WorldWideScience

Sample records for elastic network model

  1. Elastic Network Model of a Nuclear Transport Complex

    Science.gov (United States)

    Ryan, Patrick; Liu, Wing K.; Lee, Dockjin; Seo, Sangjae; Kim, Young-Jin; Kim, Moon K.

    2010-05-01

    The structure of Kap95p was obtained from the Protein Data Bank (www.pdb.org) and analyzed RanGTP plays an important role in both nuclear protein import and export cycles. In the nucleus, RanGTP releases macromolecular cargoes from importins and conversely facilitates cargo binding to exportins. Although the crystal structure of the nuclear import complex formed by importin Kap95p and RanGTP was recently identified, its molecular mechanism still remains unclear. To understand the relationship between structure and function of a nuclear transport complex, a structure-based mechanical model of Kap95p:RanGTP complex is introduced. In this model, a protein structure is simply modeled as an elastic network in which a set of coarse-grained point masses are connected by linear springs representing biochemical interactions at atomic level. Harmonic normal mode analysis (NMA) and anharmonic elastic network interpolation (ENI) are performed to predict the modes of vibrations and a feasible pathway between locked and unlocked conformations of Kap95p, respectively. Simulation results imply that the binding of RanGTP to Kap95p induces the release of the cargo in the nucleus as well as prevents any new cargo from attaching to the Kap95p:RanGTP complex.

  2. Modelling the elastic properties of cellulose nanopaper

    DEFF Research Database (Denmark)

    Mao, Rui; Goutianos, Stergios; Tu, Wei

    2017-01-01

    The elastic modulus of cellulose nanopaper was predicted using a two-dimensional (2D) micromechanical fibrous network model. The elastic modulus predicted by the network model was 12 GPa, which is well within the range of experimental data for cellulose nanopapers. The stress state in the network...

  3. Actin dynamics and the elasticity of cytoskeletal networks

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available The structural integrity of a cell depends on its cytoskeleton, which includes an actin network. This network is transient and depends upon the continual polymerization and depolymerization of actin. The degradation of an actin network, and a corresponding reduction in cell stiffness, can indicate the presence of disease. Numerical simulations will be invaluable for understanding the physics of these systems and the correlation between actin dynamics and elasticity. Here we develop a model that is capable of generating actin network structures. In particular, we develop a model of actin dynamics which considers the polymerization, depolymerization, nucleation, severing, and capping of actin filaments. The structures obtained are then fed directly into a mechanical model. This allows us to qualitatively assess the effects of changing various parameters associated with actin dynamics on the elasticity of the material.

  4. The performance of fine-grained and coarse-grained elastic network models and its dependence on various factors.

    Science.gov (United States)

    Na, Hyuntae; Song, Guang

    2015-07-01

    In a recent work we developed a method for deriving accurate simplified models that capture the essentials of conventional all-atom NMA and identified two best simplified models: ssNMA and eANM, both of which have a significantly higher correlation with NMA in mean square fluctuation calculations than existing elastic network models such as ANM and ANMr2, a variant of ANM that uses the inverse of the squared separation distances as spring constants. Here, we examine closely how the performance of these elastic network models depends on various factors, namely, the presence of hydrogen atoms in the model, the quality of input structures, and the effect of crystal packing. The study reveals the strengths and limitations of these models. Our results indicate that ssNMA and eANM are the best fine-grained elastic network models but their performance is sensitive to the quality of input structures. When the quality of input structures is poor, ANMr2 is a good alternative for computing mean-square fluctuations while ANM model is a good alternative for obtaining normal modes. © 2015 Wiley Periodicals, Inc.

  5. An elastic network model of HK97 capsid maturation.

    Science.gov (United States)

    Kim, Moon K; Jernigan, Robert L; Chirikjian, Gregory S

    2003-08-01

    The structure of the capsid of bacteriophage HK97 has been solved at various stages of maturity by crystallography and cryo-electron microscopy, and has been reported previously in the literature. Typically the capsid assembles through polymerization and maturation processes. Maturation is composed of proteolytic cleavages to the precursor capsid (called Prohead II), expansion triggered by DNA packaging (in which the largest conformational changes of the capsid appear), and covalent cross-links of neighboring subunits to create the mature capsid called Head II. We apply a coarse-grained elastic network interpolation (ENI) to generate a feasible pathway for conformational change from Prohead II to Head II. The icosahedral symmetry of the capsid structure offers a significant computational advantage because it is not necessary to consider the whole capsid structure but only an asymmetric unit consisting of one hexamer plus an additional subunit from an adjacent pentamer. We also analyze normal modes of the capsid structure using an elastic network model which is also subject to symmetry constraints. Using our model, we can visualize the smooth evolution of capsid expansion and revisit in more detail several interesting geometric changes recognized in early experimental works such as rigid body motion of two compact domains (A and P) with two refolding extensions (N-arm and E-loop) and track the approach of the two particular residues associated with isopeptide bonds that make hexagonal cross-links in Head II. The feasibility of the predicted pathway is also supported by the results of our normal mode analysis.

