WorldWideScience

Sample records for elastic recoil detection

  1. Elastic recoil detection analysis of hydrogen in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Winzell, T.R.H.; Whitlow, H.J. [Lund Univ. (Sweden); Bubb, I.F.; Short, R.; Johnston, P.N. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1996-12-31

    Elastic recoil detection analysis (ERDA) of hydrogen in thick polymeric films has been performed using 2.5 MeV He{sup 2+} ions from the tandem accelerator at the Royal Melbourne Institute of Technology. The technique enables the use of the same equipment as in Rutherford backscattering analysis, but instead of detecting the incident backscattered ion, the lighter recoiled ion is detected at a small forward angle. The purpose of this work is to investigate how selected polymers react when irradiated by helium ions. The polymers are to be evaluated for their suitability as reference standards for hydrogen depth profiling. Films investigated were Du Pont`s Kapton and Mylar, and polystyrene. 11 refs., 3 figs.

  2. Elastic recoil detection analysis of hydrogen in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Winzell, T R.H.; Whitlow, H J [Lund Univ. (Sweden); Bubb, I F; Short, R; Johnston, P N [Royal Melbourne Inst. of Tech., VIC (Australia)

    1997-12-31

    Elastic recoil detection analysis (ERDA) of hydrogen in thick polymeric films has been performed using 2.5 MeV He{sup 2+} ions from the tandem accelerator at the Royal Melbourne Institute of Technology. The technique enables the use of the same equipment as in Rutherford backscattering analysis, but instead of detecting the incident backscattered ion, the lighter recoiled ion is detected at a small forward angle. The purpose of this work is to investigate how selected polymers react when irradiated by helium ions. The polymers are to be evaluated for their suitability as reference standards for hydrogen depth profiling. Films investigated were Du Pont`s Kapton and Mylar, and polystyrene. 11 refs., 3 figs.

  3. Hydrogen depth profiling using elastic recoil detection

    International Nuclear Information System (INIS)

    Doyle, B.L.; Peercy, P.S.

    1979-01-01

    The elastic recoil detection (ERD) analysis technique for H profiling in the near surface regions of solids is described. ERD is shown to have the capability of detecting H and its isotopes down to concentrations of approx. 0.01 at. % with a depth resolution of a few hundred angstroms. Is is demonstrated that 2.4-MeV He ions can be used successfully to profile 1 H and 2 D using this technique. 12 figures

  4. Elastic recoil detection (ERD) with extremely heavy ions

    International Nuclear Information System (INIS)

    Forster, J.S.; Davies, J.A.; Siegele, R.; Wallace, S.G.; Zelenitsky, D.

    1996-01-01

    Extremely heavy-ion beams such as 209 Bi in elastic recoil detection (ERD) make ERD a uniquely valuable technique for thin-film analysis of elements with mass ≤100. We report ERD measurements of compositional analysis of dinosaur eggshells and bones. We also show the capability of the ERD technique on studies of thin-film, high-temperature superconductors. (orig.)

  5. Elastic recoil detection analysis of ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, W.B.; Johnston, P.N.; Walker, S.R.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J.F. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.

  6. Elastic recoil detection analysis of ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, W B; Johnston, P N; Walker, S R; Bubb, I F [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J F [New South Wales Univ., Kensington, NSW (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.

  7. Limitations to depth resolution in high-energy, heavy-ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Elliman, R.G.; Palmer, G.R.; Ophel, T.R.; Timmers, H.

    1998-01-01

    The depth resolution of heavy-ion elastic recoil detection analysis was examined for Al and Co thin films ranging in thickness from 100 to 400 nm. Measurements were performed with 154 MeV Au ions as the incident beam, and recoils were detected using a gas ionisation detector. Energy spectra were extracted for the Al and Co recoils and the depth resolution determined as a function of film thickness from the width of the high- and low- energy edges. These results were compared with theoretical estimates calculated using the computer program DEPTH. (authors)

  8. Complementary scattered and recoiled ion data from TOF-E heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Johnston, P.N.; El Bouanani, M.; Stannard, W.B.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Siegele, R.

    1998-01-01

    The advantage of Time of Flight and Energy (ToF-E) Heavy Ion Elastic Recoil Detection Analysis (HIERDA) over Rutherford Backscattering (RBS) analysis is its mass and energy dispersive capabilities. The mass resolution of ToF-E HIERDA deteriorates for very heavy elements. The limitation is related to the poor energy resolution of Si detectors for heavy ions. While the energy spectra from ToF-E HIERDA data are normally used to extract depth profiles, this work discusses the benefits of using the time spectra of both the recoiled and the scattered ions for depth profiling. The simulation of the complementary scattered and recoiled ion time spectra improves depth profiling and reduced current limitations when dealing with very heavy ions, such as Pt, Bi, Ta. (authors)

  9. Heavy ion elastic recoil detection analysis of optoelectronic and semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Cohen, D.D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Johnston, P.; Walker, S. [Royal Melbourne Inst. of Tech., VIC (Australia); Whitlow, H.; Hult, M. [Lund Univ. (Sweden); Oestling, M.; Zaring, C. [Royal Inst. of Tech., Stockholm (Sweden)

    1993-12-31

    In recent years, the use of heavy ion time-of-flight elastic recoil spectrometry (HIERDA) has been applied to analyse multi-phase, thin layer devices used in optoelectronics, semiconductors and solar power generation. HIERDA gives simultaneously, mass resolved elemental concentration vs depth profiles of the matrix constituents, and is particularly suited to the determination of light elements in a heavy matrix. The beam/target interaction process is similar to RBS, but has the difference that the recoiling target atoms are detected instead of the scattered projectile. High energy, heavy ions beams bombard the sample, ejecting recoil atoms which are detected at a forward angle of 45 deg. A time-of-flight and total energy detection system enables the ejected particle`s mass to be identified, and allows energy spectra to be obtained and interpreted in an analogous way to RBS, but with the important difference that the elemental spectra are separated, and not superimposed on a background as in RBS. Some of the measurements made with a HIERDA system on the ANTARES Tandem Accelerator at ANSTO are described. 1 refs., 4 figs.

  10. Heavy ion elastic recoil detection analysis of optoelectronic and semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N; Cohen, D D [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Johnston, P; Walker, S [Royal Melbourne Inst. of Tech., VIC (Australia); Whitlow, H; Hult, M [Lund Univ. (Sweden); Oestling, M; Zaring, C [Royal Inst. of Tech., Stockholm (Sweden)

    1994-12-31

    In recent years, the use of heavy ion time-of-flight elastic recoil spectrometry (HIERDA) has been applied to analyse multi-phase, thin layer devices used in optoelectronics, semiconductors and solar power generation. HIERDA gives simultaneously, mass resolved elemental concentration vs depth profiles of the matrix constituents, and is particularly suited to the determination of light elements in a heavy matrix. The beam/target interaction process is similar to RBS, but has the difference that the recoiling target atoms are detected instead of the scattered projectile. High energy, heavy ions beams bombard the sample, ejecting recoil atoms which are detected at a forward angle of 45 deg. A time-of-flight and total energy detection system enables the ejected particle`s mass to be identified, and allows energy spectra to be obtained and interpreted in an analogous way to RBS, but with the important difference that the elemental spectra are separated, and not superimposed on a background as in RBS. Some of the measurements made with a HIERDA system on the ANTARES Tandem Accelerator at ANSTO are described. 1 refs., 4 figs.

  11. High-energy elastic recoil detection heavy ions for light element analysis

    International Nuclear Information System (INIS)

    Goppelt-Langer, P.; Yamamoto, S.; Takeshita, H.; Aoki, Y.; Naramoto, H.

    1994-01-01

    The detection of light and medium heavy elements in not homogeneous solids is a severe problem in ion beam analysis. Heavy elements can be detected by the well established Rutherford backscattering technique (RBS). In a homogeneous host material most impurities can be easily analyzed by secondary ion mass spectroscopy (SIMS). Some isotopes ( 3 He, 6 Li, 10 B) can be measured by nuclear reaction analysis (NRA) using thermal neutrons inducing (n, p) or (n, α) reactions. Others can be detected by energetic ion beams by nuclear reactions (e.g. 15 N( 1 H, αγ) 12 C for analysis of hydrogen). A high content of H, D or T can be also determined by elastic recoil detection using an energetic He beam. The latter technique has been developed to a universal method for detection of light and heavy elements in any target, using a high energetic heavy ion beam and a detector system, which is able to identify the recoils and delivers energy and position of the particles. (author)

  12. Multiple scattering problems in heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Johnston, P.N.; El Bouanani, M.; Stannard, W.B.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Siegele, R.

    1998-01-01

    A number of groups use Heavy Ion Elastic Recoil Detection Analysis (HIERDA) to study materials science problems. Nevertheless, there is no standard methodology for the analysis of HIERDA spectra. To overcome this deficiency we have been establishing codes for 2-dimensional data analysis. A major problem involves the effects of multiple and plural scattering which are very significant, even for quite thin (∼100 nm) layers of the very heavy elements. To examine the effects of multiple scattering we have made comparisons between the small-angle model of Sigmund et al. and TRIM calculations. (authors)

  13. Hydrogen analysis by elastic recoil spectrometry

    International Nuclear Information System (INIS)

    Tirira, J.; Trocellier, P.

    1989-01-01

    An absolute, quantitative procedure was developed to determine the hydrogen content and to describe its concentration profile in the near-surface region of solids. The experimental technique used was the elastic recoil detection analysis of protons induced by 4 He beam bombardment in the energy range <=1.8 MeV. The hydrogen content was calculated using a new recoil cross section expression. The analyses were performed in silicon crystals implanted with hydrogen at 10 keV. The implantation dose was evaluated with an accuracy of 10% and the hydrogen depth profile with that of +-10 nm around 200 nm. (author) 10 refs.; 3 figs

  14. Multiple scattering effects in depth resolution of elastic recoil detection

    International Nuclear Information System (INIS)

    Wielunski, L.S.; Harding, G.L.

    1998-01-01

    Elastic Recoil Detection (ERD) is used to profile hydrogen and other low mass elements in thin films at surface and interfaces in a similar way that Rutherford Backscattering Spectroscopy (RBS) is used to detect and profile heavy elements. It is often assumed that the depth resolutions of these two techniques are similar. However, in contrast to typical RBS, the depth resolution of ERD is limited substantially by multiple scattering. In experimental data analysis and/or spectra simulations of a typical RBS measurement multiple scattering effects are often ignored. Computer programs used in IBA, such as RUMP, HYPRA or RBX do not include multiple scattering effects at all. In this paper, using practical thin metal structures with films containing intentionally introduced hydrogen, we demonstrate experimental ERD depth resolution and sensitivity limitations. The effects of sample material and scattering angle are also discussed. (authors)

  15. Multiple scattering effects in depth resolution of elastic recoil detection

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S.; Harding, G.L. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Telecommunications and Industrial Physics; Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, Budapest, (Hungary)

    1998-06-01

    Elastic Recoil Detection (ERD) is used to profile hydrogen and other low mass elements in thin films at surface and interfaces in a similar way that Rutherford Backscattering Spectroscopy (RBS) is used to detect and profile heavy elements. It is often assumed that the depth resolutions of these two techniques are similar. However, in contrast to typical RBS, the depth resolution of ERD is limited substantially by multiple scattering. In experimental data analysis and/or spectra simulations of a typical RBS measurement multiple scattering effects are often ignored. Computer programs used in IBA, such as RUMP, HYPRA or RBX do not include multiple scattering effects at all. In this paper, using practical thin metal structures with films containing intentionally introduced hydrogen, we demonstrate experimental ERD depth resolution and sensitivity limitations. The effects of sample material and scattering angle are also discussed. (authors). 19 refs., 4 figs.

  16. On the limitations introduced by energy spread in elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Szilagyi, E.

    2001-01-01

    Improvements in experimental techniques have led to monolayer depth resolution in heavy ion elastic recoil detection analysis (HI-ERDA). Evaluation of the spectra, however, is not trivial. The spectra, using even the best experimental set-up, are subject to finite energy resolution of both extrinsic and intrinsic origin. A proper account for energy spread is necessary to extract the correct depth profile from the measured spectra. With calculation of the correct energy (or depth) resolution of a given method, one can decide in advance whether or not the method will resolve details of interest in the depth profile. To achieve the best depth resolution, it is also possible to find optimum parameters for the experiments. The limitations introduced by the energy spread effects are discussed. An example for simulation is shown for high energy resolution HI-ERDA measurements. Satisfactory agreement between the simulated and the measured HI-ERDA spectra taken by 60 MeV 127 I 23+ ions on highly oriented pyrolythic graphite (HOPG) sample is found, in spite of the non-equilibrium charge state of the recoils and the difference in the stopping powers caused by the given charge state of the incident ion and the recoil, which are not taken into account. To achieve more precise data evaluation these effects should be included in simulation codes, or all the subspectra corresponding to different recoils charge states should be measured and summed

  17. On the limitations introduced by energy spread in elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, E. E-mail: szilagyi@rmki.kfki.hu

    2001-07-01

    Improvements in experimental techniques have led to monolayer depth resolution in heavy ion elastic recoil detection analysis (HI-ERDA). Evaluation of the spectra, however, is not trivial. The spectra, using even the best experimental set-up, are subject to finite energy resolution of both extrinsic and intrinsic origin. A proper account for energy spread is necessary to extract the correct depth profile from the measured spectra. With calculation of the correct energy (or depth) resolution of a given method, one can decide in advance whether or not the method will resolve details of interest in the depth profile. To achieve the best depth resolution, it is also possible to find optimum parameters for the experiments. The limitations introduced by the energy spread effects are discussed. An example for simulation is shown for high energy resolution HI-ERDA measurements. Satisfactory agreement between the simulated and the measured HI-ERDA spectra taken by 60 MeV {sup 127}I{sup 23+} ions on highly oriented pyrolythic graphite (HOPG) sample is found, in spite of the non-equilibrium charge state of the recoils and the difference in the stopping powers caused by the given charge state of the incident ion and the recoil, which are not taken into account. To achieve more precise data evaluation these effects should be included in simulation codes, or all the subspectra corresponding to different recoils charge states should be measured and summed.

  18. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    Science.gov (United States)

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  19. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.

    Science.gov (United States)

    Hudson, Nathan E; Ding, Feng; Bucay, Igal; O'Brien, E Timothy; Gorkun, Oleg V; Superfine, Richard; Lord, Susan T; Dokholyan, Nikolay V; Falvo, Michael R

    2013-06-18

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin's elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin's mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. High-resolution elastic recoil detection utilizing Bayesian probability theory

    International Nuclear Information System (INIS)

    Neumaier, P.; Dollinger, G.; Bergmaier, A.; Genchev, I.; Goergens, L.; Fischer, R.; Ronning, C.; Hofsaess, H.

    2001-01-01

    Elastic recoil detection (ERD) analysis is improved in view of depth resolution and the reliability of the measured spectra. Good statistics at even low ion fluences is obtained utilizing a large solid angle of 5 msr at the Munich Q3D magnetic spectrograph and using a 40 MeV 197 Au beam. In this way the elemental depth profiles are not essentially altered during analysis even if distributions with area densities below 1x10 14 atoms/cm 2 are measured. As the energy spread due to the angular acceptance is fully eliminated by ion-optical and numerical corrections, an accurate and reliable apparatus function is derived. It allows to deconvolute the measured spectra using the adaptive kernel method, a maximum entropy concept in the framework of Bayesian probability theory. In addition, the uncertainty of the reconstructed spectra is quantified. The concepts are demonstrated at 13 C depth profiles measured at ultra-thin films of tetrahedral amorphous carbon (ta-C). Depth scales of those profiles are given with an accuracy of 1.4x10 15 atoms/cm 2

  1. Detection Efficiency of a ToF Spectrometer from Heavy-Ion Elastic Recoil Detection

    International Nuclear Information System (INIS)

    Barbara, E. de; Marti, G. V.; Capurro, O. A.; Fimiani, L.; Mingolla, M. G.; Negri, A. E.; Arazi, A.; Figueira, J. M.; Pacheco, A. J.; Martinez Heimann, D.; Carnelli, P. F. F.; Fernandez Niello, J. O.

    2010-01-01

    The detection efficiency of a time-of-flight system based on two micro-channel plates (MCP) time zero detectors plus a conventional silicon surface barrier detector was obtained from heavy ion elastic recoil measurements (this ToF spectrometer is mainly devoted to measurements of total fusion cross section of weakly bound projectiles on different mass-targets systems). In this work we have used beams of 7 Li, 16 O, 32 S and 35 Cl to study the mass region of interest for its application to measurements fusion cross sections in the 6,7 Li+ 27 Al systems at energies around and above the Coulomb barrier (0.8V B ≤E≤2.0V B ). As the efficiency of a ToF spectrometer is strongly dependent on the energy and mass of the detected particles, we have covered a wide range of the scattered particle energies with a high degree of accuracy at the lowest energies. The different experimental efficiency curves obtained in that way were compared with theoretical electronic stopping power curves on carbon foils and were applied.

  2. The recoil proton polarization in πp elastic scattering

    International Nuclear Information System (INIS)

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for π + p and π - p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P 3 East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10 7 π - 's/sec and from 3.0 to 10.0 x 10 7 π + 's/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs

  3. Recoil-proton polarization in πp elastic scattering at 547 and 625 MeV/c

    International Nuclear Information System (INIS)

    Seftor, C.J.; Adrian, S.D.; Briscoe, W.J.; Mokhtari, A.; Taragin, M.F.; Sadler, M.E.; Barlow, D.B.; Nefkens, B.M.K.; Pillai, C.

    1989-01-01

    The polarization of the recoil proton in π + p and π - p elastic scattering using a liquid-hydrogen target has been measured for backward angles at 547 and 625 MeV/c. The scattered pion and recoil proton were detected in coincidence using the large-acceptance spectrometer to detect and analyze the momentum of the pions and the JANUS polarimeter to identify and measure the polarization of the protons. Results from this experiment agree with other measurements of the recoil polarization, with analyzing-power data previously taken by this group, and with predictions of partial-wave analyses

  4. Low energy recoil detection with a spherical proportional counter

    Science.gov (United States)

    Savvidis, I.; Katsioulas, I.; Eleftheriadis, C.; Giomataris, I.; Papaevangellou, T.

    2018-01-01

    We present results for the detection of low energy nuclear recoils in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An 241Am-9Be fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the keV energy region was measured by observing the 5.9 keV line of a 55Fe X-ray source, with energy resolution of 10% (σ). The toolkit GEANT4 was used to simulate the irradiation of the detector by an 241Am-9Be source, while SRIM was used to calculate the Ionization Quenching Factor (IQF), the simulation results are compared with the measurements. The potential of the SPC in low energy recoil detection makes the detector a good candidate for a wide range of applications, including Supernova or reactor neutrino detection and Dark Matter (WIMP) searches (via coherent elastic scattering).

  5. Potku – New analysis software for heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Arstila, K.; Julin, J.; Laitinen, M.I.; Aalto, J.; Konu, T.; Kärkkäinen, S.; Rahkonen, S.; Raunio, M.; Itkonen, J.; Santanen, J.-P.; Tuovinen, T.; Sajavaara, T.

    2014-01-01

    Time-of-flight elastic recoil detection (ToF-ERD) analysis software has been developed. The software combines a Python-language graphical front-end with a C code computing back-end in a user-friendly way. The software uses a list of coincident time-of-flight–energy (ToF–E) events as an input. The ToF calibration can be determined with a simple graphical procedure. The graphical interface allows the user to select different elements and isotopes from a ToF–E histogram and to convert the selections to individual elemental energy and depth profiles. The resulting sample composition can be presented as relative or absolute concentrations by integrating the depth profiles over user-defined ranges. Beam induced composition changes can be studied by displaying the event-based data in fractions relative to the substrate reference data. Optional angular input data allows for kinematic correction of the depth profiles. This open source software is distributed under the GPL license for Linux, Mac, and Windows environments

  6. Potku – New analysis software for heavy ion elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Arstila, K., E-mail: kai.arstila@jyu.fi [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä (Finland); Julin, J.; Laitinen, M.I. [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä (Finland); Aalto, J.; Konu, T.; Kärkkäinen, S.; Rahkonen, S.; Raunio, M.; Itkonen, J.; Santanen, J.-P.; Tuovinen, T. [Department of Mathematical Information Technology, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä (Finland); Sajavaara, T. [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä (Finland)

    2014-07-15

    Time-of-flight elastic recoil detection (ToF-ERD) analysis software has been developed. The software combines a Python-language graphical front-end with a C code computing back-end in a user-friendly way. The software uses a list of coincident time-of-flight–energy (ToF–E) events as an input. The ToF calibration can be determined with a simple graphical procedure. The graphical interface allows the user to select different elements and isotopes from a ToF–E histogram and to convert the selections to individual elemental energy and depth profiles. The resulting sample composition can be presented as relative or absolute concentrations by integrating the depth profiles over user-defined ranges. Beam induced composition changes can be studied by displaying the event-based data in fractions relative to the substrate reference data. Optional angular input data allows for kinematic correction of the depth profiles. This open source software is distributed under the GPL license for Linux, Mac, and Windows environments.

  7. Multiple and double scattering contributions to depth resolution and low energy background in hydrogen elastic recoil detection

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    The sensitivity of hydrogen elastic recoil detection ( ERD ) is usually limited by the low energy background in the ERD spectrum. A number of 4.5 MeV He{sup ++} hydrogen ERD spectra from different hydrogen implanted samples are compared. The samples are chosen with different atomic numbers from low Z (carbon) to high Z (tungsten carbide) to observe the effects of multiple scattering and double scattering within the sample material. The experimental depth resolution and levels of the low energy background in ERD spectra are compared with theoretical predictions from multiple and double scattering. 10 refs., 2 tabs., 5 figs.

  8. Multiple and double scattering contributions to depth resolution and low energy background in hydrogen elastic recoil detection

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L S [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1997-12-31

    The sensitivity of hydrogen elastic recoil detection ( ERD ) is usually limited by the low energy background in the ERD spectrum. A number of 4.5 MeV He{sup ++} hydrogen ERD spectra from different hydrogen implanted samples are compared. The samples are chosen with different atomic numbers from low Z (carbon) to high Z (tungsten carbide) to observe the effects of multiple scattering and double scattering within the sample material. The experimental depth resolution and levels of the low energy background in ERD spectra are compared with theoretical predictions from multiple and double scattering. 10 refs., 2 tabs., 5 figs.

  9. Helium concentration in tungsten nano-tendril surface morphology using Elastic Recoil Detection

    International Nuclear Information System (INIS)

    Woller, K.B.; Whyte, D.G.; Wright, G.M.; Doerner, R.P.; De Temmerman, G.

    2013-01-01

    Helium (He) concentrations in tungsten nano-tendrils (W fuzz) have been measured for the first time using Elastic Recoil Detection (ERD). Fuzzy and non-fuzzy W surfaces were analyzed in order to illuminate the role of He in the transition in surface morphologies. Samples grown in the PISCES-A and PILOT-PSI experiments allowed a survey of surface temperature ranging from T s = 470–2595 K and of He fluence on the order of Φ He ∼ 10 24 –10 27 ions/m 2 . He concentrations measured in the bulk of W fuzz layers are roughly uniform with bulk He concentration 1–4 at.% while samples with just He in the near surface peaked at 1–2 at.%. This confirms that the nano-tendrils are filled with high pressure He bubbles since the solubility of He in W is ∼10 −5 at.%. This indicates that the ∼1000 K temperature fuzz-growth threshold is determined by the response of the W, not the near-surface He concentration

  10. Energy and depth resolution in elastic recoil coincidence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, E., E-mail: szilagyi@rmki.kfki.h [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2010-06-15

    Elastic recoil coincidence spectrometry was implemented into the analytical ion beam simulation program DEPTH. In the calculations, effective detector geometry and multiple scattering effects are considered. Mott's cross section for the identical, spin zero particles is included. Spectra based on the individual detector signal and summing the energy of the recoiled and scattered particles originating from the same scattering events can also be calculated. To calculate this latter case, the dependency of the energy spread contributions had to be reconsidered.

  11. Energy and depth resolution in elastic recoil coincidence spectrometry

    International Nuclear Information System (INIS)

    Szilagyi, E.

    2010-01-01

    Elastic recoil coincidence spectrometry was implemented into the analytical ion beam simulation program DEPTH. In the calculations, effective detector geometry and multiple scattering effects are considered. Mott's cross section for the identical, spin zero particles is included. Spectra based on the individual detector signal and summing the energy of the recoiled and scattered particles originating from the same scattering events can also be calculated. To calculate this latter case, the dependency of the energy spread contributions had to be reconsidered.

  12. Monte-Carlo simulation of heavy ion elastic recoil detection analysis data to include the effects of large angle plural scattering

    International Nuclear Information System (INIS)

    Johnston, P.N.; Franich, R.D.

    1999-01-01

    Heavy Ion Elastic Recoil Detection Analysis (HIERDA) is becoming widely used to study a range of problems in materials science, however there is no standard methodology for the analysis of HIERDA spectra. Major impediments are the effects of multiple and plural scattering which are very significant, even for quite thin (∼100nm) layers of very heavy elements. To examine the effects of multiple scattering a fast FORTRAN version of TRIM has been adapted to simulate the spectrum of backscattered and recoiled ions reaching the detector. Two problems have been initially investigated. In the first, the detector is positioned beyond the critical angle for single scattering from a pure vanadium target where traditional slab analysis would not predict any scattered yield. In the second, a thin Au layer on a Si substrate is modelled for two different thicknesses of the substrate to investigate the effect of the substrate chosen. The use of multiple processors enabled the acquisition of statistically reasonable simulation spectra for scattered and recoiled ions. For each target modelled, 10 9 incident ions were tracked. The results of the simulations are compared with experimental measurements performed using ToF-E HIERDA at Lucas Heights and show good agreement except in the long tails due to Plural Scattering

  13. Hydrogen depth resolution in multilayer metal structures, comparison of elastic recoil detection and resonant nuclear reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S. E-mail: leszekw@optushome.com.au; Grambole, D.; Kreissig, U.; Groetzschel, R.; Harding, G.; Szilagyi, E

    2002-05-01

    Four different metals: Al, Cu, Ag and Au have been used to produce four special multilayer samples to study the depth resolution of hydrogen. The layer structure of each sample was analysed using 2 MeV He Rutherford backscattering spectrometry, 4.5 MeV He elastic recoil detection (ERD) and 30 MeV F{sup 6+} HIERD. Moreover the hydrogen distribution was analysed in all samples using H({sup 15}N, {alpha}{gamma}){sup 12}C nuclear reaction analysis (NRA) with resonance at 6.385 MeV. The results show that the best depth resolution and sensitivity for hydrogen detection are offered by resonance NRA. The He ERD shows good depth resolution only for the near surface hydrogen. In this technique the depth resolution is rapidly reduced with depth due to multiple scattering effects. The 30 MeV F{sup 6+} HIERD demonstrated similar hydrogen depth resolution to He ERD for low mass metals and HIERD resolution is substantially better for heavy metals and deep layers.

  14. Microbeam recoil detection for hydration of minerals studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S.H.; Suter, G.F. [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.; Chekhmir, A.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia)

    1993-12-31

    The glancing angle geometry is chosen to enable application of the elastic recoil detection microanalysis on thick geological samples, for hydrogen content determination. Simultaneous PIXE measurements can be used to eliminate the problem of uncertainties in beam charge collection. The method is applied to determine the hydration characteristics of silicates, produced experimentally at high pressure and temperature simulating the lower crust and upper mantle conditions. Preliminary results show that the technique can be applied readily on a microscopic (<100 {mu}m) scale for determination of H at fraction of atomic percent level. 9 refs., 3 figs.

  15. Microbeam recoil detection for hydration of minerals studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S H; Suter, G F [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.; Chekhmir, A; Green, T H [Macquarie Univ., North Ryde, NSW (Australia)

    1994-12-31

    The glancing angle geometry is chosen to enable application of the elastic recoil detection microanalysis on thick geological samples, for hydrogen content determination. Simultaneous PIXE measurements can be used to eliminate the problem of uncertainties in beam charge collection. The method is applied to determine the hydration characteristics of silicates, produced experimentally at high pressure and temperature simulating the lower crust and upper mantle conditions. Preliminary results show that the technique can be applied readily on a microscopic (<100 {mu}m) scale for determination of H at fraction of atomic percent level. 9 refs., 3 figs.

  16. Measurement of recoil photon polarisation in the electron-proton elastic scattering

    International Nuclear Information System (INIS)

    Buon, Jean

    1965-02-01

    This research thesis reports and discusses an experiment which aimed at checking the validity of the Born approximation at the first order in the elastic scattering of high energy electrons on protons. In this experiment, the recoil proton polarisation is measured in an elastic scattering of electrons with energy of 950 MeV and scattering at about 90 degrees in the mass centre system. The author describes the experimental installation, its operation and data collection, reports the analysis of photos and polarisation calculations and errors [fr

  17. Sensitive detection of hydrogen in a-Si:H by coincidence measurement of elastically scattered 100 MeV /sup 3/He/sup 2 +/ ions and recoil protons

    Energy Technology Data Exchange (ETDEWEB)

    Fukada, Noboru; Imura, Takeshi; Hiraki, Akio [Osaka Univ., Suita (Japan). Faculty of Engineering; Itahashi, Takahisa; Fukuda, Tomokazu; Tanaka, Masayoshi

    1982-09-01

    We have drastically improved the sensitivity of the nuclear elastic scattering (NES) method for determining hydrogen concentrations in hydrogenated amorphous silicon (a-Si:H) films. A beam of 100 MeV /sup 3/He/sup 2 +/ ions was used in the experiment. By taking the coincidence of detection of the scattered /sup 3/He ion with that of the recoil proton, we could achieve a sensitivity of 0.1 atomic percent with a precision of about 1 percent for 1 ..mu..m films.

  18. Nuclear-Recoil Energy Scale in CDMS II Silicon Dark-Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; et al.

    2018-03-07

    The Cryogenic Dark Matter Search (CDMS II) experiment aims to detect dark matter particles that elastically scatter from nuclei in semiconductor detectors. The resulting nuclear-recoil energy depositions are detected by ionization and phonon sensors. Neutrons produce a similar spectrum of low-energy nuclear recoils in such detectors, while most other backgrounds produce electron recoils. The absolute energy scale for nuclear recoils is necessary to interpret results correctly. The energy scale can be determined in CDMS II silicon detectors using neutrons incident from a broad-spectrum $^{252}$Cf source, taking advantage of a prominent resonance in the neutron elastic scattering cross section of silicon at a recoil (neutron) energy near 20 (182) keV. Results indicate that the phonon collection efficiency for nuclear recoils is $4.8^{+0.7}_{-0.9}$% lower than for electron recoils of the same energy. Comparisons of the ionization signals for nuclear recoils to those measured previously by other groups at higher electric fields indicate that the ionization collection efficiency for CDMS II silicon detectors operated at $\\sim$4 V/cm is consistent with 100% for nuclear recoils below 20 keV and gradually decreases for larger energies to $\\sim$75% at 100 keV. The impact of these measurements on previously published CDMS II silicon results is small.

  19. Hydrocarbon isotope detection by elastic peak electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kostanovskiy, I.A., E-mail: kostanovskiyia@gmail.com [National Research University MPEI, Krasnokazarmennaya 14, 111250 Moscow (Russian Federation); Afanas’ev, V.P. [National Research University MPEI, Krasnokazarmennaya 14, 111250 Moscow (Russian Federation); Naujoks, D. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Mayer, M. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

    2015-07-15

    Highlights: • PCVD hydrocarbon coatings containing protium or deuterium are analyzed via NRA, ERD, XPS and EPES. • EPES analysis with modern electron energy analyzer SPECS Phoibos 225 shows a clear signal from the hydrogen isotopes. • Different primary energies and scattering angles help to quantify isotope content from EPES spectra. - Abstract: Experimental results on the hydrocarbon isotope analysis by elastic peak electron spectroscopy are presented. Amorphous hydrocarbon samples (a-C:H, a-C:D) are prepared by PCVD and analyzed by nuclear reaction analysis (NRA), elastic recoil detection analysis (ERD), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES). Electron energy spectra show a clear signal from the hydrogen isotopes deuterium and protium. Different incident energies and scattering geometries help to resolve plasmon and elastic energy losses.

  20. Hydrocarbon isotope detection by elastic peak electron spectroscopy

    International Nuclear Information System (INIS)

    Kostanovskiy, I.A.; Afanas’ev, V.P.; Naujoks, D.; Mayer, M.

    2015-01-01

    Highlights: • PCVD hydrocarbon coatings containing protium or deuterium are analyzed via NRA, ERD, XPS and EPES. • EPES analysis with modern electron energy analyzer SPECS Phoibos 225 shows a clear signal from the hydrogen isotopes. • Different primary energies and scattering angles help to quantify isotope content from EPES spectra. - Abstract: Experimental results on the hydrocarbon isotope analysis by elastic peak electron spectroscopy are presented. Amorphous hydrocarbon samples (a-C:H, a-C:D) are prepared by PCVD and analyzed by nuclear reaction analysis (NRA), elastic recoil detection analysis (ERD), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES). Electron energy spectra show a clear signal from the hydrogen isotopes deuterium and protium. Different incident energies and scattering geometries help to resolve plasmon and elastic energy losses

  1. First measurement of the ionization yield of nuclear recoils in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, T. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sangiorgio, Samuele [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Foxe, Michael P. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Hagmann, Chris [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Jovanovic, Igor [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Kazkaz, K. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mozin, Vladimir V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Norman, E. B. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pereverzev, S. V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Rebassoo, Finn O. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sorensen, Peter F. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  2. Detection method of elastic scattering in the Coulomb interference region: scintillation target

    International Nuclear Information System (INIS)

    Azaiez, Hamza.

    1981-01-01

    Measurement of polarization in (p-p) elastic scattering in the Coulomb interference region is considered as a valid method for calibrating high energy polarized proton beams. Possibility of using a scintillation target to detect low energy recoil protons in this /t/ region has been studied by using a 4 GeV/c π - beam from CERN PS. The results obtained with a steack of thin plastic scintillators, each 1 mm thick, showed the feasibility of detecting recoil protons in a /t/ range as low a 5.10 -3 (GeV/c) 2 . This method thus confirmed experimentally can be used also to measure, using a polarized beam, polarization in Coulomb interference region [fr

  3. Recoil detector test for the day-one experiment at HESR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang [Institute of Modern Physics, CAS, 730000 Lanzhou (China); Forschungszentrum Juelich, 52425 Juelich (Germany); Xu, Huagen; Ritman, James [Forschungszentrum Juelich, 52425 Juelich (Germany)

    2013-07-01

    The proposed day-one experiment at HESR is a dedicated measurement of antiproton-proton elastic scattering. The aim of the day-one experiment is to determine the elastic differential parameters (total cross section σ{sub T}, the ratio of real to imaginary part of the forward scattering amplitude ρ, and the slope parameter B) by measuring a large range of 4-momentum transfer squared t (0.0008-0.1 GeV{sup 2}). The conceptual design of the day-one experiment is to measure the elastic scattered antiproton and recoil proton, by a tracking detector in the small polar angle range and by an energy detector near 90 , respectively. The recoil arm covers a maximum polar angle range from 71 to 90 and consists of two silicon strip detectors (76.8(length) x 50.0(width) x 1.0(thickness) mm{sup 3}) and two germanium detectors (80.4(length) x 50.0(width) x 5.0 (11.0) (thickness) mm{sup 3}). All detectors are single sided structure with 1.2 mm pitch. The silicon detectors will be used to detect recoil protons with energy up to about 12 MeV and the germanium detectors will be used to detect protons with energy from 12 MeV to 60 MeV. At present, one recoil arm is being constructed and the test for the detectors with radioactive sources is on-going. Preliminary test results indicate that all detectors are operational and work properly. The latest test results of these detectors are presented.

  4. A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis

    Science.gov (United States)

    Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran

    2016-10-01

    A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.

  5. Elastic recoil detection analysis for the determination of hydrogen concentration profiles in switchable mirrors

    International Nuclear Information System (INIS)

    Huisman, M.C.; Molen, S.J. van der; Vis, R.D.

    1999-01-01

    Switchable mirrors [J.N. Huiberts, R. Griessen, J.H. Rector, R.J. Wijngaarden, J.P. Dekker, D.G. de Groot, N.J. Koeman, Nature 380 (1996) 231; J.N Huiberts, J.H. Rector, R.J. Wijngaarden, S. Jetten, D. de Groot, B. Dam, N.J.. Koeman, R. Griessen, B. Hjoervarsson, S Olafsson, Y.S. Cho, J. Alloys and Compounds 239 (1996) 158; F.J.A. den Broeder, S.J. van der Molen, M. Kremers, J. N. Huiberts, D.G. Nagengast, A.T.M. van Gogh, W.H. Huisman, N. J. Koeman, B. Dam, J.H. Rector, S. Plota, M. Haaksma, R.M.N. Hanzen, R.M. Jungblut, P.A. Duine, R. Griessen, Nature 394 (1998) 656] made of thin films of Y, La or rare-earth (RE) metals exhibit spectacular changes in their optical and electrical properties upon hydrogen loading. The study of these materials has indicated that the occurring phenomena are highly sensitive to the actual hydrogen concentration in these materials. In this paper elastic recoil detection analysis (ERDA) is used as a tool to measure hydrogen concentrations on a micrometer scale. The measurements have been performed using a 4 He 2+ ion beam from a 1.7 MV Pelletron accelerator. The ion beam can be focused routinely to a spot size of approximately 10 μm 2 . The experimental set-up enables the simultaneous measurement of Rutherford backscattering spectrometry (RBS) as well as particle induced X-ray emission (PIXE) spectra, which provide complementary information. The results of ERDA measurements on laterally diffused YH x (0< x<3) samples with a qualitatively known hydrogen concentration profile are presented and discussed. The calibration of the microbeam set-up and possible improvement of the measurement technique are described

  6. Elastic recoil detection analysis for the determination of hydrogen concentration profiles in switchable mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Huisman, M.C. E-mail: huisman@nat.vu.nl; Molen, S.J. van der; Vis, R.D

    1999-09-02

    Switchable mirrors [J.N. Huiberts, R. Griessen, J.H. Rector, R.J. Wijngaarden, J.P. Dekker, D.G. de Groot, N.J. Koeman, Nature 380 (1996) 231; J.N Huiberts, J.H. Rector, R.J. Wijngaarden, S. Jetten, D. de Groot, B. Dam, N.J.. Koeman, R. Griessen, B. Hjoervarsson, S Olafsson, Y.S. Cho, J. Alloys and Compounds 239 (1996) 158; F.J.A. den Broeder, S.J. van der Molen, M. Kremers, J. N. Huiberts, D.G. Nagengast, A.T.M. van Gogh, W.H. Huisman, N. J. Koeman, B. Dam, J.H. Rector, S. Plota, M. Haaksma, R.M.N. Hanzen, R.M. Jungblut, P.A. Duine, R. Griessen, Nature 394 (1998) 656] made of thin films of Y, La or rare-earth (RE) metals exhibit spectacular changes in their optical and electrical properties upon hydrogen loading. The study of these materials has indicated that the occurring phenomena are highly sensitive to the actual hydrogen concentration in these materials. In this paper elastic recoil detection analysis (ERDA) is used as a tool to measure hydrogen concentrations on a micrometer scale. The measurements have been performed using a {sup 4}He{sup 2+} ion beam from a 1.7 MV Pelletron accelerator. The ion beam can be focused routinely to a spot size of approximately 10 {mu}m{sup 2}. The experimental set-up enables the simultaneous measurement of Rutherford backscattering spectrometry (RBS) as well as particle induced X-ray emission (PIXE) spectra, which provide complementary information. The results of ERDA measurements on laterally diffused YH{sub x} (0

  7. Nuclear reactions excited by recoil protons on a nuclear reactor

    International Nuclear Information System (INIS)

    Mukhammedov, S.; Khaydarov, A.; Barsukova, E.G.

    2006-01-01

    The nuclear reactions excited by recoil protons and of the detection possibility of the various chemical elements with the use of these secondary nucleus reactions were investigated. The recoil protons are produced on a nuclear reactor in the result of (n, p) inelastic and elastic scattering interaction of fast neutrons with nuclei of hydrogen. It is well known that the share of fast neutrons in energetic spectrum of reactor's neutrons in comparison with the share of thermal neutrons is small. . Consequently, the share of recoil protons produced in the result of fast neutron interaction with nuclei of light elements, capable to cause the nuclear reactions, is also small, des, due to Coulomb barrier of nuclei the recoil protons can cause the nuclear reactions only on nuclei of light and some middle elements. Our studies show that observable yields have radio nuclides excited in the result of nuclear reactions on Li, B, O, V and Cu. Our experimental results have demonstrated that the proton activation analysis based on the application of secondary nuclear reactions is useful technique to determine large contents of various light and medium chemical elements. Detection limits for studied chemical elements are estimated better than 10 ppm

  8. Detection of supernova neutrinos by neutrino-proton elastic scattering

    International Nuclear Information System (INIS)

    Beacom, John F.; Farr, Will M.; Vogel, Petr

    2002-01-01

    We propose that neutrino-proton elastic scattering, ν+p→ν+p, can be used for the detection of supernova neutrinos in scintillator detectors. Though the proton recoil kinetic energy spectrum is soft, with T p ≅2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from ν(bar sign) e +p→e + +n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy and temperature of ν μ , ν τ , ν(bar sign) μ , and ν(bar sign) τ . The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  9. ZZ RECOIL/B, Heavy Charged Particle Recoil Spectra Library for Radiation Damage Calculation

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Amburgey, J.D.; Greene, N.M.

    1983-01-01

    1 - Description of problem or function: Format: GAM-II group structure; Number of groups: 104 neutron and Recoil-energy groups; Nuclides: Elements Included in Charged-Particle Recoil Data Base: Al, W, Ti, Pb, V, Mg, Cr, Be, Mn, C, Fe, Au, Co, Si, Ni, B-10, Cu, B-11, Zr, N, Nb, Li-6, Mo, Li-7, Ta (Data for Ta-181,Ta-182), O, Origin: ENDF/B-IV cross-section data. A heavy charged-particle recoil data base (primary knock-on atom (PKA) spectra) and an analysis program have been created to assist experimentalists in studying, evaluating, and correlating radiation-damage effects in different neutron environments. Since experimentally obtained controlled thermo-nuclear-reactor-type neutron spectra are not presently available, the data base can be extremely useful in relating currently obtainable radiation damage to that which is anticipated in future fusion devices. However, the usefulness of the data base is not restricted to just CTR needs. Most of the elements of interest to the radiation-damage community and all neutron reactions of any significance for these elements have been processed, using available ENDF/B-IV cross-section data, and are included in the data base. Calculated data such as primary recoil spectra, displacement rates, and gas-production rates, obtained with the data base, for different radiation environments are presented and compared with previous calculations. Primary neutrons with energies up to 20 MeV have been considered. The elements included in the data base are listed in Table I. All neutron reactions of significance for these elements (i.e., elastic, inelastic, (n,2n), (n,3n), (n,p), (n,sigma), (n,gamma), etc.,) which have cross sections available from ENDF/B-IV have been processed and placed in the data base. Table I - Elements Included in Charged-Particle Recoil Data Base: Al, W, Ti, Pb, V, Mg, Cr, Be, Mn, C, Fe, Au, Co, Si, Ni, 10 B, Cu, 11 B, Zr, N, Nb, 6 Li, Mo, 7 Li, Ta (Data for Ta 181 ,Ta 182 ), O. 2 - Method of solution: The neutron

  10. Scintillation efficiency of nuclear recoil in liquid xenon

    CERN Document Server

    Arneodo, F; Badertscher, A; Benetti, P; Bernardini, E; Bettini, A; Borio di Tigliole, A A; Brunetti, R; Bueno, A G; Calligarich, E; Campanelli, M; Carpanese, C; Cavalli, D; Cavanna, F; Cennini, P; Centro, Sandro; Cesana, A; Cline, D; De Mitri, I; Dolfini, R; Ferrari, A; Gigli-Berzolari, A; Matthey, C; Mauri, F; Mazza, D; Mazzone, L; Meng, G; Montanari, C; Nurzia, G; Otwinowski, S; Palamara, O; Pascoli, D; Pepato, Adriano; Petrera, S; Periale, L; Piano Mortari, G; Piazzoli, A; Picchi, P; Pietropaolo, F; Rancati, T; Rappoldi, A; Raselli, G L; Rebuzzi, D; Revol, Jean Pierre Charles; Rico, J; Rossella, M; Rossi, C; Rubbia, André; Rubbia, Carlo; Sala, P; Scannicchio, D A; Sergiampietri, F; Suzuki, S; Terrani, M; Tian, W; Ventura, Sandro; Vignoli, C; Wang, H; Woo, J; Xu, Z

    2000-01-01

    We present the results of a test done with a Liquid Xenon (LXe) detector for 'Dark Matter' search, exposed to a neutron beam to produce nuclear recoil events simulating those which would be generated by WIMP's elastic scattering. The aim of the experiment was to measure directly the scintillation efficiency of nuclear recoil. The nuclear recoil considered in the test was in the tens of keV range. The ratio of measured visible energy over the true recoil energy was evaluated to be about 20%, in good agreement with the theoretical predictions.

  11. A recoil detector of Koala experiment at HESR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huagen [Forschungszentrum Juelich (Germany)

    2015-07-01

    The concept of the luminosity detector for the PANDA experiment is based on measuring antiproton-proton elastic scattering in the Coulomb-nuclear interference region by 4 planes of HV-MAPS tracking detectors. The absolute precision is limited by the lack of existing data of the physics quantities σ{sub tot}, ρ and b describing the differential cross section as a function of squared 4-momentum transfer t in the relevant beam momentum region. Therefore, the so-called Koala experiment has been proposed to measure antiproton-proton elastic scattering. The goal of Koala experiment is to measure a wide range of t-distribution to determine the parameters σ{sub tot}, ρ and b. The idea is to measure the scattered beam antiprotons at forward angles by tracking detectors and the recoil target protons near 90 {sup circle} by energy detectors. In order to validate this method a recoil detector has been designed and built. Commissioning of the recoil detector by measuring proton-proton elastic scattering has been performed at COSY. Preliminary results of the commissioning are presented.

  12. Elastic forward analysis using sup 7 Li ions A useful tool for H and light elements determination

    CERN Document Server

    Romero, S; Murillo, G; Berdejo, H M

    2002-01-01

    Films of CN sub x /Si, TiN sub x /AISI 304 and AlO sub x /Si were analyzed with sup 7 Li ions from 4.0 to 4.5 MeV and an experimental arrangement that, through detection of scattered projectiles and recoils by a single detector, allows quantification of H, light elements and heavier ones. A discussion is presented of the capabilities of Rutherford backscattering spectrometry (RBS) and conventional elastic recoil detection analysis (ERDA) compared to elastic forward analysis.

  13. Polarization of recoil deuteron in ed elastic scattering at medium energies

    International Nuclear Information System (INIS)

    Bhalerao, R. S.

    1981-12-01

    Vector and tensor polarizations of the recoil deuteron in ed elastic scattering are calculated for THETA=0deg-180deg and q 2 2 . A longitudinally polarized electron beam is assumed to scatter off an unpolarized deuteron target. Calculations are made in the relativistic impulse approximation using a recently described approach based on the Bethe-Salpeter equation. Results are different, at high q 2 even qualitatively so, from those of a non-relativistic calculation, and a relativistic calculation which takes the spectator nucleon on-mass-shell. In the light of these results a recent suggestion that the polarization measurements would throw new light on the off-shell behavior and tensor force strength of the NN interaction are reexamined. Results are also presented for the three deuteron form factors Gsub(C), Gsub(Q), and Gsub(M), and the often-needed related quantities Ssub(S), Ssub(Q), and Ssub(M). The latter results may have an important implication in high-momentum transfer reactions involving deuteron. (author)

  14. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Fallows, Scott Mathew [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-12-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.

  15. First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering

    Science.gov (United States)

    Baxter, D.; Chen, C. J.; Crisler, M.; Cwiok, T.; Dahl, C. E.; Grimsted, A.; Gupta, J.; Jin, M.; Puig, R.; Temples, D.; Zhang, J.

    2017-06-01

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a Cf 252 neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19 ±6 keV (1 σ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3 ×10-7 bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF3 I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.

  16. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huajie [Princeton Univ., NJ (United States)

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  17. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    Science.gov (United States)

    Fallows, Scott M.

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS~II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for "background-free'' operation of CDMS~II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space. These results, like any others, are subject to a variety of systematic effects that may alter their final interpretations. A primary focus of this dissertation will be difficulties in precisely calibrating the energy scale for nuclear recoil events like those from WIMPs. Nuclear recoils have suppressed ionization signals relative to electron recoils of the same recoil energy, so the response of the detectors is calibrated differently for each recoil type. The overall normalization and linearity of the energy scale for electron recoils in CDMS~II detectors is clearly established by peaks of known gamma energy in the ionization spectrum of calibration data from a 133Ba source. This electron-equivalent keVee) energy scale enables calibration of the total phonon signal (keVt) by enforcing unity

  18. Deuterium electrodisintegration at high recoil momentum

    International Nuclear Information System (INIS)

    Steenholen, G.

    1996-01-01

    The availability of continuous electron beams made it possible to carry out various deuterium electro-disintegration experiments in kinematical domains corresponding to a high recoil momentum. Three such experiments are discussed: 1) the left-right asymmetry with respect to the direction of the momentum transfer has been measured with good precision; 2) cross sections have been obtained in a kinematical region well above the quasi-elastic peak; 3) data have been taken in quasi-elastic kinematics that can be used to study high-momentum components in the deuterium wave function [ru

  19. Determination of hydrogen concentration in a-Si and a-Ge layers by elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Khanh, N.Q.; Serenyi, M.

    2010-01-01

    Elastic Recoil Detection Analysis (ERDA) using MeV He + ions. ERD is most frequently used for H detection, because it is simple, non-destructive method. The samples were annealed in high purity argon at 623 K for 1 and 4 hours. Non-hydrogenated samples sputtered and annealed under the same conditions of the hydrogenated ones were also investigated. It was shown that hydrogen can diffuse out faster from Ge film than from the Si one during annealing. This result is in good agreement with literature and with our previous prediction concerning the thermal stability investigations of hydrogenated Si/Ge multilayers. As it is follows from the ERDA results, the formation of bubbles on the surface of multilayers is due to release of hydrogen from the Ge layers. Breaking of the Si-H bonds is also possible but they play a minor role in the structural degradation of multilayers. This work was supported by the Scientific Cooperation Agreement between MTA (Hungary) and CNR (Italy) (contract no.MTA 1102) and by the National Office for Research and Technology (NKTH, grant no.TFSOLAR2).

  20. A new value for the half-life of {sup 10}Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting

    Energy Technology Data Exchange (ETDEWEB)

    Korschinek, G., E-mail: Gunther.Korschinek@ph.tum.d [Physik Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Bergmaier, A. [Universitaet der Bundeswehr Muenchen, Fakultaet fuer Luft- und Raumfahrttechnik, Institut fuer Angewandte Physik und Messtechnik LRT2, Werner-Heisenberg-Weg 39, D-85577 Neubiberg (Germany); Faestermann, T. [Physik Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Gerstmann, U.C. [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Radiation Protection, Ingolstaedter Landstr. 1, D-85764 Neuherberg (Germany); Knie, K.; Rugel, G. [Physik Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Wallner, A. [VERA Laboratory, Faculty of Physics, University of Vienna, Waehringer Strasse 17, A-1090 Wien (Austria); Dillmann, I. [Physik Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Dollinger, G. [Universitaet der Bundeswehr Muenchen, Fakultaet fuer Luft- und Raumfahrttechnik, Institut fuer Angewandte Physik und Messtechnik LRT2, Werner-Heisenberg-Weg 39, D-85577 Neubiberg (Germany); Lierse von Gostomski, Ch. [Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, D-85748 Garching (Germany); Kossert, K. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Maiti, M.; Poutivtsev, M. [Physik Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Remmert, A. [Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, D-85748 Garching (Germany)

    2010-01-15

    The importance of {sup 10}Be in different applications of accelerator mass spectrometry (AMS) is well-known. In this context the half-life of {sup 10}Be has a crucial impact, and an accurate and precise determination of the half-life is a prerequisite for many of the applications of {sup 10}Be in cosmic-ray and earth science research. Recently, the value of the {sup 10}Be half-life has been the centre of much debate. In order to overcome uncertainties inherent in previous determinations, we introduced a new method of high accuracy and precision. An aliquot of our highly enriched {sup 10}Be master solution was serially diluted with increasing well-known masses of {sup 9}Be. We then determined the initial {sup 10}Be concentration by least square fit to the series of measurements of the resultant {sup 10}Be/{sup 9}Be ratio. In order to minimize uncertainties because of mass bias which plague other low-energy mass spectrometric methods, we used for the first time Heavy-Ion Elastic Recoil Detection (HI-ERD) for the determination of the {sup 10}Be/{sup 9}Be isotopic ratios, a technique which does not suffer from difficult to control mass fractionation. The specific activity of the master solution was measured by means of accurate liquid scintillation counting (LSC). The resultant combination of the {sup 10}Be concentration and activity yields a {sup 10}Be half-life of T{sub 1/2} = 1.388 +- 0.018 (1 s, 1.30%) Ma. In a parallel but independent study (Chmeleff et al. ), found a value of 1.386 +- 0.016 (1.15%) Ma. Our recommended weighted mean and mean standard error for the new value for {sup 10}Be half-life based on these two independent measurements is 1.387 +- 0.012 (0.87%) Ma.

  1. Hydrogen interstitial in H-ion implanted ZnO bulk single crystals: Evaluation by elastic recoil detection analysis and electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kaida, T.; Kamioka, K.; Nishimura, T. [College of Engineering and Research Center of Ion Beam Technology, Hosei University, Koganei, Tokyo 184-8584 (Japan); Kuriyama, K., E-mail: kuri@ionbeam.hosei.ac.jp [College of Engineering and Research Center of Ion Beam Technology, Hosei University, Koganei, Tokyo 184-8584 (Japan); Kushida, K. [Department of Arts and Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582 (Japan); Kinomura, A. [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2015-12-15

    The origins of low resistivity in H ion-implanted ZnO bulk single crystals are evaluated by elastic recoil detection analysis (ERDA), electron paramagnetic resonance (EPR), and Van der Pauw methods. The H-ion implantation (peak concentration: 5.0 × 10{sup 15} cm{sup −2}) into ZnO is performed using a 500 keV implanter. The maximum of the concentration of the implanted H estimated by a TRIM simulation is at 3600 nm in depth. The resistivity decreases from ∼10{sup 3} Ω cm for un implanted ZnO to 6.5 Ω cm for as-implanted, 2.3 × 10{sup −1} Ω cm for 200 °C annealed, and 3.2 × 10{sup −1} Ω cm for 400 °C annealed samples. The ERDA measurements can evaluate the concentration of hydrogens which move to the vicinity of the surface (surface to 300 nm or 100 nm) because of the diffusion by the annealing at 200 °C and 400 °C. The hydrogen concentration near the surface estimated using the 2.0 MeV helium beam is ∼3.8 × 10{sup 13} cm{sup −2} for annealed samples. From EPR measurements, the oxygen vacancy of +charge state (V{sub o}{sup +}) is observed in as-implanted samples. The V{sub o}{sup +} related signal (g = 1.96) observed under no illumination disappears after successive illumination with a red LED and appears again with a blue light illumination. The activation energy of as-implanted, 200 °C annealed, and 400 °C annealed samples estimated from the temperature dependence of carrier concentration lies between 29 meV and 23 meV, suggesting the existence of H interstitial as a shallow donor level.

  2. Light output response of EJ-309 liquid organic scintillator to 2.86-3.95 MeV carbon recoil ions due to neutron elastic and inelastic scatter

    Science.gov (United States)

    Norsworthy, Mark A.; Ruch, Marc L.; Hamel, Michael C.; Clarke, Shaun D.; Hausladen, Paul A.; Pozzi, Sara A.

    2018-03-01

    We present the first measurements of energy-dependent light output from carbon recoils in the liquid organic scintillator EJ-309. For this measurement, neutrons were produced by an associated particle deuterium-tritium generator and scattered by a volume of EJ-309 scintillator into stop detectors positioned at four fixed angles. Carbon recoils in the scintillator were isolated using triple coincidence among the associated particle detector, scatter detector, and stop detectors. The kinematics of elastic and inelastic scatter allowed data collection at eight specific carbon recoil energies between 2.86 and 3.95 MeV. We found the light output caused by carbon recoils in this energy range to be approximately 1.14% of that caused by electrons of the same energy, which is comparable to the values reported for other liquid organic scintillators. A comparison of the number of scattered neutrons at each angle to a Monte Carlo N-Particle eXtended simulation indicates that the ENDF/B-VII.1 evaluation of differential cross sections for 14.1 MeV neutrons on carbon has discrepancies with the experiment as large as 55%, whereas those reported in the JENDL-4.0u evaluation agree with experiment.

