several types of damages have to be prevented in order to guarantee the structural integrity of a structure with regards to RCC-MR; the P-type damages which can result from the application to a structure of a steadily and regularly increasing loading or a constant loading and the S-type damages during operational loading conditions which can only result from repeated application of loadings associated to the progressive deformations and fatigue. Following RCC-MR, the S-type damages prevention has to be started only when the structural integrity is guaranteed against P-type damages. The verification of the last one on the ITER vacuum vessel and ports has been performed by limit analysis with elasto-(perfectly)plastic material behavior. It is usual to employ non-linear analysis when the “classical” elastic analysis reaches its limit of linear application. Some elasto-plastic analyses have been performed considering several cyclic loadings to evaluate also more realistic structural margins of the against S-type damages.

  3. Thermoelastoplastic Deformation of a Multilayer Ball

    Science.gov (United States)

    Murashkin, E. V.; Dats, E. P.

    2017-09-01

    The problem of centrally symmetric deformation of a multilayer elastoplastic ball in the process of successive accretion of preheated layers to its outer surface is considered in the framework of small elastoplastic deformations. The problems of residual stress formation in the elastoplastic ball with an inclusion and a cavity are solved under various mechanical boundary conditions on the inner surface and for prescribed thermal compression distributions. The graphs of residual stress and displacement fields are constructed.

  4. An accurate tangential force-displacement model for granular-flow simulations: Contacting spheres with plastic deformation, force-driven formulation

    International Nuclear Information System (INIS)

    Vu-Quoc, L.; Lesburg, L.; Zhang, X.

    2004-01-01

    An elasto-plastic frictional tangential force-displacement (TFD) model for spheres in contact for accurate and efficient granular-flow simulations is presented in this paper; the present TFD is consistent with the elasto-plastic normal force-displacement (NFD) model presented in [ASME Journal of Applied Mechanics 67 (2) (2000) 363; Proceedings of the Royal Society of London, Series A 455 (1991) (1999) 4013]. The proposed elasto-plastic frictional TFD model is accurate, and is validated against non-linear finite-element analyses involving plastic flows under both loading and unloading conditions. The novelty of the present TFD model lies in (i) the additive decomposition of the elasto-plastic contact area radius into an elastic part and a plastic part, (ii) the correction of the particles' radii at the contact point, and (iii) the correction of the particles' elastic moduli. The correction of the contact-area radius represents an effect of plastic deformation in colliding particles; the correction of the radius of curvature represents a permanent indentation after impact; the correction of the elastic moduli represents a softening of the material due to plastic flow. The construction of both the present elasto-plastic frictional TFD model and its consistent companion, the elasto-plastic NFD model, parallels the formalism of the continuum theory of elasto-plasticity. Both NFD and TFD models form a coherent set of force-displacement (FD) models not available hitherto for granular-flow simulations, and are consistent with the Hertz, Cattaneo, Mindlin, Deresiewicz contact mechanics theory. Together, these FD models will allow for efficient simulations of granular flows (or granular gases) involving a large number of particles

  5. Elasto-plastic hardening models adjustment to ferritic, austenitic and austenoferritic Rebar; Ajuste de los aceros corrugados ferríticos, austeníticos y austenoferríticos a los modelos de endurecimiento elastoplástico por deformación

    Energy Technology Data Exchange (ETDEWEB)

    Hortigóna, B.; Gallardo, J.M.; Nieto-García, E.J.; López, J.A.

    2017-09-01

    The elastoplastic behaviour of steel used for structural member fabrication has received attention to facilitate a mechanical-resistant design. New Zealand and South African standards have adopted various theoretical approaches to describe such behaviour in stainless steels. With respect to the building industry, describing the tensile behaviour of steel rebar used to produce reinforced concrete structures is of interest. Differences compared with the homogenous material described in the above mentioned standards and related literatures are discussed in this paper. Specifically, the presence of ribs and the TEMPCORE® technology used to produce carbon steel rebar may alter the elastoplastic model. Carbon steel rebar is shown to fit a Hollomon model giving hardening exponent values on the order of 0.17. Austenitic stainless steel rebar behaviour is better described using a modified Rasmussen model with a free fitted exponent of 6. Duplex stainless steel shows a poor fit to any previous model. [Spanish] Uno de los principales factores tenidos en cuenta en la fabricación de aceros estructurales es su comportamiento durante la fase elastoplástica o de endurecimiento por deformación. Normas neozelandesas y sudafricanas plantean diversas aproximaciones teóricas para describir dicho comportamiento en el caso de los aceros inoxidables. En el campo de la construcción resulta de interés la descripción del comportamiento tenso-deformacional de los aceros corrugados utilizados en las estructuras de hormigón armado. En este artículo se discuten los modelos planteados en las normas citadas anteriormente así como los existentes en la literatura tanto para los aceros corrugados inoxidables como para los aceros al carbono fabricados mediante el proceso denominado TEMPCORE® Los aceros TEMPCORE® analizados arrojan un valor del exponente de endurecimiento por deformación según el modelo de Hollomon de 0.17. Los aceros inoxidables austeníticos se ajustan mejor al modelo

  6. Elastic-plastic analysis using an efficient formulation of the finite element method

    International Nuclear Information System (INIS)

    Aamodt, B.; Mo, O.

    1975-01-01

    Based on the flow theory of plasticity, the von Mises or the Tresca yield criterion and the isotropic hardening law, an incremental stiffness relationship can be established for a finite element model of the elasto-plastic structure. However, instead of including all degrees of freedom and all finite elements of the total model in a nonlinear solution process, a separation of elastic and plastic parts of the structure can be carried out. Such a separation can be obtained by identifying elastic parts of the structure as 'elastic' superelements and elasto-plastic parts of the structure as 'elasto-plastic' superelements. Also, it may be of advantage to use several levels of superelements in modelling the elastic parts of the structure. For the 'elasto-plastic' superelements the specific plastic computations such as updating of the incremental stiffness matrix and subsequent reduction (i.e. static condensation of all degrees of freedom being local to the superelements) have to be carried out repeatedly during the nonlinear solution process. The solution of the nonlinear equations is performed utilizing a combination of load incrementation and equilibrium interations. The present method of analysis is demonstrated for two larger examples of elasto-plastic analysis. (Auth.)

  7. Modelling of ratchetting with the Chaboche elastoplastic model modified by Burlet and Cailletaud; Modelisation des phenomenes de deformation progressive par le modele elastoplastique de Chaboche modifie par Burlet et Cailletaud

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, P

    1994-01-01

    A fine modelling of the material`s behaviour can be necessary to study the mechanical strength of nuclear power plant`s components under cyclic loads. The modelling of cyclic plasticity made great progress during the past 20 years. Ratchetting is one of the last phenomena for which numerical models have to be improved. We give in this document a state of the art report on research in this field. We notably show the basically different character of ratchetting in uniaxial and biaxial loading tests, usually distinguished as 1D and 2D ratchetting. On the basis of this overview, we selected the kinematic hardening formulation proposed by Burlet and Cailletaud, which we coupled with the Chaboche elastoplastic model with two non linear kinematic hardening variables to improve the modelling of 2D ratchetting. We use the experimental results on the austenitic steel 316L at 20 and 300 deg C under uniaxial loadings (low cycle fatigue) and biaxial loadings (traction-torsion) to study the new model capabilities. We get a good modelling of ratchetting in biaxial loadings. The model has been installed in the ASTER code under the name of UBRLET. It now has to be qualified by component analysis calculations. (author). 25 refs., 30 figs., 11 tabs., 3 annexes.

  8. Analytical Model of Coil Spring Damper Based on the Loading Test

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Gook; Park, Woong Ki [INNOSE TECH Co. LTD, Incheon (Korea, Republic of); Furuya, Osamu [Tokyo City University, Tokyo (Japan); Kurabayashi, Hiroshi [Vibro-System, Tokyo (Japan)

    2016-05-15

    The one way of solving such problems is to enhance and to develop an improved damping element used in base-isolation and response control system. A cost reduction of damper for a large scale structure is another important task to upgrade the total response control abilities in the near future. This study has examined a response control device using elastoplastic hysteresis damping of metal material. The proposed damper is designed to be coil spring element shape for a uniform stress of metal and for a reduction of low cyclic fatigue in large deformation to upgrade a repetitive strength during the earthquake motions. By using the metal material of SS400 general structural rolled steel, the corresponding cost issues of the damping element will be effectively reduced. The analytical of elasto-plastic coil spring damper (CSD) is introduced, and basic mechanical properties evaluated experimentally and analytically. This study has been examined the response control damper using elasto-plastic hysteresis characteristics of metal material. The paper described the design method of elasto-plastic coil spring damper, basic mechanical properties evaluated from loading test, and analytical model of damper are summarized. It was confirmed that the damping force and mechanical characteristics of elasto-plastic coil spring damper are almost satisfied the design specifications.

  9. Mechanical properties of phases in austeno-ferritic duplex stainless steel-Surface stresses studied by X-ray diffraction

    International Nuclear Information System (INIS)

    Dakhlaoui, Rim; Braham, Chedly; Baczmanski, Andrzej

    2007-01-01

    In this work the parameters characterizing the individual elastoplastic mechanical behaviour of each phase in austeno-ferritic duplex stainless steels are determined by using X-ray diffraction during a uniaxial tensile test. The interpretation of the experimental data is based on the diffraction elastic constants calculated by the self-consistent model taking the anisotropy of the studied materials into account. The elastoplastic model is used to predict the evolution of the internal stresses during loading, and to identify the critical resolved shear stresses and strain hardening parameters of the material. The effect of the chemical composition on the individual elastoplastic behaviour of the studied phases is established by comparing results from three different samples. Finally, the X-ray diffraction results are compared with those previously obtained by using neutron radiation

  10. Seal analysis technology for reactor pressure vessel

    International Nuclear Information System (INIS)

    Zheng Liangang; Zhang Liping; Yang Yu; Zang Fenggang

    2009-01-01

    There is the coolant with radiation, high temperature and high pressure in the reactor pressure vessel (RPV). It is closely correlated to RPV sealing capability whether the whole nuclear system work well or not. The aim of this paper is to study the seal analysis method and technology, such as the pre-tensioning of the bolt, elastoplastic contact and coupled technology of thermal and structure. The 3 D elastoplastic seal analysis method really and generally consider the loads and model the contact problem with friction between the contact plates. This method is easier than the specialized seal program and used widely. And it is more really than the 2 D seal analysis method. This 3 D elastoplastic seal analysis method has been successfully used in the design and analysis of RPV. (authors)

  11. Interpretation of experiments and modeling of internal strains in Beryllium using a polycrystal model

    International Nuclear Information System (INIS)

    Tome, C.; Bourke, M.A.M.; Daymond, M.R.

    2000-01-01

    The elastic and plastic anisotropy of Be have been examined during a uniaxial compression test, by in-situ monitoring in a pulsed neutron beam. Comparisons between the measured hkil strains and the predictions from an elasto-plastic self-consistent (EPSC) model are made. Agreement is qualitatively correct for most planes in the elasto-plastic regime. Possible mechanisms responsible for the quantitative discrepancies between model and experiment are discussed

  12. Mixed-mode elastic-plastic fracture of 2024-T351 aluminium alloy

    International Nuclear Information System (INIS)

    Sakata, Masaru; Aoki, Shigeru; Kishimoto, Kikuo; Chikugo, Hiroshi; Takizawa, Masakazu.

    1985-01-01

    In order to evaluate accurately the strength and structural soundness of the structures made of high toughness materials, it is necessary to clarify the fracture behavior under the loading condition of mixed mode such as oblique cracks as well as the elasto-plastic fracture behavior of the materials in the case of single opening displacement type mode. About the fracture condition in the state of mixed mode, various theories based on the linear fracture mechanics have been proposed. In this study, the elasto-plastic fracture toughness test of mixed mode was carried out by using an aluminum alloy as the subject, and the behavior of dulling and development of cracks was observed with a scanning electron microscope. Moreover, the state of deformation of the test pieces was analyzed by elasto-plastic finite element method, thus the parameters controlling the elasto-plastic fracture of mixed mode were examined. In the range of this study, the limiting stretch zone width in the case of loading of mixed mode was 12 μm similarly to the case of single mode. Also in the case of mixed mode, there was distinct difference between the inclination of a dulling straight line and an R-curve, and the limit value of J intergral was determined by their intersection. (Kako, I.)

  13. 骨組構造の弾塑性有限変位解析

    OpenAIRE

    林, 正

    1986-01-01

    This paper presents an elasto-plastic finite displacement analysis of framed structures by matrix methods. A formulation of finite displacement field of curved beams is developed by the use of a rotation matrix. Nonlinear and linearized equilibrium equations for members are derived in generalized forms by matrix methods based on the discretely variational principle and an incremental theory. A semi-analytical procedure for numerical integration is proposed in the elasto-plastic analysis. Prac...

  14. A model for anomalous moisture diffusion through a polymer-clay nanocomposite

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville; Gupta, R.K.

    2002-01-01

    Experimental data are reported on moisture diffusion and the elastoplastic response in uniaxial tensile tests of an intercalated nanocomposite with vinyl ester resin matrix and montmorillonite clay filler at room temperature. Observations in diffusion tests show that the moisture transport...... diffusion through a nanocomposite and for its elastoplastic behavior. Adjustable parameters in these relations are found by fitting the experimental data. Fair agreement is demonstrated between the observations and the results of numerical simulation....

  15. Analysis of elasto-plasticity of a reinforced framework. Report 4. Framework reinforced by a wing wall made of post-placed concrete; Hokyo honegumi no dansosei kaiseki. 4. Atouchi sodekabe ni yoru hokyo honegumi

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H. [Japan Testing Center for Construction Materials, Tokyo (Japan); Shimizu, Y. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-09-01

    An elasto-plasticity stress analysis was performed on reinforcement using a wing wall made of post-placed concrete as an anti-earthquake reinforcement method for ferro-concrete structures. The analytical values were compared with experimental values, and discussions were given on reasonability of the analytic method. Wing walls made of post-placed concrete were inserted into a three-layered single-spanned model of a reinforced framework made of reinforced mortar (the wing walls being three kinds comprising 1/4 span portion in the first layer, and 1/4 portions in the first and second layers). With the columns loaded and retained with an axial force of 3 tf, a horizontal force was applied from one direction under an assumption that the force forms a uniform distribution. The analysis model was permuted with a wire material having one nodal point and three degrees of freedom as has been reported in the previous paper. The model was divided into the wing wall and the column, and the wing wall portion was permuted into a brace having pins at both ends so that the brace has the withstand strength equivalent to that of the wing wall. A tri-linear type or a bi-linear type was hypothesized for restoring force characteristics of each portion. According to the analytical result, the analytical values agreed relatively well with the experimental values in the load-deformation relationship and fracture conditions, verifying the reasonability of the analytical hypothesis. 5 refs., 5 figs., 3 tabs.

  16. Contact mechanics at nanometric scale using nanoindentation technique for brittle and ductile materials.

    Science.gov (United States)

    Roa, J J; Rayon, E; Morales, M; Segarra, M

    2012-06-01

    In the last years, Nanoindentation or Instrumented Indentation Technique has become a powerful tool to study the mechanical properties at micro/nanometric scale (commonly known as hardness, elastic modulus and the stress-strain curve). In this review, the different contact mechanisms (elastic and elasto-plastic) are discussed, the recent patents for each mechanism (elastic and elasto-plastic) are summarized in detail, and the basic equations employed to know the mechanical behaviour for brittle and ductile materials are described.

  17. Improvement on life and NO{sub x} discharge of radiant heat transfer tube heating system by the elasto-plasticity creep analysis; Dansosei kuripukaiseki ni yoru hosha dennetsukan kanetsu shisutemu no jumyo to NO{sub x} haishutsuryo no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Futahiko; Ikaruda, Kunihiro; Abe, Yoshio; Arai, Norio

    1999-06-05

    Combustion thermal process using the radiant heat transfer tube has widely been applied as a heating method which separates the combustion atmosphere from the heating-e atmosphere in various heating furnace such as iron and steel industry. In this thermal process, in order to burn the fuel in tight space in radiant heat transfer service area, radiant heat transfer tube and burner life were short under high temperature and high-load combustion, and there was a problem that that and, burning characteristic such as NO{sub x} generation rate are improved was difficult. In this study, large temperature distribution by the combustion in the radiant heat transfer tube clarified that the life of the radiant heat transfer tube was shortened by elasto-plasticity creep analysis of the radiant heat transfer tube. Then, two steps combustion burner of the exhaust gas self recycling type was developed as a method for reducing the NO{sub x} generation rate, while the temperature distribution of the radiant heat transfer tube was equalized. As the result, it was possible to reduce over 20% in comparison with conventional two steps combustion burner, while radiant heat transfer tube and life of the burner are extended over the conventional double, in respect of the NO{sub x} generation rate. (translated by NEDO)

  18. Modification of Concrete Damaged Plasticity model. Part II: Formulation and numerical tests

    Directory of Open Access Journals (Sweden)

    Kamińska Inez

    2017-01-01

    Full Text Available A refined model for elastoplastic damaged material is formulated based on the plastic potential introduced in Part I [1]. Considered model is an extension of Concrete Damaged Plasticity material implemented in Abaqus [2]. In the paper the stiffness tensor for elastoplastic damaged behaviour is derived. In order to validate the model, computations for the uniaxial tests are performed. Response of the model for various cases of parameter’s choice is shown and compared to the response of the CDP model.

  19. Model for Anomalous Moisture Diffusion through a Polymer-Clay Nanocomposite

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville; Gupta, R.K.

    2003-01-01

    Experimental data are reported on moisture diffusion and the elastoplastic response of an intercalated nanocomposite with vinyl ester resin matrix and montmorillonite clay filler at room temperature. Observations in diffusion tests showed that water transport in the neat resin is Fickian, whereas...... platelets. Constitutive equations are developed for moisture diffusion through and the elastoplastic behavior of a nanocomposite. Adjustable parameters in these relations are found by fitting the experimental data. Fair agreement is demonstrated between the observations and the results of numerical...

  20. Effect of Strength Coefficient of Bainite on Micromechanical Deformation and Failure Behaviors of Hot-Rolled 590FB Steel during Uniaxial Tension

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Young; Choi, Shi-Hoon [Sunchon National University, Suncheon (Korea, Republic of); Kim, Sung Il [POSCO Technical Research Laboratories, Gwangyang (Korea, Republic of)

    2016-11-15

    The effect of the strength coefficient (K{sub B}) of bainite on micromechanical deformation and failure behaviors of a hot-rolled 590MPa steel (590FB) during uniaxial tension was simulated using the elasto-plastic finite element method (FEM). The spatial distribution of the constituent phases was obtained using a phase identification technique based on optical microstructure. Empirical equations which depend on chemical composition were used to determine the stress-strain relationship of the constituent phases of the 590FB steel. The stress-strain partitioning and failure behavior were analyzed by increasing the K{sub B} of bainite. The elasto-plastic FEM results revealed that effective strain in the ferrite-bainite boundaries, and maximum principal stress in fibrous bainite, were enhanced as the K{sub B} increased. The elasto-plastic FEM results also demonstrated that the K{sub B} significantly affects the micromechanical deformation and failure behaviors of the hot-rolled 590FB steel during uniaxial tension.

  1. A Mathematical Approach to Establishing Constitutive Models for Geomaterials

    Directory of Open Access Journals (Sweden)

    Guang-hua Yang

    2013-01-01

    Full Text Available The mathematical foundation of the traditional elastoplastic constitutive theory for geomaterials is presented from the mathematical point of view, that is, the expression of stress-strain relationship in principal stress/strain space being transformed to the expression in six-dimensional space. A new framework is then established according to the mathematical theory of vectors and tensors, which is applicable to establishing elastoplastic models both in strain space and in stress space. Traditional constitutive theories can be considered as its special cases. The framework also enables modification of traditional constitutive models.

  2. Participation of the GRS in the 'Degraded piping program' of the USNRC

    International Nuclear Information System (INIS)

    Azodi, D.; Hoefler, A.; Sievers, J.

    1989-01-01

    During the course of the Degraded Piping Program, Battelle was the organizer of three round-robin activities for advanced elasto-plastic fracture mechanics calculations (e.g. finite element method and J-estimation scheme). GRS participated in all of them and submitted finite element and J-estimation scheme results. As a main result of round-robin on elasto-plastic fracture mechanics calculations: Based on finite element calculations, the J-integral method (energy release rate) provided the ability to describe the fracture behaviour of flawed piping even in a very ductile material. (orig./HP) [de

  3. Structure and Calibration of Constitutive Equations for Granular Soils

    Directory of Open Access Journals (Sweden)

    Sawicki Andrzej

    2015-02-01

    Full Text Available The form of incremental constitutive equations for granular soils is discussed for the triaxial configuration. The classical elasto-plastic approach and the semi-empirical model are discussed on the basis of constitutive relations determined directly from experimental data. First, the general structure of elasto-plastic constitutive equations is presented. Then, the structure of semiempirical constitutive equations is described, and a method of calibrating the model is presented. This calibration method is based on a single experiment, performed in the triaxial apparatus, which also involves a partial verification of the model, on an atypical stress path. The model is shown to give reasonable predictions. An important feature of the semi-empirical incremental model is the definition of loading and unloading, which is different from that assumed in elasto-plasticity. This definition distinguishes between spherical and deviatoric loading/unloading. The definition of deviatoric loading/unloading has been subject to some criticism. It was therefore discussed and clarified in this paper on the basis of the experiment presented.

  4. Numerical approach of memory effect on crack closure phenomenon

    International Nuclear Information System (INIS)

    Billardon, R.; Brunet, M.; Lemaitre, J.

    1981-01-01

    In the case of variable amplitude loading, it is necessary to introduce in the fatigue crack propagation law a parameter accounting for the threshold value of strain energy release rate. In order to relate this threshold to crack closure or crack opening, a finite element procedure has been developed based upon anisotropic elastoplastic constitutive equations (Marquis). This finite element procedure is used for the cyclic elastoplastic analysis of fatigue bending crack tests carried on 2024 aluminium alloy, 2 millimeters thick. The influence of the hardening rule used is studied for the case of one single overload on constant amplitude (0, +) loading. (orig./HP)

  5. Shakedown analysis of elastoplastic structures

    International Nuclear Information System (INIS)

    Koenig, J.A.

    1981-01-01

    Classical shakedown analysis rests on the assumptions of perfectly plastic, associative temperature-independent constitutive laws, negligible inertia and damping forces and negligible geometric effects. This paper provides a survey of the recent literature on the structural behaviour under variable repeated loads, with emphasis on the developments which relaxed some of the above assumptions, but preserved the character of generalization of limit analysis typical of the 'classical' shakedown theory and methods of analysis and design (in contrast to evolutive, step-by-step approaches of incremental plasticity). (orig.)

  6. Fatigue assessment by the RCC-MR design rules: remarks on the elastic analysis

    International Nuclear Information System (INIS)

    Taleb, L.; Sidoroff, F.

    1999-01-01

    According to RCC--MR (French rules for mechanical engineering design of FBR), fatigue life assessment is based on the evaluation of the equivalent elastoplastic strain range resulting from a given cyclic loading. Two methods can be used according to whether an elastoplastic or an elastic structure analysis is performed. The elastic analysis is of course more attractive for it avoids a heavy iterative elastoplastic analysis and an expensive identification of the material behavior from mechanical tests. On the other hand it relies on some empirical extrapolation rules from the elastic to the real case. The purpose of the present paper is to draw attention to some limitations of this procedure. In particular attention will be focused on two points: 1, the classification of the applied stress into primary and secondary parts is essential and it is shown that the thermal stresses which are often considered as secondary may in some cases play a primary role; 2. the Neuber's rule which is used to evaluate the plastic strain from the elastic stress will be shown to be significantly wrong for some special configurations. This is in fact essentially related to situations where the elastic follow up effect is important. (authors)

  7. Evaluation of residual stresses in composite materials by using neutron diffraction; study of elasto-plasticity; Etude des composites a matrice metallique par la technique de la diffraction de neutrons: analyse du comportement elastoplastique et evaluation des contraintes residuelles

    Energy Technology Data Exchange (ETDEWEB)

    Levy-Tubiana, R

    1999-11-05

    This work deals with the study of Metal Matrix Composites (MMC) using neutrons diffraction method and the analysis of the elastoplastic behavior in such materials. First, we evaluated macro-stresses in aluminium MMC reinforced with 17%vol. of SiC particles. One of the analyzed sample has been 4 point bending deformed, measurements have been performed after relaxation. The difference between the coefficients of thermal expansion constrains the matrix to be in tensile state and the particles in compressive state in the sample which has not be deformed. In the sample deformed, the MMC response is predicted by the science of Resistance Materials applied to a bent bar. We assume that macro-stresses are the sum of stresses with different origins (elastic, plastic, thermal mismatch): elastic mismatch is evaluated by Eshelby model and we determined micro-stresses in the unbent bar: they are equivalent and constant along width direction. For the bent bar, we observe relaxation of thermal stresses in the surface region. Theses results are confirmed by measurements of tensile/compressive sample using neutrons diffraction method. We also observed the influence of mechanical and thermal treatment on such MMC: the shear stress (established by the auto-coherent model) depends only on the way of cooling. Finally, a study was performed on titanium MMC for SNECMA on rotor beings used in the gas turbine engine industry. Evolution of stresses between felloe and boring is confirmed by a finite elements modeling and they are the first experimental results in this application. (author)

  8. Regularization of Localized Degradation Processes

    National Research Council Canada - National Science Library

    William, Kaspar

    1996-01-01

    .... In this project explicit analytical and geometrical Mohr-type envelope methods were developed to determine discontinuous failure modes in elastoplastic softening and elastic damaging materials...

  9. Effect of residual stresses on individual phase mechanical properties of austeno-ferritic duplex stainless steel

    International Nuclear Information System (INIS)

    Dakhlaoui, R.; Baczmanski, A.; Braham, C.; Wronski, S.; Wierzbanowski, K.; Oliver, E.C.

    2006-01-01

    The mechanical properties of both phases in duplex stainless steel have been studied in situ using neutron diffraction during mechanical loading. Important differences in the evolution of lattice strains are observed between tests carried out in tension and compression. An elastoplastic self-consistent model is used to predict the evolution of internal stresses during loading and to identify critical resolved shear stresses and strain hardening parameters of the material. The differences between tensile and compressive behaviours of the phases are explained when the initial stresses are taken into account in model calculations. The yield stresses in each phase of the studied steel have been experimentally determined and successfully compared with the results of the elastoplastic self-consistent model

  10. Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    Science.gov (United States)

    Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam D.; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther

    2015-01-01

    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800-F3900 fiber/resin composite material

  11. Reactor pressure vessel behaviour with a small crack in the cladding

    International Nuclear Information System (INIS)

    Fayolle, P.; Churier-Bossennec, H.; Faidy, C.

    1990-01-01

    This paper reports on fracture mechanic analysis of a PWR reactor pressure vessel with a 3.5 mm embedded circumferential crack in the cladding under a small lost of cooling accident transient. Different RTNDT level and effect of irradiation on material properties are considered. The study compares simplified one-dimensional and two-dimensional elastic approach and complete elastoplastic approach using J-parameter. The results show: good correlation between the different elastic approaches, important conservatism of the elastic approach compared to elastoplastic approach, no influence of irradiated material properties. The behavior of a vessel with this type of crack is acceptable for RTNDT less than 135 deg and safety injection temperature of 60 deg

  12. Nonlinear seismic response analysis of embedded reactor buildings based on the substructure approach in time domain

    International Nuclear Information System (INIS)

    Hasegawa, M.; Nakai, S.; Watanabe, T.

    1985-01-01

    A practical method for elasto-plastic seismic response analysis is described under considerations of nonlinear material law of a structure and dynamic soil-structure interaction. The method is essentially based on the substructure approach of time domain analysis. Verification of the present method is carried out for typical BWR-MARK II type reactor building which is embedded in a soil, and the results are compared with those of the frequency response analysis which gives good accuracy for linear system. As a result, the present method exhibits sufficient accuracy. Furthermore, elasto-plastic analyses considering the soil-structure interaction are made as an application of the present method, and nonlinear behaviors of the structure and embedment effects are discussed. (orig.)

  13. Crack initiation behaviors of metallic walls subjected to high heat flux expected at plasma disruption

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Uno, Masayoshi; Seki, Masahiro.

    1989-01-01

    Experimental and numerical studies were performed to investigate crack initiation behavior near a surface of stainless steel and tungsten when subjected to extremely high heat flux. The improved electron beam test facility was used as the heat source. Two-dimensional thermal and elasto-plastic stress analyses were also performed. From the results for stainless steel, micro-cracks about 0.1 mm deep only initiated in the resolidified layer along dendrites. No cracks propagated into the non-melted zone, and repeated heating of up to 20 times did not affect the depth and population of the cracks. According to the elasto-plastic stress analyses, no fatigue cracks were expected. Cracks with a depth of more than a few millimeters were observed in a tungsten plate. The cracks initiated at a boundary between heated and unheated areas. They grew into the non-melted zone, and curved towards the center part of the heated area. The elasto-plastic stress analyses indicated that the cracks were initiated due to the residual tensile strain after heated at the surface of the test specimen. When the heat flux was repeated, the cracks propagated and penetrated to the rear side of the test specimen in several repetition. (author)

  14. User's Guide: Computer Program for Simulation of Construction Sequence for Stiff Wall Systems With Multiple Levels of Anchors (CMULTIANC)

    National Research Council Canada - National Science Library

    Dawkins, William

    2003-01-01

    .... Top-down construction is assumed in this analysis procedure. The retaining wall system is modeled using beam on inelastic foundation methods with elastoplastic soil- pressure deformation curves (R-y curves...

  15. Reliability Analysis of Elasto-Plastic Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1984-01-01

    . Failure of this type of system is defined either as formation of a mechanism or by failure of a prescribed number of elements. In the first case failure is independent of the order in which the elements fail, but this is not so by the second definition. The reliability analysis consists of two parts...... are described and the two definitions of failure can be used by the first formulation, but only the failure definition based on formation of a mechanism by the second formulation. The second part of the reliability analysis is an estimate of the failure probability for the structure on the basis...

  16. Contact conditions in skin-pass rolling

    DEFF Research Database (Denmark)

    Kijima, Hideo; Bay, Niels

    2007-01-01

    The special contact conditions in skin-pass rolling of steel strip is analysed by studying plane strain upsetting of thin sheet with low reduction applying long narrow tools and dry friction conditions. An extended sticking region is estimated by an elasto-plastic FEM analysis of the plane strain...... upsetting. This sticking region causes a highly inhomogeneous elasto-plastic deformation with large influence of work-hardening and friction. A numerical analysis of skin-pass rolling shows the same contact conditions, i.e. an extended sticking region around the center of the contact zone. The calculated...... size of the sticking region with varying contact length and pressure/reduction is experimentally verified by plane strain upsetting tests measuring the local surface deformation of the work pieces after unloading....

  17. Nonlinear dynamic analysis of framed structures including soil-structure interaction effects

    International Nuclear Information System (INIS)

    Mahmood, M.N.; Ahmed, S.Y.

    2008-01-01

    The role of oil-structure interaction on seismic behavior of reinforced concrete structures is investigated in this paper. A finite element approach has been adopted to model the interaction system that consists of the reinforced concrete plane frame, soil deposit and interface which represents the frictional between foundation of the structure and subsoil. The analysis is based on the elasto-plastic behavior of the frame members (beams and columns) that is defined by the ultimate axial force-bending moment interaction curve, while the cap model is adopted to govern the elasto-plastic behavior of the soil material. Mohr-Coulomb failure law is used to determine the initiation of slippage at the interface, while the separation is assumed to determine the initiation of slippage at the interface, while the separation is assumed to occur when the stresses at the interface becomes tension stresses. New-Mark's Predictor-Corrector algorithm is adopted for nonlinear dynamic analysis. The main aim of present work is to evaluate the sensitivity of structures to different behavior of the soil and interface layer when subjected to an earthquake excitation. Predicted results of the dynamic analysis of the interaction system indicate that the soil-structure interaction problem can have beneficial effects on the structural behavior when different soil models (elastic and elasto-plastic) and interface conditions (perfect bond and permitted slip)are considered. (author)

  18. The loadings and strength of nuclear power plant structures in core damage accidents

    International Nuclear Information System (INIS)

    Varpasuo, P.

    1994-01-01

    The reactor cavity of VVER-91 NPP is a thick-walled, cylindrical reinforced concrete structure. In case of molten core-water reaction during the severe reactor accident the load carrying capacity of the cavity structure is of interest against the short impulse type loading caused by the steam explosion phenomenon. The assumed size of the impulse was 20 kPa-s and the duration was 10 ms. This investigation was divided in several phases. First, the elastic response of the cavity was determined using the ABAQUS code. Next, the static response of the cavity was evaluated using elasto-plastic properties of reinforcement and concrete and also taking into account the cracking of the concrete. This analysis was done with the aid of ABAQUS/STANDARD and ANSYS codes and the obtained results agreed reasonably with each other. In order to obtain a qualitative picture of the behaviour of the structure under the impulse load a simplified single degree of freedorn model was developed. The hoop reinforcement of the cavity was taken as an elasto-plastic spring and the wall concrete acted as a mass. Using this model the suitable amount of hoop reinforcement was determined. In next phase, the dynamic analysis of the structure was attempted using elasto-plastic material properties and concrete cracking. (13 refs., 57 figs.)

  19. S¯adhan¯a Vol. 33, 2008 Subject Index

    Indian Academy of Sciences (India)

    15. Adhesion. Elastic-plastic adhesive contact of non- ... soil. 781. Axisymmetic analysis. Axisymmetric fretting analysis in coated cylinder. 299 ... Elasto-plastic strain analysis by a semi- analytical .... Micro and macro contact mechanics for inter-.

  20. Constitutive model and electroplastic analysis of structures under cyclic loading

    International Nuclear Information System (INIS)

    Wang, X.; Lei, Y; Du, Q.

    1989-01-01

    Many engineering structures in nuclear reactors, thermal power stations, chemical plants and aerospace vehicles are subjected to cyclic mechanic-thermal loading, which is the main cause of structural fatigue failure. Over the past twenty years, designers and researchers have paid great attention to the research on life prediction and elastoplastic analysis of structures under cyclic loading. One of the key problems in elastoplastic analysis is to construct a reasonable constitutive model for cyclic plasticity. In the paper, the constitutive equations are briefly outlined. Then, the model is implemented in a finite element code to predict the response of cyclic loaded structural components such as a double-edge-notched plate, a grooved bar and a nozzle in spherical shell. Numerical results are compared with those from other theories and experiments

  1. A phenomenological method of mechanical properties definition of reactor pressure vessels (RPV) steels VVER according to the ball indentation diagram

    International Nuclear Information System (INIS)

    Bakirov, M. B.; Potapov, V.V.; Massoud, J.P.

    2002-01-01

    This work presents specimen-free methods of a standard uniaxial tension diagram construction and RPV (reactor pressure vessel) steels VVER strength properties definition out of a continuous ball indentation diagram. A similarity phenomenon of uniaxial tension strain curves at a hardening area and an area of a ball indentation constitutes the ground of the methods. The methods are developed on the basis of the uniform graphic representation of elasto-plastic strain processes by indentation and tension and with the reception of the unified yield curve at a hardening area. The calculation results on the phenomenological method conducted for a wide range of RPV steels conditions of nuclear reactors have shown a good precision as far as strain curves construction by the uniaxial tension out of the elasto-plastic indentation diagram is concerned. (authors)

  2. In-situ neutron diffraction characterization of temperature dependence deformation in α-uranium

    Science.gov (United States)

    Calhoun, C. A.; Garlea, E.; Sisneros, T. A.; Agnew, S. R.

    2018-04-01

    In-situ strain neutron diffraction measurements were conducted at temperature on specimens coming from a clock-rolled α-uranium plate, and Elasto-Plastic Self-Consistent (EPSC) modeling was employed to interpret the findings. The modeling revealed that the active slip systems exhibit a thermally activated response, while deformation twinning remains athermal over the temperature ranges explored (25-150 °C). The modeling also allowed assessment of the effects of thermal residual stresses on the mechanical response during compression. These results are consistent with those from a prior study of room-temperature deformation, indicating that the thermal residual stresses strongly influence the internal strain evolution of grain families, as monitored with neutron diffraction, even though accounting for these residual stresses has little effect on the macroscopic flow curve, except in the elasto-plastic transition.

  3. Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube

    International Nuclear Information System (INIS)

    Eraslan, Ahmet N.; Akis, Tolga

    2006-01-01

    Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states are investigated. It is shown that the elastoplastic response of the functionally graded pressurized tube is affected significantly by the material nonhomogeneity. Different modes of plasticization may take place unlike the homogeneous case. It is also shown mathematically that the nonhomogeneous elastoplastic solution presented here reduces to that of a homogeneous one by appropriate choice of the material parameters

  4. A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

    Directory of Open Access Journals (Sweden)

    Jae Woong Kim

    2013-09-01

    Full Text Available The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power CO2 laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

  5. Fulltext PDF

    Indian Academy of Sciences (India)

    Elasto-plastic strain analysis by a semi-analytical method .... forced plastic laminates to strengthen steel ... Micro and macro contact mechanics for inter- ... soil. 781. Zamani M. A more general model for the analysis of the rock slope stability.

  6. Slepian Simulations of Plastic Displacements of Randomly Excited Hysteretic Structures

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov

    2003-01-01

    The object of the study is a fast simulation method for generation and analysis of the plastic response of a randomly excited MDOF oscillatro with several potential elements with elasto-plastic constitutive behavior. The oscillator is statically determinate with linear damping. The external...... approximately as a stationary Gaussian process. This requires that the standard deviation of the stationary response is not too large as compared to the plastic yield limits. The Slepian model process for the behavior of the linear response is then simply the conditional mean (linear regression) of the process...... noise excited linear oscillator obtained from the elasto-plastic oscillator by totally removing the plastic domain. Thus the key to the applicability of the method is that the oscillator has a linear domain within which the response stays for a sufficiently long time to make the random response behave...

  7. Fulltext PDF

    Indian Academy of Sciences (India)

    Approximation methods. Sensitivity based reduced approaches for structural reliability analysis ... Classification and recognition of handwritten digits by using mathematical morphology. 419. Bolt. Relaxation .... A study on soil–structure interaction analysis in canyon-shaped topographies. 255. Elasto-plastic element free ...

  8. A new strategy for Discrete Element numerical models. Part II: Sandbox applications

    DEFF Research Database (Denmark)

    Egholm, D.L.; Sandiford, M; Clausen, O.R.

    2007-01-01

    , stress tensors are stored at each circular particle. Further, SDEM includes rotational resistivity of particles and elastoplastic constitutive rules for governing particle deformation. When combining these new features, the SDEM is capable of reproducing the friction properties of rocks and soils...