  6. Energy efficiency in elastic-bandwidth optical networks

    DEFF Research Database (Denmark)

    Vizcaino, Jorge Lopez; Ye, Yabin; Tafur Monroy, Idelfonso

    2011-01-01

    of elastic bandwidth allocation, opens new horizons in the operation of optical networks. In this paper, we compare the network planning problem in an elastic bandwidth CO-OFDM-based network and a fixed-grid WDM network. We highlight the benefits that bandwidth elasticity and the selection of different......The forecasted growth in the Internet traffic has made the operators and industry to be concerned about the power consumption of the networks, and to become interested in alternatives to plan and operate the networks in a more energy efficient manner. The introduction of OFDM, and its property...

  7. Elasticity in Physically Cross-Linked Amyloid Fibril Networks

    Science.gov (United States)

    Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele

    2018-04-01

    We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β -lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G ˜c2.2 and G ˜c2.5 for semiflexible and rigid fibrils, respectively) and ionic strength (G ˜I4.4 and G ˜I3.8 for β -lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.

  8. Vibrational characteristics of graphene sheets elucidated using an elastic network model.

    Science.gov (United States)

    Kim, Min Hyeok; Kim, Daejoong; Choi, Jae Boong; Kim, Moon Ki

    2014-08-07

    Recent studies of graphene have demonstrated its great potential for highly sensitive resonators. In order to capture the intrinsic vibrational characteristics of graphene, we propose an atomistic modeling method called the elastic network model (ENM), in which a graphene sheet is modeled as a mass-spring network of adjacent atoms connected by various linear springs with specific bond ratios. Normal mode analysis (NMA) reveals the various vibrational features of bi-layer graphene sheets (BLGSs) clamped at two edges. We also propose a coarse-graining (CG) method to extend our graphene study into the meso- and macroscales, at which experimental measurements and synthesis of graphene become practical. The simulation results show good agreement with experimental observations. Therefore, the proposed ENM approach will not only shed light on the theoretical study of graphene mechanics, but also play an important role in the design of highly-sensitive graphene-based resonators.

  9. Role of architecture in the elastic response of semiflexible polymer and fiber networks

    Science.gov (United States)

    Heussinger, Claus; Frey, Erwin

    2007-01-01

    We study the elasticity of cross-linked networks of thermally fluctuating stiff polymers. As compared to their purely mechanical counterparts, it is shown that these thermal networks have a qualitatively different elastic response. By accounting for the entropic origin of the single-polymer elasticity, the networks acquire a strong susceptibility to polydispersity and structural randomness that is completely absent in athermal models. In extensive numerical studies we systematically vary the architecture of the networks and identify a wealth of phenomena that clearly show the strong dependence of the emergent macroscopic moduli on the underlying mesoscopic network structure. In particular, we highlight the importance of the polymer length, which to a large extent controls the elastic response of the network, surprisingly, even in parameter regions where it does not enter the macroscopic moduli explicitly. Understanding these subtle effects is only possible by going beyond the conventional approach that considers the response of typical polymer segments only. Instead, we propose to describe the elasticity in terms of a typical polymer filament and the spatial distribution of cross-links along its backbone. We provide theoretical scaling arguments to relate the observed macroscopic elasticity to the physical mechanisms on the microscopic and mesoscopic scales.

  10. Multiscale virtual particle based elastic network model (MVP-ENM) for normal mode analysis of large-sized biomolecules.

    Science.gov (United States)

    Xia, Kelin

    2017-12-20

    In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for the normal mode analysis of large-sized biomolecules. The multiscale virtual particle (MVP) model is proposed for the discretization of biomolecular density data. With this model, large-sized biomolecular structures can be coarse-grained into virtual particles such that a balance between model accuracy and computational cost can be achieved. An elastic network is constructed by assuming "connections" between virtual particles. The connection is described by a special harmonic potential function, which considers the influence from both the mass distributions and distance relations of the virtual particles. Two independent models, i.e., the multiscale virtual particle based Gaussian network model (MVP-GNM) and the multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. It has been found that in the Debye-Waller factor (B-factor) prediction, the results from our MVP-GNM with a high resolution are as good as the ones from GNM. Even with low resolutions, our MVP-GNM can still capture the global behavior of the B-factor very well with mismatches predominantly from the regions with large B-factor values. Further, it has been demonstrated that the low-frequency eigenmodes from our MVP-ANM are highly consistent with the ones from ANM even with very low resolutions and a coarse grid. Finally, the great advantage of MVP-ANM model for large-sized biomolecules has been demonstrated by using two poliovirus virus structures. The paper ends with a conclusion.