  3. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    International Nuclear Information System (INIS)

    Sorensen, Peter; Dahl, Carl Eric

    2011-01-01

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  4. Recoiling D-branes

    International Nuclear Information System (INIS)

    Nakamura, Shin

    2005-01-01

    We propose a new method to describe a recoiling D-brane that is elastically scattered by closed strings in the nonrelativistic region. We utilize the low-energy effective field theory on the worldvolume of the D-brane, and the velocity of the D-brane is described by the time derivative of the expectation values of the massless scalar fields on the worldvolume. The effects of the closed strings are represented by a source term for the massless fields in this method. The momentum conservation condition between the closed strings and the D-brane is derived up to the relative sign of the momentum of the D-brane

  5. Morphology, surface roughness, electron inelastic and quasi-elastic scattering in elastic peak electron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Lesiak, B.; Kosinski, A.; Nowakowski, R.; Koever, L.; Toth, J.; Varga, D.; Cserny, I.; Sulyok, A.; Gergely, G.

    2006-01-01

    Complete text of publication follows. Elastic peak electron spectroscopy (EPES) deals with the interaction of electrons with atoms of a solid surface, studying the distribution of electrons backscattered elastically. The nearest vicinity of the elastic peak, (low kinetic energy region) reflects both, electron inelastic and quasi-elastic processes. The incident electrons produce surface excitations, inducing surface plasmons with the corresponding loss peaks separated by 1 - 20 eV energy from the elastic peak. Quasi-elastic losses result from the recoil of scattering atoms of different atomic number, Z. The respective energy shift and Doppler broadening of the elastic peak depend on Z, the primary electron energy, E, and the measurement geometry. Quantitative surface analytical application of EPES, such as determination of parameters describing electron transport, requires a comparison of experimental data with corresponding data derived from Monte Carlo (MC) simulation. Several problems occur in EPES studies of polymers. The intensity of elastic peak, considered in quantitative surface analysis, is influenced by both, the inelastic and quasi-elastic scattering processes (especially for hydrogen scattering atoms and primary electron energy above 1000 eV). An additional factor affecting the elastic peak intensity is the surface morphology and roughness. The present work compares the effect of these factors on the elastic peak intensity for selected polymers (polyethylene, polyaniline and polythiophenes). X-ray photoelectron spectroscopy (XPS) and helium pycnometry are applied for deriving the surface atomic composition and the bulk density, while scanning electron microscopy (SEM) and atomic force microscopy (AFM) for determining surface morphology and roughness. According to presented results, the influence of surface morphology and roughness is larger than those of surface excitations or recoil of hydrogen atoms. The component due to recoil of hydrogen atoms can be

  6. The HERMES recoil detector

    International Nuclear Information System (INIS)

    Airapetian, A.; Belostotski, S.

    2013-02-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  7. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  8. LISA detection of massive black hole binaries: imprint of seed populations and extreme recoils

    International Nuclear Information System (INIS)

    Sesana, A; Volonteri, M; Haardt, F

    2009-01-01

    All the physical processes involved in the formation, merging and accretion history of massive black holes along the hierarchical build-up of cosmic structures are likely to leave an imprint on the gravitational waves detectable by future space-borne missions, such as LISA. We report here the results of recent studies, carried out by means of dedicated simulations of black hole build-up, aiming at understanding the impact on LISA observations of two ingredients that are crucial in every massive black hole formation scenario, namely: (i) the nature and abundance of the first black hole seeds and (ii) the large gravitational recoils following the merger of highly spinning black holes. We predict LISA detection rates spanning two orders of magnitude, in the range 3-300 events per year, depending on the detail of the assumed massive black hole seed model. On the other hand, large recoil velocities do not dramatically compromise the efficiency of LISA observations. The number of detections may drop substantially (by ∼60%), in scenarios characterized by abundant light seeds, but if seeds are already massive and/or relatively rare, the detection rate is basically unaffected.

  9. Ionization and scintillation of nuclear recoils in gaseous xenon

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J., E-mail: jrenner@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Gehman, V.M.; Goldschmidt, A.; Matis, H.S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C.A.B.; Shuman, D. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); and others

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  10. Exclusion limits on the WIMP nucleon elastic scattering cross-section from the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Golwala, Sunil Ramanlal [UC, Berkeley

    2000-01-01

    Extensive evidence indicates that a large fraction of the matter in the universe is nonluminous, nonbaryonic, and “cold” — nonrelativistic at the time matter began to dominate the energy density of the universe. Weakly Interacting Massive Particles (WIMPs) are an excellent candidate for nonbaryonic, cold dark matter. Minimal supersymmetry provides a natural WIMP candidate in the form of the lightest superpartner, with a typical mass Mδ ~ 100 GeV c-2 . WIMPs are expected to have collapsed into a roughly isothermal, spherical halo within which the visible portion of our galaxy resides. They would scatter off nuclei via the weak interaction, potentially allowingtheir direct detection. The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for WIMPs via their elastic-scatteringinteractions with nuclei while discriminatingagainst interactions of background particles. The former yield nuclear recoils while the latter produce electron recoils. The ionization yield (the ratio of ionization production to recoil energy in a semiconductor) of a particle interaction differs greatly for nuclear and electron recoils. CDMS detectors measure phonon and electron-hole-pair production to determine recoil energy and ionization yield for each event and thereby discriminate nuclear recoils from electron recoils. This dissertation reports new limits on the spin-independent WIMP-nucleon elastic-scattering cross section that exclude unexplored parameter space above 10 GeV c-2 WIMP mass and, at > 75% CL, the entire 3σ allowed region for the WIMP signal reported by the DAMA experiment. The experimental apparatus, detector performance, and data analysis are fully described.

  11. The elastic scattering of 14N by 10B

    International Nuclear Information System (INIS)

    Takai, H.

    1986-01-01

    The elastic scattering 10 B( 14 N, 14 N) 10 B was studied for four incident energies: 38.1, 42.0, 46.0 and 50.0 MeV. The angular distributions for these energies were determined in the center of mass frame from 16 0 to 176 0 with the introduction of target nucleus recoil detection techniques in a magnetic spectrograph with gas position sensitive detectors and in a scattering chamber with an Σ-ΔΣ detection system. For the forward angles, the angular distributions are well described by the optical model. For the backward angles, up to 160 0 , a satisfactory description is obtained by the elastic transfer analysis; for larger angles an accentuated deviation id observed. (author) [pt

  12. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    Science.gov (United States)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5-7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5-11

  13. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    International Nuclear Information System (INIS)

    Mehdizadeh, Arash; Al-Sarawi, Said; Abbott, Derek; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi

    2013-01-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5–7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5

  14. Direct determination of recoil ion detection efficiency for coincidence time-of-flight studies of molecular fragmentation

    International Nuclear Information System (INIS)

    Ben-Itzhak, I.; Carnes, K.D.; Ginther, S.G.; Johnson, D.T.; Norris, P.J.; Weaver, O.L.

    1993-01-01

    Molecular fragmentation of diatomic and small polyatomic molecules caused by fast ion impact has been studied. The evaluation of the cross sections of the different fragmentation channels depends strongly on the recoil ion detection efficiency, ε r (single ions proportional to ε r , and ion pairs to ε 2 r , etc.). A method is suggested for the direct determination of this detection efficiency. This method is based on the fact that fast H + + CH 4 collisions produce C 2+ fragments only in coincidence with H + and H + 2 fragments, that is, there is a negligible number of C 2+ singles, if any. The measured yield of C 2+ singles is therefore due to events in which the H + m of the H + m + C 2+ ion pair was not detected and thus is proportional to 1 - ε r . Methane fragmentation caused by 1 MeV proton impact is used to evaluate directly the recoil ion detection efficiency and to demonstrate the method of deriving the cross sections of all breakup channels. (orig.)

  15. Transportation system of recoil nucleus by helium jet

    International Nuclear Information System (INIS)

    Cabral, S.C.; Borges, A.M.; Lemos Junior, O.F.; Auler, L.T.; Silva, A.G. da

    1981-01-01

    The transportation system of recoil nucleus by helium jet, is studied. It is used a technique aiming to put in the detection area (region of low background) the recoils, produced by nuclear reactions between target and particle beams, those produced with the help of cyclotron CV-28. (E.G.) [pt

  16. Detector for recoil nuclei stopping in the spark chamber gas

    International Nuclear Information System (INIS)

    Aleksanyan, A.S.; Asatiani, T.L.; Ivanov, V.I.; Mkrtchyan, G.G.; Pikhtelev, R.N.

    1974-01-01

    A detector consisting of the combination of a drift and a wide gap spark chambers and designed to detect recoil nuclei stopping in the spark chamber gas is described. It is shown, that by using an appropriate discrimination the detector allows to detect reliably the recoil nuclei in the presence of intensive electron and γ-quanta beams

  17. No-recoil approximation to the knock-on exchange potential in the double folding model for heavy-ion collisions

    International Nuclear Information System (INIS)

    Hagino, K.; Takehi, T.; Takigawa, N.

    2006-01-01

    We propose the no-recoil approximation, which is valid for heavy systems, for a double folding nucleus-nucleus potential. With this approximation, the nonlocal knock-on exchange contribution becomes a local form. We discuss the applicability of this approximation for elastic scattering of the 6 Li + 40 Ca system. We find that, for this and heavier systems , the no-recoil approximation works as good as another widely used local approximation that employs a local plane wave for the relative motion between the colliding nuclei. We also compare the results of the no-recoil calculations with those of the zero-range approximation often used to handle the knock-on exchange effect

  18. Kinematic aspects of pion-nucleus elastic scattering

    International Nuclear Information System (INIS)

    Weiss, D.L.; Ernst, D.J.

    1982-01-01

    The inclusion of relativistic kinematics in the theory of elastic scattering of pions from nuclei is examined. The investigation is performed in the context of the first order impulse approximation which incorporates the following features: (1) Relative momentum are defined according to relativistic theories consistent with time reversal invariance. (2) The two-nucleon interaction is a new, multichannel, separable potential model consistent with the most recent data derived from a recent nonpotential model of Ernst and Johnson. (3) The recoil of the pion-nucleon interacting pair and its resultant nonlocality are included. (4) The Fermi integral is treated by an optimal factorization approximation. It is shown how a careful definition of an intrinsic target density leads to an unambiguous method for including the recoil of the target. The target recoil corrections are found to be large for elastic scattering from 4 He and not negligible for scattering from 12 C. Relativistic potential theory kinematics, kinematics which result from covariant reduction approaches, and kinematics which result from replacing masses by energies in nonrelativistic formulas are compared. The relativistic potential theory kinematics and covariant reduction kinematics are shown to produce different elastic scattering at all pion energies examined (T/sub π/<300 MeV). Simple extensions of nonrelativistic kinematics are found to be reasonable approximations to relativistic potential theory

  19. Direct observation of the hydrogen peak in the energy distribution of electrons backscattered elastically from polyethylene

    International Nuclear Information System (INIS)

    Varga, D.; Toekesi, K.; Berenyi, Z.; Toth, J.; Koever, L.

    2004-01-01

    Complete text of publication follows. Observation of the hydrogen peak is either challenging or impossible task for the conventional electron spectroscopy. Hydrogen was observed earlier in electron scattering experiments using transmission geometry and formvar film. In this work we show an alternative way for the detection of hydrogen peak analyzing the spectra of elastically backscattered electrons from polyethylene ((CH 2 ) n ). We take advantage of the fact that the elastic peak from polyethylene split into carbon and hydrogen components. The energy of the elastically scattered electrons is shifted from the nominal values due to the energy transfer between the primary electron and the target atoms (recoil effect). Due to the motion of the scattering atoms, a broadering of the energy width of the spectra takes place. We performed Monte Carlo simulation for 2 keV electrons penetrated and elastically backscattered from polyethylene sample. In our calculations both the elastic and inelastic scattering events were taken into account. We further assume that the thermal motion of the target atoms follows the Maxwell-Boltzmann energy distribution. After each elastic scattering the recoil energy was calculated according to ref Fig. 1 shows the geometric configuration used in the calculation. The initial angle of incident beam (θ) was 50 deg. Fig. 2 shows the gray scale plot of the intensity of electrons backscattered elastically from polyethylene. The separation between the carbon and hydrogen peaks is clearly seen. Our results show that the multiple electron scattering causes only minor changes in the energy shifts and broadenings of elastic peaks. Moreover, our simulations are in good agreement with our experimental observations. (author)

  20. Precise Measurement of the Deuteron Elastic structure Function A(Q2)

    International Nuclear Information System (INIS)

    D. Abbott; A. Ahmidouch; H. Anklin; J. Arvieux; J. Bail; S. Beedoe; E. J. Beise; L. Bimbot; W. Boeglin; H. Breuer; R. Carlini; N. S. Chant; S. Danagoulian; K. Dow; J.E. Ducret; J. Dunne; R. Ent; L. Ewell; L. Eyraud; C. Furget; M. Garcon; R. Gilman; C. Glashausser; P. Gucye; K. Gustafsson; K. Hafidi; A. Honegger; J. Jourdan; S. Kox; G. Kumbartzki; L. Lu; A. Lung; D. Mack; P. Markowitz; J. McIntyre; D. Meekins; F. Merchez; J. Mitchell; R. Mohring; S. Mtingwa; H. Mrktchyan; D. Pitz; L. Qin; R. Ransome; J.S. Real; P. G. Roos; P. Rutt; R. Sawafta; S. Stepanyan; R. Tieulent; E. Tomasi-Gustafsson; W. Turchinetz; K. Vansyoc; J. Volmer; E. Voutier; W. Vulcan; C. Williamson; S. A. Wood; C. Yan; J. Zhao; W. Zhao

    1999-01-01

    The A(Q 2 ) structure function in elastic electron-deuteron scattering was measured at six momentum transfers Q 2 between 0.66 and 1.80 (GeV/c) 2 in Hall C at Jefferson Laboratory. The scattered electrons and recoil deuterons were detected in coincidence, at a fixed deuteron angle of 60.5 o . These new precise measurements resolve discrepancies between older sets of data. They put significant constraints on existing models of the deuteron electromagnetic structure, and on the strength of isoscalar meson exchange currents

  1. Self-triggering detectors for recoil nuclei

    International Nuclear Information System (INIS)

    Aleksanyan, A.S.; Asatiani, T.I.; Gasparyan, A.O.

    1975-01-01

    Hybrid α-detectors consisting of wide gap spark chambers and signal α detectors are described. The investigations have been carried out with γ-beams of Yerevan Electron Synchrotron. The possibility of using such detectors in the experiments on particle photoproduction on gas helium with the determination of the interaction point, emission angle of the recoil nucleus and its energy by means of range measurement has been shown. It has been shown that self - triggering wide gap spark chamber allows to detect and measure the range of the recoil nuclei α-particles with energies Esub(α) > or approximately (1 - 2) Mev which correspond to momentum transfers apprxomation (10 -2 - 10 -3 ) (GeV/c) 2

  2. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    International Nuclear Information System (INIS)

    Liu, F. K.; Wang Dong; Chen Xian

    2012-01-01

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q ∼> 0.3 with a minimum possible value q min ≅ 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s –1 in the direction within an angle ∼< 40° relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  3. Neutron scattering facility for the calibration of the response to nuclear recoils

    International Nuclear Information System (INIS)

    Jochum, J.; Feilitzsch, F. von; Huber, M.; Jagemann, T.; Lachenmaier, T.; Lanfranchi, J.-C.; Potzel, W.; Ruedig, A.; Schnagl, J.; Stark, M.; Wulandari, H.; Chambon, B.; Drain, D.; Gascon, J.; Jesus, M. de; Martineau, O.; Simon, E.; Stern, M.

    2002-01-01

    A possibility to search for elementary particles as dark matter candidates is to detect elastic scattering with cryogenic detectors. For the interpretation of the data one has to determine the detector response to nuclear recoils, the so-called quenching factors. They can differ for the heat-, for the scintillation- and for the ionization-signal and can be measured by scattering of neutrons. The CRESST- and the EDELWEISS-collaborations have set up a neutron scattering facility for cryogenic detectors at the tandem-accelerator of the Munich 'Maier-Leibniz-Labor.' The scattering angle and the time-of-flight of the neutrons are measured by an array of liquid scintillator cells. The pulsed high energy (11 MeV) neutron beam is created by nuclear reaction of a 11 B on a H 2 -gas target. The set-up and the results of first tests are presented

  4. Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the DarkSide-50 Direct Dark Matter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Edkins, Erin Elisabeth [Univ. of Hawaii, Honolulu, HI (United States)

    2017-05-01

    While evidence of non-baryonic dark matter has been accumulating for decades, its exact nature continues to remain a mystery. Weakly Interacting Massive Particles (WIMPs) are a well motivated candidate which appear in certain extensions of the Standard Model, independently of dark matter theory. If such particles exist, they should occasionally interact with particles of normal matter, producing a signal which may be detected. The DarkSide-50 direct dark matter experiment aims to detect the energy of recoiling argon atoms due to the elastic scattering of postulated WIMPs. In order to make such a discovery, a clear understanding of both the background and signal region is essential. This understanding requires a careful study of the detector's response to radioactive sources, which in turn requires such sources may be safely introduced into or near the detector volume and reliably removed. The CALibration Insertaion System (CALIS) was designed and built for this purpose in a j oint effort between Fermi National Laboratory and the University of Hawaii. This work describes the design and testing of CALIS, its installation and commissioning at the Laboratori Nazionali del Gran Sasso (LNGS) and the multiple calibration campaigns which have successfully employed it. As nuclear recoils produced by WIMPs are indistinguishable from those produced by neutrons, radiogenic neutrons are both the most dangerous class of background and a vital calibration source for the study of the potential WIMP signal. Prior to the calibration of DarkSide-50 with radioactive neutron sources, the acceptance region was determined by the extrapolation of nuclear recoil data from a separate, dedicated experiment, ScENE, which measured the distribution of the pulse shape discrimination parameter, $f_{90}$, for nuclear recoils of known energies. This work demonstrates the validity of the extrapolation of ScENE values to DarkSide-50, by direct comparison of the $f_{90}$ distributio n of nuclear

  5. ;Study of secondary hydriding at high temperature in zirconium based nuclear fuel cladding tubes by coupling information from neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and laser induced breakdown spectroscopy microprobe

    Science.gov (United States)

    Brachet, Jean-Christophe; Hamon, Didier; Le Saux, Matthieu; Vandenberghe, Valérie; Toffolon-Masclet, Caroline; Rouesne, Elodie; Urvoy, Stéphane; Béchade, Jean-Luc; Raepsaet, Caroline; Lacour, Jean-Luc; Bayon, Guy; Ott, Frédéric

    2017-05-01

    This paper gives an overview of a multi-scale experimental study of the secondary hydriding phenomena that can occur in nuclear fuel cladding materials exposed to steam at high temperature (HT) after having burst (loss-of-coolant accident conditions). By coupling information from several facilities, including neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and micro laser induced breakdown spectroscopy, it was possible to map quantitatively, at different scales, the distribution of oxygen and hydrogen within M5™ clad segments having experienced ballooning and burst at HT followed by steam oxidation at 1100 and 1200 °C and final direct water quenching down to room temperature. The results were very reproducible and it was confirmed that internal oxidation and secondary hydriding at HT of a cladding after burst can lead to strong axial and azimuthal gradients of hydrogen and oxygen concentrations, reaching 3000-4000 wt ppm and 1.0-1.2 wt% respectively within the β phase layer for the investigated conditions. Consistent with thermodynamic and kinetics considerations, oxygen diffusion into the prior-β layer was enhanced in the regions highly enriched in hydrogen, where the α(O) phase layer is thinner and the prior-β layer thicker. Finally the induced post-quenching hardening of the prior-β layer was mainly related to the local oxygen enrichment. Hardening directly induced by hydrogen was much less significant.

  6. Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the Darkside-50 Direct Dark Matter Experiment

    Science.gov (United States)

    Ludert, Erin Edkins

    While evidence of non-baryonic dark matter has been accumulating for decades, its exact nature continues to remain a mystery. Weakly Interacting Massive Particles (WIMPs) are a well motivated candidate which appear in certain extensions of the Standard Model, independently of dark matter theory. If such particles exist, they should occasionally interact with particles of normal matter, producing a signal which may be detected. The DarkSide-50 direct dark matter experiment aims to detect the energy of recoiling argon atoms due to the elastic scattering of postulated WIMPs. In order to make such a discovery, a clear understanding of both the background and signal region is essential. This understanding requires a careful study of the detector's response to radioactive sources, which in turn requires such sources may be safely introduced into or near the detector volume and reliably removed. The CALibration Insertaion System (CALIS) was designed and built for this purpose in a joint effort between Fermi National Laboratory and the University of Hawaii. This work describes the design and testing of CALIS, its installation and commissioning at the Laboratori Nazionali del Gran Sasso (LNGS) and the multiple calibration campaigns which have successfully employed it. As nuclear recoils produced by WIMPs are indistinguishable from those produced by neutrons, radiogenic neutrons are both the most dangerous class of background and a vital calibration source for the study of the potential WIMP signal. Prior to the calibration of DarkSide-50 with radioactive neutron sources, the acceptance region was determined by the extrapolation of nuclear recoil data from a separate, dedicated experiment, ScENE, which measured the distribution of the pulse shape discrimination parameter, f 90, for nuclear recoils of known energies. This work demonstrates the validity of the extrapolation of ScENE values to DarkSide-50, by direct comparison of the f90 distribution of nuclear recoils from Sc

  7. Precise Measurement of the Deuteron Elastic Structure Function A(Q2 )

    International Nuclear Information System (INIS)

    Ball, J.; Ducret, J.; Garcon, M.; Hafidi, K.; Pitz, D.; Tomasi-Gustafsson, E.; Honegger, A.; Jourdan, J.; Zhao, J.; Beise, E.J.; Breuer, H.; Chant, N.S.; Ewell, L.; Gustafsson, K.; Lung, A.; Mohring, R.; Pitz, D.; Roos, P.G.; Eyraud, L.; Furget, C.; Kox, S.; Lu, L.; Merchez, F.; Real, J.; Tieulent, R.; Voutier, E.; Abbott, D.; Carlini, R.; Dunne, J.; Ent, R.; Gilman, R.; Gueye, P.; Mack, D.; Meekins, D.; Mitchell, J.; Pitz, D.; Qin, L.; Vansyoc, K.; Volmer, J.; Vulcan, W.; Wood, S.A.; Yan, C.; Gilman, R.; Glashausser, C.; Kumbartzki, G.; McIntyre, J.; Ransome, R.; Rutt, P.; Ahmidouch, A.; Dow, K.; Turchinetz, W.; Williamson, C.; Zhao, W.; Anklin, H.; Boeglin, W.; Markowitz, P.; Mrktchyan, H.; Stepanyan, S.; Ahmidouch, A.; Beedoe, S.; Danagoulian, S.; Mtingwa, S.; Sawafta, R.; Arvieux, J.; Ball, J.; Tomasi-Gustafsson, E.; Arvieux, J.; Bimbot, L.

    1999-01-01

    The A(Q 2 ) structure function in elastic electron-deuteron scattering was measured at six momentum transfers Q 2 between 0.66 and 1.80 (GeV/c) 2 in Hall C at Jefferson Laboratory. The scattered electrons and recoil deuterons were detected in coincidence, at a fixed deuteron angle of 60.5 degree. These new precise measurements resolve discrepancies between older sets of data. They put significant constraints on existing models of the deuteron electromagnetic structure, and on the strength of isoscalar meson exchange currents. copyright 1999 The American Physical Society

  8. Automatic detection of recoil-proton tracks and background rejection criteria in liquid scintillator-micro-capillary-array fast neutron spectrometer

    Science.gov (United States)

    Mor, Ilan; Vartsky, David; Dangendorf, Volker; Tittelmeier, Kai.; Weierganz, Mathias; Goldberg, Mark Benjamin; Bar, Doron; Brandis, Michal

    2018-06-01

    We describe an analysis procedure for automatic unambiguous detection of fast-neutron-induced recoil proton tracks in a micro-capillary array filled with organic liquid scintillator. The detector is viewed by an intensified CCD camera. This imaging neutron detector possesses the capability to perform high position-resolution (few tens of μm), energy-dispersive transmission-imaging using ns-pulsed beams. However, when operated with CW or DC beams, it also features medium-quality spectroscopic capabilities for incident neutrons in the energy range 2-20 MeV. In addition to the recoil proton events which display a continuous extended track structure, the raw images exhibit complex ion-tracks from nuclear interactions of fast-neutrons in the scintillator, capillaries quartz-matrix and CCD. Moreover, as expected, one also observes a multitude of isolated scintillation spots of varying intensity (henceforth denoted "blobs") that originate from several different sources, such as: fragmented proton tracks, gamma-rays, heavy-ion reactions as well as events and noise that occur in the image-intensifier and CCD. In order to identify the continuous-track recoil proton events and distinguish them from all these background events, a rapid, computerized and automatic track-recognition-procedure was developed. Based on an appropriately weighted analysis of track parameters such as: length, width, area and overall light intensity, the method is capable of distinguishing a single continuous-track recoil proton from typically surrounding several thousands of background events that are found in each CCD frame.

  9. Recoil ions

    International Nuclear Information System (INIS)

    Cocke, C.L.; Olson, R.E.

    1991-01-01

    The collision of a fast moving heavy ion with a neutral atomic target can produce very highly charged but slowly moving target ions. This article reviews experimental and theoretical work on the production and use of recoil ions beyond the second ionization state by beams with specific energies above 0.5 MeV/amu. A brief historical survey is followed by a discussion of theoretical approaches to the problem of the removal of many electrons from a neutral target by a rapid, multiply charged projectile. A discussion of experimental techniques and results for total and differential cross sections for multiple ionization of atomic and molecular targets is given. Measurements of recoil energy are discussed. The uses of recoil ions for in situ spectroscopy of multiply charged ions, for external beams of slow, highly charged ions and in ion traps are reviewed. Some possible future opportunities are discussed. (orig.)

  10. A new recoil filter for {gamma}-detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Heese, J; Lahmer, W; Maier, K H [Hahn-Meitner-Institut Berlin GmbH (Germany); Janicki, M; Meczynski, W; Styczen, J [Institute of Nuclear Physics, Cracow (Poland)

    1992-08-01

    A considerable improvement of gamma spectra recorded in heavy ion induced fusion evaporation residues can be achieved when gamma rays are detected in coincidence with the recoiling evaporations residues. This coincidence suppresses gamma rays from fission processes, Coulombic excitation, and reactions with target contaminations, and therefore cleans gamma spectra and improves the peak to background ratio. A sturdy detector for evaporation residues has been designed as an additional detector for the OSIRIS spectrometer. The recoil filter consists of two rings of six and twelve detector elements. In each detector element, nuclei hitting a thin Mylar foil produce secondary electrons, which are electrostatically accelerated and focussed onto a thin plastic scintillator. Recoiling evaporation residues are discriminated from other reaction products and scattered beam by the pulse height of the scintillation signal and time of flight. The detector signal is fast enough to allow the detection of an evaporation residue even if the scattered beam hits the detector first. In-beam experiment were performed with the reactions {sup 40}Ar+{sup 124}Sn, {sup 40}Ar+{sup 152}Sm at 185 MeV beam energy, and {sup 36}Ar+{sup 154,156}Gd at 175 MeV. In the latter two cases, fission amount to 50-75% of the total fusion cross section. 10 refs., 4 figs.

  11. Signal yields of keV electronic recoils and their discrimination from nuclear recoils in liquid xenon

    Science.gov (United States)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Mahlstedt, J.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Ramírez García, D.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rupp, N.; Saldanha, R.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration

    2018-05-01

    We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V /cm , 154 V /cm and 366 V /cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V /cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon.

  12. Elastic recoil atomic spectroscopy of light elements with sub-nanometer depth resolution

    International Nuclear Information System (INIS)

    Kosmata, Marcel

    2011-01-01

    In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two components. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a highresistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during

  13. Topological sensitivity based far-field detection of elastic inclusions

    Directory of Open Access Journals (Sweden)

    Tasawar Abbas

    2018-03-01

    Full Text Available The aim of this article is to present and rigorously analyze topological sensitivity based algorithms for detection of diametrically small inclusions in an isotropic homogeneous elastic formation using single and multiple measurements of the far-field scattering amplitudes. A L2-cost functional is considered and a location indicator is constructed from its topological derivative. The performance of the indicator is analyzed in terms of the topological sensitivity for location detection and stability with respect to measurement and medium noises. It is established that the location indicator does not guarantee inclusion detection and achieves only a low resolution when there is mode-conversion in an elastic formation. Accordingly, a weighted location indicator is designed to tackle the mode-conversion phenomenon. It is substantiated that the weighted function renders the location of an inclusion stably with resolution as per Rayleigh criterion. 2000 MSC: 35R30, 35L05, 74B05, 47A52, 65J20, Keywords: Inverse elastic scattering, Elasticity imaging, Topological derivative, Resolution analysis, Stability analysis

  14. Tensor polarization in pion-deuteron elastic scattering

    International Nuclear Information System (INIS)

    Holt, R.J.

    1983-01-01

    The angular dependence of the tensor polarization t 20 /sup lab/ of recoiling deuterons in π-d elastic scattering was measured as a function of incident pion energy in the range 134 to 256 MeV. No evidence was found for rapid energy or angular dependences in t 20 /sup lab/. The results agree most favorably with theoretical calculations in which the P 11 π-N amplitude has been removed altogether. This agreement is consistent with a small effect of pion absorption on the elastic channel. 14 references

  15. Cage effect in recoil studies

    International Nuclear Information System (INIS)

    Berei, K.

    1983-09-01

    The role of cage effect is one of the most discussed questions of hot atom chemistry in condensed organic systems. So far no direct evidence is available for assessing the exact contribution of thermal recombinations occurring in the liquid cage to the stabilization processes of recoil atoms. However, some conclusions can be drawn from experimental observations concerning the influence on product yield of hot atom recoil spectra, the effects of density, phase and long range order of the medium as well as from comparisons with systems providing cage walls of different chemical reactivities towards the recoil atom. Recent developments in this field are reviewed based primarily on the investigations of recoil halogen reactions in aliphatic and aromatic hydrocarbons and their haloderivatives. (author)

  16. Accurate measurements of E2 lifetimes using the coincidence recoil-distance method

    International Nuclear Information System (INIS)

    Bhalla, R.K.; Poletti, A.R.

    1984-01-01

    Mean lives of four E2 transitions in the (2s, 1d) shell have been measured using the recoil-distance method (RDM). γ-rays de-exciting the level of interest were detected in coincidence with particles detected in an annular detector at a backward angle thereby reducing the background and producing a beam of recoiling nuclei of well-defined energy and recoil direction. Lifetimes measured were: 22 Ne, 1.275 MeV level (2 + -> 0 + ), 5.16 +- 0.13 ps; 26 Mg, 3.588 MeV level (0 + -> 2 + ), 9.29 +- 0.23 ps; 30 Si, 3.788 MeV level (0 + -> 2 + ), 12.00 +- 0.70 ps; 38 Ar, 3.377 MeV level (0 + -> 2 + ), 34.5 +- 1.5 ps. The present measurements are compared to those of previous investigators. For the 22 Ne level, averaged results from four different measurement techniques are compared and found to be in good agreement. The experimental results are compared to shell-model calculations. (orig.)

  17. Azimuthal asymmetry of recoil electrons in neutrino-electron elastic scattering as signature of neutrino nature

    Energy Technology Data Exchange (ETDEWEB)

    Sobkow, W.; Blaut, A. [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland)

    2016-05-15

    In this paper, we analyze the theoretically possible scenario beyond the standard model in order to show how the presence of the exotic scalar, tensor, V + A weak interactions in addition to the standard vector-axial (V - A) ones may help to distinguish the Dirac from Majorana neutrinos in the elastic scattering of an (anti)neutrino beam off the unpolarized electrons in the relativistic limit. We assume that the incoming (anti)neutrino beam comes from the polarized muon decay at rest and is the left-right chiral superposition with assigned direction of the transversal spin polarization with respect to the production plane. Our analysis is carried out for the flavour (current) neutrino eigenstates. It means that the transverse neutrino polarization estimates are the same both for the Dirac and Majorana cases. We display that the azimuthal asymmetry in the angular distribution of recoil electrons is generated by the interference terms between the standard and exotic couplings, which are proportional to the transversal (anti)neutrino spin polarization and independent of the neutrino mass. This asymmetry for the Majorana neutrinos is larger than for the Dirac ones. We also indicate the possibility of utilizing the azimuthal asymmetry measurements to search for the new CP-violating phases. Our study is based on the assumption that the possible detector (running for 1 year) has the shape of a flat circular ring, while the intense neutrino source is located in the centre of the ring and polarized perpendicularly to the ring. In addition, the large low-threshold, real-time detector is able to measure with a high resolution both the polar angle and the azimuthal angle of outgoing electron momentum. Our analysis is model-independent and consistent with the current upper limits on the non-standard couplings. (orig.)

  18. Visual detectability of elastic contrast in real-time ultrasound images

    Science.gov (United States)

    Miller, Naomi R.; Bamber, Jeffery C.; Doyley, Marvin M.; Leach, Martin O.

    1997-04-01

    Elasticity imaging (EI) has recently been proposed as a technique for imaging the mechanical properties of soft tissue. However, dynamic features, known as compressibility and mobility, are already employed to distinguish between different tissue types in ultrasound breast examination. This method, which involves the subjective interpretation of tissue motion seen in real-time B-mode images during palpation, is hereafter referred to as differential motion imaging (DMI). The purpose of this study was to develop the methodology required to perform a series of perception experiments to measure elastic lesion detectability by means of DMI and to obtain preliminary results for elastic contrast thresholds for different lesion sizes. Simulated sequences of real-time B-scans of tissue moving in response to an applied force were generated. A two-alternative forced choice (2-AFC) experiment was conducted and the measured contrast thresholds were compared with published results for lesions detected by EI. Although the trained observer was found to be quite skilled at the task of differential motion perception, it would appear that lesion detectability is improved when motion information is detected by computer processing and converted to gray scale before presentation to the observer. In particular, for lesions containing fewer than eight speckle cells, a signal detection rate of 100% could not be achieved even when the elastic contrast was very high.

  19. A study of nuclear recoil backgrounds in dark matter detectors

    Science.gov (United States)

    Westerdale, Shawn S.

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the 1-1000 GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering off of nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating (alpha, n) yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and development

  20. A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Westerdale, Shawn S. [Princeton Univ., NJ (United States)

    2016-01-01

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($\\alpha$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and

  1. Detection of low momentum protons with the new HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Vilardi, Ignazio

    2008-10-15

    In this theis the recoil detector for the HERMES experiment at HERA is described. It consists of a silicon strip detector, a scintillating fiber tracker, and a photon detector for the {delta}{sup +} background rejection, all surrounded by a superconducting 1 Tesla solenoid. Results of cosmic ray tests are presented. (HSI)

  2. Detection of low momentum protons with the new HERMES recoil detector

    International Nuclear Information System (INIS)

    Vilardi, Ignazio

    2008-10-01

    In this theis the recoil detector for the HERMES experiment at HERA is described. It consists of a silicon strip detector, a scintillating fiber tracker, and a photon detector for the Δ + background rejection, all surrounded by a superconducting 1 Tesla solenoid. Results of cosmic ray tests are presented. (HSI)

  3. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Xiaohui [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2010-01-01

    Experiment E08-007 measured the proton elastic form factor ratio μpGE/GM in the range of Q2 = 0.3-0.7(GeV/c)2 by recoil polarimetry. Data were taken in 2008 at the Thomas Jefferson National Accelerator Facility in Virginia, USA. A 1.2 GeV polarized electron beam was scattered off a cryogenic hydrogen target. The recoil proton was detected in the left HRS in coincidence with the elasticly scattered electrons tagged by the BigBite spectrometer. The proton polarization was measured by the focal plane polarimeter (FPP). In this low Q2 region, previous measurement from Jefferson Lab Hall A (LEDEX) along with various fits and calculations indicate substantial deviations of the ratio from unity. For this new measurement, the proposed statistical uncertainty (< 1%) was achieved. These new results are a few percent lower than expected from previous world data and fits, which indicate a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the new results also have implications in determining the proton Zemach radius and the strangeness form factors from parity violation experiments.

  4. D0-brane recoil revisited

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [California Institute of Technology 452-48, Pasadena, CA 91125 (United States); Nakamura, Shin [Physics Department, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2006-12-15

    One-loop string scattering amplitudes computed using the standard D0-brane conformal field theory (CFT) suffer from infrared divergences associated with recoil. A systematic framework to take recoil into account is the worldline formalism, where fixed boundary conditions are replaced by dynamical D0-brane worldlines. We show that, in the worldline formalism, the divergences that plague the CFT are automatically cancelled in a non-trivial way. The amplitudes derived in the worldline formalism can be reproduced by deforming the CFT with a specific 'recoil operator', which is bilocal and different from the ones previously suggested in the literature.

  5. Optical potentials derived from microscopic separable interactions including binding and recoil effects

    International Nuclear Information System (INIS)

    Siciliano, E.R.; Walker, G.E.

    1976-01-01

    We first consider a projectile scattering from a nucleon bound in a fixed potential. A separable Galilean invariant projectile-nucleon interaction is adopted. Without using the fixed scatterer approximation or using closure on the intermediate target nucleon states we obtain various forms for the projectile-bound nucleon t matrix. Effects due to intermediate target excitation and nucleon recoil are discussed. By making the further approximations of closure and fixed scatterers we make connection with the work of previous authors. By generalizing to projectile interaction with several bound nucleons and examining the appropriate multiple scattering series we identify the optical potential for projectile elastic scattering from the many-body system. Different optical potentials are obtained for different projectile-bound nucleon t matrices, and we study the differences predicted by these dissimilar optical potentials for elastic scattering. In a model problem, we study pion-nucleus elastic scattering and compare the predictions obtained by adopting procedures used by (1) Landau, Phatak, and Tabakin and (2) Piepho-Walker to the predictions obtained in a less restrictive, but computationally difficult treatment

  6. Detection of nuclear recoils in prototype dark matter detectors, made from Al, Sn and Zn superheated superconducting granules

    International Nuclear Information System (INIS)

    Abplanalp, M.; Van den Brandt, B.; Konter, J.A.; Mango, S.

    1995-01-01

    This work is part of an ongoing project to develop a superheated superconducting granule (SSG) detector for cold dark matter and neutrinos. The response of SSG devices to nuclear recoils has been explored irradiating SSG detectors with a 70 MeV neutron beam. The aim of the experiment was to test the sensitivity of Sn, Al and Zn SSG detectors to nuclear recoil energies down to a few keV. The detector consisted of a hollow teflon cylinder (0.1 cm 3 inner volume) filled with tiny superconducting metastable granules embedded in a dielectric medium. The nuclear recoil energies deposited in the SSG were determined measuring the neutron scattering angles with a neutron hodoscope. Coincidences in time between the SSG and the hodoscope signals have been clearly established. In this paper the results of the neutron irradiation experiments at different SSG intrinsic thresholds are discussed and compared to Monte Carlo simulations. The results show that SSG are sensitive to recoil energies down to similar 1 keV. The limited angular resolution of the neutron hodoscope prevented us from measuring the SSG sensitivity to even lower recoil energies. (orig.)

  7. Fast Neutron Detection Using Pixelated CdZnTe Spectrometers

    Science.gov (United States)

    Streicher, Michael; Goodman, David; Zhu, Yuefeng; Brown, Steven; Kiff, Scott; He, Zhong

    2017-07-01

    Fast neutrons are an important signature of special nuclear materials (SNMs). They have a low natural background rate and readily penetrate high atomic number materials that easily shield gamma-ray signatures. Therefore, they provide a complementary signal to gamma rays for detecting shielded SNM. Scattering kinematics dictate that a large nucleus (such as Cd or Te) will recoil with small kinetic energy after an elastic collision with a fast neutron. Charge carrier recombination and quenching further reduce the recorded energy deposited. Thus, the energy threshold of CdZnTe detectors must be very low in order to sense the small signals from these recoils. In this paper, the threshold was reduced to less than 5 keVee to demonstrate that the 5.9-keV X-ray line from 55Fe could be separated from electronic noise. Elastic scattering neutron interactions were observed as small energy depositions (less than 20 keVee) using digitally sampled pulse waveforms from pixelated CdZnTe detectors. Characteristic gamma-ray lines from inelastic neutron scattering were also observed.

  8. Accurate measurements of E2 lifetimes using the coincidence recoil-distance method

    Science.gov (United States)

    Bhalla, R. K.; Poletti, A. R.

    1984-05-01

    Mean lives of four E2 transitions in the (2s, 1d) shell have been measured using the recoil-distance method (RDM), γ-rays de-exciting the level of interest were detected in coincidence with particles detected in an annular detector at a backward angle thereby reducing the background and producing a beam of recoiling nuclei of well-defined energy and recoil direction. Lifetimes measured were: 22Ne, 1.275 MeV level (2 + → 0 +), 5.16±0.13 ps; 26Mg, 3.588 MeV level (0 + → 2 +), 9.29±0.23 ps; 30Si, 3.788 MeV level (0 +→ 2 +), 12.00±0.70 ps; 38Ar, 3.377 MeV level (0 + → 2 +), 34.5±1.5 ps. The present measurements are compared to those of previous investigators. For the 22Ne level, averaged results from four different measurement techniques are compared and found to be in good agreement. The experimental results are compared to shell-model calculations.

  9. Interpreting Recoil for Undergraduate Students

    Science.gov (United States)

    Elsayed, Tarek A.

    2012-01-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is…

  10. Measurement of the proton form factors ratio GE/GM to Q2 = 5.6 GeV2 by recoil polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Gayou, Olivier [College of William and Mary, Williamsburg, VA (United States)

    2002-01-01

    In this thesis, we present the results of the experiment E99-007, which measured the ratio of the electric to magnetic form factors of the proton to the four momentum transfer square Q2 = 5.6 GeV2, by recoil polarimetry. Data were taken in 2000 at the Thomas Jefferson National Accelerator Facility in Virginia, USA. A 4.6 GeV polarized electron beam was scattered off a cryogenic hydrogen target. The polarization of the recoil proton was measured in the Focal Plane Polarimeter, located after one of the two High Resolution Spectrometers in the hall. The ratio of the transverse to longitudinal components of the recoil proton polarization is proportional to the ratio of the form factors. Elastic events were selected by detecting the scattered electron in a large acceptance lead-glass calorimeter. The main result of this experiment is the linear decrease of the form factor ratio with increasing Q2, corresponding to different spatial distributions of the electric charge and the magnetization. Numerous theoretical calculations show that relativistic effects, such as mixing of spin states due to Lorentz boosts, are important to account for the observed data in this critical intermediate kinematic region.

  11. Recoil mixing in high-fluence ion implantation

    International Nuclear Information System (INIS)

    Littmark, U.; Hofer, W.O.

    1979-01-01

    The effect of recoil mixing on the collection and depth distribution of implanted projectiles during high-fluence irradiation of a random solid is investigated by model calculations based on a previously published transport theoretical approach to the general problem of recoil mixing. The most pronounced effects are observed in the maximum implantable amount of projectiles and in the critical fluence for saturation. Both values are significantly increased by recoil mixing. (Auth.)

  12. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Laurent, G.; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A.

    2003-01-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O 6+ + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O 4+ (1s 2 nln ' l ' ) populated after double electron-capture events

  13. Neutron elastic scattering at very small angles

    CERN Multimedia

    2002-01-01

    This experiment will measure neutron-proton elastic scattering at very small angles and hence very small four-momentum transfer, |t|. The range of |t| depends on the incident neutron momentum of the events but the geometrical acceptance will cover the angular range 0.025 < $\\Theta_{lab}$ < 1.9 mrad. The higher figure could be extended to 8.4 mrad by changing the geometry of the experiment in a later phase. \\\\ \\\\ The neutron beam will be highly collimated and will be derived from a 400 GeV external proton beam of up to $4 \\times 10^{10}$ protons per pulse in the SPS North Area Hall 1. The hydrogen target will be gaseous, operating at 40 atm. pressure and acts as a multiwire proportional chamber to detect the recoil protons. The forward neutron will be detected and located by interaction in a neutron vertex detector and its energy measured by a conventional steel plate calorimeter. \\\\ \\\\ The experiment will cover the angular region of nucleon-nucleon scattering which is dominated by Coulomb scattering ...

  14. Hadron elastic scattering at small angles

    CERN Multimedia

    2002-01-01

    This experiment is an extension of the measurements of the WA9 experiment up to the highest energies available in the North Area. It will measure the differential cross-section for hadron elastic scattering in the t-range 0.002-0.05 (GeV/c)$^{2}$ using an ionization chamber for the measurement of the energy and the angle of the recoil and a magnet-WC spectrometer to measure the momentum and direction of the forward particle. From these measurements will be obtained the ratio $\\rho$ of the real to imaginary parts of the forward elastic amplitude and the exponential slope parameter b of the hadronic amplitude at small t. The precision expected in these measurements is $\\Delta \\rho \\approx \\pm 0.01$ and $\\Delta$b $\\approx \\pm 0.2$ (GeV/c)$^{-2}$. \\\\ \\\\ The experimental programme includes: \\\\\\\\ i) measurements of $\\rho$ and b for $\\pi$p elastic scattering at incident momenta between 150 GeV/c and 300 GeV/c; \\\\ ii) measurements of $\\rho$ and b for $\\pi^{+}$p and pp elastic scattering at incident momenta between 5...

  15. Optimizing Higgs factories by modifying the recoil mass

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jiayin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chinese Academy of Sciences, Beijing (China). Center for Future High Energy Physics; Li, Ying-Ying [Hong Kong Univ. of Science and Technology, Kowloon (China). Dept. of Physics

    2017-10-15

    It is difficult to measure the WW-fusion Higgs production process (e{sup +}e{sup -}→ν anti νh) at a lepton collider with a center of mass energy of 240-250 GeV due to its small rate and the large background from the Higgsstrahlung process with an invisible Z (e{sup +}e{sup -}→hZ, Z→ν anti ν). We construct a modified recoil mass variable, m{sup p}{sub recoil}, defined using only the 3-momentum of the reconstructed Higgs particle, and show that it can better separate the WW-fusion and Higgsstrahlung events than the original recoil mass variable m{sub recoil}. Consequently, the m{sup p}{sub recoil} variable can be used to improve the overall precisions of the extracted Higgs couplings, in both the conventional framework and the effective-field-theory framework. We also explore the application of the m{sup p}{sub recoil} variable in the inclusive cross section measurements of the Higgsstrahlung process, while a quantitive analysis is left for future studies.

  16. 100 group displacement cross sections from RECOIL data base

    International Nuclear Information System (INIS)

    Gopalakrishnan, V.

    1995-01-01

    Displacement cross sections in 100 neutron energy groups were calculated from the RECOIL data base using the RECOIL program, for use in DPA (Displacement Per Atom) calculations for FBTR and PFBR materials. 100 group displacement cross sections were calculated using RECOIL-Data Base and RECOIL Program. Modifications were made in the data base to reduce space requirement, and in the program for easy handling on a PC. 2 refs

  17. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, G. E-mail: glaurent@ganil.fr; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A

    2003-05-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O{sup 6+} + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O{sup 4+} (1s{sup 2}nln{sup '}l{sup '}) populated after double electron-capture events.

  18. The HERMES recoil photon detector and the study of deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hulse, Charlotte van

    2011-03-15

    The study of deeply virtual Compton scattering (DVCS) gives information about the contribution of the quark orbital angular momentum to the spin of the proton. DVCS has been studied at the HERMES experiment at DESY in Hamburg. Here 27.6 GeV longitudinally polarized electrons and positrons were scattered off a gaseous proton target. For the analysis of DVCS the recoiling proton could not be detected, but was reconstructed via its missing mass. This method suffers, however, from a 14% background contribution, mainly originating from associated DVCS. In this process the proton does not stay in its ground state but is excited to a {delta}{sup +} resonance. In order to reduce the background contribution down to less than 1%, a recoil detector was installed in the HERMES experiment beginning of 2006. This detector consists of three subcomponents, of which one is the photon detector. The main function of the photon detector is the detection of {delta}{sup +} decay photons. The photon detector was started up and commissioned for the analysis of (associated) DVCS. Subsequently DVCS and associated DVCS were analyzed using the recoil detector. (orig.)

  19. Chemical effects of fission recoils

    International Nuclear Information System (INIS)

    Meisels, G.G.; Freeman, J.P.; Gregory, J.P.; Richardson, W.C.; Sroka, G.J.

    1978-01-01

    The production of nitrogen from nitrous oxide at high density was employed to investigate the energy deposition efficiency of fission recoils produced from fission of U 235 in uranium-palladium foils clad with platinum. Nitrogen production varied linearly with fission recoil dose from 1.1 x 10 20 to 9.0 x 10 20 eV, and was independent of density between 12.5 and 127.5 g l -1 N 2 O. 16.2 +- 0.8% of the fission recoil energy was deposited external to the foil. Electron microprobe analysis showed some unevenness of new foil and polymer buildup on the surface after irradiation of ethylene-oxygen mixtures. Subsequent irradiation in the presence of nitrous oxide restored some of the original efficiency. This is ascribed to chemical oxidation of the polymer induced by reactive intermediates produced from nitrous oxide. (author)

  20. An Evaluation of Magneto Rheological Dampers for Controlling Gun Recoil Dynamics

    Directory of Open Access Journals (Sweden)

    Mehdi Ahmadian

    2001-01-01

    Full Text Available The application of magneto rheological dampers for controlling recoil dynamics is examined, using a recoil demonstrator that includes a single-shot 50 caliber BMG rifle action and a MR damper. The demonstrator is selected such that it can adequately represent the velocities that commonly occur in weapons with a recoil system, and can be used for collecting data for analyzing the effects of MR dampers on recoil dynamics. The MR damper is designed so that it can work effectively at the large velocities commonly occurring in gun recoil, and also be easily adjusted to reasonably optimize the damper performance for the recoil demonstrator. The test results show that it is indeed possible to design and use MR dampers for recoil applications, which subject the damper to relative velocities far larger than the applications that such dampers have commonly been used for (i.e., vehicle applications. Further, the results indicate that the recoil force increases and the recoil stroke decreases nonlinearly with an increase in the damping force. Also of significance is the fact that the adjustability of MR dampers can be used in a closed-loop system such that the large recoil forces that commonly occur upon firing the gun are avoided and, simultaneously, the recoil stroke is reduced. This study points to the need for several areas of research including establishing the performance capabilities for MR dampers for gun recoil applications in an exact manner, and the potential use of such dampers for a fire out of battery recoil system.

  1. Muscle-tendon interaction and elastic energy usage in human walking

    DEFF Research Database (Denmark)

    Ishikawa, Masaki; Komi, Paavo V.; Grey, Michael James

    2005-01-01

    The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo......-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous...

  2. Gas powered fluid gun with recoil mitigation

    Science.gov (United States)

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  3. Measurements of the ballistic-phonon component resulting from nuclear and electron recoils in crystalline silicon

    International Nuclear Information System (INIS)

    Lee, A.T.; Cabrera, B.; Dougherty, B.L.; Penn, M.J.; Pronko, J.G.; Tamura, S.

    1996-01-01

    We present measurements of the ballistic-phonon component resulting from nuclear and electron recoils in silicon at ∼380 mK. The detectors used for these experiments consist of a 300-μm-thick monocrystal of silicon instrumented with superconducting titanium transition-edge sensors. These sensors detect the initial wavefront of athermal phonons and give a pulse height that is sensitive to changes in surface-energy density resulting from the focusing of ballistic phonons. Nuclear recoils were generated by neutron bombardment of the detector. A Van de Graaff proton accelerator and a thick 7 Li target were used. Pulse-height spectra were compared for neutron, x-ray, and γ-ray events. A previous analysis of this data set found evidence for an increase in the ballistic-phonon component for nuclear recoils compared to electron recoils at a 95% confidence level. An improved understanding of the detector response has led to a change in the result. In the present analysis, the data are consistent with no increase at the 68% confidence level. This change stems from an increase in the uncertainty of the result rather than a significant change in the central value. The increase in ballistic phonon energy for nuclear recoils compared to electron recoils as a fraction of the total phonon energy (for equal total phonon energy events) was found to be 0.024 +0.041 -0.055 (68% confidence level). This result sets a limit of 11.6% (95% confidence level) on the ballistic phonon enhancement for nuclear recoils predicted by open-quote open-quote hot spot close-quote close-quote and electron-hole droplet models, which is the most stringent to date. To measure the ballistic-phonon component resulting from electron recoils, the pulse height as a function of event depth was compared to that of phonon simulations. (Abstract Truncated)

  4. Optimizing Higgs factories by modifying the recoil mass

    Science.gov (United States)

    Gu, Jiayin; Li, Ying-Ying

    2018-02-01

    It is difficult to measure the WW-fusion Higgs production process ({{{e}}}+{{{e}}}-\\to {{ν }}\\bar{{{ν }}}{{h}}) at a lepton collider with a center of mass energy of 240-250 GeV due to its small rate and the large background from the Higgsstrahlung process with an invisible Z ({{{e}}}+{{{e}}}-\\to {{hZ}},{{Z}}\\to {{ν }}\\bar{{{ν }}}). We construct a modified recoil mass variable, {m}{{recoil}}p, defined using only the 3-momentum of the reconstructed Higgs particle, and show that it can separate the WW-fusion and Higgsstrahlung events better than the original recoil mass variable m recoil. Consequently, the {m}{{recoil}}p variable can be used to improve the overall precisions of the extracted Higgs couplings, in both the conventional framework and the effective-field-theory framework. We also explore the application of the {m}{{recoil}}p variable in the inclusive cross section measurements of the Higgsstrahlung process, while a quantitive analysis is left for future studies. JG is Supported by an International Postdoctoral Exchange Fellowship Program between the Office of the National Administrative Committee of Postdoctoral Researchers of China (ONACPR) and DESY. YYL is Supported by Hong Kong PhD Fellowship (HKPFS) and the Collaborative Research Fund (CRF) (HUKST4/CRF/13G)

  5. Recoil-ion momentum spectroscopy

    International Nuclear Information System (INIS)

    Ullrich, J.; Moshammer, R.; Doerner, R.; Jagutzki, O.; Mergel, V.; Schmidt-Boecking, H.; Spielberger, L.

    1996-10-01

    High-resolution recoil-ion momentum spectroscopy (RIMS) is a novel technique to determine the charge state and the complete final momentum vector P R of a recoiling target ion emerging from an ionising collision of an atom with any kind of radiation. It offers a unique combination of superior momentum resolution in all three spatial directions of ΔP R = 0.07 a.u. with a large detection solid angle of ΔΩ R /4π≥ 98%. Recently, low-energy electron analysers based on rigorously new concepts and reaching similar specifications were successfully integrated into RIM spectrometers yielding so-called ''reaction microscopes''. Exploiting these techniques, a large variety of atomic reactions for ion, electron, photon and antiproton impact have been explored in unprecedented detail and completeness. Among them first kinematically complete experiments on electron capture, single and double ionisation in ion-atom collisions at projectile energies between 5 keV and 1.4 GeV. Double photoionisation of He has been investigated at energies E γ close to the threshold (E γ = 80 eV) up to E γ = 58 keV. At E γ >8 keV the contributions to double ionisation after photoabsorption and Compton scattering were kinematically separated for the first time. These and many other results will be reviewed in this article. In addition, the experimental technique is described in some detail and emphasis is given to envisage the rich future potential of the method in various fields of atomic collision physics with atoms, molecules and clusters. (orig.)

  6. High Accuracy, High Energy He-Erd Analysis of H,C, and T

    International Nuclear Information System (INIS)

    Browning, James F.; Langley, Robert A.; Doyle, Barney L.; Banks, James C.; Wampler, William R.

    1999-01-01

    A new analysis technique using high-energy helium ions for the simultaneous elastic recoil detection of all three hydrogen isotopes in metal hydride systems extending to depths of several microm's is presented. Analysis shows that it is possible to separate each hydrogen isotope in a heavy matrix such as erbium to depths of 5 microm using incident 11.48MeV 4 He 2 ions with a detection system composed of a range foil and ΔE-E telescope detector. Newly measured cross sections for the elastic recoil scattering of 4 He 2 ions from protons and deuterons are presented in the energy range 10 to 11.75 MeV for the laboratory recoil angle of 30degree

  7. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    International Nuclear Information System (INIS)

    Singh, Harinder J; Wereley, Norman M

    2014-01-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events. (paper)

  8. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    Science.gov (United States)

    Singh, Harinder J.; Wereley, Norman M.

    2014-05-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events.