  9. Clamped elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Sprekels, J.

    2008-01-01

    Roč. 1, č. 2 (2008), s. 283-292 ISSN 1937-1632 Institutional research plan: CEZ:AV0Z10190503 Keywords : elastoplasticity * beam equation * hysteresis Subject RIV: BA - General Mathematics http://aimsciences.org/journals/pdfs.jsp?paperID=3201&mode=abstract

  10. Collapse Probability for Elasto-Plastic Beam Structures

    DEFF Research Database (Denmark)

    Delmar, M.V.; Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1989-01-01

    In present design practice considerations on structural safety are usually concentrated on failure states corresponding to initial failure of an element. For a frame structure that means failure of a cross-section of the structure. Sufficient reliability with respect to this limit state is expect...

  11. Elastoplastic cup model for cement-based materials

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2010-03-01

    Full Text Available Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This model also considers the influence of confining pressure. In this paper, the calibration of the model is detailed and numerical simulations of the main mechanical behavior of cement paste over a large range of stress are described, showing good agreement with experimental results. The case study shows that this cup model has extensive applicability for cement-based materials and other quasi-brittle and high-porosity materials in a complex stress state.

  12. Elasto-plasticity in wrinkled polymerized lipid membranes

    KAUST Repository

    Chaieb, Sahraoui

    2014-01-15

    Biomembranes shown to behave like elastic sheets, can also suffer plastic deformations. Neutron scattering experiments on partially polymerised wrinkled membranes revealed that when a critical degree of polymerisation is crossed, the wrinkled membranes do not resume their spherical shapes. Instead they remain wrinkled and rigid while their non-polymerised counterparts resume their spherical floppy shapes. The yield stress of these membranes, measured for the first time via the fractal dimension, is intimately related to the degree of polymerisation probably through a 2D disorder that quenches the lateral diffusion of the lipid molecules. This work might shed light on the physical reason behind the irreversible deformation of echinocytes, acanthocytes and malaria infected red blood cells.

  13. Elasto-plasticity in wrinkled polymerized lipid membranes

    KAUST Repository

    Chaieb, Saharoui

    2014-01-01

    Biomembranes shown to behave like elastic sheets, can also suffer plastic deformations. Neutron scattering experiments on partially polymerised wrinkled membranes revealed that when a critical degree of polymerisation is crossed, the wrinkled membranes do not resume their spherical shapes. Instead they remain wrinkled and rigid while their non-polymerised counterparts resume their spherical floppy shapes. The yield stress of these membranes, measured for the first time via the fractal dimension, is intimately related to the degree of polymerisation probably through a 2D disorder that quenches the lateral diffusion of the lipid molecules. This work might shed light on the physical reason behind the irreversible deformation of echinocytes, acanthocytes and malaria infected red blood cells.

  14. Modèle de compaction élasto-plastique en simulation de bassins Elastoplastic Compaction Model for Basin Simulation

    Directory of Open Access Journals (Sweden)

    Schneider F.

    2006-11-01

    Full Text Available Cet article présente un modèle de compaction des sédiments pour simulateurs de bassins sédimentaires. Dans ce modèle, les concepts précédemment utilisés dans le modèle TEMISPACK sont généralisés et décrits en s'inspirant des formalismes propres à la mécanique des roches et à la mécanique des sols. La compaction des sédiments est décrite, à l'échelle des temps géologiques, par un modèle élasto-plastique où les modules d'incompressibilité et d'écrouissage croissent lorsque la déformation augmente et où le seuil de plasticité est variable. La rhéologie est définie par une relation qui lie la porosité (ou le volume du sédiment à la contrainte effective moyenne en se plaçant dans l'hypothèse de déformation oedométrique. Ce modèle à rhéologie volumiquea été testé sur le logiciel COMP1D qui simule, en 1D, l'histoire géologique d'une colonne sédimentaire. Ce modèle ne doit être considéré que comme un premier pas vers un formalisme plus complet. This article describes a sediment compaction model for sedimentary basin simulators. In this model, the concepts previously used in the TEMISPACK model are generalized and described on the basis of formalisms inherent in rock mechanics and soil mechanics. Sediment compaction is described on the geologic time scale by an elastoplastic model (Fig. 1 in which the moduli of incompressibility and strain hardening increase as deformation increases and in which the plasticity threshold varies. The rheology is defined by an equation connecting the porosity (or volume of the sediment to the mean effective stress by situating itself within the hypothesis of consolidometric deformation. This model is quite similar to the ones used in soil mechanics. It differs only by the choice of the equations linking the volumic variation of the porous medium to the variation of the mean effective stress likewise, in this part coefficient alpha introduced in the definition of effective

  15. Quantitative assessment and prediction of the contact area development during spherical tip indentation of glassy polymers.

    NARCIS (Netherlands)

    Pelletier, C.G.N.; Toonder, den J.M.J.; Govaert, L.E.; Hakiri, N.; Sakai, M.

    2008-01-01

    This paper describes the development of the contact area during indentation of polycarbonate. The contact area was measured in situ using an instrumented indentation microscope and compared with numerical simulations using an elasto-plastic constitutive model. The parameters in the model were

  16. PLASTEF: a code for the numerical simulation of thermoelastoplastic behaviour of materials using the finite element method

    International Nuclear Information System (INIS)

    Basombrio, F.G.; Sanchez Sarmiento, G.

    1978-01-01

    A general code for solving two-dimensional thermo-elastoplastic problems in geometries of arbitrary shape using the finite element method, is presented. The initial stress incremental procedure was adopted, for given histories of load and temperature. Some classical applications are included. (Auth.)

  17. An implicit tensorial gradient plasticity model - formulation and comparison with a scalar gradient model

    NARCIS (Netherlands)

    Poh, L.H.; Peerlings, R.H.J.; Geers, M.G.D.; Swaddiwudhipong, S.

    2011-01-01

    Many rate-independent models for metals utilize the gradient of effective plastic strain to capture size-dependent behavior. This enhancement, sometimes termed as "explicit" gradient formulation, requires higher-order tractions to be imposed on the evolving elasto-plastic boundary and the resulting

  18. Comparative Study of Upper Bound Methods for the Calculation of Residual Deformations After Shakedown

    DEFF Research Database (Denmark)

    Lange-Hansen, Preben

    1998-01-01

    Purpose: None of the published formulae for obtaining upper bounds for residual deflections in elastoplastic structures with quasistatically varying loads (shakedown problems) has been able to result in theoretical maximum values of residual deflections. Therefore, the purpose of the report is to...

  19. Decoupled Simulation Method For Incremental Sheet Metal Forming

    International Nuclear Information System (INIS)

    Sebastiani, G.; Brosius, A.; Tekkaya, A. E.; Homberg, W.; Kleiner, M.

    2007-01-01

    Within the scope of this article a decoupling algorithm to reduce computing time in Finite Element Analyses of incremental forming processes will be investigated. Based on the given position of the small forming zone, the presented algorithm aims at separating a Finite Element Model in an elastic and an elasto-plastic deformation zone. Including the elastic response of the structure by means of model simplifications, the costly iteration in the elasto-plastic zone can be restricted to the small forming zone and to few supporting elements in order to reduce computation time. Since the forming zone moves along the specimen, an update of both, forming zone with elastic boundary and supporting structure, is needed after several increments.The presented paper discusses the algorithmic implementation of the approach and introduces several strategies to implement the denoted elastic boundary condition at the boundary of the plastic forming zone

  20. EURDYN: computer programs for the nonlinear transient analysis of structures submitted to dynamic loading. EURDYN (Release 3): users' manual

    International Nuclear Information System (INIS)

    Halleux, J.P.

    1983-01-01

    The EURDYN computer codes are mainly designed for the simulation of nonlinear dynamic response of fast-reactor compoments submitted to impulse loading due to abnormal working conditions. Two releases of the structural computer codes EURDYN 01 (2-D beams and triangles and axisymmetric conical shells and triangular tores), 02 (axisymmetric and 2-D quadratic isoparametric elements) and 03 (triangular plate elements) have already been produced. They include material (elasto-plasticity using the classical flow theory approach) and geometrical (large displacements and rotations treated by a corotational technique) nonlinearities. The new features of Release 3 roughly consist in: full large strain capability for 9-node isoparametric elements, generalized array dimensions, introduction of the radial return algorithm for elasto-plastic material modelling, extension of the energy check facility to the case of prescribed displacements, and, possible interface to a post-processing package including time plot facilities

  1. Direct strength method for web crippling—Lipped channels under EOF and IOF loading

    NARCIS (Netherlands)

    Heurkens, R.A.J.; Hofmeyer, H.; Mahendran, M.; Snijder, H.H.

    2018-01-01

    To apply the Direct Strength Method (DSM) to web crippling of lipped channel sections, experiments were recently conducted under EOF and IOF loading conditions. In the research presented here, finite element models were first developed to predict the elastic buckling loads and the elasto-plastic

  2. Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework

    NARCIS (Netherlands)

    Geers, M.G.D.

    2004-01-01

    This paper addresses the extension of a Eulerian logarithmic finite strain hyperelasto-plasticity model in order to incorporate an isotropic plastic damage variable that leads to softening and failure of the plastic material. It is shown that a logarithmic elasto-plastic model with a strongly

  3. Effect of thermal cycling on martensitic transformation and mechanical strengthening of stainless steels – A phase-field study

    DEFF Research Database (Denmark)

    Yeddu, Hemantha Kumar; Shaw, Brian A.; Somers, Marcel A. J.

    2017-01-01

    A 3D elastoplastic phase-field model is used to study the effect of thermal cycling on martensitic transformationas well as on mechanical strengthening of both austenite and martensite in stainless steel. The results show that with an increasing number of thermal cycles, martensite becomes more...

  4. Modeling of Landslides with the Material Point Method

    DEFF Research Database (Denmark)

    Andersen, Søren Mikkel; Andersen, Lars

    2008-01-01

    A numerical model for studying the dynamic evolution of landslides is presented. The numerical model is based on the Generalized Interpolation Material Point Method. A simplified slope with a house placed on top is analysed. An elasto-plastic material model based on the Mohr-Coulomb yield criterion...

  5. Modelling of Landslides with the Material-point Method

    DEFF Research Database (Denmark)

    Andersen, Søren; Andersen, Lars

    2009-01-01

    A numerical model for studying the dynamic evolution of landslides is presented. The numerical model is based on the Generalized Interpolation Material Point Method. A simplified slope with a house placed on top is analysed. An elasto-plastic material model based on the Mohr-Coulomb yield criterion...

  6. A displacement based FE formulation for steady state problems

    NARCIS (Netherlands)

    Yu, Y.

    2005-01-01

    In this thesis a new displacement based formulation is developed for elasto-plastic deformations in steady state problems. In this formulation the displacements are the primary variables, which is in contrast to the more common formulations in terms of the velocities as the primary variables. In a

  7. Multi-scale mechanics of granular solids from grain-resolved X-ray measurements

    Science.gov (United States)

    Hurley, R. C.; Hall, S. A.; Wright, J. P.

    2017-11-01

    This work discusses an experimental technique for studying the mechanics of three-dimensional (3D) granular solids. The approach combines 3D X-ray diffraction and X-ray computed tomography to measure grain-resolved strains, kinematics and contact fabric in the bulk of a granular solid, from which continuum strains, grain stresses, interparticle forces and coarse-grained elasto-plastic moduli can be determined. We demonstrate the experimental approach and analysis of selected results on a sample of 1099 stiff, frictional grains undergoing multiple uniaxial compression cycles. We investigate the inter-particle force network, elasto-plastic moduli and associated length scales, reversibility of mechanical responses during cyclic loading, the statistics of microscopic responses and microstructure-property relationships. This work serves to highlight both the fundamental insight into granular mechanics that is furnished by combined X-ray measurements and describes future directions in the field of granular materials that can be pursued with such approaches.

  8. NUMERICAL MODELLING OF THE SOIL BEHAVIOUR BY USING NEWLY DEVELOPED ADVANCED MATERIAL MODEL

    Directory of Open Access Journals (Sweden)

    Jan Veselý

    2017-02-01

    Full Text Available This paper describes a theoretical background, implementation and validation of the newly developed Jardine plastic hardening-softening model (JPHS model, which can be used for numerical modelling of the soils behaviour. Although the JPHS model is based on the elasto-plastic theory, like the Mohr-Coulomb model that is widely used in geotechnics, it contains some improvements, which removes the main disadvantages of the MC model. The presented model is coupled with an isotopically hardening and softening law, non-linear elastic stress-strain law, non-associated elasto-plastic material description and a cap yield surface. The validation of the model is done by comparing the numerical results with real measured data from the laboratory tests and by testing of the model on the real project of the tunnel excavation. The 3D numerical analysis is performed and the comparison between the JPHS, Mohr-Coulomb, Modified Cam-Clay, Hardening small strain model and monitoring in-situ data is done.

  9. Introduction to nonlinear finite element analysis

    CERN Document Server

    Kim, Nam-Ho

    2015-01-01

    This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: ·         Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems ·         Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory ·    ...

  10. Thermal stresses in hexagonal materials - heat treatment influence on their mechanical behaviour

    International Nuclear Information System (INIS)

    Gloaguen, D.; Freour, S.; Guillen, R.; Royer, J.; Francois, M.

    2004-01-01

    Internal stresses due to anisotropic thermal and plastic properties were investigated in rolled zirconium and titanium. The thermal stresses induced by a cooling process were predicted using a self-consistent model and compared with experimental results obtained by X-ray diffraction. The study of the elastoplastic response during uniaxial loading was performed along the rolling and the transverse direction of the sheet, considering the influence of the texture and the thermal stresses on the mechanical behaviour. An approach in order to determine the thermal behaviour of phases embedded in two-phase materials is also presented. For zirconium, the residual stresses due to thermal anisotropy are rather important (equivalent to 35% of the yield stress) and consequently they play an important role on the elastoplastic transition contrary to titanium. The study of two-phase material shows the influence and the interaction of the second phase on the thermal behaviour in the studied phase

  11. Evaluation of the residual stress field in a steam generator end tube after hydraulic expansion

    International Nuclear Information System (INIS)

    Thiel, F.; Kang, S.; Chabrerie, J.

    1994-01-01

    This paper presents a finite element elastoplastic model of a nuclear steam generator end tube, used to evaluate the residual stress field existing after hydraulic expansion of the tube into the tubesheet of the heat exchanger. This model has been tested against an experimental hydraulic expansion, carried out on full scale end tubes. The operation was monitored thanks to strain gages localized on the outer surface of the tubes, subjected to elastoplastic deformations. After a presentation of the expansion test and the description of the numerical model, the authors compare the stress fields issues from the gages and from the model. The comparison shows a good agreement. These results allow them to calculate the stress field resulting from normal operating conditions, while taking into account a correct initial state of stress. Therefore the authors can improve the understanding of the behavior of a steam generator end tube, with respect to stress corrosion cracking and crack growth

  12. Ultimate strength analysis of ring-stiffened cylinders subjected to hydrostatic pressure

    International Nuclear Information System (INIS)

    Park, Chi Mo

    1990-01-01

    In this study, ultimate strength analysis of ring-stiffened cylinders have been performed, considering the elasto-plastic large deflection. In the elasto-plastic analysis, von Mises yield criteria, the plastic flow theory and the layered approach have been adopted. In order to take into account the follower force effect of the hydrostatic pressure, the incremental load components have been updated at every loading step. As collapse modes, axisymmetric yielding, interframe shell buckling and general buckling are considered, while local buckling of ring-stiffener is not considered. Initial shape imperfection is assumed to be the elastic buckling mode to obtain the lower bound of the ultimate strength. Results of numerical analysis are compared with the experimental results to show the validity of the present approach. It has been drawn that the present numerical results are closely correlated with the experimental results. On the other hand, the effects of initial shape imperfection and condition on the ultimate strength have been investigated. (Author)

  13. Some aspects of floor spectra of 1DOF nonlinear primary structures

    International Nuclear Information System (INIS)

    Politopoulos, I.; Feau, C.

    2007-01-01

    In this paper the influence of the nonlinear behaviour of the primary structure on floor spectra is investigated by means of simple models. The general trends of floor spectra for different types of nonlinear behaviour of one degree of freedom (1DOF) primary structure are shown and we point out their common futures and their differences. A special attention is given to the cases of elastoplastic and nonlinear elastic behaviours and methods to determine an equivalent linear oscillator are proposed. The properties (frequency and damping) of this equivalent linear oscillator are quite different from the properties of equivalent linear oscillators commonly considered in practice. In particular, in the case of elastoplastic behaviour, there is no frequency shift and damping is smaller than assumed by other methods commonly used. In the case of nonlinear elastic behaviour, the concept of an equivalent frequency which is a random variable is used. Finally, a design floor spectrum of primary structures, exhibiting energy dissipating nonlinear behaviour is proposed. (authors)

  14. SCC evaluation of candidate container alloys by DCB method

    International Nuclear Information System (INIS)

    Roy, A.K.; Freeman, D.C.; Lum, B.Y.; Spragge, M.K.

    1999-01-01

    The authors use a solid mechanics approach to investigate hydride formation and cracking in zirconium-niobium alloys used in the pressure tubes of CANDU nuclear reactors. In this approach, the forming hydride is assumed to be purely elastic and its volume dilation is accommodated by elasto-plastic deformation of the surrounding matrix material. The energetics of the hydride formation is revisited and the terminal solid solubility of hydrogen in solution is defined on the basis of the total elasto-plastic work done on the system by the forming hydride and the external loads. Hydrogen diffusion and probabilistic hydride formation coupled with the material deformation are modeled at a blunting crack tip under plane strain loading. A full transient finite element analysis allows for numerical monitoring of the development and expansion of the hydride zone as the externally applied loads increase. Using a Griffith fracture criterion for fracture limitiation, the reduced fracture resistance of the alloy can be predicted and the factors affecting fracture toughness quantified

  15. Continuum Mechanical Modelling of Skin-pass Rolling

    DEFF Research Database (Denmark)

    Kijima, Hideo; Bay, Niels

    2007-01-01

    The special contact conditions in skin-pass rolling of steel strip is analyzed by studying plane strain upsetting of thin sheet with low reduction applying long narrow tools and dry friction conditions. An extended sticking region is estimated by an elasto-plastic FEM analysis of the plane strain...

  16. A model of shape memory alloys taking into account plasticity

    Czech Academy of Sciences Publication Activity Database

    Kružík, Martin; Zimmer, J.

    2011-01-01

    Roč. 76, č. 1 (2011), s. 193-216 ISSN 0272-4960 R&D Projects: GA AV ČR(CZ) IAA100750802 Institutional research plan: CEZ:AV0Z10750506 Keywords : elasto-plasticity * energetic solution * plastic strain gradients Subject RIV: BA - General Mathematics Impact factor: 0.776, year: 2011

  17. Global methods for reinforced concrete slabs

    International Nuclear Information System (INIS)

    Hoffmann, A.; Lepareux, M.; Combescure, A.

    1985-08-01

    This paper develops the global method strategy to compute elastoplastic thin shells or beams. It is shown how this methodology can be applied to the case of reinforced concrete structures. Two cases of applications are presented: one static, the other dynamic. The numerical results are compared to experimental data

  18. Fatigue accumulation in an oscillating plate

    Czech Academy of Sciences Publication Activity Database

    Eleuteri, M.; Kopfová, J.; Krejčí, Pavel

    2013-01-01

    Roč. 6, č. 4 (2013), s. 909-923 ISSN 1937-1632 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : elastoplastic plate * Prandtl-Ishlinskii operator * material fatigue Subject RIV: BA - General Mathematics http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=8092

  19. Predicting Failure Initiation in Structural Adhesive Joints

    Science.gov (United States)

    2012-08-15

    Elastoplástico de Adhesivos – Modeling, characterization and simulation of the elastoplastic behavior of adhesives. Maestría en Ciencia de Materiales...adhesive and a 1018 steel”. Maestría en Ciencia de Materiales. Centro de Investigación en Materiales Avanzados S.C. May 2012.  Abstract: In the

  20. Implementation of the Modified Hoek-Brown Model into the Finite Element Method

    DEFF Research Database (Denmark)

    Sørensen, Emil Smed; Clausen, Johan Christian; Merifield, Richard S.

    2015-01-01

    The Hoek-Brown model for near-homogeneous rock masses will, in some cases, overpredict the tensile strength of the material. In some cases this can lead to unsafe design of structures. Therefore, a tension cut-off is introduced and the model is implemented into an elasto-plastic framework for use...

  1. Variational formulation based analysis on growth of yield front in ...

    African Journals Online (AJOL)

    The present study investigates the growth of elastic-plastic front in rotating solid disks of non-uniform thickness having exponential and parabolic geometry variation. The problem is solved through an extension of a variational method in elastoplastic regime. The formulation is based on von-Mises yield criterion and linear ...

  2. Microstructures and mechanical properties of an Osprey aluminium 7000 alloy

    International Nuclear Information System (INIS)

    Cottignies, L.; Brechet, Y.; Audier, M.; Livet, F.; Louchet, F.; Sainfort, P.

    1993-01-01

    An alloy from the 7000 serie obtained by the Osprey process has been studied both from the microstructural (TEM, SAXS) and from the mechanical viewpoint. The modelling of the mechanical properties and of their anisotropy was performed using both models from physical metallurgy and a self consistent elastoplastic model. (orig.)

  3. Elasticplastic dynamic analysis of pipelines

    International Nuclear Information System (INIS)

    Veloso Filho, D.; Loula, A.F.D.; Guerreiro, J.N.C.

    1982-01-01

    A model for structural analysis of spatial pipelines constituted by material with perfect elastoplastic behavior and submmited to time dependence stress is presented. The spatial discretization is done using the Finite Element method, and for the time integration of movement equations an stable finite difference algorithm is used. (E.G.) [pt

  4. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. Debasis Karmakar. Articles written in Sadhana. Volume 31 Issue 4 August 2006 pp 343-357. A parametric study of strength reduction factors for elasto-plastic oscillators · Debasis Karmakar Vinay K Gupta · More Details Abstract Fulltext PDF. Strength reduction factors (SRFs) continue to play a key ...

  5. Towards simulation of elasto-plastic deformation: An investigation

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    This paper tries to capture the various steps of the investigation .... most plasticity theories are inclined towards an Eulerian formulation in stress space setting. This is mainly because of its analogy with viscous fluid flow, the construction of the .... cartesian coordinate form, it does not help us to obtain the importance of the ...

  6. White noise excited non-ideal elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob

    1997-01-01

    Two sets of 50 samples of the displacement response of the top traverse relative to the second traverse of an experimental shear frame with three traverses subject to white noise base shaking of two different intensities have been recorded at Institut fur Allgemeine Mechanik in 1995, and are in f......Two sets of 50 samples of the displacement response of the top traverse relative to the second traverse of an experimental shear frame with three traverses subject to white noise base shaking of two different intensities have been recorded at Institut fur Allgemeine Mechanik in 1995......, and are in file available for analysis. The column connection between the two top traverses were made of aluminum with a linear-elastic non-ideal plastic behavior, and the columns were therefore renewed after each experiment. The two other connections were made of steel with a purely linear-elastic behavior...... on an oscillator of more than one degree of freedom. Applied to the experimental frame the calculations give excellent predictions of the main distributional properties of the plastic displacement process....

  7. Elastoplastic buckling of quasi axisymmetric shells of revolution

    International Nuclear Information System (INIS)

    Combescure, A.

    1987-01-01

    This paper gives the formulation of a finite element which allows the computation of quasi axisymmetric shells of revolution. This element has two nodes and the displacement field is developped in Fourier series. In this paper, an emphasis is put on the elastic and plastic buckling formulation. Two examples are developped in details showing the applicability and the interest of such a finite element. (orig.)

  8. Design rules to prevent from elasto-plastic bucking

    International Nuclear Information System (INIS)

    Autrusson, B.; Acker, D.

    1986-10-01

    The development of fast neutron reactors requires the construction of mechanical structures which are subject to thermal transients. These structures being thin, there is a risk of important buckling. Studies developed in the general framework of dimensioning propose a simplified method. This method is based on the determination of the elastic critical load of the perfect structure and its correction by a reduction coefficient which takes into account the effect of tolerances, plasticity and a possible instable post-critical behavior. This paper presents this method and its experimental validation, as also a comparison with the rules proposed by the CODAP 80 (C4 41) for structures subject to an external pressure load. This method has been introduced in the French Rules of design and construction of fast neutron reactor mechanical components (RCC-MR) [fr

  9. 3D analysis of cold rolling using a constitutive model for interface friction

    DEFF Research Database (Denmark)

    Richelsen, Ann Bettina; Tvergaard, Viggo

    2004-01-01

    as no slip is accounted for. Finite strain elasto-plasticity is applied for the plate material, using mostly isotropic hardening or in a few cases kinematic hardening to represent the effect of a rounded vertex on the yield surface. In addition, for a given plate thickness and degree of reduction the effect...

  10. REVIEW ARTICLE Contribution à la modélisation des phénomènes ...

    African Journals Online (AJOL)

    Key words: solid-solid phase changes; elastoplasticity; ferritic alloys; transformation induced plasticity; recovery ... contribution dans ce domaine. Les .... et al. [8]. Ce résultat est important pour deux raisons principales : (i) vis-à-vis du risque de non conservatisme qui serait engendré par une application d'une loi linéaire.

  11. Analysis of strain field around. beta. -hydride in Nb-H by Electron Channeling

    Energy Technology Data Exchange (ETDEWEB)

    Akune, K; Bulhoes, I A.M.

    1985-06-01

    The strain field in Nb-H system generated by the precipitation of ..beta..-hydride has been evaluated quantitatively by Electron Channeling experiment. The results were analyzed in terms of the effective deformation of the Levi-Mises solid by making use of an elasto-plastic model of the strain field around the misfitting cylindrical precipitate.

  12. Recent development of a CEC'S elasto-plastic-creep cyclic benchmark programme relevant to LMFBR structural integrity

    International Nuclear Information System (INIS)

    Corsi, F.; Terzaghi, A.

    1984-01-01

    It's presented the programme of elasto-plastic benchmark calculations relevant to LMFBr, which started in 1977 with the support and coordination of the Commission of the European Communities (CEC) and the participation of nuclear engineering and manufacturing companies as well as nuclear research centers of France, Germany, Italy and the United Kingdom. (E.G.) [pt

  13. Polycrystalline models for the calculation of residual stresses in zirconium alloys tubes

    International Nuclear Information System (INIS)

    Signorelli, J.W.; Turner, P.A.; Lebensohn, R.A.; Pochettino, A.A.

    1995-01-01

    Tubes made of different Zirconium alloys are used in various types of reactors. The final texture of tubes as well as the distribution of residual stresses depend on the mechanical treatments done during their manufacturing process. The knowledge and prediction of both the final texture and the distribution of residual stresses in a tube for nuclear applications are of outstanding importance in relation with in-reactor performance of the tube, especially in what concerns to its irradiation creep and growth behaviour. The viscoplastic and the elastoplastic self consistent polycrystal models are used to investigate the influence of different mechanical treatments, performed during rolling processes on the final distribution of intergranular residual stresses of zirconium alloys tubes. The residual strains predictions with both formulations show a non linear dependence with the orientation, but they are qualitatively different. This discrepancy could be explain in terms of the relative plastic activity between the -type and -type deformation modes predicted with the viscoplastic and elastoplastic models. (author). 10 refs., 4 figs., 1 tab

  14. On the use of effective stress in three-dimensional hydro-mechanical coupled model

    International Nuclear Information System (INIS)

    Arairo, W.; Prunier, F.; Djeran-Maigre, I.; Millard, A.

    2014-01-01

    In the last decades, a number of hydro-mechanical elastoplastic constitutive models for unsaturated soils have been proposed. Those models couple the hydraulic and mechanical behaviour of unsaturated soils, and take into account the effects of the degree of saturation on the stress-strain behaviour and the effects of deformation on the soil-water characteristic response with a simple reversible part for the hysteresis. In addition, the influence of the suction on the stress-strain behaviour is considered. However, until now, few models predict the stress-strain and soil-water characteristic responses of unsaturated soils in a fully three-dimensional Finite Element code. This paper presents the predictions of an unsaturated soil model in a Three-dimensional Framework, and develops a study on the effect of partial saturation on the stability of shallow foundation resting on unsaturated silty soil. Qualitative predictions of the constitutive model show that incorporating a special formulation for the effective stress into an elastoplastic coupled hydro-mechanical model opens a full range of possibilities in modelling unsaturated soil behaviour. (authors)

  15. Microstructural and elasto-plastic material parameters identification by inverse finite elements method of Ti(1−x)AlxN (0 < x < 1) sputtered thin films from Berkovich nano-indentation experiments

    International Nuclear Information System (INIS)

    Pac, M.-J.; Giljean, S.; Rousselot, C.; Richard, F.; Delobelle, P.

    2014-01-01

    The mechanical properties of Ti (1−x) Al x N (0 < x < 1) films of different thicknesses deposited by r.f. reactive magnetron sputtering on Si < 100 > and high speed steel substrates have been investigated. The as-deposited coatings have been characterized by X-ray diffraction, atomic force microscopy, four-probe electric resistivity method, mechanical deflection of cantilever beams and Berkovich nano-indentation tests associated with inverse finite elements analysis. The coatings with x < 0.58–0.59 present a cubic structure whereas for x > 0.7 a hexagonal structure is observed. Between these two compositions cubic and hexagonal structures coexist. The roughness depends on the film thickness and on the Al content and a minimum associated to a very fine microstructure is clearly observed in the two-phase coatings. The electric resistivity sharply increases as soon as the hcp structure appears (x ∼ 0.6). The mean residual stresses are compressive, except for the AlN coating, and present a minimum at the neighborhood of x ∼ 0.64 where a mixed structure is observed. The indentation modulus M and the Berkovich hardness H B greatly depend on the Al content and a progressive decreasing has been observed for 0.58 < x < 0.7. For the M evolution, a simple model taking into account the stiffness coefficients of TiN and AlN structures, the mean residual stress level and the variations of the lattice parameters in the two structure domains is proposed. Knowing the elastic properties of these films, inverse finite elements analysis of the indentation curves considering a simple isotropic linear elasto-plastic behavior allows, as a function of the composition, the yield stress σ Y and the linear hardening coefficient H p ⁎ to be estimated. σ Y and H p ⁎ are in the ranges 4.2 to 6.8 GPa and 60 to 400 GPa, respectively. The maximum value of H p ⁎ /σ Y which characterizes the ability of these coatings to exhibit plastic strain hardening is maximum

  16. Installation of depository for radioactive material in rocks

    International Nuclear Information System (INIS)

    Bergman, S.G.A.; Sagefors, K.I.; Aakesson, B.Aa.

    1985-01-01

    The rock outside the depository has a hollow space which is filled by elastoplastic material possible to deform. The solid body of the depository has a central vertical shaft and concentric vertical outer shafts. Between the shafts there are vertically oriented layers with tunnels for storage of waste. The tunnels slope down from the central shaft. (G.B.)

  17. Analysis of strain field around β-hydride in Nb-H by electron channeling

    International Nuclear Information System (INIS)

    Akune, K.; Bulhoes, I.A.M.

    1985-01-01

    The strain field in Nb-H system generated by the precipitation of β-hydride has been evaluated quantitatively by Electron Channelling experiment. The results were analyzed in terms of the effective deformation of the Levi-Mises solid by making use of an elasto-plastic model of the strain fiedl around the misfitting cylindrical precipitate. (Author) [pt

  18. Continuation Newton methods

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Sysala, Stanislav

    2015-01-01

    Roč. 70, č. 11 (2015), s. 2621-2637 ISSN 0898-1221 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:68145535 Keywords : system of nonlinear equations * Newton method * load increment method * elastoplasticity Subject RIV: IN - Informatics, Computer Science Impact factor: 1.398, year: 2015 http://www.sciencedirect.com/science/article/pii/S0898122115003818

  19. Input data instructions - simplified documentation of the computer program ANSYS. Report for 10 June 1976--31 March 1978

    International Nuclear Information System (INIS)

    Chang, P.Y.

    1978-02-01

    A simplified version of the input instructions for the computer program 'ANSYS' is presented for the non-linear elastoplastic analysis of a ship collision protection barrier structure. All essential information necessary for the grillage model are summarized while eliminating the instructions for other types of the problems. A benchmark example is given for checking the computer program

  20. A modeling and numerical algorithm for thermoporomechanics in multiple porosity media for naturally fractured reservoirs

    Science.gov (United States)

    Kim, J.; Sonnenthal, E. L.; Rutqvist, J.

    2011-12-01

    Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator

  1. On the plumbing system of volcanic complexes: field constraints from the Isle of Skye (UK) and FEM elasto-plastic modelling including gravity and tectonics.

    Science.gov (United States)

    Bistacchi, A.; Pisterna, R.; Romano, V.; Rust, D.; Tibaldi, A.

    2009-04-01

    3D geometry; gravitational body load; anisotropic tectonic stresses; different shapes and depths of the magma chamber; different overpressure levels in the magma chamber; different shapes of the topographic surface (e.g. flat, volcano, caldera); linear-elastic or elasto-plastic Drucker-Prager rheology. The latter point, which in our opinion constitutes a fundamental improvement in the model, has proven necessary because in a purely elastic model the stress state would rise at levels that cannot be sustained by geologic materials. Particularly around and above the magma chamber, yielding is expected, influencing the stress field in the remaining modelling domain. The non-linear problem has been solved with the commercial finite element package Comsol Multiphysics, using a parametric solver. At the same time, a field structural analysis of the classical Cuillin Cone-sheet Complex has been performed. This analysis has shown that four distinct families of cone sheets of different age do exist. Among these, the sheets with the higher dip angle range (80-65°) are confirmed as purely tensional joints, but those with a lower dip angle range (60-40°) are quite often (when suitable markers are available) associated with a measurable shear component. Combining these new field observations with mechanical modelling results, we propose a new interpretation for the Cuillin Cone Sheet Complex. The plumbing system was composed by both purely tensional joints and mesoscopic faults with a shear component, produced in response to the regional stress field perturbed by the magma chamber, and later passively re-used as magma emplacement conduits. Under this assumption, the observed geometry of the Cuillin Cone-sheet Complex is consistent with a relatively shallow magma chamber with a flattened laccolite shape. The shape of the palaeotopography, now completely eroded, has also been considered, but is more weakly constrained by modelling results. References: Anderson E.M., 1936. The

  2. On the identifiability of the Hill-1948 model with one uniaxial tensile test

    Science.gov (United States)

    Bertin, Morgan; Hild, François; Roux, Stéphane

    2017-06-01

    A uniaxial experiment is performed on an ultra-thin specimen made of 17-7 precipitation hardened stainless steel. An anti-wrinkling setup allows for the characterization of the mechanical behavior with Integrated Digital Image Correlation (IDIC). The result shows that a single uniaxial experiment investigated via IDIC possesses enough data (and even more) to characterize a complete anisotropic elastoplastic model.

  3. Procedure to predict the storey where plastic drift dominates in two-storey building under strong ground motion

    DEFF Research Database (Denmark)

    Hibino, Y.; Ichinose, T.; Costa, J.L.D.

    2009-01-01

    A procedure is presented to predict the storey where plastic drift dominates in two-storey buildings under strong ground motion. The procedure utilizes the yield strength and the mass of each storey as well as the peak ground acceleration. The procedure is based on two different assumptions: (1....... The efficiency of the procedure is verified by dynamic response analyses using elasto-plastic model....

  4. Subdifferential-based implicit return-mapping operators in computational plasticity

    Czech Academy of Sciences Publication Activity Database

    Sysala, Stanislav; Čermák, Martin; Koudelka, T.; Kruis, J.; Zeman, J.; Blaheta, Radim

    2016-01-01

    Roč. 96, č. 11 (2016), s. 1318-1338 ISSN 1521-4001 R&D Projects: GA MŠk LQ1602; GA ČR GA13-18652S Institutional support: RVO:68145535 Keywords : elastoplasticity * nonsmooth yield surface * multivalued flow direction * implicit return-mapping scheme * semismooth Newton method * limit analysis Subject RIV: BA - General Mathematics http://onlinelibrary.wiley.com/doi/10.1002/zamm.201500305/full

  5. Characteristics of aluminum alloy microplastic deformation in different structural states

    Energy Technology Data Exchange (ETDEWEB)

    Seregin, G.V.; Efimenko, L.L.; Leonov, M.V. [Novosibirsk Pedagogical Inst. (Russian Federation)

    1995-07-01

    The solution to the problem of improving the mechanical properties (including cyclic strength) of structural materials is largely dependent on our knowledge of the laws governing the development of microplastic deformations in them. The effect of heat and mechanical treatment on the elastoplastic properties and fatigue resistance of the commercial aluminum alloys AK4-1 and D16 is analyzed.

  6. Analysis of thermal-plastic response of shells of revolution by numerical integration

    International Nuclear Information System (INIS)

    Leonard, J.W.

    1975-01-01

    An economic technique for the numerical analysis of the elasto-plastic behaviour of shells of revolution would be of considerable value in the nuclear reactor industry. A numerical method based on the numerical integration of the governing shell equations has been shown, for elastic cases, to be more efficient than the finite element method when applied to shells of revolution. In the numerical integration method, the governing differential equations of motion are converted into a set of initial-value problems. Each initial-value problem is integrated numerically between meridional boundary points and recombined so as to satisfy boundary conditions. For large-deflection elasto-plastic behaviour, the equations are nonlinear and, hence, are recombined in an iterative manner using the Newton-Raphson procedure. Suppression techniques are incorporated in order to eliminate extraneous solutions within the numerical integration procedure. The Reissner-Meissner shell theory for shells of revolution is adopted to account for large deflection and higher-order rotation effects. The computer modelling of the equations is quite general in that specific shell segment geometries, e.g. cylindrical, spherical, toroidal, conical segments, and any combinations thereof can be handled easily. (Auth.)

  7. On the correlation between deformation twinning and Lueders-like deformation in an extruded Mg alloy: In situ neutron diffraction and EPSC.4 modelling

    International Nuclear Information System (INIS)

    Muransky, O.; Barnett, M.R.; Luzin, V.; Vogel, S.

    2010-01-01

    The current work focuses on the yielding and immediate post-yielding deformation of fine-grained and coarse-grained ZM20 Mg alloys obtained by extrusion. Compressive deformations along the extrusion direction, known to be governed by profuse twinning are examined in detail. It is shown that the fine-grained alloy exhibits Lueders-like plateaux suggesting heterogeneous transition from elastic to plastic deformation. This is due to the cooperative twinning of neighbouring grains which is promoted in the fine-grained alloy by the high internal stresses borne by the parent grain families in the vicinity of yielding, and the auto-catalytic nature of twin nucleation. The elasto-plastic response of tested alloys was also simulated using version 4 of the Elasto-Plastic Self-Consistent (EPSC) model. The finite initial fraction (FIF) assumption is employed to account for the stress relaxation related to the twin nucleation process. It is shown that the new EPSC.4 model is superior to its previous version as it enables realistic predictions of the development of elastic lattice strains in variously oriented grain families and the macroscopic stress-strain response of a polycrystalline aggregate undergoing profuse twinning.