  11. Comparative Study of Elastic Network Model and Protein Contact Network for Protein Complexes: The Hemoglobin Case

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-01-01

    Full Text Available The overall topology and interfacial interactions play key roles in understanding structural and functional principles of protein complexes. Elastic Network Model (ENM and Protein Contact Network (PCN are two widely used methods for high throughput investigation of structures and interactions within protein complexes. In this work, the comparative analysis of ENM and PCN relative to hemoglobin (Hb was taken as case study. We examine four types of structural and dynamical paradigms, namely, conformational change between different states of Hbs, modular analysis, allosteric mechanisms studies, and interface characterization of an Hb. The comparative study shows that ENM has an advantage in studying dynamical properties and protein-protein interfaces, while PCN is better for describing protein structures quantitatively both from local and from global levels. We suggest that the integration of ENM and PCN would give a potential but powerful tool in structural systems biology.

  12. Building alternate protein structures using the elastic network model.

    Science.gov (United States)

    Yang, Qingyi; Sharp, Kim A

    2009-02-15

    We describe a method for efficiently generating ensembles of alternate, all-atom protein structures that (a) differ significantly from the starting structure, (b) have good stereochemistry (bonded geometry), and (c) have good steric properties (absence of atomic overlap). The method uses reconstruction from a series of backbone framework structures that are obtained from a modified elastic network model (ENM) by perturbation along low-frequency normal modes. To ensure good quality backbone frameworks, the single force parameter ENM is modified by introducing two more force parameters to characterize the interaction between the consecutive carbon alphas and those within the same secondary structure domain. The relative stiffness of the three parameters is parameterized to reproduce B-factors, while maintaining good bonded geometry. After parameterization, violations of experimental Calpha-Calpha distances and Calpha-Calpha-Calpha pseudo angles along the backbone are reduced to less than 1%. Simultaneously, the average B-factor correlation coefficient improves to R = 0.77. Two applications illustrate the potential of the approach. (1) 102,051 protein backbones spanning a conformational space of 15 A root mean square deviation were generated from 148 nonredundant proteins in the PDB database, and all-atom models with minimal bonded and nonbonded violations were produced from this ensemble of backbone structures using the SCWRL side chain building program. (2) Improved backbone templates for homology modeling. Fifteen query sequences were each modeled on two targets. For each of the 30 target frameworks, dozens of improved templates could be produced In all cases, improved full atom homology models resulted, of which 50% could be identified blind using the D-Fire statistical potential. (c) 2008 Wiley-Liss, Inc.

  13. Rubber elasticity for percolation network consisting of Gaussian chains

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Kengo, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp; Noguchi, Hiroshi; Shibayama, Mitsuhiro, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp [Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Sakai, Takamasa, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp [Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-14

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G{sub 0}, must be equal to G/G{sub 0} = (p − 2/f)/(1 − 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  14. Rubber elasticity for percolation network consisting of Gaussian chains

    International Nuclear Information System (INIS)

    Nishi, Kengo; Noguchi, Hiroshi; Shibayama, Mitsuhiro; Sakai, Takamasa

    2015-01-01

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G 0 , must be equal to G/G 0 = (p − 2/f)/(1 − 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels

  15. A modal analysis of carbon nanotube using elastic network model

    International Nuclear Information System (INIS)

    Kim, Min Hyeok; Seo, Sang Jae; Lim, Byeong Soo; Choi, Jae Boong; Kim, Moon Ki; Liu, Wing Kam