  9. Detection of exclusive reactions in the Hermes Recoil Fiber Tracker

    International Nuclear Information System (INIS)

    Keri, Tibor

    2008-08-01

    The standard model of particle physics describes successfully the fundamental constituents and forces in our world; nevertheless, many details of the subatomic world are still beyond the scope of theoretical predictions. The internal structure of the nucleon has been investigated in detail and it was found that the nucleon spin budget, i.e. the composition of the nucleon spin by the spin and orbital angular momentum of quarks and gluons is not yet understood. It has been measured that the intrinsic quark spin contribution is only about 30% of the total spin of the nucleon. A recently developed formalism allows to describe the internal structure of the nucleon by so-called GPDs (Generalized Parton Distributions) in a more complete way than the previously used PDFs (Parton Density Functions). The GPDs are linked by the Ji sum rule to the angular momentum contributions of quarks and gluons. These GPDs can be accessed by the investigation of hard exclusive reactions. DVCS (deeply virtual Compton scattering) is the cleanest exclusive reaction to determine some of these distributions, using lepton beams with different helicity states and charges. HERMES (HERA measurements of spin) is one of the experiments which were carried out to complete the information about the nucleon spin budget. It is located at HERA which is an e ± -p-collider at DESY but uses only the polarized electron- and positron-beam, which is scattered off a gaseous internal target. The HERMES forward spectrometer consists of a set of detectors that are used for tracking, while another set of detectors provides information on particle identification and triggering. In the first phase of HERMES, only forward going particles were detected. Exclusive reactions have been measured using a missing invariant mass technique. In order to improve exclusivity and to enhance the resolution of kinematic variables the HERMES collaboration decided to remove the equipment for the polarized target and to install the RD

  10. Detection of exclusive reactions in the Hermes Recoil Fiber Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Keri, Tibor

    2008-08-15

    The standard model of particle physics describes successfully the fundamental constituents and forces in our world; nevertheless, many details of the subatomic world are still beyond the scope of theoretical predictions. The internal structure of the nucleon has been investigated in detail and it was found that the nucleon spin budget, i.e. the composition of the nucleon spin by the spin and orbital angular momentum of quarks and gluons is not yet understood. It has been measured that the intrinsic quark spin contribution is only about 30% of the total spin of the nucleon. A recently developed formalism allows to describe the internal structure of the nucleon by so-called GPDs (Generalized Parton Distributions) in a more complete way than the previously used PDFs (Parton Density Functions). The GPDs are linked by the Ji sum rule to the angular momentum contributions of quarks and gluons. These GPDs can be accessed by the investigation of hard exclusive reactions. DVCS (deeply virtual Compton scattering) is the cleanest exclusive reaction to determine some of these distributions, using lepton beams with different helicity states and charges. HERMES (HERA measurements of spin) is one of the experiments which were carried out to complete the information about the nucleon spin budget. It is located at HERA which is an e{sup {+-}}-p-collider at DESY but uses only the polarized electron- and positron-beam, which is scattered off a gaseous internal target. The HERMES forward spectrometer consists of a set of detectors that are used for tracking, while another set of detectors provides information on particle identification and triggering. In the first phase of HERMES, only forward going particles were detected. Exclusive reactions have been measured using a missing invariant mass technique. In order to improve exclusivity and to enhance the resolution of kinematic variables the HERMES collaboration decided to remove the equipment for the polarized target and to install

  11. A gun recoil system employing a magnetorheological fluid damper

    International Nuclear Information System (INIS)

    Li, Z C; Wang, J

    2012-01-01

    This research aims to design and control a full scale gun recoil buffering system which works under real firing impact loading conditions. A conventional gun recoil absorber is replaced with a controllable magnetorheological (MR) fluid damper. Through dynamic analysis of the gun recoil system, a theoretical model for optimal design and control of the MR fluid damper for impact loadings is derived. The optimal displacement, velocity and optimal design rules are obtained. By applying the optimal design theory to protect against impact loadings, an MR fluid damper for a full scale gun recoil system is designed and manufactured. An experimental study is carried out on a firing test rig which consists of a 30 mm caliber, multi-action automatic gun with an MR damper mounted to the fixed base through a sliding guide. Experimental buffering results under passive control and optimal control are obtained. By comparison, optimal control is better than passive control, because it produces smaller variation in the recoil force while achieving less displacement of the recoil body. The optimal control strategy presented in this paper is open-loop with no feedback system needed. This means that the control process is sensor-free. This is a great benefit for a buffering system under impact loading, especially for a gun recoil system which usually works in a harsh environment. (paper)

  12. COREL, Ion Implantation in Solids, Range, Straggling Using Thomas-Fermi Cross-Sections. RASE4, Ion Implantation in Solids, Range, Straggling, Energy Deposition, Recoils. DAMG2, Ion Implantation in Solids, Energy Deposition Distribution with Recoils

    International Nuclear Information System (INIS)

    Brice, D. K.

    1979-01-01

    1 - Description of problem or function: COREL calculates the final average projected range, standard deviation in projected range, standard deviation in locations transverse to projected range, and average range along path for energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. RASE4 calculates the instantaneous average projected range, standard deviation in projected range, standard deviation in locations transverse to projected range, and average range along path for energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. RASE4 also calculates the instantaneous rate at which the projectile is depositing energy into atomic processes (damage) and into electronic processes (electronic excitation), the average range of target atom recoils projected onto the direction of motion of the projectiles, and the standard deviation in the recoil projected range. DAMG2 calculates the distribution in depth of the energy deposited into atomic processes (damage), electronic processes (electronic excitation), or other energy-dependent quality produced by energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. 2 - Method of solution: COREL: The truncated differential equation which governs the several variables being sought is solved through second-order by trapezoidal integration. The energy-dependent coefficients in the equation are obtained by rectangular integration over the Thomas-Fermi elastic scattering cross section. RASE4: The truncated differential equation which governs the range and straggling variables is solved through second-order by trapezoidal integration. The energy

  13. Advances in biomimetic regeneration of elastic matrix structures

    Science.gov (United States)

    Sivaraman, Balakrishnan; Bashur, Chris A.

    2012-01-01

    Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960

  14. A new recoil distance technique using low energy coulomb excitation in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Rother, W., E-mail: wolfram.rother@googlemail.com [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Dewald, A.; Pascovici, G.; Fransen, C.; Friessner, G.; Hackstein, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Ilie, G. [Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520 (United States); National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest-Magurele (Romania); Iwasaki, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Jolie, J. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Melon, B. [Dipartimento di Fisica, Universita di Firenze and INFN Sezione di Firenze, Sesto Fiorentino (Firenze) I-50019 (Italy); Petkov, P. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); INRNE-BAS, Sofia (Bulgaria); Pfeiffer, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Pissulla, Th. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Bundesumweltministerium, Robert-Schuman-Platz 3, D - 53175 Bonn (Germany); Zell, K.-O. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Jakobsson, U.; Julin, R.; Jones, P.; Ketelhut, S.; Nieminen, P.; Peura, P. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland); and others

    2011-10-21

    We report on the first experiment combining the Recoil Distance Doppler Shift technique and multistep Coulomb excitation in inverse kinematics at beam energies of 3-10 A MeV. The setup involves a standard plunger device equipped with a degrader foil instead of the normally used stopper foil. An array of particle detectors is positioned at forward angles to detect target-like recoil nuclei which are used as a trigger to discriminate against excitations in the degrader foil. The method has been successfully applied to measure lifetimes in {sup 128}Xe and is suited to be a useful tool for experiments with radioactive ion beams.

  15. Recoil effects in multiphoton electron-positron pair creation

    International Nuclear Information System (INIS)

    Krajewska, K.; Kaminski, J. Z.

    2010-01-01

    Triply differential probability rates for electron-positron pair creation in laser-nucleus collisions, calculated within the S-matrix approach, are investigated as functions of the nuclear recoil. Pronounced enhancements of differential probability rates of multiphoton pair production are found for a nonzero momentum transfer from the colliding nucleus. The corresponding rates show a very dramatic dependence on the polarization of the laser field impinging on the nucleus; only for a linearly polarized light are the multiphoton rates for electron-positron pair production considerably large. We focus therefore on this case. Our numerical results for different geometries of the reaction particles demonstrate that, for the linearly polarized laser field of an infinite extent (which is a good approximation for femtosecond laser pulses), the pair creation is far more efficient if the nucleus is detected in the direction of the laser-field propagation. The corresponding angular distributions of the created particles show that the high-energy pairs are predominantly produced in the plane spanned by the polarization vector and the laser-field propagation direction, while the low-energy pairs are rather spread around the latter of the two directions. The enhancement of differential probability rates at each energy sector, defined by the four-momentum conservation relation, is observed with varying the energy of the produced particles. The total probability rates of pair production are also evaluated and compared with the corresponding results for the case when one disregards the recoil effect. A tremendous enhancement of the total probability rates of the electron-positron pair creation is observed if one takes into account the nuclear recoil.

  16. Compton recoil electron tracking with silicon strip detectors

    International Nuclear Information System (INIS)

    O'Neill, T.J.; Ait-Ouamer, F.; Schwartz, I.; Tumer, O.T.; White, R.S.; Zych, A.D.

    1992-01-01

    The application of silicon strip detectors to Compton gamma ray astronomy telescopes is described in this paper. The Silicon Compton Recoil Telescope (SCRT) tracks Compton recoil electrons in silicon strip converters to provide a unique direction for Compton scattered gamma rays above 1 MeV. With strip detectors of modest positional and energy resolutions of 1 mm FWHM and 3% at 662 keV, respectively, 'true imaging' can be achieved to provide an order of magnitude improvement in sensitivity to 1.6 x 10 - 6 γ/cm 2 -s at 2 MeV. The results of extensive Monte Carlo calculations of recoil electrons traversing multiple layers of 200 micron silicon wafers are presented. Multiple Coulomb scattering of the recoil electron in the silicon wafer of the Compton interaction and the next adjacent wafer is the basic limitation to determining the electron's initial direction

  17. pp-elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E; Cantale, G; Degli-Agosti, S; Hausammann, R; Heer, E; Hess, R; Lechanoine-LeLuc, C; Leo, W; Morenzoni, S; Onel, Y [Geneva Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire

    1983-01-01

    The aim of the elastic pp experimental program at SIN was to measure enough spin dependent parameters in order to do a direct experimental reconstruction of the elastic scattering amplitudes at a few energies between 400 and 600 MeV and at several angles between 38/sup 0/ cm and 90/sup 0/ cm. This reconstruction was not possible until recently due to lack of experimental data. Information instead has come mainly from phase shift analysis (PSA). The only way to extract the elastic scattering amplitudes without any hypotheses except those of basic symmetries, is to measure a sufficient set of spin dependent parameters at a given angle and energy. With this in view, the authors have measured at 448, 494, 515, 536 and 579 MeV, the polarization, the spin correlation parameters Asub(00nn), Asub(00ss), Asub(00kk), Asub(00ks), the 2-spin parameters Dsub(n0n0), Ksub(n00n), Dsub(s'0s0), Dsub(s'0k0) and the 3-spin parameters Msub(s'0sn), Msub(s'0kn) between 34/sup 0/ cm and 118/sup 0/ cm. A few of these parameters have also been measured at 560 and 470 MeV and at a few energies below 448 MeV. The indices refer to the polarization orientation of the scattered, recoil, beam and target particle respectively.

  18. Recoil momenta distributions in the double photoionization

    International Nuclear Information System (INIS)

    Amusia, M Ya; Liverts, E Z; Drukarev, E G; Mikhai, A I

    2014-01-01

    We calculate the distributions in recoil momenta for the high energy double photoionization of helium caused by quasifree mechanism. The distributions obtain local maxima at small values of the recoil momenta. This agrees with earlier predictions and recent experimental data. Angular correlations which reach the largest value for 'back-to-back' configuration of photoelectrons are also obtained.

  19. Recoil-proton fast-neutron counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R. (Padua Univ. (Italy). Ist. di Fisica); Galeazzi, G.; Bressanini, G.

    1981-12-01

    A recoil-proton neutron counter telescope is described composed of a solid-state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time of flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  20. Recoil-proton fast-neutron-counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Bressanini, G.

    1981-01-01

    A proton-recoil neutron counter telescope is described composed of a solid state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time-of-flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV, presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  1. Investigation of second-order optical potential for elastic π4He scattering

    International Nuclear Information System (INIS)

    Mach, R.; Sapozhnikov, M.G.

    1982-01-01

    The calculations of elastic π - 4 He scattering within the framework of the optical model with a second-order potential were performed. The effects of recoil correlations, charge exchange and double spin (isospin) flip in the inter-- mediate states are studied. The correction of the impulse approximation is investigated. Comparison between Kerman-McManus-Thaler and Watson formalisms is made

  2. Time-of-flight scattering and recoiling spectrometry

    International Nuclear Information System (INIS)

    Rabalais, J.W.

    1991-01-01

    Ion scattering and recoiling spectrometry consists of directing a collimated beam of monoenergetic ions towards a surface and measuring the flux of scattered and recoiled particles from this surface. When the neutral plus ion flux is velocity selected by measuring the flight times from the sample to the detector, the technique is called time-of-flight scattering and recoiling spectrometry (TOF-SARS). TOF-SARS is capable of (1) surface elemental analysis by applying classical mechanics to the velocities of the particles, (2) surface structural analysis by monitoring the angular anisotropies in the particle flux, and (3) ion-surface electron exchange probabilities by analysis of the ion/neutral fractions in the particle flux. Examples of these three areas are presented herein

  3. Nuclear targets, recoil ion catchers and reaction chambers

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Schuck, C; Collatz, R; Meunier, R; Ledu, D; Folger, H; Lafoux, A; Lagrange, JM; Pautrat, M; Waast, B; Phillips, WR; Blunt, D; Durell, JL; Varley, BJ; Dagnall, PG; Dorning, SJ; JONES, MA; Smith, AG; Bacelar, JCS; Rzaca-Urban, T; Amzal, N; Meliani, Z; Vanhorenbeeck, J; Passoja, A; Urban, W

    1998-01-01

    The main features of nuclear targets, recoil ion catchers and reaction chambers used in nuclear spectroscopic investigations involving in-beam multi-e-gamma spectrometers are discussed. The relative importance of the F-ray background due to the accelerated ion-target and the recoil-ion-target

  4. In-situ, real-time, studies of film growth processes using ion scattering and direct recoil spectroscopy techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Smentkowski, V. S.

    1999-04-22

    Time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1-2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is 3 variant of DRS capable of isotopic resolution for all surface species--including H and He. The advantages and limitations of each of these techniques will be discussed. The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dwd functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.

  5. Recoil separators for radiative capture using radioactive ion beams. Recent advances and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Chris [TRIUMF, Vancouver, BC (Canada); Greife, Uwe; Hager, Ulrike [Colorado School of Mines, Golden, CO (United States)

    2014-06-15

    Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities. (orig.)

  6. Solar neutrinos as a signal and background in direct-detection experiments searching for sub-GeV dark matter with electron recoils

    Science.gov (United States)

    Essig, Rouven; Sholapurkar, Mukul; Yu, Tien-Tien

    2018-05-01

    Direct-detection experiments sensitive to low-energy electron recoils from sub-GeV dark matter interactions will also be sensitive to solar neutrinos via coherent neutrino-nucleus scattering (CNS), since the recoiling nucleus can produce a small ionization signal. Solar neutrinos constitute both an interesting signal in their own right and a potential background to a dark matter search that cannot be controlled or reduced by improved shielding, material purification and handling, or improved detector design. We explore these two possibilities in detail for semiconductor (silicon and germanium) and xenon targets, considering several possibilities for the unmeasured ionization efficiency at low energies. For dark-matter-electron-scattering searches, neutrinos start being an important background for exposures larger than ˜1 - 10 kg -years in silicon and germanium, and for exposures larger than ˜0.1 - 1 kg -year in xenon. For the absorption of bosonic dark matter (dark photons and axion-like particles) by electrons, neutrinos are most relevant for masses below ˜1 keV and again slightly more important in xenon. Treating the neutrinos as a signal, we find that the CNS of 8B neutrinos can be observed with ˜2 σ significance with exposures of ˜2 , 7, and 20 kg-years in xenon, germanium, and silicon, respectively, assuming there are no other backgrounds. We give an example for how this would constrain nonstandard neutrino interactions. Neutrino components at lower energy can only be detected if the ionization efficiency is sufficiently large. In this case, observing pep neutrinos via CNS requires exposures ≳10 - 100 kg -years in silicon or germanium (˜1000 kg -years in xenon), and observing CNO neutrinos would require an order of magnitude more exposure. Only silicon could potentially detect 7Be neutrinos. These measurements would allow for a direct measurement of the electron-neutrino survival probability over a wide energy range.

  7. Recoil effects of neutron-irradiated metal salts

    International Nuclear Information System (INIS)

    Lee, B.H.

    1980-01-01

    The distribution of sup(56)Mn and sup(38)Cl recoil species following radiative neutron capture permanganates, chlorates and perchlorates has been investigated by using ion-exchange chromatography method. The whole of the sup(56)Mn radioactivity in permanganates appeared in two valence states, the sup(38)Cl radioactivity in chlorates in two valence states and also the sup(38)Cl radioactivity in perchlorates in three valence states. Recoil energy was calculated. The internal conversion of sup(38m)Cl isomer transition affects the retention value. The greater the radii of the cation, the higher is the probability of the recoil atom breaking through the secondary cage. In ammonium salt, the ammonium ion behaves as a reducing agent. Crystal structures with their greater free space have shown by retention. (Author)

  8. “Study of secondary hydriding at high temperature in zirconium based nuclear fuel cladding tubes by coupling information from neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and laser induced breakdown spectroscopy microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Brachet, Jean-Christophe, E-mail: jean-christophe.brachet@cea.fr [DEN-Service de Recherches Métallurgiques Appliquées (SRMA), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette (France); Hamon, Didier; Le Saux, Matthieu [DEN-Service de Recherches Métallurgiques Appliquées (SRMA), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette (France); Vandenberghe, Valérie [DEN-Service de Recherches Métallurgiques Appliquées (SRMA), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette (France); DEN-Service d’Etudes Mécaniques et Thermiques (SEMT), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette (France); Toffolon-Masclet, Caroline; Rouesne, Elodie; Urvoy, Stéphane [DEN-Service de Recherches Métallurgiques Appliquées (SRMA), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette (France); Béchade, Jean-Luc [DEN-Service de Recherches Métallurgiques Appliquées (SRMA), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette (France); DEN-Service de Recherches de Métallurgie Physique (SRMP), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette (France); Raepsaet, Caroline [LEEL, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette (France); NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex (France); and others

    2017-05-15

    This paper gives an overview of a multi-scale experimental study of the secondary hydriding phenomena that can occur in nuclear fuel cladding materials exposed to steam at high temperature (HT) after having burst (loss-of-coolant accident conditions). By coupling information from several facilities, including neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and micro laser induced breakdown spectroscopy, it was possible to map quantitatively, at different scales, the distribution of oxygen and hydrogen within M5™ clad segments having experienced ballooning and burst at HT followed by steam oxidation at 1100 and 1200 °C and final direct water quenching down to room temperature. The results were very reproducible and it was confirmed that internal oxidation and secondary hydriding at HT of a cladding after burst can lead to strong axial and azimuthal gradients of hydrogen and oxygen concentrations, reaching 3000–4000 wt ppm and 1.0–1.2 wt% respectively within the β phase layer for the investigated conditions. Consistent with thermodynamic and kinetics considerations, oxygen diffusion into the prior-β layer was enhanced in the regions highly enriched in hydrogen, where the α(O) phase layer is thinner and the prior-β layer thicker. Finally the induced post-quenching hardening of the prior-β layer was mainly related to the local oxygen enrichment. Hardening directly induced by hydrogen was much less significant. - Highlights: •More than 50% of the gaseous hydrogen produced by the inner clad oxidation absorbed and trapped into prior-β layer. •High hydrogen and oxygen local concentrations, up to 3000–4000 wt. ppm and 1.0–1.2 wt.% respectively, within the β phase. •Enhanced oxygen diffusion into hydrogen enriched prior-β layer, with locally thinner α(O) and thicker prior-β layers. •Post-quenching hardening of the prior-β structure mainly related to the (local) oxygen concentration.

  9. Astrophysical limitations to the identification of dark matter: Indirect neutrino signals vis-a-vis direct detection recoil rates

    International Nuclear Information System (INIS)

    Serpico, Pasquale D.; Bertone, Gianfranco

    2010-01-01

    A convincing identification of dark matter (DM) particles can probably be achieved only through a combined analysis of different detections strategies, which provides an effective way of removing degeneracies in the parameter space of DM models. In practice, however, this program is made complicated by the fact that different strategies depend on different physical quantities, or on the same quantities but in a different way, making the treatment of systematic errors rather tricky. We discuss here the uncertainties on the recoil rate in direct-detection experiments and on the muon rate induced by neutrinos from dark matter annihilations in the Sun, and we show that, contrarily to the local DM density or overall cross section scale, irreducible astrophysical uncertainties affect the two rates in a different fashion, therefore limiting our ability to reconstruct the parameters of the dark matter particles. By varying within their respective errors astrophysical parameters such as the escape velocity and the velocity dispersion of dark matter particles, we show that the uncertainty on the relative strength of the neutrino and direct-detection signal is as large as a factor of 2 for typical values of the parameters, but can be even larger in some circumstances.

  10. Heavy quark symmetry at large recoil: The case of baryons

    International Nuclear Information System (INIS)

    Koerner, J.G.; Kroll, P.

    1992-02-01

    We analyze the large recoil behaviour of heavy baryon transition form factors in semi-leptonic decays. We use a generalized Brodsky-Lepage hard scattering formalism where diquarks are considered as quasi-elementary constituents of baryons. In the limit of infinitely heavy quark masses the large recoil form factors exhibit a new model-independent heavy quark symmetry which is reminiscent but not identical to the Isgur-Wise symmetry at low recoil. (orig.)

  11. The use of rotons in liquid helium to detect neutrinos

    International Nuclear Information System (INIS)

    Lanou, R.E.; Maris, H.J.; Seidel, G.M.

    1987-01-01

    A new technique for measuring calorimetrically the energy spectrum of recoil electrons from the elastic scattering of neutrinos is discussed. The method involves the use of superfluid helium at low temperatures

  12. Recoil release of fission products from nuclear fuel

    International Nuclear Information System (INIS)

    Wise, C.

    1985-01-01

    An analytical approximation is developed for calculating recoil release from nuclear fuel into gas filled interspaces. This expression is evaluated for a number of interspace geometries and shown to be generally accurate to within about 10% by comparison with numerical calculations. The results are applied to situations of physical interest and it is demonstrated that recoil can be important when modelling fission product release from low temperature CAGR pin failures. Furthermore, recoil can contribute significantly in experiments on low temperature fission product release, particularly where oxidation enhancement of this release is measured by exposing the fuel to CO 2 . The calculations presented here are one way of allowing for this, other methods are suggested. (orig.)

  13. Shallow doping of gallium arsenide by recoil implantation

    International Nuclear Information System (INIS)

    Sadana, D.K.; Souza, J.P. de; Rutz, R.F.; Cardone, F.; Norcott, M.H.

    1989-01-01

    Si atoms were recoil-implanted into GaAs by bombarding neutral (As + ) or dopant (Si + ) ions through a thin Si cap. The bombarded samples were subsequently rapid thermally or furnace annealed at 815-1000 degree C in Ar or arsine ambient. The presence of the recoiled Si in GaAs and resulting n + -doping was confirmed by secondary ion mass spectrometry and Hall measurements. It was found that sheet resistance of 19 cm 3 and the annealing temperature was > 850 degree C. The present electrical data show that the recoil implant method is a viable alternative to direct shallow implant for n + doping of GaAs. 7 refs., 3 figs., 1 tab

  14. The HERMES recoil detector. Particle identification and determination of detector efficiency of the scintillating fiber tracker

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xianguo

    2009-11-15

    HERMES is a fixed target experiment using the HERA 27.6 GeV polarized electron/positron beams. With the polarized beams and its gas targets, which can be highly polarized, HERMES is dedicated to study the nucleon spin structure. One of its current physics programs is to measure deeply virtual Compton scattering (DVCS). In order to detect the recoiling proton the Recoil Detector was installed in the target region in the winter of 2005, taking data until the HERA-shutdown in the summer of 2007. The Recoil Detector measured energy loss of the traversing particles with its sub-detectors, including the silicon strip detector and the scintillating fiber tracker. This enables particle identification for protons and pions. In this work a systematic particle identification procedure is developed, whose performance is quantified. Another aspect of this work is the determination of the detector efficiency of the scintillating fiber tracker. (orig.)

  15. Integrated PC-based system for detecting and parameter monitoring at the Dubna Gas Filled Recoil Separator

    International Nuclear Information System (INIS)

    Tsyganov, Yu.S.; Polyakov, A.N.; Sukhov, A.M.

    2012-01-01

    New detection system of the Dubna Gas Filled Recoil Separator (DGFRS) was put into operation in May 2012. It includes 32-strip position sensitive PIPS detector manufactured by CANBERRA NV, 24-strip back side PIPS detector, 8-strip V ETO P IPS detector, time-of-flight low pressure (∼1.7 Torr) pentane-filled gaseous detector, CAMAC fast ADC's with 5 μs dead time per three signals (energy, top position, bottom position), modified CC012 crate controller and PC-based C ++ Builder code for spectrometry data acquisition. New parameter monitoring system (project) is reported too together with the brief review of the present system. It is planned to put into operation with this system during 2013-2014. Examples of applications in the long-term experiments aimed at the synthesis of superheavy elements in 48 Ca induced complete fusion nuclear reactions are also presented. Namely with the DGFRS facility 45 new isotopes of superheavy nuclei were synthesized since 2001

  16. Spring or string: does tendon elastic action influence wing muscle mechanics in bat flight?

    Science.gov (United States)

    Konow, Nicolai; Cheney, Jorn A; Roberts, Thomas J; Waldman, J Rhea S; Swartz, Sharon M

    2015-10-07

    Tendon springs influence locomotor movements in many terrestrial animals, but their roles in locomotion through fluids as well as in small-bodied mammals are less clear. We measured muscle, tendon and joint mechanics in an elbow extensor of a small fruit bat during ascending flight. At the end of downstroke, the tendon was stretched by elbow flexion as the wing was folded. At the end of upstroke, elastic energy was recovered via tendon recoil and extended the elbow, contributing to unfurling the wing for downstroke. Compared with a hypothetical 'string-like' system lacking series elastic compliance, the tendon spring conferred a 22.5% decrease in muscle fascicle strain magnitude. Our findings demonstrate tendon elastic action in a small flying mammal and expand our understanding of the occurrence and action of series elastic actuator mechanisms in fluid-based locomotion. © 2015 The Author(s).

  17. A Study on Detection of Elastic Wave Using Patch Type Piezo-Polymer Sensor

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Yoon, Dong Jin; Kueon, Jae Hwa; Lee, Young Seop

    2004-01-01

    Patch type piezo-polymer sensors for smart structures were experimented to detect elastic wave. The pencil lead braking test was performed to analyze the characteristics of patch-type piezo-polymer sensors such as polyvinyliden fluoride (PVDF) and polyvinylidene fluoride trifluorethylene (P(VDF-TrFE)) for several test specimens with various elastic wave velocities and acoustical impedances. The characteristics of the patch-type piezo-polymer sensor were compared with the commercial PZT acoustic emission (AE) sensor. The vacuum grease and epoxy resin were used as a couplant for the acoustic impedance matching between the sensor and specimen. The peak amplitude of elastic wave increased as the diameter of piezo-film and acoustical impedance of the specimen increased. The frequency detection range of the piezo-film sensors decreased with increasing diameter of the piezo-film sensor. The P(VDF-TrFE) sensor was more sensitive than the PVDF sensor

  18. Invariant potential for elastic pion--nucleus scattering

    International Nuclear Information System (INIS)

    Cammarata, J.B.; Banerjee, M.K.

    1976-01-01

    From the Wick-Dyson expansion of the exact propagator of a pion in the presence of a nucleus, an invariant potential for crossing symmetric elastic pion-nucleus scattering is obtained in terms of a series of pion-nucleon diagrams. The Chew-Low theory is used to develop a model in which the most important class of diagrams is effectively summed. Included in this model is the exclusion principle restriction on the pion-bound nucleon interaction, the effects of the binding of nucleons, a kinematic transformation of energy from the lab to the πN center of mass frame, and the Fermi motion and recoil of the target nucleons. From a numerical study of the effects of these processes on the π- 12 C total cross section, the relative importance of each is determined. Other processes contributing to the elastic scattering of pions not included in the present model are also discussed

  19. A recoil-proton fast-neutron counter telescope

    International Nuclear Information System (INIS)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Galeazzi, G.; Bressanini, G.

    1981-01-01

    A recoil-proton neutron counter telescope is described composed of a solid-state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time of flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV. (author)

  20. Peaked signals from dark matter velocity structures in direct detection experiments

    Science.gov (United States)

    Lang, Rafael F.; Weiner, Neal

    2010-06-01

    In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies ER. The peaks of such signals are typically fairly broad, with ΔER/Epeak ~ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with high accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario. Inelastic dark matter particles with a wide range of parameters are capable of producing such a narrow peak. We calculate the possible signals at other experiments, and find that such particles could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters, a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation in both the amplitude of the signal and its spectral shape.

  1. Peaked signals from dark matter velocity structures in direct detection experiments

    International Nuclear Information System (INIS)

    Lang, Rafael F.; Weiner, Neal

    2010-01-01

    In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies E R . The peaks of such signals are typically fairly broad, with ΔE R /E peak ∼ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with high accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario. Inelastic dark matter particles with a wide range of parameters are capable of producing such a narrow peak. We calculate the possible signals at other experiments, and find that such particles could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters, a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation in both the amplitude of the signal and its spectral shape

  2. Geometry Survey of the Time-of-Flight Neutron-Elastic Scattering (Antonella) Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Oshinowo, Babatunde O. [Fermilab; Izraelevitch, Federico [Buenos Aires U.

    2016-10-17

    The Antonella experiment is a measurement of the ionization efficiency of nuclear recoils in silicon at low energies [1]. It is a neutron elastic scattering experiment motivated by the search for dark matter particles. In this experiment, a proton beam hits a lithium target and neutrons are produced. The neutron shower passes through a collimator that produces a neutron beam. The beam illuminates a silicon detector. With a certain probability, a neutron interacts with a silicon nucleus of the detector producing elastic scattering. After the interaction, a fraction of the neutron energy is transferred to the silicon nucleus which acquires kinetic energy and recoils. This kinetic energy is then dissipated in the detector producing ionization and thermal energy. The ionization produced is measured with the silicon detector electronics. On the other hand, the neutron is scattered out of the beam. A neutron-detector array (made of scintillator bars) registers the neutron arrival time and the scattering angle to reconstruct the kinematics of the neutron-nucleus interaction with the time-of-flight technique [2]. In the reconstruction equations, the energy of the nuclear recoil is a function of the scattering angle with respect to the beam direction, the time-of-flight of the neutron and the geometric distances between components of the setup (neutron-production target, silicon detector, scintillator bars). This paper summarizes the survey of the different components of the experiment that made possible the off-line analysis of the collected data. Measurements were made with the API Radian Laser Tracker and I-360 Probe Wireless. The survey was completed at the University of Notre Dame, Indiana, USA in February 2015.

  3. SIMULATIONS OF RECOILING MASSIVE BLACK HOLES IN THE VIA LACTEA HALO

    International Nuclear Information System (INIS)

    Guedes, J.; Madau, P.; Diemand, J.; Kuhlen, M.; Zemp, M.

    2009-01-01

    The coalescence of a massive black hole (MBH) binary leads to the gravitational-wave recoil of the system and its ejection from the galaxy core. We have carried out N-body simulations of the motion of a M BH = 3.7 x 10 6 M sun MBH remnant in the 'Via Lactea I' simulation, a Milky Way-sized dark matter halo. The black hole receives a recoil velocity of V kick = 80, 120, 200, 300, and 400 km s -1 at redshift 1.5, and its orbit is followed for over 1 Gyr within a 'live' host halo, subject only to gravity and dynamical friction against the dark matter background. We show that, owing to asphericities in the dark matter potential, the orbit of the MBH is highly nonradial, resulting in a significantly increased decay timescale compared to a spherical halo. The simulations are used to construct a semi-analytic model of the motion of the MBH in a time-varying triaxial Navarro-Frenk-White dark matter halo plus a spherical stellar bulge, where the dynamical friction force is calculated directly from the velocity dispersion tensor. Such a model should offer a realistic picture of the dynamics of kicked MBHs in situations where gas drag, friction by disk stars, and the flattening of the central cusp by the returning black hole are all negligible effects. We find that MBHs ejected with initial recoil velocities V kick ∼> 500 km s -1 do not return to the host center within a Hubble time. In a Milky Way-sized galaxy, a recoiling hole carrying a gaseous disk of initial mass ∼M BH may shine as a quasar for a substantial fraction of its 'wandering' phase. The long decay timescales of kicked MBHs predicted by this study may thus be favorable to the detection of off-nuclear quasar activity.

  4. Commissioning of the recoil silicon detector for the HERMES experiment

    International Nuclear Information System (INIS)

    Pickert, N.C.

    2008-02-01

    The reconstruction of the missing mass is limited by the position and momentum resolution of the HERMES spectrometer. In order to reach a higher accuracy in the measurements the backscattered nucleon must also be detected. A detector suited for this must give the possibility, to determine the momentum of the particles over a very large range: from minimally ionizing particles up to protons, which are stopped in the detector. The detector must also be able to discriminate hadrons and mesons as well as cover the complete spatial region around the target. In the winter 2005-2006 such a recoil detector was installed in the HERMES experiment. The detector sonsists of three partial detectors, a silicon counter within the scattering chamber, a sintillating-fiber detector and a photon detector. Before the installation of the detector the silicon modules were tested in a bench test and checked together with the other particle detectors in a test experiment. A large part of this dissertation is dedicated to the planning and performance of these tests as well to the evaluation of them. It could be show, that the modules worked accordly to their specifications, however because of unexpectedly high noise a signal correction became necessary. Different models for the correction were developed and tested in the framework of these thesis. In spite of the high noise cosmic muons could be detected and their energy deposition measured with a signal-to-noise ratio of 2:1. In the winter break 2005-2006 the recoil detector was installed into the HERMES experiment. First diagnosis and analysis software was developed. The silicon detector measured successfully energy depositions of minimally ionizing particles up to protons stopped in the sensor. Minimally ionizing particles could be detected with a signal-to-noise ratio of 5:1. By means of track information of the scintillating-fiber detector protons could be discriminated from pions and other mesons by the silicon detector. The HERMES

  5. Commissioning of the recoil silicon detector for the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pickert, N C

    2008-02-15

    The reconstruction of the missing mass is limited by the position and momentum resolution of the HERMES spectrometer. In order to reach a higher accuracy in the measurements the backscattered nucleon must also be detected. A detector suited for this must give the possibility, to determine the momentum of the particles over a very large range: from minimally ionizing particles up to protons, which are stopped in the detector. The detector must also be able to discriminate hadrons and mesons as well as cover the complete spatial region around the target. In the winter 2005-2006 such a recoil detector was installed in the HERMES experiment. The detector sonsists of three partial detectors, a silicon counter within the scattering chamber, a sintillating-fiber detector and a photon detector. Before the installation of the detector the silicon modules were tested in a bench test and checked together with the other particle detectors in a test experiment. A large part of this dissertation is dedicated to the planning and performance of these tests as well to the evaluation of them. It could be show, that the modules worked accordly to their specifications, however because of unexpectedly high noise a signal correction became necessary. Different models for the correction were developed and tested in the framework of these thesis. In spite of the high noise cosmic muons could be detected and their energy deposition measured with a signal-to-noise ratio of 2:1. In the winter break 2005-2006 the recoil detector was installed into the HERMES experiment. First diagnosis and analysis software was developed. The silicon detector measured successfully energy depositions of minimally ionizing particles up to protons stopped in the sensor. Minimally ionizing particles could be detected with a signal-to-noise ratio of 5:1. By means of track information of the scintillating-fiber detector protons could be discriminated from pions and other mesons by the silicon detector. The HERMES

  6. Natural alpha recoil particle radiation and ionizing radiation sensitivities in quartz detected with EPR: implications for geochronometry

    International Nuclear Information System (INIS)

    Rink, W.J.; Odom, A.L.

    1991-01-01

    The electron paramagnetic resonance EPR signals in granitic quartz samples of known age are studied. Time-integrated alpha recoil activity and EPR signal intensity are more significantly correlated than sample age and EPR signal intensity. Neutron activation analysis for internal uranium and thorium in quartz are reported. Natural germanium EPR signals are observed in pegmatitic quartz samples and one granitic quartz. Pegmatitic quartz exhibits germanium EPR center growth competing strongly with E' center growth, apparently leading to depleted natural concentrations of E' centers. Calculations of lattice vacancy accumulation associated with alpha recoil damage are presented and compared with concentrations of paramagnetic oxygen vacancies in the quartz. Based on the results reported, the potential and problems associated with dating quartz are discussed, relating both to accumulated lattice damage and the additive dose methods. (author)

  7. Irradiation of Methane by Recoiling Fission-Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. R.; Galley, M. R. [Imperial College of Science and Technology, London (United Kingdom)

    1963-11-15

    Pure methane gas (containing <0.003% oxygen and <5 mg H{sub 2}O per m{sup 3}) has been irradiated at pressures ranging from 5 to 50 atmospheres pressure and at 30{sup o}C with recoiling fission - fragments. The gas is contained in a silica ampoule of volume about 9 cm{sup 3} and which also contains a platinum cylinder coated on the inside with 0.5 mg/cm{sup 2} highly enriched uranium oxide. When the ampoule is irradiated in a nuclear reactor with thermal neutrons, about half the fission-fragments recoil from the uranium and dissipate their energy in the methane. In a typical irradiation, methane at 10 atm pressure receives a dose of 5 x 10{sup 21} eV at an integrated reactor flux of 5 x 10{sup 15} neutrons/cm{sup 2}. Neutron flux i s measured by means of a gold-foil flux monitor. The activity of the Au{sup 198} is counted in a 4 {pi} proportional counter. The irradiation products have been detected by using beta-ionization detectors for gas-phase chromatography with suitable columns. The following products have been found: hydrogen, ethane, propane, n-butane, isobutane, n-pentane, iso-pentane, neo-pentane, the seven hexanes. Traces of higher hydrocarbons are undoubtedly present but the analysis of these has not been attempted. Hydrogen is present in greatest yield and the yields of the hydrocarbons decrease in the order given above. Despite previously reported yields of ethylene (G-value-0.1) from gamma and fast - electron irradiations, no ethylene or other unsaturated products have been detected in this work. It would have been possible to detect 10 ppm in the products. This is to be expected as any double bonds which may be produced would almost immediately be hydrogenated by the hydrogen present. Yields for hydrogen, ethane and propane lie within the range of values that have been reported by other workers for gamma and fast electron irradiations. (author)

  8. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    Science.gov (United States)

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω0 , this measurement backaction adds quanta ℏΩ0 to the oscillator's energy at a rate Γrecoil, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γrecoil. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces.

  9. On the M\\"ossbauer effect and the rigid recoil question

    OpenAIRE

    Davidson, Mark

    2016-01-01

    Various theories for the M\\"ossbauer rigid-recoil effect, which enables a crystal to absorb momentum but not appreciable energy, are compared. These suggest that the recoil may not be instantaneous, and that the recoil time could be used to distinguish between them. An experiment is proposed to measure this time. The idea is to use a small sphere whose outer surface is coated with an electrically charged M\\"ossbauer-active element, and then to measure the amount of energy lost due to Bremmsst...

  10. Pulsed-laser-activated impulse response encoder: Sensitive detection of surface elastic waves on biomimetic microsized gel spheres

    Science.gov (United States)

    Yasukuni, Ryohei; Fukushima, Ryosuke; Iino, Takanori; Hosokawa, Yoichiroh

    2017-11-01

    A femtosecond-laser-induced impulsive force was applied to microsized calcium alginate (CaAlg) gel spheres as an external force to excite elastic waves. To evaluate elasticity, atomic force microscopy (AFM) was applied to detect vibration propagation. The sphere size dependence of the vibration was well reproduced by finite element method (FEM) simulation for pressure waves and surface acoustic waves. The obtained results indicate that the pulsed-laser-activated impulse response encoder (PLAIRE) enables the sensitive detection of elasticities, not only on inside but also on the surface.

  11. Hard two-photon contribution to elastic lepton-proton scattering determined by the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, B.S. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ice, L.D. [Arizona State Univ., Tempe, AZ (United States); Khaneft, D. [Mainz Univ. (Germany); Collaboration: OLYMPUS Collaboration; and others

    2016-12-15

    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R{sub 2γ}, a direct measure of the contribution of hard two- photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ∼20 to 80 . The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at 12 , as well as symmetric Moeller/Bhabha calorimeters at 1.29 . A total integrated luminosity of 4.5 fb{sup -1} was collected. In the extraction of R{sub 2γ}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R{sub 2γ}, presented here for a wide range of virtual photon polarization 0.456<ε<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  12. Measurement of the analysing power of elastic proton-proton scattering at 582 MeV

    International Nuclear Information System (INIS)

    Berdoz, A.; Favier, B.; Foroughi, F.; Weddigen, C.

    1984-01-01

    The authors have measured the analysing power of elastic proton-proton scattering at 582 MeV for 14 angles from 20 to 80 0 CM. The angular range was limited to >20 0 by the energy loss of the recoil protons. The experiment was performed at the PM1 beam line at SIN. A beam intensity of about 10 8 particles s -1 was used. (Auth.)

  13. Simulation of effects of incident beam condition in p-p elastic scattering

    International Nuclear Information System (INIS)

    Yu Lei; Zhang Gaolong; Le Xiaoyun; Tanihata, I.

    2014-01-01

    The simulation is performed for the monitors of beam direction and beam position for p-p elastic scattering. We set several variables to simulate the monitors of incident beam condition changes: beam positions at the quadrupole magnet and target in beam line polarimeter (BLP2), distance between quadrupole magnet and target, size of plastic scintillators, distance between the target in BLP2 and the centers of plastic scintillators, and beam polarization. Through the rotation of the coordinate system, the distributions of scattered and recoiled protons in the laboratory system were obtained. By analyzing the count yields in plastic scintillators at different beam positions, we found that the beam incident angular change (0.35°) could be detected when the asymmetry of geometries of left and right scintillators in BLP2 was changed by 6%. Therefore, the scattering angle measured in the experiment can be tracked by these monitors. (authors)

  14. Recoil ion charge state distributions in low energy Arq+ - Ar collisions

    International Nuclear Information System (INIS)

    Vancura, J.; Marchetti, V.; Kostroun, V.O.

    1992-01-01

    We have measured the recoil ion charge state distributions in Ar q+ -- Ar (8≤q≤16) collisions at 2.3 qkeV and 0.18qkeV by time of flight (TOF) spectroscopy. For Ar 8-16+ , recoil ion charge states up to 6+ are clearly present, indicating that the 3p subshell in the target atom is being depleted, while for Ar 10-16+ , there is evidence that target 3s electrons are also being removed. Comparison of the recoil ion charge state spectra at 2.3 and 0.18 qkeV shows that for a given projectile charge, there is very little dependence of the observed recoil target charge state distribution on projectile energy

  15. Application of RMS for damage detection by guided elastic waves

    Energy Technology Data Exchange (ETDEWEB)

    Radzienski, M; Dolinski, L; Krawczuk, M [Gdansk University of Technology, Faculty of Electrical and Control Engineering, Narutowicza 11/12, 80-952 Gdansk (Poland); Zak, A; Ostachowicz, W, E-mail: Maciej.Radzienski@gmail.com [Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland)

    2011-07-19

    This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.

  16. Application of RMS for damage detection by guided elastic waves

    Science.gov (United States)

    Radzieński, M.; Doliński, Ł.; Krawczuk, M.; dot Zak, A.; Ostachowicz, W.

    2011-07-01

    This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.

  17. RECOILING MASSIVE BLACK HOLES IN GAS-RICH GALAXY MERGERS

    International Nuclear Information System (INIS)

    Guedes, Javiera; Madau, Piero; Mayer, Lucio; Callegari, Simone

    2011-01-01

    The asymmetric emission of gravitational waves produced during the coalescence of a massive black hole (MBH) binary imparts a velocity 'kick' to the system that can displace the hole from the center of its host. Here, we study the trajectories and observability of MBHs recoiling in three (one major, two minor) gas-rich galaxy merger remnants that were previously simulated at high resolution, and in which the pairing of the MBHs had been shown to be successful. We run new simulations of MBHs recoiling in the major merger remnant with Mach numbers in the range 1≤M≤6 and use simulation data to construct a semi-analytical model for the orbital evolution of MBHs in gas-rich systems. We show the following. (1) In major merger remnants the energy deposited by the moving hole into the rotationally supported, turbulent medium makes a negligible contribution to the thermodynamics of the gas. This contribution becomes significant in minor merger remnants, potentially allowing for an electromagnetic signature of MBH recoil. (2) In major merger remnants, the combination of both deeper central potential well and drag from high-density gas confines even MBHs with kick velocities as high as 1200 km s -1 within 1 kpc from the host's center. (3) Kinematically offset nuclei may be observable for timescales of a few Myr in major merger remnants in the case of recoil velocities in the range 700-1000 km s -1 . (4) In minor merger remnants the effect of gas drag is weaker, and MBHs with recoil speeds in the range 300-600 km s -1 will wander through the host halo for longer timescales. When accounting for the probability distribution of kick velocities, however, we find that the likelihood of observing recoiling MBHs in gas-rich galaxy mergers is very low even in the best-case scenario.

  18. Enhancing the sensitivity of recoil-beta tagging

    International Nuclear Information System (INIS)

    Henderson, J; Jenkins, D G; Davies, P J; Henry, T W; Joshi, P; Nichols, A J; Ruotsalainen, P; Scholey, C; Auranen, K; Grahn, T; Greenlees, P T; Herzáň, A; Jakobsson, U; Julin, R; Juutinen, S; Konki, J; Leino, M; Pakarinen, J; Lotay, G; Obertelli, A

    2013-01-01

    Tagging with β-particles at the focal plane of a recoil separator has been shown to be an effective technique for the study of exotic proton-rich nuclei. This article describes three new pieces of apparatus used to greatly improve the sensitivity of the recoil-beta tagging technique. These include a highly-pixelated double-sided silicon strip detector, a plastic phoswich detector for discriminating high-energy β-particles, and a charged-particle veto box. The performance of these new detectors is described and characterised, and the resulting improvements are discussed.

  19. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hans, M., E-mail: hans@mch.rwth-aachen.de; Baben, M. to; Music, D.; Ebenhöch, J.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Primetzhofer, D. [Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, S-75120 Uppsala (Sweden); Kurapov, D.; Arndt, M.; Rudigier, H. [Oerlikon Balzers Coating AG, Iramali 18, LI-9496 Balzers, Principality of Liechtenstein (Liechtenstein)

    2014-09-07

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies. Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.

  20. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    Hans, M.; Baben, M. to; Music, D.; Ebenhöch, J.; Schneider, J. M.; Primetzhofer, D.; Kurapov, D.; Arndt, M.; Rudigier, H.

    2014-01-01

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies. Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds

  1. Comparison of the Recoil of Conventional and Electromagnetic Cannon

    Directory of Open Access Journals (Sweden)

    Edward M. Schmidt

    2001-01-01

    Full Text Available The recoil from an electromagnetic (EM railgun is discussed and compared with that from conventional, propellant gas driven cannon. It is shown that, under similar launch conditions, the recoil of the EM gun is less than that of the powder gun; however, use of a muzzle brake on a powder gun can alter this relative behavior.

  2. Measurement of charge symmetry breaking in np elastic scattering at 350 MeV

    International Nuclear Information System (INIS)

    Abegg, R.; Berdoz, A.R.; Birchall, J.

    1994-10-01

    TRIUMF experiment 369, a measurement of charge symmetry breaking in np elastic scattering at 350 MeV, has completed data taking. Scattering asymmetries were measured with a polarized (unpolarized) neutron beam incident on an unpolarized (polarized) frozen spin target. Coincident scattered neutrons and recoil protons were detected by a mirror symmetric detection system in the center-of-mass angle range from 50 deg - 90 deg. A preliminary result for the difference of the zero-crossing angles, where analyzing powers cross zero, is Δθ cm = 0.445 deg ± 0.054 deg (stat.) ± 0.051 deg (syst.) based on fits over the angle range 53.4 deg ≤ θ cm ≤ 86.9 deg. The difference of the analyzing powers ΔA ≡ A n - A p , where the subscripts denote polarized nucleons, was deduced with dA/dθ cm = (-1.35 ± 0.05) x 10 -2 deg -1 to be [60 ± 7(stat.) ± 7(syst.) ± 2(syst.)] x 10 -4 . (author). 11 refs., 6 figs

  3. Quantitative analysis of the energy distributions of electrons backscattered elastically from polyethylene

    International Nuclear Information System (INIS)

    Tőkési, K.; Varga, D.; Berényi, Z.

    2015-01-01

    We present results of theoretical and experimental studies of the spectra of electrons backscattered elastically from polyethylene in the primary energy range between 1 and 5 keV. The experiments were performed using a high energy resolution electron spectroscopy. The theoretical interpretation is based on a Monte Carlo simulation of the recoil and Doppler effects. The separation between the carbon and hydrogen peak in the energy distributions is shown as a function of the primary electron energy. The simulations give many partial distributions separately, depending on the number of elastic scatterings (single, and multiple scatterings of different types). We show our results for intensity ratios, peak shifts and broadenings. We also present detailed analytical calculations for the main parameters of a single scattering. Finally, we present a qualitative comparison with the experimental data. We find our resulting energy distribution of elastically scattered electrons to be in good agreement with our measurements

  4. Determination of the extraction efficiency for {sup 233}U source α-recoil ions from the MLL buffer-gas stopping cell

    Energy Technology Data Exchange (ETDEWEB)

    Wense, Lars v.d.; Seiferle, Benedict; Thirolf, Peter G. [Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Laatiaoui, Mustapha [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Helmholtz Institut Mainz, Mainz (Germany)

    2015-03-01

    Following the α decay of {sup 233}U, {sup 229}Th recoil ions are shown to be extracted in a significant amount from the MLL buffer-gas stopping cell. The produced recoil ions and subsequent daughter nuclei are mass purified with the help of a customized quadrupole mass spectrometer. The combined extraction and mass purification efficiency for {sup 229}Th{sup 3+} is determined via MCP-based measurements and via the direct detection of the {sup 229}Th α decay. A large value of (10±2)% for the combined extraction and mass purification efficiency of {sup 229}Th{sup 3+} is obtained at a mass resolution of about 1u/e. In addition to {sup 229}Th, also other α-recoil ions of the {sup 233,} {sup 232}U decay chains are addressed. (orig.)

  5. Interpreting dark matter direct detection independently of the local velocity and density distribution

    International Nuclear Information System (INIS)

    Fox, Patrick J.; Kribs, Graham D.; Tait, Tim M. P.

    2011-01-01

    We demonstrate precisely what particle physics information can be extracted from a single direct detection observation of dark matter while making absolutely no assumptions about the local velocity distribution and local density of dark matter. Our central conclusions follow from a very simple observation: the velocity distribution of dark matter is positive definite, f(v)≥0. We demonstrate the utility of this result in several ways. First, we show a falling deconvoluted recoil spectrum (deconvoluted of the nuclear form factor), such as from ordinary elastic scattering, can be 'mocked up' by any mass of dark matter above a kinematic minimum. As an example, we show that dark matter much heavier than previously considered can explain the CoGeNT excess. Specifically, m χ Ge can be in just as good agreement as light dark matter, while m χ >m Ge depends on understanding the sensitivity of xenon to dark matter at very low recoil energies, E R < or approx. 6 keVnr. Second, we show that any rise in the deconvoluted recoil spectrum represents distinct particle physics information that cannot be faked by an arbitrary f(v). As examples of resulting nontrivial particle physics, we show that inelastic dark matter and dark matter with a form factor can both yield such a rise.

  6. A proton-recoil neutron spectrometer for time-dependent ion temperatures on the National Ignition Facility

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1995-01-01

    Ion temperatures from inertial confinement fusion targets are usually determined by measuring the Doppler broadening of the neutron spectrum using the time-of-flight method. Measurement systems are generally designed so that the contribution of the duration of neutron production (∼100 ps) to the width of the neutron signal is negligible. This precludes the possibility of time-dependent ion temperature. If, however, one could measure the neutron energy and arrival time at a detector independently, then time-dependent neutron spectra could be obtained, and ion temperature information deduced. A concept utilizing a proton-recoil neutron spectrometer has been developed in which recoil protons from a small plastic foil are measured. From the energy, arrival time, and recoil angle of the recoil proton, the birth time and energy of the incident neutron can be deduced. The sensitivity of the system is low, but the higher anticipated neutron yields from the proposed National Ignition Facility may make the technique feasible. Large scintillator arrays currently in use on the Nova facility for neutron spectral measurements consist of ∼1,000 channels and detect between 50 and 500 counts for typical time-integrated data. Time-dependent results would then require about an order of magnitude larger system. Key issues for making this system feasible will be keeping the cost per channel low while allowing adequately time (∼ 50 ps), energy (20 keV), and angular resolution (2 mrad) for each of the proton detectors

  7. Proton-recoil proportional counter tests at TREAT

    International Nuclear Information System (INIS)

    Fink, C.L.; Eichholz, J.J.; Burrows, D.R.; DeVolpi, A.

    1979-01-01

    A methane filled proton-recoil proportional counter will be used as a fission neutron detector in the fast-neutron hodoscope. To provide meaningful fuel-motion information the proportional counter should have: a linear response over a wide range of reactor powers background ratio (the number of high energy neutrons detected must be maximized relative to low energy neutrons, and gamma ray sensitivity must be kept small); and a detector efficiency for fission neutrons above 1 MeV of approximately 1%. In addition, it is desirable that the detector and the associated amplifier/discriminator be capable of operating at counting rates in excess of 500 kHz. This paper reports on tests that were conducted on several proportional counters at the TREAT reactor

  8. Commissioning of a proton-recoil spectrometer

    International Nuclear Information System (INIS)

    Nunes, J.C.; Faught, R.T.

    2000-01-01

    Measurements of neutron fluence spectra in fields from bare and heavy-water-moderated 252 Cf were made with a commercially available proton-recoil spectrometer (PRS) that covers 50 keV to 4.5 MeV. Data obtained from these measurements were compared with data from Bonner sphere spectrometry, Monte Carlo simulation and the open literature. Alterations to the input data file used in unfolding recoil-proton pulse-height distributions were made. Understanding the reasons for these changes and considering the effects of some of the results in an appreciation of the significance of parameters used in the unfolding. An uncertainty of 10% is estimated for values of fluence and ambient dose equivalent for the energy region covered by this PRS. (author)

  9. D-particle Recoil Space Times and "Glueball" Masses

    CERN Document Server

    Mavromatos, Nikolaos E; Mavromatos, Nick E.; Winstanley, Elizabeth

    2001-01-01

    We discuss the properties of matter in a D-dimensional anti-de-Sitter-type space time induced dynamically by the recoil of a very heavy D(irichlet)-particle defect embedded in it. The particular form of the recoil geometry, which from a world-sheet view point follows from logarithmic conformal field theory deformations of the pertinent sigma-models, results in the presence of both infrared and ultraviolet (spatial) cut-offs. These are crucial in ensuring the presence of mass gaps in scalar matter propagating in the D-particle recoil space time. The analogy of this problem with the Liouville-string approach to QCD, suggested earlier by John Ellis and one of the present authors, prompts us to identify the resulting scalar masses with those obtained in the supergravity approach based on the Maldacena's conjecture, but without the imposition of any supersymmetry in our case. Within reasonable numerical uncertainties, we observe that agreement is obtained between the two approaches for a particular value of the ra...

  10. Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment

    Science.gov (United States)

    Henderson, B. S.; Ice, L. D.; Khaneft, D.; O'Connor, C.; Russell, R.; Schmidt, A.; Bernauer, J. C.; Kohl, M.; Akopov, N.; Alarcon, R.; Ates, O.; Avetisyan, A.; Beck, R.; Belostotski, S.; Bessuille, J.; Brinker, F.; Calarco, J. R.; Carassiti, V.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; de Leo, R.; Diefenbach, J.; Donnelly, T. W.; Dow, K.; Elbakian, G.; Eversheim, P. D.; Frullani, S.; Funke, Ch.; Gavrilov, G.; Gläser, B.; Görrissen, N.; Hasell, D. K.; Hauschildt, J.; Hoffmeister, Ph.; Holler, Y.; Ihloff, E.; Izotov, A.; Kaiser, R.; Karyan, G.; Kelsey, J.; Kiselev, A.; Klassen, P.; Krivshich, A.; Lehmann, I.; Lenisa, P.; Lenz, D.; Lumsden, S.; Ma, Y.; Maas, F.; Marukyan, H.; Miklukho, O.; Milner, R. G.; Movsisyan, A.; Murray, M.; Naryshkin, Y.; Perez Benito, R.; Perrino, R.; Redwine, R. P.; Rodríguez Piñeiro, D.; Rosner, G.; Schneekloth, U.; Seitz, B.; Statera, M.; Thiel, A.; Vardanyan, H.; Veretennikov, D.; Vidal, C.; Winnebeck, A.; Yeganov, V.; Olympus Collaboration

    2017-03-01

    The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R2 γ , a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20 ° to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5 fb-1 was collected. In the extraction of R2 γ, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R2 γ, presented here for a wide range of virtual photon polarization 0.456 <ɛ <0.978 , are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  11. Detecting neutrons by forward recoil protons at the Energy & Transmutation facility: Detector development and calibration with 14.1-MeV neutrons

    Science.gov (United States)

    Afanasev, S.; Vishnevskiy, A.; Vishnevskiy, D.; Rogachev, A.; Tyutyunnikov, S.

    2017-05-01

    As part of the Energy & Transmutation project, we are developing a detector for neutrons with energies in the 10-100 MeV range emitted from the target irradiated by a charged-particle beam. The neutron is detected by measuring the time-of-flight and total kinetic energy of the forward-going recoil proton [1] knocked out at a small angle from a thin layer of plastic scintillator, which has to be selected against an intense background created by γ quanta, scattered neutrons, and charged particles. On the other hand, neutron energy has to be measured over the full range with no extra tuning of the detector operation regime. Initial measurements with a source of 14.1-MeV neutrons are reported.