  8. An analytical/numerical correlation study of the multiple concentric cylinder model for the thermoplastic response of metal matrix composites

    Science.gov (United States)

    Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.

    1993-01-01

    The utility of a recently developed analytical micromechanics model for the response of metal matrix composites under thermal loading is illustrated by comparison with the results generated using the finite-element approach. The model is based on the concentric cylinder assemblage consisting of an arbitrary number of elastic or elastoplastic sublayers with isotropic or orthotropic, temperature-dependent properties. The elastoplastic boundary-value problem of an arbitrarily layered concentric cylinder is solved using the local/global stiffness matrix formulation (originally developed for elastic layered media) and Mendelson's iterative technique of successive elastic solutions. These features of the model facilitate efficient investigation of the effects of various microstructural details, such as functionally graded architectures of interfacial layers, on the evolution of residual stresses during cool down. The available closed-form expressions for the field variables can readily be incorporated into an optimization algorithm in order to efficiently identify optimal configurations of graded interfaces for given applications. Comparison of residual stress distributions after cool down generated using finite-element analysis and the present micromechanics model for four composite systems with substantially different temperature-dependent elastic, plastic, and thermal properties illustrates the efficacy of the developed analytical scheme.

  9. Computer simulation of yielding supports under static and short-term dynamic load

    Directory of Open Access Journals (Sweden)

    Kumpyak Oleg

    2018-01-01

    Full Text Available Dynamic impacts that became frequent lately cause large human and economic losses, and their prevention methods are not always effective and reasonable. The given research aims at studying the way of enhancing explosion safety of building structures by means of yielding supports. The paper presents results of numerical studies of strength and deformation property of yielding supports in the shape of annular tubes under static and short-term dynamic loading. The degree of influence of yielding supports was assessed taking into account three peculiar stages of deformation: elastic; elasto-plastic; and elasto-plastic with hardening. The methodology for numerical studies performance was described using finite element analysis with program software Ansys Mechanical v17.2. It was established that rigidity of yielding supports influences significantly their stress-strain state. The research determined that with the increase in deformable elements rigidity dependence between load and deformation of the support in elastic and plastic stages have linear character. Significant reduction of the dynamic response and increase in deformation time of yielding supports were observed due to increasing the plastic component. Therefore, it allows assuming on possibility of their application as supporting units in RC beams.

  10. An advanced constitutive model in the sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion

    International Nuclear Information System (INIS)

    Alves, J.L.; Oliveira, M.C.; Menezes, L.F.

    2004-01-01

    Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results

  11. Failure internal pressure of spherical steel containments

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.

    1985-01-01

    An application of the British CEGB's R6 Failure Assessment Approach to the determination of failure internal pressure of nuclear power plant spherical steel containments is presented. The presence of hypothetical cracks both in the base metal and in the welding material of the containment, with geometrical idealizations according to the ASME Boiler and Pressure Vessel Code (Section XI), was taken into account in order to analyze the sensitivity of the failure assessment with the values of the material fracture properties. Calculations of the elastoplastic collapse load have been performed by means of the Finite Element System SAMCEF. The clean axisymmetric shell (neglecting the influence of nozzles and minor irregularities) and two major penetrations (personnel and emergency locks) have been taken separately into account. Large-strain elastoplastic behaviour of the material was considered in the Code, using lower bounds of true stress-true strain relations obtained by testing a collection of tensile specimens. Assuming the presence of cracks in non-perturbed regions, the reserve factor for test pressure and the failure internal pressure have been determined as a function of the flaw depth. (orig.)

  12. A population-feedback control based algorithm for well trajectory optimization using proxy model

    Directory of Open Access Journals (Sweden)

    Javad Kasravi

    2017-04-01

    Full Text Available Wellbore instability is one of the concerns in the field of drilling engineering. This phenomenon is affected by several factors such as azimuth, inclination angle, in-situ stress, mud weight, and rock strength parameters. Among these factors, azimuth, inclination angle, and mud weight are controllable. The objective of this paper is to introduce a new procedure based on elastoplastic theory in wellbore stability solution to determine the optimum well trajectory and global minimum mud pressure required (GMMPR. Genetic algorithm (GA was applied as a main optimization engine that employs proportional feedback controller to obtain the minimum mud pressure required (MMPR. The feedback function repeatedly calculated and updated the error between the simulated and set point of normalized yielded zone area (NYZA. To reduce computation expenses, an artificial neural network (ANN was used as a proxy (surrogate model to approximate the behavior of the actual wellbore model. The methodology was applied to a directional well in southwestern Iranian oilfield. The results demonstrated that the error between the predicted GMMPR and practical safe mud pressure was 4% for elastoplastic method, and 22% for conventional elastic solution.

  13. Fundamental simulations of transverse load effects on Nb3Sn strands using finite element analysis

    Science.gov (United States)

    Wang, T.; Chiesa, L.; Takayasu, M.

    2012-06-01

    A 2D finite element elasto-plastic analysis with various property values of the materials in composite Nb3Sn wires has been conducted to simulate the transverse compression effect on a single strand and a 3-strand cable as basic elements of a Cable-in-Conduit Conductor (CICC). The simulation results have been compared with previously reported experimental results. A parametric study of the stress-strain characteristics of copper at 4 K was considered. The simulation results showed that wire and cable deformations due to the transverse load are very sensitive to the elasto-plastic material properties of copper and bronze. In a triplet it is found that the strain distributions inside the superconducting strand are very different along its axis, that is, for a configuration in which two strands lined in parallel to the transverse load direction shows much higher internal strain than other configurations under the same transverse load. The simulation results agree with the reported experimental results indicating a low Young's modulus for Nb3Sn wires under transverse compression. The simulation also supports the reported contact mechanics model for critical current degradation.

  14. A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel Part II: Proposal of a method to use shell element model

    Directory of Open Access Journals (Sweden)

    Jae Woong Kim

    2014-06-01

    Full Text Available I-core sandwich panel that has been used more widely is assembled using high power CO2 laser welding. Kim et al. (2013 proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.

  15. A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel Part II : Proposal of a method to use shell element model

    Directory of Open Access Journals (Sweden)

    Kim Jae Woong

    2014-06-01

    Full Text Available I-core sandwich panel that has been used more widely is assembled using high power CO₂laser welding. Kim et al. (2013 proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.

  16. A final report on stress analysis of seal disc of 500 MWe PHWR

    International Nuclear Information System (INIS)

    Chawla, D.S.; Dutta, B.K.; Kushwaha, H.S.; Kakodkar, A.; Sanatkumar, A.

    1989-01-01

    In Pressurised Heavy Water Reactor (PHWR) on-power refuelling is done by use of fuelling machine. Before refuelling, sealing plug assembly is removed from the end-fitting of the coolant channel and after refuelling the sealing plug is reinstalled back in to the end-fitting. The seal disc is a part of sealing plug assembly. Its function is to create sealing action for the heavy water inside the coolant channel. A systematic developmental work is done to arrive at a final configuration of the seal disc. This is done to minimise the stresses in the body of the seal disc and at the same time to obtain required seating reaction to avoid heavy water leakage. It is observed that stresses computed for the final configuration by linear elastic analysis are more than the allowable value as per ASME Section III, Division 1. This calls for elasto-plastic analysis to find out collapse load to satisfy ASME codal limits as per special provision of NB-3228.1 (1986). The elasto-plastic analysis showed that the seal disc meets ASME codal limits for all stages of loading. (author). 8 refs., 2 tabs., 7 figs

  17. Refined Analysis of Fatigue Crack Initiation Life of Beam-to-Column Welded Connections of Steel Frame under Strong Earthquake

    Directory of Open Access Journals (Sweden)

    Weilian Qu

    2017-01-01

    Full Text Available This paper presents a refined analysis for evaluating low-cycle fatigue crack initiation life of welded beam-to-column connections of steel frame structures under strong earthquake excitation. To consider different length scales between typical beam and column components as well as a few crucial beam-to-column welded connections, a multiscale finite element (FE model having three different length scales is formulated. The model can accurately analyze the inelastic seismic response of a steel frame and then obtain in detail elastoplastic stress and strain field near the welded zone of the connections. It is found that the welded zone is subjected to multiaxial nonproportional loading during strong ground motion and the elastoplastic stress-strain field of the welded zone is three-dimensional. Then, using the correlation of the Fatemi-Socie (FS parameter versus fatigue life obtained by the experimental crack initiation fatigue data of the structural steel weldment subjected to multiaxial loading, the refined evaluation approach of fatigue crack initiation life is developed based on the equivalent plastic strain at fatigue critical position of beam end seams of crucial welded connections when the steel frame is subjected to the strong earthquake excitation.

  18. 'BLOC' program for elasto-plastic calculation of fissured media

    International Nuclear Information System (INIS)

    Pouyet, P.; Picaut, J.; Costaz, J.L.; Dulac, J.

    1983-01-01

    The method described is used to test failure mechanisms and to calculate the corresponding ultimate loads. The main advantages it offers are simple modelling, the possibility of representing all the prestressing and reinforcement steels simply and correctly, and fewer degrees of freedom, hence lower cost (the program can be run on a microcomputer). However, the model is sensitive to the arrangement of the interface elements, presupposing a given failure mechanism. This normally means testing several different models with different kinematically possible failure patterns. But the ease of modelling and low costs are ideal for this type of approach. (orig./RW)

  19. Multiaxial elastoplastic cyclic loading of austenitic 316L steel

    Czech Academy of Sciences Publication Activity Database

    Mazánová, Veronika; Polák, Jaroslav; Škorík, Viktor; Kruml, Tomáš

    2017-01-01

    Roč. 11, č. 40 (2017), s. 162-169 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GA13-23652S; GA MŠk LM2015069; GA MŠk(CZ) LQ1601; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : 316L steel * Crack initiation * Cyclic stress-strain curve * Multiaxial cyclic loading Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis

  20. Canonical form of an elastoplastic model of nuclear fusion

    International Nuclear Information System (INIS)

    Mikhajlova, T.I.; Mikhajlov, I.N.; Do Dang, G.

    1997-01-01

    Starting from equations of motion describing the fusion process in symmetrical nuclear systems of low angular momenta we reconstruct the collective Lagrangian and dissipation Rayleigh functions. This opens new perspectives in studying the dynamical effects in the heavy nuclei collisions. In particular, it provides a basis for a quantal description of the fusion process and accompanying its effects

  1. Elasto-plastic frame under horizontal and vertical Gaussian excitation

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob; Randrup-Thomsen, S.

    1999-01-01

    Taking geometric non-linearity into account anoscillator of the form as aportal frame with a rigid traverse and with ideal-elastic ideal-plasticclamped-in columns behaves under horizontalexcitation as an ideal-elastic hardening / softening-plastic oscilator given that the columns carry atension....../compression axial force. Assuming that the horizontal excitationof the traverse is Gaussian white noise, statistics related to the plastic displacement response are determinedby use of simulation based on the Slepian modelprocess method combined with envelope excursion properties. Besidesgiving physical insight...... the method givesgood approximations to results obtained by slow direct simulation of thetotal response. Moreover, the influence of a randomly varying axial column force isinvestigated by direct response simulation. This case corresponds to parametric excitation as generated by the vertical acceleration...

  2. Elasto-plastic strain analysis by a semi-analytical method

    Indian Academy of Sciences (India)

    deformation problems following a semi-analytical method, incorporating the com- ..... The set of equations in (8) are non-linear in nature, which is solved by direct ...... Here, [K] and [M] are stiffness matrix and mass matrix which are of the form ...

  3. Relation between superficial work hardening and SCC of an austenitic stainless steel Z3CND17-12 (AISI 316L)

    International Nuclear Information System (INIS)

    Bouzina, A.; Braham, C.; Ledion, J.

    1998-01-01

    A superficial strain hardening always leads to residual stresses. Loading during service can completely modify these stresses in a component. Without questioning the fact that compressive stresses are favourable for stress corrosion resistance, the authors show how an elastoplastic deformation on a pre-stressed material, by machining or shot peening, can be more harmful than on a non work hardened or uniformly work hardened material. (authors)

  4. Monotonic Loading of Circular Surface Footings on Clay

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Barari, Amin

    2011-01-01

    Appropriate modeling of offshore foundations under monotonic loading is a significant challenge in geotechnical engineering. This paper reports experimental and numerical analyses, specifically investigating the response of circular surface footings during monotonic loading and elastoplastic...... behavior during reloading. By using the findings presented in this paper, it is possible to extend the model to simulate the vertical-load displacement response of offshore bucket foundations....

  5. Computer analysis of the thermomechanical structure behavior. The CEASEMT system. The TEDEL code

    International Nuclear Information System (INIS)

    Hoffmann, A.; Jeanpierre, Francoise.

    1976-01-01

    TEDEL is intended for the elastoplastic computation of pipes and three-dimensional mechanical structures. Structures are described by means of jointed girder elements or more complex elements as for pipings: bended pipes, right angle elbows, tees, or any elements whose strength parameters are given to TEDEL. TEDEL is also for the dynamic computation of structures, damping included. A TEDEL option is for computing buckling critical load [fr

  6. Measurements and predictions of strain pole figures for uniaxially compressed stainless steel

    International Nuclear Information System (INIS)

    Larsson, C.; Clausen, B.; Holden, T.M.; Bourke, M.A.M.

    2004-01-01

    Strain pole figures representative of residual intergranular strains were determined from an -2.98% uniaxially compressed austenitic stainless steel sample. The measurements were made using neutron diffraction on the recently commissioned Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory, USA. The measurements were compared with predictions from an elasto-plastic self-consistent model and found to be in good agreement

  7. Measurements and predictions of strain pole figures for uniaxially compressed stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, C. [Division of Engineering Materials, Department of Mechanical Engineering, Linkoeping University, 58183 Linkoeping (Sweden)]. E-mail: clarsson@cfl.rr.com; Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Holden, T.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, M.A.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-09-15

    Strain pole figures representative of residual intergranular strains were determined from an -2.98% uniaxially compressed austenitic stainless steel sample. The measurements were made using neutron diffraction on the recently commissioned Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory, USA. The measurements were compared with predictions from an elasto-plastic self-consistent model and found to be in good agreement.

  8. The role of elasticity in simulating long-term tectonic extension

    Science.gov (United States)

    Olive, Jean-Arthur; Behn, Mark D.; Mittelstaedt, Eric; Ito, Garrett; Klein, Benjamin Z.

    2016-05-01

    While elasticity is a defining characteristic of the Earth's lithosphere, it is often ignored in numerical models of long-term tectonic processes in favour of a simpler viscoplastic description. Here we assess the consequences of this assumption on a well-studied geodynamic problem: the growth of normal faults at an extensional plate boundary. We conduct 2-D numerical simulations of extension in elastoplastic and viscoplastic layers using a finite difference, particle-in-cell numerical approach. Our models simulate a range of faulted layer thicknesses and extension rates, allowing us to quantify the role of elasticity on three key observables: fault-induced topography, fault rotation, and fault life span. In agreement with earlier studies, simulations carried out in elastoplastic layers produce rate-independent lithospheric flexure accompanied by rapid fault rotation and an inverse relationship between fault life span and faulted layer thickness. By contrast, models carried out with a viscoplastic lithosphere produce results that may qualitatively resemble the elastoplastic case, but depend strongly on the product of extension rate and layer viscosity U × ηL. When this product is high, fault growth initially generates little deformation of the footwall and hanging wall blocks, resulting in unrealistic, rigid block-offset in topography across the fault. This configuration progressively transitions into a regime where topographic decay associated with flexure is fully accommodated within the numerical domain. In addition, high U × ηL favours the sequential growth of multiple short-offset faults as opposed to a large-offset detachment. We interpret these results by comparing them to an analytical model for the fault-induced flexure of a thin viscous plate. The key to understanding the viscoplastic model results lies in the rate-dependence of the flexural wavelength of a viscous plate, and the strain rate dependence of the force increase associated with footwall

  9. Experiment and numerical simulation of welding induced damage: stainless steel 15-5PH

    International Nuclear Information System (INIS)

    Wu, T.

    2007-11-01

    The objective of this study is the prediction of damage and residual stresses induced by hot processing which leads to phase transformation in martensitic stainless steel. This study firstly concerns the modelling of the damage of material induced by a complex history of thermo-elastoplastic multiphase in heat-affected-zone (HAZ) of welding. In this work, a two-scale mode of elastoplastic damage multiphase was developed in the framework of thermodynamics of irreversible process. The constitutive equations are coupling with ductile damage, elasto-plasticity, phase transformation, and transformation plasticity. Besides, a damage equation was proposed based on the Lemaitre's damage model in the framework of continuum damage mechanics. The experiments of 15-5PH were implemented for the identification of phase transformation, transformation plasticity and damage models. Tensile tests of round specimens were used to identify the parameters of damage model as well as mechanical behaviours at various temperatures. Tests of flat notched specimen were designed to provide the validation of damage model and strain localization using three dimensional image correlation technologies. In addition, microscopic analysis was performed to provide microstructure characterization of 15-5PH and to discover the damage mechanism. Finally the numerical simulation was performed in the code CAST3M of CEA. On the one hand, numerical verification of the flat notched plates was implemented and compared with experimental results. On the other hand, we used the two-scale model including phase transformation, transformation plasticity and damage to simulate the level of residual stresses of a disk made of 15-5PH metal heated by laser. The internal variables, such as strain, stress, damage, were successfully traced in the simulation of two-scale model. The simulation results showed the transformation plasticity changes the level of residual stresses and should not be negligible; damage decreases

  10. Microstructural and elasto-plastic material parameters identification by inverse finite elements method of Ti{sub (1−x)}Al{sub x}N (0 < x < 1) sputtered thin films from Berkovich nano-indentation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pac, M.-J.; Giljean, S. [LPMT, Département MMPF (EA CNRS 4365), Université de Haute Alsace, 61 rue Albert Camus, 68093 Mulhouse (France); Rousselot, C. [FEMTO-ST, Département MN2S (UMR CNRS 6174), Université de Franche-Comté, 4 place Tharradin, 25211 Montbéliard (France); Richard, F. [FEMTO-ST, Département DMA (UMR CNRS 6174), Université de Franche-Comté, 24 chemin de l' Epitaphe, 25000 Besançon (France); Delobelle, P., E-mail: patrick.delobelle@univ-fcomte.fr [FEMTO-ST, Département DMA (UMR CNRS 6174), Université de Franche-Comté, 24 chemin de l' Epitaphe, 25000 Besançon (France)

    2014-10-31

    The mechanical properties of Ti{sub (1−x)}Al{sub x}N (0 < x < 1) films of different thicknesses deposited by r.f. reactive magnetron sputtering on Si < 100 > and high speed steel substrates have been investigated. The as-deposited coatings have been characterized by X-ray diffraction, atomic force microscopy, four-probe electric resistivity method, mechanical deflection of cantilever beams and Berkovich nano-indentation tests associated with inverse finite elements analysis. The coatings with x < 0.58–0.59 present a cubic structure whereas for x > 0.7 a hexagonal structure is observed. Between these two compositions cubic and hexagonal structures coexist. The roughness depends on the film thickness and on the Al content and a minimum associated to a very fine microstructure is clearly observed in the two-phase coatings. The electric resistivity sharply increases as soon as the hcp structure appears (x ∼ 0.6). The mean residual stresses are compressive, except for the AlN coating, and present a minimum at the neighborhood of x ∼ 0.64 where a mixed structure is observed. The indentation modulus M{sub } and the Berkovich hardness H{sub B} greatly depend on the Al content and a progressive decreasing has been observed for 0.58 < x < 0.7. For the M{sub } evolution, a simple model taking into account the stiffness coefficients of TiN and AlN structures, the mean residual stress level and the variations of the lattice parameters in the two structure domains is proposed. Knowing the elastic properties of these films, inverse finite elements analysis of the indentation curves considering a simple isotropic linear elasto-plastic behavior allows, as a function of the composition, the yield stress σ{sub Y} and the linear hardening coefficient H{sub p}{sup ⁎} to be estimated. σ{sub Y} and H{sub p}{sup ⁎} are in the ranges 4.2 to 6.8 GPa and 60 to 400 GPa, respectively. The maximum value of H{sub p}{sup ⁎}/σ{sub Y} which characterizes the ability

  11. Limit loads in nozzles

    International Nuclear Information System (INIS)

    Zouain, N.

    1983-01-01

    The static method for the evaluation of the limit loads of a perfectly elasto-plastic structure is presented. Using the static theorem of Limit Analysis and the Finite Element Method, a lower bound for the colapso load can be obtained through a linear programming problem. This formulation if then applied to symmetrically loaded shells of revolution and some numerical results of limit loads in nozzles are also presented. (Author) [pt

  12. The development and validation of a mathematical model for the design of protection barriers for nuclear powered ships. Report for 10 June 1976--31 March 1978

    International Nuclear Information System (INIS)

    Chang, P.Y.

    1978-03-01

    A mathematical model for the analysis and design of protection barrier structures is developed. The analysis procedure is based on the collapse theorems, i.e., the Upper Bound Theorem and the Lower Bound Theorem. The collision protection barrier is analyzed by a finite element program with capabilities of nonlinear and elastoplastic analysis. The results obtained from the mathematical model are compared with those obtained from the collision model tests

  13. Formulation and Implementation of a Constitutive Model for Soft Rock

    OpenAIRE

    Hickman, Randall John

    2004-01-01

    Petroleum reservoirs located in the Norwegian sector of the North Sea have undergone unexpected subsidence of great magnitude (> 10 m) during more than 30 years of petroleum recovery operations. Historical laboratory investigations have shown that the subsidence is due to the mechanical behavior and mechanical properties of chalk. Chalk behavior is characterized by elastoplasticity, including pore collapse, shear failure, and tensile failure mechanisms; rate-dependence; and pore fluid depende...

  14. NUMERICAL SIMULATION OF YIELDING SUPPORTS IN THE SHAPE OF ANNULAR TUBES UNDER STATIC AND SHORT-TERM DYNAMIC LOADING

    Directory of Open Access Journals (Sweden)

    Oleg G. Kumpyak

    2017-12-01

    Full Text Available Occurrence of extreme man-made impacts on buildings and structures has become frequent lately as a consequence of condensed explosives or explosive combustion of gas- vapor or air-fuel mixtures. Such accidents involve large human and economic losses, and their prevention methods are not always effective and reasonable. The given research aims at studying the way of enhancing explosion safety of building structures by means of yielding supports. The paper presents results of numerical studies (finite element, 3D nonlinear of strength and deformability of yielding supports in the shape of annular tubes under static and short-term dynamic loading. The degree of influence of yielding supports was assessed taking into account three peculiar stages of deformation: elastic; elasto-plastic; elasto-plastic with hardening. The methodology for numerical studies performance was described. It was established that rigidity of yielding supports influences significantly their stress-strain state. The research determined that with increase of deformable elements rigidity dependency between load and deformation of yielding supports in elastic and plastic stages have linear character. Significant reduction of dynamic response and increase of deformation time of yielding supports was observed by increasing the plastic component. Therefore it allows assuming on possibility of their application as supporting units in reinforced concrete constructions

  15. Thermoinduced plastic flow and shape memory effects

    Directory of Open Access Journals (Sweden)

    Xiao Heng

    2011-01-01

    Full Text Available We propose an enhanced form of thermocoupled J2-flow models of finite deformation elastoplasticity with temperature-dependent yielding and hardening behaviour. The thermomechanical constitutive structure of these models is rendered free and explicit in the rigorous sense of thermodynamic consistency. Namely, with a free energy function explicitly introduced in terms of almost any given form of the thermomechanical constitutive functions, the requirements from the second law are identically fulfilled with positive internal dissipation. We study the case when a dependence of yielding and hardening on temperature is given and demonstrate that thermosensitive yielding with anisotropic hardening may give rise to appreciable plastic flow either in a process of heating or in a cyclic process of heating/cooling, thus leading to the findings of one- and two-way thermoinduced plastic flow. We then show that such theoretical findings turn out to be the effects found in shape memory materials, such as one- and two-way memory effects. Thus, shape memory effects may be explained to be thermoinduced plastic flow resulting from thermosensitive yielding and hardening behaviour. These and other relevant facts may suggest that, from a phenomenological standpoint, thermocoupled elastoplastic J2-flow models with thermosensitive yielding and hardening may furnish natural, straightforward descriptions of thermomechanical behaviour of shape memory materials.

  16. Nonlinear Analysis for the Crack Control of SMA Smart Concrete Beam Based on a Bidirectional B-Spline QR Method

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-01-01

    Full Text Available A bidirectional B-spline QR method (BB-sQRM for the study on the crack control of the reinforced concrete (RC beam embedded with shape memory alloy (SMA wires is presented. In the proposed method, the discretization is performed with a set of spline nodes in two directions of the plane model, and structural displacement fields are constructed by the linear combination of the products of cubic B-spline interpolation functions. To derive the elastoplastic stiffness equation of the RC beam, an explicit form is utilized to express the elastoplastic constitutive law of concrete materials. The proposed model is compared with the ANSYS model in several numerical examples. The results not only show that the solutions given by the BB-sQRM are very close to those given by the finite element method (FEM but also prove the high efficiency and low computational cost of the BB-sQRM. Meanwhile, the five parameters, such as depth-span ratio, thickness of concrete cover, reinforcement ratio, prestrain, and eccentricity of SMA wires, are investigated to learn their effects on the crack control. The results show that depth-span ratio of RC beams and prestrain and eccentricity of SMA wires have a significant influence on the control performance of beam cracks.

  17. The sound of friction: Real-time models, playability and musical applications

    Science.gov (United States)

    Serafin, Stefania

    Friction, the tangential force between objects in contact, in most engineering applications needs to be removed as a source of noise and instabilities. In musical applications, friction is a desirable component, being the sound production mechanism of different musical instruments such as bowed strings, musical saws, rubbed bowls and any other sonority produced by interactions between rubbed dry surfaces. The goal of the dissertation is to simulate different instrument whose main excitation mechanism is friction. An efficient yet accurate model of a bowed string instrument, which combines the latest results in violin acoustics with the efficient digital waveguide approach, is provided. In particular, the bowed string physical model proposed uses a thermodynamic friction model in which the finite width of the bow is taken into account; this solution is compared to the recently developed elasto-plastic friction models used in haptics and robotics. Different solutions are also proposed to model the body of the instrument. Other less common instruments driven by friction are also proposed, and the elasto-plastic model is used to provide audio-visual simulations of everyday friction sounds such as squeaking doors and rubbed wine glasses. Finally, playability evaluations and musical applications in which the models have been used are discussed.

  18. Creep Rupture Life Prediction Based on Analysis of Large Creep Deformation

    Directory of Open Access Journals (Sweden)

    YE Wenming

    2016-08-01

    Full Text Available A creep rupture life prediction method for high temperature component was proposed. The method was based on a true stress-strain elastoplastic creep constitutive model and the large deformation finite element analysis method. This method firstly used the high-temperature tensile stress-strain curve expressed by true stress and strain and the creep curve to build materials' elastoplastic and creep constitutive model respectively, then used the large deformation finite element method to calculate the deformation response of high temperature component under a given load curve, finally the creep rupture life was determined according to the change trend of the responsive curve.The method was verified by durable test of TC11 titanium alloy notched specimens under 500 ℃, and was compared with the three creep rupture life prediction methods based on the small deformation analysis. Results show that the proposed method can accurately predict the high temperature creep response and long-term life of TC11 notched specimens, and the accuracy is better than that of the methods based on the average effective stress of notch ligament, the bone point stress and the fracture strain of the key point, which are all based on small deformation finite element analysis.

  19. Analysis of thermal-plastic response of shells of revolution by numerical integration

    International Nuclear Information System (INIS)

    Leonard, J.W.

    1975-01-01

    A numerical method based instead on the numerical integration of the governing shell equations has been shown, for elastic cases, to be more efficient than the finite element method when applied to shells of revolution. In the numerical integration method, the governing differential equations of motions are converted into a set of initial-value problems. Each initial-value problem is integrated numerically between meridional boundary points and recombined so as to satisfy boundary conditions. For large-deflection elasto-plastic behavior, the equations are nonlinear and, hence, are recombined in an iterative manner using the Newton-Raphson procedure. Suppression techniques are incorporated in order to eliminate extraneous solutions within the numerical integration procedure. The Reissner-Meissner shell theory for shells of revolution is adopted to account for large deflection and higher-order rotation effects. The computer modelling of the equations is quite general in that specific shell segment geometries, e.g. cylindrical, spherical, toroidal, conical segments, and any combinations thereof can be handled easily. The elasto-plastic constitutive relations adopted are in accordance with currently recommended constitutive equations for inelastic design analysis of FFTF Components. The Von Mises yield criteria and associated flow rule is used and the kinematic hardening law is followed. Examples are considered in which stainless steels common to LMFBR application are used

  20. A multiphase constitutive model of reinforced soils accounting for soil-inclusion interaction behaviour

    OpenAIRE

    BENNIS, M; DE BUHAN, P

    2003-01-01

    A two-phase continuum description of reinforced soil structures is proposed in which the soil mass and the reinforcement network are treated as mutually interacting superposed media. The equations governing such a model are developed in the context of elastoplasticity, with special emphasis put on the soil/reinforcement interaction constitutive law. As shown in an illustrative example, such a model paves the way for numerically efficient design methods of reinforced soil structures.

  1. Stress analysis in the tubes-tubesheet joint of the heat exchanger under hydraulic expansion

    International Nuclear Information System (INIS)

    Sanzi, H.; Carnicer, R.

    1994-01-01

    In the present work, we are presenting the stresses and displacement occurred in the tube/tubesheet joint of a heat exchanger under hydraulic expansion process. During this process a great amount of tubes cracked. An elasto-plastic finite element calculation was carried out in order to determine the exact deformations of the tube-tubesheet joint. The most important conclusions are presented and compared with the obtained by analytical procedures. (author). 2 refs, 11 figs

  2. Determination of Stress-Strain Characteristics of Railhead Steel using Image Analysis

    OpenAIRE

    Bandula-Heva; T.; Dhanasekar; M.

    2011-01-01

    True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predic...

  3. Soil/Structure Interactions in Earthquakes

    Science.gov (United States)

    Ramey, G. W.; Moore, R. K.; Yoo, C. H.; Bush, Thomas D., Jr.; Stallings, J. M.

    1986-01-01

    In effort to improve design of Earthquake-resistant structures, mathematical study undertaken to simulate interactions among soil, foundation, and superstructure during various kinds of vibrational excitation. System modeled as three lumped masses connected vertically by springs, with lowest mass connected to horizontal vibrator (representing ground) through springs and dashpot. Behavior of springs described by elastic or elastoplastic force/deformation relationships. Relationships used to approximate nonlinear system behavior and soil/foundation-interface behavior.

  4. Assessment of Effective Factor of Hydrogen Diffusion Equation Using FE Analysis

    International Nuclear Information System (INIS)

    Kim, Nak Hyun; Oh, Chang Sik; Kim, Yun Jae

    2010-01-01

    The coupled model with hydrogen transport and elasto-plasticity behavior was introduced. In this paper, the effective factor of the hydrogen diffusion equation has been described. To assess the effective factor, finite element (FE) analyses including hydrogen transport and mechanical loading for boundary layer specimens with low-strength steel properties are carried out. The results of the FE analyses are compared with those from previous studies conducted by Taha and Sofronis (2001)

  5. Incremental localized boundary-domain integro-differential equations of elastic damage mechanics for inhomogeneous body

    OpenAIRE

    Mikhailov, SE

    2006-01-01

    Copyright @ 2006 Tech Science Press A quasi-static mixed boundary value problem of elastic damage mechanics for a continuously inhomogeneous body is considered. Using the two-operator Green-Betti formula and the fundamental solution of an auxiliary homogeneous linear elasticity with frozen initial, secant or tangent elastic coe±cients, a boundary-domain integro-differential formulation of the elasto-plastic problem with respect to the displacement rates and their gradients is derived. Usin...

  6. Elastoplastic simulation coupled to the induced anisotropic damage for argilites

    International Nuclear Information System (INIS)

    Chiarelli, A.S.; Shao, J.F.

    2002-01-01

    A constitutive model coupling plastic deformation and induced damage is proposed to describe the mechanical behaviour of a shale rock, the argilites of East. The plastic behaviour is produced by a typical cohesive-frictional model. The material damage is represented by a second rank symmetric tensor. The damage criterion and evolution rate is related to tensile strains. The damage effect on plastic flow is also considered by an anisotropic transformation. The model formulation and a simple procedure for the determination of model parameters from standards tests is proposed. The validity of the model is checked against experimental data in various loading conditions. (author)

  7. Elasto-Plastic Behavior of Aluminum Foams Subjected to Compression Loading

    Science.gov (United States)

    Silva, H. M.; Carvalho, C. D.; Peixinho, N. R.

    2017-05-01

    The non-linear behavior of uniform-size cellular foams made of aluminum is investigated when subjected to compressive loads while comparing numerical results obtained in the Finite Element Method software (FEM) ANSYS workbench and ANSYS Mechanical APDL (ANSYS Parametric Design Language). The numerical model is built on AUTODESK INVENTOR, being imported into ANSYS and solved by the Newton-Raphson iterative method. The most similar conditions were used in ANSYS mechanical and ANSYS workbench, as possible. The obtained numerical results and the differences between the two programs are presented and discussed

  8. EURDYN, Nonlinear Transient Analysis of Structure with Dynamic Loads

    International Nuclear Information System (INIS)

    Donea, J.; Giuliani, S.; Halleux, J.P.

    1987-01-01

    1 - Description of program or function: The EURDYN computer codes are under development at JRC-Ispra since 1973 for the simulation of non- linear dynamic response of fast-reactor components submitted to impulsive loading due to abnormal working conditions. They are thus mainly used in reactor safety analysis but can apply to other fields. Indeed the codes compute the elasto-plastic transient response of 2-D and thin 3-D structures submitted to fast dynamic loading generated by explosions, impacts... and represented by time dependent pressures, concentrated loads and prescribed displacements, or by initial speeds. Two releases of the structural computer codes EURDYN 01 (2-D beams and triangles and axisymmetric conical shells and triangular tori), 02 (axisymmetric and 2-D quadratic iso-parametric elements) and 03 (triangular plate elements) have already been produced in 1976(1) and 1980(2). They include material (elasto-plasticity using the classical flow theory approach) and geometrical (large displacements and rotations treated by a co-rotational technique) nonlinearities. The present version (Release 3) has been completed mid-1982 and is documented in EUR 8357 EN. The new features of Release 3, as compared to the former ones, roughly consist in: - full large strain capability for 9-node iso-parametric elements (EURDYN 02), - generalized array dimensions, - introduction of the radial return algorithm for elasto-plastic material modelling, - extension of the energy check facility to the case of prescribed displacements, - possible interface to a post-processing package including time plot facilities (TPLOT). The theoretical aspects can be found in refs. 2,4,5,6,7,8. 2 - Method of solution: - Finite element space discretization. - Explicit time integration. - Lumped masses. - EURDYN 01: 2-D co-rotational formulation including constant strain triangles (plane or axisymmetric), beams and conical shells, this last element being particularly useful for the study of thin

  9. Interphase and intergranular stress generation in carbon steels

    International Nuclear Information System (INIS)

    Oliver, E.C.; Daymond, M.R.; Withers, P.J.

    2004-01-01

    Neutron diffraction spectra have been acquired during tensile straining of high and low carbon steels, in order to compare the evolution of internal stress in ferritic steel with and without a reinforcing phase. In low carbon steel, the generation of intergranular stresses predominates, while in high carbon steel similar intergranular stresses among ferrite grain families are superposed upon a large redistribution of stress between phases. Comparison is made to calculations using elastoplastic self-consistent and finite element methods

  10. Numerical analysis of the construction of Odelouca Dam using a Subloading Surface Soil Model

    OpenAIRE

    Brito, A.; Maranha, J. R.; Caldeira, L.

    2014-01-01

    Odelouca dam is an embankment dam, with 76 m height, recently constructed in the south of Portugal. It is zoned with a core consisting of colluvial and residual schist soil, and with soil-rockfill mixtures making up the shells (weathered schist with a significant fraction of coarse sized particles). This paper presents a numerical analysis of Odelouca dam construction. In this analysis the explicit finite difference program FLAC is used. An unconventional elastoplastic soil model, a Subloadin...

  11. Thermo-plastic finite element analysis for metal honeycomb structure

    Directory of Open Access Journals (Sweden)

    Ji Zhanling

    2013-01-01

    Full Text Available This paper deals with thermal-plastic analysis for the metal honeycomb structure. The heat transfer equation and thermal elastoplastic constitutive equation of a multilayer panel are established and studied numerically using ANSYS software. The paper elucidates that only the outer skin produces easily plastic deformation, and the outer skin still exists some residual stress and residual deformation after cooling. The dynamic evolution of plastic deformation and material performance degradation under high energy thermal load are revealed.

  12. Numerical modeling of mechanical behavior of clinch connections at breaking out and shearing

    Directory of Open Access Journals (Sweden)

    Berezhnoi Dmitri V.

    2017-01-01

    Full Text Available This article describes an approach to constructing the defining relationships between increment of true stresses and true deformations, with considering the contact interaction of elastoplastic deformed bodies among each other. Within the framework of finite element method, solving these problems in case of “breaking out” and “shearing” in the clinch joint, the stress fields in the zone of the clinch connection are defined, and recommendations are given for realizing the process of their creation.

  13. Crack formation and crack propagation under multiaxial mechanical and thermal stresses. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The 25th meeting of the DV Fracture Group was held on 16/17 February 1993 at Karlsruhe Technical University. The main topic, ''Crack formation and crack propagation under multiaxial mechanical and thermal stresses'', was discussed by five invited papers (by K.J. Miller, D. Loehe, H.A. Richard, W. Brocks, A. Brueckner-Foit) and 23 short papers. The other 21 papers were devoted to various domains of fracture mechanics, with emphasis on elastoplastic fracture mechanics. (orig./MM) [de

  14. Modelling the effects of preheating on angular distortions in one sided fillet welds

    OpenAIRE

    M. Sadat Ali; S. Rao; N. Rao

    2012-01-01

    In all fusion welded joints, residual, transverse, lateral, angular and bowing deformations are observed. In fillet joints the angular distortion is the predominant deformation. The distortions and thermal history of a fillet joint can be measured experimentally which is not economically viable all times. It is time consuming and the deformation can be measured only after the completion of the joining process. So prevention is not possible. In the present work a numerical elasto-plastic therm...