    2012-01-01

    Although it is widely known that both size and chirality play significant roles in vibration behaviors of single walled carbon nanotubes (SWCNTs), there haven't been yet enough studies specifying the relationship between structure and vibration mode shape of SWCNTs. We have analyzed the chirality and length dependence of SWCNT by using normal mode analysis based elastic network model in which all interatomic interactions of the given SWCNTs structure are represented by a network of linear spring connections. As this method requires relatively short computation time compared to molecular dynamics simulation, we can efficiently analyze vibration behavior of SWCNTs. To ensure the relationship between SWCNT structure and its vibration mode shapes, we simulated more than one hundred SWCNTs having different types of chirality and length. Results indicated that the first two major mode shapes are bending and breathing. The minimum length of nanotube for maintaining the bending mode does not depend on chirality but on its diameter. Our simulations pointed out that there is a critical aspect ratio between diameter and length to determine vibration mode shapes, and it can be empirically formulated as a function of nanotube length and diameter. Therefore, uniformity control is the most important premise in order to utilize vibration features of SWCNTs. It is also expected that the obtained vibration aspect will play an important role in designing nanotube based devices such as resonators and sensors more accurately

  16. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements.

    Science.gov (United States)

    Alastruey, Jordi; Khir, Ashraf W; Matthys, Koen S; Segers, Patrick; Sherwin, Spencer J; Verdonck, Pascal R; Parker, Kim H; Peiró, Joaquim

    2011-08-11

    The accuracy of the nonlinear one-dimensional (1-D) equations of pressure and flow wave propagation in Voigt-type visco-elastic arteries was tested against measurements in a well-defined experimental 1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters required by the numerical algorithm were directly measured in the in vitro setup and no data fitting was involved. The inclusion of wall visco-elasticity in the numerical model reduced the underdamped high-frequency oscillations obtained using a purely elastic tube law, especially in peripheral vessels, which was previously reported in this paper [Matthys et al., 2007. Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements. J. Biomech. 40, 3476-3486]. In comparison to the purely elastic model, visco-elasticity significantly reduced the average relative root-mean-square errors between numerical and experimental waveforms over the 70 locations measured in the in vitro model: from 3.0% to 2.5% (p<0.012) for pressure and from 15.7% to 10.8% (p<0.002) for the flow rate. In the frequency domain, average relative errors between numerical and experimental amplitudes from the 5th to the 20th harmonic decreased from 0.7% to 0.5% (p<0.107) for pressure and from 7.0% to 3.3% (p<10(-6)) for the flow rate. These results provide additional support for the use of 1-D reduced modelling to accurately simulate clinically relevant problems at a reasonable computational cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Elastic properties and short-range structural order in mixed network former glasses.

    Science.gov (United States)

    Wang, Weimin; Christensen, Randilynn; Curtis, Brittany; Hynek, David; Keizer, Sydney; Wang, James; Feller, Steve; Martin, Steve W; Kieffer, John

    2017-06-21

    Elastic properties of alkali containing glasses are of great interest not only because they provide information about overall structural integrity but also they are related to other properties such as thermal conductivity and ion mobility. In this study, we investigate two mixed-network former glass systems, sodium borosilicate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)SiO 2 ] and sodium borogermanate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)GeO 2 ] glasses. By mixing network formers, the network topology can be changed while keeping the network modifier concentration constant, which allows for the effect of network structure on elastic properties to be analyzed over a wide parametric range. In addition to non-linear, non-additive mixed-glass former effects, maxima are observed in longitudinal, shear and Young's moduli with increasing atomic number density. By combining results from NMR spectroscopy and Brillouin light scattering with a newly developed statistical thermodynamic reaction equilibrium model, it is possible to determine the relative proportions of all network structural units. This new analysis reveals that the structural characteristic predominantly responsible for effective mechanical load transmission in these glasses is a high density of network cations coordinated by four or more bridging oxygens, as it provides for establishing a network of covalent bonds among these cations with connectivity in three dimensions.

  18. Intrinsic Dynamics Analysis of a DNA Octahedron by Elastic Network Model

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-01-01

    Full Text Available DNA is a fundamental component of living systems where it plays a crucial role at both functional and structural level. The programmable properties of DNA make it an interesting building block for the construction of nanostructures. However, molecular mechanisms for the arrangement of these well-defined DNA assemblies are not fully understood. In this paper, the intrinsic dynamics of a DNA octahedron has been investigated by using two types of Elastic Network Models (ENMs. The application of ENMs to DNA nanocages include the analysis of the intrinsic flexibilities of DNA double-helices and hinge sites through the calculation of the square fluctuations, as well as the intrinsic collective dynamics in terms of cross-collective map calculation coupled with global motions analysis. The dynamics profiles derived from ENMs have then been evaluated and compared with previous classical molecular dynamics simulation trajectories. The results presented here revealed that ENMs can provide useful insights into the intrinsic dynamics of large DNA nanocages and represent a useful tool in the field of structural DNA nanotechnology.