  12. Elastic recoil atomic spectroscopy of light elements with sub-nanometer depth resolution; Elastische Rueckstossatomspektrometrie leichter Elemente mit Subnanometer-Tiefenaufloesung

    Energy Technology Data Exchange (ETDEWEB)

    Kosmata, Marcel

    2011-06-30

    In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two components. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a highresistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during

  13. Karakteristike trzanja elektromagnetskog topa / Recoil characteristics of an electromagnetic rail gun

    Directory of Open Access Journals (Sweden)

    Zoran B. Ristić

    2009-10-01

    Full Text Available U radu je razmatrano trzanje elektromagnetskog šinskog topa i upoređeno sa trzanjem konvencionalnog topa sa barutnim punjenjem. Zaključuje se da je kod elektromagnetskog topa trzanje manje nego kod topa sa barutnim punjenjem. Takođe, pokazano je da pri istim uslovima lansiranja upotreba gasne kočnice topa sa barutnim punjenjem može izmeniti karakteristike trzanja i više ih približiti ponašanju elektromagnetskog topa. / In this paper the electromagnetic rail gun recoil is discussed and compared with the recoil of a conventional, propellant gas driven gun. It is shown that, under similar launch conditions, the recoil of an electromagnetic gun is weaker than that of the powder-driven gun. The use of a muzzle brake on a powder-driven gun can alter its recoil characteristics and make its behavior closer to that of the electromagnetic rail gun.

  14. Inverted dipole feature in directional detection of exothermic dark matter

    International Nuclear Information System (INIS)

    Bozorgnia, Nassim; Gelmini, Graciela B.; Gondolo, Paolo

    2017-01-01

    Directional dark matter detection attempts to measure the direction of motion of nuclei recoiling after having interacted with dark matter particles in the halo of our Galaxy. Due to Earth's motion with respect to the Galaxy, the dark matter flux is concentrated around a preferential direction. An anisotropy in the recoil direction rate is expected as an unmistakable signature of dark matter. The average nuclear recoil direction is expected to coincide with the average direction of dark matter particles arriving to Earth. Here we point out that for a particular type of dark matter, inelastic exothermic dark matter, the mean recoil direction as well as a secondary feature, a ring of maximum recoil rate around the mean recoil direction, could instead be opposite to the average dark matter arrival direction. Thus, the detection of an average nuclear recoil direction opposite to the usually expected direction would constitute a spectacular experimental confirmation of this type of dark matter.

  15. Systematic investigation of background sources in neutron flux measurements with a proton-recoil silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Marini, P., E-mail: marini@cenbg.in2p3.fr [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); Mathieu, L. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); Acosta, L. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D.F. 01000 (Mexico); Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France)

    2017-01-01

    Proton-recoil detectors (PRDs), based on the well known standard H(n,p) elastic scattering cross section, are the preferred instruments to perform precise quasi-absolute neutron flux measurements above 1 MeV. The limitations of using a single silicon detector as PRD at a continuous neutron beam facility are investigated, with the aim of extending such measurements to neutron energies below 1 MeV. This requires a systematic investigation of the background sources affecting the neutron flux measurement. Experiments have been carried out at the AIFIRA facility to identify these sources. A study on the role of the silicon detector thickness on the background is presented and an energy limit on the use of a single silicon detector to achieve a neutron flux precision better than 1% is given.

  16. Sonic Rarefaction Wave Low Recoil Gun

    National Research Council Canada - National Science Library

    Kathe, E

    2002-01-01

    A principal challenge faced by the U.S. Army TACOM-ARDEC Benet Laboratories in the design of armaments for lightweight future fighting vehicles with lethality overmatch is mitigating the deleterious effects of large caliber cannon recoil...

  17. Gravitational-wave memory revisited: Memory from the merger and recoil of binary black holes

    International Nuclear Information System (INIS)

    Favata, Marc

    2009-01-01

    Gravitational-wave memory refers to the permanent displacement of the test masses in an idealized (freely-falling) gravitational-wave interferometer. Inspiraling binaries produce a particularly interesting form of memory-the Christodoulou memory. Although it originates from nonlinear interactions at 2.5 post-Newtonian order, the Christodoulou memory affects the gravitational-wave amplitude at leading (Newtonian) order. Previous calculations have computed this non-oscillatory amplitude correction during the inspiral phase of binary coalescence. Using an 'effective-one-body' description calibrated with the results of numerical relativity simulations, the evolution of the memory during the inspiral, merger, and ringdown phases, as well as the memory's final saturation value, are calculated. Using this model for the memory, the prospects for its detection are examined, particularly for supermassive black hole binary coalescences that LISA will detect with high signal-to-noise ratios. Coalescing binary black holes also experience center-of-mass recoil due to the anisotropic emission of gravitational radiation. These recoils can manifest themselves in the gravitational-wave signal in the form of a 'linear' memory and a Doppler shift of the quasi-normal-mode frequencies. The prospects for observing these effects are also discussed.

  18. Recoil implantation of boron into silicon by high energy silicon ions

    Science.gov (United States)

    Shao, L.; Lu, X. M.; Wang, X. M.; Rusakova, I.; Mount, G.; Zhang, L. H.; Liu, J. R.; Chu, Wei-Kan

    2001-07-01

    A recoil implantation technique for shallow junction formation was investigated. After e-gun deposition of a B layer onto Si, 10, 50, or 500 keV Si ion beams were used to introduce surface deposited B atoms into Si by knock-on. It has been shown that recoil implantation with high energy incident ions like 500 keV produces a shallower B profile than lower energy implantation such as 10 keV and 50 keV. This is due to the fact that recoil probability at a given angle is a strong function of the energy of the primary projectile. Boron diffusion was showed to be suppressed in high energy recoil implantation and such suppression became more obvious at higher Si doses. It was suggested that vacancy rich region due to defect imbalance plays the role to suppress B diffusion. Sub-100 nm junction can be formed by this technique with the advantage of high throughput of high energy implanters.

  19. Penetration of HEPA filters by alpha recoil aerosols

    International Nuclear Information System (INIS)

    McDowell, W.J.; Seeley, F.G.; Ryan, M.T.

    1976-01-01

    The self-scattering of alpha-active substances has long been recognized and is attributed to expulsion of aggregates of atoms from the surface of alpha-active materials by alpha emission recoil energy, and perhaps to further propulsion of these aggregates by subsequent alpha recoils. Workers at the University of Lowell recently predicted that this phenomenon might affect the retention of alpha-active particulate matter by HEPA filters, and found support in experiments with 212 Pb. Tests at Oak Ridge National Laboratory have confirmed that alpha-emitting particulate matter does penetrate high-efficiency filter media, such as that used in HEPA filters, much more effectively than do non-radioactive or beta-gamma active aerosols. Filter retention efficiencies drastically lower than the 99.9 percent quoted for ordinary particulate matter were observed with 212 Pb, 253 Es, and 238 Pu sources, indicating that the phenomenon is common to all of these and probably to all alpha-emitting materials of appropriate half-life. Results with controlled air-flow through filters in series are consistent with the picture of small particles dislodged from the ''massive'' surface of an alpha-active material, and then repeatedly dislodged from positions on the filter fibers by subsequent alpha recoils. The process shows only a small dependence on the physical form of the source material. Oxide dust, nitrate salt, and plated metal all seem to generate the recoil particles effectively. The amount penetrating a series of filters depends on the total amount of activity in the source material, its specific activity, and the length of time of air flow

  20. Recoil transporter devices

    International Nuclear Information System (INIS)

    Madhavan, N.

    2005-01-01

    The study of sparsely produced nuclear reaction products in the direction of intense primary beam is a challenging task, the pursuit of which has given rise to the advent or several types of selective devices. These range from a simple parallel plate electrostatic deflector to state-of-the-art electromagnetic separators. There is no single device which can satisfy all the requirements of an ideal recoil transporter, simultaneously. An overview of such devices and their building blocks is presented, which may help in the proper choice of the device as per the experimental requirements. (author)

  1. Design of magnetic analysis system for magnetic proton recoil spectrometer

    International Nuclear Information System (INIS)

    Qi Jianmin; Jiang Shilun; Zhou Lin; Peng Taiping

    2010-01-01

    Magnetic proton recoil (MPR) spectrometer is a novel diagnostic instrument with high performance for measurements of the neutron spectra from inertial confinement fusion (ICF) experiments and high power fusion devices. The design of the magnetic analysis system, which is a key part of the compact MPR-type spectrometer, has been completed through two-dimensional beam transport simulations and three-dimensional particle transport simulation. The analysis of the system's parameters and performances was performed, as well as system designs based on preferential principles of energy resolution, detection efficiency, and count rate, respectively. The results indicate that the magnetic analysis system can achieve a detection efficiency of 10 -5 ∼ 10 -4 level at the resolution range of 1.5% to 3.0% and fulfill the design goals of the compact MPR spectrometer. (authors)

  2. Investigation of fractional momentum transfer: measurement of forward recoil ranges in 16O + natTm collisions

    International Nuclear Information System (INIS)

    Singh, Pushpendra P.; Unnati; Sharma, Manoj Kumar; Singh, B.P.; Prasad, R.; Rakesh Kumar; Golda, K.S.; Bhardwaj, H.D.

    2006-01-01

    For better understanding of complete fusion and incomplete fusion in heavy ion reactions a programme of precise measurements of excitation functions, recoil range distribution and angular distributions of recoils has been undertaken. In the present contribution the recoil range distribution for the residues have been measured at ≅ 6 MeV/nucleon, using recoil-catcher technique followed by off-line gamma-spectroscopy

  3. Measurements of recoil and projectile momentum distributions for 19-MeV F9+ + Ne collisions

    International Nuclear Information System (INIS)

    Frohne, V.; Cheng, S.; Ali, R.M.; Raphaelian, M.L.; Cocke, C.L.; Olson, R.

    1996-01-01

    The collision system of 19-MeV F 9+ on Ne has been studied using recoil and projectile momentum spectroscopy. For each event, identified by final recoil and projectile charge state, the three-dimensional momentum vector of the recoil ion and the transverse momentum vector of the projectile ion were measured. The transverse momenta of the recoil and projectile ions were found to be equal in magnitude and opposite in direction, indicating that the transverse momentum exchange is dominated by interactions between the two ion cores. The transverse momentum distributions are well described by nCTMC calculations. The longitudinal momentum distributions of the recoil ions show that a large fraction of the momentum transferred to the projectile is carried off by continuum electrons. The recoil ions are scattered slightly backward, in partial agreement with predictions of nCTMC calculations. copyright 1996 The American Physical Society

  4. Exclusive ρ0 production measured with the HERMES recoil detector

    International Nuclear Information System (INIS)

    Perez Benito, Roberto Francisco

    2010-12-01

    The Hermes experiment (HERa MEasurement of Spin) at Desy was designed to study the spin structure of the nucleon in semi-inclusive deep inelastic scattering. The internal structure of the nucleon has been investigated in detail and it has been measured that the intrinsic quark spin contribution is only about 30% of the total spin of the nucleon. A formalism to describe the internal structure of the nucleon called Generalised Patron Distributions (GPDs) was developed recently to understand the fundamental structure of the nucleon. These GPDs can be accessed by the measurement of hard exclusive reactions and hard exclusive processes that can be understood in terms of GPDs. The accumulated Hermes data offer access to GPDs in different combinations of beam charge and beam and target helicity asymmetries. To improve exclusivity and to enhance the resolution of kinematic variables to study hard exclusive processes which provide access to the GPDs and hence to the orbital angular momentum of the quarks, in January 2006 a Recoil Detector was installed that surrounded the internal gas target of the Hermes experiment. The Hermes Recoil Detector consisted of three components: a silicon strip detector inside the vacuum, a scintillating fiber tracker and the photon detector. All three detectors were located inside a solenoidal magnet which provided a 1T longitudinal magnetic field. The Recoil Detector improves the selection of exclusive events by a direct measurement of the momentum and track position of the recoiling particle as well as by rejecting non-exclusive background. This detector was an ideal novel tool to combine energy and position measurements for charged particles in a momentum range of 0.1 to 1.4 GeV/c. The Recoil Detector was fully commissioned and operating. Data was taken continuously until the final Hera shutdown in July of 2007. In this thesis we report on the performance of the Recoil Detector and more specifically about the scintillating fiber tracker

  5. Installation of high-resolution ERDA in UTTAC at the University of Tsukuba: Determination of the energy resolution and the detection limit for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sekiba, D., E-mail: sekiba@tac.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573 (Japan); University of Tsukuba, Tandem Accelerator Complex (UTTAC), Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577 (Japan); Chito, K.; Harayama, I. [Institute of Applied Physics, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573 (Japan); Watahiki, Y.; Ishii, S. [University of Tsukuba, Tandem Accelerator Complex (UTTAC), Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577 (Japan); Ozeki, K. [Department of Mechanical Engineering, Ibaraki University, Nakanarusawa 4-12-1, Hitachi, Ibaraki 316-8511 (Japan)

    2017-06-15

    A newly developed high-resolution elastic recoil detection analysis (HERDA) system installed at the 1 MV Tandetron in UTTAC at the University of Tsukuba is introduced. The effective solid angle of detector, energy resolution and detection limit for hydrogen are, for the first time, determined quantitatively by the measurements on an a-C:H (and D) film deposited on a Si substrate. In the case of a 500 keV {sup 16}O{sup +} as the incident beam, an energy resolution of ∼0.45 keV and a detection limit of ∼3.8 × 10{sup 20} atoms/cm{sup 3} (∼0.18 at.%) with a data acquisition time of ∼310 s are derived.

  6. On recoil energy dependent void swelling in pure copper: Theoretical treatment

    International Nuclear Information System (INIS)

    Golubov, S.I.; Singh, B.N.; Trinkaus, H.

    2000-06-01

    Over the years, an enormous amount of experimental results have been reported on damage accumulation (e.g. void swelling) in metals and alloys irradiated under vastly different recoil energy conditions. Unfortunately, however, very little is known either experimentally or theoretically about the effect of recoil energy on damage accumulation. Recently, dedicated irradiation experiments using 2.5 MeV electrons, 3.0 MeV protons and fission neutrons have been carried out to determine the effect of recoil energy on the damage accumulation behaviour in pure copper and the results have been reported in Part I of this paper (Singh, Eldrup, Horsewell, Ehrhart and Dworschak 2000). The present paper attempts to provide a theoretical framework within which the effect of recoil energy on damage accumulation behaviour can be understood. The damage accumulation under Frenkel pair production (e.g. 2.5 MeV electron) has been treated in terms of the standard rate theory (SRT) model whereas the evolution of the defect microstructure under cascade damage conditions (e.g. 3.0 MeV protons and fission neutrons) has been calculated within the framework of the production bias model (PBM). Theoretical results, in agreement with experimental results, show that the damage accumulation behaviour is very sensitive to recoil energy and under cascade damage conditions can be treated only within the framework of the PBM. The intracascade clustering of self-interstitial atoms (SIAs) and the properties of SIA clusters such as one-dimensional diffusional transport and thermal stability are found to be the main reasons for the recoil energy dependent vacancy supersaturation. The vacancy supersaturation is the main driving force for the void nucleation and void swelling. In the case of Frenkel pair production, the experimental results are found to be consistent with the SRT model with a dislocation bias value of 2 %. (au)

  7. A G/NARRLI Effort. Measuring the Ionization Yield of Low-Energy Nuclear Recoils in Liquid Argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Tenzing Henry Yatish [Univ. of California, Berkeley, CA (United States)

    2014-01-01

    Liquid argon has long been used for particle detection due to its attractive drift properties, ample abundance, and reasonable density. The response of liquid argon to lowenergy O(102 -1044 eV) interactions is, however, largely unexplored. Weakly interacting massive particles such as neutrinos and hypothetical dark-matter particles (WIMPs) are predicted to coherently scatter on atomic nuclei, leaving only an isolated low-energy nuclear recoil as evidence. The response of liquid argon to low-energy nuclear recoils must be studied to determine the sensitivity of liquid argon based detectors to these unobserved interactions. Detectors sensitive to coherent neutrino-nucleus scattering may be used to monitor nuclear reactors from a distance, to detect neutrinos from supernova, and to test the predicted behavior of neutrinos. Additionally, direct detection of hypothetical weakly interacting dark matter would be a large step toward understanding the substance that accounts for nearly 27% of the universe. In this dissertation I discuss a small dual-phase (liquid-gas) argon proportional scintillation counter built to study the low-energy regime and several novel calibration and characterization techniques developed to study the response of liquid argon to low-energy O(102 -104 eV) interactions.

  8. Cold-target recoil-ion momentum-spectroscopy: First results and future perspectives of a novel high resolution technique for the investigation of collision induced many-particle reactions

    International Nuclear Information System (INIS)

    Ullrich, J.; Doerner, R.; Mergel, V.; Jagutzki, O.; Spielberger, L.; Schmidt-Boecking, H.

    1994-09-01

    In order to investigate many-particle reaction dynamics in atomic collisions a novel high-resolution technique has been developed, which determines the momentum and the charge state of the slowly recoiling target ions. Using a very cold, thin, and localized supersonic gas jet target a momentum resolution of better than 0.05 a.u. is obtained by measuring the recoil-ion time-of-flight and the recoil-ion trajectory. Because of the very high detection efficiency of nearly 100% this technique is well suited for many-particle coincidence measurements in ionizing collisions. First experimental results for fast ion and electron impact on helium targets are presented. Future applications in atomic collision physics and related areas are discussed. (orig.)

  9. Synchrotron-radiation experiments with recoil ions

    International Nuclear Information System (INIS)

    Levin, J.C.

    1989-01-01

    Studies of atoms, ions and molecules with synchrotron radiation have generally focused on measurements of properties of the electrons ejected during, or after, the photoionization process. Much can also be learned, however, about the atomic or molecular relaxation process by studies of the residual ions or molecular fragments following inner-shell photoionization. Measurements are reported of mean kinetic energies of highly charged argon, krypton, and xenon recoil ions produced by vacancy cascades following inner-shell photoionization using white and monochromatic synchrotron x radiation. Energies are much lower than for the same charge-state ions produced by charged-particle impact. The results may be applicable to design of future angle-resolved ion-atom collision experiments. Photoion charge distributions are presented and compared with other measurements and calculations. Related experiments with synchrotron-radiation produced recoil ion, including photoionization of stored ions and measurement of shakeoff in near-threshold excitation, are briefly discussed. 24 refs., 6 figs., 1 tab

  10. Molecular frame and recoil frame angular distributions in dissociative photoionization of small molecules

    International Nuclear Information System (INIS)

    Lucchese, R R; Carey, R; Elkharrat, C; Houver, J C; Dowek, D

    2008-01-01

    Photoelectron angular distributions in the dipole approximation can be written with respect to several different reference frames. A brief review of the molecular frame and recoil frame are given. Experimentally, one approach for obtaining such angular distributions is through angle-resolved coincidence measurements of dissociative ionization. If the system dissociates into two heavy fragments, then the recoil frame angular distribution can be measured. Computed molecular frame and recoil frame photoelectron angular distributions are compared to experimental data for the Cl 2p ionization of CH 3 Cl.

  11. Determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method in combination with magnetic spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Doncel, M. [Universidad de Salamanca, Laboratorio de Radiaciones Ionizantes, Salamanca (Spain); Royal Institute of Technology, Department of Physics, Stockholm (Sweden); University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Gadea, A. [CSIC-University of Valencia, Istituto de Fisica Corpuscular, Valencia (Spain); Valiente-Dobon, J.J. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); Quintana, B. [Universidad de Salamanca, Laboratorio de Radiaciones Ionizantes, Salamanca (Spain); Modamio, V. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); University of Oslo, Oslo (Norway); Mengoni, D. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Moeller, O.; Pietralla, N. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Dewald, A. [Institut fuer Kernphysik, Universitaet Koeln (Germany)

    2017-10-15

    The current work presents the determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method, in combination with spectrometers for ion identification, normalizing the intensity of the peaks by the ions detected in the spectrometer as a valid technique that produces results comparable to the ones obtained by the conventional shifted-to-unshifted peak ratio method. The technique has been validated using data measured with the γ-ray array AGATA, the PRISMA spectrometer and the Cologne plunger setup. In this paper a test performed with the AGATA-PRISMA setup at LNL and the advantages of this new approach with respect to the conventional Recoil Distance Doppler Shift Method are discussed. (orig.)

  12. Vascular elastic photoacoustic tomography in humans

    Science.gov (United States)

    Hai, Pengfei; Zhou, Yong; Liang, Jinyang; Li, Chiye; Wang, Lihong V.

    2016-03-01

    Quantification of vascular elasticity can help detect thrombosis and prevent life-threatening conditions such as acute myocardial infarction or stroke. Here, we propose vascular elastic photoacoustic tomography (VE-PAT) to measure vascular elasticity in humans. VE-PAT was developed by incorporating a linear-array-based photoacoustic computed tomography system with a customized compression stage. By measuring the deformation of blood vessels under uniaxial loading, VE-PAT was able to quantify the vascular compliance. We first demonstrated the feasibility of VE-PAT in blood vessel phantoms. In large vessel phantoms, VE-PAT detected a decrease in vascular compliance due to simulated thrombosis, which was validated by a standard compression test. In small blood vessel phantoms embedded 3 mm deep in gelatin, VE-PAT detected elasticity changes at depths that are difficult to image using other elasticity imaging techniques. We then applied VE-PAT to assess vascular compliance in a human subject and detected a decrease in vascular compliance when an occlusion occurred downstream from the measurement point, demonstrating the potential of VE-PAT in clinical applications such as detection of deep venous thrombosis.

  13. The XMM-Newton spectrum of a candidate recoiling supermassive black hole: An elusive inverted P-Cygni profile

    Energy Technology Data Exchange (ETDEWEB)

    Lanzuisi, G.; Civano, F.; Marchesi, S.; Hickox, R. [Department of Physics and Astronomy, Dartmouth College, Wilder Laboratory, Hanover, NH 03855 (United States); Comastri, A.; Cappelluti, N. [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Costantini, E. [SRON, Netherlands Institute for Space Research, Sorbonnelaan, 2, 3584 CA Utrecht (Netherlands); Elvis, M.; Fruscione, A. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Mainieri, V. [European Southern Observatory, Karl-Schwarschild-Strasse 2, D-85748 Garching bei Munchen (Germany); Jahnke, K. [Max Planck Institute for Astronomy, Konigstuhl 17, D-69117 Heidelberg (Germany); Komossa, S. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Piconcelli, E. [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (Italy); Vignali, C.; Brusa, M. [Dipartimento di Astronomia, Universitá degli Studi di Bologna, via Ranzani 1, I-40127 Bologna (Italy)

    2013-11-20

    We present a detailed spectral analysis of new XMM-Newton data of the source CXOC J100043.1+020637, also known as CID-42, detected in the COSMOS survey at z = 0.359. Previous works suggested that CID-42 is a candidate recoiling supermassive black hole (SMBH) showing also an inverted P-Cygni profile in the X-ray spectra at ∼6 keV (rest) with an iron emission line plus a redshifted absorption line (detected at 3σ in previous XMM-Newton and Chandra observations). Detailed analysis of the absorption line suggested the presence of ionized material flowing into the black hole at high velocity. In the new long XMM-Newton observation, while the overall spectral shape remains constant, the continuum 2-10 keV flux decrease of ∼20% with respect to previous observation and the absorption line is undetected. The upper limit on the intensity of the absorption line is EW < 162 eV. Extensive Monte Carlo simulations show that the nondetection of the line is solely due to variation in the properties of the inflowing material, in agreement with the transient nature of these features, and that the intensity of the line is lower than the previously measured with a probability of 98.8%. In the scenario of CID-42 as a recoiling SMBH, the absorption line can be interpreted as being due to an inflow of gas with variable density that is located in the proximity of the SMBH and recoiling with it. New monitoring observations will be requested to further characterize this line.

  14. Recoiling Black Holes: Electromagnetic Signatures, Candidates, and Astrophysical Implications

    Directory of Open Access Journals (Sweden)

    S. Komossa

    2012-01-01

    Full Text Available Supermassive black holes (SMBHs may not always reside right at the centers of their host galaxies. This is a prediction of numerical relativity simulations, which imply that the newly formed single SMBH, after binary coalescence in a galaxy merger, can receive kick velocities up to several 1000 km/s due to anisotropic emission of gravitational waves. Long-lived oscillations of the SMBHs in galaxy cores, and in rare cases even SMBH ejections from their host galaxies, are the consequence. Observationally, accreting recoiling SMBHs would appear as quasars spatially and/or kinematically offset from their host galaxies. The presence of the “kicks” has a wide range of astrophysical implications which only now are beginning to be explored, including consequences for black hole and galaxy assembly at the epoch of structure formation, black hole feeding, and unified models of active galactic nuclei (AGN. Here, we review the observational signatures of recoiling SMBHs and the properties of the first candidates which have emerged, including follow-up studies of the candidate recoiling SMBH of SDSSJ092712.65+294344.0.

  15. Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer

    International Nuclear Information System (INIS)

    David Abbott; Abdellah Ahmidouch; Heinz Anklin; Francois Arvieux; Jacques Ball; Beedoe, S.; Elizabeth Beise; Louis Bimbot; Werner Boeglin; Herbert Breuer; Roger Carlini; Nicholas Chant; Samuel Danagoulian; Dow, K.; Jean-Eric Ducret; James Dunne; Lars Ewell; Laurent Eyraud; Christophe Furget; Michel Garcon; Ronald Gilman; Charles Glashausser; Paul Gueye; Kenneth Gustafsson; Kawtar Hafidi; Adrian Honegger; Juerg Jourdan; Serge Kox; Gerfried Kumbartzki; Lu, L.; Allison Lung; David Mack; Pete Markowitz; Justin McIntyre; David Meekins; Fernand Merchez; Joseph Mitchell; Mohring, R.; Sekazi Mtingwa; Hamlet Mkrtchyan; David Pitz; Liming Qin; Ronald Ransome; Jean-Sebastien Real; Philip Roos; Paul Rutt; Reyad Sawafta; Samuel Stepanyan; Raphael Tieulent; Egle Tomasi-Gustafsson; William Turchinetz; Kelley Vansyoc; Jochen Volmer; Eric Voutier; William Vulcan; Claude Williamson; Stephen Wood; Chen Yan; Jie Zhao; Wenxia Zhao

    2000-01-01

    Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c) 2 . The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q 2 the deuteron charge form factors G C and G Q . They are in good agreement with relativistic calculations and disagree with pQCD predictions

  16. Plasma dark matter direct detection

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, J.D.; Foot, R., E-mail: j.clarke5@pgrad.unimelb.edu.au, E-mail: rfoot@unimelb.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, Victoria 3010 Australia (Australia)

    2016-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken U(1)' gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed U(1)' neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless 'dark photon' (the U(1)' gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA annual modulation signal is due primarily to electron recoils (or even a combination of electron recoils and nuclear recoils). The importance of diurnal modulation (in addition to annual modulation) as a means of probing this kind of dark matter is also emphasised.

  17. Conception of a New Recoil Proton Telescope for Real-Time Neutron Spectrometry in Proton-Therapy

    Science.gov (United States)

    Combe, Rodolphe; Arbor, Nicolas; el Bitar, Ziad; Higueret, Stéphane; Husson, Daniel

    2018-01-01

    Neutrons are the main type of secondary particles emitted in proton-therapy. Because of the risk of secondary cancer and other late occurring effects, the neutron dose should be included in the out-of-field dose calculations. A neutron spectrometer has to be used to take into account the energy dependence of the neutron radiological weighting factor. Due to its high dependence on various parameters of the irradiation (beam, accelerator, patient), the neutron spectrum should be measured independently for each treatment. The current reference method for the measurement of the neutron energy, the Bonner Sphere System, consists of several homogeneous polyethylene spheres with increasing diameters equipped with a proportional counter. It provides a highresolution reconstruction of the neutron spectrum but requires a time-consuming work of signal deconvolution. New neutron spectrometers are being developed, but the main experimental limitation remains the high neutron flux in proton therapy treatment rooms. A new model of a real-time neutron spectrometer, based on a Recoil Proton Telescope technology, has been developed at the IPHC. It enables a real-time high-rate reconstruction of the neutron spectrum from the measurement of the recoil proton trajectory and energy. A new fast-readout microelectronic integrated sensor, called FastPixN, has been developed for this specific purpose. A first prototype, able to detect neutrons between 5 and 20 MeV, has already been validated for metrology with the AMANDE facility at Cadarache. The geometry of the new Recoil Proton Telescope has been optimized via extensive Geant4 Monte Carlo simulations. Uncertainty sources have been carefully studied in order to improve simultaneously efficiency and energy resolution, and solutions have been found to suppress the various expected backgrounds. We are currently upgrading the prototype for secondary neutron detection in proton therapy applications.

  18. Elastic neutron-proton differential cross section at 647 MeV

    International Nuclear Information System (INIS)

    Evans, M.L.

    1979-04-01

    The differential cross section for n-p elastic scattering in the angular range 51 0 was measured with high statistical accuracy using the 647 MeV monoenergetic neutron beam of the Los Alamos Meson Physics Facility. A proton recoil magnetic spectrometer was used for momentum analysis of the charge exchange protons from the reaction n+p→p+n. Absolute normalization of the cross section was established to within 7% using existing cross section data for the reaction p+p→π + +d. The results differ significantly from previous Dubna and PPA cross sections but agree well with recent Saclay data except at extreme backward angles. 41 references

  19. Multivariate techniques of analysis for ToF-E recoil spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J.; Bouanani, M.E.; Persson, L.; Hult, M.; Jonsson, P.; Johnston, P.N. [Lund Institute of Technology, Solvegatan, (Sweden), Department of Nuclear Physics; Andersson, M. [Uppsala Univ. (Sweden). Dept. of Organic Chemistry; Ostling, M.; Zaring, C. [Royal institute of Technology, Electrum, Kista, (Sweden), Department of Electronics; Johnston, P.N.; Bubb, I.F.; Walker, B.R.; Stannard, W.B. [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs.

  20. Multivariate techniques of analysis for ToF-E recoil spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H J; Bouanani, M E; Persson, L; Hult, M; Jonsson, P; Johnston, P N [Lund Institute of Technology, Solvegatan, (Sweden), Department of Nuclear Physics; Andersson, M [Uppsala Univ. (Sweden). Dept. of Organic Chemistry; Ostling, M; Zaring, C [Royal institute of Technology, Electrum, Kista, (Sweden), Department of Electronics; Johnston, P N; Bubb, I F; Walker, B R; Stannard, W B [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs.

  1. Gravitational recoil from binary black hole mergers: The close-limit approximation

    International Nuclear Information System (INIS)

    Sopuerta, Carlos F.; Yunes, Nicolas; Laguna, Pablo

    2006-01-01

    The coalescence of a binary black hole system is one of the main sources of gravitational waves that present and future detectors will study. Apart from the energy and angular momentum that these waves carry, for unequal-mass binaries there is also a net flux of linear momentum that implies a recoil velocity of the resulting final black hole in the opposite direction. Due to the relevance of this phenomenon in astrophysics, in particular, for galaxy merger scenarios, there have been several attempts to estimate the magnitude of this velocity. Since the main contribution to the recoil comes from the last orbit and plunge, an approximation valid at the last stage of coalescence is well motivated for this type of calculation. In this paper, we present a computation of the recoil velocity based on the close-limit approximation scheme, which gives excellent results for head-on and grazing collisions of black holes when compared to full numerical relativistic calculations. We obtain a maximum recoil velocity of ∼57 km/s for a symmetric mass ratio η=M 1 M 2 /(M 1 +M 2 ) 2 ∼0.19 and an initial proper separation of 4M, where M is the total Arnowitt-Deser-Misner (ADM) mass of the system. This separation is the maximum at which the close-limit approximation is expected to provide accurate results. Therefore, it cannot account for the contributions due to inspiral and initial merger. If we supplement this estimate with post-Newtonian (PN) calculations up to the innermost stable circular orbit, we obtain a lower bound for the recoil velocity, with a maximum around 80 km/s. This is a lower bound because it neglects the initial merger phase. We can however obtain a rough estimate by using PN methods or the close-limit approximation. Since both methods are known to overestimate the amount of radiation, we obtain in this way an upper bound for the recoil with maxima in the range of 214-240 km/s. We also provide nonlinear fits to these estimated upper and lower bounds. These

  2. Exclusive {rho}{sup 0} production measured with the HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Perez Benito, Roberto Francisco

    2010-12-15

    The Hermes experiment (HERa MEasurement of Spin) at Desy was designed to study the spin structure of the nucleon in semi-inclusive deep inelastic scattering. The internal structure of the nucleon has been investigated in detail and it has been measured that the intrinsic quark spin contribution is only about 30% of the total spin of the nucleon. A formalism to describe the internal structure of the nucleon called Generalised Patron Distributions (GPDs) was developed recently to understand the fundamental structure of the nucleon. These GPDs can be accessed by the measurement of hard exclusive reactions and hard exclusive processes that can be understood in terms of GPDs. The accumulated Hermes data offer access to GPDs in different combinations of beam charge and beam and target helicity asymmetries. To improve exclusivity and to enhance the resolution of kinematic variables to study hard exclusive processes which provide access to the GPDs and hence to the orbital angular momentum of the quarks, in January 2006 a Recoil Detector was installed that surrounded the internal gas target of the Hermes experiment. The Hermes Recoil Detector consisted of three components: a silicon strip detector inside the vacuum, a scintillating fiber tracker and the photon detector. All three detectors were located inside a solenoidal magnet which provided a 1T longitudinal magnetic field. The Recoil Detector improves the selection of exclusive events by a direct measurement of the momentum and track position of the recoiling particle as well as by rejecting non-exclusive background. This detector was an ideal novel tool to combine energy and position measurements for charged particles in a momentum range of 0.1 to 1.4 GeV/c. The Recoil Detector was fully commissioned and operating. Data was taken continuously until the final Hera shutdown in July of 2007. In this thesis we report on the performance of the Recoil Detector and more specifically about the scintillating fiber tracker

  3. Remote recoil: a new wave mean interaction effect

    Science.gov (United States)

    Bühler, Oliver; McIntyre, Michael E.

    2003-10-01

    We present a theoretical study of a fundamentally new wave mean or wave vortex interaction effect able to force persistent, cumulative change in mean flows in the absence of wave breaking or other kinds of wave dissipation. It is associated with the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows. The effect is studied in detail in the simplest relevant model, the two-dimensional compressible flow equations with a generic polytropic equation of state. This includes the usual shallow-water equations as a special case. The refraction of a narrow, slowly varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a single weak (low Froude or Mach number) vortex is studied in detail. It is shown that, concomitant with the changes in the waves' pseudomomentum due to the refraction, there is an equal and opposite recoil force that is felt, in effect, by the vortex core. This effective force is called a ‘remote recoil’ to stress that there is no need for the vortex core and wavetrain to overlap in physical space. There is an accompanying ‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The remote-recoil effects are studied perturbatively using the wave amplitude and vortex weakness as small parameters. The nature of the remote recoil is demonstrated in various set-ups with wavetrains of finite or infinite length. The effective recoil force {bm R}_V on the vortex core is given by an expression resembling the classical Magnus force felt by moving cylinders with circulation. In the case of wavetrains of infinite length, an explicit formula for the scattering angle theta_* of waves passing a vortex at a distance is derived correct to second order in Froude or Mach number. To this order {bm R}_V {~} theta_*. The formula is cross-checked against numerical integrations of the ray-tracing equations. This work is part of an ongoing study of internal-gravity-wave dynamics in the

  4. Heavy ion recoil spectrometry of SixGe1-x thin films

    International Nuclear Information System (INIS)

    Walker, S.R.; Johnston, P.N.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Hult, M.; Whitlow, H.J.; Zaring, C.; Oestling, M.

    1993-01-01

    Mass and energy dispersive recoil spectrometry employing 77 MeV 127 I ions from ANTARES (FN Tandem) facility at Lucas Heights has been used to examine the isotopic composition of samples of Si x Ge 1-x grown at the Australian National University by Electron Beam Evaporation (EBE). The recoiling target nuclei were analysed by a Time Of Flight and Energy (TOF-E) detector telescope composed of two timing pickoff detectors and a surface barrier (energy) detector. From the time of flight and energy, the ion mass can be determined and individual depth distributions for each element can be obtained. Recoil spectrometry has shown the presence of oxygen in the Si x Ge 1-x layer and has enabled the separate determination of energy spectra for individual elements. 9 refs., 3 figs

  5. Calibration of a compact magnetic proton recoil neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfu, E-mail: zhang_jianfu@163.com [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Ouyang, Xiaoping; Zhang, Xianpeng [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Ruan, Jinlu [Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhang, Guoguang [Applied Institute of Nuclear Technology, China Institute of Atomic Energy, Beijing 102413 (China); Zhang, Xiaodong [Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Qiu, Suizheng, E-mail: szqiu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Liang; Liu, Jinliang; Song, Jiwen; Liu, Linyue; Yang, Shaohua [Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-04-21

    Magnetic proton recoil (MPR) neutron spectrometer is considered as a powerful instrument to measure deuterium–tritium (DT) neutron spectrum, as it is currently used in inertial confinement fusion facilities and large Tokamak devices. The energy resolution (ER) and neutron detection efficiency (NDE) are the two most important parameters to characterize a neutron spectrometer. In this work, the ER calibration for the MPR spectrometer was performed by using the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), and the NDE calibration was performed by using the neutron generator at CIAE. The specific calibration techniques used in this work and the associated accuracies were discussed in details in this paper. The calibration results were presented along with Monte Carlo simulation results.

  6. Elastic and charge-exchange scattering of pions from 3He and 3H

    International Nuclear Information System (INIS)

    Gibson, B.F.; Hess, A.T.

    1976-04-01

    We have examined (1) the elastic scattering of pions from the isodoublet 3 He and 3 H and (2) the single charge-exchange reaction 3 H(π + ,π 0 ) 3 He using a formalism which incorporates the π-N multiple scattering to all orders. Emphasis is placed on numerical results which illustrate those features of the differential cross sections that are expected to be of interest to the experimentalist. Realistic nuclear densities corresponding to the form factors of elastic electron scattering were used. Charge-exchange cross sections are presented in terms of angular distributions for both the π 0 and the recoil nucleus. In elastic scattering, Coulomb-nuclear interference effects are significant at incident pion kinetic energies of less than 100 MeV; form factor effects are apparent at large momentum transfer. Comparison of data and theory for π + - 3 He with that for π - - 3 He (or the conjugate π + - 3 H) will provide a test of the convergence of the fixed scatterer, multiple-scattering formalism utilized in this report. 21 figures

  7. Vector analyzing power in elastic electron-proton scattering

    International Nuclear Information System (INIS)

    Diaconescu, L.; Ramsey-Musolf, M.J.

    2004-01-01

    We compute the vector analyzing power (VAP) for the elastic scattering of transversely polarized electrons from protons at low energies using an effective theory of electrons, protons, and photons. We study all contributions through second order in E/M, where E and M are the electron energy and nucleon mass, respectively. The leading-order VAP arises from the imaginary part of the interference of one- and two-photon exchange amplitudes. Subleading contributions are generated by the nucleon magnetic moment and charge radius as well as recoil corrections to the leading-order amplitude. Working to O(E/M) 2 , we obtain a prediction for A n that is free of unknown parameters and that agrees with the recent measurement of the VAP in backward angle ep scattering

  8. Reaction Mechanism and Structure Interplay for Proton Elastic Scattering from Halo Nuclei

    International Nuclear Information System (INIS)

    Crespo, R.; Johnson, R.C.

    1999-01-01

    The aim of this work is to clarify what properties of the projectile w.f. are relevant to describe elastic scattering of halo nuclei from stable nuclei. In particular, we examine how far elastic scattering observables probe correlation effects among projectile nucleons. Our treatment is based on a multiple scattering expansion of the proton-projectile transition amplitude in a form which is well adapted to the weakly bound cluster picture of halo nuclei. In the specific case of 11 Li scattering from protons at 800 MeV/u we show that because core recoil effects are significant, scattering cross sections can not, in general, be deduced from knowledge of the total matter density alone. We advocate that the optical potential concept for the scattering of halo nuclei on protons should be avoided and that the multiple scattering series for the full transition amplitude should be used instead

  9. Reaction mechanism and structure interplay for proton elastic scattering from halo nuclei

    International Nuclear Information System (INIS)

    Crespo, R.; Johnson, R. C.

    1999-01-01

    The aim of this work is to clarify what properties of the projectile w.f. are relevant to describe elastic scattering of halo nuclei from stable nuclei. In particular, we examine how far elastic scattering observables probe correlation effects among projectile nucleons. Our treatment is based on a multiple scattering expansion of the proton-projectile transition amplitude in a form which is well adapted to the weakly bound cluster picture of halo nuclei. In the specific case of 11 Li scattering from protons at 800 MeV/u we show that because core recoil effects are significant, scattering crosssections cannot, in general, be deduced from knowledge of the total matter density alone. We advocate that the optical potential concept for the scattering of halo nuclei on protons should be avoided and that the multiple scattering series for the full transition amplitude should be used instead

  10. Recoil 18F-chemistry in fluoroalkanes

    International Nuclear Information System (INIS)

    Linde, K.D. van der.

    1982-01-01

    This thesis describes the study of the chemical reactions of recoil 18 F-atoms in gaseous fluoromethanes and fluoroethanes. A brief survey of the organic hot atom chemistry is given in Chapter I. Chapter II deals with the experimental procedures used in this investigation. The irradiation facilities, the vapour phase radio-chromatography and the identification, including the synthesis of some fluorocarbons, are described in detail. Chapter III consists of a study on the applicability of perfluoropropene, C 3 F 6 , as scavenger for thermal 18 F-atoms and radicals. Chapters IV, V, VI and VII deal with 18 F-recoil chemistry in gaseous fluoroethanes, using H 2 S as scavenger. Chapter VIII is a short discussion on the hot 18 F-atom based production of 18 F-labeled organic compounds via decay of the intermediate 18 Ne. A target system is proposed for production of this isotope in high energy and ultra high flux particle beams, which possibly would become available in fast breeders and fusion reactors. (Auth.)

  11. In-beam electron spectrometer used in conjunction with a gas-filled recoil separator

    International Nuclear Information System (INIS)

    Kankaanpaeae, H.; Butler, P.A.; Greenlees, P.T.; Bastin, J.E.; Herzberg, R.D.; Humphreys, R.D.; Jones, G.D.; Jones, P.; Julin, R.; Keenan, A.; Kettunen, H.; Leino, M.; Miettinen, L.; Page, T.; Rahkila, P.; Scholey, C.; Uusitalo, J.

    2004-01-01

    The conversion-electron spectrometer SACRED has been redesigned for use in conjunction with the RITU gas-filled recoil separator. The system allows in-beam recoil-decay-tagging (RDT) measurements of internal conversion electrons. The performance of the system using standard sources and in-beam is described

  12. Probing Sub-GeV Dark Matter with Conventional Detectors

    DEFF Research Database (Denmark)

    Kouvaris, Chris; Pradler, Josef

    2017-01-01

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we...... propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations...... where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds....

  13. Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion

    International Nuclear Information System (INIS)

    Ylivaara, Oili M.E.; Liu, Xuwen; Kilpi, Lauri; Lyytinen, Jussi; Schneider, Dieter; Laitinen, Mikko; Julin, Jaakko; Ali, Saima; Sintonen, Sakari; Berdova, Maria; Haimi, Eero; Sajavaara, Timo; Ronkainen, Helena; Lipsanen, Harri

    2014-01-01

    Use of atomic layer deposition (ALD) in microelectromechanical systems (MEMS) has increased as ALD enables conformal growth on 3-dimensional structures at relatively low temperatures. For MEMS device design and fabrication, the understanding of stress and mechanical properties such as elastic modulus, hardness and adhesion of thin film is crucial. In this work a comprehensive characterization of the stress, elastic modulus, hardness and adhesion of ALD aluminum oxide (Al 2 O 3 ) films grown at 110–300 °C from trimethylaluminum and water is presented. Film stress was analyzed by wafer curvature measurements, elastic modulus by nanoindentation and surface-acoustic wave measurements, hardness by nanoindentation and adhesion by microscratch test and scanning nanowear. The films were also analyzed by ellipsometry, optical reflectometry, X-ray reflectivity and time-of-flight elastic recoil detection for refractive index, thickness, density and impurities. The ALD Al 2 O 3 films were under tensile stress in the scale of hundreds of MPa. The magnitude of the stress decreased strongly with increasing ALD temperature. The stress was stable during storage in air. Elastic modulus and hardness of ALD Al 2 O 3 saturated to a fairly constant value for growth at 150 to 300 °C, while ALD at 110 °C gave softer films with lower modulus. ALD Al 2 O 3 films adhered strongly on cleaned silicon with SiO x termination. - Highlights: • The residual stress of Al 2 O 3 was tensile and stable during the storage in air. • Elastic modulus of Al 2 O 3 saturated to at 170 GPa for films grown at 150 to 300 °C. • At 110 °C Al 2 O 3 films were softer with high residual hydrogen and lower density. • The Al 2 O 3 adhered strongly on the SiO x -terminated silicon

  14. New developments of the recoil distance doppler-shift method

    Energy Technology Data Exchange (ETDEWEB)

    Fransen, Christoph; Blazhev, Andrey; Braunroth, Thomas; Dewald, Alfred; Goldkuhle, Alina; Jolie, Jan; Litzinger, Julia; Mueller-Gatermann, Claus; Woelk, Dorothea; Zell, Karl-Oskar [Institut fuer Kernphysik, Universitaet zu Koeln (Germany)

    2016-07-01

    The recoil distance Doppler-shift (RDDS) method is a very valuable technique for measuring lifetimes of excited nuclear states in the picosecond range to deduce absolute transition strengths between nuclear excitations independent on the reaction mechanism. Dedicated plunger devices were built by our group for measurements with this method for a broad range of beam energies ranging from few MeV/u up to relativistic energies of the order of 100 MeV/u. Those were designed to match the constraints defined by state-of-the art γ-ray spectrometers like AGATA, Galileo, Gammasphere. Here we give an overview about recent experiments of our group to determine transition strengths from level lifetimes in exotic nuclei where also recoil separators or mass spectrographs were used for an identification of the recoiling reaction products. The aim is to learn about phenomena like shape phase coexistence in exotic regions and the evolution of the shell structure far from the valley of stability. We also review new plunger devices that are developed by our group for future experimental campaigns with stable and radioactive beams in different energy regimes, e.g., a plunger for HIE-ISOLDE.

  15. Thermal annealing of recoil 56Mn in strontium permanganate under (n,γ) process

    International Nuclear Information System (INIS)

    Mishra, Shuddhodan P.; Vijaya

    2002-01-01

    Chemical stabilization of recoil 56 Mn in strontium permanganate (hydrous and anhydrous) has been investigated with a special reference to pre-and post-activation thermal annealing treatments. The retention of 56 Mn in neutron irradiated strontium permanganate showed significant variation on thermal annealing in both pre-and post-activation heated target. The recoil re-entry process obeys simple first order kinetics and the activation energy deduced for thermal annealing process is very low as computed by classical Arrhenius plots. The results observed are discussed in the light of existing ideas for understanding the recoil stabilization mechanism of parent reformation and the nature of precursors in permanganates. (author)

  16. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    Science.gov (United States)

    Centrella, Joan M.

    2010-01-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z greater than 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts.

  17. Damage detection strategies for aircraft shell-like structures based on propagation guided elastic waves

    International Nuclear Information System (INIS)

    Zak, A; Ostachowicz, W; Krawczuk, M

    2011-01-01

    Damage of aircraft structural elements in any form always present high risks. Failures of these elements can be caused by various reasons including material fatigue or impact leading to damage initiation and growth. Detection of these failures at their earliest stage of development, estimation of their size and location, are one of the most crucial factors for each damage detection method. Structural health monitoring strategies based on propagation of guided elastic waves in structures and wave interaction with damage related discontinuities are very promising tools that offer not only damage detection capabilities, but are also meant to provide precise information about the state of the structures and their remaining lifetime. Because of that various techniques are employed to simulate and mimic the wave-discontinuity interactions. The use of various types of sensors, their networks together with sophisticated contactless measuring techniques are investigated both numerically and experimentally. Certain results of numerical simulations obtained by the use of the spectral finite element method are presented by the authors and related with propagation of guided elastic waves in shell-type aircraft structures. Two types of structures are considered: flat 2D panels with or without stiffeners and 3D shell structures. The applicability of two different damage detection approaches is evaluated in order to detect and localise damage in these structures. Selected results related with the use of laser scanning vibrometry are also presented and discussed by the authors.

  18. Vacancy-acceptor complexes in germanium produced by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, U.; Vianden, R. (Inst. fuer Strahlen- und Kernphysik, Univ. Bonn (Germany)); Alves, E.; Silva, M.F. da (Dept. de Fisica, ICEN/LNETI, Sacavem (Portugal)); Szilagyi, E.; Paszti, F. (Central Research Inst. for Physics, Hungarian Academy of Sciences, Budapest (Hungary)); Soares, J.C. (Centro de Fisica Nuclear, Univ. Lisbon (Portugal))

    1991-07-01

    Combining results obtained by the {gamma}-{gamma} perturbed angular correlation method, Rutherford backscattering and elastic recoil detection of hydrogen, a defect complex formed in germanium by indium implantation is identified as a vacancy trapped by the indium probe. (orig.).

  19. INS gas-filled recoil isotope separator

    International Nuclear Information System (INIS)

    Miyatake, M.; Nomura, T.; Kawakami, H.

    1986-09-01

    The characteristics and performance of a small sized gas-filled recoil isotope separator recently made at INS are described. The total efficiency and the ΔBρ/Bρ values have been measured using low velocity 16 O, 40 Ar and 68 As ions and found to be 10 and 5 %, respectively. The Z-dependence of the mean charge is discussed. (author)

  20. Invariant potential for elastic pion--nucleus scattering. Technical report No. 75-075

    International Nuclear Information System (INIS)

    Cammarata, J.B.; Banerjee, M.K.

    1975-04-01

    From the Wick-Dyson expansion of the exact propagator of a pion in the presence of a nucleus an invariant potential for crossing symmetric, elastic pion-nucleus scattering is obtained in terms of a series of pion-nucleon diagrams. The Chew-Low theory is used to develop a model in which the most important class of diagrams is effectively summed. Included in this model is the Exclusion Principle restriction on the pion-bound nucleon interaction, the effects of the binding of nucleons, a kinematic transformation of energy from the lab to the πN center of mass frames, and the Fermi motion and recoil of the target nucleons. From a numerical study of the effects of these processes on the π- 12 C total cross section, the relative importance of each is determined. Other processes contributing to the elastic scattering of pions not included in the present model are also discussed. (9 figures) (U.S.)

  1. Nuclear recoil scintillation and ionisation yields in liquid xenon from ZEPLIN-III data

    Energy Technology Data Exchange (ETDEWEB)

    Horn, M., E-mail: m.horn@imperial.ac.uk [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Belov, V.A.; Akimov, D.Yu. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Araujo, H.M. [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Barnes, E.J. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom); Burenkov, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Chepel, V. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Currie, A. [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Edwards, B. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Ghag, C.; Hollingsworth, A. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom); Kalmus, G.E. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Kobyakin, A.S.; Kovalenko, A.G. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Lebedenko, V.N. [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Lindote, A. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Lopes, M.I. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Luescher, R.; Majewski, P. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Murphy, A.StJ. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom)

    2011-11-24

    Scintillation and ionisation yields for nuclear recoils in liquid xenon above 10 keV{sub nr} (nuclear recoil energy) are deduced from data acquired using broadband Am-Be neutron sources. The nuclear recoil data from several exposures to two sources were compared to detailed simulations. Energy-dependent scintillation and ionisation yields giving acceptable fits to the data were derived. Efficiency and resolution effects are treated using a light collection Monte Carlo, measured photomultiplier response profiles and hardware trigger studies. A gradual fall in scintillation yield below {approx}40 keV{sub nr} is found, together with a rising ionisation yield; both are in agreement with the latest independent measurements. The analysis method is applied to the most recent ZEPLIN-III data, acquired with a significantly upgraded detector and a precision-calibrated Am-Be source, as well as to the earlier data from the first run in 2008. A new method for deriving the recoil scintillation yield, which includes sub-threshold S1 events, is also presented which confirms the main analysis.

  2. Laterally and longitudinally dispersive recoil mass separators

    International Nuclear Information System (INIS)

    Wollnik, H.

    1987-01-01

    Principles of laterally dispersive and time-of-flight mass separators are outlined. Special emphasis is given to separators for very energetic recoils for which electrostatic fields would be technologically impossible. The principle of energy isochronous time-of-flight mass separators is shown to be applicable to storage rings. (orig.)

  3. Bolometer's development for the detection of dark matter; Instrumentation autour de bolometres pour la recherche de matiere sombre WIMPs

    Energy Technology Data Exchange (ETDEWEB)

    Yvon, D

    2000-06-01

    The author reviews his contributions to the use of bolometers (cryogenic detectors) for the detection of wimps (weakly interactive massive particles). Wimps are detected through their elastic scattering on the nuclei of the detector, a heat signal, luminescence or ionization can be simultaneously detected (at least 2 signals are necessary to discard photon interactions). Bolometers operate at low temperatures (< 50 mK) so they allow very low detection threshold and resolution (< keV) with a full energy conversion for recoiling nuclei. In Saclay the technology of bolometers based on simultaneous detection of heat and ionisation has been developed and improvements have been studied (NbSi thin films bolometers). The first results obtained in the framework of the Edelweiss collaboration are presented. Other developments based on infra-red bolometry (Planck surveyor and Archeops projects) are briefly described. In an appendix the operating principle of a bolometer is presented. (A.C.)

  4. Development of bubble chambers with enhanced stability and sensitivity to low-energy nuclear recoils

    International Nuclear Information System (INIS)

    Bolte, W.J.; Collar, J.I.; Crisler, M.; Hall, J.; Holmgren, D.; Nakazawa, D.; Odom, B.; O'Sullivan, K.; Plunkett, R.; Ramberg, E.; Raskin, A.; Sonnenschein, A.; Vieira, J.D.

    2007-01-01

    The viability of using Bubble Chambers as dark matter particle detectors is considered. Techniques leading to the enhanced chamber stability needed for this new application are described in detail. Prototype trials show that sensitivity to the low-energy nuclear recoils induced by Weakly Interacting Massive Particles (WIMP) is possible in conditions of extreme insensitivity to minimum ionizing backgrounds. An understanding of detector response is demonstrated using existing theoretical models. We briefly comment on the prospects for detection of supersymmetric dark matter with large CF 3 I chambers

  5. Recoil distance lifetime measurements in 122,124Xe

    Science.gov (United States)

    Govil, I. M.; Kumar, A.; Iyer, H.; Li, H.; Garg, U.; Ghugre, S. S.; Johnson, T.; Kaczarowski, R.; Kharraja, B.; Naguleswaran, S.; Walpe, J. C.

    1998-02-01

    Lifetimes of the lower-excited states in 122,124Xe are measured using the recoil-distance Doppler-shift technique. The reactions 110Pd(16O,4n)122Xe and 110Pd(18O,4n)124Xe at a beam energy of 66 MeV were used for this experiment. The lifetimes of the 2+, 4+, 6+, and 8+ states of the ground state band were extracted using the computer code LIFETIME including the corrections due to the side feeding and the nuclear deorientation effects. The lifetime of the 2+ state in 122Xe agrees with the recoil distance method (RDM) measurements but for the 124Xe it does not agree with the RDM measurements but agrees with the Coulomb-excitation experiment. The measured B(E2) values for both the nuclei are compared with the standard algebraic and the multishell models.

  6. Water droplet spreading and recoiling upon contact with thick-compact maltodextrin agglomerates.

    Science.gov (United States)

    Meraz-Torres, Lesvia Sofía; Quintanilla-Carvajal, María Ximena; Téllez-Medina, Darío I; Hernández-Sánchez, Humberto; Alamilla-Beltrán, Liliana; Gutiérrez-López, Gustavo F

    2011-11-01

    The food and pharmaceutical industries handle a number of compounds in the form of agglomerates which must be put into contact with water for rehydration purposes. In this work, liquid-solid interaction between water and maltodextrin thick-compact agglomerates was studied at different constituent particle sizes for two compression forces (75 and 225 MPa). Rapid droplet spreading was observed which was similar in radius to the expected one for ideal, flat surfaces. Contact angle determinations reported oscillations of this parameter throughout the experiments, being indicative of droplet recoiling on top of the agglomerate. Recoiling was more frequent in samples obtained at 225 MPa for agglomerate formation. Agglomerates obtained at 75 MPa exhibited more penetration of the water. Competition between dissolution of maltodextrin and penetration of the water was, probably, the main mechanism involved in droplet recoiling. Micrographs of the wetting marks were characterized by means of image analysis and the measurements suggested more symmetry of the wetting mark at higher compression force. Differences found in the evaluated parameters for agglomerates were mainly due to compaction force used. No significant effect of particle size in recoiling, penetration of water into the agglomerate, surface texture and symmetry was observed. Copyright © 2011 Society of Chemical Industry.

  7. Probing Sub-GeV Dark Matter with Conventional Detectors.

    Science.gov (United States)

    Kouvaris, Chris; Pradler, Josef

    2017-01-20

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds.

  8. The Performance of the HRIBF Recoil Mass Spectrometry

    International Nuclear Information System (INIS)

    Ginter, T.N.

    1998-01-01

    The Recoil Mass Spectrometer (RMS) is a mass separator located at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. This paper describes the RMS, its performance, its detector systems, and discusses some experiments to illustrate its capabilities

  9. RITA, a promising Monte Carlo code for recoil implantation

    International Nuclear Information System (INIS)

    Desalvo, A.; Rosa, R.