  15. Selective Integration in the Material-Point Method

    DEFF Research Database (Denmark)

    Andersen, Lars; Andersen, Søren; Damkilde, Lars

    2009-01-01

    The paper deals with stress integration in the material-point method. In order to avoid parasitic shear in bending, a formulation is proposed, based on selective integration in the background grid that is used to solve the governing equations. The suggested integration scheme is compared...... to a traditional material-point-method computation in which the stresses are evaluated at the material points. The deformation of a cantilever beam is analysed, assuming elastic or elastoplastic material behaviour....

  16. Model of the discrete destruction process of a solid body

    Science.gov (United States)

    Glagolev, V. V.; Markin, A. A.

    2018-03-01

    Destruction is considered as a discrete thermomechanical process, in which the deformation of a solid body is achieved by changing the boundary stresses acting on the part of the volume being destroyed with the external load unchanged. On the basis of the proposed concept, a model for adhesive stratification of a composite material is constructed. When adhesive stratification is used, the stress state of one or two boundaries of the adhesive layer changes to zero if the bonds with the joined body are broken. As a result of the stratification, the interaction between the part of the composite, which may include an adhesive layer and the rest of the body stops. When solving the elastoplastic problem of cohesive stratification, the region in which the destruction criterion is achieved is identified. With the help of a repeated solution of the problem of subcritical deformation with the known law of motion of the boundary of the region, the distribution of the load (nodal forces) acting from the region to the body is located. The next step considers the change in the stress–strain state of the body in the process of destruction of the selected area. The elastoplastic problem is solved with a simple unloading of the formed surface of the body and preservation of the external load corresponding to the beginning of the process of destruction.

  17. Dissipation consistent fabric tensor definition from DEM to continuum for granular media

    Science.gov (United States)

    Li, X. S.; Dafalias, Y. F.

    2015-05-01

    In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.

  18. Validation of a 2-D semi-coupled numerical model for fluid-structure-seabed interaction

    Science.gov (United States)

    Ye, Jianhong; Jeng, Dongsheng; Wang, Ren; Zhu, Changqi

    2013-10-01

    A 2-D semi-coupled model PORO-WSSI 2D (also be referred as FSSI-CAS 2D) for the Fluid-Structure-Seabed Interaction (FSSI) has been developed by employing RANS equations for wave motion in fluid domain, VARANS equations for porous flow in porous structures; and taking the dynamic Biot's equations (known as "u - p" approximation) for soil as the governing equations. The finite difference two-step projection method and the forward time difference method are adopted to solve the RANS, VARANS equations; and the finite element method is adopted to solve the "u - p" approximation. A data exchange port is developed to couple the RANS, VARANS equations and the dynamic Biot's equations together. The analytical solution proposed by Hsu and Jeng (1994) and some experiments conducted in wave flume or geotechnical centrifuge in which various waves involved are used to validate the developed semi-coupled numerical model. The sandy bed involved in these experiments is poro-elastic or poro-elastoplastic. The inclusion of the interaction between fluid, marine structures and poro-elastoplastic seabed foundation is a special point and highlight in this paper, which is essentially different with other previous coupled models The excellent agreement between the numerical results and the experiment data indicates that the developed coupled model is highly reliablefor the FSSI problem.

  19. Influence of the void ratio and the confining on the static liquefaction in slopes in shangi sand

    Directory of Open Access Journals (Sweden)

    Alfonso Mariano Ramos Cañón

    2015-01-01

    Full Text Available A numerical study on the onset of static liquefaction in slopes under undrained conditions of loading was developed based on a general liquefaction flow instability criterion for elastoplastic soils based on the concept of loss of controllability. The criterion is applied to the case of axisymmetric loading to detect the onset of static liquefaction. The criterion is used in conjunction with an elastoplastic model for sands and is tested by means of numerical simulations of element tests. The numerical results are compared with experimental evidence obtaining good agreement. A quantitative study of the influence of the mean pressure, void ratio and the anisotropy of stress on the onset of static liquefaction is presented for the Changi sand. From the analysis of the numerical results, it can be concluded that: a. the mobilized friction angle at the onset of liquefaction is not an intrinsic property of the material, but is a state variable b. Despite of the multiple variables involved in the process of generation of undrained instability, the state of stresses at the onset of static liquefaction can be conveniently represented by a linear relation between Dq/po and no . This graphical representation can be used in the practice of geotechnical engineering to quantify the margin of security against the static liquefaction of a sandy slope.

  20. Crack and fracture behaviour in tough ductile materials

    International Nuclear Information System (INIS)

    Venter, R.D.; Hoeppner, D.W.

    1985-10-01

    The report describes various approaches and developments pertaining to the understanding of crack and fracture behaviour in tough ductile materials. The fundamental elastic fracture mechanics concepts based on the concepts of energy, stress field, and displacement are introduced and their interrelationships demonstrated. The extension of these concepts to include elasto-plastic fracture mechanics considerations is reviewed in the context of the preferred options available for the development of appropriate design methodologies. The recommendations of the authors are directed towards the continued development of the J-integral concept. This energy-based concept, in its fundamental form, has a sound theoretical basis and as such offers the possibility of incorporating elasto-plastic fracture mechanics considerations in the crack and fracture behaviour of tough ductile materials. It must however be emphasized that the concise defintion of J becomes increasingly suspect as the crack length increases. J is not a material property, as is J IC , but emerges as a useful empirical parameter which is dependent upon the particular geometry and the loading imposed on the structure. It is proposed that 'lowest bound' J-resistance curves and the associated J-T curves be experimentally developed and employed in the design process. Improvements to these 'lowest bounds' can be developed through extensive analysis of the twin J-CTOA criteria and validation of this approach through near full scale tests

  1. Numerical simulation of impact tests on reinforced concrete beams

    International Nuclear Information System (INIS)

    Jiang, Hua; Wang, Xiaowo; He, Shuanhai

    2012-01-01

    Highlights: ► Predictions using advanced concrete model compare well with the impact test results. ► Several important behavior of concrete is discussed. ► Two mesh ways incorporating rebar into concrete mesh is also discussed. ► Gives a example of using EPDC model and references to develop new constitutive models. -- Abstract: This paper focuses on numerical simulation of impact tests of reinforced concrete (RC) beams by the LS-DYNA finite element (FE) code. In the FE model, the elasto-plastic damage cap (EPDC) model, which is based on continuum damage mechanics in combination with plasticity theory, is used for concrete, and the reinforcement is assumed to be elasto-plastic. The numerical results compares well with the experimental values reported in the literature, in terms of impact force history, mid-span deflection history and crack patterns of RC beams. By comparing the numerical and experimental results, several important behavior of concrete material is investigated, which includes: damage variable to describe the strain softening section of stress–strain curve; the cap surface to describe the plastic volume change; the shape of the meridian and deviatoric plane to describe the yield surface as well as two methods of incorporating rebar into concrete mesh. This study gives a good example of using EPDC model and can be utilized for the development new constitutive models for concrete in future.

  2. Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading

    International Nuclear Information System (INIS)

    Young, M.L.; Wagner, M.F.-X.; Frenzel, J.; Schmahl, W.W.; Eggeler, G.

    2010-01-01

    An ultrafine-grained pseudoelastic NiTi shape-memory alloy wire with 50.9 at.% Ni was examined using synchrotron X-ray diffraction during in situ uniaxial tensile loading (up to 1 GPa) and unloading. Both macroscopic stress-strain measurements and volume-averaged lattice strains are reported and discussed. The loading behavior is described in terms of elasto-plastic deformation of austenite, emergence of R phase, stress-induced martensitic transformation, and elasto-plastic deformation, grain reorientation and detwinning of martensite. The unloading behavior is described in terms of stress relaxation and reverse plasticity of martensite, reverse transformation of martensite to austenite due to stress relaxation, and stress relaxation of austenite. Microscopically, lattice strains in various crystallographic directions in the austenitic B2, martensitic R, and martensitic B19' phases are examined during loading and unloading. It is shown that the phase transformation occurs in a localized manner along the gage length at the plateau stress. Phase volume fractions and lattice strains in various crystallographic reflections in the austenite and martensite phases are examined over two transition regions between austenite and martensite, which have a width on the order of the wire diameter. Anisotropic effects observed in various crystallographic reflections of the austenitic phase are also discussed. The results contribute to a better understanding of the tensile loading behavior, both macroscopically and microscopically, of NiTi shape-memory alloys.

  3. Numerical and symbolic scientific computing

    CERN Document Server

    Langer, Ulrich

    2011-01-01

    The book presents the state of the art and results and also includes articles pointing to future developments. Most of the articles center around the theme of linear partial differential equations. Major aspects are fast solvers in elastoplasticity, symbolic analysis for boundary problems, symbolic treatment of operators, computer algebra, and finite element methods, a symbolic approach to finite difference schemes, cylindrical algebraic decomposition and local Fourier analysis, and white noise analysis for stochastic partial differential equations. Further numerical-symbolic topics range from

  4. Seismic behaviour of un-cracked and cracked thin pipes

    International Nuclear Information System (INIS)

    Blay, N.; Brunet, G.; Gantenbein, F.; Aguilar, J.

    1995-01-01

    In order to evaluate the seismic behaviour of un-cracked and cracked thin pipes, subjected to high acceleration levels, seismic tests and calculations have been performed on straight thin pipes made of 316L stainless steel, loaded in pure bending by a permanent static and dynamic loading. The seismic tests were carried out on the AZALEE shaking table of the CEA laboratory TAMARIS. The influence of the elasto-plastic model with isotropic or kinematic hardening are studied. 5 refs., 7 figs., 2 tabs

  5. Hydraulic Fracturing At Sedimentary Basin Scale Fracturation hydraulique à l'échelle des bassins sédimentaires

    Directory of Open Access Journals (Sweden)

    Schneider F.

    2006-12-01

    Full Text Available One key point for simulating the hydraulic fracturing at basin scale, is to be able to compute the stress tensor. This is generally not addressed in basin model because of the complexity of this problem. In order to get access to the stress tensor we have to assume that:- one of the principal stress is vertical and equals the overburden weight;- the horizontal stress is deduced from the vertical stress with the K0 coefficient that is a function of depth and of the tectonical setting. Consolidation is considered here as the combined effect of the mechanical compaction and the chemical compaction. The mechanical compaction is mainly caused by the rearrangement of grains during burial and could be represented at the macroscopical scale by an elastoplastic rheology. The chemical compaction is considered here as resulting from dissolution-precipitation mechanisms, generally induced by stress (pressure-solution. The chemical compaction could be represented at the macroscopical scale by a viscoplastic rheology. The complete elastoplastic yield is defined by the union of the consolidation elastoplastic yield and of the different failure criteria that could be seen as elastobrittle yields. Thus, the elastoplastic yield is composed of six elementary elastoplastic yields which define the onset of vertical compaction, horizontal compaction, vertical tensile fracturing, horizontal tensile fracturing, subvertical shear fracturing, and subhorizontal shear fracturing. Due to the consolidation, most of the parameters that describe the physical properties of the sediments evolve with the geological times. One difficulty is to quantify the degree of evolution of the porous medium during its geological history. Here, we have chosen to measure the evolution of the sediments by their porosity. The local simulations showed that fracturing may occur is numerous configurations. Some of these configurations indicate that the sediments can reach the limit of its elastic

  6. Slepian modeling as a computational method in random vibration analysis of hysteretic structures

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob

    1999-01-01

    white noise. The computation time for obtaining estimates of relevant statistics on a given accuracy level is decreased by factors of one ormore orders of size as compared to the computation time needed for direct elasto-plastic displacementresponse simulations by vectorial Markov sequence techniques....... Moreover the Slepian method gives valuablephysical insight about the details of the plastic displacement development by time.The paper gives a general self-contained mathematical description of the Slepian method based plasticdisplacement analysis of Gaussian white noise excited EPOs. Experiences...

  7. Simulation of pore pressure accumulation under cyclic loading using Finite Volume Method

    DEFF Research Database (Denmark)

    Tang, Tian; Hededal, Ole

    2014-01-01

    This paper presents a finite volume implementation of a porous, nonlinear soil model capable of simulating pore pressure accumulation under cyclic loading. The mathematical formulations are based on modified Biot’s coupled theory by substituting the original elastic constitutive model...... with an advanced elastoplastic model suitable for describing monotonic as well as cyclic loading conditions. The finite volume method is applied to discretize these formulations. The resulting set of coupled nonlinear algebraic equations are then solved by a ’segregated’ solution procedure. An efficient return...

  8. Methods to establish flaw tolerances

    International Nuclear Information System (INIS)

    Varga, T.

    1978-01-01

    Three conventional methods used to establish flaw tolerances are compared with new approaches using fracture mechanics. The conventional methods are those based on (a) non-destructive testing methods; (b) fabrication and quality assurance experience; and (c) service and damage experience. Pre-requisites of fracture mechanics methods are outlined, and summaries given of linear elastic mechanics (LEFM) and elastoplastic fracture mechanics (EPFM). The latter includes discussion of C.O.D.(crack opening displacement), the J-integral and equivalent energy. Proposals are made for establishing flaw tolerances. (U.K.)

  9. Simulation of nonuniform unsteady thermostressed states of material using simple-shape specimens

    International Nuclear Information System (INIS)

    Tret'yachenko, G.N.; Karpinos, B.S.

    1986-01-01

    To analyze conditions for inititation of plastic strains under heat changes it is suggested to represent the process of nonisothermal loading in the coordinates: relative thermal stresses σ*-THETA relative temperature. Calculation dependences of σ*=THETA(THETA) are obtained for the cylindrical model under bounday conditions of 1, 2, 3-order of heat exchange which permit selecting testing conditions for excitation of preset parameters of the thermostressed state in the model as well as variations of the state function (entropy) by elastoplastic deformation under thermal actions

  10. Elastoplastic finite element analysis for wet multidisc brake during lasting braking

    Directory of Open Access Journals (Sweden)

    Ji Zhanling

    2015-01-01

    Full Text Available Addressed to serious heat degradation problem of the braking continuously performed in the drag brake application for a long time, finite element analysis for bidirectional thermal-structure coupling is adopted to investigate temperature and stress when material properties are temperature-dependent. Based on the constitutive relations of heat transfer and strain-stress, three-dimensional transient finite element equilibrium equations with many kinds of boundary conditions for bidirectional thermal-structure coupling were derived. And it was originally presented that start time, location, severity and evolution laws of plastic deformation were depicted using dimensionless stress distribution contour with the yield limit related to temperature. The change laws of plastic element number and contact area versus braking time were expressed by plasticity ratio and contact ratio curves, respectively. The laws revealed by the numerical calculation results are in accordance with the objective perception and reasoning.

  11. Boundary element and speckle photography method for solving elasto-plastic problems

    International Nuclear Information System (INIS)

    Hadjikov, L.; Kavardjikov, V.; Valeva, V.

    1985-01-01

    The stress-strain state of metal specimens in the vicinity of a stress concentrator (circular hole) is investigated in case of a quasistatic loading. The displacements are evaluated numerically by the Boundary Element Method (BEM) and they are estimated experimentally by speckle photography. The experimentally and theoretically obtained results are compared and considered. A unified method for a simultaneous employment of both techniques is suggested. The experimental and theoretical techniques complement each other which results in an enhanced capability of the method proposed. (orig.)

  12. Elastoplastic model for unsaturated, quasi-saturated and fully saturated fine soils

    Directory of Open Access Journals (Sweden)

    Lai Ba Tien

    2016-01-01

    Full Text Available In unsaturated soils, the gaseous phase is commonly assumed to be continuous. This assumption is no more valid at high saturation ratio. In that case, air bubbles and pockets can be trapped in the porous network by the liquid phase and the gas phase becomes discontinuous. This trapped air reduces the apparent compressibility of the pore fluid and affect the mechanical behavior of the soil. Although it is trapped in the pores, its dissolution can take place. Dissolved air can migrate through the pore space, either by following the flow of the fluid or by diffusion. In this context, this paper present a hydro mechanical model that separately considers the kinematics and the mechanical behavior of each fluid species (eg liquid water, dissolved air, gaseous air and the solid matrix. This new model was implemented in a C++ code. Some numerical simulations are performed to demonstrate the ability of this model to reproduce a continuous transition of unsaturated to saturated states.

  13. Elasto-plastic impact of hemispherical shell impacting on hard rigid sphere

    Science.gov (United States)

    Raftopoulos, D. D.; Spicer, A. L.

    1976-01-01

    An analysis of plastic stress waves for cylindrical metallic projectile in impact is extended to an analysis of a hemispherical shell suffereing plastic deformation during the process of impact. It is assumed that the hemispherical shell with a prescribed launch velocity impinges a fixed rigid sphere of diameter equal to the internal diameter of the shell. The dynamic biaxial state of stress present in the shell during deformation is investigated. The analysis is valuable for studying the state of stress during large plastic deformation of a hemispherical shell.

  14. Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

    Science.gov (United States)

    Goldberg, Robert; Carney, Kelly; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam; Blankenhorn, Gunther

    2014-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LSDYNA (Livermore Software Technology Corporation), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic yield function with a nonassociative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.

  15. Development of a bentonite free swelling model in an elastoplastic framework

    International Nuclear Information System (INIS)

    Navarro, V.; Asensio, L.; Yustres, A.; Alonso, J.; Pintado, X.

    2012-01-01

    Document available in extended abstract form only. The aim of this work is to develop a Hydro-Chemo-Mechanical (HcM) model able to consistently reproduce the whole swelling process of both unsaturated and saturated bentonites. The Barcelona Expansive Model (BExM) was taken as a starting point, as it has been satisfactorily applied to model the behaviour of compacted bentonites. However, its suitability for the analysis of free swelling has not been proved, namely for the case when porosities reach values close to and over 0.9 and the soil becomes disarranged. These conditions mean pulling BExM further away from the domain for which it was initially conceived. For this reason, a modified formulation of BExM has been developed. It has been named m/BExM. In order to explain the high swelling ability of bentonites, it is assumed that the distortion of the water structure induced by the clay sheets begins to have a significant effect also in macro water structure when the micro void ratio goes beyond a certain threshold value and the confining forces do not exceed the repulsive forces. Accordingly, macro water will experience a decrease in its chemical potential, and the voids in which this phenomenon takes part will act as sinks, increasing their volume and causing an important raise of macro-porosity (disarrangement of the soil macro skeleton). When this phenomenon starts, the micro strain rate is greater than that of the macro disarrangement. Nonetheless, when the micro void ratio reaches high values, the disarrangement becomes more significant. The variation of the micro void ratio with the swelling pressure is described with an exponential law. The developed formulation takes into account the geochemical effects by using a modified swelling pressure, in keeping with the proposal of Karnland et al. (2005) when working with a saline solution of relevant concentration. The presence of sodium and calcium cations, as well as that of a generic polyvalent anion (by default, Cl - ), have been considered. The transport of species is modelled considering different diffusion coefficient for macro and microstructures. The hypothesis of equilibrium between macro and micro water may be too restrictive, as the dehydration processes of microstructural water are not immediate. Consequently, this work includes the transient nature of the mass exchange between macro and microstructural water. It has been verified that the process can be satisfactorily simulated using the formulation presented by Navarro and Alonso (2001) and Alonso and Navarro (2005). When macro-micro water equilibrium is not assumed, the chemical potential of micro water becomes a new state variable of the problem. The micro water mass balance equation must be solved in order to get its value. Besides the mentioned, m/BExM presents two additional features with respect to BExM. First, the microstructural strain is not necessarily taken as isotropic. The possibility of assuming that the orientation of the aggregates strains depends on the orientation of the stress field is introduced. Second, several definitions of the macro plastic strains induced by micro strains are considered. The developed model has been proved to promisingly reproduce the swelling recorded in two laboratory tests carried out by B+TECH using natural MX-80 bentonite samples hydrated with deionised water. Although other existing models, namely BBM and BExM, can also show the swelling trend, m/BExM performs significantly better

  16. Numerical simulation of elasto-plastic electro-osmosis consolidation at large strain

    NARCIS (Netherlands)

    Yuan, J.; Hicks, M.A.

    2015-01-01

    n this paper, a numerical solution for the electro-osmosis consolidation of clay in multi-dimensional domains at large strains is presented, with the coupling of the soil mechanical behaviour, pore water transport and electrical fields being considered. In particular, the Modified Cam Clay model is

  17. The elastoplastic calculation of disks with the help of dynamic relaxation

    International Nuclear Information System (INIS)

    Zerna, W.; Schnellenbach, G.; Ick, U.

    1973-12-01

    The possibilities for the computation of elasticplastic properties via dynamic relaxation are shown. From the various theories of plasticity the laws of Prandtl-Reuzs for solidifying materials were chosen for in this investigation. The calculation is carried out directly without further linearizations in a single computer run. It is possible to obtain an approximate solution via a direct process involving a fictitious elastic material law. Two disks with - according to the theory of elasticity - single stress points are used as examples. (orig.) [de

  18. Energy dissipation during an explosion in a porous elasto-plastic medium

    Energy Technology Data Exchange (ETDEWEB)

    Lovetskii, E.E.; Maslennikov, A.M.; Fetisov, V.S.

    1979-01-01

    A study is made of the redistribution of energy from camouflage blasting in a saturated porous medium. The study is undertaken with the aid of a numerical solution to a system of hydrodynamic equations, that account for shear strength of the substance under investigation. A study is made of the energy characteristics of explosion, their dynamic development, the influence of strength parameters of the medium, and porosity on these characteristics. A mechanism that is associated with the impact compression of matter is identified as the basic mechanism of energy dissipation for dry porous media. Water saturation of pores brings the energy characteristics of the explosion close to the explosion in a monolith. 12 references, 5 figures, 1 table.

  19. Three-Dimensional Elasto-Plastic Calculations Using Yield Surfaces with Corner Discontinuities

    DEFF Research Database (Denmark)

    Clausen, Johan; Andersen, Lars; Damkilde, Lars

    2009-01-01

    This paper presents a simple and efficient way of dealing with the corners found in many yield surfaces, especially in geotechnical engineering. The efficiency of the method is demonstrated through three-dimensional computational examples.......This paper presents a simple and efficient way of dealing with the corners found in many yield surfaces, especially in geotechnical engineering. The efficiency of the method is demonstrated through three-dimensional computational examples....

  20. Computer simulation analysis on the machinability of alumina dispersion enforced copper alloy for high performance compact heat exchanger

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Muto, Yasushi

    2001-01-01

    Feasibility study on a HTGR-GT (High Temperature Gas cooled Reactor-Gas Turbine) system is examining the application of the high strength / high thermal conductivity alumina dispersed copper (AL-25) in the ultra-fine rectangle plate fin of the recuperator for the system. However, it is very difficult to manufacture a ultra-fine fin by large-scale plastic deformation from the hard and brittle Al-25 foil. Therefor, in present study, to establish the fine fin manufacturing technology of the AL-25 foil, it did the processing simulation of the fine fin first by the large-scale elasto-plastic finite element analysis (FEM) and it estimated a forming limit. Next, it experimentally made the manufacturing equipment where it is possible to do new processing using these analytical results, and it implemented a manufacturing experiment on the AL-25 foil. With these results, the following conclusion was obtained. (1) It did the processing simulation to manufacture a fine rectangle fin (fin height x pitch x thickness, 3 mm x 4 mm x 0.156 mm) from AL-25 foil (Thickness=0.156 mm) by the large-scale elasto-plastic FEM using the double action processing method. As a result, the manufacturing of a fine rectangle fin found a possible thing in the following condition by the double action processing method. It made that 0.8 mm and 0.25 mm were a best value respectively in the R part and the clearance between dies by making double action processing examination equipment experimentally and implementing a manufacturing examination using this equipment. (2) It succeeded in the manufacturing of the fine fin that the height x pitch x thickness is 3 mm x 4 mm x (0.156 mm±0.001 mm) after implementing a fine rectangle fin manufacturing examination from the AL-25 foil. (3) The change of the process of the deformation and the thickness by the processing of the AL-25 foil which was estimated by the large-scale elasto-plastic FEM showed the result of the processing experiment and good agreement

  1. Micro-mechanical modeling of the growth/percolation of pressurized pores in a ceramic matrix at high temperatures; Modelisation micromecanique de la croissance et de la percolation de pores sous pression dans une matrice ceramique a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, P.G

    2007-11-15

    The aim of this work is to propose an elasto-plastic model of damage in a porous ceramics containing two populations of saturated cavities: the nuclear fuel uranium dioxide highly irradiated and at high temperature. The followed approach consists in a multi-scale approach based on the hypothesis of separation of the scales between the two populations of cavities (spherical intragranular pores and spheroidal intergranular pores) and of those of the macroscopic isotropy. The proposed elasto-plastic model of damage treats separately of the elasticity, of the surface of plasticity and of the evolution of the internal parameters of the model with load. The taking into account of different pressures in each population of cavity is carried out for elasticity-plasticity-damage. The model developed for the elastic behaviour takes into account the two populations of cavity, their morphology, their distribution and the pore pressures inside them. The proposed plasticity criteria is based on homogenization methods for non linear behaviours. At the grain scale, the first population of cavity is taken into account by a plasticity criteria of Gurson-Tvegaard-Needleman type. At the scale of grains collection, the presence of a second population of cavity inside a compressible matrix leads to the development of new superior boundaries and pertaining estimations for the effective plasticity surface. These models depend on the morphology and of the distribution of cavities. In the case of drained cavities, an analytical estimation, based on the writing of the classical variational principle with a compressible velocity field and an average on the equiprobable orientations is developed. In the case of saturated cavity, another estimation, based on the variational approach of Ponte Castaneda (1991) with a linear N phases comparison composite is proposed. These models are compared to numerical simulations by finite elements and to numerical simulations using the fast Fourier

  2. Effective Stresses in Soil and Rock and Consolidation in Three Dimensions

    DEFF Research Database (Denmark)

    Andersen, Lars

    In the following, the continuum model for a fully saturated porous material is presented. The theory is mainly due to M.A. Biot [?, ?]. We shall only consider a twophase system consisting of a solid skeleton and a single pore fluid, e.g. water. The theory for three-dimensional consolidation...... is developed. Anisotropic permeability of the material is allowed, but for simplicity the analysis is restricted to isotropic linear elastic material behaviour. However, the theory is easily extended to elastoplasticity. Finally, it will be shown that the effective stresses in a porous material may in general...

  3. Slepian simulation of plastic displacement distributions for shear frame excited by filtered Gaussian white noise ground motion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Lazarov, Boyan Stefanov

    2003-01-01

    frame. A suitable number of the lower floors has been considered to represent the soil both as a filter of a white noise base rock excitation and as a simplified model for soil structure interaction. In the present paper the Slepian model is applied to obtain plastic displacement distributions...... frame with partial or full feed back from the movement of the top mass to the second and the first mass (top soil layer mass and base rock mass, respectively). Keywords: Clough-Penzien filtered white noise excitation, elasto-plastic shear frame oscillator, plastic displacement distributions, simplified...

  4. Analytical and experimental studies of mechanical consequences of a steam generator tube rupture

    International Nuclear Information System (INIS)

    Duc, B.; Sudreau, F.; Rassineux, B.

    1995-01-01

    Concerning to steam generator tubes support mechanical loadings due to the impact f the ruptured one, Electricite de France, with the support of Commissariat a l'Energie. Atomique, has undertaken a large study in order to evaluate the consequences of such loadings. This paper first presents the results of the tests performed on AQUITAINE 2 facility (CEA Cadarache research center) for nominal, faulted and boiler effect conditions. Those results are then compared with numerical dynamic elastoplastic analyses performed with CASTEM 2000 code (CEA system). (author). 1 ref., 14 figs

  5. Prediction of intragranular strains in metallic polycrystals with a two-level homogenisation approach: Influence of dislocation microstructure on the mechanical behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Gloaguen, D. [GeM, Institut de Recherche en Genie Civil et Mecanique, Universite de Nantes, Ecole Centrale de Nantes, CNRS UMR 6183, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire (France); Francois, M. [Laboratoire des Systemes Mecaniques et d' Ingenierie Simultanee (LASMIS FRE CNRS 2719), Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes cedex (France)

    2006-06-15

    A two-level homogenisation approach is applied to the micro-mechanical modelling of the elasto-plasticity of polycrystalline materials during various strain-path changes. The model is tested by simulating the development of intragranular strains during different complex loads. Mechanical tests measurements are used as a reference in order to validate the model. The anisotropy of plastic deformation in relation to the evolution of the dislocation structure is analysed. The results demonstrate the relevance of this approach for FCC polycrystals. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Interphase and intergranular stress generation in composites exhibiting plasticity in both phases

    International Nuclear Information System (INIS)

    Daymond, Mark R; Hartig, Christian; Mecking, Heinrich

    2005-01-01

    The internal stress state of Fe-Cu composites has been measured by in situ deformation studies using neutron diffraction. A range of volume fractions from 17% Fe to 83% Fe (remainder Cu) have been investigated. Both phase specific and grain family specific elastic strains have been determined. The results are compared with predictions from a multiphase elasto-plastic self-consistent model, and are found to be in good agreement. The selection of parameters used in the model to improve agreement between experimental and predicted results is suggested to be due to changing geometrical constraint

  7. Efficient Return Algorithms For Associated Plasticity With Multiple Yield Planes

    DEFF Research Database (Denmark)

    Clausen, Johan Christian; Damkilde, Lars; Andersen, Lars

    2006-01-01

    of such criteria. The return formulae are in closed form and no iteration is required. The method accounts for three types of stress return: Return to a single yield plane, to a discontinuity line at the intersection of two yield planes and to a discontinuity point at the intersection between three or more yield...... planes. The infinitesimal and the consistent elastoplastic constitutive matrix are calculated for each type of stress return, as are the conditions to ascertain which type of return is required. The method is exemplified with the Mohr-Coulomb yield criterion....

  8. Design and Construction Rules for Mechanical equipments of FBR nuclear islands: RCC-MR. Tome 1, Volume Z: Other technical appendixes

    International Nuclear Information System (INIS)

    1985-06-01

    This book is the 7th of a whole set of 12 which constitute the present edition of the RCC-MR. The technical appendixes of this volume deal with the following characteristics and rules: calculation of screwed assemblies, analysis taking into account creep, welded joint characteristics, elastoplastic analysis of a structure under cyclic loads, elasto-visco-plastic analysis under cyclic loads, calculation rules of revolution shells under external presure and of cylinders under axial compression, design rules of linear supports, calculation rules of convex bottoms under internal pressure [fr

  9. Debonding analyses of closely spaced Z-pins bridging an unbonded interface

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2009-01-01

    In this study the plasticity, the spatial stress distribution and the debonding behavior of a metallic Z-pin bridging the unbonded interface between two substrates of an elasto-plastic material subjected to shear loading (mode II) are analyzed numerically by the finite element method taking full...... account of finite strains. For a weakly bonded Z-pin perpendicular to the substrates the overall average stress-strain response depicts a rather sudden stress drop which is not seen for stronger interfaces in the load range investigated. This stress drop is caused by dual debonding at different locations...

  10. Frost heave modelling of buried pipelines using non-linear Fourier finite elements

    International Nuclear Information System (INIS)

    Wan, R. G.; You, R.

    1998-01-01

    Numerical analysis of the response of a three-dimensional soil-pipeline system in a freezing environment using non-linear Fourier finite elements was described as an illustration of the effectiveness of this technique in analyzing plasticity problems. Plastic deformations occur when buried pipeline is under the action of non-uniform frost heave. The three-dimensional frost heave which develops over time including elastoplastic deformations of the soil and pipe are computed. The soil heave profile obtained in the numerical analysis was consistent with experimental findings for similar configurations. 8 refs., 8 figs

  11. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy.

    Science.gov (United States)

    Raducanu, D; Vasilescu, E; Cojocaru, V D; Cinca, I; Drob, P; Vasilescu, C; Drob, S I

    2011-10-01

    In this work, a multi-elementary Ti-10Zr-5Nb-5Ta alloy, with non-toxic alloying elements, was used to develop an accumulative roll bonding, ARB-type procedure in order to improve its structural and mechanical properties. The alloy was obtained by cold crucible semi-levitation melting technique and then was ARB deformed following a special route. After three ARB cycles, the total deformation degree per layer is about 86%; the calculated medium layer thickness is about 13 μm. The ARB processed alloy has a low Young's modulus of 46 GPa, a value very close to the value of the natural cortical bone (about 20 GPa). Data concerning ultimate tensile strength obtained for ARB processed alloy is rather high, suitable to be used as a material for bone substitute. Hardness of the ARB processed alloy is higher than that of the as-cast alloy, ensuring a better behaviour as a implant material. The tensile curve for the as-cast alloy shows an elastoplastic behaviour with a quite linear elastic behaviour and the tensile curve for the ARB processed alloy is quite similar with a strain-hardening elastoplastic body. Corrosion behaviour of the studied alloy revealed the improvement of the main electrochemical parameters, as a result of the positive influence of ARB processing. Lower corrosion and ion release rates for the ARB processed alloy than for the as-cast alloy, due to the favourable effect of ARB thermo-mechanical processing were obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. BNL NONLINEAR PRE TEST SEISMIC ANALYSIS FOR THE NUPEC ULTIMATE STRENGTH PIPING TEST PROGRAM

    International Nuclear Information System (INIS)

    DEGRASSI, G.; HOFMAYER, C.; MURPHY, C.; SUZUKI, K.; NAMITA, Y.

    2003-01-01

    The Nuclear Power Engineering Corporation (NUPEC) of Japan has been conducting a multi-year research program to investigate the behavior of nuclear power plant piping systems under large seismic loads. The objectives of the program are: to develop a better understanding of the elasto-plastic response and ultimate strength of nuclear piping; to ascertain the seismic safety margin of current piping design codes; and to assess new piping code allowable stress rules. Under this program, NUPEC has performed a large-scale seismic proving test of a representative nuclear power plant piping system. In support of the proving test, a series of materials tests, static and dynamic piping component tests, and seismic tests of simplified piping systems have also been performed. As part of collaborative efforts between the United States and Japan on seismic issues, the US Nuclear Regulatory Commission (USNRC) and its contractor, the Brookhaven National Laboratory (BNL), are participating in this research program by performing pre-test and post-test analyses, and by evaluating the significance of the program results with regard to safety margins. This paper describes BNL's pre-test analysis to predict the elasto-plastic response for one of NUPEC's simplified piping system seismic tests. The capability to simulate the anticipated ratcheting response of the system was of particular interest. Analyses were performed using classical bilinear and multilinear kinematic hardening models as well as a nonlinear kinematic hardening model. Comparisons of analysis results for each plasticity model against test results for a static cycling elbow component test and for a simplified piping system seismic test are presented in the paper

  13. Development of advanced earthquake resistant performance verification on reinforced concrete underground structure. Pt. 2. Verification of the ground modeling methods applied to non-linear soil-structure interaction analysis

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Kanatani, Mamoru; Ohtomo, Keizo; Matsui, Jun; Matsuo, Toyofumi

    2003-01-01

    In order to develop an advanced verification method for earthquake resistant performance on reinforced concrete underground structures, the applicability of two different types of soil modeling methods in numerical analysis were verified through non-linear dynamic numerical simulations of the large shaking table tests conducted using the model comprised of free-field ground or soils and a reinforced concrete two-box culvert structure system. In these simulations, the structure was modeled by a beam type element having a tri-linear curve of the relations between curvature and flexural moment. The soil was modeled by the Ramberg-Osgood model as well as an elasto-plastic constitutive model. The former model only employs non-linearity of shear modulus regarding strain and initial stress conditions, whereas the latter can express non-linearity of shear modulus caused by changes of mean effective stress during ground excitation and dilatancy of ground soil. Therefore the elasto-plastic constitutive model could precisely simulate the vertical acceleration and displacement response on ground surface, which were produced by the soil dilations during a shaking event of a horizontal base input in the model tests. In addition, the model can explain distinctive dynamic earth pressure acting on the vertical walls of the structure which was also confirmed to be related to the soil dilations. However, since both these modeling methods could express the shear force on the upper slab surface of the model structure, which plays the predominant role on structural deformation, these modeling methods were applicable equally to the evaluation of seismic performance similar to the model structure of this study. (author)

  14. Automated local line rolling forming and simplified deformation simulation method for complex curvature plate of ships

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2017-06-01

    Full Text Available Local line rolling forming is a common forming approach for the complex curvature plate of ships. However, the processing mode based on artificial experience is still applied at present, because it is difficult to integrally determine relational data for the forming shape, processing path, and process parameters used to drive automation equipment. Numerical simulation is currently the major approach for generating such complex relational data. Therefore, a highly precise and effective numerical computation method becomes crucial in the development of the automated local line rolling forming system for producing complex curvature plates used in ships. In this study, a three-dimensional elastoplastic finite element method was first employed to perform numerical computations for local line rolling forming, and the corresponding deformation and strain distribution features were acquired. In addition, according to the characteristics of strain distributions, a simplified deformation simulation method, based on the deformation obtained by applying strain was presented. Compared to the results of the three-dimensional elastoplastic finite element method, this simplified deformation simulation method was verified to provide high computational accuracy, and this could result in a substantial reduction in calculation time. Thus, the application of the simplified deformation simulation method was further explored in the case of multiple rolling loading paths. Moreover, it was also utilized to calculate the local line rolling forming for the typical complex curvature plate of ships. Research findings indicated that the simplified deformation simulation method was an effective tool for rapidly obtaining relationships between the forming shape, processing path, and process parameters.

  15. Improvements on a non-invasive, parameter-free approach to inverse form finding

    Science.gov (United States)

    Landkammer, P.; Caspari, M.; Steinmann, P.

    2018-04-01

    Our objective is to determine the optimal undeformed workpiece geometry (material configuration) within forming processes when the prescribed deformed geometry (spatial configuration) is given. For solving the resulting shape optimization problem—also denoted as inverse form finding—we use a novel parameter-free approach, which relocates in each iteration the material nodal positions as design variables. The spatial nodal positions computed by an elasto-plastic finite element (FE) forming simulation are compared with their prescribed values. The objective function expresses a least-squares summation of the differences between the computed and the prescribed nodal positions. Here, a recently developed shape optimization approach (Landkammer and Steinmann in Comput Mech 57(2):169-191, 2016) is investigated with a view to enhance its stability and efficiency. Motivated by nonlinear optimization theory a detailed justification of the algorithm is given. Furthermore, a classification according to shape changing design, fixed and controlled nodal coordinates is introduced. Two examples with large elasto-plastic strains demonstrate that using a superconvergent patch recovery technique instead of a least-squares (L2)-smoothing improves the efficiency. Updating the interior discretization nodes by solving a fictitious elastic problem also reduces the number of required FE iterations and avoids severe mesh distortions. Furthermore, the impact of the inclusion of the second deformation gradient in the Hessian of the Quasi-Newton approach is analyzed. Inverse form finding is a crucial issue in metal forming applications. As a special feature, the approach is designed to be coupled in a non-invasive fashion to arbitrary FE software.

  16. Hydrate-CASM for modeling Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    De La Fuente Ruiz, M.; Vaunat, J.; Marin Moreno, H.

    2017-12-01

    A clear understanding of the geomechanical behavior of methane hydrate-bearing sediments (MHBS) is crucial to assess the stability of the seafloor and submarine infrastructures to human and natural loading changes. Here we present the Hydrate-CASM, a new elastoplastic constitutive model to predict the geomechanical behavior of MHBS. Our model employs the critical state model CASM (Clay and Sand Model) because of its flexibility in describing the shape of the yield surface and its proven ability to predict the mechanical behavior of sands, the most commercially viable hydrate reservoirs. The model considers MHBS as a deformable elastoplastic continuum, and hydrate-related changes in the stress-strain behavior are predicted by a densification mechanism. The densification attributes the mechanical contribution of hydrate to; a reduction of the available void ratio; a decrease of the swelling line slope; and an increase of the volumetric yield stress. It is described by experimentally derived physical parameters except from the swelling slope coefficient that requires empirical calibration. The Hydrate-CASM is validated against published triaxial laboratory tests performed at different confinement stresses, hydrate saturations, and hydrate morphologies. During the validation, we focused on capturing the mechanical behavior of the host sediment and consider perturbations of the sediment's mechanical properties that could result from the sample preparation. Our model successfully captures the experimentally observed influence of hydrate saturation in the magnitude and trend of the stiffness, shear strength, and dilatancy of MHBS. Hence, we propose that hydrate-related densification changes might be a major factor controlling the geomechanical response of MHBS.

  17. Dynamic nanomechanical properties of novel Si-rich intermetallic coatings growth on a medical 316 LVM steel by hot dipping in a hypereutectic Al-25Si alloy.

    Science.gov (United States)

    Frutos, E; González-Carrasco, J L

    2015-06-01

    This aim of this study is to determine the elastoplastic properties of Ni-free Al3FeSi2 intermetallic coatings grown on medical stainless steel under different experimental conditions. Elastoplastic properties are defined by the plasticity index (PI), which correlates the hardness and the Young's modulus. Special emphasis is devoted to correlate the PI with the wear resistance under sliding contact, determined by scratch testing, and fracture toughness, determined by using a novel method based on successive impacts with small loads. With regard to the substrate, the developed coatings are harder and exhibit a lower Young's reduced modulus, irrespective of the experimental conditions. It has been shown that preheating of the samples prior to hot dipping and immersion influences the type and volume fraction of precipitates, which in turn also affect the nanomechanical properties. The higher the preheating temperature is, the greater the Young's reduced modulus is. For a given preheating condition, an increase of the immersion time yields a decrease in hardness. Although apparent friction coefficients of coated specimens are smaller than those obtained on AISI 316 LVM, they increase when using preheating or higher immersion times during processing, which correlates with the PI. The presence of precipitates produces an increase in fracture toughness, with values greater than those presented by samples processed on melted AlSi alloys with lower Si content (12 wt%). Therefore, these intermetallic coatings could be considered "hard but tough", suitable to enhance the wear resistance, especially when using short periods of immersion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A three-dimensional cell-based smoothed finite element method for elasto-plasticity

    International Nuclear Information System (INIS)

    Lee, Kye Hyung; Im, Se Yong; Lim, Jae Hyuk; Sohn, Dong Woo

    2015-01-01

    This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.

  19. Efficient Non-Linear Finite Element Implementation of Elasto-Plasticity for Geotechnical Problems

    DEFF Research Database (Denmark)

    Clausen, Johan

    -Coulomb yield criterion and the corresponding plastic potential possess corners and an apex, which causes numerical difficulties. A simple, elegant and efficient solution to these problems is presented in this thesis. The solution is based on a transformation into principal stress space and is valid for all...... linear isotropic plasticity models in which corners and apexes are encountered. The validity and merits of the proposed solution are examined in relation to the Mohr-Coulomb and the Modified Mohr-Coulomb material models. It is found that the proposed method compares well with existing methods......-Brown material. The efficiency and validity are demonstrated by comparing the finite-element results with well-known solutions for simple geometries. A common geotechnical problem is the assessment of slope stability. For slopes with simple geometries and consisting of a linear Mohr-Coulomb material, this can...

  20. A three-dimensional cell-based smoothed finite element method for elasto-plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kye Hyung; Im, Se Yong [KAIST, Daejeon (Korea, Republic of); Lim, Jae Hyuk [KARI, Daejeon (Korea, Republic of); Sohn, Dong Woo [Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-02-15

    This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.

  1. Model tests and elasto-plastic finite element analysis on multicavity type PCRV

    International Nuclear Information System (INIS)

    Nojiri, Y.; Yamazaki, M.; Kotani, K.; Matsuzaki, Y.

    1978-01-01

    Multicavity type PCRV models were tested to investigate elastic stress distributions, cracking and failure mode of the models, and to determine the adequacy and relative accuracy of finite element structural analyses. The behavior of the models under pressure was investigated, and it was found that the predictions of the analyses showed a good agreement with the test results

  2. Stochastic higher order finite element elasto-plastic analysis of the necking phenomenon

    Directory of Open Access Journals (Sweden)

    Strąkowski Michał

    2017-01-01

    Full Text Available The principal goal of this work is to investigate an application of the stochastic perturbation technique of the 10th order in coupled thermo-elasto-plastic analysis of tension of the steel elastic bar exposed to fire with thermally dependent material characteristics. An ambient temperature, calculated from the fire curve after ISO 834-1, equivalent to the fire exposure of the steel structure is treated here as the input Gaussian random variable. It is uniquely defined by the constant mean value at outer surfaces of this element, where material parameters of the steel as Young modulus, yield strength, heat conductivity, capacity and thermal elongation are considered all as highly temperature-dependent. Computational implementation known as the Stochastic Finite Element Method is carried out with the use of the FEM system ABAQUS and computer algebra system MAPLE. It uses both polynomial and non-polynomial local response functions of stresses and displacements. The basic probabilistic characteristics of time-dependent structural response are determined (expectations, coefficients of variation, skewness and kurtosis and verified with classical Monte-Carlo simulation scheme and semi-analytical technique for input coefficient of variation not larger than 0.20. Finally, probabilistic convergence of all three methods versus increasing input uncertainty level is investigated.

  3. Elastoplastic analysis of surface cracks in pressure vessels using slip-line theory

    International Nuclear Information System (INIS)

    Keskinen, R.P.

    1983-01-01

    The paper considers the aspects of engineering application of SLF theory to long surface cracks in pressure vessels. Green's upper-bound SLF for a bend specimen with deep wedge-shaped notch of small flank angle is adopted to analyse the remaining ligament of the cracked section. The SLF involves only one unknown variable, i.e., the radius of a circular slip-line arc, which can be evaluated from the equilibrium condition across the ligament. The stress distribution across the ligament is easily computed by Hencky's theorem and the respective stress resultants produce the boundary conditions for the solution of the neighboring elastic material. The elastic solution readily yields the rotation of the crack edges, COA, and it in turn geometrically defines the applied CTOD. Comparison has proved their relation to the stress resultants identical with that following from the customary single plastic hinge model when Tresca's yield condition prevails and the tensile side plastic constraint factor of the hinge model is chosen as 1.7. The SLF approach is demonstrated for an internal circumferential surface crack subjected to thermal gradient and axial load representative of overpressurization and emergency cooling conditions of a pressure vessel. Analytical formulas relating COA and CTOD to applied loading are derived and CTOD-R curve based stable crack propagation is solved iteratively. Generic numerical results are presented for COA and CTOD under arbitrary loading combination. The risk of crack growth initiation appears to increase with the linear dimensions of the pressure vessel, but remains small for a chosen BWR application. For a long axial surface crack the approach agrees with a previous plastic hinge analysis by Ranta-Maunus et al. suggesting instability under certain combinations of thermal gradient and internal pressure. (orig./HP)

  4. Study on lead extrusion damper as a seismic support

    International Nuclear Information System (INIS)

    Nomura, T.; Kojima, N.; Fujita, K.; Ito, T.

    1989-01-01

    The fundamental characteristics of two types of lead extrusion dampers (cylinder type, rotary type) for use as the nuclear power plant piping support of the elasto-plastic of damper are clarified. As a result, these lead extrusion dampers are found to have the following dynamic characteristics: hysteresis loop is both rectangular shape and bi-linear shape; maximum reaction force is independent of velocity and frequency but it increases as displacement exceeds the specified value; and the dissipated energy is very large and is independent of velocity, frequency and initial displacement (i.e., thermal expansion of pipings) in the range of test

  5. An Introduction to Poroelasticity

    DEFF Research Database (Denmark)

    Andersen, Lars

    In the following, the continuum model for a fully saturated porous material is presented. The theory is mainly due to M.A. Biot. We shall only consider a two-phase system consisting of a solid skeleton and a single pore fluid, e.g. water. The theory for three-dimensional consolidation is developed....... Anisotropic permeability of the material is allowed, but for simplicity the analysis is restricted to isotropic linear elastic material behaviour. However, the theory is easily extended to elastoplasticity. Finally, it will be shown that the effective stresses in a porous material may in general...

  6. Simulation of the metallic powders compaction process

    International Nuclear Information System (INIS)

    Prado, J.M.; Riera, M.D.

    1998-01-01

    The simulation by means of finite elements of the forming processes of mechanical components is a very useful tool for their design and validation. In this work, the simulation of the compaction of a metal powder is presented. The finite element software ABAQUS is used together with the modified CAM-clay plasticity model in order to represent the elastoplastic behaviour of the material. Density distributions are obtained and therefore the motion of the compaction punches which improve this distribution can be found. Stress distribution in the different parts of the mould can also be determined. (Author) 9 refs

  7. New fatigue damage analysis of complex engineering components based on FEM

    International Nuclear Information System (INIS)

    Ott, W.

    1987-05-01

    A new type of fatigue damage analysis for multiaxial elastoplastic conditions based on a three-dimensional finite element analysis has been developed. The analysis includes the material model after Mroz. The fatigue life evaluation in the critical areas is based on plastic work at these locations. The proposed damage concept can be applied to arbitrary multiaxial stress-strain paths. For the evaluation of the damage cycles in terms of closed stress-strain hysteresis loops are not required. The damage is determined on the basis of uniaxial material data (stress-strain curve, life to crack iniation curve). (orig./HP) [de

  8. Numeric studies on the fracture characteristics in the ligament of the experimental container BVZ070

    International Nuclear Information System (INIS)

    Rensch, H.J.; Lohmeyer, B.; Hofmann, H.

    1987-04-01

    A detailed non-linear, elasto-plastic analysis up to bursting pressure was carried out at the test container BVZ070 of 20MnMoNi55 with a longitudinal undercut milled at the internal surface. It included the determination of the physical state of stress and deformation within the notch area, the propagation of the plastic zones and the development of the crack opening, crack tip opening, energy release rate or the J integral. An appropriate three-dimensional calculation model was generated on the basis of these findings for the main part of the studies. (DG) [de

  9. Earthquake response observation of isolated buildings

    International Nuclear Information System (INIS)

    Harada, O.; Kawai, N.; Ishii, T.; Sawada, Y.; Shiojiri, H.; Mazda, T.

    1989-01-01

    Base isolation system is expected to be a technology for a rational design of FBR plant. In order to apply this system to important structures, accumulation of verification data is necessary. From this point of view, the vibration test and the earthquake response observation of the actual isolated building using laminated rubber bearings and elasto-plastic steel dampers were conducted for the purpose of investigating its dynamic behavior and of proving the reliability of the base isolation system. Since September in 1986, more than thirty earthquakes have been observed. This paper presents the results of the earthquake response observation

  10. Analysis of the cyclic behavior and fatigue damage of extruded AA2017 aluminum alloy

    International Nuclear Information System (INIS)

    May, A.; Taleb, L.; Belouchrani, M.A.

    2013-01-01

    The present work is devoted to study the anisotropic behavior of an extruded aluminum alloy under cyclic loading in axial and shear directions. In first, we have studied its elastoplastic behavior through the evolution of stress–strain loops, isotropic and kinematic hardening and we have associated this behavior with the evolution of its elastic adaptation (shakedown). In second, we have studied the behavior of the material in fatigue damage using the evolution of stiffness. Finally, microstructural investigations were performed on fractured surfaces using scanning electron microscope (SEM) in order to understand the evolution of fatigue damage during cyclic loading

  11. Giant Pumpkins

    Science.gov (United States)

    Hu, David; Alexeev, Alex

    2009-11-01

    In this combined experimental and theoretical study, we investigate the growth of pumpkins from 1 to 1000 pounds in weight. Time-lapse photography is used to document the growth of pumpkins. Data is presented on the relation between the pumpkins' weights and aspect ratios (height divided by width). We observe pumpkins tend to become squashed (up to 50%) as they increase in size. The lattice-spring method is used to numerically estimate the elasto-plastic forces resisting deformation of the pumpkin. Using levels of plasticity consistent with that of plant cell growth, we find pumpkins shapes consistent with those observed.

  12. Proceedings of the International Conference on the Performance of Off-Road Vehicles and Machines (8th). Volume 3. Held at Cambridge England, on August 5-11, 1984.

    Science.gov (United States)

    1984-08-01

    doppe has been made I* appl the thee ad M etlu ia~ Mdie prblm mowvenng rsu *I wM"eqasm then ~ ~ 1 Of cotP MnUMb~ wn Wi pbusha u iutoW i essity ii of...to that iepoee byth vsicle on the soil. in Mhe vnr lfae of Wei soil It wsIspoeiblo to afply the required swot of mnl paseem ian ring shbar testa bemse...idals plasticiLy. Quart. Appl . Nbtb.. Vol.7. No.4. 411-40. IG 4) Hmahiuchi K. ad H. Umn: Elasto-plastic ontitutive laws of arsomlar iterials. Proc. of

  13. Relaxation of the single-slip condition in strain-gradient plasticity.

    Science.gov (United States)

    Anguige, Keith; Dondl, Patrick W

    2014-09-08

    We consider the variational formulation of both geometrically linear and geometrically nonlinear elasto-plasticity subject to a class of hard single-slip conditions. Such side conditions typically render the associated boundary-value problems non-convex. We show that, for a large class of non-smooth plastic distortions, a given single-slip condition (specification of Burgers vectors) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination. The relaxed model can be thought of as an aid to simulating macroscopic plastic behaviour without the need to resolve arbitrarily fine spatial scales.

  14. Study on criterion for leak before break assessment of pressure pipes

    International Nuclear Information System (INIS)

    Yang Linjuan

    2009-01-01

    Based on the elastoplastic fracture mechanics, this paper established the expression formulas of limit buckling pressure P u on the ligament of axial and circumferential surface cracks and the initial pressure for the through cracks P c . A new Leak Before Break (LBB) assessment criterion was put forward to predict the failure mode of pressure pipes, i.e., when P u is less than P c , the pipe will leak; when P u is equal to or larger than P c , the pipe will break, which is verified by the test data reported in literatures. (authors)

  15. Comparison of computer simulated and observed force deformation characteristics of anti-seismic devices and isolated structures

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chellapandi, P.; Chetal, S.; Muralikrishna, R.; Salvaraj, T.

    2002-01-01

    The paper discusses the finite element analysis of the force deformation characteristics of high damping rubber bearings, lead rubber bearings and natural rubber bearings. The dynamic response of structures isolated using bearings is also presented. The general purpose finite element program ABAQUS has been used for the numerical predictions under monotonic loads. For computing the dynamic response, a simplified model of the rubber bearing in the form of elasto-plastic system is used. This equivalent model is implemented using the computer code CASTEM-2000 and the dynamic response is obtained. The numerical results are found to match well with the experimental results. (author)

  16. Safety margins associated with containment structures under dynamic loading

    International Nuclear Information System (INIS)

    Lu, S.C.

    1978-01-01

    A technical basis for assessing the true safety margins of containment structures involved with MARK I boiling water reactor reevaluation activities is presented. It is based on the results of a plane-strain, large displacement, elasto-plastic, finite-element analysis of a thin cylindrical shell subjected to external and internal pressure pulses. An analytical procedure is presented for estimating the ultimate load capacity of the thin shell structure, and subsequently, for quantifying the design margins of safety for the type of loads under consideration. For defining failure of structures, a finite strain failure criterion is derived that accounts for multiaxiality effects

  17. Residual Displacements‘ Progresive Analysis of the Multisupported Beam

    Directory of Open Access Journals (Sweden)

    Liudas Liepa

    2014-12-01

    Full Text Available This paper focuses on a shakedown behaviour of the ideally elasto-plastic beams system under variable repeated load. The mathematical models of the analysis problems are created using numerical methods, extremum energy principles and mathematic programming. It is shown that during the shakedown process the residual displacements vary non-monotonically. By solving analysis problem, where the load locus is being progressively expanded, it is possible to determine the upper and lower bounds of residual displacements. Suggested methods are ilustrated by solving multisupported beam example problem. The results are obtained considering principle of the small displacements.

  18. Method for studying the plastic buckling of shells. Testing

    International Nuclear Information System (INIS)

    Alix, M.; Combescure, A.; Hoffmann, A.; Roche, R.

    1980-05-01

    In this article a description is given of the method selected for studying the elasto-plastic buckling of shells of any shape. The emphasis is mainly on three points: the difficulty in making a strict formulation with respect to plasticity, the model selected (MOTAN model) is presented; the effect of so called 'non conservative' forces; and the effect of great deformations that might precede the buckling. The method is compared to tests: basket handle buckling of bottoms, buckling of elliptical bottoms under internal pressure, of compresses thin tubes, of metal drums, spherical diaphragm, shearing rings [fr

  19. Non-linear finite element analysis in structural mechanics

    CERN Document Server

    Rust, Wilhelm

    2015-01-01

    This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.

  20. An Explicit Approach Toward Modeling Thermo-Coupled Deformation Behaviors of SMPs

    Directory of Open Access Journals (Sweden)

    Hao Li

    2017-03-01

    Full Text Available A new elastoplastic J 2 -flow models with thermal effects is proposed toward simulating thermo-coupled finite deformation behaviors of shape memory polymers. In this new model, an elastic potential evolving with development of plastic flow is incorporated to characterize the stress-softening effect at unloading and, moreover, thermo-induced plastic flow is introduced to represent the strain recovery effect at heating. It is shown that any given test data for both effects may be accurately simulated by means of direct and explicit procedures. Numerical examples for model predictions compare well with test data in literature.

  1. Multiaxial probabilistic elastic-plastic constitutive simulations of soils

    Science.gov (United States)

    Sadrinezhad, Arezoo

    Fokker-Planck-Kolmogorov (FPK) equation approach has recently been developed to simulate elastic-plastic constitutive behaviors of materials with uncertain material properties. The FPK equation approach transforms the stochastic constitutive rate equation, which is a stochastic, nonlinear, ordinary differential equation (ODE) in the stress-pseudo time space into a second-order accurate, deterministic, linear FPK partial differential equation (PDE) in the probability density of stress-pseudo time space. This approach does not suffer from the drawbacks of the traditional approaches such as the Monte Carlo approach and the perturbation approach for solving nonlinear ODEs with random coefficients. In this study, the existing one dimensional FPK framework for probabilistic constitutive modeling of soils is extended to multi--dimension. However, the multivariate FPK PDEs cannot be solved using the traditional mathematical techniques such as finite difference techniques due to their high computational cost. Therefore, computationally efficient algorithms based on the Fourier spectral approach are developed for solving a class of FPK PDEs that arises in probabilistic elasto-plasticity. This class includes linear FPK PDEs in (stress) space and (pseudo) time - having space-independent but time-dependent, and both space- and time-dependent coefficients - with impulse initial conditions and reflecting boundary conditions. The solution algorithms, rely on first mapping the stress space of the governing PDE between 0 and 2pi using the change of coordinates rule, followed by approximating the solution of the PDE in the 2pi-periodic domain by a finite Fourier series in the stress space and unknown time-dependent solution coefficients. Finally, the time-dependent solution coefficients are obtained from the initial condition. The accuracy and efficiency of the developed algorithms are tested. The developed algorithms are used to simulate uniaxial and multiaxial, monotonic and cyclic

  2. Non-linear dynamic response of reactor containment

    International Nuclear Information System (INIS)

    Takemori, T.; Sotomura, K.; Yamada, M.

    1975-01-01

    A computer program was developed to investigate the elasto-plastic behavior of structures. This program is outlined and the problems of non-linear response of structures are discussed. Since the mode superposition method is only valid in an elastic analysis, the direct integration method was adopted here. As the sample model, an actual reactor containment (reactor building) of PWR plant was adopted. This building consists of three components, that is, a concrete internal structure, a steel containment vessel and a concrete outer shield wall. These components are resting on a rigid foundation mat. Therefore they were modeled with a lumped mass model respectively and coupled on the foundation. The following assumptions were employed to establish the properties of dynamic model: rocking and swaying springs of soil can be obtained from an elastic half-space solution, and the hysteretic characteristic of springs is bi-linear; springs connecting each mass are dealt with shear beams so that both bending and shear deflections can be included (Hysteretic characteristics of springs are linear, bi-linear and tri-linear for the internal structure, the containment vessel and the outer shield wall, respectively); generally, each damping coefficient is given for each mode in modal superposition (However, a damping matrix must be made directly in a non-linear response). Therefore the damping matrix of the model was made by combining the damping matrices [C] of each component obtained by Caughy's method and a damping value of the rocking and swaying by the half-space solution. On the basis of above conditions, the non-linear response of the structure was obtained and the difference between elastic and elasto-plastic analysis is presented

  3. Effect of small addition of Cr on stability of retained austenite in high carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Rumana; Pahlevani, Farshid, E-mail: f.pahlevani@unsw.edu.au; Sahajwalla, Veena

    2017-03-15

    High carbon steels with dual phase structures of martensite and austenite have considerable potential for industrial application in high abrasion environments due to their hardness, strength and relatively low cost. To design cost effective high carbon steels with superior properties, it is crucial to identify the effect of Chromium (Cr) on the stability of retained austenite (RA) and to fully understand its effect on solid-state phase transition. This study addresses this important knowledge gap. Using standard compression tests on bulk material, quantitative X-ray diffraction analysis, nano-indentation on individual austenitic grains, transmission electron microscopy and electron backscatter diffraction–based orientation microscopy techniques, the authors investigated the effect of Cr on the microstructure, transformation behaviour and mechanical stability of retained austenite in high carbon steel, with varying Cr contents. The results revealed that increasing the Cr %, altered the morphology of the RA and increased its stability, consequently, increasing the critical pressure for martensitic transformation. This study has critically addressed the elastoplastic behaviour of retained austenite – and provides a deep understanding of the effect of small additions of Cr on the metastable austenite of high carbon steel from the macro- to nano-level. Consequently, it paves the way for new applications for high carbon low alloy steels. - Highlights: • Effect of small addition of Cr on metastable austenite of high carbon steel from the macro- to nano-level • A multi-scale study of elastoplastic behaviour of retained austenite in high carbon steel • The mechanical stability of retained austenite during plastic deformation increased with increasing Cr content • Effect of grain boundary misorientation angle on hardness of individual retained austenite grains in high carbon steel.

  4. Deformation behavior of large, high-pressure vessel flanges

    International Nuclear Information System (INIS)

    Spaas, H.A.C.M.; Latzko, D.G.H.

    1975-01-01

    The analysis of the deformation behavior of large high-pressure vessel flanges poses a much more difficult problem than for low-pressure flanges due to their particular geometry. For a particularly narrow flange geometry (typical of PWR flanges) a finite-element analysis (MARC-IBM-program, eight-node, isoparametric ring elements) was used to predict the behavior of the flange rings. The nonlinear elastic problem resulting from the local closing and/or opening of the partial gap between the gasket faces was solved by an incremental technique using gap elements. The resulting deformation behavior of the flange system has been compared to that obtained from an analysis using the refined rigid ring concept for both bolt-tightening and hydro-testing conditions. The elasto-plastic analysis was solved by the same finite element program system as mentioned above. The incremental steps describing the nonlinear material behavior are allowed to be larger than those for the gap-closure mechanism. Besides a comparison with the former elastic analyses an interpretation will be given of the local plasticity effects, which result in a shift in location of the gasket reaction. Experimental data on local gasket face deformation was obtained by a specially developed laser beam apparatus, with the leak detection channel of the flange serving as a beam hole. Additionally strain gauges were used on flanges and bolts, in combination with special sensing pins for the determination of relative flange rotations. Results obtained so far indicate that for high-pressure flanges of the narrow design investigated here the deformation behavior is best described by an elasto-plastic finite element analysis

  5. Low cycle fatigue lifetime of HIP bonded Bi-metallic first wall structures of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Toshihisa; Sato, Satoshi; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hashimoto, Toshiyuki; Kitamura, Kazunori

    1998-10-01

    A HIP bonded bi-metallic panel composed of a dispersion strengthened copper (DSCu) layer and type 316L stainless steel (SS316L) cooling pipes is the reference design of the ITER first wall. To examine the fatigue lifetime of the first wall panel under cyclic mechanical loads, low cycle fatigue tests of HIP bonded bi-metallic specimens made of SS316L and DSCu were conducted with the stress ratio of -1.0 and five nominal strain range conditions ranging from 0.2 to 1.0%. Elasto-plastic analysis has also been conducted to evaluate local strain ranges under the nominal strains applied. Initial cracks were observed at the inner surface of the SS316L cooling pipes for all of the specimens tested, which was confirmed by the elasto-plastic analysis that the maximum strains of the test specimens were developed at the same locations. It was found that the HIP bonded bi-metallic test specimens had a fatigue lifetime longer than that of the SS316L raw material obtained by round bar specimens. Similarly, the fatigue lifetime of the DSCu/SS316L HIP interface was also longer than the round bar test results for the HIP joints. From these results, it has been confirmed that the bi-metallic first wall panel with built-in cooling pipes made by HIP bonding has a sufficient fatigue lifetime in comparison with the raw fatigue data of the materials, which also suggests that the fatigue lifetime evaluation has an adequate margin against fracture if it follows the design fatigue curve based on the material fatigue data. (author)

  6. Image processing of full-field strain data and its use in model updating

    International Nuclear Information System (INIS)

    Wang, W; Mottershead, J E; Sebastian, C M; Patterson, E A

    2011-01-01

    Finite element model updating is an inverse problem based on measured structural outputs, typically natural frequencies. Full-field responses such as static stress/strain patterns and vibration mode shapes contain valuable information for model updating but within large volumes of highly-redundant data. Pattern recognition and image processing provide feasible techniques to extract effective and efficient information, often known as shape features, from this data. For instance, the Zernike polynomials having the properties of orthogonality and rotational invariance are powerful decomposition kernels for a shape defined within a unit circle. In this paper, full field strain patterns for a specimen, in the form of a square plate with a circular hole, under a tensile load are considered. Effective shape features can be constructed by a set of modified Zernike polynomials. The modification includes the application of a weighting function to the Zernike polynomials so that high strain magnitudes around the hole are well represented. The Gram-Schmidt process is then used to ensure orthogonality for the obtained decomposition kernels over the domain of the specimen. The difference between full-field strain patterns measured by digital image correlation (DIC) and reconstructed using 15 shape features (Zernike moment descriptors, ZMDs) at different steps in the elasto-plastic deformation of the specimen is found to be very small. It is significant that only a very small number of shape features are necessary and sufficient to represent the full-field data. Model updating of nonlinear elasto-plastic material properties is carried out by adjusting the parameters of a FE model until the FE strain pattern converges upon the measured strains as determined using ZMDs.

  7. The strength of the reactor cavity of VVER-1000 NPP against steam explosion

    International Nuclear Information System (INIS)

    Varpasuo, P.

    1995-01-01

    The reactor cavity of VVER-1000 NPP is a thick-walled, cylindrical reinforced concrete structure. In case of molten core-water reaction during the severe accident the load carrying capacity of the cavity structure is of interest against the short impulse type loading caused by the steam explosion phenomenon. The assumed size of the impulse was 20 kPa-s and the duration was 10 ms. The static analysis of the structure used the ABAQUS/STANDARD and ANSYS codes. The material properties in both runs were specified to be elasto-plastic, and the cracking of concrete was taken into account. (author). 2 refs., 5 figs

  8. An efficient approach to the analysis of rail surface irregularities accounting for dynamic train-track interaction and inelastic deformations

    Science.gov (United States)

    Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik

    2015-11-01

    A two-dimensional computational model for assessment of rolling contact fatigue induced by discrete rail surface irregularities, especially in the context of so-called squats, is presented. Dynamic excitation in a wide frequency range is considered in computationally efficient time-domain simulations of high-frequency dynamic vehicle-track interaction accounting for transient non-Hertzian wheel-rail contact. Results from dynamic simulations are mapped onto a finite element model to resolve the cyclic, elastoplastic stress response in the rail. Ratcheting under multiple wheel passages is quantified. In addition, low cycle fatigue impact is quantified using the Jiang-Sehitoglu fatigue parameter. The functionality of the model is demonstrated by numerical examples.

  9. Experimental studies on local damage of reinforced concrete structures by the impact of deformable missiles-Part 1

    International Nuclear Information System (INIS)

    Muto, K.; Tachikawa, H.; Sugano, T.; Tsubota, H.; Kobayshi, H.; Kasai, Y.; Koshika, N.; Tsujimoto, T.

    1989-01-01

    Structural damage induced by an accidental aircraft crash into a reinforced concrete structure includes local damage caused by the engine, the rigid portion of the aircraft, and the global elasto-plastic structural response caused by the entire aircraft. Local damage consists of spalling of concrete from the front face of the target together with missile penetration into the target, scabbing of concrete from the rear face of the target and perforation of the missile through the target. The engine is a soft missile that deforms during impact. An experimental research program has been planned and executed to establish a rational evaluation method of the local damage by the deformable engine missiles

  10. Low-cycle fatigue of sheet elements with ''soft'' surface layer

    International Nuclear Information System (INIS)

    Luk'yanov, V.F.; Kharchenko, V.Ya.; Berezutskij, V.I.; Ovsyannikov, V.G.

    1978-01-01

    Investigated are regularities of low-cycle fatigue of bimetallic sheet constructions made of chrome-nickel-molybdenum steel, plated with a low-alloyed steel with a reduced yield limit. Static repeated bending tests have been carried out using two-layer samples. The surface layer has been shown to increase resistance to nucleation and propagation of cracks under pulsating load if stresses are not more than 2 times higher than the yield limit. Increase in stresses leads to elastoplastic deformation and reduces durability. The positive effect of the surface layer is advisable to be used when welding-up surface defects and strengthening welded joints of high-strength steels

  11. On the application of G(Θ) method and its comparison with De Lorenzi's approach

    International Nuclear Information System (INIS)

    Suo Xiaozheng; Combescure, A.

    1992-01-01

    Based on a continuum mechanics formulation, Destuynder proposed recently a Lagrangian method, called G (Θ) method, for calculating the energy release rate G. The present paper outlines a detailed finite element application of this method for use with the 3-noded DKT shell elements and the 20-noded isoparametric 3-D elements. The representation in this paper allows one to calculate G either as an integral part of a finite element analysis or separately in a post-processing program using the stress and strain as input for calculations. Example computations are given and compared with the Lorenzi's approach for several elastic as well as elasto-plastic crack problems. (orig.)

  12. Continuum damage mechanics based approach to the fatigue life prediction of cast aluminium alloy with considering the effect of porosity

    Directory of Open Access Journals (Sweden)

    Wang Xiaojia

    2018-01-01

    Full Text Available A damage mechanics based approach is applied for the study of fatigue behaviour of high pressure die cast ADC12 aluminium alloy. A damage coupled elastoplastic constitutive model is presented according to the concept of effective stress and the hypothesis of strain equivalence. An elastic fatigue damage model taking into account the pore-induced stress concentration is developed to investigate fatigue damage evolution of the specimens subjected to cyclic loading. The predicted lives for the specimens with different sizes of pores are consistent with the experimental data. The pore-induced fatigue damage and the variation of fatigue life along with the size of pores are also investigated.

  13. Proceedings of the national seminar on advanced construction techniques and geotechnical engineering

    International Nuclear Information System (INIS)

    Partheeban, P.; Poornima, C.A.; Guru, V.

    2015-02-01

    The objective of this seminar is to emphasize the need for developing modern construction materials in the era of technology. It also provides a forum for National Research Scholars, Construction Specialists and Professionals, Planners, Faculty, PG and UG Students to discuss and evolve solutions for various difficulties faced during construction. Theme of seminar includes Geotechnical site Investigation, Ground improvement Techniques, Soil Dynamics, Geotechnical Earthquake Engineering, Geo- Environmental Engineering, Self Compacting Concrete, Geopolymer Concrete and Concrete Technology, Cost Effective Construction Techniques, Limit state performance state approach Elastic and Elasto-plastic behavior and Reduction of Corrosion in concrete using Chemical admixtures. Paper relevant to INIS are indexed separately

  14. Development of new damping devices for piping

    International Nuclear Information System (INIS)

    Kobayashi, Hiroe

    1991-01-01

    An increase of the damping ratio is known to be very effective for the seismic design of a piping system. Increasing the damping ratio and reducing the seismic response of the piping system, the following three types of damping devices for piping systems are introduced: (1) visco-elastic damper, (2) elasto-plastic damper and (3) compact dynamic damper. The dynamic characteristics of these damping devices were investigated by the component test and the applicability of them to the piping system was confirmed by the vibration test using a three dimensional piping model. These damping devices are more effective than mechanical snubbers to reduce the vibration of the piping system. (author)

  15. Seismic retrofitting of Apsara reactor building

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.; Sharma, A.; Rao, K.N.; Narasimhan, Rajiv; Srinivas, K.; Basha, S.M.; Thomas, V.S.; Soma Kumar, K.

    2006-01-01

    Seismic analysis of Apsara Reactor building was carried out and was found not meeting the current seismic requirements. Due to the building not qualifying for seismic loads, a retrofit scheme using elasto-plastic dampers is proposed. Following activities have been performed in this direction: Carried out detailed seismic analysis of Apsara reactor building structure incorporating proposed seismic retrofit. Demonstrating the capability of the retrofitted structure to with stand the earth quake level for Trombay site as per the current standards by analysis and by model studies. Implementation of seismic retrofit program. This paper presents the details of above aspects related to Seismic analysis and retrofitting of Apsara reactor building. (author)

  16. Determination of dynamic fracture initiation toughness of elastic-plastic materials at intermediate strain rates

    International Nuclear Information System (INIS)

    Fernandez-Saez, J.; Luna de, S.; Rubio, L.; Perez-Castellanos, J. L.; Navarro, C.

    2001-01-01

    An earlier paper dealt with the experimental techniques used to determine the dynamic fracture properties of linear elastic materials. Here we describe those most commonly used as elastoplastic materials, limiting the study to the initiation fracture toughness at the intermediate strain rate (of around 10''2 s''-1). In this case the inertial forces are negligible and it is possible to apply the static solutions. With this stipulation, the analysis can be based on the methods of testing in static conditions. The dynamic case differs basically, from the static one, in the influence of the strain rate on the properties of the material. (Author) 57 refs

  17. ASME and RCC-MR comparison for the prevention of fatigue analysis

    International Nuclear Information System (INIS)

    Autrusson, B.; Acker, D.

    1989-01-01

    The purpose of this survey is to compare the simplified methods, without reference to the safety factor allowed for the mechanical properties. An application of both codes, RCC-MR and ASME, on the design of the wall mock-up of the NET project is made and also an estimation with an elastoplastic analysis. In the case of fatigue analysis according to ASME in the plastic field, the elastic stress is magnified by a K e factor derived from stress variation, S n , disregarding geometrical discontinuities. According to RCC-MR, the elastic maximum strain will magnified by two coefficients accounting for plasticity and variation of Poisson ratio

  18. Application of micropolar plasticity to post failure analysis in geomechanics

    Science.gov (United States)

    Manzari, Majid T.

    2004-08-01

    A micropolar elastoplastic model for soils is formulated and a series of finite element analyses are employed to demonstrate the use of a micropolar continuum in overcoming the numerical difficulties encountered in application of finite element method in standard Cauchy-Boltzmann continuum. Three examples of failure analysis involving a deep excavation, shallow foundation, and a retaining wall are presented. In all these cases, it is observed that the length scale introduced in the polar continuum regularizes the incremental boundary value problem and allows the numerical simulation to be continued until a clear collapse mechanism is achieved. The issue of grain size effect is also discussed. Copyright

  19. THEORETICAL AND EXPERIMENTAL STUDY OF STRUCTURES SUBJECTED TO EARTHQUAKES

    Energy Technology Data Exchange (ETDEWEB)

    Soubirou, A.

    1967-12-31

    The object of the study was the investigation of the behaviour of structures subject to earthquakes. After .describing and analysing seismic movements, useful concepts for earthquake-proofing structures are lintroduced. Then, the dynamic behaviour of systems with n degrees of freedom was studied in order to evolve the theoretical computation of seismic behaviour, a typical application being reticulated structures. The next stage was showing the computational procedure for seismic spectra and the natural frequencies of buildings, an attempt being made to define earthquake-proofing criteria for a special type of reinforced-concrete construction. . The last matter dealt with is elastoplastic behaviour of structures, a study of increasingly growing importance.

  20. A quantitative phase field model for hydride precipitation in zirconium alloys: Part I. Development of quantitative free energy functional

    International Nuclear Information System (INIS)

    Shi, San-Qiang; Xiao, Zhihua

    2015-01-01

    A temperature dependent, quantitative free energy functional was developed for the modeling of hydride precipitation in zirconium alloys within a phase field scheme. The model takes into account crystallographic variants of hydrides, interfacial energy between hydride and matrix, interfacial energy between hydrides, elastoplastic hydride precipitation and interaction with externally applied stress. The model is fully quantitative in real time and real length scale, and simulation results were compared with limited experimental data available in the literature with a reasonable agreement. The work calls for experimental and/or theoretical investigations of some of the key material properties that are not yet available in the literature

  1. Seismic proving test of ultimate piping strength (current status of preliminary tests)

    International Nuclear Information System (INIS)

    Suzuki, K.; Namita, Y.; Abe, H.; Ichihashi, I.; Suzuki, K.; Ishiwata, M.; Fujiwaka, T.; Yokota, H.

    2001-01-01

    In 1998 Fiscal Year, the 6 year program of piping tests was initiated with the following objectives: i) to clarify the elasto-plastic response and ultimate strength of nuclear piping, ii) to ascertain the seismic safety margin of the current seismic design code for piping, and iii) to assess new allowable stress rules. In order to resolve extensive technical issues before proceeding on to the seismic proving test of a large-scale piping system, a series of preliminary tests of materials, piping components and simplified piping systems is intended. In this paper, the current status of the material tests and the piping component tests is reported. (author)

  2. Theoretical and experimental investigations of a thermoplastic constitutive law

    Science.gov (United States)

    Zdebel, U.