    1982-01-01

    A computer code previously set up to simulate ion penetration in amorphous solids has been extended to handle with recoil phenomena. Preliminary results are compared with existing experimental data. (author)

  10. Coincidence measurements of slow recoil ions with projectile ions in 42-MeV Arq+-Ar collisions

    International Nuclear Information System (INIS)

    Tonuma, T.; Kumagai, H.; Matsuo, T.; Tawara, H.

    1989-01-01

    Slow Ar recoil-ion production cross sections by projectiles of 1.05-MeV/amu Ar q+ (q=4,6,8,10,12,14) were measured using a projectile-ion--recoil-ion coincidence technique. The present results indicate that the average recoil ion charges left-angle i right-angle increase with increasing the incident projectile charge q and the number of the lost and captured electrons from and/or into projectiles, whereas the projectile charge-changing cross sections for loss ionization decrease steeply with increasing q for low-charge-state projectiles, and those for transfer ionization increase rapidly with increasing q for high-charge-state projectiles. For Ar projectiles with q=10, which corresponds to the equilibrium charge state of Ar projectiles at the present collision energy, the average recoil-ion charges are nearly the same in both loss and transfer ionization, and a pure ionization process plays a much more important role in producing highly charged recoil ions, in contrast to projectile electron loss or transfer processes, which play a role in other projectile charge states

  11. Atom location using recoil ion spectroscopy

    International Nuclear Information System (INIS)

    O'Connor, D.J.

    1985-01-01

    Low energy ion scattering (LEIS) using inert gas and alkali ions is widely used in studies of the surface atomic layer. The extreme surface sensitivity of this technique ensures that it yields both compositional and structural information on clean and adsorbate covered surfaces. Low Energy Negative recoil Spectroscopy (LENRS) has been applied to a study of oxygen on Ni(110) to gauge the sensitivity to coverage and site location

  12. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-01-01

    An experiment is described to study highly charged recoil ions on-line to the heavy accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy-ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q = 15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q = 4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q = 6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix

  13. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-05-01

    An experiment is described to study highly charged recoil ions on-line to the heavy ion accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q=15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q=4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q=6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix. (orig.)

  14. Recoil Considerations for Shoulder-Fired Weapons

    Science.gov (United States)

    2012-05-01

    than would be deduced from the force levels defined by the pressure-time curve of the cartridge. Further and just like a large-caliber weapon mounted...force. If each of the force curves over the time interval were integrated, the result should be the same as that derived from a ballistic pendulum...Kathe, E.; Dillon, R. Sonic Rarefaction Wave Low Recoil Gun; Report ARCCB-TR-2001; U.S. Army Armament Research, Development, and Engineering Center

  15. Lifetime measurements using the recoil distance method—achievements and perspectives

    Science.gov (United States)

    Krücken, R.

    2001-07-01

    The recoil distance method (RDM) for measuring pico-second nuclear level lifetimes and its use in nuclear structure studies is reviewed and perspectives for the future are presented. High precision measurements in the mass-130 region, studies of multi-phonon states in rare earth nuclei, the investigation of shape coexistence and the recently discovered phenomenon of "magnetic rotation" are reviewed. Prospects for lifetime measurements in exotic regions of nuclei such as the measurement of lifetimes in neutron rich nuclei populated via spontaneous and heavy-ion induced fission are discussed. Other prospects include the use of the RDM technique in conjunction with recoil separators. The relevance of these techniques for experiments with radioactive ion beams will be discussed.

  16. Lifetime measurements using the recoil distance method - achievements and perspectives

    International Nuclear Information System (INIS)

    Kruecken, R.

    2001-01-01

    The recoil distance method (RDM) for measuring pico-second nuclear level lifetimes and its use in nuclear structure studies is reviewed and perspectives for the future are presented. High precision measurements in the mass-130 region, studies of multi-phonon states in rare earth nuclei, the investigation of shape coexistence and the recently discovered phenomenon of 'magnetic rotation' are reviewed. Prospects for lifetime measurements in exotic regions of nuclei such as the measurement of lifetimes in neutron rich nuclei populated via spontaneous and heavy-ion induced fission are discussed. Other prospects include the use of the RDM technique in conjunction with recoil separators. The relevance of these techniques for experiments with radioactive ion beams will be discussed

  17. Primary processes and ionic reactions in the chemistry of recoiling silicon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Boo, B.H.; Stewart, G.W.

    1993-01-01

    Hot atom chemistry has permitted the elucidation of the chemistry of free atoms, and these include the polyvalent atoms of refractory group 14 elements, that is, carbon, silicon and germanium. Since no more than two bonds are formed normally in a single reactive collision of free atoms, the study on the chemistry of atoms like C, Si and Ge that require the formation of more than two bonds to saturate their chemical valence necessarily involves the study of reactive intermediates. By the studies on the chemistry of recoiling 31 Si atoms, the mechanistic conclusions reached are reported. The most important unanswered questions concerning the reaction of recoiling 31 Si atoms in the systems are shown, and progress has been made toward the answering. By using tetramethyl silane as a trapping agent for silicon ions, it has been established that the reaction of 31 Si ions contributes significantly to the formation of products in recoil systems. The studies by various researchers on this theme are reported. (K.I.)

  18. Test of a superheated superconducting granule detector with nuclear recoil measurements

    International Nuclear Information System (INIS)

    Berger, C.; Czapek, G.; Diggelmann, U.; Flammer, I.; Frei, D.; Furlan, M.; Gabutti, A.; Janos, S.; Moser, U.; Pretzl, K.; Schmiemann, K.; Perret-Gallix, D.; Konter, J.A.; Mango, S.

    1993-01-01

    The presented results are part of a Superheated Superconducting Granule (SSG) detector development for neutrinos and dark matter. An aluminum SSG detector was exposed to a 70MeV neutron beam to test the detector sensitivity to nuclear recoils. The neutron scattering angels were determined using a scintillator hodoscope. Coincidences between the SSG and the hodoscope signals have been clearly established. Data were taken at an operating temperature of 120mK for different SSG intrinsic thresholds. The proved sensitivity of the detector to nuclear recoils above 10keV is encouraging for possible applications of SSG as a dark matter detector. (orig.)

  19. Dynamical Formation of Horizons in Recoiling D Branes

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John

    2000-01-01

    A toy calculation of string/D-particle interactions within a world-sheet approach indicates that quantum recoil effects - reflecting the gravitational back-reaction on space-time foam due to the propagation of energetic particles - induces the appearance of a microscopic event horizon, or `bubble', inside which stable matter can exist. The scattering event causes this horizon to expand, but we expect quantum effects to cause it to contract again, in a `bounce' solution. Within such `bubbles', massless matter propagates with an effective velocity that is less than the velocity of light in vacuo, which may lead to observable violations of Lorentz symmetry that may be tested experimentally. The conformal invariance conditions in the interior geometry of the bubbles select preferentially three for the number of the spatial dimensions, corresponding to a consistent formulation of the interaction of D3 branes with recoiling D particles, which are allowed to fluctuate independently only on the D3-brane hypersurface.

  20. Elastic recoil detection analysis (ERDA) in hydrogenated samples for TNSA laser irradiation

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, Mariapompea

    2016-01-01

    Roč. 48, č. 1 (2016), s. 10-16 ISSN 0142-2421 R&D Projects: GA MŠk(CZ) LM2011019; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : ERDA * RBS * TNSA * hydrogen and deuterium * proton acceleration Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.132, year: 2016

  1. Fatigue crack detection and identification by the elastic wave propagation method

    Science.gov (United States)

    Stawiarski, Adam; Barski, Marek; Pająk, Piotr

    2017-05-01

    In this paper the elastic wave propagation phenomenon was used to detect the initiation of the fatigue damage in isotropic plate with a circular hole. The safety and reliability of structures mostly depend on the effectiveness of the monitoring methods. The Structural Health Monitoring (SHM) system based on the active pitch-catch measurement technique was proposed. The piezoelectric (PZT) elements was used as an actuators and sensors in the multipoint measuring system. The comparison of the intact and defected structures has been used by damage detection algorithm. One part of the SHM system has been responsible for detection of the fatigue crack initiation. The second part observed the evolution of the damage growth and assess the size of the defect. The numerical results of the wave propagation phenomenon has been used to present the effectiveness and accuracy of the proposed method. The preliminary experimental analysis has been carried out during the tension test of the aluminum plate with a circular hole to determine the efficiency of the measurement technique.

  2. Detecting Damage in Composite Material Using Nonlinear Elastic Wave Spectroscopy Methods

    Science.gov (United States)

    Meo, Michele; Polimeno, Umberto; Zumpano, Giuseppe

    2008-05-01

    Modern aerospace structures make increasing use of fibre reinforced plastic composites, due to their high specific mechanical properties. However, due to their brittleness, low velocity impact can cause delaminations beneath the surface, while the surface may appear to be undamaged upon visual inspection. Such damage is called barely visible impact damage (BVID). Such internal damages lead to significant reduction in local strengths and ultimately could lead to catastrophic failures. It is therefore important to detect and monitor damages in high loaded composite components to receive an early warning for a well timed maintenance of the aircraft. Non-linear ultrasonic spectroscopy methods are promising damage detection and material characterization tools. In this paper, two different non-linear elastic wave spectroscopy (NEWS) methods are presented: single mode nonlinear resonance ultrasound (NRUS) and nonlinear wave modulation technique (NWMS). The NEWS methods were applied to detect delamination damage due to low velocity impact (<12 J) on various composite plates. The results showed that the proposed methodology appear to be highly sensitive to the presence of damage with very promising future NDT and structural health monitoring applications.

  3. Calculations of Total and Differential Solid Angles for a Proton Recoil Solid State Detector

    Energy Technology Data Exchange (ETDEWEB)

    Konijn, J; Lauber, A; Tollander, B

    1963-08-15

    The solid angles have been computed for a proton recoil counter consisting of a circular hydrogenous foil viewed by an isotropic neutron point source at different distances from the target foil. Tables are given for the total subtended solid angle as well as the differential energy distribution function of the proton recoil spectrum. The influence of finite foil thickness has also been studied.

  4. Superheated superconducting granule detector tested with nuclear recoil measurements

    International Nuclear Information System (INIS)

    Berger, C.; Czapek, G.; Diggelmann, U.; Flammer, I.; Frei, D.; Furlan, M.; Gabutti, A.; Janos, S.; Moser, U.; Pretzl, K.; Schmiemann, K.; Perret-Gallix, D.; Brandt, B. van den; Konter, J.A.; Mango, S.

    1993-01-01

    The presented results are part of a superheated superconducting granule (SSG) detector development for neutrino and dark matter. The aim of the experiment was to measure the sensitivity of the detector to nuclear recoil energies when exposed to a 70 MeV neutron beam. The detector consists of a small readout coil (diameter 5 mm, length 10 mm) filled with aluminum granules of average diameter 23 μm embedded in an Al 2 O 3 granulate with a 6% volume filling factor. The neutron scattering angles were determined using a scintillator hodoscope. Coincidences between the SSG and the hodoscope signals have been clearly established. Data were taken at an operating temperature of 120 mK for different SSG intrinsic thresholds. The results prove the sensitivity of the detector to nuclear recoils around 10 keV. (orig.)

  5. Dama annual modulation from electron recoils

    OpenAIRE

    Foot, R.

    2018-01-01

    Plasma dark matter, which arises in dissipative dark matter models, can give rise to large annual modulation signals from keV electron recoils. Previous work has argued that the DAMA annual modulation signal might be explained in such a scenario. Detailed predictions are difficult due to the inherent complexities involved in modelling the halo plasma interactions with Earth bound dark matter. Here, we consider a simplified phenomenological model for the dark matter density and temperature nea...

  6. Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation

    Science.gov (United States)

    Ouyang, Qing; Zheng, Jiajia; Li, Zhaochun; Hu, Ming; Wang, Jiong

    2016-11-01

    This paper aims to analyze the effects of combined working coils of magnetorheological (MR) absorber on the shock mitigation performance and verify the controllability of MR absorber as applied in the recoil system of a field gun. A physical scale model of the field gun is established and a long-stroke MR recoil absorber with four-stage parallel electromagnetic coils is designed to apply separate current to each stage and generate variable magnetic field distribution in the annular flow channel. Based on dynamic analysis and firing stability conditions of the field gun, ideal recoil force-stroke profiles of MR absorber at different limiting firing angles are obtained. The experimental studies are carried out on an impact test rig under different combinations of current loading: conventional unified control mode, separate control mode and timing control mode. The fullness degree index (FDI) is defined as the quantitative evaluation criterion of the controllability of MR absorber during the whole recoil motion. The results show that the force-stroke profile of the novel MR absorber can approach the ideal curve within 25 degrees of the limiting firing angle through judicious exploitation of the adjustable rheological properties of MR fluid.

  7. The G0 Experiment

    International Nuclear Information System (INIS)

    Nakahara, Kazutaka

    2007-01-01

    The G0 experiment measures the parity-violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering over the momentum transfers 0.12 ≤ Q2 ≤ 1.0 GeV2. These asymmetries are sensitive to the strange-quark contribution to the charge and magnetization distributions of the proton. The experiment is conducted at Jefferson Laboratory using a toroidal spectrometer designed to detect forward scattered recoil protons and backward scattered elastic and quasi-elastic electrons. The forward angle experiment was completed in 2004, and the backward angle phase of the experiment is currently taking place

  8. Materials analysis fast ions

    CERN Document Server

    Denker, A; Rauschenberg, J; Röhrich, J; Strub, E

    2006-01-01

    Materials analysis with ion beams exploits the interaction of ions with the electrons and nuclei in the sample. Among the vast variety of possible analytical techniques available with ion beams we will restrain to ion beam analysis with ion beams in the energy range from one to several MeV per mass unit. It is possible to use either the back-scattered projectiles (RBS – Rutherford Back Scattering) or the recoiled atoms itself (ERDA – Elastic Recoil Detection Analysis) from the elastic scattering processes. These techniques allow the simultaneous and absolute determination of stoichiometry and depth profiles of the detected elements. The interaction of the ions with the electrons in the sample produces holes in the inner electronic shells of the sample atoms, which recombine and emit X-rays characteristic for the element in question. Particle Induced X-ray Emission (PIXE) has shown to be a fast technique for the analysis of elements with an atomic number above 11.

  9. Investigation of complete and incomplete fusion in 20Ne + 51V system using recoil range measurement

    Directory of Open Access Journals (Sweden)

    Ali Sabir

    2015-01-01

    Full Text Available Recoil range distributions of evaporation residues, populated in 20Ne + 51V reaction at Elab ≈ 145 MeV, have been studied to determine the degree of momentum transferred through the complete and incomplete fusion reactions. Evaporation residues (ERs populated through the complete and incomplete fusion reactions have been identified on the basis of their recoil range in the Al catcher medium. Measured recoil range of evaporation residues have been compared with the theoretical value calculated using the code SRIM. Range integrated cross section of observed ERs have been compared with the value predicted by statistical model code PACE4.

  10. The HERMES recoil photon-detector and nuclear p{sub t}-Broadening at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Haarlem, Y. van

    2007-09-15

    The first part of this work consists of hardware research and development done in order to construct and test a photon-detector as one of the three detectors of the HERMES recoil detector. The HERMES recoil detector consists of a target cell, a silicon-detector, a scintillating fiber tracker, and a photon-detector. All are inside a super-conducting magnet. The silicon detector uses energy deposition to determine the momentum of the particle because in its energy range the energy deposition is an unambiguous function of the momentum of the particle. The scintillating fiber tracker is located outside the beam-vacuum and is surrounded by the photon-detector. It consists of two barrels with layers of scintillating fibers. It detects particles by converting their energy deposition into light. It measures two space points of a charged particle and from the bending of the assigned track (in the magnetic field provided by the super-conducting magnet) a momentum measurement can be derived. The photon-detector is located between the scintillating fiber tracker and the magnet. It consists (from the inside out) of three layers of tungsten showering material followed by scintillating strips. The second part of this work is an analysis performed concerning the transverse momentum broadening of hadrons produced in deep-inelastic scattering on a nuclear target compared to a D target. (orig.)

  11. Development of phonon-mediated cryogenic particle detectors with electron and nuclear recoil discrimination

    Science.gov (United States)

    Nam, Sae Woo

    1999-10-01

    Observations have shown that galaxies, including our own, are surrounded by halos of ``dark matter''. One possibility is that this may be an undiscovered form of matter, weakly interacting massive particles (WIMPs). This thesis describes the development of silicon based cryogenic particle detectors designed to directly detect interactions with these WIMPs. These detectors are part of a new class of detectors which are able to reject background events by simultaneously measuring energy deposited into phonons versus electron hole pairs. By using the phonon sensors with the ionization sensors to compare the partitioning of energy between phonons and ionizations we can discriminate between electron recoil events (background radiation) and nuclear recoil events (dark matter events). These detectors with built-in background rejection are a major advance in background rejection over previous searches. Much of this thesis will describe work in scaling the detectors from / g prototype devices to a fully functional prototype 100g dark matter detector. In particular, many sensors were fabricated and tested to understand the behavior of our phonon sensors, Quasipartice trapping assisted Electrothermal feedback Transition edge sensors (QETs). The QET sensors utilize aluminum quasiparticle traps attached to tungsten superconducting transition edge sensors patterned on a silicon substrate. The tungsten lines are voltage biased and self-regulate in the transition region. Phonons from particle interactions within the silicon propogate to the surface where they are absorbed by the aluminum generating quasiparticles in the aluminum. The quasiparticles diffuse into the tungsten and couple energy into the tungsten electron system. Consequently, the tungsten increases in resistance and causes a current pulse which is measured with a high bandwidth SQUID system. With this advanced sensor technology, we were able to demonstrate detectors with xy position sensitivity with electron and

  12. The DarkSide-50 Experiment: Electron Recoil Calibrations and A Global Energy Variable

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, Brianne Rae [Hawaii U.

    2017-01-01

    Over the course of decades, there has been mounting astronomical evidence for non-baryonic dark matter, yet its precise nature remains elusive. A favored candidate for dark matter is the Weakly Interacting Massive Particle (WIMP) which arises naturally out of extensions to the Standard Model. WIMPs are expected to occasionally interact with particles of normal matter through nuclear recoils. DarkSide-50 aims to detect this type of particle through the use of a two-phase liquid argon time projection chamber. To make a claim of discovery, an accurate understanding of the background and WIMP search region is imperative. Knowledge of the backgrounds is done through extensive studies of DarkSide-50's response to electron and nuclear recoils. The CALibration Insertion System (CALIS) was designed and built for the purpose of introduc- ing radioactive sources into or near the detector in a joint eort between Fermi National Laboratory (FNAL) and the University of Hawai'i at Manoa. This work describes the testing, installation, and commissioning of CALIS at the Laboratori Nazionali del Gran Sasso. CALIS has been used in mul- tiple calibration campaigns with both neutron and sources. In this work, DarkSide-50's response to electron recoils, which are important for background estimations, was studied through the use of calibration sources by constructing a global energy variable which takes into account the anti- correlation between scintillation and ionization signals produced by interactions in the liquid argon. Accurately reconstructing the event energy correlates directly with quantitatively understanding the WIMP sensitivity in DarkSide-50. This work also validates the theoretically predicted decay spectrum of 39Ar against 39Ar decay data collected in the early days of DarkSide-50 while it was lled with atmospheric argon; a validation of this type is not readily found in the literature. Finally, we show how well the constructed energy variable can predict

  13. Mathematical methods in elasticity imaging

    CERN Document Server

    Ammari, Habib; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae; Wahab, Abdul

    2015-01-01

    This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic...

  14. Making Cloud-based Systems Elasticity Testing Reproducible

    OpenAIRE

    Albonico , Michel; Mottu , Jean-Marie; Sunyé , Gerson; Alvares , Frederico

    2017-01-01

    International audience; Elastic cloud infrastructures vary computational resources at runtime, i. e., elasticity, which is error-prone. That makes testing throughout elasticity crucial for those systems. Those errors are detected thanks to tests that should run deterministically many times all along the development. However, elasticity testing reproduction requires several features not supported natively by the main cloud providers, such as Amazon EC2. We identify three requirements that we c...

  15. Recoil proton polarization of neutral pion photoproduction from proton in the energy range between 400 MeV and 1142 MeV

    International Nuclear Information System (INIS)

    Kato, S.; Miyachi, T.; Sugano, K.; Toshioka, K.; Ukai, K.

    1979-08-01

    The recoil proton polarization of the reaction γp → π 0 p were measured at a C.M. angle of 100 0 for incident photon energies between 451 and 1106 MeV, and at an angle of 130 0 for energies from 400 MeV to 1142 MeV. One photon decayed from a π 0 -meson and a recoil proton were detected in coincidence. Two kinds of polarization scatterers were employed. In the range of proton kinetic energy less than 420 MeV and higher than 346 MeV, carbon plates and liquid hydrogen were used for determining the polarization. Results are compared with recent phenomenological analyses. From the Comparison between the present data and the asymmetry data given by the polarized target, the contribution of the invariant amplitudes A 3 can be estimated to be small at 100 0 . (author)

  16. Quantification of hydrogen distribution with the nuclear microprobe of the Pierre Sue Laboratory in the thickness of the PWR fuel cladding in zirconium alloy; Quantification de la repartition de l'hydrogene a la microsonde nucleaire du Laboratoire Pierre Sue dans l'epaisseur du tube de gainage du combustible des REP en alliage de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Raepsaet, C. [Laboratoire Pierre Sue (DSM/DRECAM/LPS) - CEA Saclay, 91 - Gif-sur-Yvette (France); Bossis, Ph. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SEMI/LM2E), 91 - Gif sur Yvette (France); Hamon, D.; Bechade, J.L.; Brachet, J.C. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SRMA/LA2M), 91 - Gif sur Yvette (France)

    2007-07-01

    In a first part of this study, are detailed the general principles of the specific technique ERDA (Elastic Recoil Detection Analysis) used in the Pierre Sue Laboratory. Then, the contribution of this technique is illustrated with two studies examples on the behaviour of PWR nuclear fuel cladding. (O.M.)

  17. Role of the recoil effect in two-center interference in X-ray photoionization

    International Nuclear Information System (INIS)

    Ueda, K.; Liu, X.-J.; Pruemper, G.; Lischke, T.; Tanaka, T.; Hoshino, M.; Tanaka, H.; Minkov, I.; Kimberg, V.; Gel'mukhanov, F.

    2006-01-01

    X-ray photoelectron spectra of the N 2 molecule are studied both experimentally and theoretically in the extended energy region up to 1 keV. The ratio of the photoionization cross sections for the gerade and ungerade core levels displays a modulation in the high energy region caused by the two-center interference, as predicted by Cohen and Fano (CF) in 1966. The physical background of this CF effect is the same as in Young's double-slit experiment. We have found that the interference pattern deviates significantly from the CF prediction. The origin of such a breakdown of the CF formula is the scattering of the photoelectron inside the molecule and the momentum transfer from the emitted fast photoelectron to the nuclei. Usually the recoil effect is small. We show that the electron recoil strongly affects the two-center interference pattern. Both stationary and dynamical aspects of the recoil effect shed light on the role of the momentum exchange in the two-center interference

  18. Experiments with recoil ions and other considerations

    Energy Technology Data Exchange (ETDEWEB)

    Cocke, C.L.

    1987-01-01

    Some opportunities in collisions physics with slow, multiply charged ions are addressed. A distinction between inner and outer shell collisions is drawn. The applicability of recoil ion sources to outer shell collision systems is discussed, with emphasis on the quality of the beam desired. An example of an inner shell collision is discussed, and the usefulness of not pushing the collision energy too low is pointed out. 13 refs., 14 figs.

  19. Detection of gastrointestinal cancer by elastic scattering and absorption spectroscopies with the Los Alamos Optical Biopsy System

    Energy Technology Data Exchange (ETDEWEB)

    Mourant, J.R.; Boyer, J.; Johnson, T.M.; Lacey, J.; Bigio, I.J. [Los Alamos National Lab., NM (United States); Bohorfoush, A. [Wisconsin Medical School, Milwaukee, WI (United States). Dept. of Gastroenterology; Mellow, M. [Univ. of Oklahoma Medical School, Oklahoma City, OK (United States). Dept. of Gastroenterology

    1995-03-01

    The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. In proceedings of earlier SPIE conferences we reported on clinical measurements in the bladder, and we report here on recent results of clinical tests in the gastrointestinal tract. With the OBS, tissue pathologies are detected/diagnosed using spectral measurements of the elastic optical transport properties (scattering and absorption) of the tissue over a wide range of wavelengths. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, exhibit significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes m an optical signature that is derived from the wavelength-dependence of elastic scattering. Additionally, the optical geometry of the OBS beneficially enhances its sensitivity for measuring absorption bands. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope or catheter, or to direct surface examination, as well as interstitial needle insertion. Data acquistion/display time is <1 second.

  20. Heavy ion recoil spectrometry of Si{sub x}Ge{sub 1-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Walker, S.R.; Johnston, P.N.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Hult, M.; Whitlow, H.J. [Lund Institute of Technology, Solvegatan (Sweden). Department of Nuclear Physics; Zaring, C.; Oestling, M. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Solid State Electronics

    1993-12-31

    Mass and energy dispersive recoil spectrometry employing 77 MeV {sup 127}I ions from ANTARES (FN Tandem) facility at Lucas Heights has been used to examine the isotopic composition of samples of Si{sub x}Ge{sub 1-x} grown at the Australian National University by Electron Beam Evaporation (EBE). The recoiling target nuclei were analysed by a Time Of Flight and Energy (TOF-E) detector telescope composed of two timing pickoff detectors and a surface barrier (energy) detector. From the time of flight and energy, the ion mass can be determined and individual depth distributions for each element can be obtained. Recoil spectrometry has shown the presence of oxygen in the Si{sub x}Ge{sub 1-x} layer and has enabled the separate determination of energy spectra for individual elements. 9 refs., 3 figs.

  1. Heavy ion recoil spectrometry of Si{sub x}Ge{sub 1-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Walker, S R; Johnston, P N; Bubb, I F [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Hult, M; Whitlow, H J [Lund Institute of Technology, Solvegatan (Sweden). Department of Nuclear Physics; Zaring, C; Oestling, M [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Solid State Electronics

    1994-12-31

    Mass and energy dispersive recoil spectrometry employing 77 MeV {sup 127}I ions from ANTARES (FN Tandem) facility at Lucas Heights has been used to examine the isotopic composition of samples of Si{sub x}Ge{sub 1-x} grown at the Australian National University by Electron Beam Evaporation (EBE). The recoiling target nuclei were analysed by a Time Of Flight and Energy (TOF-E) detector telescope composed of two timing pickoff detectors and a surface barrier (energy) detector. From the time of flight and energy, the ion mass can be determined and individual depth distributions for each element can be obtained. Recoil spectrometry has shown the presence of oxygen in the Si{sub x}Ge{sub 1-x} layer and has enabled the separate determination of energy spectra for individual elements. 9 refs., 3 figs.

  2. Recoil ion spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Beyer, H.F.; Mann, R.

    1984-01-01

    This chapter examines the production of very high charge state ions in single ion-atom collisions. Topics considered include some aspects of highly ionized atoms, experimental approaches, the production of highly charged target ions (monoatomic targets, recoil energy distribution, molecular fragmentation, outer-shell rearrangement, lifetime measurements, a comparison of projectile-, target-, and plasma-ion stripping), and secondary collision experiments (selective electron capture, potential applications). The heavy-ion beams for the described experiments were provided by accelerators such as tandem Van de Graaff facility and the UNILAC

  3. Characterization of TiAlN thin film annealed under O2 by in situ time of flight direct recoil spectroscopy/mass spectroscopy of recoiled ions and ex situ x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Tempez, A.; Bensaoula, A.; Schultz, A.

    2002-01-01

    The oxidation of an amorphous TiAlN coating has been studied by in situ direct recoil spectroscopy (DRS) and mass spectroscopy of recoiled ions (MSRI) and ex situ x-ray photoelectron spectroscopy (XPS). DRS and MSRI monitored the changes in surface composition as the sample was heated to 460 deg. C under an 18 O 2 pressure of 10 -6 Torr. Angular resolved XPS data were acquired for thickness-dependence information. The initial surface was partially oxidized from air exposure. Both DRS and XPS showed the Al-rich near surface and the presence of N in the subsurface. As shown by DRS and MSRI, oxidation at elevated temperatures yielded surface nitrogen loss and Ti enrichment. XPS confirmed the preferential formation of TiO 2 on the surface. This study also provides a comparison between the direct recoil (neutrals and ions) and the ionic recoil signals. In our conditions, the negative ionic fraction of all elements except H tracks their true surface content variations given by DRS. The results were compared with early work performed on identical samples. In this case the TiAlN film was oxidized with an O 2 pressure in the mTorr range and the surface changes are followed in situ by positive MSRI and XPS. This experiment also indicates that Al and N are buried under TiO 2 but from 600 deg. C

  4. Photoproduction of pions on nuclear in chiral bag model with account of motion effects of recoil nucleon

    International Nuclear Information System (INIS)

    Dorokhov, A.E.; Kanokov, Z.; Musakhanov, M.M.; Rakhimov, A.M.

    1989-01-01

    Pion production on a nucleon is studied in the chiral bag model (CBM). A CBM version is investigated in which the pions get into the bag and interact with quarks in a pseudovector way in the entire volume. Charged pion photoproduction amplitudes are found taking into account the recoil nucleon motion effects. Angular and energy distributions of charged pions, polarization of the recoil nucleon, multipoles are calculated. The recoil effects are shon to give an additional contribution to the static approximation of order of 10-20%. At bag radius value R=1 in the calculations are consistent with the experimental data

  5. Proceedings of the symposium on measurements of neutron energy spectra using recoil proton proportional counters

    International Nuclear Information System (INIS)

    Urabe, Itsumasa

    1986-01-01

    This is a report of the symposium on measurements of neutron energy spectra using recoil proton proportional counters held at the Research Reactor Institute of Kyoto University on January 27 in 1986. An energy resolution, wall effects of response functions, n · γ discrimination methods and other fundamental properties of recoil proton counters are discussed for a new development of an application of this counter. (author)

  6. Relationship between loss in parenchymal elastic recoil pressure and maximal airway narrowing in subjects with alpha1-antitrypsin deficiency

    NARCIS (Netherlands)

    Cheung, D.; Schot, R.; Zwinderman, A. H.; Zagers, H.; Dijkman, J. H.; Sterk, P. J.

    1997-01-01

    Airway hyperresponsiveness is characterized by an increase in sensitivity and excessive airway narrowing to inhaled bronchoconstrictor stimuli. There is experimental evidence that maximal airway narrowing is related to lung elasticity in normal and asthmatic subjects. We hypothesized that reduced

  7. Magneto optical trap recoil ion momentum spectroscopy: application to ion-atom collisions

    International Nuclear Information System (INIS)

    Blieck, J.

    2008-10-01

    87 Rb atoms have been cooled, trapped and prepared as targets for collision studies with 2 and 5 keV Na + projectiles. The physics studied deals with charge exchange processes. The active electron, which is generally the most peripheral electron of the atomic target, is transferred from the target onto the ionic projectile. The ionized target is called recoil ion. The technique used to study this physics is the MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) technique, which combines a magneto optical trap and a recoil ion momentum spectrometer. The spectrometer is used for the measurement of the recoil ions momentum, which gives access to all the information of the collision: the Q-value (which is the potential energy difference of the active electron on each particle) and the scattering angle of the projectile. The trap provides extremely cold targets to optimize the measurement of the momentum, and to release the latter from thermal motion. Through cinematically complete experiments, the MOTRIMS technique gives access to better resolutions on momentum measurements. Measurements of differential cross sections in initial and final capture states and in scattering angle have been done. Results obtained for differential cross sections in initial and final states show globally a good agreement with theory and an other experiment. Nevertheless, discrepancies with theory and this other experiment are shown for the measurements of doubly differential cross sections. These discrepancies are not understood yet. The particularity of the experimental setup designed and tested in this work, namely a low background noise, allows a great sensitivity to weak capture channels, and brings a technical and scientific gain compared with previous works. (author)

  8. Fractional momentum transfer in incomplete fusion reaction: measurement of recoil range distributions in 20Ne + 159Tb system

    International Nuclear Information System (INIS)

    Ali, R.; Singh, D.; Pachouri, Dipti; Afzal Ansari, M.; Rashid, M.H.

    2007-01-01

    The recoil range distribution (RRD) of several residues have been measured for the system 20 Ne + 159 Tb at 165 MeV beam energy by collecting the recoiling residues in the Al-catcher foils of varying thickness

  9. Constraints on the Nature of CID-42: Recoil Kick or Supermassive Black Hole Pair?

    Science.gov (United States)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2012-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. An apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsecscale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity approximately greater than 1300 km s(exp -1). Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk approximately greater than 2000 km s(exp -1)). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton-thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially-resolved spectra that can pinpoint the origin of the broad and narrow line features will be critical for determining the nature of this unique source.

  10. Optimizing recoil-isomer tagging with the Argonne fragment mass analyzer

    International Nuclear Information System (INIS)

    Garnsworthy, A.B.; Lister, C.J.; Regan, P.H.; Blank, B.B.; Cullen, I.J.; Gros, S.; Henderson, D.J.; Jones, G.A.; Liu, Z.; Seweryniak, D.; Shumard, B.R.; Thompson, N.J.; Williams, S.J.; Zhu, S.

    2008-01-01

    A new focal plane detector arrangement for the Fragment Mass Analyzer (FMA) has been built and tested at Argonne National Laboratory. This set-up is particularly sensitive for performing Recoil-Isomer Tagging on nuclei with isomeric states with lifetimes in the microsecond range. Recoiling nuclei from fusion-evaporation reactions at the target position are dispersed by their ratio of mass to charge (A/q) by the FMA and stopped in low pressure gas (air) at the focal plane. Subsequent gamma decays from isomeric states in the reaction products are observed using Ge detectors. A constant gas flow through the focal plane chamber efficiently removes longer-lived beta-decaying species from sight of the detectors. This set-up has been commissioned successfully with the microsecond isomer in 80 Rb, populated via the 52 Cr( 32 S, 3pn) reaction at 135 MeV

  11. Recoil range distribution measurement in 20Ne + 181Ta reaction

    International Nuclear Information System (INIS)

    Tripathi, R.; Sudarshan, K.; Goswami, A.; Guin, R.; Reddy, A.V.R.

    2005-01-01

    In order to investigate linear momentum transfer in various transfer channels in 20 Ne + 181 Ta, recoil range distribution measurements have been carried out at E lab = 180 MeV, populating significant number of l-waves above l crit

  12. Implantation of 111In in NTDSi by heavy ion recoil technique

    International Nuclear Information System (INIS)

    Thakare, S.V.; Tomar, B.S.

    1998-01-01

    Heavy ion recoil implantation technique has been used to implant 111 In in n-type silicon using medium energy heavy ion accelerator Pelletron, at TIFR, Colaba, Mumbai. The nuclear reaction used for this purpose was 109 Ag( 7 Li,p4n) 111 In. The beam energy was optimised to be 50 MeV for maximum concentration of the implanted probe atoms. The gamma-ray spectrum of the implanted sample after 24 hours was found to contain only 171 and 245 keV gamma rays of 111 In. The penetration depth of ion is increased to 1.6 μm by heavy ion recoil implantation technique as compared to 0.16 μm with the conventional ion implantation technique. (author)

  13. Binary black holes: Spin dynamics and gravitational recoil

    International Nuclear Information System (INIS)

    Herrmann, Frank; Hinder, Ian; Shoemaker, Deirdre M.; Laguna, Pablo; Matzner, Richard A.

    2007-01-01

    We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are antialigned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with antialigned spins to fit the parameters in the Kidder kick formula, and verify that the recoil in the direction of the orbital angular momentum is ∝sinθ and on the orbital plane ∝cosθ, with θ the angle between the spin directions and the orbital angular momentum. We also find that the black hole spins can be well estimated by evaluating the isolated horizon spin on spheres of constant coordinate radius

  14. Consistent empirical physical formula construction for recoil energy distribution in HPGe detectors by using artificial neural networks

    International Nuclear Information System (INIS)

    Akkoyun, Serkan; Yildiz, Nihat

    2012-01-01

    The gamma-ray tracking technique is a highly efficient detection method in experimental nuclear structure physics. On the basis of this method, two gamma-ray tracking arrays, AGATA in Europe and GRETA in the USA, are currently being tested. The interactions of neutrons in these detectors lead to an unwanted background in the gamma-ray spectra. Thus, the interaction points of neutrons in these detectors have to be determined in the gamma-ray tracking process in order to improve photo-peak efficiencies and peak-to-total ratios of the gamma-ray peaks. In this paper, the recoil energy distributions of germanium nuclei due to inelastic scatterings of 1–5 MeV neutrons were first obtained by simulation experiments. Secondly, as a novel approach, for these highly nonlinear detector responses of recoiling germanium nuclei, consistent empirical physical formulas (EPFs) were constructed by appropriate feedforward neural networks (LFNNs). The LFNN-EPFs are of explicit mathematical functional form. Therefore, the LFNN-EPFs can be used to derive further physical functions which could be potentially relevant for the determination of neutron interactions in gamma-ray tracking process.

  15. Performance of the Recoil Mass Spectrometer and its detector systems at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Gross, C.J.; Ginter, T.N.; Shapira, D.; Milner, W.T.; McConnell, J.W.; James, A.N.; Johnson, J.W.; Mas, J.; Mantica, P.F.; Auble, R.L.; Das, J.J.; Blankenship, J.L.; Hamilton, J.H.; Robinson, R.L.; Akovali, Y.A.; Baktash, C.; Batchelder, J.C.; Bingham, C.R.; Brinkman, M.J.; Carter, H.K.; Cunningham, R.A.; Davinson, T.; Fox, J.D.; Galindo-Uribarri, A.; Grzywacz, R.; Liang, J.F.; MacDonald, B.D.; MacKenzie, J.; Paul, S.D.; Piechaczek, A.; Radford, D.C.; Ramayya, A.V.; Reviol, W.; Rudolph, D.; Rykaczewski, K.; Toth, K.S.; Weintraub, W.; Williams, C.; Woods, P.J.; Yu, C.-H.; Zganjar, E.F.

    2000-01-01

    The recently commissioned Recoil Mass Spectrometer (RMS) at the Holifield Radioactive Ion Beam Facility (HRIBF) is described. Consisting of a momentum separator followed by an E-D-E Rochester-type mass spectrometer, the RMS is the centerpiece of the nuclear structure endstation at the HRIBF. Designed to transport ions with rigidities near K=100, the RMS has acceptances of ±10% in energy and ±4.9% in mass-to-charge ratio. Recent experimental results are used to illustrate the detection capabilities of the RMS, which is compatible with many detectors and devices

  16. DVCS at HERMES. The recoil detector and transverse target spin asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Murray, M.J.

    2008-02-15

    The HERMES experiment is a large forward angle spectrometer located at the HERA accelerator ring at DESY, Hamburg. One of the most exciting topics studied at HERMES is Deeply Virtual Compton Scattering (DVCS) which is the simplest interaction that provides a gateway for access to Generalised Parton Distributions (GPDs). GPDs are a theoretical framework which can be used to calculate the total angular momentum of the quarks in the nucleon. As such, they provide one piece of the puzzle of nucleonic spin structure. In 2005, HERMES was upgraded in the target region with a Recoil Detector that allows it to make truly exclusive measurements of the DVCS interaction for the first time. The design and construction of the Recoil Detector is discussed herein, in addition to a complete analysis of the Transverse Target Spin Asymmetry (TTSA) in DVCS. Experimental facilities that enable measurement of this asymmetry are rare. The importance of the information on the TTSA from HERMES is made yet greater as the transversely polarised target that allows the asymmetry to be measured has been replaced by an unpolarised target. This was to allow the Recoil Detector to be installed. The final stage of this thesis shows a model-dependent method for constraining the angular momentum of the quarks in the nucleon and speculates as to the other pieces of the spin puzzle. (orig.)

  17. DVCS at HERMES. The recoil detector and transverse target spin asymmetries

    International Nuclear Information System (INIS)

    Murray, M.J.

    2008-02-01

    The HERMES experiment is a large forward angle spectrometer located at the HERA accelerator ring at DESY, Hamburg. One of the most exciting topics studied at HERMES is Deeply Virtual Compton Scattering (DVCS) which is the simplest interaction that provides a gateway for access to Generalised Parton Distributions (GPDs). GPDs are a theoretical framework which can be used to calculate the total angular momentum of the quarks in the nucleon. As such, they provide one piece of the puzzle of nucleonic spin structure. In 2005, HERMES was upgraded in the target region with a Recoil Detector that allows it to make truly exclusive measurements of the DVCS interaction for the first time. The design and construction of the Recoil Detector is discussed herein, in addition to a complete analysis of the Transverse Target Spin Asymmetry (TTSA) in DVCS. Experimental facilities that enable measurement of this asymmetry are rare. The importance of the information on the TTSA from HERMES is made yet greater as the transversely polarised target that allows the asymmetry to be measured has been replaced by an unpolarised target. This was to allow the Recoil Detector to be installed. The final stage of this thesis shows a model-dependent method for constraining the angular momentum of the quarks in the nucleon and speculates as to the other pieces of the spin puzzle. (orig.)

  18. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    Underlying ion-beam modification of surfaces is the more basic subject of particle-surface interaction. The ideas can be grouped into forward and backward features, i.e. those affecting the interior of the target and those leading to particle expulsion. Forward effects include the stopping of the incident particles and the deposition of energy, both governed by integral equations which are easily set up but difficult to solve. Closely related is recoil implantation where emphasis is placed not on the stopping of the incident particles but on their interaction with target atoms with resulting implantation of these atoms. Backward effects, all of which are denoted as sputtering, are in general either of collisional, thermal, electronic, or exfoliational origin. (Auth.)

  19. Use of nuclear recoil for separating 228Ra, 224Ra, and 233Pa from colloidal thorium

    International Nuclear Information System (INIS)

    Beydon, J.; Gratot, I.

    1968-01-01

    By using α-recoil it is possible to separate by dialysis the α disintegration products (224 Ra; 228 Ra) of thorium from colloidal thorium hydroxide.The use of n, γ recoil allows the separation of 233 Pa produced by the neutron irradiation of thorium, on condition that the colloidal thorium hydroxide is irradiated in the presence of a dispersing. (author) [fr

  20. Electrochemical etching amplification of low-let recoil particle tracks in polymers for fast neutron dosimetry

    International Nuclear Information System (INIS)

    Sohrabi, M.; Morgan, K.Z.

    1975-11-01

    An electrochemical etching method for the amplification of fast-neutron-induced recoil particle tracks in polymers was investigated. The technique gave superior results over those obtained by conventional etching methods especially when polycarbonate foils were used for recoil particle track amplification. Electrochemical etching systems capable of multi-foil processing were designed and constructed to demonstrate the feasibility of the techniques for large-scale neutron dosimetry. Electrochemical etching parameters were studied including the nature or type of the polymer foil used, foil thickness and its effect on etching time, the applied voltage and its frequency, the chemical composition, concentration, and temperature of the etchant, distance and angle between the electrodes, and the type of particles such as recoil particles including protons. Recoil particle track density, mean track diameter, and optical density as functions of the mentioned parameters were determined. Each parameter was found to have a distinct effect on the etching results in terms of the measured responses. Several new characteristics of this fast neutron dosimetry method were studied especially for personnel dosimetry using various radiation sources such as nuclear reactors, medical cyclotrons, and isotopic neutron sources. The dose range, neutron energy dependence, directional response, fading characteristics, neutron threshold energy, etc. were investigated

  1. Recoil velocity at second post-Newtonian order for spinning black hole binaries

    International Nuclear Information System (INIS)

    Racine, Etienne; Buonanno, Alessandra; Kidder, Larry

    2009-01-01

    We compute the flux of linear momentum carried by gravitational waves emitted from spinning binary black holes at second post-Newtonian (2PN) order for generic orbits. In particular we provide explicit expressions of three new types of terms, namely, next-to-leading order spin-orbit terms at 1.5 post-Newtonian (1.5PN) order, spin-orbit tail terms at 2PN order, and spin-spin terms at 2PN order. Restricting ourselves to quasicircular orbits, we integrate the linear-momentum flux over time to obtain the recoil velocity as function of orbital frequency. We find that in the so-called superkick configuration the higher-order spin corrections can increase the recoil velocity up to a factor ∼3 with respect to the leading-order PN prediction. Whereas the recoil velocity computed in PN theory within the adiabatic approximation can accurately describe the early inspiral phase, we find that its fast increase during the late inspiral and plunge, and the arbitrariness in determining until when it should be trusted, makes the PN predictions for the total recoil not very accurate and robust. Nevertheless, the linear-momentum flux at higher PN orders can be employed to build more reliable resummed expressions aimed at capturing the nonperturbative effects until merger. Furthermore, we provide expressions valid for generic orbits, and accurate at 2PN order, for the energy and angular momentum carried by gravitational waves emitted from spinning binary black holes. Specializing to quasicircular orbits we compute the spin-spin terms at 2PN order in the expression for the evolution of the orbital frequency and found agreement with Mikoczi, Vasuth, and Gergely. We also verified that in the limit of extreme mass ratio our expressions for the energy and angular momentum fluxes match the ones of Tagoshi, Shibata, Tanaka, and Sasaki obtained in the context of black hole perturbation theory.

  2. Treatment for the recoil effects of the multi-step heavy-ion nucleon transfers with the orthogonalized coupled-reaction-channel theory

    International Nuclear Information System (INIS)

    Misono, S.; Imanishi, B.

    1997-02-01

    We have investigated recoil effects in heavy-ion reactions for the nucleon transfers, and the validity of the spatially local approximation for the non-local transfer interaction defined by the orthogonalized coupled-reaction-channel (OCRC) theory. This approximation makes it easier to treat multi-step transfer processes with the coupled channel method and makes it possible to define the nucleon molecular orbitals with the inclusion of the recoil effects. The transfer interaction is expanded in a power series of the momentum operator, and is approximated by the first order term, i.e., the spatially local term. The numerical calculation for the core-symmetric systems 12 C+ 13 C and 16 O+ 17 O with this approximation shows that the recoil effects are well included in the results at energies lower than a few MeV/nucleon. Furthermore, the OCRC formalism allows us even to employ the complete no-recoil approximation for the calculation of cross sections, even though it is not adequate to use this approximation in the distorted wave Born approximation (DWBA) method. As to polarization, however, the no-recoil approximation is not good even in the OCRC formalism. We discuss the recoil effects on nucleon molecular-orbital states. It is shown that states of the covalent molecular orbitals of the valence (transferred) nucleon are little affected by the recoil effects, as already suggested by Korotky et al. in the full finite-range DWBA analysis of the transfer reaction, 13 C( 13 C, 12 C) 14 C. (author). 59 refs

  3. WIMP detection and slow ion dynamics in carbon nanotube arrays

    CERN Document Server

    Cavoto, G.; Cocina, F.; Ferretti, J.; Polosa, A.D.

    2016-06-24

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (~ 10 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with ...

  4. Proton-recoil proportional-counter array for neutron-image construction

    International Nuclear Information System (INIS)

    Fink, C.L.; Eichholz, J.J.; DeVolpi, A.

    1984-01-01

    The fuel-motion measurement capability of the fast-neutron hodoscope has been upgraded by the addition of a 360-detector proton-recoil proportional-counter array, which detects high-energy fission neutrons. The current sensitive amplifier/discriminator module for each detector fits into a 12.7 by 12.7 by 102 mm package and cost less than $100 per module. It has a 50 ns rise time, a noise level of 100 nA, and a deadtime per event of 200 ns. Provision has been provided for the independent adjustment of the input current versus discriminator voltage for each module. The new proportional-counters cost approximately $400 each. Each detector has been tested to have the same gain versus voltage response. A space-charge model relating count-rate changes to space-charge effects has also been developed. The new detector array has been operational for approximately two years and has become the main detector system in fuel-motion analysis. It has significantly improved the linearity, stability, count-rate capability, and setup ease of the hodoscope

  5. Elastic energy within the human plantar aponeurosis contributes to arch shortening during the push-off phase of running.

    Science.gov (United States)

    Wager, Justin C; Challis, John H

    2016-03-21

    During locomotion, the lower limb tendons undergo stretch and recoil, functioning like springs that recycle energy with each step. Cadaveric testing has demonstrated that the arch of the foot operates in this capacity during simple loading, yet it remains unclear whether this function exists during locomotion. In this study, one of the arch׳s passive elastic tissues (the plantar aponeurosis; PA) was investigated to glean insights about it and the entire arch of the foot during running. Subject specific computer models of the foot were driven using the kinematics of eight subjects running at 3.1m/s using two initial contact patterns (rearfoot and non-rearfoot). These models were used to estimate PA strain, force, and elastic energy storage during the stance phase. To examine the release of stored energy, the foot joint moments, powers, and work created by the PA were computed. Mean elastic energy stored in the PA was 3.1±1.6J, which was comparable to in situ testing values. Changes to the initial contact pattern did not change elastic energy storage or late stance PA function, but did alter PA pre-tensioning and function during early stance. In both initial contact patterns conditions, the PA power was positive during late stance, which reveals that the release of the stored elastic energy assists with shortening of the arch during push-off. As the PA is just one of the arch׳s passive elastic tissues, the entire arch may store additional energy and impact the metabolic cost of running. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Readout technologies for directional WIMP Dark Matter detection

    International Nuclear Information System (INIS)

    Battat, J.B.R.; Irastorza, I.G.; Aleksandrov, A.; Asada, T.; Baracchini, E.; Billard, J.; Bosson, G.; Bourrion, O.; Bouvier, J.; Buonaura, A.; Burdge, K.; Cebrián, S.

    2016-01-01

    The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.

  7. Influence of Zircaloy cladding composition on hydride formation during aqueous hydrogen charging

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekhara, S. [Intel Corporation, 2501 NW 229th Av., Hillsboro, OR 97124 (United States); Kotula, P.G.; Enos, D.G.; Doyle, B.L. [Sandia National Laboratories, Albuquerque, NM, 87185 (United States); Clark, B.G., E-mail: blyclar@sandia.gov [Sandia National Laboratories, Albuquerque, NM, 87185 (United States)

    2017-06-15

    Although hydrogen uptake in Zirconium (Zr) based claddings has been a topic of many studies, hydrogen uptake as a function of alloy composition has received little attention. In this work, commercial Zr-based cladding alloys (Zircaloy-2, Zircaloy-4 and ZIRLO™), differing in composition but with similar initial textures, grain sizes, and surface roughness, were aqueously charged with hydrogen for 100, 300, and 1000 s at nominally 90 °C to produce hydride layers of varying thicknesses. Transmission electron microscope characterization following aqueous charging showed hydride phase and orientation relationship were identical in all three alloys. However, elastic recoil detection measurements confirmed that surface hydride layers in Zircaloy-2 and Zircaloy-4 were an order of magnitude thicker relative to ZIRLO™. - Highlights: •Aqueous charging was performed to produce a layer of zirconium hydride for three different Zr-alloy claddings. •Hydride thicknesses were analyzed by elastic recoil detection and transmission electron microscopy. •Zircaloy-2 and Zircaloy-4 formed thicker hydride layers than ZIRLO™ for the same charging durations.

  8. A Measurement of the Recoil Polarization of Electroproduced Λ(1116)

    Energy Technology Data Exchange (ETDEWEB)

    McAleer, Simeon B. [Florida State Univ., Tallahassee, FL (United States)

    2002-01-01

    The CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Laboratory was used to study the reaction e + p → e' + K+ + Λ(1116) for events where Λ(1116) subsequently decayed via the channel Λ(1116) → p + π-. Data were taken at incident electron beam energies of 2.5, 4.0, and 4.2 GeV during the 1999 E1C run period. They hyperon production spectra span the Q2 range from 0.5 to 2.8 GeV2 and nearly the entire range in the center of mass angles. The proton angular distribution in the Λ(1116) rest frame is used to deduce the recoil polarization of the hyperon, and the W and cos θ$K+\\atop{cm}$ dependence of the recoil polarization will be presented. The data show sizeable negative polarizations for the Λ(1116) as a function of both cos θ$K+\\atop{cm}$ and W.

  9. Techniques for measuring the atomic recoil frequency using a grating-echo atom interferometer

    Science.gov (United States)

    Barrett, Brynle

    I have developed three types of time-domain echo atom interferometer (AIs) that use either two or three standing-wave pulses in different configurations. Experiments approaching the transit time limit are achieved using samples of laser-cooled rubidium atoms with temperatures AI. This interferometer uses two standing-wave pulses applied at times t = 0 and t = T 21 to create a superposition of atomic momentum states differing by multiples of the two-photon momentum, ħq = 2 ħk where k is the optical wave number, that interfere in the vicinity of t = 2T 21. This interference or "echo" manifests itself as a density grating in the atomic sample, and is probed by applying a near-resonant traveling-wave "read-out" pulse and measuring the intensity of the coherent light Bragg-scattered in the backward direction. The scattered light from the grating is associated with a λ/2-periodic modulation produced by the interference of momentum states differing by ħq. Interfering states that differ by more than ħq—which produce higher-frequency spatial modulation within the sample—cannot be detected due to the nature of the Bragg scattering detection technique employed in the experiment. The intensity of the scattered light varies in a periodic manner as a function of the standing-wave pulse separation, T21. The fundamental frequency of this modulation is the two-photon atomic recoil frequency, ω q = ħq2/2M, where q = 2k and M is the mass of the atom (a rubidium isotope in this case). The recoil frequency, ω q, is related to the recoil energy, Eq = ħωq, which is the kinetic energy associated with the recoil of the atom after a coherent two-photon scattering process. By performing the experiment on a suitably long time scale ( T21 >> τq = π/ω q ˜32 μs), ωq can be measured precisely. Since ωq contains the ratio of Planck's constant to the mass of the atom, h/M, a precise measurement of ωq can be used as a strict test of quantum theories of the electromagnetic force

  10. Calculations of charged-particle recoils, slowing-down spectra, LET and event-size distributions for fast neutrons and comparisons with measurements

    International Nuclear Information System (INIS)

    Borak, T.B.; Stinchcomb, T.G.

    1979-01-01

    A rapid system has been developed for computing charged-particle distributions generated in tissue by any neutron spectra less than 4 MeV. Oxygen and carbon recoils were derived from R-matrix theory, and hydrogen recoils were obtained from cross-section evaluation. Application to two quite different fission-neutron spectra demonstrates the flexibility of this method for providing spectral details of the different types of charged-particle recoils. Comparisons have been made between calculations and measurements of event-size distributions for a sphere of tissue 1 μm in diameter irradiated by these two neutron spectra. LET distributions have been calculated from computed charged-particle recoils and also derived from measurements using the conventional approximation that all charged particles traverse the chamber. The limitations of the approximation for these neutron spectra are discussed. (author)

  11. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    Science.gov (United States)

    Finlay, P.; Breitenfeldt, M.; Porobić, T.; Wursten, E.; Ban, G.; Beck, M.; Couratin, C.; Fabian, X.; Fléchard, X.; Friedag, P.; Glück, F.; Herlert, A.; Knecht, A.; Kozlov, V. Y.; Liénard, E.; Soti, G.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2016-07-01

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β^+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2ns and position resolution of 0.1mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.

  12. Velocity dependence of transient hyperfine field at Pt ions rapidly recoiling through magnetized Fe

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, C.G.; Bolotin, H.H.

    1981-01-01

    The velocity-dependence of the transient hyperfine magnetic field acting at nuclei of 196 Pt ions rapidly recoiling through thin magnetized Fe was investigated at a number of recoil velocities. The state of interest (2 1 + ) was populated by Coulomb excitation using beams of 80- and 120-MeV 32 S and 150- and 220-MeV 58 Ni ions. The 2 1 + →0 1 + γ-ray angular distribution precession measurements were carried out in coincidence with backscattered projectiles. From these results, the strength of the transient field acting on Pt ions recoiling through magnetized Fe with average velocities in the extended range 2.14<=v/vsub(o)<=4.82 (vsub(o) = c/137) was found to be consistent with a linear velocity dependence and to be incompatible with the specific vsup(0.45+-0.18) dependence which has been previously reported to account well for all ions in the mass range from oxygen through samarium. This seemingly singular behaviour for Pt and other ions in the Pt mass vicinity is discussed

  13. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  14. Fabrication and testing of the recoil mass spectrometer at Bombay ...

    Indian Academy of Sciences (India)

    A recoil mass spectrometer (RMS) has been designed, fabricated and installed ... first order and only mass dispersion is obtained at the focal plane of the ... more details, like, the specifications and a typical beam profile through the ... Further experiments are now in progress to characterize the spectrometer, i.e., to measure.

  15. Metamaterials-based sensor to detect and locate nonlinear elastic sources

    Energy Technology Data Exchange (ETDEWEB)

    Gliozzi, Antonio S.; Scalerandi, Marco [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Miniaci, Marco; Bosia, Federico [Department of Physics, University of Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Pugno, Nicola M. [Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo (Trento) (Italy); School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2015-10-19

    In recent years, acoustic metamaterials have attracted increasing scientific interest for very diverse technological applications ranging from sound abatement to ultrasonic imaging, mainly due to their ability to act as band-stop filters. At the same time, the concept of chaotic cavities has been recently proposed as an efficient tool to enhance the quality of nonlinear signal analysis, particularly in the ultrasonic/acoustic case. The goal of the present paper is to merge the two concepts in order to propose a metamaterial-based device that can be used as a natural and selective linear filter for the detection of signals resulting from the propagation of elastic waves in nonlinear materials, e.g., in the presence of damage, and as a detector for the damage itself in time reversal experiments. Numerical simulations demonstrate the feasibility of the approach and the potential of the device in providing improved signal-to-noise ratios and enhanced focusing on the defect locations.