    1984-12-01

    A thermoplastic constitutive law allowing combinations of isotropic and kinematic hardening as well as deviations from the normality rule was examined. Since the energy balance for thermomechanical processes is taken into account, the consistent connection to thermodynamic laws is guaranteed. The experimental verification of material parameters is described; it is performed by isothermal tension-torsion tests on thin-walled tubes at different temperatures. The materials functions allow the extension to nonisothermal (adiabatic) processes. The comparison between theoretical and exprimental results is not entirely satisfactory and demonstrates the remaining inconsistencies. Suggestions which could lead to a better description of the behavior of elastoplastic materials are made.

  3. A new phase field model for material fatigue in an oscillating elastoplastic beam

    Czech Academy of Sciences Publication Activity Database

    Eleuteri, M.; Kopfová, J.; Krejčí, Pavel

    2015-01-01

    Roč. 35, č. 6 (2015), s. 2465-2495 ISSN 1078-0947 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : hysteresis * fatigue * phase transition Subject RIV: BA - General Mathematics Impact factor: 1.127, year: 2015 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=10680

  4. Lifetime Reliability Estimate and Extreme Permanent Deformations of Randomly Excited Elasto-Plastic Structures

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1983-01-01

    plastic deformation during several loadings can be modelled as a filtered Poisson process. Using the Markov property of this quantity the considered first-passage problem as well as the related extreme distribution problems are then solved numerically, and the results are compared to simulation studies.......A method is presented for life-time reliability' estimates of randomly excited yielding systems, assuming the structure to be safe, when the plastic deformations are confined below certain limits. The accumulated plastic deformations during any single significant loading history are considered...

  5. Modeling elasto-plastic behavior of polycrystalline grain structure of steels at mesoscopic level

    International Nuclear Information System (INIS)

    Kovac, Marko; Cizelj, Leon

    2005-01-01

    The multiscale model is proposed to explicitly account for the inhomogeneous structure of polycrystalline materials. Grains and grain boundaries are modeled explicitly using Voronoi tessellation. The constitutive model of crystal grains utilizes anisotropic elasticity and crystal plasticity. Commercially available finite element code is applied to solve the boundary value problem defined at the macroscopic scale. No assumption regarding the distribution of the mesoscopic strain and stress fields is used, apart the finite element discretization. The proposed model is then used to estimate the minimum size of polycrystalline aggregate of selected reactor pressure vessel steel (22 NiMoCr 3 7), above which it can be considered macroscopically homogeneous. Elastic and rate-independent plastic deformation modes are considered. The results are validated by the experimental and simulation results from the literature

  6. Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling

    DEFF Research Database (Denmark)

    Bogomolny, Michael; Amir, Oded

    2012-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its different strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures on the basis...... response must be considered. Optimized distribution of materials is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure. Copyright © 2012 John Wiley & Sons, Ltd....

  7. Two-temperature hydrodynamics of laser-generated ultrashort shock waves in elasto-plastic solids

    International Nuclear Information System (INIS)

    Ilnitsky, Denis K; Migdal, Kirill P; Khokhlov, Viktor A; Inogamov, Nail A; Petrov, Yurii V; Anisimov, Sergey I; Zhakhovsky, Vasily V; Khishchenko, Konstantin V

    2014-01-01

    Shock-wave generation by ultrashort laser pulses opens new doors for study of hidden processes in materials happened at an atomic-scale spatiotemporal scales. The poorly explored mechanism of shock generation is started from a short-living two-temperature (2T) state of solid in a thin surface layer where laser energy is deposited. Such 2T state represents a highly non-equilibrium warm dense matter having cold ions and hot electrons with temperatures of 1-2 orders of magnitude higher than the melting point. Here for the first time we present results obtained by our new hybrid hydrodynamics code combining detailed description of 2T states with a model of elasticity together with a wide-range equation of state of solid. New hydro-code has higher accuracy in the 2T stage than molecular dynamics method, because it includes electron related phenomena including thermal conduction, electron-ion collisions and energy transfer, and electron pressure. From the other hand the new code significantly improves our previous version of 2T hydrodynamics model, because now it is capable of reproducing the elastic compression waves, which may have an imprint of supersonic melting like as in MD simulations. With help of the new code we have solved a difficult problem of thermal and dynamic coupling of a molten layer with an uniaxially compressed elastic solid. This approach allows us to describe the recent femtosecond laser experiments.

  8. Analysis of white noise excited elasto-plastic oscillator of several degrees of freedom

    DEFF Research Database (Denmark)

    Randrup-Thomsen, Søren

    1997-01-01

    The response of the white noise excited multi-degree-of-freedom (MDOF) oscillator has been analyzed in order to describe the plastic displacements of the relative response. Three different types of structural systems have been considered. The first type is a shear-wall frame having elastic......-ideal plastic stiffness properties of the columns connecting the two top-most floors. The second type is a shear-wall frame having elastic-ideal plastic stiffness properties of all columns, while the third type is a single-degree-of-freedom (SDOF) oscillator excited by horizontal and vertical white noise ground...

  9. Quasi-static incremental behavior of granular materials: Elastic-plastic coupling and micro-scale dissipation

    Science.gov (United States)

    Kuhn, Matthew R.; Daouadji, Ali

    2018-05-01

    The paper addresses a common assumption of elastoplastic modeling: that the recoverable, elastic strain increment is unaffected by alterations of the elastic moduli that accompany loading. This assumption is found to be false for a granular material, and discrete element (DEM) simulations demonstrate that granular materials are coupled materials at both micro- and macro-scales. Elasto-plastic coupling at the macro-scale is placed in the context of thermomechanics framework of Tomasz Hueckel and Hans Ziegler, in which the elastic moduli are altered by irreversible processes during loading. This complex behavior is explored for multi-directional loading probes that follow an initial monotonic loading. An advanced DEM model is used in the study, with non-convex non-spherical particles and two different contact models: a conventional linear-frictional model and an exact implementation of the Hertz-like Cattaneo-Mindlin model. Orthotropic true-triaxial probes were used in the study (i.e., no direct shear strain), with tiny strain increments of 2 ×10-6 . At the micro-scale, contact movements were monitored during small increments of loading and load-reversal, and results show that these movements are not reversed by a reversal of strain direction, and some contacts that were sliding during a loading increment continue to slide during reversal. The probes show that the coupled part of a strain increment, the difference between the recoverable (elastic) increment and its reversible part, must be considered when partitioning strain increments into elastic and plastic parts. Small increments of irreversible (and plastic) strain and contact slipping and frictional dissipation occur for all directions of loading, and an elastic domain, if it exists at all, is smaller than the strain increment used in the simulations.

  10. Mechanical characterization of diesel soot nanoparticles: in situ compression in a transmission electron microscope and simulations

    Science.gov (United States)

    Jenei, Istvan Zoltan; Dassenoy, Fabrice; Epicier, Thierry; Khajeh, Arash; Martini, Ashlie; Uy, Dairene; Ghaednia, Hamed; Gangopadhyay, Arup

    2018-02-01

    Incomplete fuel burning inside an internal combustion engine results in the creation of soot in the form of nanoparticles. Some of these soot nanoparticles (SNP) become adsorbed into the lubricating oil film present on the cylinder walls, which adversely affects the tribological performance of the lubricant. In order to better understand the mechanisms underlying the wear caused by SNPs, it is important to understand the behavior of SNPs and to characterize potential changes in their mechanical properties (e.g. hardness) caused by (or during) mechanical stress. In this study, the behavior of individual SNPs originating from diesel engines was studied under compression. The experiments were performed in a transmission electron microscope using a nanoindentation device. The nanoparticles exhibited elasto-plastic behavior in response to consecutive compression cycles. From the experimental data, the Young’s modulus and hardness of the SNPs were calculated. The Young’s modulus and hardness of the nanoparticles increased with the number of compression cycles. Using an electron energy loss spectroscopy technique, it was shown that the sp2/sp3 ratio within the compressed nanoparticle decreases, which is suggested to be the cause of the increase in elasticity and hardness. In order to corroborate the experimental findings, molecular dynamics simulations of a model SNP were performed. The SNP model was constructed using carbon and hydrogen atoms with morphology and composition comparable to those observed in the experiment. The model SNP was subjected to repeated compressions between two virtual rigid walls. During the simulation, the nanoparticle exhibited elasto-plastic behavior like that in the experiments. The results of the simulations confirm that the increase in the elastic modulus and hardness is associated with a decrease in the sp2/sp3 ratio.

  11. Lattice strain evolution in IMI 834 under applied stress

    International Nuclear Information System (INIS)

    Daymond, Mark R.; Bonner, Neil W.

    2003-01-01

    The effect of elastic and plastic anisotropy on the evolution of lattice strains in the titanium alloy IMI834 has been examined during a uniaxial tensile test, by in situ monitoring on the Engin instrument at the ISIS pulsed neutron source. Measurements were made at load during an incremental loading test. The data is analysed in the light of the requirements for engineering residual stress scanning measurements performed at polychromatic neutron and synchrotron diffraction sources. Comparisons between the measured strains from different lattice families and the predictions from an elasto-plastic self-consistent model are made. Agreement is good in the elastic regime and for most diffraction planes in the plastic regime

  12. Position-based dynamic of a particle system: a configurable algorithm to describe complex behaviour of continuum material starting from swarm robotics

    Science.gov (United States)

    dell'Erba, Ramiro

    2018-04-01

    In a previous work, we considered a two-dimensional lattice of particles and calculated its time evolution by using an interaction law based on the spatial position of the particles themselves. The model reproduced the behaviour of deformable bodies both according to the standard Cauchy model and second gradient theory; this success led us to use this method in more complex cases. This work is intended as the natural evolution of the previous one in which we shall consider both energy aspects, coherence with the principle of Saint Venant and we start to manage a more general tool that can be adapted to different physical phenomena, supporting complex effects like lateral contraction, anisotropy or elastoplasticity.

  13. On minimizing mechanical stresses of the rail way wheels

    International Nuclear Information System (INIS)

    Moosavi, H.; Esfahanian, M.

    2000-01-01

    The purpose of this paper is to study the behavior of elastic-plastic stresses under severe drag braking. A railway wheel performs three tasks, aiding in trian movement, supporting the car load, and acting as a brake drum. Finite element computer programs are developed for elasto-plastic stress analysis. An attempt is made here to find an improved fillet profile of the wheel with the intention of minimizing high tensile mechanical stresses. Three new fillet profiles for the wheel are tested. A penalty function is used as a criterion for comparison of stresses between the new designs and the old design. The design with the least penalty is chosen to be the improved one

  14. An elastic-plastic fracture mechanics based methodology to characterize cracking behavior and its application to environmental assisted processes

    International Nuclear Information System (INIS)

    Alvarez, J.A.; Gutierrez-Solana, F.

    1999-01-01

    Cracking processes suffered by new structural and piping steels when used in petroleum or other energy installations have demonstrated the need for a cracking resistance characterization methodology. This methodology, valid for both elastic and elastoplastic regimes, should be able to define crack propagation kinetics as a function of their controlling local parameters. This work summarizes an experimental and analytical methodology that has been shown to be suitable for characterizing cracking processes using compact tensile specimens, especially subcritical environmentally assisted ones, such as those induced by hydrogen in microalloyed steels. The applied and validated methodology has been shown to offer quantitative results of cracking behavior and to correlate these with the existing fracture micromechanisms. (orig.)

  15. Evolutive Masing model, cycling plasticity, ageing and memory effects

    International Nuclear Information System (INIS)

    Sidoroff, F.

    1987-01-01

    Many models are proposed for the mechanical description of the cyclic behaviour of metals and used for structure analysis under cyclic loading. The evolutive Masing model has been proposed (Fougeres, Sidoroff, Vincent and Waille 1985) to combine - the accuracy of hereditary models for the description of hysteresis on each cycle, - the versatility of internal variables for the state description and evolution, - a sufficient microstructural basis to make the interaction easier with microstructural investigations. The purpose of the present work is to discuss this model and to compare different evolution assumptions with respect to some memory effects (cyclic hardening and softening, multilevel tests, ageing). Attention is limited to uniaxial, rate independent elasto-plastic behaviour. (orig./GL)

  16. Mimetic Theory for Cell-Centered Lagrangian Finite Volume Formulation on General Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Sambasivan, Shiv Kumar [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory; Burton, Donald E. [Los Alamos National Laboratory; Christon, Mark A. [Los Alamos National Laboratory

    2012-07-19

    A finite volume cell-centered Lagrangian scheme for solving large deformation problems is constructed based on the hypo-elastic model and using the mimetic theory. Rigorous analysis in the context of gas and solid dynamics, and arbitrary polygonal meshes, is presented to demonstrate the ability of cell-centered schemes in mimicking the continuum properties and principles at the discrete level. A new mimetic formulation based gradient evaluation technique and physics-based, frame independent and symmetry preserving slope limiters are proposed. Furthermore, a physically consistent dissipation model is employed which is both robust and inexpensive to implement. The cell-centered scheme along with these additional new features are applied to solve solids undergoing elasto-plastic deformation.

  17. Fracture mechanics performance of UF6 containers

    International Nuclear Information System (INIS)

    Gonzalez, M.E.; Iorio, A.F.; Crespi, J.C.

    1993-01-01

    The main purpose of this work was to determine the fracture mechanics performance of UF 6 transport cylinders type ANSI N14.1.30B, which was made from ASTM A 516 Grade 70 steel. It was assumed an internal surface axial crack subjected to stresses due to service, proof and transport accident loads. The KUMAR-GERMAN-SHIH elastoplastic methodology gave adequate results for crack depth estimation. The results validate the leak-before-break criteria for service and proof conditions but not for accident ones. In the last case a non-destructive examination must be done in order to assure the absence of defects larger than one third of the cylinder wall thickness. (Author)

  18. Dynamic buckling and nonlinear response of FBR main vessels under earthquake loading

    International Nuclear Information System (INIS)

    Hagiwara, Yutaka; Kawamoto, Yoji; Nakagawa, Masaki; Akiyama, Hiroshi.

    1991-01-01

    Pseudo-dynamic tests of cylindrical shells under high temperature were performed in order to study elasto-plastic shear-bending buckling and the nonlinear response of FBR main vessels under earthquake loading. The test results showed a response reduction effect due to pre-buckling plasticity, and a large seismic margin due to post-buckling energy absorption of the cylinders. A simple expression of the response reduction effect was proposed, as a contribution to the safe and effective seismic design of FBRs. Two methods for seismic margin evaluation were also proposed, and it was shown that appropriate seismic margins can be ensured, when the response reduction effect is incorporated into the seismic design. (author)

  19. The effect of fiber microstructure on evolution of residual stresses in silicon carbide/titanium aluminide composites

    Science.gov (United States)

    Pindera, Marek-Jerzy; Freed, Alan D.

    1992-01-01

    This paper examines the effect of the morphology of the SCS6 silicon carbide fiber on the evolution of residual stresses in SiC/Ti composites. A micromechanics model based on the concentric cylinder concept is presented which is used to calculate residual stresses in a SiC/Ti composite during axisymmetric cooling by a spatially uniform temperature change. The silicon carbide fiber is modeled as a layered material with five distinct transversely isotropic and orthotropic, elastic layers, whereas the titanium matrix is taken to be isotropic, with temperature-dependent elastoplastic properties. The results arc compared with those obtained based on the assumption that the silicon carbide fiber is isotropic and homogeneous.

  20. A robust frame element with cyclic plasticity and local joint effects

    DEFF Research Database (Denmark)

    Tidemann, Lasse; Krenk, Steen

    2018-01-01

    A robust elasto-plastic element is developed for analysis of frame structures. The element consists of a beam member with end joints with properties permitting representation of the effect of section forces in adjoining members, like axial forces. By use of the equilibrium formulation...... is developed, using a mid-step state to obtain representative information about the return path. The element is implemented in a co-rotational large-deformation computer program for frame structures. The formulation is illustrated by application to a couple of typical offshore frame structures, and comparison...... of different representations of the plastic effects illustrates the importance of a robust element with realistic representation of the cyclic plastic mechanisms....

  1. Study on the constitutive model for jointed rock mass.

    Directory of Open Access Journals (Sweden)

    Qiang Xu

    Full Text Available A new elasto-plastic constitutive model for jointed rock mass, which can consider the persistence ratio in different visual angle and anisotropic increase of plastic strain, is proposed. The proposed the yield strength criterion, which is anisotropic, is not only related to friction angle and cohesion of jointed rock masses at the visual angle but also related to the intersection angle between the visual angle and the directions of the principal stresses. Some numerical examples are given to analyze and verify the proposed constitutive model. The results show the proposed constitutive model has high precision to calculate displacement, stress and plastic strain and can be applied in engineering analysis.

  2. Numerical analysis of reinforced concrete beams under combined loadings

    International Nuclear Information System (INIS)

    Bairrao, R.

    1988-01-01

    It is important, for safety reasons, to determine the actual behaviour and to estimate the features required for reinforced concrete structures in nuclear reactors, subjected to accidental loading such as impacts or earthquakes. Moreover it is preferable for economic reasons to work out global laws with a computer programme using global concepts. Such methods have already been proposed for elasto-plastic materials and for loadings which are predominantly bending loads with a relatively weak normal force component. This paper proposes an extension of these models to include any value of the normal force and considering non-simplified behaviour laws for concrete and steels. The formulation is of elastic-damage-plastic type. (author) [pt

  3. A Modified SPH Method for Dynamic Failure Simulation of Heterogeneous Material

    Directory of Open Access Journals (Sweden)

    G. W. Ma

    2014-01-01

    Full Text Available A modified smoothed particle hydrodynamics (SPH method is applied to simulate the failure process of heterogeneous materials. An elastoplastic damage model based on an extension form of the unified twin shear strength (UTSS criterion is adopted. Polycrystalline modeling is introduced to generate the artificial microstructure of specimen for the dynamic simulation of Brazilian splitting test and uniaxial compression test. The strain rate effect on the predicted dynamic tensile and compressive strength is discussed. The final failure patterns and the dynamic strength increments demonstrate good agreements with experimental results. It is illustrated that the polycrystalline modeling approach combined with the SPH method is promising to simulate more complex failure process of heterogeneous materials.

  4. Dynamic response of INTOR/NET blankets after coolant tube rupture

    International Nuclear Information System (INIS)

    Klippel, H.T.

    1985-01-01

    The dynamic response of different water-cooled liquid Li 17 Pb 83 breeder blanket modules has been calculated to study the potential of these modules in case of coolant tube rupture. Numerical calculations with the code PISCES have been carried out taking into account the fluid-structure interaction and the elasto-plastic behaviour of the structural material. The results show that for inert coolant characteristics the proposed conceptual designs for NET and INTOR have sufficient resistance against coolant tube rupture but when taking into account energy release due to chemical reaction of water with LiPb-alloy up to doubling of the wall thickness has to be envisaged to guarantee structural reliability. (orig.)

  5. Thermomechanical behaviour of boom clay

    International Nuclear Information System (INIS)

    Sultan, N.; Delage, P.; Cui, Y.J.

    2000-01-01

    Special attention has been recently paid on temperature effects on the behaviour of deep saturated clays, in relation with nuclear deep waste storage. However, few experimental data are presently available, and existing constitutive models need to be completed. This note is aimed at completing, both experimentally and theoretically, the understanding of the effects of the over-consolidation ration on the thermal volume changes of Boom clay (Belgium). The experimental data obtained here are in a good agreement with existing data. As a complement to existing data, they are used to develop a new elastoplastic model. The adoption of a second coupled plastic mechanism provides good simulations on a complex thermo-mechanical path. (authors)

  6. Concepts and possibilities of fracture mechanics for fracture safety assessment

    International Nuclear Information System (INIS)

    Blauel, J.

    1980-01-01

    In very tough materials for pressure vessels and pipelines of nuclear plants, cracking begins in a stable manner and only after macroscopic plastic deformations and crack blunting. It is possible to describe this elasto-plastic fracture behaviour and to quantify the safety margin compared to the assessment criteria based on linear elastic stressing and initiation by the concept of the J integral, the crack peak width and the crack resistance Jsub(R) curve. The numerous problems of details still open and the partly very limited validity range should not prevent the further investigation into the great possibilities of this concept and making greater use of the interpretation of large scale tests. (orig./RW) [de

  7. Modified Dugdale crack models - some easy crack relations

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    the same strength as a plain Dugdale model. The critical energy release rates Gamma_CR, however, become different. Expressions (with easy computer algorithms) are presented in the paper which relate critical energy release rates and crack geometry to arbitrary cohesive stress distributions.For future...... lifetime analysis of viscoelastic materials strain energy release rates, crack geometries, and cohesive stress distributions are considered as related to sub-critical loads sigma stress-deformation tests......The Dugdale crack model is widely used in materials science to predict strength of defective (cracked) materials. A stable Dugdale crack in an elasto-plastic material is prevented from spreading by uniformly distributed cohesive stresses acting in narrow areas at the crack tips. These stresses...

  8. Characterization of the mechanical properties of tough biopolymer fibres from the mussel byssus of Aulacomya ater.

    Science.gov (United States)

    Troncoso, O P; Torres, F G; Grande, C J

    2008-07-01

    Byssus fibres are tough biopolymer fibres produced by mussels to attach themselves to rocks. In this communication, we present the mechanical properties of the byssus from the South American mussel Aulacomya ater which have not been previously reported in the literature. The mechanical properties of the whole threads were assessed by uniaxial tensile tests of dry and hydrated specimens. Elastoplastic and elastomeric stress-strain curves were found for byssal threads from A. ater in the dry and hydrated state, respectively. The results obtained from mechanical tests were modelled using linear, power-law-type and Mooney-Rivlin relationships. These methods for dealing with tensile measurements of mussel byssus have the potential to be used with other stretchy biomaterials.

  9. Study of aged embrittled stainless steels used in the primary circuit of fission reactors

    International Nuclear Information System (INIS)

    Hazarabedian, Alfredo

    1999-01-01

    We checked the damage and fracture mechanisms of duplex stainless steels aged in conditions representative of the actual operating condition of a PWR nuclear power plant. We proved that the fracture mechanisms starts with the fracture of ferrite laths and ends with the fracture of austenite ligaments. We determined by quantitative metallography the average void nucleation rate and the spatial distribution of voids. This information, incorporated to the Gurson-Tvergaard-Joly model of a damaged elastoplastic material, served to predict adequately the distribution of the mean strain at fracture of notched axisymmetric specimens. The model also predicted the lower bound of the experimental distribution of the crack resistance at 0.2 mm of crack extension (J 02 ). (author)

  10. Application of Quasi-Newton methods to the analysis of axisymmetric pressure vessels

    International Nuclear Information System (INIS)

    Parisi, D.A.C.

    1987-01-01

    This work studies the application of Quasi-Newton techniques to material nonlinear analysis of axisymmetrical pressure vessels by the finite element method. In the formulation the material bahavior is described by an isotropic elastoplastic model with strain hardening. The continum is discretized through triangular finite elements of axisymmetrical solids with linear interpolation of the displacement field. The incremental governing equations are derived by the virtual work. The solution of the system of simultaneous nonlinear equations is solved iteratively by the Quasi-Newton method employing the BFGS update. The numerical performance of the proposed method is compared with the Newton-Raphson method and some of its variants through some selected examples. (author) [pt

  11. ELASTO-PLASTIC DEFORMATION OF COMPOSITE POWDERS WITH LAYERED CARBON AND CARBIDE-FORMING ELEMENT COATING

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2012-01-01

    Full Text Available Coating structure formation under magnetron spraying of titanium and carbon cathodes and combined cathodes, namely cobalt (EP 131 – nickel, tungsten – carbon have been investigated under conditions of carbide separate synthesis within the temperature range of 650–1200 °C. Usage of cobalt and nickel particles as matrix material leads to their rapid thermal expansion under heating during sintering process in the dilatometer. Subsequent plastic deformation of sintered samples provides obtaining a composite powder material that is a composite with framing structure of cobalt, titanium and tungsten carbides in the coatings.

  12. Contribution to the research on fracture properties of metals in the elasto-plastic field

    International Nuclear Information System (INIS)

    Rousselier, G.; Electricite de France, 77 - Ecuelles. Dept. Etudes des Materiaux)

    1979-01-01

    Standard Fracture Mechanics theories proved unsuccessful for the treatment of ductile fracture in metals. We have shown the necessity of better knowledge and satisfactory modelling of the fracture process, prior to any application to cracked bodies. In that way we developed stress-strain laws which take into consideration the growth of voids during ductile fracture. The damage resulting from void growth is characterized by internal parameters. Finite strain analysis leads to material instability, corresponding to the stage of void coalescence and material decohesion. This latter result is only true in a finite strain analysis. In the infinitesimal strain finite element numerical analysis of three-point bend specimens, a local fracture criterion is used. The experimental determination of this criterion is performed with axisymmetrical notched tension specimens, which allow the investigation of various stress triaxialities at fracture. The numerical analysis proved effective in the modelling of stable crack growth and size effect, and was compared with experimental results [fr

  13. Numerical simulation of abutment pressure redistribution during face advance

    Science.gov (United States)

    Klishin, S. V.; Lavrikov, S. V.; Revuzhenko, A. F.

    2017-12-01

    The paper presents numerical simulation data on the abutment pressure redistribution in rock mass during face advance, including isolines of maximum shear stress and pressure epures. The stress state of rock in the vicinity of a breakage heading is calculated by the finite element method using a 2D nonlinear model of a structurally heterogeneous medium with regard to plasticity and internal self-balancing stress. The thus calculated stress field is used as input data for 3D discrete element modeling of the process. The study shows that the abutment pressure increases as the roof span extends and that the distance between the face breast and the peak point of this pressure depends on the elastoplastic properties and internal self-balancing stress of a rock medium.

  14. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM.

    Science.gov (United States)

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G; Vázquez, Luis

    2015-11-25

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young's modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young's modulus.

  15. Mechanical properties of hydroxyapatite single crystals from nanoindentation data

    Science.gov (United States)

    Zamiri, A.; De, S.

    2011-01-01

    In this paper we compute elasto-plastic properties of hydroxyapatite single crystals from nanindentation data using a two-step algorithm. In the first step the yield stress is obtained using hardness and Young’s modulus data, followed by the computation of the flow parameters. The computational approach is first validated with data from existing literature. It is observed that hydroxyapatite single crystals exhibit anisotropic mechanical response with a lower yield stress along the [1010] crystallographic direction compared to the [0001] direction. Both work hardening rate and work hardening exponent are found to be higher for indentation along the [0001] crystallographic direction. The stress-strain curves extracted here could be used for developing constitutive models for hydroxyapatite single crystals. PMID:21262492

  16. Parallel processors and nonlinear structural dynamics algorithms and software

    Science.gov (United States)

    Belytschko, Ted

    1989-01-01

    A nonlinear structural dynamics finite element program was developed to run on a shared memory multiprocessor with pipeline processors. The program, WHAMS, was used as a framework for this work. The program employs explicit time integration and has the capability to handle both the nonlinear material behavior and large displacement response of 3-D structures. The elasto-plastic material model uses an isotropic strain hardening law which is input as a piecewise linear function. Geometric nonlinearities are handled by a corotational formulation in which a coordinate system is embedded at the integration point of each element. Currently, the program has an element library consisting of a beam element based on Euler-Bernoulli theory and trianglar and quadrilateral plate element based on Mindlin theory.

  17. Finite Element Simulation of Sheet Metal Forming Process Using Local Interpolation for Tool Surfaces

    International Nuclear Information System (INIS)

    Hama, Takayuki; Takuda, Hirohiko; Takamura, Masato; Makinouchi, Akitake; Teodosiu, Cristian

    2005-01-01

    Treatment of contact between a sheet and tools is one of the most difficult problems to deal with in finite-element simulations of sheet forming processes. In order to obtain more accurate tool models without increasing the number of elements, this paper describes a new formulation for contact problems using interpolation proposed by Nagata for tool surfaces. A contact search algorithm between sheet nodes and the interpolated tool surfaces was developed and was introduced into the static-explicit elastoplastic finite-element method code STAMP3D. Simulations of a square cup deep drawing process with a very coarsely discretized punch model were carried out. The simulated results showed that the proposed algorithm gave the proper drawn shape, demonstrating the validity of the proposed algorithm

  18. Plastic incompatibility stresses and stored elastic energy in plastically deformed copper

    Energy Technology Data Exchange (ETDEWEB)

    Baczmanski, A. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)], E-mail: baczman@ftj.agh.edu.pl; Hfaiedh, N.; Francois, M. [LASMIS, Universite de Technologie de Troyes, 11 rue Marie Curie, B.P. 2060, 10010 Troyes (France); Wierzbanowski, K. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2009-02-15

    The X-ray diffraction method and theoretical model of elastoplastic deformation were used to examine the residual stresses in polycrystalline copper. To this end, the {l_brace}2 2 0{r_brace} strain pole figures were determined for samples subjected to different magnitudes of tensile deformation. Using diffraction data and the self-consistent model, the tensor of plastic incompatibility stress was found for each orientation of a polycrystalline grain. Crystallographic textures, macroscopic and second-order residual stresses were considered in the analysis. As a result, the distributions of elastic stored energy and von Mises equivalent stress were presented in Euler space and correlated with the preferred orientations of grains. Moreover, using the model prediction, the variation of the critical resolved shear stress with grain orientation was determined.

  19. High-rate deformation and fracture of steel 09G2S

    Science.gov (United States)

    Balandin, Vl. Vas.; Balandin, Vl. Vl.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Lomunov, A. K.

    2014-11-01

    The results of experimental and theoretical studies of steel 09G2S deformation and fracture laws in a wide range of strain rates and temperature variations are given. The dynamic deformation curves and the ultimate characteristics of plasticity in high-rate strain were determined by the Kolsky method in compression, extension, and shear tests. The elastoplastic properties and spall strength were studied by using the gaseous gun of calibre 57 mm and the interferometer VISAR according to the plane-wave experiment technique. The data obtained by the Kolsky method were used to determine the parameters of the Johnson-Cook model which, in the framework of the theory of flow, describes how the yield surface radius depends on the strain, strain rate, and temperature.

  20. Simplified vibrocreep buckling analysis of circular cylindrical shells

    International Nuclear Information System (INIS)

    Simeonova, K.; Hadjikov, L.; Georgiev, K.; Iotov, I.

    1981-01-01

    The circular cylindrical shells are used as a mathematical model in the investigation of the reactions of the supporting elements in nuclear reactor core, airplane designing etc. The buckling in the process of vibrocreep is one of the possible catastrophes during the exploitation of those elements. The paper presents a simplified investigation of the vibro-creep stability of a shell axially pressed. The main simplification consists of the fact that the average process of vibro-creep is considered stationary. The modified constitutive equations of Maxwell-Gurevitch-Rabinovitch, concerning elasto-viscous and elasto-plastic material is used. The critical time is calculated after two criteria. Theoretical relations between the critical time and the dynamic loading velocity amplitude are obtained. Those relations are compared to relations experimentally proved. (orig.)

  1. On use of radial evanescence remain term in kinematic hardening

    International Nuclear Information System (INIS)

    Geyer, P.

    1995-01-01

    This paper presents the interest which lies in non-linear kinematic hardening rule with radial evanescence remain term as proposed for modelling multiaxial ratchetting. From analytical calculations in the case of the tension/torsion test, this ratchetting is compared with that proposed by Armstrong and Frederick. A modification is then proposed for Chaboche's elastoplastic model with two non-linear kinematic variables, by coupling the two types of hardening by means of two scalar parameters. Identification of these two parameters returns to speculate on the directions of strain in order to adjust the ratchetting to experimental observations. Using biaxial ratchetting tests on stainless steel 316 L specimens at ambient temperature, it is shown that satisfactory modelling of multiaxial ratchetting is obtained. (author). 4 refs., 5 figs

  2. Theoretical study of short pile effect in tunnel excavation

    Science.gov (United States)

    Tian, Xiao-yan; Liu, Jing; Gao, Xiao-mei; Li, Yuan

    2017-09-01

    The Misaki Sato Go ideal elastoplastic model is adopted and the two stage analysis theory is used to study the effect of tunnel excavation on short pile effect in this paper. In the first stage, the free field vertical displacement of the soil at the corresponding pile location is obtained by using empirical formula. In the second stage, the displacement is applied to the corresponding pile location. The equilibrium condition of micro physical differential equation settlement of piles. Then through logical deduction and the boundary condition expressions of the settlement calculation, obtain the pile side friction resistance and axial force of the week. Finally, an engineering example is used to analyze the influence of the change of main parameters on their effects.

  3. Stress identification in steam generator tubes from profile measurements

    International Nuclear Information System (INIS)

    Andrieux, S.; Voldoire, F.

    1993-01-01

    An identification method devoted to the determination of stresses in tubes, by means of profile measurements, provided by on site non-destructive evaluations, is presented here. From the only available data (the radial displacement w on the inner wall), the computation of the strains, and consequently the stresses in the elastoplastic range, is made within the framework of the shell theory. For this purpose, we need to determine the associated curvature w'': this step is an ill-posed problem, because of the lack of continuity with respect to the discrete data. This difficulty is overridden by means of an appropriate regularization procedure. The predictive ability of the method has been tested by comparison with direct simulations; we present an industrial application. (author)

  4. An analysis of a pipe bend subjected to in-plane loads

    International Nuclear Information System (INIS)

    Hellen, T.K.

    1979-01-01

    This report describes a set of finite element analyses conducted on a pipe bend subjected to in-plane loads. The pipe is thin-walled, and two types of finite element, shells and solid bricks, are compared elastically. An alternative semi-analytical technique has also been used and experimental results are available, all of which show good correlative agreement. The use of suitable mesh refinement and order of numerical integration is examined. Finally, the solid elements are used to follow a loading sequence incorporating elasto-plastic behaviour as conducted by experiment. This work is an updated version of that used for the CEC benchmark calculations for the Fast Reactor Codes and Standards Working Group, Activity No 2, on Structural Analysis. (author)

  5. Evaluation of effective material properties of spiral wound gasket through homogenization

    International Nuclear Information System (INIS)

    Mathan, G.; Siva Prasad, N.

    2010-01-01

    In this paper, a homogenization methodology is proposed to determine the material properties of spiral wound gaskets (SWGs) using finite element analysis through representative volume elements (RVE) of the gaskets. The constituents of this RVE are described by elasto-plastic material properties. The RVE are subjected to six load cases and the volume averaged responses are analyzed simultaneously to predict the anisotropic properties. The mechanical behaviour is simplified to an orthotropic material model with Hill's plasticity model and the properties are verified with micro-mechanical simulation and experimental results available in the literature. Reasonable agreement is obtained between the results. Formulae for elastic properties are also derived by a simplified analytical method based on lamination theory and compared with those obtained from homogenization.

  6. Evaluation of effective material properties of spiral wound gasket through homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Mathan, G. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Siva Prasad, N., E-mail: siva@iitm.ac.i [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2010-12-15

    In this paper, a homogenization methodology is proposed to determine the material properties of spiral wound gaskets (SWGs) using finite element analysis through representative volume elements (RVE) of the gaskets. The constituents of this RVE are described by elasto-plastic material properties. The RVE are subjected to six load cases and the volume averaged responses are analyzed simultaneously to predict the anisotropic properties. The mechanical behaviour is simplified to an orthotropic material model with Hill's plasticity model and the properties are verified with micro-mechanical simulation and experimental results available in the literature. Reasonable agreement is obtained between the results. Formulae for elastic properties are also derived by a simplified analytical method based on lamination theory and compared with those obtained from homogenization.

  7. Unusual plasticity and strength of metals at ultra-short load durations

    Science.gov (United States)

    Kanel, G. I.; Zaretsky, E. B.; Razorenov, S. V.; Ashitkov, S. I.; Fortov, V. E.

    2017-08-01

    This paper briefly reviews recent experimental results on the temperature-rate dependences of flow and fracture stresses in metals under high strain rate conditions for pulsed shock-wave loads with durations from tens of picoseconds up to microseconds. In the experiments, ultimate (‘ideal’) values of the shear and tensile strengths have been approached and anomalous growth of the yield stress with temperature at high strain rates has been confirmed for some metals. New evidence is obtained for the intense dislocation multiplication immediately originating in the elastic precursor of a compression shock wave. It is found that under these conditions inclusions and other strengthening factors may have a softening effect. Novel and unexpected features are observed in the evolution of elastoplastic compression shock waves.

  8. Second-Order Inelastic Dynamic Analysis of 3D Semi-Rigid Steel Frames Under Earthquake Loads with Three Components

    International Nuclear Information System (INIS)

    Ozakgul, Kadir

    2008-01-01

    In this study, it has been presented an algorithm for second-order elastoplastic dynamic time-history analysis of three dimensional frames that have steel members with semirigid joints. The proposed analysis accounts for material, geometric and connection nonlinearities. Material nonlinearity have been modeled by the Ramberg-Osgood relation. While the geometric nonlinearity caused by axial force has been described by the use of the geometric stiffness matrix, the nonlinearity caused by the interaction between the axial force and bending moment has been also described by the use of the stability functions. The independent hardening model has been used to describe the nonlinear behaviour of semi-rigid connections. Dynamic equation of motion has been solved by Newmark's constant acceleration method in time history domain

  9. Criticality in the Approach to Failure in Amorphous Solids

    Science.gov (United States)

    Lin, Jie; Gueudré, Thomas; Rosso, Alberto; Wyart, Matthieu

    2015-10-01

    Failure of amorphous solids is fundamental to various phenomena, including landslides and earthquakes. Recent experiments indicate that highly plastic regions form elongated structures that are especially apparent near the maximal shear stress Σmax where failure occurs. This observation suggested that Σmax acts as a critical point where the length scale of those structures diverges, possibly causing macroscopic transient shear bands. Here, we argue instead that the entire solid phase (Σ system-spanning events, and that their magnitude diverges at Σmax independently of the presence of shear bands. We relate the statistics and fractal properties of these rearrangements to an exponent θ that captures the stability of the material, which is observed to vary continuously with stress, and we confirm our predictions in elastoplastic models.

  10. On kinematical minimum principles for rates and increments in plasticity

    International Nuclear Information System (INIS)

    Zouain, N.

    1984-01-01

    The optimization approach for elastoplastic analysis is discussed showing that some minimum principles related to numerical methods can be derived by means of duality and penalization procedures. Three minimum principles for velocity and plastic multiplier rate fields are presented in the framework of perfect plasticity. The first one is the classical Greenberg formulation. The second one, due to Capurso, is developed here with different motivation, and modified by penalization of constraints so as to arrive at a third principle for rates. The counterparts of these optimization formulations in terms of discrete increments of displacements of displacements and plastic multipliers are discussed. The third one of these minimum principles for finite increments is recognized to be closely related to Maier's formulation of holonomic plasticity. (Author) [pt

  11. A contribution to the physically and geometrically nonlinear computer analysis of general reinforced concrete shells

    International Nuclear Information System (INIS)

    Zahlten, W.