  16. Metamaterials-based sensor to detect and locate nonlinear elastic sources

    International Nuclear Information System (INIS)

    Gliozzi, Antonio S.; Scalerandi, Marco; Miniaci, Marco; Bosia, Federico; Pugno, Nicola M.

    2015-01-01

    In recent years, acoustic metamaterials have attracted increasing scientific interest for very diverse technological applications ranging from sound abatement to ultrasonic imaging, mainly due to their ability to act as band-stop filters. At the same time, the concept of chaotic cavities has been recently proposed as an efficient tool to enhance the quality of nonlinear signal analysis, particularly in the ultrasonic/acoustic case. The goal of the present paper is to merge the two concepts in order to propose a metamaterial-based device that can be used as a natural and selective linear filter for the detection of signals resulting from the propagation of elastic waves in nonlinear materials, e.g., in the presence of damage, and as a detector for the damage itself in time reversal experiments. Numerical simulations demonstrate the feasibility of the approach and the potential of the device in providing improved signal-to-noise ratios and enhanced focusing on the defect locations

  17. Coincident detection of electrons ejected at large angles and target recoil ions produced in multiply ionizing collisions for the 1-MeV/u Oq++Ar collision system

    International Nuclear Information System (INIS)

    Gaither III, C.C.; Breinig, M.; Berryman, J.W.; Hasson, B.F.; Richards, J.D.; Price, K.

    1993-01-01

    The angular distributions of energetic electrons ejected at angles between 45 degree and 135 degree with respect to the incident-beam direction have been measured in coincidence with the charge states of the target recoil ions produced in multiply ionizing collisions for the 1-MeV/u O q+ (q=4,7)+Ar collision systems. These measurements have been made for ∼179-, ∼345-, and ∼505-eV electrons. Additionally, the energy distributions of electrons ejected into specific angular regions have been measured. Ar LMM satellite Auger electrons appear as a peak in the energy spectrum of electrons ejected at all large angles. The center of this peak is found at an electron energy of ∼179 eV. Electrons with ∼179 eV energy, ejected at large angles, are preferentially produced in coincidence with recoil ions of charge state 4+. Electrons with ∼345 eV energy and ∼505 eV energy ejected at large angles are preferentially produced in coincidence with recoil ions of charge state 3+. The angular distributions for these electrons are strongly peaked in the forward direction; essentially no electrons are observed at angles larger than 90 degree. These results are consistent with the dominant production mechanism for energetic electrons ejected at large angles being a binary-encounter process. Differential cross sections have been calculated from these angular distributions. They are on the order of 10 -21 cm 2 /(eV sr)

  18. Modeling and Measurement of 39Ar Recoil Loss From Biotite as a Function of Grain Dimensions

    Science.gov (United States)

    Paine, J. H.; Nomade, S.; Renne, P. R.

    2004-12-01

    The call for age measurements with less than 1 per mil error puts a demand upon geochronologists to be aware of and quantify a number of problems which were previously negligible. One such factor is 39Ar recoil loss during sample irradiation, a phenomenon which is widely assumed to affect only unusually small crystals having exceptionally high surface/volume ratios. This phenomenon has important implications for thermochronologic studies seeking to exploit a range of closure temperatures arising from variable diffusion radii. Our study focuses on biotite, in which spatial isotope distributions cannot be reliably recovered by stepwise heating and which therefore lack recoil-diagnostic age spectrum behavior. Previous work by Renne et al. [Application of a deuteron-deuteron (D-D) neutron generator to 40Ar/39Ar geochronology, Applied Radiation and Isotopes, in press] used the SRIM code to calculate a ˜20% 39Ar recoil loss from the outermost 0.25 μ m of an infinite slab of phyllosillicate. This result is applied to measured grains of the biotite standard GA1550, a hypabyssal granite from the Mount Dromedary Complex, Australia. We measure the thickness and surface area of 166 grains and approximate the shape of each grain as a cylinder. Grain thickness ranges from 3 to 210 μ m, with an average grain radius of 350 μ m. We predict the amount of 39Ar recoil loss from each grain, finding an expected age error >0.1 % for grains thinner than 150 μ m, a >1% error for grain less than 10 μ m thick, and up to a 3% error for grains less than 3 μ m thick. These modeling results will be tested by analysis of the measured grains after irradiation in the Oregon State University TRIGA reactor. It is important to either account for 39Ar loss in thin biotite grains, or use sufficiently thick ones so that recoil loss is negligible. Our results indicate that only biotite grains thicker than 150 μ m should be used for neutron fluence monitoring in order to avoid bias greater than the

  19. The morphology of collision cascades as a function of recoil energy

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Singh, B.N.

    1989-09-01

    An analytical method based on defect densities has been devised to determine the threshold energies for subcascade formation in computer simulated collision cascades. Cascades generated with the binary collision code MARLOWE in Al, Cu, Ag, Au, Fe, Mo and W were analyzed to determine the threshold energy for subcascade formation, the number of subcascades per recoil per unit energy and the average spacing of subcascades. Compared on the basis of reduced damage energy, metals of the same crystal structure have subcascade thresholds at the same reduced energy. The number of subcascades per unit reduced damage energy is about the same for metals of the same crystal structure, and the average spacing of subcascades is about the same in units of lattice parameters. Comparisons between subcascade threshold energies and average recoil energies in fission and fusion neutron environments show the spectral sensitivity of the formation of subcascades

  20. Development of a digital trigger system to identify recoil protons at COMPASS-II

    Energy Technology Data Exchange (ETDEWEB)

    Buechele, Maximilian; Fischer, Horst; Gorzellik, Matthias; Grussenmeyer, Tobias; Herrmann, Florian; Joerg, Philipp; Koenigsmann, Kay; Kremser, Paul; Schopferer, Sebastian [Albert-Ludwigs-Universitaet Freiburg (Germany)

    2014-07-01

    The GANDALF framework has been developed to deliver a high precision, high performance detector readout and trigger system for particle physics experiments such as the COMPASS-II experiment at CERN. Combining the high performance pulse digitization and feature extraction capabilities of twelve GANDALF modules, each comprising a Virtex-5 SX95T, with the strong computation power of a Virtex-6 SX315T FGPA operated on the TIGER module, we present a digital trigger system for a recoil proton detector. The trigger system was setup and commissioned successfully during a data taking period in 2012. It was mainly used for the calibration of the recoil proton detector and in tagging mode to identify proton tracks online.

  1. First β-ν correlation measurement from the recoil-energy spectrum of Penning trapped Ar35 ions

    Science.gov (United States)

    Van Gorp, S.; Breitenfeldt, M.; Tandecki, M.; Beck, M.; Finlay, P.; Friedag, P.; Glück, F.; Herlert, A.; Kozlov, V.; Porobic, T.; Soti, G.; Traykov, E.; Wauters, F.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2014-08-01

    We demonstrate a novel method to search for physics beyond the standard model by determining the β-ν angular correlation from the recoil-ion energy distribution after β decay of ions stored in a Penning trap. This recoil-ion energy distribution is measured with a retardation spectrometer. The unique combination of the spectrometer with a Penning trap provides a number of advantages, e.g., a high recoil-ion count rate and low sensitivity to the initial position and velocity distribution of the ions and completely different sources of systematic errors compared to other state-of-the-art experiments. Results of a first measurement with the isotope Ar35 are presented. Although currently at limited precision, we show that a statistical precision of about 0.5% is achievable with this unique method, thereby opening up the possibility of contributing to state-of-the-art searches for exotic currents in weak interactions.

  2. Origin of open recoil curves in L1_0-A1 FePt exchange coupled nanocomposite thin film

    International Nuclear Information System (INIS)

    Goyal, Rajan; Kapoor, Akanksha; Lamba, S.; Annapoorni, S.

    2016-01-01

    Mixed phase FePt systems with intergranular coupling may be looked upon as natural exchange spring systems. The coupling strength between the soft and hard phase in these systems can be analyzed using recoil curves. However, the origin of open recoil curves depicting the breakdown of exchange coupling or anisotropy variation in hard phase is still an ambiguity and requires an in-depth analysis. In order to investigate this, an analysis of the recoil curves for L1_0–A1 FePt nanocomposite thin films of varying thickness have been performed. The switching field distribution reveals that the maximum of openness of recoil curve is directly proportional to the amount of uncoupled soft phase present in the system. The coupling between the hard and soft phase is also found to increase with the thickness of the film. Monte Carlo simulations on a model three dimensional array of interacting nanomagnetic grains provide further insight into the effect of inter granular exchange interactions between the soft and hard phases. - Highlights: • L1_0-A1 FePt nanocomposites thin films of different thickness have been fabricated by DC sputtering. • Hysteresis curve measurements exhibit perfect single phase (L1_0) like behavior for thicker films. • SFD reveals that the openness of recoil curves is directly linked with the amount of uncoupled soft (A1) phase. • Monte Carlo simulation predicts that the extent of exchange interaction increases with thickness of the film.

  3. Elasticity in Elastics-An in-vitro study.

    Science.gov (United States)

    Kamisetty, Supradeep Kumar; Nimagadda, Chakrapani; Begam, Madhoom Ponnachi; Nalamotu, Raghuveer; Srivastav, Trilok; Gs, Shwetha

    2014-04-01

    Orthodontic tooth movement results from application of forces to teeth. Elastics in orthodontics have been used both intra-orally and extra- orally to a great effect. Their use, combined with good patient co-operation provides the clinician with the ability to correct both anteroposterior and vertical discrepancies. Force decay over a period of time is a major problem in the clinical usage of latex elastics and synthetic elastomers. This loss of force makes it difficult for the clinician to determine the actual force transmitted to the dentition. It's the intent of the clinician to maintain optimal force values over desired period of time. The majority of the orthodontic elastics on the market are latex elastics. Since the early 1990s, synthetic products have been offered in the market for latex-sensitive patients and are sold as nonlatex elastics. There is limited information on the risk that latex elastics may pose to patients. Some have estimated that 0.12-6% of the general population and 6.2% of dental professionals have hypersensitivity to latex protein. There are some reported cases of adverse reactions to latex in the orthodontic population but these are very limited to date. Although the risk is not yet clear, it would still be inadvisable to prescribe latex elastics to a patient with a known latex allergy. To compare the in-vitro performance of latex and non latex elastics. Samples of 0.25 inch, latex and non latex elastics (light, medium, heavy elastics) were obtained from three manufacturers (Forestadent, GAC, Glenroe) and a sample size of ten elastics per group was tested. The properties tested included cross sectional area, internal diameter, initial force generated by the elastics, breaking force and the force relaxation for the different types of elastics. Force relaxation testing involved stretching the elastics to three times marketed internal diameter (19.05 mm) and measuring force level at intervals over a period of 48 hours. The data were

  4. Ion conducting behavior in secondary battery materials detected by quasi-elastic neutron scattering measurements

    International Nuclear Information System (INIS)

    Nozaki, Hiroshi

    2014-01-01

    Ionic conducting behaviors in secondary battery materials, i.e. cathode and solid electrolyte, were studied with quasi-elastic neutron scattering (QENS) measurements. Although the incoherent scattering length for Li and Na is lower by two orders of magnitude than that for H, the QENS spectra were clearly detected using the combination of an intense neutron source and a low background spectrometer. The fundamental parameters, such as, the activation energy, the jump distance, and the diffusion coefficient were obtained by analyzing QENS spectra. These parameters are consistent with the previous results estimated by muon-spin relaxation (μSR) measurements and first principles calculations. (author)

  5. Adsorption of Hydrogen and Potassium on GaAs(110) Studied by Time-of-Flight Scattering and Recoiling Spectrometry

    International Nuclear Information System (INIS)

    Gayone, J.E.

    2000-01-01

    We study the adsorption of H and K on a GaAs(ll0) surface by Time-of-Flight Ion-Scattering (ISS) and Direct Recoiling (DRS) Spectrometry. The method for cleaning and preparation of the surface consists on cycles of grazing bombardment with 20 keV Ar+ combined with annealing. Since this is the first time that this method is applied to a semiconductor surface, the crystallographic structure of the grazing ion bombarded surface is first characterized by ISS and DRS. The variations of the projectile scattered intensity as a function of the incident and azimuthal angles are interpreted in terms of calculated shadowing and focusing effects. The crystallographic structure of the GaAs(ll0) surface prepared by this method presents the surface relaxation observed for cleaved surfaces. The adsorption of H on GaAs(ll0) is studied as a function of the H 2 exposure and the surface temperature.The behavior of the intensity of projectiles scattered from the first two As and Ga layers is consistent with a process of unrelaxation towards the ideal surface termination upon H adsorption. We have determined that for exposures of 1000 L and 2000 L the AsI-GaI splitting corresponding to the unrelaxed surface is reduced to ΔZ = (0.0 n 0.08) A, as it should be expected for the bulk terminated surface. In addition, the fraction of the surface remaining relaxed as in the clean surface decreases strongly with the H 2 exposure. The H atoms adsorbed on the surface can be detected as recoils produced in quasi-single collisions allowing the study of the adsorption kinetics. The variations of the H recoil intensity with the exposure show that the sticking coefficient changes strongly with the H coverage since the beginning the adsorption. Above ∼ 500 L, the adsorption kinetics deviates from the initial behavior and the sticking coefficient becomes almost constant and small. The simultaneous measurements of the H coverage (with DRS) and the changes in the atomic structure (with ISS) as a

  6. Characterization of thin films and surfaces by ion-beam analytical techniques

    International Nuclear Information System (INIS)

    Pelicon, P.; Budnar, M.; Zorko, B.; Razpet, A.

    1999-01-01

    The optimization of Rutherford Backscattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) at the tandetron facility of J. Stefan Inst.e is reported. The most recent applications of these techniques for the analysis of thin films and surfaces are presented. The construction of the isotope - resolved Time-Of-Flight ERDA telescope for depth profiling of light elements is reviewed.(author)

  7. Recoil halogen reactions in liquid and frozen aqueous solutions of biomolecules

    International Nuclear Information System (INIS)

    Arsenault, L.J.; Blotcky, A.J.; Firouzbakht, M.L.; Rack, E.P.; Nebraska Univ., Omaha

    1982-01-01

    Reactions of recoil 38 Cl, 80 Br and 128 I have been studied in crystalline systems of 5-halouracil, 5-halo-2'-deoxyuridine and 5-halouridine as well as liquid and frozen aqueous solutions of these halogenated biomolecules. In all systems expect crystalline 5-iuodouracil the major product was the radio-labelled halide ion. There was no evidence for other halogen inorganic species. The major labelled organic product was the parent molecule. A recoil atom tracer technique was developed to acquire site information of the biomolecule solutes in the liquid and frozen aqueous systems. For all liquid and frozen aqueous systems, the halogenated biomolecules tended to aggregate. For liquid systems, the tendency for aggregation diminished as the solute concentration approached zero, where the probable state of the solute approached a monomolecular dispersion. Unlike the liquid state, the frozen ice lattice demonstated a ''caging effect'' for the solute aggregates which resulted in constant product yields over the whole concentration range. (orig.)

  8. A study of etching model of alpha-recoil tracks in biotite

    International Nuclear Information System (INIS)

    Dong Jinquan; Yuan Wanming; Wang Shicheng; Fan Qicheng

    2005-01-01

    Like fission-track dating, alpha-recoil track (ART) dating is based on the accumulation of nuclear particles that the released from natural radioactivity and produce etchable tracks in solids. ARTs are formed during the alpha-decay of uranium and thorium as well as of their daughter nuclei. When emitting an alpha-particle, the heavy remaining nucleus recoils 30-40 nm, leaving behind a trail of radiation damage. Through etching the ART tracks become visible with the aid of an interference phase-contrast microscope. Under the presupposition that all tracks are preserved since the formation of a sample their total number is a measure of the sample's age. The research for etching model is to accurately determine ART volume density, i.e., the number of ARTs per unit volume. The volume density of many dots in many layers may be determined on a sample using this etching model, and as decreasing the error and increasing the accuracy. (authors)

  9. A Hydrogen and He Isotope Nanoprobe

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Deusen, Stuart B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Materials that incorporate hydrogen and helium isotopes are of great interest at Sandia and throughout the NNSA and DOE. The Ion Beam Lab at SNL-NM has invented techniques using micron to mm-size MeV ion beams to recoil these light isotopes (Elastic Recoil Detection or ERD) that can very accurately make such measurements. However, there are many measurements that would benefit NW and DOE that require much better resolution, such as the distribution of H isotopes (and 3He) in individual grains of materials relevant to TPBARs, H and He-embrittlement of weapon components important to Tritium Sustainment Programs, issues with GTSs, batteries… Higher resolution would also benefit the field of materials science in general. To address these and many other issues, nm-scale lateral resolution is required. This LDRD demonstrated that neutral H atoms could be recoiled through a thin film by 70 keV electrons and detected with a Channeltron electron multiplier (CEM). The electrons were steered away from the CEM by strong permanent magnets. This proved the feasibility that the high energy electrons from a transmissionelectron- microscope-TEM can potentially be used to recoil and subsequently detect (e-ERD), quantify and map the concentration of H and He isotopes with nm resolution. This discovery could lead to a TEM-based H/He-isotope nanoprobe with 1000x higher resolution than currently available.

  10. Neutron electric form factor via recoil polarimetry

    International Nuclear Information System (INIS)

    Richard Madey; Andrei Semenov; Simon Taylor; Aram Aghalaryan; Erick Crouse; Glen MacLachlan; Bradley Plaster; Shigeyuki Tajima; William Tireman; Chenyu Yan; Abdellah Ahmidouch; Brian Anderson; Razmik Asaturyan; O. Baker; Alan Baldwin; Herbert Breuer; Roger Carlini; Michael Christy; Steve Churchwell; Leon Cole; Samuel Danagoulian; Donal Day; Mostafa Elaasar; Rolf Ent; Manouchehr Farkhondeh; Howard Fenker; John Finn; Liping Gan; Kenneth Garrow; Paul Gueye; Calvin Howell; Bitao Hu; Mark Jones; James Kelly; Cynthia Keppel; Mahbubul Khandaker; Wooyoung Kim; Stanley Kowalski; Allison Lung; David Mack; D. Manley; Pete Markowitz; Joseph Mitchell; Hamlet Mkrtchyan; Allena Opper; Charles Perdrisat; Vina Punjabi; Brian Raue; Tilmann Reichelt; Joerg Reinhold; Julie Roche; Yoshinori Sato; Wonick Seo; Neven Simicevic; Gregory Smith; Samuel Stepanyan; Vardan Tadevosyan; Liguang Tang; Paul Ulmer; William Vulcan; John Watson; Steven Wells; Frank Wesselmann; Stephen Wood; Chen Yan; Seunghoon Yang; Lulin Yuan; Wei-Ming Zhang; Hong Guo Zhu; Xiaofeng Zhu

    2003-01-01

    The ratio of the electric to the magnetic form factor of the neutron, G En /G Mn , was measured via recoil polarimetry from the quasielastic d((pol-e),e(prime)(pol-n)p) reaction at three values of Q 2 [viz., 0.45, 1.15 and 1.47 (GeV/c) 2 ] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G En follows the Galster parameterization up to Q 2 = 1.15 (GeV/c) 2 and appears to rise above the Galster parameterization at Q 2 = 1.47 (GeV/c) 2

  11. Multivariate analysis method for energy calibration and improved mass assignment in recoil spectrometry

    International Nuclear Information System (INIS)

    El Bouanani, Mohamed; Hult, Mikael; Persson, Leif; Swietlicki, Erik; Andersson, Margaretha; Oestling, Mikael; Lundberg, Nils; Zaring, Carina; Cohen, D.D.; Dytlewski, Nick; Johnston, P.N.; Walker, S.R.; Bubb, I.F.; Whitlow, H.J.

    1994-01-01

    Heavy ion recoil spectrometry is rapidly becoming a well established analysis method, but the associated data analysis processing is still not well developed. The pronounced nonlinear response of silicon detectors for heavy ions leads to serious limitation and complication in mass gating, which is the principal factor in obtaining energy spectra with minimal cross talk between elements. To overcome the above limitation, a simple empirical formula with an associated multiple regression method is proposed for the absolute energy calibration of the time of flight-energy dispersive detector telescope used in recoil spectrometry. A radical improvement in mass assignment was realized, which allows a more accurate and improved depth profiling with the important feature of making the data processing much easier. ((orig.))

  12. Mixing of phosphorus and antimony ions in silicon by recoil implantation

    International Nuclear Information System (INIS)

    Kwok, H.L.; Lam, Y.W.; Wong, S.P.; Poon, M.C.

    1986-01-01

    The effects of mixing phosphorus and antimony ions in silicon by recoil implantation were examined. The electrical properties after ion mixing were investigated, and the results were compared with those obtained using other techniques. Different degrees of activation were also studied, by investigating the annealing behaviour. (U.K.)

  13. Kinematic separation and mass analysis of heavy recoiling nuclei

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Eremin, A.V.; Belozerov, A.V.

    2002-01-01

    Within the past twelve years, the recoil separator VASSILISSA has been used for investigation of evaporation residues produced in heavy-ion induced complete-fusion reactions. In the course of the experimental work in the region of the elements with 92 ≤ Z ≤ 94, fourteen new isotopes have been identified by the parent-daughter correlations. The study of the decay properties and formation cross sections of the isotopes of elements 110, 112, and 114 was performed with the use of the high intensity 48 Ca beams; 232 Th, 238 U and 242 Pu targets were used in the experiments. At the beam energies corresponding to the calculated cross-section maxima of the 3n evaporation channels, the isotopes 277 110, 283 112, and 287 114 were produced and identified. For further experiments aimed at the synthesis of the superheavy element isotopes (Z ≥ 110) with the intensive 48 Ca extracted beams, the improvements in the ion optical system of the separator and of the focal plane detector system have been made. As a result, for heavy recoiling nuclei with masses A ∼ 250, the mass resolution of about 2.5 % was achieved with a good energy and position resolutions of the focal plane detectors

  14. Origin of open recoil curves in L1{sub 0}-A1 FePt exchange coupled nanocomposite thin film

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Rajan [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kapoor, Akanksha [M. Tech Nanoscience and Nanotechnology, University of Delhi, Delhi 110007 (India); Lamba, S. [School of Sciences, Indira Gandhi National Open University, New Delhi 110068 (India); Annapoorni, S., E-mail: annapoornis@yahoo.co.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2016-11-15

    Mixed phase FePt systems with intergranular coupling may be looked upon as natural exchange spring systems. The coupling strength between the soft and hard phase in these systems can be analyzed using recoil curves. However, the origin of open recoil curves depicting the breakdown of exchange coupling or anisotropy variation in hard phase is still an ambiguity and requires an in-depth analysis. In order to investigate this, an analysis of the recoil curves for L1{sub 0}–A1 FePt nanocomposite thin films of varying thickness have been performed. The switching field distribution reveals that the maximum of openness of recoil curve is directly proportional to the amount of uncoupled soft phase present in the system. The coupling between the hard and soft phase is also found to increase with the thickness of the film. Monte Carlo simulations on a model three dimensional array of interacting nanomagnetic grains provide further insight into the effect of inter granular exchange interactions between the soft and hard phases. - Highlights: • L1{sub 0}-A1 FePt nanocomposites thin films of different thickness have been fabricated by DC sputtering. • Hysteresis curve measurements exhibit perfect single phase (L1{sub 0}) like behavior for thicker films. • SFD reveals that the openness of recoil curves is directly linked with the amount of uncoupled soft (A1) phase. • Monte Carlo simulation predicts that the extent of exchange interaction increases with thickness of the film.

  15. Range calculations for spallation recoils in ThF4 by use of the computer code 'Marlowe'

    International Nuclear Information System (INIS)

    Westmeier, W.; Roessler, K.

    1978-12-01

    The determination of cross sections of spallation reactions requires a knowledge of the target thickness since only the products recoiling from the target are measured and their yield depends on the range. The effective target thickness is a function of the projectile's Z, A and spallation recoil energy and, thus, varies for the individual products. The computer code MARLOWE was used to evaluate energy vs. range curves in the binary collisions approximation. The program was extended to the high energy regime taking into account the stripping of electrons from the projectile and the concomitant changes in the interaction potentials especially for the inelastic part of the collisions. A complementary computer program LATTIC was developed for the parameterization of the lattice description. This code enables the application of MARLOWE to target materials with complicated crystallographic structure. Test calculations for a series of projectile/target combinations showed a reasonable agreement with experimental recoil ranges of Pd, Ag, Os and Ir isotopes from proton induced spallation in Ag, In and Pb targets, respectively. MARLOWE was then applied to calculate product ranges of the 232 Th(p,spall)X-reaction in the ployatomic system ThF 4 . The calculated energy vs. range curves enabled the evaluation of the mean spallation recoil ranges for all possible products, e.g. 170.8 μg/cm 2 for 192 Tl, 115.2 μg/cm 2 for 208 At and 37.1 μg/cm 2 for 223 Ac. (orig.)

  16. Recoil corrected bag model calculations for semileptonic weak decays

    International Nuclear Information System (INIS)

    Lie-Svendsen, Oe.; Hoegaasen, H.

    1987-02-01

    Recoil corrections to various model results for strangeness changing weak decay amplitudes have been developed. It is shown that the spurious reference frame dependence of earlier calculations is reduced. The second class currents are generally less important than obtained by calculations in the static approximation. Theoretical results are compared to observations. The agreement is quite good, although the values for the Cabibbo angle obtained by fits to the decay rates are somewhat to large

  17. High energy neutron recoil scattering from liquid 4He

    International Nuclear Information System (INIS)

    Holt, R.S.; Needham, L.M.; Paoli, M.P.

    1987-10-01

    The neutron recoil scattering from liquid 4 He at 4.2 K and 1.6 K has been observed for a momentum transfer of 150 A -1 using the Electron Volt Spectrometer on the pulsed neutron source, ISIS. The experiment yielded mean atomic kinetic energy values = 14.8 +- 3 K at 4.2 K and = 14.6 +- 3.2 K at 1.6 K in good agreement with values obtained at lower momentum transfers. (author)

  18. Chemical reactions of recoil atoms and thermal atoms of tritium with haloid benzenes

    International Nuclear Information System (INIS)

    Simirskij, Yu.N.; Firsova, L.P.

    1978-01-01

    Radiochemical yields have been determined for the products of substitution of hydrogen atoms and halides in Cl-, Br-, and I-benzenes with tritium atoms obtained during thermal dissociation of T 2 and with recoil atoms T arising in nuclear reaction 6 Li(n, P)T. It is shown that in the series of Cl-, Br-, and I-benzenes yields of the products of substitution of halides atoms with tritium grow, whereas those of hydrogen atom substitution change only little. The correlation nature of the yields of substitution products of halide atoms with tritium remains constant in a wide range of the initial kinetic energies of T atoms for the recoil atoms with E 0 =2.7 MeV and for the completely thermolized atoms during thermal dissociation of T 2

  19. Recoil and conversion electron considerations of the {sup 166}Dy/{sup 166}Ho in vivo generator

    Energy Technology Data Exchange (ETDEWEB)

    Zeevaart, J.R. [North-West Univ., Mmabatho (South Africa). CARST; Szuecs, Z. [Nesca (South African Nuclear Energy Corporation Ltd.), Pretoria (South Africa). Radiochemistry; Hungarian Academy of Sciences, Debrecen (Hungary). Inst. of Nuclear Research; Takacs, S.; Jarvis, N. [Hungarian Academy of Sciences, Debrecen (Hungary). Inst. of Nuclear Research; Jansen, D. [Nesca (South African Nuclear Energy Corporation Ltd.), Pretoria (South Africa). Radiochemistry

    2012-07-01

    The use of radionuclides as potential therapeutic radiopharmaceuticals is increasingly investigated. An important aspect is the delivery of the radionuclide to the target, i.e. the radionuclide is not lost from the chelating agent. For in vivo generators, it is not only the log K of complexation between the metal ion and the chelator that is important, but also whether the daughter radionuclide stays inside the chelator after decay of the parent radionuclide. In our previous work, we showed that the classical recoil effect is only applicable for decays with a Q value higher than 0.6 MeV (in the atomic mass range around 100). However, Zhernosekov et al. published a result for {sup 140}Nd/{sup 140}Pr (Q = 0.222 MeV) which indicated that > 95% of the daughter ({sup 140}Pr) was lost by a DOTA chelator upon decay of {sup 140}Nd. The authors ascribed this to the ''post-effect''. Their experiment was repeated with the {sup 166}Dy/{sup 166}Ho generator to ascertain whether our calculations were correct. It was found that 72% of the daughter ({sup 166}Ho) was liberated from the DOTA chelator, indicating that the 'post effect' does exist in contrast to our recoil calculations. Upon further investigation, we determined that one should not only consider recoil energy levels but also the mode of decay which was able to explain the partial recoil found for {sup 166}Dy/{sup 166}Ho. It is concluded for the {sup 166}Dy/{sup 166}Ho system that the low recoil energy of the daughter nucleus {sup 166}Ho is not a sufficient reason to rule out release of the nuclide from chelators. On the other hand, we found that the ratio of the {sup 166}Ho that gets released corresponds to the ratio of relaxation of Ho atoms via the Auger process. (orig.)

  20. Direct mass measurements of light neutron-rich nuclei using fast recoil spectrometers

    International Nuclear Information System (INIS)

    Vieira, D.J.; Wouters, J.M.

    1987-01-01

    Extensive new mass measurement capabilities have evolved with the development of recoil spectrometers. In the Z = 3 to 9 neutron-rich region alone, 12 neutron-rich nuclei have been determined for the first time by the fast-recoil direct mass measurement method. A recent experiment using the TOFI spectrometer illustrates this technique. A systematic investigation of nuclei that lie along or near the neutron-drip line has provided a valuable first glimpse into the nuclear structure of such nuclei. No evidence for a large single-particle energy gap at N = 14 is observed; however, a change in the two-neutron separation model calculations, and is interpreted in terms of the smaller 1s/sub 1/2/ - 1s/sub 1/2/ interaction compared to that of the 0d/sub 5/2/ - 0d/sub 5/2/ neutron-neutron interaction. 18 refs., 7 figs., 1 tab

  1. A Potential Recoiling Supermassive Black Hole, CXO J101527.2+625911

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.-C.; Yoon, Ilsang; Evans, A. S.; Stierwalt, S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Privon, G. C. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Avda. Vicuna Mackenna 4860, Santiago, Codigo Postal: 8970117 (Chile); Harvey, D. [Laboratoire dAstrophysique, EPFL, Observatoire de Sauverny, Chemin des Maillettes, 51, Versoix CH-1290, Suisse (Switzerland); Kim, Ji Hoon, E-mail: dkim@nrao.edu [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States)

    2017-05-10

    We have carried out a systematic search for recoiling supermassive black holes (rSMBH) using the Chandra Source and SDSS Cross-Match Catalog. From the survey, we have detected a potential rSMBH, CXO J101527.2+625911, at z = 0.3504. The source CXO J101527.2+625911 has a spatially offset (1.26 ± 0.05 kpc) active SMBH and kinematically offset broad emission lines (175 ± 25 km s{sup −1} relative to the systemic velocity). The observed spatial and velocity offsets suggest that this galaxy could be an rSMBH, but we have also considered the possibility of a dual SMBH scenario. The column density toward the galaxy center was found to be Compton thin, but no X-ray source was detected. The non-detection of the X-ray source in the nucleus suggests that either there is no obscured actively accreting SMBH or that there exists an SMBH, but it has a low accretion rate (i.e., a low-luminosity AGN (LLAGN)). The possibility of the LLAGN was investigated and found to be unlikely based on the H α luminosity, radio power, and kinematic arguments. This, along with the null detection of an X-ray source in the nucleus, supports our hypothesis that CXO J101527.2+625911 is an rSMBH. Our GALFIT analysis shows the host galaxy to be a bulge-dominated elliptical. The weak morphological disturbance and small spatial and velocity offsets suggest that CXO J101527.2+625911 could be in the final stage of a merging process and about to turn into a normal elliptical galaxy.

  2. Shakeoff Ionization near the Coulomb Barrier Energy

    Science.gov (United States)

    Sharma, Prashant; Nandi, T.

    2017-11-01

    We measure the projectile K x-ray spectra as a function of the beam energies around the Coulomb barrier in different collision systems. The energy is scanned in small steps around the barrier aiming to explore the nuclear effects on the elastically scattered projectile ions. The variation of the projectile x-ray energy with the ion-beam energies exhibits an unusual increase in between the interaction barrier and fusion barrier energies. This additional contribution to the projectile ionization can be attributed to the shakeoff of outer-shell electrons of the projectile ions due to the sudden nuclear recoil (˜10-21 sec ) caused by the attractive nuclear potential, which gets switched on near the interaction barrier energy. In the sudden approximation limit, the theoretical shakeoff probability calculation due to the nuclear recoil explains the observed data well. In addition to its fundamental interest, such processes can play a significant role in dark matter detection through the possible mechanism of x-ray emissions, where the weakly interacting massive particle-nucleus elastic scattering can lead to the nuclear-recoil-induced inner-shell vacancy creations. Furthermore, the present work may provide new prospects for atomic physics research at barrier energies as well as provide a novel technique to perform barrier distribution studies for two-body systems.

  3. Emanation of /sup 232/U daughter products from submicrometer particles of uranium oxide and thorium dioxide by nuclear recoil and inert gas diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, M.A.; Cuddihy, R.G. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (USA). Inhalation Toxicology Research Inst.)

    1983-01-01

    Emanation of /sup 232/U daughter products by nuclear recoil and inert gas diffusion from spherical, submicrometer particles of uranium oxide and thorium dioxide was studied. Monodisperse samples of particles containing 1% /sup 232/U and having physical diameters between 0.1 and 1 ..mu..m were used for the emanation measurements. Thorium-228 ions recoiling from the particles after alpha-decay of /sup 232/U were collected electrostatically on a recoil cathode. Radon-220 diffusing from the particles was swept by an airstream into a 4 l. chamber where the /sup 220/Rn daughters were collected on a second cathode. Mathematical models of radionuclide emanation from spherical particles were used to calculate the recoil range of /sup 228/Th and the diffusion coefficient of /sup 220/Rn in the particle matrix. A /sup 228/Th recoil range of 0.02 ..mu..m and a /sup 220/Rn diffusion coefficient of 3 x 10/sup -14/ cm/sup 2//sec were obtained in both uranium oxide and thorium dioxide particles.

  4. Direct fast neutron detection: A status report

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Hansen, R.R.; Craig, R.A.; Hensley, W.K.; Hubbard, C.W.; Keller, P.E.; Reeder, P.L.; Sunberg, D.S.

    1997-12-01

    This report describes the status of efforts to develop direct fast-neutron detection via proton recoil within plastic scintillator. Since recording proton recoil events is of little practical use without a means to discriminate effectively against gamma-ray interactions, the present effort is concentrated on demonstrating a method that distinguishes between pulse types. The proposed method exploits the different pulse shapes that are to be expected primarily on the basis of the slower speed of the recoiling fission neutrons. Should this effort ultimately prove successful, the resulting novel technology will have the potential to significantly lower cost and increase capability for a number of critical neutron-detection applications. Considerable progress has been made toward a clear and compelling demonstration of this new technique. An exhaustive theoretical and numerical investigation of the method has been completed. The authors have been able to better understand the laboratory results and estimate the performance that could ultimately be achieved using the proposed technique. They have assessed the performance of a number of different algorithms for discriminating between neutron and gamma ray events. The results of this assessment will be critical when the construction of low-cost, field-portable neutron detectors becomes necessary. Finally, a laboratory effort to realize effective discrimination is well underway and has resulted in partial success

  5. Properties enhancement and recoil loop characteristics for hot deformed nanocrystalline NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Liu, Z. W.; Huang, Y. L.; Hu, S. L.; Zhong, X. C.; Yu, H. Y.; Gao, X. X.

    2013-01-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) and SPS followed by HD using melt spun ribbons as the starting materials. The microstructure of SPSed and HDed magnets were analyzed. The effects of process including temperature and compression ratio on the microstructure and properties were investigated. High magnetic properties were obtained in anisotropic HDed magnets. The combination of Zn and Dy additions was successfully employed to improve the coercivity and thermal stability of the SPSed magnets. Open recoil loops were found in these magnets with Nd-rich composition and without soft magnetic phase for the first time. The relationship between the recoil loops and microstructure for SPS and HD NdFeB magnets were investigated. The investigations showed that the magnetic properties of SPS+HDed magnets are related to the extent of the aggregation of Nd-rich phase, which was formed during HD due to existence of porosity in SPSed precursor. Large local demagnetization fields induced by the Nd-rich phase aggregation leads to the open loops and significantly reduced the coercivity. By reducing the recoil loop openness, the magnetic properties of HDed NdFeB magnets were successfully improved. (author)

  6. Elastic recoil detection analysis for the determination of hydrogen concentration profiles in switchable mirrors

    NARCIS (Netherlands)

    Huisman, M.C.; van der Molen, S.J.; Vis, R.D.

    1999-01-01

    Switchable mirrors made of thin films of Y, La or rare-earth (RE) metals exhibit spectacular changes in their optical and electrical properties upon hydrogen loading. The study of these materials has indicated that the occurring phenomena are highly sensitive to the actual hydrogen concentration in

  7. A simple model to estimate plantarflexor muscle-tendon mechanics and energetics during walking with elastic ankle exoskeletons

    Science.gov (United States)

    Sawicki, Gregory S.; Khan, Nabil S.

    2016-01-01

    Goal A recent experiment demonstrated that when humans wear unpowered elastic ankle exoskeletons with intermediate spring stiffness they can reduce their metabolic energy cost to walk by ~7%. Springs that are too compliant or too stiff have little benefit. The purpose of this study was to use modeling and simulation to explore the muscle-level mechanisms for the ‘sweet-spot’ in stiffness during exoskeleton assisted walking. Methods We developed a simple lumped, uniarticular musculoskeletal model of the plantarflexors operating in parallel with an elastic ‘exo-tendon’. Using an inverse approach with constrained kinematics and kinetics, we rapidly simulated human walking over a range of exoskeleton stiffness values and examined the underlying neuromechanics and energetics of the biological plantarflexors. Results Stiffer ankle exoskeleton springs resulted in larger decreases in plantarflexor muscle forces, activations and metabolic energy consumption. However, in the process of unloading the compliant biological muscle-tendon unit (MTU), the muscle fascicles (CE) experienced larger excursions that negatively impacted series elastic element (SEE) recoil that is characteristic of a tuned ‘catapult mechanism’. Conclusion The combination of disrupted muscle-tendon dynamics and the need to produce compensatory forces/moments to maintain overall net ankle moment invariance could explain the ‘sweet spot’ in metabolic performance at intermediate ankle exoskeleton stiffness. Future work will aim to provide experimental evidence to support the model predictions presented here using ultrasound imaging of muscle-level dynamics during walking with elastic ankle exoskeletons. Significance Engineers must account for the muscle-level effects of exoskeleton designs in order to achieve maximal performance objectives. PMID:26485350

  8. Energy Reduction Multipath Routing Protocol for MANET Using Recoil Technique

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Sahu

    2018-04-01

    Full Text Available In Mobile Ad-hoc networks (MANET, power conservation and utilization is an acute problem and has received significant attention from academics and industry in recent years. Nodes in MANET function on battery power, which is a rare and limited energy resource. Hence, its conservation and utilization should be done judiciously for the effective functioning of the network. In this paper, a novel protocol namely Energy Reduction Multipath Routing Protocol for MANET using Recoil Technique (AOMDV-ER is proposed, which conserves the energy along with optimal network lifetime, routing overhead, packet delivery ratio and throughput. It performs better than any other AODV based algorithms, as in AOMDV-ER the nodes transmit packets to their destination smartly by using a varying recoil off time technique based on their geographical location. This concept reduces the number of transmissions, which results in the improvement of network lifetime. In addition, the local level route maintenance reduces the additional routing overhead. Lastly, the prediction based link lifetime of each node is estimated which helps in reducing the packet loss in the network. This protocol has three subparts: an optimal route discovery algorithm amalgamation with the residual energy and distance mechanism; a coordinated recoiled nodes algorithm which eliminates the number of transmissions in order to reduces the data redundancy, traffic redundant, routing overhead, end to end delay and enhance the network lifetime; and a last link reckoning and route maintenance algorithm to improve the packet delivery ratio and link stability in the network. The experimental results show that the AOMDV-ER protocol save at least 16% energy consumption, 12% reduction in routing overhead, significant achievement in network lifetime and packet delivery ratio than Ad hoc on demand multipath distance vector routing protocol (AOMDV, Ad hoc on demand multipath distance vector routing protocol life

  9. COMMENT ON THE BLACK HOLE RECOIL CANDIDATE QUASAR SDSS J092712.65+294344.0

    International Nuclear Information System (INIS)

    Shields, G. A.; Bonning, E. W.; Salviander, S.

    2009-01-01

    The Sloan Digital Sky Survey (SDSS) quasar J092712.65+294344.0 has been proposed as a candidate for a supermassive black hole (∼10 8.8 M sun ) ejected at high speed from the host galactic nucleus by gravitational radiation recoil, or alternatively for a supermassive black hole binary. This is based on a blueshift of 2650 km s -1 of the broad emission lines ('b-system') relative to the narrow emission lines ('r-system') presumed to reflect the galaxy velocity. New observations with the Hobby-Eberly Telescope (HET) confirm the essential features of the spectrum. We note a third redshift system, characterized by weak, narrow emission lines of [O III] and [O II] at an intermediate velocity 900 km s -1 redward of the broad-line velocity ('i-system'). A composite spectrum of SDSS QSOs similar to J0927+2943 illustrates the feasibility of detecting the calcium K absorption line in spectra of sufficient quality. The i-system may represent the QSO host galaxy or a companion. Photoionization requires the black hole to be ∼3 kpc from the r-system emitting gas, implying that we are observing the system only 10 6 yr after the recoil event and contributing to the low probability of observing such a system. The HET observations give an upper limit of 10 km s -1 per year on the rate of change of the velocity difference between the r- and b-systems, constraining the orbital phase in the binary model. These considerations and the presence of a cluster of galaxies apparently containing J0927+2943 favor the idea that this system represents a superposition of two active galactic nuclei.

  10. Black hole radiation in the brane world and the recoil effect

    International Nuclear Information System (INIS)

    Frolov, Valeri; Stojkovic, Dejan

    2002-01-01

    A black hole attached to a brane in a higher-dimensional space emitting quanta into the bulk may leave the brane as a result of a recoil. We study this effect. We consider black holes which have a size much smaller than the characteristic size of extra dimensions. Such a black hole can be effectively described as a massive particle with internal degrees of freedom. We consider an interaction of such particles with a scalar massless field and prove that for a special choice of the coupling constant describing the transition of the particle to a state with smaller mass the probability of massless quanta emission takes the form identical to the probability of the black hole emission. Using this model we calculate the probability for a black hole to leave the brane and study its properties. The discussed recoil effect implies that, for black holes which might be created in the interaction of high energy particles in colliders, the thermal emission of the formed black hole could be terminated and the energy nonconservation can be observed in brane experiments

  11. RGO-coated elastic fibres as wearable strain sensors for full-scale detection of human motions

    Science.gov (United States)

    Mi, Qing; Wang, Qi; Zang, Siyao; Mao, Guoming; Zhang, Jinnan; Ren, Xiaomin

    2018-01-01

    In this study, we chose highly-elastic fabric fibres as the functional carrier and then simply coated the fibres with reduced graphene oxide (rGO) using plasma treatment, dip coating and hydrothermal reduction steps, finally making a wearable strain sensor. As a result, the full-scale detection of human motions, ranging from bending joints to the pulse beat, has been achieved by these sensors. Moreover, high sensitivity, good stability and excellent repeatability were realized. The good sensing performances and economical fabrication process of this wearable strain sensor have strengthened our confidence in practical applications in smart clothing, smart fabrics, healthcare, and entertainment fields.

  12. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Xiaohui Zhan

    2009-12-01

    A high precision measurement of the proton elastic form factor ratio µpGEp/GMp in the range Q2 = 0.3–0.7 GeV2/c2 was performed using recoil polarimetry in Jefferson Lab Hall A. In this low Q2 range, previous data from LEDEX [5] along with many fits and calculations [2, 3, 4] indicate substantial deviations of the ratio from unity. In this new measurement, with 80% polarized electron beam for 24 days, we are able to achieve <1% statistical uncertainty. Preliminary results are a few percent lower than expected from previous world data and fits, indicating a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the improved form factor measurements also have implications for DVCS, determinations of the proton Zemach radius and strangeness form factors through parity violation experiments.

  13. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  14. Boiling crisis as inhibition of bubble detachment by the vapor recoil force

    International Nuclear Information System (INIS)

    Nikolayev, V.S.; Beysens, D.; Garrabos, Y.

    2004-01-01

    Boiling crisis is a transition between nucleate and film boiling. In this communication we present a physical model of the boiling crisis based on the vapor recoil effect. Our numerical simulations of the thermally controlled bubble growth at high heat fluxes show how the bubble begins to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes the vapor spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further bubble spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. Under such conditions, we observed an increase of the apparent contact angle and spreading of the dry spot under the bubble, thus confirming our model of the boiling crisis. (authors)

  15. π-Helium-4 scattering experiment at 5GeV/c. Data processing

    International Nuclear Information System (INIS)

    Cotte, Philippe.

    1978-01-01

    The context of this work is an experiment realised at CERN, with the object to search pre-existing isobaric states in helium nucleus, by means of the study of scattering reactions of π - with simultaneous observation of recoil nucleus ( 3 He or 3 H) and forward pion. In this work, only the study of recoil detectors is done. This one, described with many details consists of a set of four wire chamber planes, two planes of semiconductors and two scintillators planes. The performances of this set of detectors are presented in regard to identification of recoil particle, energy and recoil angle measurements. A 'missing mass' analysis of the events of the experiment is done. Preliminary results of elastic and inelastic scattering are given. For elastic scattering a qualitative comparison is done with the multiple scattering Glauber formalism [fr

  16. Hypercompact Stellar Systems Around Recoiling Supermassive Black Holes

    Science.gov (United States)

    Merritt, David; Schnittman, Jeremy D.; Komossa, S.

    2009-07-01

    A supermassive black hole ejected from the center of a galaxy by gravitational-wave recoil carries a retinue of bound stars—a "hypercompact stellar system" (HCSS). The numbers and properties of HCSSs contain information about the merger histories of galaxies, the late evolution of binary black holes, and the distribution of gravitational-wave kicks. We relate the structural properties (size, mass, density profile) of HCSSs to the properties of their host galaxies and to the size of the kick in two regimes: collisional (M BH lsim 107 M sun), i.e., short nuclear relaxation times, and collisionless (M BH gsim 107 M sun), i.e., long nuclear relaxation times. HCSSs are expected to be similar in size and luminosity to globular clusters, but in extreme cases (large galaxies, kicks just above escape velocity) their stellar mass can approach that of ultracompact dwarf galaxies. However, they differ from all other classes of compact stellar system in having very high internal velocities. We show that the kick velocity is encoded in the velocity dispersion of the bound stars. Given a large enough sample of HCSSs, the distribution of gravitational-wave kicks can therefore be empirically determined. We combine a hierarchical merger algorithm with stellar population models to compute the rate of production of HCSSs over time and the probability of observing HCSSs in the local universe as a function of their apparent magnitude, color, size, and velocity dispersion, under two different assumptions about the star formation history prior to the kick. We predict that ~102 HCSSs should be detectable within 2 Mpc of the center of the Virgo cluster, and that many of these should be bright enough that their kick velocities (i.e., velocity dispersions) could be measured with reasonable exposure times. We discuss other strategies for detecting HCSSs and speculate on some exotic manifestations.

  17. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  18. D-Brane Recoil Mislays Information

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V

    1998-01-01

    We discuss the scattering of a light closed-string state off a $D$ brane, taking into account quantum recoil effects on the latter, which are described by a pair of logarithmic operators. The light-particle and $D$-brane subsystems may each be described by a world-sheet with an external source due to the interaction between them. This perturbs each subsystem away from criticality, which is compensated by dressing with a Liouville field whose zero mode we interpret as time. The resulting evolution equations for the $D$ brane and the closed string are of Fokker-Planck and modified quantum Liouville type, respectively. The apparent entropy of each subsystem increases as a result of the interaction between them, which we interpret as the loss of information resulting from non-observation of the other entangled subsystem. We speculate on the possible implications of these results for the propagation of closed strings through a dilute gas of virtual $D$ branes.

  19. Model-independent evaluation of recoils channeling impact on visible energy spectra in dark matter particles crystalline detectors

    International Nuclear Information System (INIS)

    Dyuldya, S.V.; Bratchenko, M.I.

    2012-01-01

    Proposed is a direct method of Dark Matter crystalline scintillation detectors calibration by means of an atomistic molecular dynamics modeling of their responses to ∼10 keV recoil atoms. Simulations show that the recoils channeling exists in NaI lattice with probabilities of ∼5 - 15 %. It does not affect the mean values of quenching factors but gives rise to high visible energy spectral tails absent in disordered detectors. As a result, the lattice ordering manifests the ∼100 % effect on NaI(Tl) visible energy spectra at 2-6 keV window

  20. Penetration of HEPA filters by alpha recoil aerosols

    International Nuclear Information System (INIS)

    McDowell, W.J.; Seeley, F.G.; Ryan, M.T.

    1976-01-01

    Tests at Oak Ridge National Laboratory confirmed that alpha-emitting particulate matter does penetrate high-efficiency filter medium, identical to that used in HEPA filters, much more effectively than do non-radioactive or beta-gamma active aerosols. Filter retention efficiencies drastically lower than the 99.97 percent quoted for ordinary particulate matter have been observed with 212 Pb, 253 Es, and 238 Pu sources, indicating that the phenomenon is common to all of these and probably to all alpha-emitting materials of appropriate half-life. Results with controlled air-flow through filters in series are consistent with the picture of small particles dislodged from the ''massive'' surface of an alpha-active material, and then repeatedly dislodged from positions on the filter fibers, by the alpha recoils. The process shows only a small dependence on the physical form of the source material. Oxide dust, nitrate salt, and plated metal all seem to generate the recoil particles effectively. The amount penetrating a series of filters depends on the total amount of activity in the source material, its specific activity, and the length of time of air flow. Dependence on the air flow velocity is slight. It appears that this phenomenon has not been observed in previous experiments with alpha-active aerosols because the tests did not continue for a sufficiently long time. A theoretical model of the process has been developed, amenable to computer handling, that should allow calculation of the rate constants associated with the transfer through and release of radioactive material from a filter system by this process

  1. Recoil effect on β-decaying in vivo generators, interpreted for 103Pd/103mRh

    International Nuclear Information System (INIS)

    Szucs, Zoltan; Rooyen, Johann van; Zeevaart, Jan Rijn

    2009-01-01

    The use of Auger emitters as potential radiopharmaceuticals is being increasingly investigated. One of the radionuclides of interest is 103m Rh, which can be produced from 103 Ru or 103 Pd in an in vivo generator. A potential problem, however, is the recoil of the 103m Rh out of the carrier molecule and even out of the target cell. In order to determine the likelihood of this happening in the 103 Pd/ 103m Rh, case calculations were made to prove that this does not happen. The equations were generalised for all radionuclides with an atomic mass of 10-240 as a tool for determining the recoil threshold of any β-emitting radionuclide.

  2. Precision lifetime measurements using the recoil distance method

    International Nuclear Information System (INIS)

    Kruecken, R.

    2000-01-01

    The recoil distance method (RDM) for the measurements of lifetimes of excited nuclear levels in the range from about 1 ps to 1,000 ps is reviewed. The New Yale Plunger Device for RDM experiments is introduced and the Differential Decay Curve Method for their analysis is reviewed. Results from recent RDM experiments on SD bands in the mass-190 region, shears bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. Perspectives for the use of RDM measurements in the study of neutron-rich nuclei are discussed

  3. Precision Lifetime Measurements Using the Recoil Distance Method

    Science.gov (United States)

    Krücken, R.

    2000-01-01

    The recoil distance method (RDM) for the measurements of lifetimes of excited nuclear levels in the range from about 1 ps to 1000 ps is reviewed. The New Yale Plunger Device for RDM experiments is introduced and the Differential Decay Curve Method for their analysis is reviewed. Results from recent RDM experiments on SD bands in the mass-190 region, shears bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. Perspectives for the use of RDM measurements in the study of neutron-rich nuclei are discussed. PMID:27551587

  4. Recoil generated radiotracers in studies of molecular dynamics

    International Nuclear Information System (INIS)

    Spicer, L.D.

    1981-01-01

    This chapter summarizes many of the contributions that the recoil technique of generating excited radiotracer atoms in the presence of a thermal environment is making to the field of chemical dynamics. Specific topics discussed critically include characterization of the generation and behavior of excited molecules including fragmentation kinetics and energy transfer, measurement of thermal and hot kinetic parameters, and studies of reaction mechanisms and stereochemistry as a function of reaction energy. Distinctive features that provide unique approaches to dynamical problems are evaluated in detail and the complementarity with more conventional techniques is addressed. Prospects for future applications are also presented

  5. Production and measurement of dispersion aerosols; application to the transport of deuteron-induced and 84Kr-induced reaction recoils

    International Nuclear Information System (INIS)

    Schmidt-Ott, W.-D.; Dincklage, R.-D. von

    1977-01-01

    Dispersion aerosols were produced from various fluids and mixed with helium, nitrogen, and air. The diameter of the aerosols was estimated from their deflection in a low density micro-jet. These two-phase flows were tested for their transport performance for recoils of deuteron-induced reactions at the Goettingen cyclotron. Transport yields of 70%, 90% and 86% were measured when using n-decane with helium, nitrogen, and air, respectively. In comparison to the earlier use of ethylene the amount of disturbing activity induced on the gases was much smaller. The effect of aerosol formation by condensation is discussed. The system was applied in electron- and γ-ray spectroscopy of deuteron-induced reaction recoils. The mixture of n-decane and helium was used for the transport of 84 Kr-induced reaction recoils at the Darmstadt UNILAC. (Auth.)

  6. Effects of recoil-implanted oxygen on depth profiles of defects and annealing processes in P{sup +}-implanted Si studied using monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Moriya, Tsuyoshi; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kitano, Tomohisa; Watanabe, Masahito; Kawano, Takao; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Mikado, Tomohisa

    1996-04-01

    Effects of oxygen atoms recoiled from SiO{sub 2} films on depth profiles of defects and annealing processes in P{sup +}-implanted Si were studied using monoenergetic positron beams. For an epitaxial Si specimen, the depth profile of defects was found to be shifted toward the surface by recoil implantation of oxygen atoms. This was attributed to the formation of vacancy-oxygen complexes and a resultant decrease in the diffusion length of vacancy-type defects. The recoiled oxygen atoms stabilized amorphous regions introduced by P{sup +}-implantation, and the annealing of these regions was observed after rapid thermal annealing (RTA) at 700degC. For a Czochralski-grown Si specimen fabricated by through-oxide implantation, the recoiled oxygen atoms introduced interstitial-type defects upon RTA below the SiO{sub 2}/Si interface, and such defects were dissociated by annealing at 1000degC. (author)

  7. Neutron Fluence and Energy Reconstruction with the LNE-IRSN/MIMAC Recoil Detector MicroTPC at 27 keV

    Energy Technology Data Exchange (ETDEWEB)

    Maire, D.; Lebreton, L.; Querre, Ph. [Institute for Radioprotection and Nuclear Safety - IRSN, site of Cadarache, 13115 Saint Paul lez Durance (France); Bosson, G.; Guillaudin, O.; Muraz, J.F.; Riffard, Q.; Santos, D. [Laboratoire de Physique Subatomique et de Cosmologie - LPSCCNRSIN2P3/ UJF/INP, 38000 Grenoble (France)

    2015-07-01

    The French Institute for Radiation protection and Nuclear Safety (IRSN), designated by the French Metrology Institute (LNE) for neutron metrology, is developing a time projection chamber using a Micromegas anode: microTPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize the energy distribution of neutron fluence in the energy range 8 keV - 5 MeV with a primary procedure. The time projection chambers are gaseous detectors able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gas is used as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulation of the detector response. The μTPC is a new reliable detector able to measure energy distribution of the neutron fluence without unfolding procedure or prior neutron calibration contrary to usual gaseous counters. The microTPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27 keV and 144 keV are shown and compared to the complete detector response simulation. This work

  8. Experiments with a magnetic separator for heavy recoil ions

    International Nuclear Information System (INIS)

    Mosler, E.

    1981-01-01

    Using a triple-focusing (position and momentum), crescent-shaped separator for heavy recoil-ions different experiments were performed. The improvement consists in the enhancement of the transmission from 8% to 25% for 500 keV recoil ions from the reaction 238 U(α, 3n)sup(239m)Pu. For sup(237m)Pu the electromagnetic decay of the 1.1 μs shape isomer into the 82 ns shape isomer was searched for. The upper limit for gamma decay is 1.25 +- 1.25% for Esub(γ) = 200 keV and for electron decay 0.29 +- 0.29% in comparison to isomeric fission. The upper limit for interband transitions is 2.5% (2 delta), from which the upper limit of the partial half-life for the electromagnetic decay of the 1.1 μs isomer is calculated to 44 μs. Due to the performed interpretation the spin difference between both isomers extends at least to ΔI = 3. For sup(238m)U the back-decay into the 1. minimum by the EO-transition and the converted 2 + → 0 + transition in the first decay and the decay by alpha articles was looked for both in single measurements as in a coincidence measurement to L-X-ray quanta. The upper limits are GAMMAsub(EO) = 2.0, GAMMAsub(α)/GAMMAsub(F) = 0.4 and GAMMA(back-decay)/GAMMAsub(F) approx. equal to 100. (orig./HSI) [de

  9. Velocity dependence of enhanced dynamic hyperfine field for Pd ions swiftly recoiling in magnetized Fe

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, G.C.; Bolotin, H.H.; Sie, S.H.

    1980-01-01

    The velocity-dependence of the magnitude of the enchanced dynamic hyperfine magnetic field (EDF) manifest at nuclei of 108 Pd ions swiftly recoiling through thin magnetized Fe has been investigated at ion velocities higher than have heretofore been examined for the heavier nuclides (i.e., at initial recoil velocities (v/Zv 0 )=0.090 and 0.160, v 0 =c/137). These results for 108 Pd, when taken in conjunction with those of prior similar measurements for 106 Pd at lower velocities, and fitted to a velocity dependence for the EDF, give for the Pd isotopes over the extended velocity range 1.74 0 )<=7.02, p=0.41+-0.15; a result incompatible with previous attributions of a linear velocity dependence for the field

  10. Recent results from the chemistry of recoiling carbon and silicon atoms: The interplay between hot atom chemistry and gas kinetics

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Ferrieri, R.A.; Wolf, A.P.

    1990-01-01

    Recent results from the chemistry of recoiling carbon and silicon atoms illustrate the power of an experimental approach to the solution of complex mechanistic problems that combines the study of the reactions of recoiling atoms with conventional gas kinetic techniques. Included will be the reactions of 11 C atoms with anisole, addressing the question whether an aromatic pi-electron system can compete as a reactive site with carbon-hydrogen bonds

  11. Near threshold pulse shape discrimination techniques in scintillating CsI(Tl) crystals

    International Nuclear Information System (INIS)

    Wu, S.C.; Yue, Q.; Lai, W.P.; Li, H.B.; Li, J.; Lin, S.T.; Liu, Y.; Singh, V.; Wang, M.Z.; Wong, H.T.; Xin, B.; Zhou, Z.Y.

    2004-01-01

    There are recent interests with CsI(Tl) scintillating crystals for Dark Matter experiments. The key merit is the capability to differentiate nuclear recoil (nr) signatures from the background β/γ-events due to ambient radioactivity on the basis of their different pulse shapes. One of the major experimental challenges is to perform such pulse shape analysis in the statistics-limited domain where the light output is close to the detection threshold. Using data derived from measurements with low-energy γ's and nuclear recoils due to neutron elastic scatterings, it was verified that the pulse shapes between β/γ-events are different. Several methods of pulse shape discrimination (PSD) are studied, and their relative merits are compared. Full digitization of the pulse shapes is crucial to achieve good discrimination. Advanced software techniques with mean time, neural network and likelihood ratios give rise to satisfactory performance, and are superior to the conventional Double Charge method commonly applied at higher energies. PSD becomes effective starting at a light yield of about 20 photo-electrons. This corresponds to a detection threshold of about 5 keV electron-equivalence energy, or 40-50 keV recoil kinetic energy, in realistic experiments

  12. Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack

    2016-01-01

    This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.

  13. Effect of γ-exposure on retention of recoil 56Mn in permanganates

    International Nuclear Information System (INIS)

    Mishra, S.P.; Vijaya

    2002-01-01

    Full text: γ-exposure effect on recombination of recoil 56 Mn atom in La, Sr and Ba permanganates were studied with a special emphasis to pre-and post-activation γ-ray irradiation treatment using 60 Co source. Permanganates were inactivated by ionizing radiation as a function of γ-dose without neutron irradiation, however, pronounced effects were seen after neutron activation. Pre-irradiation increase the initial retention and promotes the annealing phenomenon as the introduction of defect into the lattice though on the other hand radiolytic phenomenon may also appear. Pre-activated sample gave higher retention value for lanthanum and barium permanganates in comparison to strontium permanganate at different γ-doses for desired period of gamma annealing than those obtained at corresponding γ-doses for similar length of time in case of post-activated targets. Kinetics of annealing by γ-radiolytic effects follow first order rate law. The observed results are discussed in the light of existing ideas for understanding the recoil stabilization phenomenon of parent reformation and the nature of precursors in permanganates

  14. Mass and energy dispersive recoil spectrometry of GaAs structures

    International Nuclear Information System (INIS)

    Hult, M.

    1994-01-01

    Mass and energy dispersive Recoil Spectrometry (RS) using heavy ions at energies of about 0.2Α-0.8Α MeV has attracted much interest recently due to its potential for separately and unambiguously generating information on isotopic depth distributions. The principal advantages of mass and energy dispersive RS are that both light and heavy elements can be separately studied simultaneously and problems caused by chemical matrix effects are avoided since the technique is based on high energy nucleus-nucleus scattering. In order to elucidate reactions taking place in various GaAs structures, Time of flight-Energy (ToF-E) RS was developed to allow Ga and As to be studied separately down to depths of about 500-800 nm with a depth resolution of about 16 nm at the surface. This was shown in a study of an Al x Ga 1-x As quantum-well structure. The benefits of using ToF-E RS on GaAs structures were further demonstrated in studies of Co/GaAs and CoSi 2 /GaAs reactions, as well as in a study of the composition of MOCVD grown Al x Ga 1-x As. Most recoil measurements employed 127 I at energies of about 50-90 MeV as projectiles. The recoil detector telescope consisted of a silicon energy detector and two carbon foil time pick-off detectors separated by a variable flight length of 213.5-961 mm. The reactions taking place between various thin films and GaAs were also studied using complementary techniques such as XRD, XPS and SEM. Co was found to react extensively with GaAs, already at about 300 degrees C, making it unsuitable as a contact material. Thin films of Co and Si were found to react extensively with each other and to form CoSi 2 at 500 degrees C and above. CoSi 2 , a low resistivity silicide, turned out to be stable on GaAs, at least up to 700 degrees C. Considerable grain growth could cause problems, however, in the use of CoSi 2 -contacts. 112 refs, figs, tabs

  15. Maternal arterial elasticity in the first trimester as a predictor of birthweight.

    Science.gov (United States)

    O'Connor, Clare; O'Higgins, Amy; Segurado, Ricardo; Turner, Michael J; Stuart, Bernard; Kennelly, Máireád M

    2016-07-01

    The early detection of foetal growth restriction and macrosomia is an important goal of modern obstetric care. Aberrant foetal growth is an important cause of perinatal morbidity and mortality. Current modalities for detecting the abnormal foetal growth are often inadequate. Pulse wave analysis using applanation tonometry is a simple and non-invasive test that provides information about the cardiovascular system. Arterial elasticity has previously been implicated in the pathophysiology of pre-eclampsia and cardiovascular disease. Our study examined the relationship between maternal arterial elasticity and birthweight by using pulse wave analysis. We discovered that increased large artery elasticity predicted a larger baby at birth. Large artery elasticity therefore has the potential to act as a useful screening tool which may help in the prediction of women who are at risk of aberrant foetal growth.

  16. Elastic scattering at the LHC

    CERN Document Server

    Kaspar, Jan; Deile, M

    The seemingly simple elastic scattering of protons still presents a challenge for the theory. In this thesis we discuss the elastic scattering from theoretical as well as experimental point of view. In the theory part, we present several models and their predictions for the LHC. We also discuss the Coulomb-hadronic interference, where we present a new eikonal calculation to all orders of alpha, the fine-structure constant. In the experimental part we introduce the TOTEM experiment which is dedicated, among other subjects, to the measurement of the elastic scattering at the LHC. This measurement is performed primarily with the Roman Pot (RP) detectors - movable beam-pipe insertions hundreds of meters from the interaction point, that can detect protons scattered to very small angles. We discuss some aspects of the RP simulation and reconstruction software. A central point is devoted to the techniques of RP alignment - determining the RP sensor positions relative to each other and to the beam. At the end we pres...

  17. Three-dimensional recoil-ion momentum analyses in 8.7 MeV O7+-He collisions

    International Nuclear Information System (INIS)

    Kambara, T.; Tang, J.Z.; Awaya, Y.

    1995-01-01

    Using high-resolution recoil-ion momentum spectroscopy we have measured the differential cross sections of single-electron capture and target single-ionization processes for 8.7 MeV O 7+ -He collisions as functions of scattering angle. A transverse momentum resolution of ±0.2 au, which corresponds to an angular resolution of about ±1.5x10 -6 rad for the projectile scattering angle, was obtained by intersecting a well collimated O 7+ beam with a target of a supersonic He jet from a pre-cooled gas and by measuring the recoil-ion transverse momentum. For the single capture reaction, information on the n-value of the electron final state in O 6+ (1snl) is obtained from the longitudinal momentum of the recoil ions. In pure single-electron capture, the dominant contributions to capture were found to be those from the n=4 and higher states, whereas single capture accompanied by the ionization of the second target electron mainly populates n=2 to n=4 states. Furthermore, the measured transverse momentum distribution differs significantly between pure single capture and capture with simultaneous ionization. The measured data for the pure capture process compare favourably with theoretical results based on a molecular-state expansion method. Other experimental data are discussed in terms of the classical overbarrier model. (author)

  18. Contribution to the physical study of sheath failure detections

    International Nuclear Information System (INIS)

    Mangin, Jean-Paul

    1968-11-01

    As the study of an installation aimed at the detection of sheath failure requires the knowledge of a great number of data related to all the fields of nuclear technology (fission mechanisms, sheath failure mechanisms, recoil of fission products, distribution of the heat transfer fluid in the reactor, techniques of measurement of beta and gamma neutrons, nuclear safety, and so on), this report aims at highlighting some specific issues, more particularly those related to sensors based on delayed neutrons. After having recalled the principles of sheath failure detection, the author presents the various aspects of the study of the formation of fission products and of their passage into the heat transfer fluid: detection by using delayed neutrons, detection by electrostatic collection, passage of fuel fission products into the coolant (recoil, corrosion, gaseous diffusion in the fuel), formation of fission products in the fuel (fission product efficiency). He reports the study of the transport of fission products by the coolant from their place of birth to the place of measurement. He presents the system of measurement by detection of delayed neutrons and by electrostatic collection, reports a sensitivity calculation, a background noise assessment, the determination of detection threshold, and the application of sensitivity and detection thresholds calculations [fr

  19. Janus probe, a detection system for high energy reactor gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Gold, R.; Kaiser, B.J.

    1980-03-01

    In reactor environments, gamma-ray spectra are continuous and the absolute magnitude as well as the general shape of the gamma continuum are of paramount importance. Consequently, conventional methods of gamma-ray detection are not suitable for in-core gamma-ray spectrometry. To meet these specific needs, a method of continuous gamma-ray spectrometry, namely Compton Recoil Gamma-Ray Spectrometry, was developed for in-situ observations of reactor environments. A new gamma-ray detection system has been developed which extends the applicability of Compton Recoil Gamma-Ray Spectrometry up to roughly 7 MeV. This detection system is comprised of two separate Si(Li) detectors placed face-to-face. Hence this new detection system is called the Janus probe. Also shown is the block diagram of pulse processing instrumentation for the Janus probe. This new gamma probe not only extends the upper energy limit of in-core gamma-ray spectrometry, but in addition possesses other fundamental advantages

  20. Automatic estimation of elasticity parameters in breast tissue

    Science.gov (United States)

    Skerl, Katrin; Cochran, Sandy; Evans, Andrew

    2014-03-01

    Shear wave elastography (SWE), a novel ultrasound imaging technique, can provide unique information about cancerous tissue. To estimate elasticity parameters, a region of interest (ROI) is manually positioned over the stiffest part of the shear wave image (SWI). The aim of this work is to estimate the elasticity parameters i.e. mean elasticity, maximal elasticity and standard deviation, fully automatically. Ultrasonic SWI of a breast elastography phantom and breast tissue in vivo were acquired using the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France). First, the SWI within the ultrasonic B-mode image was detected using MATLAB then the elasticity values were extracted. The ROI was automatically positioned over the stiffest part of the SWI and the elasticity parameters were calculated. Finally all values were saved in a spreadsheet which also contains the patient's study ID. This spreadsheet is easily available for physicians and clinical staff for further evaluation and so increase efficiency. Therewith the efficiency is increased. This algorithm simplifies the handling, especially for the performance and evaluation of clinical trials. The SWE processing method allows physicians easy access to the elasticity parameters of the examinations from their own and other institutions. This reduces clinical time and effort and simplifies evaluation of data in clinical trials. Furthermore, reproducibility will be improved.

  1. Use of the on-line Moessbauer effect as a contribution to the study of recoil defects in solids

    International Nuclear Information System (INIS)

    Jeandey, Christian

    1974-01-01

    This research thesis addresses the study of effects of nuclear reactions, also known as 'after-effects' such as atomic disorders resulted from atom recoil, but also possible chemical modifications. The author more particularly focuses of recoil defects. He reports a critical review of studies of structure defects (in pure metals, ordered alloys, ionic crystals) performed by using conventional resonance absorption, and then presents an analysis of results of the defect creation dynamics as it had been proposed by other authors. He also proposes an overview of the evolution and disappearance of defects during thermal treatments. After a review of experiments based on the on-line Moessbauer effect, the author reports the study of recoil effects in pure metals (iron, hafnium), in alloys (Fe 1-x Al x , FeGe 2 , cubic, monoclinic and hexagonal FeGe), and in organic complexes (ferrous oxalate, different types of hafnium chelate, hafnium oxide). He finally discusses the electronic properties of different types of iron and hafnium chelate in solid phase [fr

  2. Development of ΔE-E telescope ERDA with 40 MeV {sup 35}Cl{sup 7+} beam at MALT in the University of Tokyo optimized for analysis of metal oxynitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Harayama, I.; Nagashima, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573 (Japan); Hirose, Y. [Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Matsuzaki, H. [School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Sekiba, D., E-mail: sekiba@tac.tsukuba.ac.jp [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573 (Japan); Tandem Accelerator Complex, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577 (Japan)

    2016-10-01

    We have developed a compact ΔE-E telescope elastic recoil detection analysis (ERDA) system, for the first time at Micro Analysis Laboratory, Tandem Accelerator (MALT) in the University of Tokyo, which consists of a gas ionization chamber and solid state detector (SSD) for the quantitative analysis of light elements. The gas ionization chamber is designed to identify the recoils of O and N from metal oxynitrides thin films irradiated with 40 MeV {sup 35}Cl{sup 7+}. The length of the electrodes along the beam direction is 50 mm optimized to sufficiently separate energy loss of O and N recoils in P10 gas at 6.0 × 10{sup 3} Pa. The performance of the gas ionization chamber was examined by comparing the ERDA results on the SrTaO{sub 2}N thin films with semi-empirical simulation and the chemical compositions previously determined by nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). We also confirmed availability of the gas ionization chamber for identifying not only the recoils of O and N but also those of lithium, carbon and fluorine.

  3. Reduced-impact sliding pressure control valve for pneumatic hammer drill

    Science.gov (United States)

    Polsky, Yarom [Oak Ridge, TN; Grubelich, Mark C [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM

    2012-05-15

    A method and means of minimizing the effect of elastic valve recoil in impact applications, such as percussive drilling, where sliding spool valves used inside the percussive device are subject to poor positioning control due to elastic recoil effects experienced when the valve impacts a stroke limiting surface. The improved valve design reduces the reflected velocity of the valve by using either an energy damping material, or a valve assembly with internal damping built-in, to dissipate the compression stress wave produced during impact.

  4. WIMP detection and slow ion dynamics in carbon nanotube arrays

    International Nuclear Information System (INIS)

    Cavoto, G.; Cirillo, E.N.M.; Cocina, F.; Ferretti, J.; Polosa, A.D.

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (∼ 11 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency. (orig.)

  5. WIMP detection and slow ion dynamics in carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Cavoto, G. [INFN Sezione di Roma, Rome (Italy); Cirillo, E.N.M. [Sapienza Universita di Roma, Dipartimento SBAI, Rome (Italy); Cocina, F. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Ferretti, J. [Sapienza Universita di Roma, Dipartimento di Fisica (Italy); INFN Sezione di Roma, Rome (Italy); Polosa, A.D. [Sapienza Universita di Roma, Dipartimento di Fisica (Italy); CERN, Theory Division, Geneva (Switzerland); INFN Sezione di Roma, Rome (Italy)

    2016-06-15

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (∼ 11 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency. (orig.)

  6. WIMP detection and slow ion dynamics in carbon nanotube arrays.

    Science.gov (United States)

    Cavoto, G; Cirillo, E N M; Cocina, F; Ferretti, J; Polosa, A D

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs ([Formula: see text] GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency.

  7. Probing the structure of unstable nuclei through the recoiled proton tagged knockout reaction

    International Nuclear Information System (INIS)

    Ye, Y.; Cao, Z.; Jiang, D.

    2010-01-01

    Recoiled proton tagged knockout reaction experiments were carried-out for 8 He at 82,5 MeV/u in RIKEN and for 6 He at 65 MeV/u in Lanzhou. The very preliminary results for the distinguish of the reaction mechanism are presented and compared to the kinematics calculation. (authors)

  8. Sub-recoil cooling up to nano-Kelvin. Direct measurement of spatial coherency length. New tests for Levy statistics

    International Nuclear Information System (INIS)

    Saubamea, B.

    1998-12-01

    This thesis presents a new method to measure the temperature of ultracold atoms from the spatial autocorrelation function of the atomic wave-packets. We thus determine the temperature of metastable helium-4 atoms cooled by velocity selective dark resonance, a method known to cool the atoms below the temperature related to the emission or the absorption of a single photon by an atom at rest, namely the recoil temperature. This cooling mechanism prepares each atom in a coherent superposition of two wave-packets with opposite mean momenta, which are initially superimposed and then drift apart. By measuring the temporal decay of their overlap, we have access to the Fourier transform of the momentum distribution of the atoms. Using this method, we can measure temperatures as low as 5 nK, 800 times as small as the recoil temperature. Moreover we study in detail the exact shape of the momentum distribution and compare the experimental results with two different theoretical approaches: a quantum Monte Carlo simulation and an analytical model based on Levy statistics. We compare the calculated line shape with the one deduced from simulations, and each theoretical model with experimental data. A very good agreement is found with each approach. We thus demonstrate the validity of the statistical model of sub-recoil cooling and give the first experimental evidence of some of its characteristics: the absence of steady-state, the self-similarity and the non Lorentzian shape of the momentum distribution of the cooled atoms. All these aspects are related to the non ergodicity of sub-recoil cooling. (author)

  9. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    International Nuclear Information System (INIS)

    Lee, H.S.; Adhikari, G.; Adhikari, P.; Choi, S.; Hahn, I.S.

    2015-01-01

    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a 137 Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg⋅year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.

  10. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.S. [Department of Physics, Ewha Womans University,Seoul 120-750 (Korea, Republic of); Adhikari, G.; Adhikari, P. [Department of Physics, Sejong University,Seoul 143-747 (Korea, Republic of); Choi, S. [Department of Physics and Astronomy, Seoul National University,Seoul 151-747 (Korea, Republic of); Hahn, I.S. [Department of Science Education, Ewha Womans University,Seoul 120-750 (Korea, Republic of)

    2015-08-18

    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a {sup 137}Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg⋅year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.

  11. MUST, a set of strip detectors for studying radioactive beams induced reactions; MUST, un ensemble de detecteurs a pistes pour l`etude des reactions induites par faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Blumenfeld, Y.; Barbier, A.; Beaumel, D.; Charlet, D.; Clavelin, J.F.; Douet, R.; Engrand, M.; Lebon, S.; Lelong, P.; Lesage, A.; Leven, V.; Lhenry, I.; Marechal, F.; Petizon, L.; Pouthas, J.; Richard, A.; Rougier, D.; Soulet, C.; Suomijaervi, T.; Volkov, P.; Voltolini, G. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Auger, F.; Ottini, S.; Alamanos, N. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Sauvestre, J.E.; Bonnereau, B.; Champion, L.; Delbourgo-Salvador, P.; Ethvignot, T.; Szmigiel, M. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France)

    1996-12-31

    This report states the specificity of light particles elastic scattering, and the need of detecting recoil protons to improve angular resolution. Then the development of a specific MUST strip detector is detailed: 60 strips detectors with Si O sub 2 dielectric, that yield 500 ps time resolution, and Si (Li) detectors following next. A versatile data acquisition system has been developed too, with CAMAC interface to suit to any experimental plant. (D.L.). 27 refs.

  12. MUST, a set of strip detectors for studying radioactive beams induced reactions

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Barbier, A.; Beaumel, D.; Charlet, D.; Clavelin, J.F.; Douet, R.; Engrand, M.; Lebon, S.; Lelong, P.; Lesage, A.; Leven, V.; Lhenry, I.; Marechal, F.; Petizon, L.; Pouthas, J.; Richard, A.; Rougier, D.; Soulet, C.; Suomijaervi, T.; Volkov, P.; Voltolini, G.

    1996-01-01

    This report states the specificity of light particles elastic scattering, and the need of detecting recoil protons to improve angular resolution. Then the development of a specific MUST strip detector is detailed: 60 strips detectors with Si O sub 2 dielectric, that yield 500 ps time resolution, and Si (Li) detectors following next. A versatile data acquisition system has been developed too, with CAMAC interface to suit to any experimental plant. (D.L.)

  13. Investigation of the muon-induced background of the EDELWEISS-II experiment

    International Nuclear Information System (INIS)

    Chantelauze, A.

    2009-11-01

    The EDELWEISS experiment aims at detecting WIMPs (weakly interactive massive particles) which could possibly amount for all or part of the dark matter in the universe. It measures the energy released by nuclear recoils produced by the elastic collision of a WIMP in an ordinary matter target. Due to the very small interaction cross-section of WIMP with nucleons, which leads to an extremely low expected event rate ( R < 250 keV. (author)

  14. Analysis of hard exclusive scattering processes of the HERMES recoil experiment

    International Nuclear Information System (INIS)

    Brodski, Irina

    2014-11-01

    Deeply virtual Compton Scattering (DVCS), ep → epγ is the simplest reaction giving indication of generalized parton distributions (GPD) of the nucleon. The DVCS process has the same final state as the Bethe-Heitler process (BH). For this reason the access is taken not through the cross-sections directly but through asymmetries between DVCS events depending on charge and polarization of the 27.6 GeV beam. For the first time the azimuthal asymmetry amplitudes according the charge of the lepton beam are extracted using a kinematically complete reconstruction method at the HERMES experiment. The recoil detector installed in 2006 allows the reconstruction of recoiling protons that completes the measurements of the forward detector to cover almost the complete angle range around the vertex. This approach allows suppressing the background processes by almost a complete magnitude compared to the traditional method using only the information of the forward spectrometer. The analysis of the asymmetries was carried out at different values of the kinematic variables t c' x B and Q 2 to investigate the dependence of these variables. This work pushes the limits of the readability of data and shows which periods have been found to be unstable in the data acquisition. It points out the impact of this finding to previous HERMES publications.

  15. Chemical effects of /sup 32/P recoil atom

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, N [Tokyo Univ. (Japan). Coll. of General Education

    1975-06-01

    Szilard-Chalmers' effect of /sup 32/P were reviewed. The concentration method using Szilard-Chalmers' effect in production of radioisotope, circumstances such as exposure time in an atomic pile, states of target substances and the yields by them were discussed. Many kinds of chemical effects, such as chemical effects of /sup 32/P recoil atom in phosphorated glass, studies of the effect of adducts, the threshold of ..gamma..-ray effect, the oxidation number of /sup 32/P in phosphorated glass by exposure time in the pile and the labelling position of /sup 32/P, are associated with caryotransformation (nuclear transformation) by environmental factors. The abovementioned articles were explained concerning /sup 32/P.

  16. Differential cross section measurements of the π-p elastic scattering in the Coulomb interference region between 30 and 140 GeV

    International Nuclear Information System (INIS)

    Ille, B.

    1979-01-01

    The differential cross section of elastic π - -p scattering in the Coulomb interference region from 30 GeV to 140 GeV has been measured at the CERN SPS using in conjunction an ionization chamber recoil spectrometer and a forward multiwire proportional chamber-magnet spectrometer. The phase of the π - -p forward hadronic amplitude was found to go four negative value (at 30 GeV) to positive value (at 140 GeV), passing through zero at about 60 GeV. The logarithmic slope at small /t/ (/t/ approximately 0.03 (GeV/c) 2 ) has also been measured and was found to be higher by about 3 (GeV/c) -2 than the values determined at higher /t/ (/t/ = 0.2 (GeV/c) 2 ) [fr

  17. CDMS Detector Fabrication Improvements and Low Energy Nuclear Recoil Measurements in Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jastram, Andrew [Texas A & M Univ., College Station, TX (United States)

    2015-12-01

    As the CDMS (Cryogenic Dark Matter Search) experiment is scaled up to tackle new dark matter parameter spaces (lower masses and cross-sections), detector production efficiency and repeatability becomes ever more important. A dedicated facility has been commissioned for SuperCDMS detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods, equipment, and tuning of process parameters. This work has demonstrated the capability for production of next generation CDMS SNOLAB detectors. Additionally, as the dark matter parameter space is probed further, careful calibrations of detector response to nuclear recoil interactions must be performed in order to extract useful information (in relation to dark matter particle characterzations) from experimental results. A neutron beam of tunable energy is used in conjunction with a commercial radiation detector to characterize ionization energy losses in germanium during nuclear recoil events. Data indicates agreement with values predicted by the Lindhard equation, providing a best-t k-value of 0.146.

  18. Ultra thin layer activation by recoil implantation of radioactive heavy ions. Applicability in wear and corrosion studies

    International Nuclear Information System (INIS)

    Lacroix, O.; Sauvage, T.; Blondiaux, G.; Guinard, L.

    1997-07-01

    A new calibration procedure is proposed for the application of recoil implantation of radioactive heavy ions (energies between a few hundred keV and a few MeV) into the near surface of materials as part of a research programme on sub-micrometric wear or corrosion phenomena. The depth profile of implanted radioelements is performed by using ultra thin deposited films obtained by cathode sputtering under argon plasma. Two curves for 56 Co ion in nickel have been determined for implantation depths of 110 and 200 nm, respectively, and stress the feasibility and reproducibility of this method for such activated depths. The achieved surface loss detection sensitivities are about 1 and 2 nm respectively. The on line detection mode is performed directly on the sample of interest. A general description of the method is presented. A study of the reaction kinematics followed by a general treatment on the irradiation parameters to be adopted are also developed with the intention of using the ultra thin layer activation method (UTLA) to further applications in research and industry. (author)

  19. Analytic calculation of radiative-recoil corrections to muonium hyperfine splitting: Electron-line contribution

    International Nuclear Information System (INIS)

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A.

    1991-01-01

    The detailed account of analytic calculation of radiative-recoil correction to muonium hyperfine splitting, induced by electron-line radiative insertions, is presented. The consideration is performed in the framework of the effective two-particle formalism. A good deal of attention is paid to the problem of the divergence cancellation and the selection of graphs, relevant to radiative-recoil corrections. The analysis is greatly facilitated by use of the Fried-Yennie gauge for radiative photons. The obtained set of graphs turns out to be gauge-invariant and actual calculations are performed in the Feynman gauge. The main technical tricks, with the help of which we have effectively utilized the existence in the problem of the small parameter-mass ratio and managed to perform all calculations in the analytic form are described. The main intermediate results, as well as the final answer, δE rr = (α(Ζα)/π 2 )(m/M)E F (6ζ(3) + 3π 2 In 2 + π 2 /2 + 17/8), are also presented

  20. Commissioning and performance studies of a proton recoil detector at the COMPASS-II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Joerg, Philipp; Buechele, Maximilian; Fischer, Horst; Gorzellik, Matthias; Grussenmeyer, Tobias; Herrmann, Florian; Koenigsmann, Kay; Kremser, Paul; Schopferer, Sebastian [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg (Germany); Collaboration: COMPASS Collaboration

    2014-07-01

    The COMPASS-II experiment is a fixed target experiment situated at CERN. A tertiary myon beam from the SPS scattered of protons from a liquid hydrogen target is used to measure Deeply Virtual Compton Scattering (DVCS) and Hard Exclusive Meson Production (HEMP). These processes offer a unique way to determine Generalized Parton Distributions, which are related to the total angular momentum of quarks, antiquarks and gluons in the nucleon by Ji's Sum Rule. One of the major parts of the COMPASS-II upgrade is the CAMERA detector. CAMERA is a proton recoil detector surrounding the COMPASS-II liquid hydrogen target. Its purpose is to measure the recoiled target proton in DVCS and HEMP reactions and viz to act as a veto to ensure the exclusivity of the measurement. The talk gives an outline of the detector and its readout electronics. It is focused on the commissioning and performance of the CAMERA detector and gives a brief insight into the ongoing DVCS analysis.

  1. Szilard-Chalmers cation recoil studies in zeolites X and Y. Pt. 3. Recoils from locked to open sites

    Energy Technology Data Exchange (ETDEWEB)

    Lai, P P; Rees, L V.C. [Imperial Coll. of Science and Technology, London (UK)

    1976-01-01

    The Szilard-Chalmers recoil of the cations Rb/sup +/, Cs/sup +/, Ba/sup 2 +/, La/sup 3 +/, Co/sup 2 +/, Zn/sup 2 +/, Cu/sup 2 +/ and Na/sup +/ from the sodalite cage and hexagonal prism sites into the supercage sites of zeolites X and Y has been studied. This study is complementary to that described in Lai et al, JCS Faraday I; 72:181 (1976). It has been found that these cations recoil from the sodalite cage sites into the supercage sites with a probability of approximately 90% whereas the corresponding probability for these cations in the hexagonal prism sites (site I) is between 40 and 50% depending on the cation. It is thus possible to determine the preferences shown by these cations for these 'locked-in' sites as a function of temperature of calcination, Tsub(c), concentration and type of other cations contained in these sites. In these studies the cations present in the supercage sites before irradiation were usually NH/sub 4//sup +/ but Ba/sup 2 +/, Ca/sup 2 +/ and Na/sup +/ have also been used. When Tsub(c) > 400/sup 0/C, Rb/sup +/ and Cs/sup +/ began to populate site I. These ions populated this site in zeolite X at lower calcination temperatures than required for zeolite Y. When Tsub(c) was increased from 110 to 220/sup 0/C the occupancy of site I by Ba/sup 2 +/ was greatly enhanced and when Tsub(c) > 440/sup 0/C Ba/sup 2 +/ ions now occupied this site in preference to all other 'locked-in' sites. Barium exhibited a higher affinity for site I in zeolite X than in zeolite Y when Tsub(c) = 110/sup 0/C. If dehydrated La-Y was assumed to have 5 La/sup 3 +/ ions per u.c. in site I, the hydration of this material did not change the concentration of La/sup 3 +/ in site I. Co/sup 2 +/, Zn/sup 2 +/ and Cu/sup 2 +/ ions all exhibited similar affinities for the 'locked-in' sites of zeolites X and Y.

  2. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-05-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.

  3. Exclusive compton scattering on the proton

    International Nuclear Information System (INIS)

    Chen, J.P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M.

    1999-01-01

    An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range, and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together, these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same non-forward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged Bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer, currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supersedes E97 - 108 which was approved by PAC13. (author)

  4. Exclusive compton scattering on the proton

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)] [and others

    1999-07-01

    An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range, and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together, these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same non-forward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged Bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer, currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supersedes E97 - 108 which was approved by PAC13. (author)

  5. Exclusive Compton Scattering on the Proton

    International Nuclear Information System (INIS)

    Chen, J. P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M.; LeRose, J.; Liang, M.; Michaels, R.; Mitchell, J.; Liyanage, N.; Rutt, P.; Saha, A.; Wojtsekhowski, B.; Bouwhuis, M.; Chang, T.H.; Holt, R. J.; Nathan, A. M.; Roedelbronn, M.; Wijesooriya, K.; Williamson, S. E.; Dodge, G.; Hyde-Wright, C.; Radyushkin, A.; Sabatie, F.; Weinstein, L. B.; Ulmer, P.; Bosted, P.; Finn, J. M.; Jones, M.; Churchwell, S.; Howell, C.; Gilman, R.; Glashausser, C.; Jiang, X.; Ransome, R.; Strauch, S.; Berthot, J.; Bertin, P.; Fonvielle, H.; Roblin, Y.; Bertozzi, W.; Gilad, S.; Rowntree, D.; Zu, Z.; Brown, D.; Chang, G.; Afanasev, A.; Egiyan, K.; Hoohauneysan, E.; Ketikyan, A.; Mailyan, S.; Petrosyan, A.; Shahinyan, A.; Voskanyan, H.; Boeglin, W.; Markowitz, P.; Hines, J.; Strobel, G.; Templon, J.; Feldman, G.; Morris, C. L.; Gladyshev, V.; Lindgren, R. A.; Calarco, J.; Hersman, W.; Leuschner, M.; Gasparian, A.

    1999-01-01

    An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range; and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together; these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same nonforward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer; currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supercedes E97-108 which was approved by PAC13

  6. Complete analytic results for radiative-recoil corrections to ground-state muonium hyperfine splitting

    International Nuclear Information System (INIS)

    Karshenboim, S.G.; Shelyuto, V.A.; Eides, M.E.

    1988-01-01

    Analytic expressions are obtained for radiative corrections to the hyperfine splitting related to the muon line. The corresponding contribution amounts to (Z 2 a) (Za) (m/M) (9/2 ζ(3) - 3π 2 ln 2 + 39/8) in units of the Fermi hyperfine splitting energy. A complete analytic result for all radiative-recoil corrections is also presented

  7. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.W.; Russell, G.J. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  8. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J W; Russell, G J [New South Wales Univ., Kensington, NSW (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  9. A note on the random walk theory of recoil movement in prolonged ion bombardment

    International Nuclear Information System (INIS)

    Koponen, Ismo

    1994-01-01

    A characteristic function is derived for the probability distribution of final positions of recoil atoms in prolonged ion bombardment of dense matter. The derivation is done within the framework of Poissonian random walk theory using a jump distribution, which is somewhat more general than those studied previously. ((orig.))

  10. Recoil-free Fraction in Amorphous and Nanocrystalline Aluminium Based Alloys

    Science.gov (United States)

    Sitek, Jozef

    2008-10-01

    Aluminium based rapidly quenched alloys of nominal composition Al90Fe7Nb3 and Al94Fe2V4 were studied by Mössbauer spectroscopy. We have measured the recoil-free fraction and thermal shift at room and liquid nitrogen temperature. The frequency modes of atomic vibrations were determined and consequently the characteristic Debye temperature was derived. Characteristic temperature calculated from f-factor was lower than those fitted from second order Doppler shift. This indicates the presence of different frequency modes for amorphous and nanocrystalline states.

  11. The B → D*lv form factor at zero recoil

    International Nuclear Information System (INIS)

    Simone, J.N.; Hashimoto, S.; El-Khadra, A.X.; Kronfeld, A.S.; Mackenzie, P.B.; Ryan, S.M.

    2000-01-01

    We describe a model independent lattice QCD method for determining the deviation from unity for h A1 (1), the B → D*lv form factor at zero recoil. We extend the double ratio method previously used to determine the B → Dlv form factor. The bulk of statistical and systematic errors cancel in the double ratios we consider, yielding form factors which promise to reduce present theoretical uncertainties in the determination of parallel V cb parallel. We present results from a prototype calculation at a single lattice spacing corresponding to β = 5.7

  12. Direct and Recoil-Induced Electron Emission from Ion-Bombarded Solids

    DEFF Research Database (Denmark)

    Holmen, G.; Svensson, B.; Schou, Jørgen

    1979-01-01

    The kinetic emission of secondary electrons from ion-bombarded solid surfaces is split into two contributions, a direct one caused by ionizing collisions between the bombarding ion and target atoms, and an indirect one originating from ionizing collisions undergone by recoil atoms with other target...... atoms. The direct contribution, which has been treated by several authors in previous studies, shows a behavior that is determined primarily by the electronic stopping power of the bombarding ion, while the indirect contribution is nonproportionally related to the nuclear stopping power. This latter...

  13. Autonomic Vertical Elasticity of Docker Containers with ElasticDocker

    OpenAIRE

    Al-Dhuraibi , Yahya; Paraiso , Fawaz; Djarallah , Nabil; Merle , Philippe

    2017-01-01

    International audience; Elasticity is the key feature of cloud computing to scale computing resources according to application workloads timely. In the literature as well as in industrial products, much attention was given to the elasticity of virtual machines, but much less to the elasticity of containers. However, containers are the new trend for packaging and deploying microservices-based applications. Moreover, most of approaches focus on horizontal elasticity, fewer works address vertica...

  14. Thin film analysis by instrumental heavy ion activation analysis using distributed recoil ranges of isotopic products

    International Nuclear Information System (INIS)

    Chowdhury, D.P.; Guin, R.; Saha, S.K.; Sudersanan, M.

    2006-01-01

    Thin foils (0.1 to 10 μm), metallic or polymeric, are frequently used in nuclear physics and chemistry experiments using ion beams from an accelerator. Very often it is important to know the major, minor and trace element composition of the foil. Several nuclear analytical techniques, namely RBS, ERDA, etc. are available for the near surface analysis. We have applied heavy ion activation analysis (HIAA) to explore the bulk composition of thin films. One of the difficulties in this method of thin film analysis is that the product nuclides from nuclear reaction come out of the sample surface due to high recoil energy. In thick sample, the recoiled nuclides are absorbed in the sample itself. This effect has been used to employ heavy ion activation for the analysis of thin films

  15. The Diurnal Variation of the Wimp Detection Event Rates in Directional Experiments

    CERN Document Server

    Vergados, J D

    2009-01-01

    The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Modern particle theories naturally provide viable cold dark matter candidates with masses in the GeV-TeV region. Supersymmetry provides the lightest supersymmetric particle (LSP), theories in extra dimensions supply the lightest Kaluza-Klein particle (LKP) etc. The nature of dark matter can only be unraveled only by its direct detection in the laboratory. All such candidates will be called WIMPs (Weakly Interacting Massive Particles). In any case the direct dark matter search, which amounts to detecting the recoiling nucleus, following its collision with WIMP, is central to particle physics and cosmology. In this work we briefly review the theoretical elements relevant to the direct dark matter detection experiments, paying particular attention to directional experiments. i.e experiments in which, not only the energy but the direction of the recoiling nucleus is ob...

  16. Elastic properties

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1983-01-01

    This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites

  17. Ion-induced stress relaxation during the growth of cubic boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abendroth, B.E.

    2004-08-01

    in this thesis the deposition of cubic boron nitride films by magnetron sputtering is described. The deposition process is analyzed by Langmuir-probe measurement and energy resolved mass spectroscopy. the films are studied by stress measurement, spectroscopic ellipsometry, infrared spectroscopy, elastic recoil detection analysis, Rutherford backscattering spectroscopy, X-ray absorption near edge spectroscopy, X-ray diffraction, and transmission electron microscopy. Discussed are the stress relaxation and the microstructure and bonding characteristics together with the effects of ion bombardement. (HSI)

  18. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for recoil cross section spectra under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Yosuke, E-mail: iwamoto.yosuke@jaea.go.jp; Ogawa, Tatsuhiko

    2017-04-01

    Because primary knock-on atoms (PKAs) create point defects and clusters in materials that are irradiated with neutrons, it is important to validate the calculations of recoil cross section spectra that are used to estimate radiation damage in materials. Here, the recoil cross section spectra of fission- and fusion-relevant materials were calculated using the Event Generator Mode (EGM) of the Particle and Heavy Ion Transport code System (PHITS) and also using the data processing code NJOY2012 with the nuclear data libraries TENDL2015, ENDF/BVII.1, and JEFF3.2. The heating number, which is the integral of the recoil cross section spectra, was also calculated using PHITS-EGM and compared with data extracted from the ACE files of TENDL2015, ENDF/BVII.1, and JENDL4.0. In general, only a small difference was found between the PKA spectra of PHITS + TENDL2015 and NJOY + TENDL2015. From analyzing the recoil cross section spectra extracted from the nuclear data libraries using NJOY2012, we found that the recoil cross section spectra were incorrect for {sup 72}Ge, {sup 75}As, {sup 89}Y, and {sup 109}Ag in the ENDF/B-VII.1 library, and for {sup 90}Zr and {sup 55}Mn in the JEFF3.2 library. From analyzing the heating number, we found that the data extracted from the ACE file of TENDL2015 for all nuclides were problematic in the neutron capture region because of incorrect data regarding the emitted gamma energy. However, PHITS + TENDL2015 can calculate PKA spectra and heating numbers correctly.

  19. B → Kl{sup +}l{sup -} decay at large hadronic recoil

    Energy Technology Data Exchange (ETDEWEB)

    Khodjamirian, Alexander; Mannel, Thomas [Siegen University (Germany); Wang, Yuming [TUM (Germany)

    2013-07-01

    We predict the amplitude of the B → Kl{sup +}l{sup -} decay in the region of the dilepton invariant mass squared 0 < q{sup 2}≤ m{sup 2}{sub J/ψ}, that is, at large hadronic recoil. The B → K form factors entering the factorizable part of the decay amplitude are obtained from QCD light-cone sum rules. The nonlocal effects, generated by the four-quark and penguin operators combined with the electromagnetic interaction, are calculated at q{sup 2}<0, far below the hadronic thresholds. For hard-gluon contributions we employ the QCD factorization approach. The soft-gluon nonfactorizable contributions are estimated from QCD light-cone sum rules. The result of the calculation is matched to the hadronic dispersion relation in the variable q{sup 2}, which is then continued to the kinematical region of the decay. The overall effect of nonlocal contributions in B → Kl{sup +}l{sup -} at large hadronic recoil is moderate. The main uncertainty of the predicted B → Kl{sup +}l{sup -} partial width is caused by the B → K form factors. Furthermore, the isospin asymmetry in this decay is expected to be very small. We investigate the deviation of the observables from the Standard Model predictions by introducing a generic new physics contribution to the effective Hamiltonian.

  20. Effect of pressure on the radiation annealing of recoil atoms in chromates

    International Nuclear Information System (INIS)

    Stamouli, M.I.

    1986-01-01

    The effect of pressure on the annealing of recoil atoms by gamma radiation in neutron irradiated potassium chromate, ammonium chromate and ammonium dichromate was studied. In potassium chromate the pressure applied before the gamma-irradiation was found to retard the radiation annealing process. In ammonium chromate and ammonium dichromate the radiation annealing was found to be enhanced in the compressed samples in comparison to the noncompressed ones. (author)

  1. Solar neutrino detection in a large volume double-phase liquid argon experiment

    Energy Technology Data Exchange (ETDEWEB)

    Franco, D.; Agnes, P. [APC, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, Paris 75205 (France); Giganti, C.; Agostino, L.; De Cecco, S., E-mail: dfranco@in2p3.fr, E-mail: cgiganti@lpnhe.in2p3.fr, E-mail: pagnes@in2p3.fr, E-mail: lagostin@lpnhe.in2p3.fr, E-mail: sandro.dececco@lpnhe.in2p3.fr [LPNHE Paris, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris 75252 (France); and others

    2016-08-01

    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne-yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all three cartesian directions. While enabling Dark Matter searches with sensitivity extending to the ''neutrino floor'' (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ∼15% precision, and significantly improve the precision of the {sup 7}Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.

  2. Automation of the helium jet transport system for nuclear recoil products

    International Nuclear Information System (INIS)

    Bellido, Luis F.; Pedrosa, Paulo S.

    1996-09-01

    A computer code and an interface hardware to automate the acquisition data and the sample changer in a helium jet transport system of recoil nucleus was developed for an IBM or compatible personal microcomputer. The software works with a Spectrum-ACE/ADCAM ORTEC's multichannel analysers and the interface card uses the 03EFh port to command the sample changer. This system allows to measure, by gamma spectrometry, radionuclides with half-lives of order of seconds produced from nuclear reactions. (author)

  3. A portable neutron spectroscope (NSPECT) for detection, imaging and identification of nuclear material

    Science.gov (United States)

    Ryan, James M.; Bancroft, Christopher; Bloser, Peter; Bravar, Ulisse; Fourguette, Dominique; Frost, Colin; Larocque, Liane; McConnell, Mark L.; Legere, Jason; Pavlich, Jane; Ritter, Greg; Wassick, Greg; Wood, Joshua; Woolf, Richard

    2010-08-01

    We have developed, fabricated and tested a prototype imaging neutron spectrometer designed for real-time neutron source location and identification. Real-time detection and identification is important for locating materials. These materials, specifically uranium and transuranics, emit neutrons via spontaneous or induced fission. Unlike other forms of radiation (e.g. gamma rays), penetrating neutron emission is very uncommon. The instrument detects these neutrons, constructs images of the emission pattern, and reports the neutron spectrum. The device will be useful for security and proliferation deterrence, as well as for nuclear waste characterization and monitoring. The instrument is optimized for imaging and spectroscopy in the 1-20 MeV range. The detection principle is based upon multiple elastic neutron-proton scatters in organic scintillator. Two detector panel layers are utilized. By measuring the recoil proton and scattered neutron locations and energies, the direction and energy spectrum of the incident neutrons can be determined and discrete and extended sources identified. Event reconstruction yields an image of the source and its location. The hardware is low power, low mass, and rugged. Its modular design allows the user to combine multiple units for increased sensitivity. We will report the results of laboratory testing of the instrument, including exposure to a calibrated Cf-252 source. Instrument parameters include energy and angular resolution, gamma rejection, minimum source identification distances and times, and projected effective area for a fully populated instrument.

  4. Subthreshold neutron interrogator for detection of radioactive materials

    Science.gov (United States)

    Evans, Michael L.; Menlove, Howard O.; Baker, Michael P.

    1980-01-01

    A device for detecting fissionable material such as uranium in low concentrations by interrogating with photoneutrons at energy levels below 500 keV, and typically about 26 keV. Induced fast neutrons having energies above 500 keV by the interrogated fissionable material are detected by a liquid scintillator or recoil proportional counter which is sensitive to the induced fast neutrons. Since the induced fast neutrons are proportional to the concentration of fissionable material, detection of induced fast neutrons indicate concentration of the fissionable material.

  5. Oxygen recoil implant from SiO2 layers into single-crystalline silicon

    International Nuclear Information System (INIS)

    Wang, G.; Chen, Y.; Li, D.; Oak, S.; Srivastav, G.; Banerjee, S.; Tasch, A.; Merrill, P.; Bleiler, R.

    2001-01-01

    It is important to understand the distribution of recoil-implanted atoms and the impact on device performance when ion implantation is performed at a high dose through surface materials into single crystalline silicon. For example, in ultralarge scale integration impurity ions are often implanted through a thin layer of screen oxide and some of the oxygen atoms are inevitably recoil implanted into single-crystalline silicon. Theoretical and experimental studies have been performed to investigate this phenomenon. We have modified the Monte Carlo ion implant simulator, UT-Marlowe (B. Obradovic, G. Wang, Y. Chen, D. Li, C. Snell, and A. F. Tasch, UT-MARLOWE Manual, 1999), which is based on the binary collision approximation, to follow the full cascade and to dynamically modify the stoichiometry of the Si layer as oxygen atoms are knocked into it. CPU reduction techniques are used to relieve the demand on computational power when such a full cascade simulation is involved. Secondary ion mass spectrometry (SIMS) profiles of oxygen have been carefully obtained for high dose As and BF 2 implants at different energies through oxide layers of various thicknesses, and the simulated oxygen profiles are found to agree very well with the SIMS data. [copyright] 2001 American Institute of Physics

  6. Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system.

    Science.gov (United States)

    Wang, Shang; Li, Jiasong; Manapuram, Ravi Kiran; Menodiado, Floredes M; Ingram, Davis R; Twa, Michael D; Lazar, Alexander J; Lev, Dina C; Pollock, Raphael E; Larin, Kirill V

    2012-12-15

    We report on an optical noncontact method for the detection of soft-tissue tumors based on the measurement of their elasticity. A focused air-puff system is used to excite surface waves (SWs) on soft tissues with transient static pressure. A high-speed phase-sensitive optical coherence tomography system is used to measure the SWs as they propagate from the point of excitation. To evaluate the stiffness of soft tissues, the Young's modulus is quantified based on the group velocity of SWs. Pilot experiments were performed on ex vivo human myxoma and normal fat. Results demonstrate the feasibility of the proposed method to measure elasticity and differentiate soft-tissue tumors from normal tissues.

  7. Elastic interactions between hydrogen atoms in metals. II. Elastic interaction energies

    International Nuclear Information System (INIS)

    Shirley, A.I.; Hall, C.K.

    1986-01-01

    The fully harmonic lattice approximation derived in a previous paper is used to calculate the elastic interaction energies in the niobium-hydrogen system. The permanent-direct, permanent-indirect, induced-direct, and induced-indirect forces calculated previously each give rise to a corresponding elastic interaction between hydrogen atoms. The latter three interactions have three- and four-body terms in addition to the usual two-body terms. These quantities are calculated and compared with the corresponding two-body permanent elastic interactions obtained in the harmonic-approximation treatment of Horner and Wagner. The results show that the total induced elastic energy is approximately (1/3) the size of the total permanent elastic energy and opposite to it in sign. The total elastic energy due to three-body interactions is approximately (1/4) the size of the total two-body elastic energy, while the total four-body elastic energy is approximately 5% of the total two-body energy. These additional elastic energies are expected to have a profound effect on the thermodynamic and phase-change behavior of a metal hydride

  8. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    International Nuclear Information System (INIS)

    Petersen, B. A.; Liu, B.; Weber, W. J.; Oak Ridge National Laboratory; Zhang, Y.; Oak Ridge National Laboratory

    2017-01-01

    In this paper, low-energy recoil events in MgO are studied using ab initio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, E_d, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for E_d are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. Finally, there is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.

  9. A new sliding joint to accommodate recoil of a free-piston-driven expansion tube facility

    Science.gov (United States)

    Gildfind, D. E.; Morgan, R. G.

    2016-11-01

    This paper describes a new device to decouple free-piston driver recoil and its associated mechanical vibration from the acceleration tube and test section of The University of Queensland's X3 expansion tube. A sliding joint is introduced to the acceleration tube which axially decouples the facility at this station. When the facility is fired, the upstream section of the facility, which includes the free-piston driver, can recoil upstream freely. The downstream acceleration tube remains stationary. This arrangement provides two important benefits. Firstly, it eliminates nozzle movement relative to the test section before and during the experiment. This has benefits in terms of experimental setup and alignment. Secondly, it prevents transmission of mechanical disturbances from the free-piston driver to the acceleration tube, thereby eliminating mechanically-induced transducer noise in the sensitive pressure transducers installed in this low-pressure tube. This paper details the new design, and presents experimental confirmation of its performance.

  10. A study of CoSix silicide formed by recoil implantation

    International Nuclear Information System (INIS)

    Kwok, H.L.

    1989-01-01

    This work investigated the formation of CoSi x silicides on n-Si by recoil implantation through a thin cobalt layer using an inert gas ion beam. The results suggest the formation of a very shallow (35 to 45 nm) silicide surface layer under the specific conditions of preparation. The surface layer resistivity was comparable to values reported for Co 2 Si and CoSi, although below the surface, the resistivity decreased. This appeared to suggest a change-over from cobalt-rich silicides near the surface to a more conducting silicide (CoSi 2 ) at the interface. (author)

  11. Gravitational-recoil effects on fermion propagation in space-time foam

    CERN Document Server

    Ellis, John R.; Nanopoulos, Dimitri V.; Volkov, G.

    2000-01-01

    Motivated by the possible experimental opportunities to test quantum gravity via its effects on high-energy neutrinos propagating through space-time foam, we discuss how to incorporate spin structures in our D-brane description of gravitational recoil effects in vacuo. We also point to an interesting analogous condensed-matter system. We use a suitable supersymmetrization of the Born-Infeld action for excited D-brane gravitational backgrounds to argue that energetic fermions may travel slower than the low-energy velocity of light: pulses of neutrinos at energies approaching 10^{19} eV: these would be observable only if M \\gsim 10^{27} GeV.

  12. Design and performance evaluation of an OpenFlow-based control plane for software-defined elastic optical networks with direct-detection optical OFDM (DDO-OFDM) transmission.

    Science.gov (United States)

    Liu, Lei; Peng, Wei-Ren; Casellas, Ramon; Tsuritani, Takehiro; Morita, Itsuro; Martínez, Ricardo; Muñoz, Raül; Yoo, S J B

    2014-01-13

    Optical Orthogonal Frequency Division Multiplexing (O-OFDM), which transmits high speed optical signals using multiple spectrally overlapped lower-speed subcarriers, is a promising candidate for supporting future elastic optical networks. In contrast to previous works which focus on Coherent Optical OFDM (CO-OFDM), in this paper, we consider the direct-detection optical OFDM (DDO-OFDM) as the transport technique, which leads to simpler hardware and software realizations, potentially offering a low-cost solution for elastic optical networks, especially in metro networks, and short or medium distance core networks. Based on this network scenario, we design and deploy a software-defined networking (SDN) control plane enabled by extending OpenFlow, detailing the network architecture, the routing and spectrum assignment algorithm, OpenFlow protocol extensions and the experimental validation. To the best of our knowledge, it is the first time that an OpenFlow-based control plane is reported and its performance is quantitatively measured in an elastic optical network with DDO-OFDM transmission.

  13. Recent recoil ion momentum spectroscopy experiments at KSU

    International Nuclear Information System (INIS)

    Abdallah, M.; Cocke, C.L.; Kravis, S.; Montenegro, E.C.; Moshammer, R.; Saleh, L.; Ullrich, J.; Varghese, S.L.; Wolff, W.; Wolf, H.

    1997-01-01

    Recoil momentum spectroscopy is used to study collisions involving both fast and slow projectiles on He targets. Experiments have been performed on electron capture and loss from fast ions from the KSU LINAC and slow ions from the KSU CRYEBIS using a supersonic jets with a momentum resolution below 0.5 au. Using fast ions, the final states populated in electron capture from He by 10 MeV F 8+ have been resolved with a Q-value resolution of 18 eV, sufficient to separate final channels in which the He + ion is left excited from those in which He + is left in its ground state. With slow ions, electron capture from He by slow bare Ne ions has been studied. A few recent results are discussed. copyright 1997 American Institute of Physics

  14. Markov chain Monte Carlo analysis to constrain dark matter properties with directional detection

    International Nuclear Information System (INIS)

    Billard, J.; Mayet, F.; Santos, D.

    2011-01-01

    Directional detection is a promising dark matter search strategy. Indeed, weakly interacting massive particle (WIMP)-induced recoils would present a direction dependence toward the Cygnus constellation, while background-induced recoils exhibit an isotropic distribution in the Galactic rest frame. Taking advantage of these characteristic features, and even in the presence of a sizeable background, it has recently been shown that data from forthcoming directional detectors could lead either to a competitive exclusion or to a conclusive discovery, depending on the value of the WIMP-nucleon cross section. However, it is possible to further exploit these upcoming data by using the strong dependence of the WIMP signal with: the WIMP mass and the local WIMP velocity distribution. Using a Markov chain Monte Carlo analysis of recoil events, we show for the first time the possibility to constrain the unknown WIMP parameters, both from particle physics (mass and cross section) and Galactic halo (velocity dispersion along the three axis), leading to an identification of non-baryonic dark matter.

  15. Segmented detector for recoil neutrons in the p(γ, n)π+ reaction

    International Nuclear Information System (INIS)

    Korkmaz, E.; O'Rielly, G.V.; Hutcheon, D.A.; Feldman, G.; Jordan, D.; Kolb, N.R.; Pywell, R.E.; Retzlaff, G.A.; Sawatzky, B.D.; Skopik, D.M.; Vogt, J.M.; Cairns, E.; Giesen, U.; Holm, L.; Opper, A.K.; Rozon, F.M.; Soukup, J.

    1999-01-01

    A segmented neutron detector has been constructed and used for recoil neutron (6-13 MeV) measurements of the reaction γp→nπ + very close to threshold. BC-505 liquid scintillator was used to allow pulse shape discrimination between neutrons and photons. A measurement of the absolute efficiency of the detector was performed using stopped pions in the reaction π - p→nγ. Results of the efficiency calibration are compared to a Monte Carlo simulation. (author)

  16. The Dialectic: Not just the Absolute Recoil, but the World’s Living Fire that Extinguishes and Kindles Itself. Reflections on Slavoj Žižek’s Version of Dialectical Philosophy in "Absolute Recoil: Towards a New Foundation of Dialectical Materialism".