    1990-02-01

    Starting from a Kirchhoff-Love type shell theory of finite rotations a layered shell element for reinforced concrete is developed. The plastic-fracturing theory due to Bazant/Kim is used to describe the uncracked concrete. Tension cracking is controlled by a principle tensile stress criterion. An elasto-plastic law with kinematic hardening models the reinforcing steel. The tension stiffening concept of Gilbert/Warner allows an averaged consideration of the concrete between cracks. By discretization of the displacement field the element matrices are obtained which are derived via tensor notation. The nonlinear structural response is computed by incremental-iterative path-tracing algorithms. The range of applicability of the model is finally be proven by several examples with time-invariant and time-dependent loading. (orig.) [de

  12. Contribution to the validation of thermal ratchetting prevision methods in metallic structures; Contribution a la validation des methodes de prevision du rochet thermique dans les structures metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Rakotovelo, A.M

    1998-03-01

    This work concerns the steady state assessment in the metallic structures subjected to thermomechanical cyclic loadings in biaxial stress state. The effect of the short time mechanical overloads is also investigated. The first chapter is devoted to a bibliographic research concerning the behaviour of the materials and the structures in the cyclic plasticity. Some works relate to the experimental aspect as well as the numerical one for the steady state assessment of such structures are presented. The experimental part of the study is presented in the second chapter. The experimental device was carried out in order to prescribe tension and torsion forces combined with cyclic thermal loading. Some tests was then carried out, among these tests certain include some overloads in tension or torsion. The last chapter describes the numerical calculations using different models (linear isotropic hardening, linear kinematic hardening and elasto-viscoplastic Chaboche's model) and the application of some simplified methods for the ratchetting assessment in the structures. We have considered two categories of methods. The first one is based on an elastic analysis (Bree's diagram, 3 Sm rule, efficiency rule) and the second one combines elastic analysis and elastoplastic analysis of the first cycle (Gatt's and Taleb's methods). The results of this study have enabled: to validate in the biaxial stress state an expression which takes into account the effect of mechanical short time overloads; to test the performances of considered models to describe the evolution of the structure during the first cycle and to take into account the effect of short time overloads. Among the considered models, the elastoplastic Chaboche's model seems to be the most accurate to describe the structure's behaviour during the first cycles; to validate some simplified methods. Certain methods based only on elastic analysis (Bee's diagram and efficiency rule) seem not

  13. Contribution to the validation of thermal ratchetting prevision methods in metallic structures

    International Nuclear Information System (INIS)

    Rakotovelo, A.M.

    1998-03-01

    This work concerns the steady state assessment in the metallic structures subjected to thermomechanical cyclic loadings in biaxial stress state. The effect of the short time mechanical overloads is also investigated. The first chapter is devoted to a bibliographic research concerning the behaviour of the materials and the structures in the cyclic plasticity. Some works relate to the experimental aspect as well as the numerical one for the steady state assessment of such structures are presented. The experimental part of the study is presented in the second chapter. The experimental device was carried out in order to prescribe tension and torsion forces combined with cyclic thermal loading. Some tests was then carried out, among these tests certain include some overloads in tension or torsion. The last chapter describes the numerical calculations using different models (linear isotropic hardening, linear kinematic hardening and elasto-viscoplastic Chaboche's model) and the application of some simplified methods for the ratchetting assessment in the structures. We have considered two categories of methods. The first one is based on an elastic analysis (Bree's diagram, 3 Sm rule, efficiency rule) and the second one combines elastic analysis and elastoplastic analysis of the first cycle (Gatt's and Taleb's methods). The results of this study have enabled: to validate in the biaxial stress state an expression which takes into account the effect of mechanical short time overloads; to test the performances of considered models to describe the evolution of the structure during the first cycle and to take into account the effect of short time overloads. Among the considered models, the elastoplastic Chaboche's model seems to be the most accurate to describe the structure's behaviour during the first cycles; to validate some simplified methods. Certain methods based only on elastic analysis (Bee's diagram and efficiency rule) seem not suitable for the considered kind of

  14. Frictional interactions in forming processes: New studies with transparent sapphire strip-drawing dies

    Science.gov (United States)

    Rao, R. S.; Lu, C. Y.; Wright, P. K.; Devenpeck, M. L.; Richmond, O.; Appleby, E. J.

    1982-05-01

    This research is concerned with the frictional interactions at the toolwork interfaces in the machining and strip-drawing processes. A novel feature is that transparent sapphire (single crystal Al2O3) is being used as the tool and die material. This allows the tribological features of the interface to be directly observed and recorded on movie-film. These qualitative studies provide information on the role of lubricants. In addition, techniques are being developed to quantify the velocity gradient along the interface. For example, in the drawing work it has been found that tracer markings (e.g. dye-spots), applied to the undrawn strip, remain intact during drawing and can be tracked along the sapphire/strip interface. Such data will be used as input to a finite-element, elasto-plastic-workhardening model of the deformation process. The latter can compute strip deformation characteristics, drawing forces and local coefficients of friction at the interface. Introductory results will be presented in this paper, obtained from drawing tin-plated mild steel with sapphire and cemented carbide dies. Drawing loads and die-separating forces will be presented and movie-films of the action of tracer markings at the interface shown. In order to demonstrate how this data can be used in an analysis of a large strain deformation process with friction, initial results from running the FIPDEF elasto-plastic code will be discussed. From a commercial viewpoint research on strip-drawing is of special interest to the can-making industry. From a physical viewpoint stripdrawing is of particular interest because it is a symmetrical, plane strain deformation and, in comparison with other metal processing operations, it is more readily modeled. However, until now the elasto-plastic codes that have been developed to predictively model drawing have had limitations: the most notable being that of quantifying the friction conditions at the die-work interface. Hence the specification of the

  15. Effect of frequency and flexibility ratio on the seismic response of deep tunnels

    Directory of Open Access Journals (Sweden)

    Eimar Sandoval

    2017-06-01

    Full Text Available Two-dimensional dynamic numerical analyses have been conducted, using FLAC 7.0, to evaluate the seismic response of underground structures located far from the seismic source, placed in either linear-elastic or nonlinear elastoplastic ground. The interaction between the ground and deep circular tunnels with a tied interface is considered. For the simulations, it is assumed that the liner remains in its elastic regime, and plane strain conditions apply to any cross section perpendicular to the tunnel axis. An elastoplastic constitutive model is implemented in FLAC to simulate the nonlinear ground. The effect of input frequency and relative stiffness between the liner and the ground, on the seismic response of tunnels, is evaluated. The response is studied in terms of distortions normalized with respect to those of the free field, and load demand (axial forces and bending moments in the liner. In all cases, i.e. for linear-elastic and nonlinear ground models, the results show negligible effect of the input frequency on the distortions of the cross section, for input frequencies smaller than 5 Hz; that is for ratios between the wave length and the tunnel opening (λ/D larger than ten for linear-elastic and nine for nonlinear ground. Larger normalized distortions are obtained for the nonlinear than for the linear-elastic ground, for the same relative stiffness, with differences increasing as the tunnel becomes more flexible, or when the amplitude of the dynamic input shear stress increases. It has been found that normalized distortions for the nonlinear ground do not follow a unique relationship, as it happens for the linear-elastic ground, but increase as the amplitude of the dynamic input increases. The loading in the liner decreases as the structure becomes more flexible with respect to the ground, and is smaller for a tunnel placed in a stiffer nonlinear ground than in a softer nonlinear ground, for the same flexibility ratio.

  16. Modelling the hydro-mechanical behaviour of swelling unsaturated soils; Modelisation du comportement hydromecanique des sols gonflants non satures

    Energy Technology Data Exchange (ETDEWEB)

    Mrad, M

    2005-10-15

    The use of compacted swelling soils in engineering practice is very widely spread, especially in geotechnical and environmental engineering. After their setup, these materials are likely to be subject to complex suction/stress paths involving significant variations of their hydro-mechanical properties which can affect their initial behaviour. It is important to be able to predict the hydro-mechanical behaviour of these materials taking into account the significant applications for which they are intended. Barcelona team developed a finite-element code (Code-Bright) for the thermo-hydro-mechanical coupling (THM) integrating the BBM elastoplastic model for unsaturated soils based on the independent variables approach. This model is recognized to correctly describe the hydro-mechanical behaviour of unsaturated soils but fails to take into account some particular observed aspects on swelling soils. A second model BExM was then proposed to address these aspects. The objective of this study is: (i) to implement the elastoplastic model BExM for the unsaturated swelling soils in the finite-element code (Code-Bright); (ii) to check the numerical model validity through the numerical simulation of laboratory tests made on swelling soils; and (iii) to apply this model to some practical problems. For this purpose, a new family of numerical procedures adapted to the BExM model was introduced into the code. The equation of the yield surface of this model for a given deviatoric stress states was given in a manner to facilitate calculations of its derivatives. The model was checked by the numerical simulation of suction-controlled odometric tests made on three different swelling soils. The simulation results showed that the numerical model is able to correctly reproduce the experimental data. Lastly, the model was applied to two practical problems: radioactive waste repository in deep geological layers and a shallow footing under the action of a swelling soil. The results obtained

  17. Modeling Thermal Transport and Surface Deformation on Europa using Realistic Rheologies

    Science.gov (United States)

    Linneman, D.; Lavier, L.; Becker, T. W.; Soderlund, K. M.

    2017-12-01

    Most existing studies of Europa's icy shell model the ice as a Maxwell visco-elastic solid or viscous fluid. However, these approaches do not allow for modeling of localized deformation of the brittle part of the ice shell, which is important for understanding the satellite's evolution and unique geology. Here, we model the shell as a visco-elasto-plastic material, with a brittle Mohr-Coulomb elasto-plastic layer on top of a convective Maxwell viscoelastic layer, to investigate how thermal transport processes relate to the observed deformation and topography on Europa's surface. We use Fast Lagrangian Analysis of Continua (FLAC) code, which employs an explicit time-stepping algorithm to simulate deformation processes in Europa's icy shell. Heat transfer drives surface deformation within the icy shell through convection and tidal dissipation due to its elliptical orbit around Jupiter. We first analyze the visco-elastic behavior of a convecting ice layer and the parameters that govern this behavior. The regime of deformation depends on the magnitude of the stress (diffusion creep at low stresses, grain-size-sensitive creep at intermediate stresses, dislocation creep at high stresses), so we calculate effective viscosity each time step using the constitutive stress-strain equation and a combined flow law that accounts for all types of deformation. Tidal dissipation rate is calculated as a function of the temperature-dependent Maxwell relaxation time and the square of the second invariant of the strain rate averaged over each orbital period. After we initiate convection in the viscoelastic layer by instituting an initial temperature perturbation, we then add an elastoplastic layer on top of the convecting layer and analyze how the brittle ice reacts to stresses from below and any resulting topography. We also take into account shear heating along fractures in the brittle layer. We vary factors such as total shell thickness and minimum viscosity, as these parameters are

  18. On use of radial evanescence remain term in kinematic hardening

    International Nuclear Information System (INIS)

    Geyer, P.

    1995-10-01

    A fine modelling of the material' behaviour can be necessary to study the mechanical strength of nuclear power plant' components under cyclic loads. Ratchetting is one of the last phenomena for which numerical models have to be improved. We discuss in this paper on use of radial evanescence remain term in kinematic hardening to improve the description of ratchetting in biaxial loading tests. It's well known that Chaboche elastoplastic model with two non linear kinematic hardening variables initially proposed by Armstrong and Frederick, usually over-predicts accumulation of ratchetting strain. Burlet and Cailletaud proposed in 1987 a non linear kinematic rule with a radial evanescence remain term. The two models lead to identical formulation for proportional loadings. In the case of a biaxial loading test (primary+secondary loading), Burlet and Cailletaud model leads to accommodation, when Chaboche one's leads to ratchetting with a constant increment of strain. So we can have an under-estimate with the first model and an over-estimate with the second. An easy method to improve the description of ratchetting is to combine the two kinematic rules. Such an idea is already used by Delobelle in his model. With analytical results in the case of tension-torsion tests, we show in a first part of the paper, the interest of radial evanescence remain term in the non linear kinematic rule to describe ratchetting: we give the conditions to get adaptation, accommodation or ratchetting and the value of the strain increment in the last case. In the second part of the paper, we propose to modify the elastoplastic Chaboche model by coupling the two types of hardening by means of two scalar parameters which can be identified independently on biaxial loading tests. Identification of these two parameters returns to speculate on the directions of strain in order to adjust the ratchetting to experimental observations. We use the experimental results on the austenitic steel 316L at room

  19. Coupling between mechanical behaviour and drying of cementing materials: experimental study on mortars; Couplage comportement mecanique et dessiccation des materiaux a matrice cimentaire: etude experimentale sur mortiers

    Energy Technology Data Exchange (ETDEWEB)

    Yurtdas, I

    2003-10-15

    The aim of this work is to understand the desiccation effects on the mechanical behaviour of cement materials. Two mortars of ratio E/C=0.5 and 0.8 have been tested. All the tests have been implemented after a six months maturing in water. The experimental study has been carried out as follows: 1)tests characterizing the differed behaviour and the transport properties have been carried out 2)tests characterizing the short term multiaxial mechanical behaviour have been carried out. The desiccation shrinkage in terms of the weight loss presents three characteristic phases. The permeability measurement on the mortar 05 shows that the permeability of the specimens dried and crept is greater than those of the specimens dried before being crept, and the permeability of the specimens submitted to a desiccation creep and then dried is sensibly the same as the last one in spite of a very important differed deformation. The influence of the desiccation on the uniaxial and deviatoric compressions resistance depends of the binding agent: for a cement paste of good quality (E/C=0.5), the resistances increase with the desiccation because of the capillary depression and of the hydric gradients. For a cement paste of low quality (E/C=0.8), there is a competitive effect between the increase of the microcracks induced and the specimen rigidification; the microcracking becomes then the parameter controlling the rupture process. The elasto-plastic behaviour becomes a damageable elasto-plastic behaviour during desiccation which induces, as the decrease of the E/C ratio, a translation of the elastic limit surfaces and ruptures towards higher stresses. In parallel, the elastic properties and the incompressibility modulus are damaged and the volume deformations increase after the drying. At last, the decrease of the Young modulus and the passage to the third shrinkage phase in terms of the weight loss coincide. This can be attributed to the induced microcracking: this decrease of the

  20. Characterization of thermomechanical damage on tungsten surfaces during long-duration plasma transients

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, David, E-mail: david.rivera.ucla@gmail.com; Crosby, Tamer; Sheng, Andrew; Ghoniem, Nasr M.

    2014-12-15

    A new experimental facility constructed at UCLA for the simulation of high heat flux effects on plasma-facing materials is described. The High Energy Flux Test Facility (HEFTY) is equipped with a Praxair model SG-100 plasma gun, which is nominally rated at 80 kW of continuous operation, of which approximately 30 kW reaches the target due to thermal losses. The gun is used to impart high intermittent heat flux to metal samples mounted within a cylindrical chamber. The system is capable of delivering an instantaneous heat flux in the range of 30–300 MW/m{sup 2}, depending on sample proximity to the gun. The duration of the plasma heat flux is in the range of 1–1000 s, making it ideal for studies of mild plasma transients of relatively long duration. Tungsten and tungsten-copper alloy metal samples are tested in these transient heat flux conditions, and the surface is characterized for damage evaluation using optical, SEM, XRD, and micro-fabrication techniques. Results from a Finite Element (FE) thermo-elastoplasticity model indicate that during the heat-up phase of a plasma transient pulse, the majority of the sample surface is under compressive stresses leading to plastic deformation of the surface. Upon sample cooling, the recovered elastic strain of cooler parts of the sample exceeds that from parts that deformed plastically, resulting in a tensile surface self-stress (residual surface stress). The intensity of the residual tensile surface stress is experimentally correlated with the onset of complex surface fracture morphology on the tungsten surface, and extending below the surface region. Micro-compression mechanical tests of W micro-pillars show that the material has significant plasticity, failing by a “barreling” mode before plasma exposure, and by normal dislocation slip and localized shear after plasma exposure. Ongoing modeling of the complex thermo-fracture process, coupled with elasto-plasticity is based on a phase field approach for distributed

  1. Coupling between mechanical behaviour and drying of cementing materials: experimental study on mortars

    International Nuclear Information System (INIS)

    Yurtdas, I.

    2003-10-01

    The aim of this work is to understand the desiccation effects on the mechanical behaviour of cement materials. Two mortars of ratio E/C=0.5 and 0.8 have been tested. All the tests have been implemented after a six months maturing in water. The experimental study has been carried out as follows: 1)tests characterizing the differed behaviour and the transport properties have been carried out 2)tests characterizing the short term multiaxial mechanical behaviour have been carried out. The desiccation shrinkage in terms of the weight loss presents three characteristic phases. The permeability measurement on the mortar 05 shows that the permeability of the specimens dried and crept is greater than those of the specimens dried before being crept, and the permeability of the specimens submitted to a desiccation creep and then dried is sensibly the same as the last one in spite of a very important differed deformation. The influence of the desiccation on the uniaxial and deviatoric compressions resistance depends of the binding agent: for a cement paste of good quality (E/C=0.5), the resistances increase with the desiccation because of the capillary depression and of the hydric gradients. For a cement paste of low quality (E/C=0.8), there is a competitive effect between the increase of the microcracks induced and the specimen rigidification; the microcracking becomes then the parameter controlling the rupture process. The elasto-plastic behaviour becomes a damageable elasto-plastic behaviour during desiccation which induces, as the decrease of the E/C ratio, a translation of the elastic limit surfaces and ruptures towards higher stresses. In parallel, the elastic properties and the incompressibility modulus are damaged and the volume deformations increase after the drying. At last, the decrease of the Young modulus and the passage to the third shrinkage phase in terms of the weight loss coincide. This can be attributed to the induced microcracking: this decrease of the

  2. Elasto-Plastic Stress Analysis in Rotating Disks and Pressure Vessels Made of Functionally Graded Materials

    Directory of Open Access Journals (Sweden)

    Amir T. Kalali

    Full Text Available Abstract A new elastio-plastic stress solution in axisymmetric problems (rotating disk, cylindrical and spherical vessel is presented. The rotating disk (cylindrical and spherical vessel was made of a ceramic/metal functionally graded material, i.e. a particle-reinforced composite. It was assumed that the material's plastic deformation follows an isotropic strain-hardening rule based on the von-Mises yield criterion. The mechanical properties of the graded material were modeled by the modified rule of mixtures. By assuming small strains, Hencky's stress-strain relation was used to obtain the governing differential equations for the plastic region. A numerical method for solving those differential equations was then proposed that enabled the prediction of stress state within the structure. Selected finite element results were also presented to establish supporting evidence for the validation of the proposed approach.

  3. One-floor building as elasto-plastic oscillator subject to and interacting with Gaussian base motion

    DEFF Research Database (Denmark)

    Randrup-Thomsen, Søren; Ditlevsen, Ove Dalager

    1997-01-01

    vibration of the (n-1)th floor. Moreover the model simulates the soil-structure interaction through the exchange of energy between the top floor and the elastic structure below the top floor. The obtained distribution approximations are checked by comparison with direct simulation results using...

  4. NUMERICAL MODELLING AS NON-DESTRUCTIVE METHOD FOR THE ANALYSES AND DIAGNOSIS OF STONE STRUCTURES: MODELS AND POSSIBILITIES

    Directory of Open Access Journals (Sweden)

    Nataša Štambuk-Cvitanović

    1999-12-01

    Full Text Available Assuming the necessity of analysis, diagnosis and preservation of existing valuable stone masonry structures and ancient monuments in today European urban cores, numerical modelling become an efficient tool for the structural behaviour investigation. It should be supported by experimentally found input data and taken as a part of general combined approach, particularly non-destructive techniques on the structure/model within it. For the structures or their detail which may require more complex analyses three numerical models based upon finite elements technique are suggested: (1 standard linear model; (2 linear model with contact (interface elements; and (3 non-linear elasto-plastic and orthotropic model. The applicability of these models depend upon the accuracy of the approach or type of the problem, and will be presented on some characteristic samples.

  5. Nonlinear piping damping and response predictions

    International Nuclear Information System (INIS)

    Severud, L.K.; Weiner, E.O.; Lindquist, M.R.; Anderson, M.J.; Wagner, S.E.

    1986-10-01

    The high level dynamic testing of four prototypic piping systems, used to provide benchmarks for analytical prediction comparisons, is overviewed. The size of pipe tested ranged from one-inch to six-inches in diameter and consisted of carbon steel or stainless steel material. Failure of the tested systems included progressive gross deformation or some combination of ratchetting-fatigue. Pretest failure predictions and post test comparisons using simplified elastic and elasto-plastic methods are presented. Detailed non-linear inelastic analyses are also shown, along with a typical ratchet-fatigue failure calculation. A simplified method for calculating modal equivalent viscous damping for snubbers and plastic hinges is also described. Conclusions are made regarding the applicability of the various analytical failure predictive methods and recommendations are made for future analytic and test efforts

  6. Structural Optimization with Reliability Constraints

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1986-01-01

    During the last 25 years considerable progress has been made in the fields of structural optimization and structural reliability theory. In classical deterministic structural optimization all variables are assumed to be deterministic. Due to the unpredictability of loads and strengths of actual......]. In this paper we consider only structures which can be modelled as systems of elasto-plastic elements, e.g. frame and truss structures. In section 2 a method to evaluate the reliability of such structural systems is presented. Based on a probabilistic point of view a modern structural optimization problem...... is formulated in section 3. The formulation is a natural extension of the commonly used formulations in determinstic structural optimization. The mathematical form of the optimization problem is briefly discussed. In section 4 two new optimization procedures especially designed for the reliability...

  7. Constitutional equations of thermal stresses of particle-reinforced composite

    International Nuclear Information System (INIS)

    Asakawa, Atsushi; Noda, Naotake; Tohgo, Keiichiro; Tsuji, Tomoaki.

    1994-01-01

    Functionally gradient materials (FGM) have been developed as ultrahigh-heat-resistant materials in aircraft, space engineering and nuclear fields. In the heat-resistant FGM which contain particles (ceramics) in the matrix (metal), the matrix will be subjected to plastic deformation, particles will be debonded, and finally cracks will be generated. The constitutive equations of FGM which take into account the damage process and change in temperature are necessary in order to solve these phenomena. In this paper, the constitutive equations of particle-reinforced composites with consideration of the damage process and change in temperature are estimated by the equivalent inclusion method in terms of elastoplasticity. The stress-strain relations and the coefficients of linear thermal expansion of the composites (Al-PSZ and Ti-PSZ) are calculated in ultrahigh temperature. (author)

  8. Finite element modeling of a shaking table test to evaluate the dynamic behaviour of a soil-foundation system

    International Nuclear Information System (INIS)

    Abate, G.; Massimino, M. R.; Maugeri, M.

    2008-01-01

    The deep investigation of soil-foundation interaction behaviour during earthquakes represent one of the key-point for a right seismic design of structures, which can really behave well during earthquake, avoiding dangerous boundary conditions, such as weak foundations supporting the superstructures. The paper presents the results of the FEM modeling of a shaking table test involving a concrete shallow foundation resting on a Leighton Buzzard sand deposit. The numerical simulation is performed using a cap-hardening elasto-plastic constitutive model for the soil and specific soil-foundation contacts to allow slipping and up-lifting phenomena. Thanks to the comparison between experimental and numerical results, the power and the limits of the proposed numerical model are focused. Some aspects of the dynamic soil-foundation interaction are also pointed out

  9. Formability Prediction Of Aluminum Sheet In Automotive Applications

    International Nuclear Information System (INIS)

    Leppin, Christian; Daniel, Dominique; Shahani, Ravi; Gese, Helmut; Dell, Harry

    2007-01-01

    In the following paper, a full mechanical characterization of the AA6016 T4 aluminum alloy car body sheet DR100 is presented. A comprehensive experimental program was performed to identify and model the orthotopic elasto-plastic deformation behavior of the material and its fracture characteristics including criteria for localized necking, ductile fracture and shear fracture. The commercial software package MF GenYld + CrachFEM in combination with the explicit finite element code Ls-Dyna is used to validate the quality of the material model with experiments, namely, prediction of the FLD, deep drawing with a cross-shaped punch and finally, analysis of a simplified hemming process using a solid discretization of the problem. The focus is on the correct prediction of the limits of the material in such processes

  10. Numerical modelling of ductile damage mechanics coupled with an unconventional plasticity model

    Directory of Open Access Journals (Sweden)

    R. Fincato

    2016-10-01

    Full Text Available Ductility in metals includes the material’s capability to tolerate plastic deformations before partial or total degradation of its mechanical properties. Modelling this parameter is important in structure and component design because it can be used to estimate material failure under a generic multi-axial stress state. Previous work has attempted to provide accurate descriptions of the mechanical property degradation resulting from the formation, growth, and coalescence of microvoids in the medium. Experimentally, ductile damage is inherently linked with the accumulation of plastic strain; therefore, coupling damage and elastoplasticity is necessary for describing this phenomenon accurately. In this paper, we combine the approach proposed by Lemaitre with the features of an unconventional plasticity model, the extended subloading surface model, to predict material fatigue even for loading conditions below the yield stress

  11. Finite element method programs to analyze irradiation behavior of fuel pellets

    International Nuclear Information System (INIS)

    Yamada, Rayji; Harayama, Yasuo; Ishibashi, Akihiro; Ono, Masao.

    1979-09-01

    For the safety assessment of reactor fuel, it is important to grasp local changes of fuel pins due to irradiation in a reactor. Such changes of fuel result mostly from irradiation of fuel pellets. Elasto-plastic analysis programs based on the finite element method were developed to analyze these local changes. In the programs, emphasis is placed on the analysis of cracks in pellets; the interaction between cracked-pellets and cladding is not taken into consideration. The two programs developed are FEMF3 based on a two-dimensional axially symmetric model (r-z system) and FREB4 on a two-dimensional plane model (r-theta system). It is discussed in this report how the occurrence and distribution of cracks depend on heat rate of the fuel pin. (author)

  12. Micromechanical failure in fiber-reinforced composites

    DEFF Research Database (Denmark)

    Ashouri Vajari, Danial

    Micromechanical failure mechanisms occurring in unidirectional fiber-reinforced composites are studied by means of the finite element method as well as experimental testing. This study highlights the effect of micro-scale features such as fiber/matrix interfacial debonding, matrix cracking...... and microvoids on the microscopic and macroscopic mechanical response of composite materials. To this end, first a numerical study is carried out to explore ways to stabilize interfacial crack growth under dominant Mode-I fracture using the cohesive zone model. Consequently, this study suggests a method...... composites. In the first approach, the J2 plasticity model is implemented to model the elasto-plastic behavior of the matrix while in the second strategy the modified Drucker-Prager plasticity model is utilized to account for brittle-like and pressure dependent behavior of an epoxy matrix. In addition...

  13. Application of a general purpose finite element program system in pressure vessel technology

    International Nuclear Information System (INIS)

    Aamodt, B.; Sandsmark, N.; Medonos, S.

    1977-01-01

    Main advantages of using general purpose finite element program systems in structural analysis are summarized. Several illustrative applications of the program system SESAM-69 to pressure vessel problems are described. The first example is a dynamic analysis of the motor housing of the internal main circulation pump of a BWR nuclear reactor. The next example is a transient heat conduction and stress analysis of deflector of feeding nozzle of PWR nuclear reactor. Then, numerical calculations of stress intensity factors and fatigue crack growth of semi-elliptical surface cracks are discussed. And finally, an elasto-plastic analysis of a thick plate with edge-cracks is considered. It is concluded that due to the fact that general purpose finite element program systems are general and user-orientated, they will gain increasingly higher popularity in the years ahead

  14. Study on production mechanism of welding residual stress at the juncture of a pipe penetrating a thick plate

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Enomoto, Kunio; Okamoto, Noriaki; Saitoh, Hideyo; Hayashi, Eisaku.

    1994-01-01

    This paper studies welding residual stresses at the intersection of a small diameter pipe penetrating a thick plate. The pipe is welded to the plate, and Tungsten Innert Gas (TIG) cladding is melted on the inner surface of the pipe to protect it from stress corrosion cracking due to long operation in nuclear power plants. Stresses are calculated by heat conduction analysis and thermal elasto-plastic analysis, and also measured by strain gauges. Welding residual stresses are shown to have no corrosive influence on the inner pipe surface, and the stresses are compressed enough to protect the pipe against stress corrosion cracking on the outer surface. It was also studied to make clear the production mechanism of the residual stresses which were generated by welding processes at the pipe. (author)

  15. Mathematical modelling in solid mechanics

    CERN Document Server

    Sofonea, Mircea; Steigmann, David

    2017-01-01

    This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling a...

  16. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology.

    Science.gov (United States)

    Podczeck, Fridrun; Drake, Kevin R; Newton, J Michael

    2013-09-15

    In the literature various solutions exist for the calculation of the diametral compression tensile strength of doubly-convex tablets and each approach is based on experimental data obtained from single materials (gypsum, microcrystalline cellulose) only. The solutions are represented by complex equations and further differ for elastic and elasto-plastic behaviour of the compacts. The aim of this work was to develop a general equation that is applicable independently of deformation behaviour and which is based on simple tablet dimensions such as diameter and total tablet thickness only. With the help of 3D-FEM analysis the tensile failure stress of doubly-convex tables with central cylinder to total tablet thickness ratios W/D between 0.06 and 0.50 and face-curvature ratios D/R between 0.25 and 1.85 were evaluated. Both elastic and elasto-plastic deformation behaviour were considered. The results of 80 individual simulations were combined and showed that the tensile failure stress σt of doubly-convex tablets can be calculated from σt=(2P/πDW)(W/T)=2P/πDT with P being the failure load, D the diameter, W the central cylinder thickness, and T the total thickness of the tablet. This equation converts into the standard Brazilian equation (σt=2P/πDW) when W equals T, i.e. is equally valid for flat cylindrical tablets. In practice, the use of this new equation removes the need for complex measurements of tablet dimensions, because it only requires values for diameter and total tablet thickness. It also allows setting of standards for the mechanical strength of doubly-convex tablets. The new equation holds both for elastic and elasto-plastic deformation behaviour of the tablets under load. It is valid for all combinations of W/D-ratios between 0.06 and 0.50 with D/R-ratios between 0.00 and 1.85 except for W/D=0.50 in combination with D/R-ratios of 1.85 and 1.43 and for W/D-ratios of 0.40 and 0.30 in combination with D/R=1.85. FEM-analysis indicated a tendency to

  17. a Study on the Stability of Earth DAM Subjected to the Seismic Load

    Science.gov (United States)

    Qi, Jinghua; Che, Ailan; Ge, Xiurun

    For ensuring the earth dam's stability of Wangqingtuo reservoir when silt liquefaction happens during Tangshan earthquake, a large amount of laboratory soil tests and field measurements have been performed to obtain the mechanic properties of the soil and silt dynamic parameters. On the basis of the soil tests, the equivalent linear constitutive model is employed in the dynamic numerical simulation of the typical dam and the results indicate that the shear deformation is induced by the foundation liquefaction with the help of the geo-slope software. Moreover, the stability analysis is performed using the finite element elasto-plastic model that is considered the Mohr-Coulomb failure criteria to calculate the stability factor. The factors indicate the local instability would take place because of the shear action. At last, the measures are introduced to the designers for preventing the dam from the instability.

  18. High efficiency algorithm for 3D transient thermo-elasto-plastic contact problem in reactor pressure vessel sealing system

    International Nuclear Information System (INIS)

    Xu Mingyu; Lin Tengjiao; Li Runfang; Du Xuesong; Li Shuian; Yang Yu

    2005-01-01

    There are some complex operating cases such as high temperature and high pressure during the operating process of nuclear reactor pressure vessel. It is necessary to carry out mechanical analysis and experimental investigation for its sealing ability. On the basis of the self-developed program for 3-D transient sealing analysis for nuclear reactor pressure vessel, some specific measures are presented to enhance the calculation efficiency in several aspects such as the non-linear solution of elasto-plastic problem, the mixed solution algorithm for contact problem as well as contract heat transfer problem and linear equation set solver. The 3-D transient sealing analysis program is amended and complemented, with which the sealing analysis result of the pressure vessel model can be obtained. The calculation results have good regularity and the calculation efficiency is twice more than before. (authors)

  19. FEM analysis of mechanical behaviour of coil support connections in Wendelstein 7-X fusion reactor

    International Nuclear Information System (INIS)

    Krzesinski, G.; Zagrajek, T.; Marek, P.; Dobosz, R.; Czarkowski, P.; Kurzydlowski, K.J.

    2006-01-01

    The objective of Wendelstein 7-X project is the stellarator-type fusion reactor. In this device plasma channel is under control of magnetic field coming from magnet system of very complicated shape, made of 70 superconducting coils symmetrically arranged in 5 identical sections. Every coil is connected to central ring with two extensions which transfer loads resulting from electromagnetic field and gravity. The aim of this work was to analyse mechanical behaviour of the bolted connections using detailed 3D finite element models. All simulations were performed assuming elasto-plastic behaviour of the materials, assembly stresses and friction contacts between different parts of the connections. Stress distributions, displacements, forces acting on the bolts and welds were studied using standard and submodeling routines. The results were subsequently used to optimize the design of critical central support elements. (author)

  20. Network Modelling of the Influence of Swelling on the Transport Behaviour of Bentonite

    Directory of Open Access Journals (Sweden)

    Ignatios Athanasiadis

    2016-12-01

    Full Text Available Wetting of bentonite is a complex hydro-mechanical process that involves swelling and, if confined, significant structural changes in its void structure. A coupled structural transport network model is proposed to investigate the effect of wetting of bentonite on retention conductivity and swelling pressure response. The transport network of spheres and pipes, representing voids and throats, respectively, relies on Laplace–Young’s equation to model the wetting process. The structural network uses a simple elasto-plastic approach without hardening to model the rearrangement of the fabric. Swelling is introduced in the form of an eigenstrain in the structural elements, which are adjacent to water filled spheres. For a constrained cell, swelling is shown to produce plastic strains, which result in a reduction of pipe and sphere spaces and, therefore, influence the conductivity and retention behaviour.

  1. Elements of Constitutive Modelling and Numerical Analysis of Frictional Soils

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    of a constitutive model for soil is based on a profound knowledge of the soil behaviour upon loading. In the present study it is attempted to get a better understanding of the soil behaviour bv performing a number of triaxial compression tests on sand. The stress-strain behaviour of sand depends strongly......This thesis deals with elements of elasto-plastic constitutive modelling and numerical analysis of frictional soils. The thesis is based on a number of scientific papers and reports in which central characteristics of soil behaviour and applied numerical techniques are considered. The development...... and subsequently dilates during shear. The change in the volumetric behaviour of the soil skeleton is commonly referred to as the characteristic state. The stress ratio corresponding to the characteristic state is independent of the mean normal effective stress and the relative density, but depends on the stress...

  2. Particle-based solid for nonsmooth multidomain dynamics

    Science.gov (United States)

    Nordberg, John; Servin, Martin

    2018-04-01

    A method for simulation of elastoplastic solids in multibody systems with nonsmooth and multidomain dynamics is developed. The solid is discretised into pseudo-particles using the meshfree moving least squares method for computing the strain tensor. The particle's strain and stress tensor variables are mapped to a compliant deformation constraint. The discretised solid model thus fit a unified framework for nonsmooth multidomain dynamics simulations including rigid multibodies with complex kinematic constraints such as articulation joints, unilateral contacts with dry friction, drivelines, and hydraulics. The nonsmooth formulation allows for impact impulses to propagate instantly between the rigid multibody and the solid. Plasticity is introduced through an associative perfectly plastic modified Drucker-Prager model. The elastic and plastic dynamics are verified for simple test systems, and the capability of simulating tracked terrain vehicles driving on a deformable terrain is demonstrated.

  3. Advanced development of BEM for elastic and inelastic dynamic analysis of solids

    Science.gov (United States)

    Banerjee, P. K.; Ahmad, S.; Wang, H. C.

    1989-01-01

    Direct Boundary Element formulations and their numerical implementation for periodic and transient elastic as well as inelastic transient dynamic analyses of two-dimensional, axisymmetric and three-dimensional solids are presented. The inelastic formulation is based on an initial stress approach and is the first of its kind in the field of Boundary Element Methods. This formulation employs the Navier-Cauchy equation of motion, Graffi's dynamic reciprocal theorem, Stokes' fundamental solution, and the divergence theorem, together with kinematical and constitutive equations to obtain the pertinent integral equations of the problem in the time domain within the context of the small displacement theory of elastoplasticity. The dynamic (periodic, transient as well as nonlinear transient) formulations have been applied to a range of problems. The numerical formulations presented here are included in the BEST3D and GPBEST systems.

  4. Failure Analysis of a Sheet Metal Blanking Process Based on Damage Coupling Model

    Science.gov (United States)

    Wen, Y.; Chen, Z. H.; Zang, Y.

    2013-11-01

    In this paper, a blanking process of sheet metal is studied by the methods of numerical simulation and experimental observation. The effects of varying technological parameters related to the quality of products are investigated. An elastoplastic constitutive equation accounting for isotropic ductile damage is implemented into the finite element code ABAQUS with a user-defined material subroutine UMAT. The simulations of the damage evolution and ductile fracture in a sheet metal blanking process have been carried out by the FEM. In order to guarantee computation accuracy and avoid numerical divergence during large plastic deformation, a specified remeshing technique is successively applied when severe element distortion occurs. In the simulation, the evolutions of damage at different stage of the blanking process have been evaluated and the distributions of damage obtained from simulation are in proper agreement with the experimental results.

  5. Boundary-integral equation formulation for time-dependent inelastic deformation in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V; Mukherjee, S

    1977-01-01

    The mathematical structure of various constitutive relations proposed in recent years for representing time-dependent inelastic deformation behavior of metals at elevated temperatues has certain features which permit a simple formulation of the three-dimensional inelasticity problem in terms of real time rates. A direct formulation of the boundary-integral equation method in terms of rates is discussed for the analysis of time-dependent inelastic deformation of arbitrarily shaped three-dimensional metallic bodies subjected to arbitrary mechanical and thermal loading histories and obeying constitutive relations of the kind mentioned above. The formulation is based on the assumption of infinitesimal deformations. Several illustrative examples involving creep of thick-walled spheres, long thick-walled cylinders, and rotating discs are discussed. The implementation of the method appears to be far easier than analogous BIE formulations that have been suggested for elastoplastic problems.

  6. Viscoplastic augmentation of the smooth cap model

    International Nuclear Information System (INIS)

    Schwer, Leonard E.