    Directory of Open Access Journals (Sweden)

    Christian Fuchs

    2014-10-01

    Full Text Available Slavoj Žižek shows in his book Absolute Recoil (and previous Hegelian works such as Less than Nothing the importance of repeating Hegel’s dialectical philosophy in contemporary capitalism. Žižek contributes especially to a reconceptualisation of dialectical logic and based on it the dialectic of history. The reflections in this paper stress that the dialectic is only the absolute recoil, a sublation that posits its own presuppositions, by working as a living fire that extinguishes and kindles itself. I point out that a new foundation of dialectical materialism needs a proper Heraclitusian foundation. I discuss Žižek’s version of the dialectic that stresses the absolute recoil and the logic of retroactivity and point out its implications for the concept of history as well as Žižek’s own theoretical ambiguities that oscillate between postmodern relativism and mechanical materialism. I argue that Žižek’s version of the dialectic should be brought into a dialogue with the dialectical philosophies of the German Marxists Hans Heinz Holz and Herbert Hörz. Žižek’s achievement is that he helps keeping alive the fire of dialectical materialism in the 21st century. Such a dialectical fire is needed for a proper revolutionary theory.

  17. Measurement of the Muon Neutrino Double-Differential Charged Current Quasi-Elastic Like Cross Section on a Hydrocarbon Target at Ev ~ 3.5 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado Anampa, Kenyi Paolo [Rio de Janeiro, CBPF

    2016-01-01

    The MINERvA Experiment (Main Injector Experiment v ₋ A interaction) [1] is a highly segmented detector of neutrinos, able to record events with high precision (over than thirteen million event in a four year run), using the NuMI Beam (Neutrino Main Injector) at the Fermi National Accelerator Laboratory [2]. This thesis presents a measurement of the Charged Current Quasi-Elastic Like1 vμ interaction on polystyrene scintillator (CH) in the MINERvA experiment with neutrino energies between 1.5 and 10 GeV. We use data taken between2 March 2010 and April 2012. The interactions were selected by requiring a negative muon, a reconstructed and identified proton, no michel electrons in the final state (in order to get rid of soft pions decaying) and a low calorimetric recoil energy away from the interaction vertex. The analysis is performed on 66,214 quasi-elastic like event candidates in the detectors tracker region with an estimated purity of 74%. The final measurement reported is a double differential cross sections in terms of the muon longitudinal and transversal momentum observables.

  18. Tunable modulation of refracted lamb wave front facilitated by adaptive elastic metasurfaces

    Science.gov (United States)

    Li, Shilong; Xu, Jiawen; Tang, J.

    2018-01-01

    This letter reports designs of adaptive metasurfaces capable of modulating incoming wave fronts of elastic waves through electromechanical-tuning of their cells. The proposed elastic metasurfaces are composed of arrayed piezoelectric units with individually connected negative capacitance elements that are online tunable. By adjusting the negative capacitances properly, accurately formed, discontinuous phase profiles along the elastic metasurfaces can be achieved. Subsequently, anomalous refraction with various angles can be realized on the transmitted lowest asymmetric mode Lamb wave. Moreover, designs to facilitate planar focal lenses and source illusion devices can also be accomplished. The proposed flexible and versatile strategy to manipulate elastic waves has potential applications ranging from structural fault detection to vibration/noise control.

  19. The determination of electron momentum densities by inelastic scattering gamma-ray-electron coincidence measurements: The (γ,eγ)-experiment

    International Nuclear Information System (INIS)

    Rollason, A.J.; Bell, F.; Schneider, J.R.

    1989-09-01

    Measurements have been made of the recoiling electron in 320 keV gamma ray inelastic scattering collisions in thin aluminium targets. The angular correlation of these electrons detected in coincidence with the scattered photon is in agreement with the kinematic requirements of the Compton effect and is correctly predicted by Monte Carlo simulations based on the impulse approximation. Further simulations of ideal-geometry experiments indicate that information about the initial electron momenta is available from an examination of those electron-photon events originating in a surface layer of one electronic mean free path depth and that elastic scattering of the recoil electrons from greater depths produces a nearly flat background to this signal. The results clearly demonstrate the feasibility of the (γ,eγ) experiment for studying electron momentum densities with synchrotron radiation. (orig.) With 23 refs., 17 figs

  20. Chemical effects of 13N produced by recoil protons and deuterons in pile-irradiated methanol and methanol-d4

    International Nuclear Information System (INIS)

    Sensui, Y.; Tomura, K.; Matsuura, T.

    1982-01-01

    The stabilized chemical forms of 13 N resulting from the reactions 13 C(p,n) 13 N by a recoil proton and 12 C(d,n) 13 N by a recoil deuteron, were studied in pile-irradiated methanol and methanol-d 4 in the temperature range from 77 to 295 K. Contrary to the target of benzene, cyclohexane, acetone and diethyl ether previously studied, the relative yield of 13 N-compounds did not depend on the irradiation temperature in the present media. In the yield of 13 N-compounds no marked change was observed between methanol and methanol-d 4 , differing from the results between benzene and benzene-d 6 . A mechanism is proposed to explain the results. (author)

  1. On the possibility of improving the sensitivity of dark-matter detection

    Energy Technology Data Exchange (ETDEWEB)

    Paschos, E.A.; Pilaftsis, A. (Dortmund Univ. (Germany, F.R.). Inst. fuer Physik); Zioutas, K. (Thessaloniki Univ. (Greece). Nuclear and Elementary Particle Physics Section)

    1990-02-22

    First we investigate the detectability of nuclear magnetic transitions produced by dark-matter particles. The M1 transitions are mediated by spin-dependent interactions between dark matter and nuclei. We assume that the dark matter consists mainly of photinos, and show that the expected rate is of the order of 1 event/kg/d for the excitation of nuclear magnetic states accompanied also by a recoiling nucleus. The de-excitation decay that follows, {approx equal} (ms-{mu}s), might later be observed as electromagnetic radiation in the GHz region in future, more sensitive, microwave devices. Secondly, we propose to utilize liquid-xenon detectors for measuring the energy of the recoiling nucleus, either through the Xe odd-isotopes or through other mixed atoms, such as hydrogen, with lowest masses. Furthermore the mass scale of these calorimeters (1-100 t) gives a greatly improved sensitivity for darkmatter detection compared with other conventional systems. (orig.).

  2. Blocky inversion of multichannel elastic impedance for elastic parameters

    Science.gov (United States)

    Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza

    2018-04-01

    Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.

  3. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-01-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects

  4. DaMaSCUS: the impact of underground scatterings on direct detection of light dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Emken, Timon; Kouvaris, Chris, E-mail: emken@cp3.sdu.dk, E-mail: kouvaris@cp3.sdu.dk [CP3-Origins, University of Southern Denmark, Campusvej 55, DK-5230 Odense (Denmark)

    2017-10-01

    Conventional dark matter direct detection experiments set stringent constraints on dark matter by looking for elastic scattering events between dark matter particles and nuclei in underground detectors. However these constraints weaken significantly in the sub-GeV mass region, simply because light dark matter does not have enough energy to trigger detectors regardless of the dark matter-nucleon scattering cross section. Even if future experiments lower their energy thresholds, they will still be blind to parameter space where dark matter particles interact with nuclei strongly enough that they lose enough energy and become unable to cause a signal above the experimental threshold by the time they reach the underground detector. Therefore in case dark matter is in the sub-GeV region and strongly interacting, possible underground scatterings of dark matter with terrestrial nuclei must be taken into account because they affect significantly the recoil spectra and event rates, regardless of whether the experiment probes DM via DM-nucleus or DM-electron interaction. To quantify this effect we present the publicly available Dark Matter Simulation Code for Underground Scatterings (DaMaSCUS), a Monte Carlo simulator of DM trajectories through the Earth taking underground scatterings into account. Our simulation allows the precise calculation of the density and velocity distribution of dark matter at any detector of given depth and location on Earth. The simulation can also provide the accurate recoil spectrum in underground detectors as well as the phase and amplitude of the diurnal modulation caused by this shadowing effect of the Earth, ultimately relating the modulations expected in different detectors, which is important to decisively conclude if a diurnal modulation is due to dark matter or an irrelevant background.

  5. DaMaSCUS: the impact of underground scatterings on direct detection of light dark matter

    International Nuclear Information System (INIS)

    Emken, Timon; Kouvaris, Chris

    2017-01-01

    Conventional dark matter direct detection experiments set stringent constraints on dark matter by looking for elastic scattering events between dark matter particles and nuclei in underground detectors. However these constraints weaken significantly in the sub-GeV mass region, simply because light dark matter does not have enough energy to trigger detectors regardless of the dark matter-nucleon scattering cross section. Even if future experiments lower their energy thresholds, they will still be blind to parameter space where dark matter particles interact with nuclei strongly enough that they lose enough energy and become unable to cause a signal above the experimental threshold by the time they reach the underground detector. Therefore in case dark matter is in the sub-GeV region and strongly interacting, possible underground scatterings of dark matter with terrestrial nuclei must be taken into account because they affect significantly the recoil spectra and event rates, regardless of whether the experiment probes DM via DM-nucleus or DM-electron interaction. To quantify this effect we present the publicly available Dark Matter Simulation Code for Underground Scatterings (DaMaSCUS), a Monte Carlo simulator of DM trajectories through the Earth taking underground scatterings into account. Our simulation allows the precise calculation of the density and velocity distribution of dark matter at any detector of given depth and location on Earth. The simulation can also provide the accurate recoil spectrum in underground detectors as well as the phase and amplitude of the diurnal modulation caused by this shadowing effect of the Earth, ultimately relating the modulations expected in different detectors, which is important to decisively conclude if a diurnal modulation is due to dark matter or an irrelevant background.

  6. Control of recoil losses in nanomechanical SiN membrane resonators

    Science.gov (United States)

    Borrielli, A.; Marconi, L.; Marin, F.; Marino, F.; Morana, B.; Pandraud, G.; Pontin, A.; Prodi, G. A.; Sarro, P. M.; Serra, E.; Bonaldi, M.

    2016-09-01

    In the context of a recoil damping analysis, we have designed and produced a membrane resonator equipped with a specific on-chip structure working as a "loss shield" for a circular membrane. In this device the vibrations of the membrane, with a quality factor of 107, reach the limit set by the intrinsic dissipation in silicon nitride, for all the modes and regardless of the modal shape, also at low frequency. Guided by our theoretical model of the loss shield, we describe the design rationale of the device, which can be used as effective replacement of commercial membrane resonators in advanced optomechanical setups, also at cryogenic temperatures.

  7. Influence of crystal defects on the chemical reactivity of recoil atoms in oxygen-containing chromium compounds

    International Nuclear Information System (INIS)

    Costea, T.

    1969-01-01

    The influence of crystal defects on the chemical reactivity of recoil atoms produced by the reaction 50 Cr (n,γ) 51 Cr in oxygen-containing chromium compounds has been studied. Three methods have been used to introduce the defects: doping (K 2 CrO 4 doped with BaCrO 4 ), irradiation by ionizing radiation (K 2 CrO 4 irradiated in the presence of Li 2 CO 3 ) and non-stoichiometry (the semi-conducting oxides of the CrO 3 -Cr 2 O 3 series). The thermal annealing kinetics of the irradiated samples have been determined, and the activation energy has been calculated. In all cases it has been observed that there is a decrease in the activation energy for thermal annealing in the presence of the defects. In order to explain the annealing process, an electronic mechanism has been proposed based on the interaction between the recoil species and the charge-carriers (holes or electrons). (author) [fr

  8. Neutron spectrometry for D-T plasmas in JET, using a tandem annular-radiator proton-recoil spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N.P.; Bond, D.S.; Kiptily, V.; Jarvis, O.N. E-mail: onj@jet.uk; Conroy, S.W

    2002-01-01

    A selection of the 14-MeV neutron spectra obtained at the JET Joint Undertaking tokamak during the deuterium-tritium operating campaign in 1997 are presented and analyzed. While several neutron spectrometers were operational during this campaign, the present paper is concerned solely with one: the tandem annular-radiator proton-recoil spectrometer (or proton recoil telescope, for brevity). During neutral beam heating with combined d- and t-beams, analysis of the spectra can define the core fuel composition (D:T) ratio. The spectra are sensitive to the population balance of the fast ions streaming in directions parallel and opposite to that of the injected beams. During ICRF heating of minority deuterium in bulk tritium plasmas, the spectra provide measurements of the effective temperature of the fast-deuteron energy tail and of its relative strength, which vary with the deuterium concentration. This information contributes to the overall understanding of the fusion performance of the various operating scenarios.

  9. Possibility of obtaining enriched americium-242g by the elution of recoil atoms from zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Shafiev, A I; Vityutnev, V M; Ivanov, V M; Yakovlev, G N

    1974-12-31

    On the example of production the possibility of obtaining enriched actinide isotopes by the elution of recotl atoms with the use of a zeolite- americium-241 target was shown. The enrichment factor and the recoil atoms of / sup 242g/Am yield depend on preliminary target treatment and solution composition used for elution. (auth)

  10. Neutron fluence and energy reconstruction with the IRSN recoil detector μ-TPC at 27 keV, 144 keV and 565 keV

    Energy Technology Data Exchange (ETDEWEB)

    Maire, D.; Lebreton, L.; Richer, J.P. [IRSN, PRP-HOM, SDE, LMDN, 13115 Saint Paul-Lez-Durance (France); Bosson, G.; Bourrion, O.; Guillaudin, O.; Riffard, Q.; Santos, D. [CNRS/IN2P3-UJF-INPG, LPSC, 38000 Grenoble (France)

    2015-07-01

    The French Institute for Radioprotection and Nuclear Safety (IRSN), associated to the French Metrology Institute (LNE), is developing a time projection chamber using a Micromegas anode: μ-TPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize with a primary procedure the energy distribution of neutron fluence in the energy range 8 keV - 1 MeV. The time projection chambers are gaseous detectors, which are able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gas is used as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulated detector response. The μ-TPC is a new reliable detector which enables to measure energy distribution of the neutron fluence without deconvolution or neutron calibration contrary to usual gaseous counters. The μ-TPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27.2 keV, 144 keV and 565 keV are shown and compared to the complete detector simulation. This work shows the first direct

  11. Phenomenological extraction of two-photon exchange amplitudes from elastic electron-proton scattering cross section data

    Science.gov (United States)

    Qattan, I. A.

    2017-05-01

    Background: The inconsistency in the results obtained from the Rosenbluth separation method and the high-Q2 recoil polarization results on the ratio μpGEp/GMp implies a systematic difference between the two techniques. Several studies suggest that missing higher-order radiative corrections to elastic electron-proton scattering cross section σR(ɛ ,Q2) and in particular hard two-photon-exchange (TPE) contributions could account for the discrepancy. Purpose: In this work, I improve on and extend to low and high Q2 values the extractions of the ɛ dependence of the real parts of the TPE amplitudes relative to the magnetic form factor, as well as the ratio Pl/PlBorn(ɛ ,Q2) by using world data on σR(ɛ ,Q2) with an emphasis on precise new data covering the low-momentum region which is sensitive to the large-scale structure of the nucleon. Method: I combine cross section and polarization measurements of elastic electron-proton scattering to extract the TPE amplitudes. Because the recoil polarization data were confirmed "experimentally" to be essentially independent of ɛ , I constrain the ratio Pt/Pl(ɛ ,Q2) to its ɛ -independent term (Born value) by setting the TPE contributions to zero. This allows for the amplitude YM(ɛ ,Q2) and σR(ɛ ,Q2) to be expressed in terms of the remaining two amplitudes YE(ɛ ,Q2) and Y3(ɛ ,Q2) which in turn are parametrized as second-order polynomials in ɛ and Q2 to reserve as possible the linearity of σR(ɛ ,Q2) as well as to account for possible nonlinearities in the TPE amplitudes. Furthermore, I impose the Regge limit which ensures the vanishing of the TPE contributions to σR(ɛ ,Q2) and the TPE amplitudes in the limit ɛ →1 . Results: I provide simple parametrizations of the TPE amplitudes, along with an estimate of the fit uncertainties. The extracted TPE amplitudes are compared with previous phenomenological extractions and TPE calculations. The Pl/PlBorn ratio is extracted by using the new parametrizations of the TPE

  12. Ion beam analysis fundamentals and applications

    CERN Document Server

    Nastasi, Michael; Wang, Yongqiang

    2015-01-01

    Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization.The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nucle

  13. Piezoelectric excitation of elastic waves in centrosymmetrical potassium tantalate crystal

    International Nuclear Information System (INIS)

    Smolenskij, G.A.; Lemanov, V.V.; Sotnikov, A.V.; Syrnikov, P.P.; Yushin, N.K.

    1981-01-01

    Experiment results on excitation of elastic oscillations in potassium tantalate crystals are considered. The experiment has been conducted by usual for supersonic measurements technique: an impulse of the variable electric field has been applied to one of plane-parallel sample end-faces, at the same end-face signals corresponding to elastic pulses propagating in the crystal have been detected. Basic radiopulses parameters: basic frequency 30 MHz, duration 1-2 μs, pulse recurrence frequency 500 Hz, power 10 W. The investigation carried out has shown that the application to the sample at T=80 K temperature of constant external electrical field parallel to direction of elastic wave propagation leads to hysteresis dependence of elastic waves amplitude on the external voltage value. With temperature increase the hysteresis loop is deformed. It has been found when investigating temperature dependence of elastic wave amplitude that in the absence of external constant electrical field in short-circuited by constant current samples the oxillation excitation effect disappears at T approximately equal to 200 K. An essential influence on the elastic wave amplitude value is exerted by illumination of the crystal surface by light with 360-630 nm wave length. At T 130 K bacaee of photovoltaic effect in illuminated samples [ru

  14. A new Recoil Proton Telescope for energy and fluence measurement of fast neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, Lena; Bachaalany, Mario [IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons), Cadarache Bat.159, 13115 Saint Paul-lez-Durance, (France); Husson, Daniel; Higueret, Stephane [IPHC / RaMsEs (Institut Pluridisciplinaire Hubert Curien / Radioprotection et Mesures Environnementales), 23 rue du loess - BP28, 67037 Strasbourg cedex 2, (France)

    2015-07-01

    The spectrometer ATHENA (Accurate Telescope for High Energy Neutron metrology Applications), is being developed at the IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons) and aims at characterizing energy and fluence of fast neutron fields. The detector is a Recoil Proton Telescope and measures neutron fields in the range of 5 to 20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50{sub m} thick silicon sensors that use CMOS technology for the proton tracking and a 3 mm thick silicon diode to measure the residual proton energy. This first prototype used CMOS sensors called MIMOSTAR, initially developed for heavy ion physics. The use of CMOS sensors and silicon diode increases the intrinsic efficiency of the detector by a factor of ten compared with conventional designs. The first prototype has already been done and was a successful study giving the results it offered in terms of energy and fluence measurements. For mono energetic beams going from 5 to 19 MeV, the telescope offered an energy resolution between 5 and 11% and fluence difference going from 5 to 7% compared to other home standards. A second and final prototype of the detector is being designed. It will hold upgraded CMOS sensors called FastPixN. These CMOS sensors are supposed to run 400 times faster than the older version and therefore give the telescope the ability to support neutron flux in the order of 107 to 108cm{sup 2}:s{sup 1}. The first prototypes results showed that a 50 m pixel size is enough for a precise scattering angle reconstruction. Simulations using MCNPX and GEANT4 are already in place for further improvements. A DeltaE diode will replace the third CMOS sensor and will be installed right before the silicon diode for a better recoil proton selection. The final prototype with

  15. Proton-proton bremsstrahlung towards the elastic limit

    Science.gov (United States)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H. R.; Bacelar, J. C. S.; Castelijns, R.; Ermisch, K.; van Garderen, E.; Gašparić, I.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kiš, M.; Löhner, H.

    2005-05-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed.

  16. Proton-proton bremsstrahlung towards the elastic limit

    International Nuclear Information System (INIS)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H.R.; Bacelar, J.C.S.; Castelijns, R.; Ermisch, K.; Garderen, E. van; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Kis, M.; Loehner, H.; Gasparic, I.

    2005-01-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed

  17. The study of the ion-crystal interaction by using the blocking technique for scattered recoils

    International Nuclear Information System (INIS)

    Karamyan, S.A.

    1989-01-01

    Experimental data are presented on the orientation effects observed in the fast heavy ion irradiated diamond, Si and Ge crystals by recording recoil nuclei. The volume capture of medium-weight nuclei to channeling has first been revealed and studied. Ion damaging power is systematized and the anomalously low damaging power is Xe ions is established. 18 refs.; 9 figs

  18. Recoil-distance lifetime measurements of the ground-state band in 164Dy, 170Er, and 174Yb

    International Nuclear Information System (INIS)

    Sie, S.H.; Gebbie, D.W.

    1977-06-01

    Mean-lives of the 4 + , 6 + and 8 + levels of the ground-state band in 164 Dy, 170 Er and 174 Yb have been measured by the recoil-distance technique following multiple Coulomb excitation with 32 S projectiles of energy 120-140 MeV. The gamma-rays were detected in coincidence with backscattered particles. The results are compared with theoretical predictions of the adiabatic rotor model. The 6 + and 8 + lifetimes in 164 Dy are found to correspond to a slight reduction in B(E2) values over the rotational model prediction, while for for the 4 + state a 12% reduction was observed. In 170 Er and 174 Yb the lifetimes are consistent with rotational model predictions with a slight enhancement of B(E2) values at higher spins. Comparison with other results from Doppler broadened lineshape analysis confirms the need to adjust the electronic stopping powers of Northcliffe and Schilling in the lineshape calculations. (Author)

  19. Binary and Recoil Collisions in Strong Field Double Ionization of Helium

    International Nuclear Information System (INIS)

    Staudte, A.; Villeneuve, D. M.; Corkum, P. B.; Ruiz, C.; Becker, A.; Schoeffler, M.; Schoessler, S.; Meckel, M.; Doerner, R.; Zeidler, D.; Weber, Th.

    2007-01-01

    We have investigated the correlated momentum distribution of both electrons from nonsequential double ionization of helium in a 800 nm, 4.5x10 14 W/cm 2 laser field. Using very high resolution coincidence techniques, we find a so-far unobserved fingerlike structure in the correlated electron momentum distribution. The structure can be interpreted as a signature of the microscopic dynamics in the recollision process. We identify features corresponding to the binary and recoil lobe in field-free (e,2e) collisions. This interpretation is supported by analyzing ab initio solutions of a fully correlated three-dimensional helium model

  20. Optimization of microwave-induced chemical etching for rapid development of neutron-induced recoil tracks in CR-39 detectors

    International Nuclear Information System (INIS)

    Sahoo, G.S.; Tripathy, S.P.; Bandyopadhyay, T.

    2014-01-01

    A systematic investigation is carried out to optimize the recently established microwave-induced chemical etching (MICE) parameters for rapid development of neutron-induced recoil tracks in CR-39 detectors. Several combinations of all available microwave powers with different etching durations were analysed to determine the most suitable etching condition. The etching duration was found to reduce with increasing microwave power and the tracks were observed at about 18, 15, 12, and 6 min for 300, 450, 600 and 900 W of microwave powers respectively compared to a few hours in chemical etching (CE) method. However, for complete development of tracks the etching duration of 30, 40, 50 and 60 min were found to be suitable for the microwave powers of 900, 600, 450 and 300 W, respectively. Temperature profiles of the etchant for all the available microwave powers at different etching durations were generated to regulate the etching process in a controlled manner. The bulk etch rates at different microwave powers were determined by 2 methods, viz., gravimetric and removed thickness methods. A logarithmic expression was used to fit the variation of bulk etch rate with microwave power. Neutron detection efficiencies were obtained for all the cases and the results on track parameters obtained with MICE technique were compared with those obtained from another detector processed with chemical etching. - Highlights: • Microwave-induced chemical etching method is optimized for rapid development of recoil tracks due to neutrons in CR-39 detector. • Several combinations of microwave powers and etching durations are investigated to standardize the suitable etching condition. • Bulk-etch rates are determined for all microwave powers by two different methods, viz. gravimetric and removed thickness method. • The method is found to be simple, effective and much faster compared to conventional chemical etching

  1. Halo structure of 8B determined from intermediate energy proton elastic scattering in inverse kinematics

    Science.gov (United States)

    Korolev, G. A.; Dobrovolsky, A. V.; Inglessi, A. G.; Alkhazov, G. D.; Egelhof, P.; Estradé, A.; Dillmann, I.; Farinon, F.; Geissel, H.; Ilieva, S.; Ke, Y.; Khanzadeev, A. V.; Kiselev, O. A.; Kurcewicz, J.; Le, X. C.; Litvinov, Yu. A.; Petrov, G. E.; Prochazka, A.; Scheidenberger, C.; Sergeev, L. O.; Simon, H.; Takechi, M.; Tang, S.; Volkov, V.; Vorobyov, A. A.; Weick, H.; Yatsoura, V. I.

    2018-05-01

    The absolute differential cross section for small-angle proton elastic scattering on the proton-rich 8B nucleus has been measured in inverse kinematics for the first time. The experiment was performed using a secondary radioactive beam with an energy of 0.7 GeV/u at GSI, Darmstadt. The active target, namely hydrogen-filled time projection ionization chamber IKAR, was used to measure the energy, angle and vertex point of the recoil protons. The scattering angle of the projectiles was simultaneously determined by the tracking detectors. The measured differential cross section is analyzed on the basis of the Glauber multiple scattering theory using phenomenological nuclear-density distributions with two free parameters. The radial density distribution deduced for 8B exhibits a halo structure with the root-mean-square (rms) matter radius Rm = 2.58 (6) fm and the rms halo radius Rh = 4.24 (25) fm. The results on 8B are compared to those on the mirror nucleus 8Li investigated earlier by the same method. A comparison is also made with previous experimental results and theoretical predictions for both nuclei.

  2. The detection of neutron clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marques, F.M.; Labiche, M.; Orr, N.A.; Angelique, J.C. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire] [and others

    2001-11-01

    A new approach to the production and detection of bound neutron clusters is presented. The technique is based on the breakup of beams of very neutron-rich nuclei and the subsequent detection of the recoiling proton in a liquid scintillator. The method has been tested in the breakup of {sup 11}Li, {sup 14}Be and {sup 15}B beams by a C target. Some 6 events were observed that exhibit the characteristics of a multi-neutron cluster liberated in the breakup of {sup 14}Be, most probably in the channel {sup 10}Be+{sup 4}n. The various backgrounds that may mimic such a signal are discussed in detail. (author)

  3. Experimental investigation of the triple differential cross section for electron impact ionization of N{sub 2} and CO{sub 2} molecules at intermediate impact energy and large ion recoil momentum

    Energy Technology Data Exchange (ETDEWEB)

    Lahmam-Bennani, A; Staicu Casagrande, E M; Naja, A, E-mail: azzedine.bennani@u-psud.f [Universite Paris-Sud 11, Laboratoire des Collisions Atomiques et Moleculaires (LCAM), Bat. 351, 91405 Orsay Cedex (France)

    2009-12-14

    The (e,2e) triple differential cross sections (TDCS) are measured for the ionization of nitrogen and carbon dioxide molecules in a coplanar asymmetric geometry for a wide range of ejected electron energies and at an incident energy about 500-700 eV. This kinematics corresponds to a large momentum imparted to the ion, and is meant to enhance the recoil scattering. The experimental binary and recoil angular distributions of the TDCS are characterized both by a shift towards larger angles with respect to the momentum transfer direction and by a large intensity in the recoil region, in particular for the ionization of the 'inner' N{sub 2}(2{sigma}{sub g}) molecular orbital. The data are compared with the results of calculations using the first Born approximation-two centre continuum (FBA-TCC) theoretical model for treating differential electron impact ionization. The experimentally observed shifts and recoil intensity enhancement are not predicted by the model calculations, which rather yield a TDCS symmetrically distributed around the momentum transfer direction, and completely fail in describing the recoil distribution. It is hoped that these new results will stimulate the development of more refined theories for correctly modelling single ionization of molecules.

  4. Production of highly ionized recoil ions in heavy ion impact

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Be, S.H.; Shibata, H.; Kase, M.; Kambara, T.; Kumagai, H.; Kohno, I.

    1985-01-01

    The production mechanisms of highly ionized recoil ions in energetic, highly charged heavy ion impact are compared with those in photon and electron impact. In addition to the innershell ionization processes which are important in photon and electron impact, the electron transfer processes are found to play a key role in heavy ion impact. In molecular targets are also observed highly ionized monoatomic ions which are believed to be produced through production of highly ionized molecular ions followed by prompt dissociation. The observed N 6+ ions produced in 1.05MeV/amu Ar 12+ ions on N 2 molecules are produced through, for example, N 2 12+ *→N 6+ +N 6+ process. (author)

  5. Stressed-deformed state of mountain rocks in elastic stage and between elasticity

    Directory of Open Access Journals (Sweden)

    Samedov A.M.

    2017-12-01

    Full Text Available The problems of the stress-strain state of rocks in the elastic stage and beyond the elastic limits, and the ways of schematizing the tension and compression diagrams were reviewed in the article. To simplify calculations outside the elastic range, the tension (compression diagrams are usually schematized, i.e. are replaced by curved smooth lines having a fairly simple mathematical expression and at the same time well coinciding with the experimentally obtained diagrams. When diagram is to be schematized, it is necessary to take a constant temperature of superheated water steam if a rock test is planned in a relaxed form. Note that when the diagram is schematizing, the difference between the limits of proportionality and fluidity is erased. This allows the limit of proportionality to be considered the limit of fluidity. Schematicization can be carried out in the area where the tensile strength (compression is planned to be destroyed with the established weakening of rocks by exposure to water steam or chemical reagents. Samples of rocks in natural form were tested and weakened by means of superheated water steam (220 °C and more and chemical reagents for tension and compression. The data are obtained, the diagrams of deformation are constructed and schematized in the elastic stage and beyond the elastic limit. Based on the schematic diagrams of deformation, the components of stress and strain were composed in the elastic stage and beyond the elastic limit. It is established in the publication that rocks under compression and stretching deform, both within the elastic stage, and beyond the limits of elasticity. This could be seen when the samples, both in natural and in weakened state, with superheated water steam (more than 220 °C or chemical reagents were tested. In their natural form, they are mainly deformed within the elastic stage and are destroyed as a brittle material, and in a weakened form they can deform beyond the elastic stage and

  6. Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids

    International Nuclear Information System (INIS)

    Zhakhovsky, Vasily V; Demaske, Brian J; Oleynik, Ivan I; Inogamov, Nail A; White, Carter T

    2014-01-01

    Shock waves in the [110] and [111] directions of single-crystal Al samples were studied using molecular dynamics (MD) simulations. Piston-driven simulations were performed to investigate the split shock-wave regime. At low piston velocities, the material is compressed initially to a metastable over-compressed elastic state leading to a super-elastic single shock wave. This metastable elastic state later collapses to a plastic state resulting in the formation of a two-wave structure consisting of an elastic precursor followed by a slower plastic wave. The single two-zone elastic-plastic shock-wave regime appearing at higher piston velocities was studied using moving window MD. The plastic wave attains the same average speed as the elastic precursor to form a single two-zone shock wave. In this case, repeated collapse of the highly over-compressed elastic state near the plastic shock front produces ultrashort triangle pulses that provide the pressure support for the leading elastic precursor.

  7. Ion beam analysis of aluminium in thin layers

    International Nuclear Information System (INIS)

    Healy, M.J.F.; Pidduck, A.J.; Dollinger, G.; Gorgens, L.; Bergmaier, A.

    2002-01-01

    This work quantifies aluminium in thin surface and near surface layers. In one example, the layer overlies a thin gallium nitride layer on an aluminium oxide substrate and in a second example the aluminium exists just below the surface of an indium arsenide substrate. The technique of non-Rutherford elastic backscattering of protons was used for the samples where aluminum in the layer of interest needed to be resolved from aluminium in the sapphire substrate and the results were corroborated at the Technische Universitaet Muenchen using heavy ion elastic recoil detection analysis. In the second example, where it was unnecessary to isolate the signal of aluminium in the layer of interest (as the substrate contained no aluminium), then the 27 Al(d,p 01 ) 28 Al nuclear reaction was used. The elastic proton scattering cross section of aluminum was found to vary very rapidly over the energy range of interest

  8. Electric form factor of the proton through recoil polarization

    International Nuclear Information System (INIS)

    Punjabi, V.

    2000-01-01

    The electromagnetic form factors of the nucleon, G E and G M , describe the charge and current distribution inside the nucleon and thus are quite intimately related to its structure. Jefferson Lab experiment 93-027 measured P l and Pt, the longitudinal and transverse recoil proton polarization, respectively, for the 1 H(e-vector,e'p-vector) reaction in the four-momentum transfer squared range of 0.5 to 3.5 GeV 2 , using the Hall A facility with two high resolution spectrometers and a Focal Plane Polarimeter. The ratio G Ep /G Mp is directly proportional to the ratio P t /P l . These data have unprecedented precision, and show for the first time that the Q 2 dependence of G Ep and G Mp is very different. (author)

  9. Results from the development of ionization detection systems for the DRAGON facility

    CERN Document Server

    Chen, A A

    2003-01-01

    We discuss the implementation of an ionization detection system for the focal plane of the DRAGON recoil mass separator. We report recent tests performed with stable beams to test the feasibility of such a system for use in measurements of radiative capture reactions in inverse kinematics with radioactive beams.

  10. Results from the development of ionization detection systems for the DRAGON facility

    International Nuclear Information System (INIS)

    Chen, Alan A.

    2003-01-01

    We discuss the implementation of an ionization detection system for the focal plane of the DRAGON recoil mass separator. We report recent tests performed with stable beams to test the feasibility of such a system for use in measurements of radiative capture reactions in inverse kinematics with radioactive beams

  11. Elastic scattering and quasi-elastic transfers

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1978-01-01

    Experiments are presented which it will be possible to carry out at GANIL on the elastic scattering of heavy ions: diffraction phenomena if the absorption is great, refraction phenomena if absorption is low. The determination of the optical parameters can be performed. The study of the quasi-elastic transfer reactions will make it possible to know the dynamics of the nuclear reactions, form exotic nuclei and study their energy excitation spectrum, and analyse the scattering and reaction cross sections [fr

  12. Nonlinear elastic waves in materials

    CERN Document Server

    Rushchitsky, Jeremiah J

    2014-01-01

    The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...

  13. Off-gas monitor system for the detection of a failed fuel cladding tube

    International Nuclear Information System (INIS)

    Yuasa, Yoshiyuki; Oosaki, Masahiko; Naito, Makoto.

    1984-01-01

    Purpose: To rapidly and reliably detect failures in a fuel cladding tube thereby prevent accidents. Method: Off-gases discharged from an air extractor are mixed at a certain ratio with cleaning water and gamma spectra for short-life radioactive rare gases and for long-life radioactive rare gases in the off-gases are measured by gamma ray detectors. The spectra are analyzed by a Pulse-height analyzer so as to quantitatively determine the nuclides of radioactive rare gases thereby calculate the release rate on each of the nuclides. Further, a central data-processing unit calculates the composition ratio of each release models about recoil, diffusion and equilibrium in the whole radioactive rare gases based on the release rate. As the total value of the release rate is rapidly increased, recoil part will be decreased suddenly and the diffusion and equilibrium parts will be increased by so much, upon failure of a fuel can; thus the failure can rapidly be detected. (Sekiya, K.)

  14. Exclusion limits on the WIMP-nucleon cross section from the first run of the Cryogenic Dark Matter Search in the Soudan Underground Laboratory

    International Nuclear Information System (INIS)

    Akerib, D.S.; Bailey, C.N.; Dragowsky, M.R.; Driscoll, D.D.; Hennings-Yeomans, R.; Kamat, S.; Perera, T.A.; Schnee, R.W.; Wang, G.; Armel-Funkhouser, M.S.; Daal, M.; Filippini, J.; Lu, A.; Mandic, V.; Meunier, P.; Mirabolfathi, N.; Issac, M.C. Perillo; Rau, W.; Seitz, D.N.; Serfass, B.

    2005-01-01

    The Cryogenic Dark Matter Search (CDMS-II) employs low-temperature Ge and Si detectors to seek weakly interacting massive particles (WIMPs) via their elastic-scattering interactions with nuclei. Simultaneous measurements of both ionization and phonon energy provide discrimination against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with >99.99% efficiency. Electromagnetic events very near the detector surface can mimic nuclear recoils because of reduced charge collection, but these surface events are rejected with >96% efficiency by using additional information from the phonon pulse shape. Efficient use of active and passive shielding, combined with the 2090 m.w.e. overburden at the experimental site in the Soudan mine, makes the background from neutrons negligible for this first exposure. All cuts are determined in a blind manner from in situ calibrations with external radioactive sources without any prior knowledge of the event distribution in the signal region. Resulting efficiencies are known to ∼10%. A single event with a recoil of 64 keV passes all of the cuts and is consistent with the expected misidentification rate of surface electron recoils. Under the assumptions for a standard dark matter halo, these data exclude previously unexplored parameter space for both spin-independent and spin-dependent WIMP-nucleon elastic scattering. The resulting limit on the spin-independent WIMP-nucleon elastic-scattering cross section has a minimum of 4x10 -43 cm 2 at a WIMP mass of 60 GeVc -2 . The minimum of the limit for the spin-dependent WIMP-neutron elastic-scattering cross section is 2x10 -37 cm 2 at a WIMP mass of 50 GeVc -2

  15. Study of Nuclear Collisions of 86 MeV/a.m.u. $^{12}$C with Heavy Targets by Collection of the Heavy Recoil Nuclei

    CERN Multimedia

    2002-01-01

    The aim of this experiment is twofold:\\\\ \\\\ Firstly to test the possibilities of collection of the heavy recoil nuclei with the device presented schematically on the figure. The recoil nuclei escaping from the irradiated target are first thermalised in a gas (N^2). One then takes advantage of their remaining charge to collect them with an electric field on the surface of a solid state detector. Tests already performed with other beams give absolute efficiency around 5\\%. The best conditions of collections with very energetic |1|2C have first to be tested. Secondly to get some insight into nuclear reaction mechanisms induced by 86~MeV/a.m.u. |1|2C using the possibilities of this recoil chamber. Two kinds of mechanisms should occur in these interactions. If the incident energy is damped (deep inelastic reaction, fusion), the heavy nucleus will be highly excited and the residual nuclei will lie along the @G^n/@G^p~=~1~line. For heavy nuclei this line is located at about 25~mass units from the stability line. If ...

  16. Detection of supernova neutrinos in the liquid-scintillator experiment LENA

    International Nuclear Information System (INIS)

    Winter, Jurgen Michael Albrecht

    2014-01-01

    The LENA project (Low-Energy Neutrino Astronomy) is a planned large-volume liquid-scintillator detector. The good energy resolution, low-energy threshold, and its large mass allow to perform real-time spectroscopy of low-energy neutrinos with high statistics. This is especially beneficial for the observation of rare events such as a galactic core-collapse supernova. In a liquid scintillator, interactions by different particle types cause different scintillation light pulse shapes. They can be used to identify proton recoils induced by neutrino-proton scattering from supernova neutrinos or by cosmogenic knock-out neutrons. In order to evaluate the performance of the detector, a precise characterization of the liquid scintillator is necessary. In the course of this work, an experiment has been set up at the Maier-Leibnitz-Laboratorium in Garching in order to determine the pulse shape of proton and electron recoils in different liquid-scintillator mixtures. Neutrons produced via 11 B(p,n) 11 C or an americiumberyllium source were used to induce proton recoils. Compton scattering of simultaneously emitted γs provided information on the electron recoils. A time-of-flight measurement allows for an easy identification of neutron and γ induced events and thus effective background reduction. The tail-to-total and the Gatti method are used in order to determine the energy-dependent discrimination power of proton and electron recoils in liquid scintillator. Combining both methods, a proton recoil identification efficiency of (99.70±0.05)% can be achieved between 1-1.5 MeV, while suppressing 99% of the γ induced recoils for the probable liquid scintillator mixture for LENA, linear alkylbenzene (LAB) as solvent and 3 g/l 2,5-diphenyloxazole (PPO) and 20mg/l 1,4-bis-(o-methylstyryl)-benzole (bisMSB) as fluors. Moreover, the decay constants τ i and the respective amplitudes n i are determined for various liquid scintillator mixtures. It can be observed that the decay times

  17. TOF spectrometer with improved sensitivity for ERDA of light isotopes

    International Nuclear Information System (INIS)

    Siketic, Z.; Bogdanovic Radovic, I.; Jaksic, M.

    2009-01-01

    Time-of-Flight Elastic Recoil Detection Analysis (TOF ERDA) is a well established and powerful ion beam analytical technique. It is used for simultaneous and quantitative analysis of elemental depth distributions of light and medium mass elements in both light and heavy matrices. Contrary to silicon particle detectors, the efficiency of the carbon-foil MCP time detectors in TOF system depends on energy and electronic stopping power of analyzing recoil atoms in the C foil and it is often less than 100% for light elements (H, He, Li). This is particularly critical for hydrogen isotopes where detection efficiency can be drastically reduced (∼ 10%). Therefore, TOF ERDA spectrometers were so far not the best choice for depth profiling and quantification of light elements. To improve the detection efficiency of TOF ERDA, the electron emission of C foils (∼ 0.3 μg/cm 2 ) has been enhanced by evaporating a thin LiF layer on the foil. That procedure improved significantly detection efficiency of hydrogen and other light elements, making TOF ERDA spectrometer more suitable for multielemental analysis applications. The capabilities of upgraded spectrometer were demonstrated on samples with well known as well as unknown concentration and depth distribution of H and D.(author)

  18. Broadband light generation at ~1300 nm through spectrally recoiled solitons and dispersive waves

    DEFF Research Database (Denmark)

    Falk, Peter Andreas; Frosz, Michael Henoch; Bang, Ole

    2008-01-01

    We experimentally study the generation of broadband light at ~1300 nm from an 810 nm Ti:sapphire femtosecond pump laser. We use two photonic crystal fibers with a second infrared zero-dispersion wavelength (λZ2) and compare the efficiency of two schemes: in one fiber λZ2=1400 nm and the light...... at 1300 nm is composed of spectrally recoiled solitons; in the other fiber λZ2=1200 nm and the light at 1300 nm is composed of dispersive waves....

  19. ''LIFETIME'': a computer program for analyzing Doppler-shift recoil-distance nuclear lifetime data

    International Nuclear Information System (INIS)

    Wells, J.C.; Fewell, M.P.; Johnson, N.R.

    1985-10-01

    The program LIFETIME is designed to extract lifetimes of nuclear levels from Doppler-shift recoil-distance experiments by performing a least-square fit to the experimental data (shifted and unshifted photopeak intensities and branching ratios). Initial populations of levels and transition rates between levels are treated as variable parameters. In terms of these parameters the population of each level as a function of time is determined by the Bateman equations, and the shifted and unshifted intensities are calculated. 19 refs., 5 figs

  20. Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques

    CERN Document Server

    Verma, H R

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Mössbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories.

  1. Atomic and nuclear analytical methods. XRF, Moessbauer, XPS, NAA and ion-beam spectroscopic techniques

    International Nuclear Information System (INIS)

    Verma, H.R.

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Moessbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories. (orig.)

  2. Coherent neutrino scattering with low temperature bolometers at Chooz reactor complex

    International Nuclear Information System (INIS)

    Billard, J; Gascon, J; Jesus, M De; Carr, R; Formaggio, J A; Heine, S T; Johnston, J; Leder, A; Sibille, V; Winslow, L; Dawson, J; Lasserre, T; Figueroa-Feliciano, E; Palladino, K J; Vivier, M

    2017-01-01

    We present the potential sensitivity of a future recoil detector for a first detection of the process of coherent elastic neutrino nucleus scattering (CE ν NS). We use the Chooz reactor complex in France as our luminous source of reactor neutrinos. Leveraging the ability to cleanly separate the rate correlated with the reactor thermal power against (uncorrelated) backgrounds, we show that a 10 kg cryogenic bolometric array with 100 eV threshold should be able to extract a CE ν NS signal within one year of running. (paper)

  3. Measurements of the electrical resistance and the hydrogen depth distribution for Ni 60Nb 20Zr 20 amorphous alloy before and after hydrogen charging

    Science.gov (United States)

    Nakano, Sumiaki; Ohtsu, Naofumi; Nagata, Shinji; Yamaura, Shin-ichi; Uchinashi, Sakae; Kimura, Hisamichi; Shikama, Tatsuo; Inoue, Akihisa

    2005-02-01

    A Ni 60Nb 20Zr 20 amorphous alloy was prepared by the single-roller melt-spinning technique. The change in the electrical resistance of the alloy after electrochemical hydrogen charging in 6 N KOH solution was investigated. The change in the hydrogen depth distribution in the alloy was also investigated by elastic recoil detection. As a result, we found that the electrical resistance of the alloy increases with increasing the hydrogen content in the alloy and that a large number of hydrogen atoms are remained in the surface area of the hydrogen-charged alloy.

  4. Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; R. Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; C. Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; R. Hasty; A. Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; J. Liu; Berenice Loupias; A. Lung; Glen MacLachlan; Dominique Marchand; J.W. Martin; Kenneth McFarlane; Daniella Mckee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Melissa Nakos; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; G.R. Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; G. Warren; S.P. Wells; Steven Williamson; S.A. Wood; Chen Yan; Junho Yun; Valdis Zeps

    2005-06-01

    We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q{sup 2} < 1.0 GeV{sup 2}. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q{sup 2} dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.

  5. Hydrogen high pressure proportional drift detector

    International Nuclear Information System (INIS)

    Arefiev, A.; Balaev, A.

    1983-01-01

    The design and operation performances of a proportional drift detector PDD are described. High sensitivity of the applied PAD makes it possible to detect the neutron-proton elastic scattering in the energy range of recoil protons as low as 1 keV. The PDD is filled with hydrogen up to the pressure at 40 bars. High purity of the gas is maintained by a continuously operating purification system. The detector has been operating for several years in a neutron beam at the North Area of the CERN SPS

  6. Ion beam analysis of thin films. Applications to porous silicon

    International Nuclear Information System (INIS)

    Ortega, C.; Grosman, A.; Morazzani, V.

    1995-01-01

    The aim of this paper is twofold: (1)- to present a summary of the fundamental interactions between ion beam (such as proton, deuteron or helium) of MeV energy and solids, interactions that are used in material analysis techniques such as Rutherford Backscattering Spectrometry (RBS), Elastic Recoil Detection Analysis (ERDA) and Nuclear Reaction Analysis (NRA), and (2)- to illustrate the use of these techniques to determine the composition of the surface and outer microns of material. Some examples will be given concerning porous silicon layers. (authors). 38 refs., 25 figs., 3 tabs

  7. Utility of shear wave elastography to detect papillary thyroid carcinoma in thyroid nodules: efficacy of the standard deviation elasticity.

    Science.gov (United States)

    Kim, Hye Jeong; Kwak, Mi Kyung; Choi, In Ho; Jin, So-Young; Park, Hyeong Kyu; Byun, Dong Won; Suh, Kyoil; Yoo, Myung Hi

    2018-02-23

    The aim of this study was to address the role of the elasticity index as a possible predictive marker for detecting papillary thyroid carcinoma (PTC) and quantitatively assess shear wave elastography (SWE) as a tool for differentiating PTC from benign thyroid nodules. One hundred and nineteen patients with thyroid nodules undergoing SWE before ultrasound-guided fine needle aspiration and core needle biopsy were analyzed. The mean (EMean), minimum (EMin), maximum (EMax), and standard deviation (ESD) of SWE elasticity indices were measured. Among 105 nodules, 14 were PTC and 91 were benign. The EMean, EMin, and EMax values were significantly higher in PTCs than benign nodules (EMean 37.4 in PTC vs. 23.7 in benign nodules, p = 0.005; EMin 27.9 vs. 17.8, p = 0.034; EMax 46.7 vs. 31.5, p < 0.001). The EMean, EMin, and EMax were significantly associated with PTC with diagnostic odds ratios varying from 6.74 to 9.91, high specificities (86.4%, 86.4%, and 88.1%, respectively), and positive likelihood ratios (4.21, 3.69, and 4.82, respectively). The ESD values were significantly higher in PTC than in benign nodules (6.3 vs. 2.6, p < 0.001). ESD had the highest specificity (96.6%) when applied with a cut-off value of 6.5 kPa. It had a positive likelihood ratio of 14.75 and a diagnostic odds ratio of 28.50. The shear elasticity index of ESD, with higher likelihood ratios for PTC, will probably identify nodules that have a high potential for malignancy. It may help to identify and select malignant nodules, while reducing unnecessary fine needle aspiration and core needle biopsies of benign nodules.

  8. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    Science.gov (United States)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  9. ElasticSearch cookbook

    CERN Document Server

    Paro, Alberto

    2013-01-01

    Written in an engaging, easy-to-follow style, the recipes will help you to extend the capabilities of ElasticSearch to manage your data effectively.If you are a developer who implements ElasticSearch in your web applications, manage data, or have decided to start using ElasticSearch, this book is ideal for you. This book assumes that you've got working knowledge of JSON and Java

  10. Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses

    International Nuclear Information System (INIS)

    Sauer, G.

    1998-01-01

    Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)

  11. DSA lifetime measurements in 21Ne at high recoil velocity

    International Nuclear Information System (INIS)

    Grawe, H.; Heidinger, F.; Kaendler, K.

    1977-01-01

    States in 21 Ne up to 5 MeV excitation energy have been populated using the inverted reaction 2 H( 20 Ne,pγ). The Doppler shift attenuation (DSA) analysis of the pγ coincidence spectra taken in a Ge(Li) detector at 45 0 and 135 0 and an annular silicon surface barrier detector near 0 0 yielded the lifetimes of 8 states in 21 Ne. Due to the large recoil of vi/c approximately equal to 4% three new lifetimes were determined for the short lived levels at 2.80, 4.68 and 4.73 MeV, namely 10 +- 4 fs, 16 +- 4 fs and 10 +- 4 fs, respectively. The results are compared with rotational and shell model calculations. (orig.) [de

  12. On unfolding counting-rate spectra of recoil-proton neutron detectors

    International Nuclear Information System (INIS)

    Yeivin, Yehuda

    1983-01-01

    This note proposes a possible scheme for unfolding recoil-proton neutron detector data, in which at first the undistorted proton source spectrum is derived. The main argument in favour of this scheme is that, compared with the conventional scheme, it necessitates somewhat weaker assumptions with respect to the unknown spectrum above the detector's upper energy cutoff, and would therefore be more reliable. We also demonstrate a simple, elementary proof of the wall effect correction for spherical detectors, and, in order to gain insight of the potential merits of the proposed unfolding scheme, illustrate our main argument by considering a hypothetic linear range-energy relation, in which case complete unfolding becomes possible with no assumptions at all on the proton spectrum above the cutoff energy. (author)

  13. Elastic scattering of protons at the TOTEM experiment at the LHC

    CERN Document Server

    AUTHOR|(CDS)2080719; Csanád, Máté; Niewiadomski, Hubert

    The TOTEM experiment at the LHC at CERN is optimized to measure elastic and diffractive scattering at the LHC and measures the total proton-proton cross-section with\tthe luminosity-independent method. The TOTEM experiment uses the special technique of movable beam pipe insertions -- called Roman Pots -- to detect very forward protons. The reconstruction of the forward proton kinematics requires the precise understanding of the LHC beam optics. A new method of LHC optics determination is reported, which exploits kinematical distributions of elastically scattered proton-proton data measured by the Roman Pots of the TOTEM experiment. The method has been successfully applied to data samples recorded since 2010. The interpretation of the proton-proton elastic differential cross-section is a challenging task. The geometrical model of proton-proton elastic scattering of Bialas and Bzdak is fitted to ISR data and to data measured by the TOTEM experiment at LHC energy of $\\sqrt{s}=7$~TeV. The Bialas-Bzdak model is g...

  14. Ejection of fast recoil atoms from solids under ion bombardment (medium-energy ion scattering by solid surfaces: Pt. 3)

    International Nuclear Information System (INIS)

    Dodonoy, A.I.; Mashkova, E.S.; Molchanov, V.A.

    1989-01-01

    This paper is the third part of our review surface scattering. Part I, which was devoted to the scattering of ions by the surfaces of disordered solids, was published in 1972; Part II, concerning scattering by crystal surfaces, was published in 1974. Since the publication of these reviews the material contained in them has become obsolete in many respects. A more recent account of the status of the problem has been given in a number of studies, including the book by E.S. Mashkova and V.A. Molchanov, Medium-Energy Ion Scattering by Solid Surfaces (Atomizdat, Moscow, 1980), than extended version of which was published by North-Holland in 1985. We note, however, that at the time these reviews were written the study of fast recoil atoms had not been carried out systematically; the problem was studied only as a by-product of surface scattering and sputtering. For this reason, in the above-mentioned works and in other reviews the data relating to recoil atoms were considered only occasionally. In recent years there have appeared a number of works - theoretical, experimental and computer -specially devoted to the study of the ejection of recoil atoms under ion bombardment. A number of interesting effects, which are due to the crystal structure of the target, have been discovered. It therefore, appeared desirable to us to systematize the available material and to present it as Part III of our continuing review. (author)

  15. The role of human ankle plantar flexor muscle-tendon interaction and architecture in maximal vertical jumping examined in vivo.

    Science.gov (United States)

    Farris, Dominic James; Lichtwark, Glen A; Brown, Nicholas A T; Cresswell, Andrew G

    2016-02-01

    Humans utilise elastic tendons of lower limb muscles to store and return energy during walking, running and jumping. Anuran and insect species use skeletal structures and/or dynamics in conjunction with similarly compliant structures to amplify muscle power output during jumping. We sought to examine whether human jumpers use similar mechanisms to aid elastic energy usage in the plantar flexor muscles during maximal vertical jumping. Ten male athletes performed maximal vertical squat jumps. Three-dimensional motion capture and a musculoskeletal model were used to determine lower limb kinematics that were combined with ground reaction force data in an inverse dynamics analysis. B-mode ultrasound imaging of the lateral gastrocnemius (GAS) and soleus (SOL) muscles was used to measure muscle fascicle lengths and pennation angles during jumping. Our results highlighted that both GAS and SOL utilised stretch and recoil of their series elastic elements (SEEs) in a catapult-like fashion, which likely serves to maximise ankle joint power. The resistance of supporting of body weight allowed initial stretch of both GAS and SOL SEEs. A proximal-to-distal sequence of joint moments and decreasing effective mechanical advantage early in the extension phase of the jumping movement were observed. This facilitated a further stretch of the SEE of the biarticular GAS and delayed recoil of the SOL SEE. However, effective mechanical advantage did not increase late in the jump to aid recoil of elastic tissues. © 2016. Published by The Company of Biologists Ltd.

  16. Elastic properties of Gum Metal

    International Nuclear Information System (INIS)

    Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi

    2006-01-01

    In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation

  17. Chemistry of nuclear recoil 18F atoms. VIII. Mechanisms and yields of caging reactions in liquid phase 1,1-difluoroethane and 1,1,1-trifluoroethane

    International Nuclear Information System (INIS)

    Manning, R.G.; Root, J.W.

    1976-01-01

    New procedures are reported for the specification of caging yields in nuclear recoil chemistry experiments. All five hot 18 F substitution channels in CH 3 CF 3 and CH 3 CHF 2 exhibit caging at large density. The respective total caged yields at 195 degreeK are 4.0% +- 0.6% and 5.6% +- 0.6%, and the total yields of stabilized substitution products are 8.9% +- 0.4% and 8.6% +- 0.6%. The simplest plausible caging mechanism involves primary Franck--Rabinowitsch radical recombination of 18 F atoms with aliphatic radicals. Density-variation results cannot be used for the qualitative detection of caging reactions unless excitation-stabilization complications have been shown to be unimportant

  18. Interaction of Droplets Separated by an Elastic Film.

    Science.gov (United States)

    Liu, Tianshu; Xu, Xuejuan; Nadermann, Nichole; He, Zhenping; Jagota, Anand; Hui, Chung-Yuen

    2017-01-10

    The Laplace pressure of a droplet placed on one side of an elastic thin film can cause significant deformation in the form of a bulge on its opposite side. Here, we show that this deformation can be detected by other droplets suspended on the opposite side of the film, leading to interaction between droplets separated by the solid (but deformable) film. The interaction is repulsive when the drops have a large overlap and attractive when they have a small overlap. Thus, if two identical droplets are placed right on top of each other (one on either side of the thin film), they tend to repel each other, eventually reaching an equilibrium configuration where there is a small overlap. This observation can be explained by analyzing the energy landscape of the droplets interacting via an elastically deformed film. We further demonstrate this idea by designing a pattern comprising a big central drop with satellite droplets. This phenomenon can lead to techniques for directed motion of droplets confined to one side of a thin elastic membrane by manipulations on the other side.

  19. Analysis of a Compressible Fluid Soft Recoil (CFSR) Concept Applied to a 155 MM Howitzer

    Science.gov (United States)

    1979-03-01

    Nitrile or Buna-N ( NBR ) rubber with ’ backup rings of nylotron. HITRILE NVLOTRON Piston seals An unresolved problem is that the coefficient of...fluid at atmospheric pressure Poisson’s ratio for Nitrile rubber dynamic coefficient of friction for rubber mass of recoiling parts weight of...Greene, tweed 5 Co. Palmetto catalog.) 43 [i^ - 0.50 = coefficient of friction (An approximate figure for rubber supplied by RIA Rubber

  20. Some aspects of the use of proton recoil proportional counters for fast neutron personnel dosimeters

    International Nuclear Information System (INIS)

    Yule, T.J.; Bennett, E.F.

    1984-01-01

    Gas-filled proton recoil proportional counters have been used extensively for the measurement of neutron spectra in degraded fission-spectrum environments. Some considerations relating to the use of these counters for personnel dosimetry are here described. High sensitivity and good accuracy in the determination of dose-equivalent can be obtained if relatively high pressure hydrogen-filled proportional counters are used as the active element in a dosimeter system