    1994-01-01

    The most common numerical viscoplastic implementations are formulations attributed to Perzyna. Although Perzyna-type algorithms are popular, they have several disadvantages relating to the lack of enforcement of the consistency condition in plasticity. The present work adapts a relatively unknown viscoplastic formulation attributed to Duvaut and Lions and generalized to multi-surface plasticity by Simo et al. The attraction of the Duvaut-Lions formulation is its ease of numerical implementation in existing elastoplastic algorithms. The present work provides a motivation for the Duvaut-Lions viscoplastic formulation, derivation of the algorithm and comparison with the Perzyna algorithm. A simple uniaxial strain numerical simulation is used to compare the results of the Duvaut-Lions algorithm, as adapted to the ppercase[dyna3d] smooth cap model with results from a Perzyna algorithm adapted by Katona and Muleret to an implicit code. ((orig.))

  7. Micro-mechanics of polycrystals subjected to small strains

    International Nuclear Information System (INIS)

    Sauzay, M.

    2009-04-01

    The author proposes an overview of the different research works he performed during several years. His aim is the understanding and the modelling of plasticity and damage mechanisms in metal polycrystals subjected to small strains, mainly under long duration creep and fatigue. Three topics are more particularly developed: the distribution of mechanical fields in polycrystals subjected to small strains, the strain localisation at the grain scale, and the softening of martensitic steels under creep or fatigue loadings. For each of these topics, the author reports the investigation of microstructure and of damage and strain mechanisms (mechanical tests, microstructure observations), the modelling of these mechanisms (based on continuum mechanics, crystalline elasto-plasticity, finite elements calculations, theory of dislocations and diffusion), and the validation of these predictions at a microscopic and macroscopic scale by comparison with experimental measurements and observations

  8. A multi-scale methodology to model damage, deformation and ignition of highly-filled energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Vivier, G. [Paris Univ., Paris (France). LMT Cachan; CEA Le Ripault, Monts (France); Trumel, H. [CEA Le Ripault, Monts (France); Hild, F. [Paris Univ., Paris (France). LMT Cachan

    2009-07-01

    The kinetic energy that occurs when energetic materials are impacted can be converted to heat through dissipative deformation processes while the macroscopic temperature remains unaffected. In this study, a thermodynamics-based approach was used to model the elasto-plastic behaviour that occurs during the deformation process of microstructures. Macroscopic material was modelled as a statistical distribution of unit cells containing a crack grain embedded in an elastic mortar-like matrix. A mesoscopic unit cell model was also developed under confined shear. The study demonstrated that stored energy is a non-negligible part of the total energy of the system, and that stored energy can be released during the unloading process. It was concluded that the mesoscopic analysis of the cracked cell demonstrates that continuum thermodynamics can be used to predict hot spots induced by friction. 7 refs., 7 figs.

  9. A fully coupled finite element model for stress distribution in buried gas pipeline

    International Nuclear Information System (INIS)

    Yahya Sukirman; Zainal Zakaria; Woong Soon Yue

    2001-01-01

    The study of stress-strain relationship is very important in many designs of buried structures over the years. The behavior and mechanism between the interaction of soil and buried structures such as a natural pipeline will mostly contributes to the integrity of the pipeline. This paper presents a fully coupled finite element of consolidation analysis model to study the stress-strain distribution along a buried pipeline before it excess its maximum deformation limit. The behavior of the soil-pipeline system can be modelled by a non-linear elasto-plastic based on Mohr-Coulomb and critical state yield surfaces. The deformation and deflection of the pipeline due to drained and external loading condition will be considered here. Finally the stress-strain distribution of the buried pipeline will be utilised to obtain the maximum deformation limit and the deflection of the buried pipeline. (Author)

  10. Development and Testing of Tailored Tool Surfaces for Sheet Metal Forming

    DEFF Research Database (Denmark)

    Sulaiman, Mohd Hafis Bin

    MPa. The above mentioned simple experimental procedure for determining lubricant bulk modulus gives a first rough estimate, and it is supplemented by a more advanced laboratory test based on a newly designed equipment. The lubricant compressibility experiment with a direct pressure measurement inside...... to achieve this purpose. A simple laboratory test consisting of upsetting a specially designed metal cylinder with a lubricant reservoir together with elasto-plastic, numerical modelling of the metal cylinder is carried out in order to determine the bulk modulus at low pressure regimes of approximately 100...... for the manufacturing. The SRT tools were manufactured with longitudinal, shallow pocket geometries oriented perpendicular to the sliding direction. The pockets have small angles to the workpiece surface and varying distance. The experiments show an optimum distance between the pockets to exist that creates a table...

  11. Experimental and Numerical Investigations on Strength and Deformation Behavior of Cataclastic Sandstone

    Science.gov (United States)

    Zhang, Y.; Shao, J. F.; Xu, W. Y.; Zhao, H. B.; Wang, W.

    2015-05-01

    This work is devoted to characterization of the deformation and strength properties of cataclastic sandstones. Before conducting mechanical tests, the physical properties were first examined. These sandstones are characterized by a loose damaged microstructure and poorly cemented contacts. Then, a series of mechanical tests including hydrostatic, uniaxial, and triaxial compression tests were performed to study the mechanical strength and deformation of the sandstones. The results obtained show nonlinear stress-strain responses. The initial microcracks are closed at hydrostatic stress of 2.6 MPa, and the uniaxial compressive strength is about 0.98 MPa. Under triaxial compression, there is a clear transition from volumetric compressibility to dilatancy and a strong dependency on confining pressure. Based on the experimental evidence, an elastoplastic model is proposed using a linear yield function and a nonassociated plastic potential. There is good agreement between numerical results and experimental data.

  12. JINR rapid communications

    International Nuclear Information System (INIS)

    1997-01-01

    The present collection of rapid communications from JINR, Dubna, contains nine separate reports on collective energy dissipation and fluctuations in elastoplastic systems, diagnostics system of the circulating beam of the NUCLOTRON based on microchannel plates, time-of-flight detector for WA98 CERN experiment, fractal structure formation on the surfaces of solids subjected to high intensity electron and ion treatment, production of nuclei in 32,34,36 S-induced reactions in the energy range 6-75 MeV/A, rare-earth elements in soil and pine needle from northern terrestrial ecosystems, 'thermal' multifragmentation in p + Au collisions at relativistic energies, search for effects of the OZI rule violation in φ and ω mesons production in polarized deuteron beam interaction with polarized proton target (project DPHE3) and fast detector for triggering on charged particle multiplicity for relativistic nucleus-nucleus collisions

  13. Heterogeneous free-surface profile of B4C polycrystal under shock compression

    International Nuclear Information System (INIS)

    Mashimo, T.; Uchino, M.

    1997-01-01

    Observations of the free-surface behavior under shock compression by the gapped-flat mirror method were performed on B 4 C and Si 3 N 4 ceramics to study their shock-yielding properties. Jagged profiles of the moving free-surface in the plastic region, with a special scale of about one mm and a maximum local displacement of a few 10s of μm, were observed for B 4 C polycrystals. Similar profiles for Si 3 N 4 polycrystals were smooth. Such profiles for B 4 C polycrystals were also observed in the elastic region. It is suggested that these observations reflect the heterogeneous nature of shock compression in solids, and further indicate that a macroscopic slip system plays an important role in the elastoplastic transition of B 4 C material under shock compression and decompression. copyright 1997 American Institute of Physics

  14. Experimental tests and calculation methods for missile crashing effects on a reactor containment

    International Nuclear Information System (INIS)

    Goldstein, S.; Berriaud, C.; Labrot, R.

    1975-01-01

    In the analysis of missile crashing on a reactor containment there are two main effects to be taken into account: the overall behaviour of the building; the local perforation. The overall behaviour of the building is easily calculated when the applied force as a function of time is known. Two calculation examples are presented. The local perforation is a much more difficult problem and experimental work is necessary. The report presents a series of perforation tests of concrete plates by cylindrical missiles with a flat nose. The aim of these tests is to extrapolate for the lower speeds the existing experimental correlations and to check the calculation methods. The calculations are made with the PASTEL code (Finite elements, implicit integration), with elastoplasticity of the reinforcing steel bars and the concrete. Various plastification and fracturation laws are tested. (Auth.)

  15. Experimental tests and calculation methods for missile crashing effects on a reactor containment

    International Nuclear Information System (INIS)

    Goldstein, S.; Berriaud, C.

    1975-01-01

    In the analysis of missile crashing on a reactor containment there are two main effects to be taken into account: the overall behavior of the building; the local perforation. The overall behavior of the building is easily calculated when the applied force as a function of time is known. Two calculation examples are presented. The local perforation is a much more difficult problem and experimental work is necessary. The report presents a series of perforation tests of concrete plates by cylindrical missiles with a flat nose. The aim of these tests is to extrapolate for the lower speeds the existing experimental correlations (Petry, HN-NDRC, BRL...) and to check the calculation methods. The calculations are made with the PASTEL Code (Finite elements, implicit integration), with elastoplasticity of the reinforcing steel bars and the concrete. Various plastification and fracturation laws will be tested

  16. ELASTO-PLASTIC BEHAVIOR OF RC FRAMES COMPOSED OF STEEL JACKETTED RC SHORT COLUMNS AND SPANDREL WALLS

    OpenAIRE

    Nasruddin

    2012-01-01

    This experimental study is a part of the investigation on the seismic design method for Double Tubes Hybrid System (DTHS) for buildings. This structural system consists of RC core walls as the interior tube, and the exterior frames composed of RC short columns and RC spandrel walls as the exterior tube. The RC core walls are designed as the Energy Dissipation Structural Walls (EDSW), which are composed of RC coupled shear walls linked by short steel H-shaped beams as the energy dissipation de...

  17. Study of the Elasto-plastic Properties of Mineralized Biomaterials via Synchrotron High-energy X-ray Diffraction

    Science.gov (United States)

    Deymier-Black, Alix Christine

    Synchrotron high-energy X-ray diffraction was employed to investigate the strains in the hydroxyapatite (HAP) platelets and mineralized collagen fibrils in bovine dentin and cortical bone. The HAP and the fibrillar apparent moduli, defined as the applied stress divided by the phase strain, in dentin were measured as 27+/-7.2 and 16+/-4.9 GPa. The HAP apparent modulus ( EHAPapp ) is less than the lower bound calculated for EHAPapp from the Voigt model. This discrepancy is probably due to stress concentrators or decreases in the HAP Young's modulus due to size or composition effects. EHAPapp and Efibapp in dentin vary significantly within a single tooth in both the apical-cervical direction and the buccal-lingual direction. However, the variation between teeth is minimal. The HAP and fibrillar apparent moduli are not affected by freezing in dentin or by X-ray irradiation in bone and dentin. X-ray irradiation causes a decrease in HAP residual strain in bone. This decrease suggests the presence of HAP-collagen interfacial damage. It was determined from the HAP 00.2 peak broadening that irradiation damage mostly affects the HAP unit cells which are under the highest strain. From this it was theorized that irradiation may damage highly-strained bonds at stress concentrators and/or calcium-mediated electrostatic bonds. The fact that the apparent modulus does not change with irradiation suggests that the interfacial damage must be reversible. Bone and dentin both undergo creep when loaded to high stresses. At low irradiation doses, both the fibrillar and HAP strains increase with creep time indicating that load is being transferred from the matrix to the HAP. However, at high doses, the strain on the HAP decreases with creep time. This supports the interfacial damage theory which would allow the HAP to release its elastic load upon interfacial debonding. At -80 MPa, beyond a dose of 50 kGy, the rate of change in HAP strain with time begins to increase, becoming positive at ˜115 kGy. After 300 kGy the HAP strain rate decreases and plateaus probably due to stiffening of the matrix through cross-linking. The HAP and fibrillar strain rate in irradiated bone and dentin samples increase with increased temperature and applied load.

  18. A Micromechanics-Based Elastoplastic Damage Model for Rocks with a Brittle-Ductile Transition in Mechanical Response

    Science.gov (United States)

    Hu, Kun; Zhu, Qi-zhi; Chen, Liang; Shao, Jian-fu; Liu, Jian

    2018-06-01

    As confining pressure increases, crystalline rocks of moderate porosity usually undergo a transition in failure mode from localized brittle fracture to diffused damage and ductile failure. This transition has been widely reported experimentally for several decades; however, satisfactory modeling is still lacking. The present paper aims at modeling the brittle-ductile transition process of rocks under conventional triaxial compression. Based on quantitative analyses of experimental results, it is found that there is a quite satisfactory linearity between the axial inelastic strain at failure and the confining pressure prescribed. A micromechanics-based frictional damage model is then formulated using an associated plastic flow rule and a strain energy release rate-based damage criterion. The analytical solution to the strong plasticity-damage coupling problem is provided and applied to simulate the nonlinear mechanical behaviors of Tennessee marble, Indiana limestone and Jinping marble, each presenting a brittle-ductile transition in stress-strain curves.

  19. Using Tabulated Experimental Data to Drive an Orthotropic Elasto-Plastic Three-Dimensional Model for Impact Analysis

    Science.gov (United States)

    Hoffarth, C.; Khaled, B.; Rajan, S. D.; Goldberg, R.; Carney, K.; DuBois, P.; Blankenhorn, Gunther

    2016-01-01

    An orthotropic elasto-plastic-damage three-dimensional model with tabulated input has been developed to analyze the impact response of composite materials. The theory has been implemented as MAT 213 into a tailored version of LS-DYNA being developed under a joint effort of the FAA and NASA and has the following features: (a) the theory addresses any composite architecture that can be experimentally characterized as an orthotropic material and includes rate and temperature sensitivities, (b) the formulation is applicable for solid as well as shell element implementations and utilizes input data in a tabulated form directly from processed experimental data, (c) deformation and damage mechanics are both accounted for within the material model, (d) failure criteria are established that are functions of strain and damage parameters, and mesh size dependence is included, and (e) the theory can be efficiently implemented into a commercial code for both sequential and parallel executions. The salient features of the theory as implemented in LS-DYNA are illustrated using a widely used composite - the T800S/3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber/resin unidirectional composite. First, the experimental tests to characterize the deformation, damage and failure parameters in the material behavior are discussed. Second, the MAT213 input model and implementation details are presented with particular attention given to procedures that have been incorporated to ensure that the yield surfaces in the rate and temperature dependent plasticity model are convex. Finally, the paper concludes with a validation test designed to test the stability, accuracy and efficiency of the implemented model.

  20. Validation of a New Elastoplastic Constitutive Model Dedicated to the Cyclic Behaviour of Brittle Rock Materials

    Science.gov (United States)

    Cerfontaine, B.; Charlier, R.; Collin, F.; Taiebat, M.

    2017-10-01

    Old mines or caverns may be used as reservoirs for fuel/gas storage or in the context of large-scale energy storage. In the first case, oil or gas is stored on annual basis. In the second case pressure due to water or compressed air varies on a daily basis or even faster. In both cases a cyclic loading on the cavern's/mine's walls must be considered for the design. The complexity of rockwork geometries or coupling with water flow requires finite element modelling and then a suitable constitutive law for the rock behaviour modelling. This paper presents and validates the formulation of a new constitutive law able to represent the inherently cyclic behaviour of rocks at low confinement. The main features of the behaviour evidenced by experiments in the literature depict a progressive degradation and strain of the material with the number of cycles. A constitutive law based on a boundary surface concept is developed. It represents the brittle failure of the material as well as its progressive degradation. Kinematic hardening of the yield surface allows the modelling of cycles. Isotropic softening on the cohesion variable leads to the progressive degradation of the rock strength. A limit surface is introduced and has a lower opening than the bounding surface. This surface describes the peak strength of the material and allows the modelling of a brittle behaviour. In addition a fatigue limit is introduced such that no cohesion degradation occurs if the stress state lies inside this surface. The model is validated against three different rock materials and types of experiments. Parameters of the constitutive laws are calibrated against uniaxial tests on Lorano marble, triaxial test on a sandstone and damage-controlled test on Lac du Bonnet granite. The model is shown to reproduce correctly experimental results, especially the evolution of strain with number of cycles.

  1. Elasto-plastic finite element analysis of axial surface crack in PHT piping of 500 MWe PHWR

    International Nuclear Information System (INIS)

    Chawla, D.S.; Bhate, S.R.; Kushwaha, H.S.; Mahajan, S.C.

    1994-01-01

    The leak before break (LBB) approach in nuclear piping design envisages demonstrating that the pressurized pipe with a postulated flaw will leak at a detectable rate leading to corrective action well before catastrophic rupture would occur. This requires analysis of cracked pipe to study the crack growth and its stability. This report presents the behaviour of a surface crack in the wall of a thick primary heat transport (PHT) pipe of 500 MWe Indian PHWR. The line spring model (LSM) finite element is used to model the flawed pipe geometry. The variation of crack driving force (J-integral) across the crack front has been presented. The influence of crack geometry factors such as depth, shape, aspect ratio, and loading on peak values of J-integral as well as crack mouth opening displacement has been studied. Several crack shapes have been used to study the shape influence. The results are presented in dimensionless form so as to widen their applicability. The accuracy of the results is validated by comparison with results available in open literature. (author). 47 refs., 8 figs

  2. Vibration characteristics of the seismically isolated building supported by the elastomers and the elasto-plastic dampers

    International Nuclear Information System (INIS)

    Mazda, Taiji; Shiojiri, Hiroo; Aoyagi, Sakae; Sawada, Yoshihiro; Kawai, Nobuyasu; Harada, Osamu; Ohtsuka, Susume; Abe, Isamu.

    1989-01-01

    Recently, the seismic isolation has become one of the popular methods in the design of important structures or equipment against the earthquakes. However, the demonstration data on reliability of seismically isolated structures are not enough, therefore it is expected to accumulate such data. Based on the above recognition, the vibration tests of a base isolated building were carried out in Tsukuba Science City. After that, many earthquake records have been obtained at the building, and they made clear the dynamic characteristics of the structure. In order to make clear the dynamic behavior of the building, furthermore, seismic response analyses were executed by using Lumped Mass model, and the results of the analyses roughly agreed with the observed results. (author)

  3. Spectral element modelling of seismic wave propagation in visco-elastoplastic media including excess-pore pressure development

    Science.gov (United States)

    Oral, Elif; Gélis, Céline; Bonilla, Luis Fabián; Delavaud, Elise

    2017-12-01

    Numerical modelling of seismic wave propagation, considering soil nonlinearity, has become a major topic in seismic hazard studies when strong shaking is involved under particular soil conditions. Indeed, when strong ground motion propagates in saturated soils, pore pressure is another important parameter to take into account when successive phases of contractive and dilatant soil behaviour are expected. Here, we model 1-D seismic wave propagation in linear and nonlinear media using the spectral element numerical method. The study uses a three-component (3C) nonlinear rheology and includes pore-pressure excess. The 1-D-3C model is used to study the 1987 Superstition Hills earthquake (ML 6.6), which was recorded at the Wildlife Refuge Liquefaction Array, USA. The data of this event present strong soil nonlinearity involving pore-pressure effects. The ground motion is numerically modelled for different assumptions on soil rheology and input motion (1C versus 3C), using the recorded borehole signals as input motion. The computed acceleration-time histories show low-frequency amplification and strong high-frequency damping due to the development of pore pressure in one of the soil layers. Furthermore, the soil is found to be more nonlinear and more dilatant under triaxial loading compared to the classical 1C analysis, and significant differences in surface displacements are observed between the 1C and 3C approaches. This study contributes to identify and understand the dominant phenomena occurring in superficial layers, depending on local soil properties and input motions, conditions relevant for site-specific studies.

  4. Elastoplastic phase-field modeling of ζ-hydride precipitation in zirconium alloy: dynamics evolution in inhomogeneous elasticity

    International Nuclear Information System (INIS)

    Oum, G.; Thuinet, L.; Legris, A.

    2015-07-01

    A phase-field (PF) model was developed within the framework of homogeneous and heterogeneous elasticity theory to study the precipitation of ζ-hydride in zirconium. By coupling crystal plasticity to PF we show that plastic strain participates in lowering the transformation stresses, and therefore induces changes in nucleation, growth and morphology evolution of the precipitates. (authors)

  5. A semi-analytical finite element process for nonlinear elastoplastic analysis of arbitrarily loaded shells of revolution

    International Nuclear Information System (INIS)

    Rensch, H.J.; Wunderlich, W.

    1981-01-01

    The governing partial differential equations used are valid for small strains and moderate rotations. Plasticity relations are based on J 2 -flow theory. In order to eliminate the circumferential coordinate, the loading as well as the unkown quantities are expanded in Fourier series in the circumferential direction. The nonlinear terms due to moderate rotations and plastic deformations are treated as pseudo load quantities. In this way, the governing equations can be reduced to uncoupled systems of first-order ordinary differential equations in the meridional direction. They are then integrated over a shell segment via a matrix series expansion. The resulting element transfer matrices are transformed into stiffness matrices, and for the analysis of the total structure the finite element method is employed. Thus, arbitrary branching of the shell geometry is possible. Compared to two-dimensional approximations, the major advantage of the semi-analytical procedure is that the structural stiffness matrix usually has a small handwidth, resulting in shorter computer run times. Moreover, its assemblage and triangularization has to be carried out only once bacause all nonlinear effects are treated as initial loads. (orig./HP)

  6. Numerical predictions and measurements in the lubrication of aeronautical engine and transmission components

    Science.gov (United States)

    Moraru, Laurentiu Eugen

    2005-11-01

    This dissertation treats a variety of aspects of the lubrication of mechanical components encountered in aeronautical engines and transmissions. The study covers dual clearance squeeze film dampers, mixed elastohydrodynamic lubrication (EHL) cases and thermal elastohydrodynamic contacts. The dual clearance squeeze film damper (SFD) invented by Fleming is investigated both theoretically and experimentally for cases when the sleeve that separates the two oil films is free to float and for cases when the separating sleeve is supported by a squirrel cage. The Reynolds equation is developed to handle each of these cases and it is solved analytically for short bearings. A rotordynamic model of a test rig is developed, for both the single and dual SFD cases. A computer code is written to calculate the motion of the test rig rotor. Experiments are performed in order to validate the theoretical results. Rotordynamics computations are found to favorably agree with measured data. A probabilistic model for mixed EHL is developed and implemented. Surface roughness of gears are measured and processed. The mixed EHL model incorporates the average flow model of Patir and Cheng and the elasto-plastic contact mechanics model of Chang Etsion and Bogy. The current algorithm allows for the computation of the load supported by an oil film and for the load supported by the elasto-plastically deformed asperities. This work also presents a way to incorporate the effect of the fluid induced roughness deformation by utilizing the "amplitude reduction" results provided by the deterministic analyses. The Lobatto point Gaussian integration algorithm of Elrod and Brewe was extended for thermal lubrication problems involving compressible lubricants and it was implemented in thermal elastohydrodynamic cases. The unknown variables across the film are written in series of Legendre polynomials. The thermal Reynolds equation is obtained in terms of the series coefficients and it is proven that it can

  7. Mechanical behaviour of nickel foams: three-dimensional morphology, non-linear models and fracture; Caracterisation et simulation numerique du comportement mecanique des mousses de nickel: morphologie tridimensionnelle, reponse elastoplastique et rupture

    Energy Technology Data Exchange (ETDEWEB)

    Dillard, Th.

    2004-03-15

    The deformation behaviour and failure of nickel foams were studied during loading by using X-ray microtomography. Strut alignment and stretching are observed in tension whereas strut bending followed by strut buckling are observed in compression. Strain localisation, that occurs during compression tests, depends on nickel weight distribution in the foam. Fracture in tension first takes place at cell nodes and the crack propagates cell by cell. The damaged area in front of a crack is about five cells wide. A detailed description of the three-dimensional morphology is also presented. One third of the cells are dodecahedral and 57 % of the faces are pentagonal. The most frequent cell is composed of two quadrilaterals, two hexagons and eight pentagons. The dimensions of the equivalent ellipsoid of each cell are identified and cell orientation are determined. The geometrical aspect ratio is linked to the mechanical anisotropy of the foam. In tension, a uniaxial analytical model, based on elastoplastic strut bending, is developed. The whole stress-strain curve of the foam is predicted according to its specific weight and its anisotropy. It is found that the non-linear regime of the macroscopic curve of the foam is not only due to the elastoplastic bending of the struts. The model is also extended to two-phase foams and the influence of the hollow struts is analysed. The two-phase foams model is finally applied to oxidized nickel foams and compared with experimental data. The strong increase in the rigidity of nickel foams with an increasing rate of oxidation, is well described by the model. However, a fracture criterion must also be introduced to take into account the oxide layer cracking. A phenomenological compressible continuum plasticity model is also proposed and identified in tension. The identification of the model is carried out using experimental strain maps obtained by a photo-mechanical technique. A validation of the model is provided by investigating the

  8. Evolution of interphase and intergranular strain in zirconium-niobium alloys during deformation at room temperature

    Science.gov (United States)

    Cai, Song

    Zr-2.5Nb is currently used for pressure tubes in the CANDU (CANada Deuterium Uranium) reactor. A complete understanding of the deformation mechanism of Zr-2.5Nb is important if we are to accurately predict the in-reactor performance of pressure tubes and guarantee normal operation of the reactors. This thesis is a first step in gaining such an understanding; the deformation mechanism of ZrNb alloys at room temperature has been evaluated through studying the effect of texture and microstructure on deformation. In-situ neutron diffraction was used to monitor the evolution of the lattice strain of individual grain families along both the loading and Poisson's directions and to track the development of interphase and intergranular strains during deformation. The following experiments were carried out with data interpreted using elasto-plastic modeling techniques: (1) Compression tests of a 100%betaZr material at room temperature. (2) Tension and compression tests of hot rolled Zr-2.5Nb plate material. (3) Compression of annealed Zr-2.5Nb. (4) Cyclic loading of the hot rolled Zr-2.5Nb. (5) Compression tests of ZrNb alloys with different Nb and oxygen contents. The experimental results were interpreted using a combination of finite element (FE) and elasto-plastic self-consistent (EPSC) models. The phase properties and phase interactions well represented by the FE model, the EPSC model successfully captured the evolution of intergranular constraint during deformation and provided reasonable estimates of the critical resolved shear stress and hardening parameters of different slip systems under different conditions. The consistency of the material parameters obtained by the EPSC model allows the deformation mechanism at room temperature and the effect of textures and microstructures of ZrNb alloys to be understood. This work provides useful information towards manufacturing of Zr-2.5Nb components and helps in producing ideal microstructures and material properties for

  9. See Also:Mechanics of Cohesive-frictional MaterialsCopyright © 2004 John Wiley & Sons, Ltd.Get Sample CopyFree Online Trial -->Recommend to Your LibrarianSave Title to My ProfileSet E-Mail Alert var homepagelinks = new Array(new Array("Journal Home","/cgi-bin/jhome/3312",""),new Array("Issues","/cgi-bin/jtoc/3312/",""),new Array("Early View","/cgi-bin/jeview/3312/",""),new Array("News","/cgi-bin/jabout/3312/News.html","e"),new Array("","","s"),new Array("Product Information","/cgi-bin/jabout/3312/ProductInformation.html",""),new Array("Editorial Board","/cgi-bin/jabout/3312/EditorialBoard.html",""),new Array("For Authors","/cgi-bin/jabout/3312/ForAuthors.html",""),new Array("Subscribe","http://jws-edcv.wiley.com/jcatalog/JournalsCatalogOrder/JournalOrder?PRINT_ISSN=0363-9061",""),new Array("Advertise","/cgi-bin/jabout/3312/Advertise.html",""),new Array("Contact","/cgi-bin/jabout/3312/Contact.html",""),new Array("","","x"));writeJournalLinks("", "3312"); Previous Issue | Next Issue >Volume 29, Issue1 (January 2005)Articles in the Current Issue:Research ArticleHomogenization framework for three-dimensional elastoplastic finite element analysis of a grouted pipe-roofing reinforcement method for tunnelling

    Science.gov (United States)

    Bae, G. J.; Shin, H. S.; Sicilia, C.; Choi, Y. G.; Lim, J. J.

    2005-01-01

    This paper deals with the grouted pipe-roofing reinforcement method that is used in the construction of tunnels through weak grounds. This system consists on installing, prior to the excavation of a length of tunnel, an array of pipes forming a kind of umbrella above the area to be excavated. In some cases, these pipes are later used to inject grout to strengthen the ground and connect the pipes.This system has proven to be very efficient in reducing tunnel convergence and water inflow when tunnelling through weak grounds. However, due to the geometrical and mechanical complexity of the problem, existing finite element frameworks are inappropriate to simulate tunnelling using this method.In this paper, a mathematical framework based on a homogenization technique to simulate grouted pipe-roofing reinforced ground and its implementation into a 3-D finite element programme that can consider stage construction situations are presented. The constitutive model developed allows considering the main design parameters of the problem and only requires geometrical and mechanical properties of the constituents. Additionally, the use of a homogenization approach implies that the generation of the finite element mesh can be easily produced and that re-meshing is not required as basic geometrical parameters such as the orientation of the pipes are changed.The model developed is used to simulate tunnelling with the grouted pipe-roofing reinforcement method. From the analyses, the effects of the main design parameters on the elastic and the elastoplastic analyses are considered. Copyright

  10. Calibration of mathematical models for simulation of thermal, seepage and mechanical behaviour of boom clay

    International Nuclear Information System (INIS)

    Baldi, G.; Borsetto, M.; Hueckel, T.

    1987-01-01

    This report presents results of research on the verification of the validity of a generalized thermo-elastoplastic-hydraulic mathematical model elaborated at Ismes for description of the behaviour of boom clay. The model is described in Section 2. Experimental results performed at Ismes for the identification of the material constants in athermal and thermal drained conditions are then presented. Procedures for the identification are described in Section 4. The undrained consolidated constant total stress heating test is then discussed. The undrained test shows the possibility of clay yielding due to effective pressure decrease during heating, caused by water pressure growth. The test has been simulated numerically, confirming the interpretation of the experiment. Further simulation of plane strain and plane stress central heating axisymmetric problem shows again a formation of a yielded clay zone around the heater. Interpretation of the results and recommendations for further research are given

  11. Influence of dry cohesion on the micro- and macro-mechanical properties of dense polydisperse powders & grains

    Science.gov (United States)

    Kievitsbosch, Robert; Smit, Hendrik; Magnanimo, Vanessa; Luding, Stefan; Taghizadeh, Kianoosh

    2017-06-01

    Understanding how cohesive granular materials behave is of interest for many industrial applications, such as pharmaceutical or food and civil engineering. Models of the behaviour of granular materials on the microscopic scale can be used to obtain macroscopic continuum relations by a micro-macro transition approach. The Discrete Element Method (DEM) is used to inspect the influence of cohesion on the micro and macro behaviour of granular assemblies by using an elasto-plastic cohesive contact model. Interestingly, we observe that frictional samples prepared with different cohesion values show a significant difference in pressure and coordination number in the jammed regime; the differences become more pronounced when packings are closer to the jamming density, i.e. the lowest density where the system is mechanically stable. Furthermore, we observe that cohesion has an influence on the jamming density for frictional samples, but there is no influence on the jamming density for frictionless samples.

  12. Work of plastic deformation in local zone of crack apex

    International Nuclear Information System (INIS)

    Gol'tsev, V.Yu.; Matvienko, Yu.G.; Rivkin, E.Yu.

    1981-01-01

    For substantiating application of criteria of viscous fracture and deeoer understanding of this. process one should know strain distribution and energy consumption for plastic deformation in crack top zone. For this purpose plane samples of 300x70x1.5 mm dimension with central notch of 23, 36 and 46 mm length have been subjected to tensile testing. The samples have been cut out from sheet steel 1Kh18N9T perpendicularly to the rolling direction. It is shown that the suggested viscous fracture conception ensures general approach to the viscous and elastoplastic fracture based on the concept on specific work of plastic deformation in the localized zone νsub(l). The νsub(l) value characterizes maximum plastic material energy consumption and may serve as criterion of viscous material fracture parallel to the critical opening of the deltasub(c) crack top

  13. Lab-scale impact test to investigate the pipe-soil interaction and comparative study to evaluate structural responses

    Directory of Open Access Journals (Sweden)

    Dong-Man Ryu

    2015-07-01

    Full Text Available This study examined the dynamic response of a subsea pipeline under an impact load to determine the effect of the seabed soil. A laboratory-scale soil-based pipeline impact test was carried out to investigate the pipeline deformation/strain as well as the interaction with the soil-pipeline. In addition, an impact test was simulated using the finite element technique, and the calculated strain was compared with the experimental results. During the simulation, the pipeline was described based on an elasto-plastic analysis, and the soil was modeled using the Mohr-Coulomb fail-ure criterion. The results obtained were compared with ASME D31.8, and the differences between the analysis results and the rules were specifically investigated. Modified ASME formulae were proposed to calculate the precise structural behavior of a subsea pipeline under an impact load when considering sand- and clay-based seabed soils.

  14. Chaotic behaviour in the non-linear optimal control of unilaterally contacting building systems during earthquakes

    CERN Document Server

    Liolios, A

    2003-01-01

    The paper presents a new numerical approach for a non-linear optimal control problem arising in earthquake civil engineering. This problem concerns the elastoplastic softening-fracturing unilateral contact between neighbouring buildings during earthquakes when Coulomb friction is taken into account under second-order instabilizing effects. So, the earthquake response of the adjacent structures can appear instabilities and chaotic behaviour. The problem formulation presented here leads to a set of equations and inequalities, which is equivalent to a dynamic hemivariational inequality in the way introduced by Panagiotopoulos [Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993]. The numerical procedure is based on an incremental problem formulation and on a double discretization, in space by the finite element method and in time by the Wilson-theta method. The generally non-convex constitutive contact laws are piecewise linearized, and in each time-step a non-c...

  15. The contribution of the expanding shell test to the modeling of elastoplaticity at high strain rates

    International Nuclear Information System (INIS)

    Llorca, Fabrice; Buy, Francois

    2002-01-01

    The expanding shell test allows to load a material in the domain of high strain levels while strain rate is about 104s-1. This test submits an hemisphere to a radial expanding free flight, using a pyrotechnic device. The experiment (experimental apparatus, measurements...) is described with the difficulties encountered for the interpretation of the experimental data. Under some assumptions, the numerical transformation of radial velocities gives indications about the evolution of the strain, stress, strain rate and temperature rise, this last one being related to plastic work. We show how it is possible to associate both analytical and numerical approaches. Numerical simulation of the test is presented in a companion paper (see [Buy01]). Results obtained for copper, tantalum and TA6V4 are presented. The contribution of this test to the modeling of elastoplastic behavior is discussed and further works are proposed

  16. Micromechanics of twinning in a TWIP steel

    International Nuclear Information System (INIS)

    Rahman, K.M.; Jones, N.G.; Dye, D.

    2015-01-01

    The deformation behaviour of a TWinning Induced Plasticity (TWIP) steel was studied at quasi-static strain rates using synchrotron X-ray diffraction. A {111} RD and {200} RD texture developed from the earliest stages of deformation, which could be reproduced using an elasto-plastic self consistent (EPSC) model. Evidence is found from multiple sources to suggest that twinning was occurring before macroscopic yielding. This included small deviations in the lattice strains, {111} intensity changes and peak width broadening all occurring below the macroscopic yield point. The accumulation of permanent deformation on sub-yield mechanical cycling of the material was found, which further supports the diffraction data. TEM revealed that fine deformation twins similar to those observed in heavily deformed samples formed during sub-yield cycling. It is concluded that twinning had occurred before macroscopic plastic deformation began, unlike the behaviour traditionally expected from hexagonal metals such as Mg

  17. Micromechanics of twinning in a TWIP steel

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, K.M., E-mail: khandaker.rahman05@imperial.ac.uk [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Jones, N.G. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Dye, D. [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)

    2015-05-21

    The deformation behaviour of a TWinning Induced Plasticity (TWIP) steel was studied at quasi-static strain rates using synchrotron X-ray diffraction. A {111} RD and {200} RD texture developed from the earliest stages of deformation, which could be reproduced using an elasto-plastic self consistent (EPSC) model. Evidence is found from multiple sources to suggest that twinning was occurring before macroscopic yielding. This included small deviations in the lattice strains, {111} intensity changes and peak width broadening all occurring below the macroscopic yield point. The accumulation of permanent deformation on sub-yield mechanical cycling of the material was found, which further supports the diffraction data. TEM revealed that fine deformation twins similar to those observed in heavily deformed samples formed during sub-yield cycling. It is concluded that twinning had occurred before macroscopic plastic deformation began, unlike the behaviour traditionally expected from hexagonal metals such as Mg.

  18. Analysis of the main causes of failures in the Atucha I PWR moderator circuit branch piping

    International Nuclear Information System (INIS)

    Porto, J.; Sarmiento, G.S.

    1983-01-01

    From 1977 to 1979 four through cracks were detected in the auxiliary connection of the moderator piping with the coolant circuit in the PWR Atucha I Nuclear Plant. The failures were observed to occur systematically in the same place of the pipe, where mechanical stresses were detected experimentally and thermal stresses were calculated based on temperature values measured on the pipe. The temperature field in steady state conditions as well as during thermal shocks was modelled by finite element codes, and the corresponding thermal stresses were than numerically calculated. Considering those thermal and mechanical solicitations, a crack propagation analysis based on the elastoplastic fracture mechanics and the finite element method is now being developed. Among other causes such as fatigue corrosion and vibrations, the results of the analysis show that the most preponderant factors determining the cracking are mechanical stress, thermal stress and thermal fatigue

  19. Continuous and Discontinuous Modelling of Fracture in Concrete Using FEM

    CERN Document Server

    Tejchman, Jacek

    2013-01-01

    The book analyzes a quasi-static fracture process in concrete and reinforced concrete by means of constitutive models formulated within continuum mechanics. A continuous and discontinuous modelling approach was used. Using a continuous approach, numerical analyses were performed using a finite element method and three different enhanced continuum models: isotropic elasto-plastic, isotropic damage and anisotropic smeared crack one. The models were equipped with a characteristic length of micro-structure by means of a non-local and a second-gradient theory. So they could properly describe the formation of localized zones with a certain thickness and spacing and a related deterministic size effect. Using a discontinuous FE approach, numerical results of cracks using a cohesive crack model and XFEM were presented which were also properly regularized. Finite element analyses were performed with concrete elements under monotonic uniaxial compression, uniaxial tension, bending and shear-extension. Concrete beams un...

  20. Appreciation of Triaxiality Influence in Plastic Deformation Accompanying Ductile Rupture

    Science.gov (United States)

    Coseru, Ancuta-Ioana; Zichil, Valentin; Lupascu, Stefan

    2017-12-01

    In this paper, the authors propose a studying method for the deformation that appears before crack of ductile materials using the Lode parameter determined by the numerical calculation applied on simple models, verified in previous studies. In order to highlight the influence of the Lode parameter, the tests were performed at simple but also at compound tests. The necessity of these studies lies in the fact that the acknowledged models (the use of the integral J, the critical stress intensity factor Kc or the CPCD method) do not fully explain the phenomenon of deformation before breaking the elasto-plastic materials. The tests were imagined under the form of sets. Each set of tests was performed on smooth specimens and on specimens with a notch radius of 0.5, 2, 4 and 10 mm. Also, each set of tests was performed for pure tensile and combined tensile-torque test.