  19. Entanglement effects in model polymer networks

    Science.gov (United States)

    Everaers, R.; Kremer, K.

    The influence of topological constraints on the local dynamics in cross-linked polymer melts and their contribution to the elastic properties of rubber elastic systems are a long standing problem in statistical mechanics. Polymer networks with diamond lattice connectivity (Everaers and Kremer 1995, Everaers and Kremer 1996a) are idealized model systems which isolate the effect of topology conservation from other sources of quenched disorder. We study their behavior in molecular dynamics simulations under elongational strain. In our analysis we compare the measured, purely entropic shear moduli G to the predictions of statistical mechanical models of rubber elasticity, making extensive use of the microscopic structural and topological information available in computer simulations. We find (Everaers and Kremer 1995) that the classical models of rubber elasticity underestimate the true change in entropy in a deformed network significantly, because they neglect the tension along the contour of the strands which cannot relax due to entanglements (Everaers and Kremer (in preparation)). This contribution and the fluctuations in strained systems seem to be well described by the constrained mode model (Everaers 1998) which allows to treat the crossover from classical rubber elasticity to the tube model for polymer networks with increasing strand length within one transparant formalism. While this is important for the description of the effects we try to do a first quantitative step towards their explanation by topological considerations. We show (Everaers and Kremer 1996a) that for the comparatively short strand lengths of our diamond networks the topology contribution to the shear modulus is proportional to the density of entangled mesh pairs with non-zero Gauss linking number. Moreover, the prefactor can be estimated consistently within a rather simple model developed by Vologodskii et al. and by Graessley and Pearson, which is based on the definition of an entropic

  20. Mechanics of Fluctuating Elastic Plates and Fiber Networks

    Science.gov (United States)

    Liang, Xiaojun

    spacing is more than the local maximum then the elastic repulsive forces dominate and the inclusions will move further apart. This technique can be extended to account for entropic effects in other methods which rely on quadratic energies to study the interactions of inclusions in membranes. In the second part of this thesis I study the compression response of two fiber network materials--blood clots and carbon nanotube forests. The stress-strain curve of both materials reveals four characteristic regions, for compression-decompression: 1) linear elastic region; 2) upper plateau or softening region; 3) non-linear elastic region or re-stretching of the network; 4) lower plateau in which dissociation of some newly made connections occurs. This response is described by a phase transition based continuum model. The model is inspired by the observation of one or more moving interfaces across which densified and rarefied phases of fibers co-exist. I use a quasi-static version of the Abeyaratne-Knowles theory of phase transitions for continua with a stick-slip type kinetic law and a nucleation criterion based on the critical stress for buckling to describe the formation and motion of these interfaces in uniaxial compression experiments. Our models could aid the design of biomaterials and carbon nanotube forests to have desired mechanical properties and guide further understanding of their behavior under large deformations.

  1. Benefit of adaptive FEC in shared backup path protected elastic optical network.

    Science.gov (United States)

    Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang

    2015-07-27

    We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.

  2. Dynamic virtual optical network embedding in spectral and spatial domains over elastic optical networks with multicore fibers

    Science.gov (United States)

    Zhu, Ruijie; Zhao, Yongli; Yang, Hui; Tan, Yuanlong; Chen, Haoran; Zhang, Jie; Jue, Jason P.

    2016-08-01

    Network virtualization can eradicate the ossification of the infrastructure and stimulate innovation of new network architectures and applications. Elastic optical networks (EONs) are ideal substrate networks for provisioning flexible virtual optical network (VON) services. However, as network traffic continues to increase exponentially, the capacity of EONs will reach the physical limitation soon. To further increase network flexibility and capacity, the concept of EONs is extended into the spatial domain. How to map the VON onto substrate networks by thoroughly using the spectral and spatial resources is extremely important. This process is called VON embedding (VONE).Considering the two kinds of resources at the same time during the embedding process, we propose two VONE algorithms, the adjacent link embedding algorithm (ALEA) and the remote link embedding algorithm (RLEA). First, we introduce a model to solve the VONE problem. Then we design the embedding ability measurement of network elements. Based on the network elements' embedding ability, two VONE algorithms were proposed. Simulation results show that the proposed VONE algorithms could achieve better performance than the baseline algorithm in terms of blocking probability and revenue-to-cost ratio.

  3. Normal mode analysis based on an elastic network model for biomolecules in the Protein Data Bank, which uses dihedral angles as independent variables.

    Science.gov (United States)

    Wako, Hiroshi; Endo, Shigeru

    2013-06-01

    We have developed a computer program, named PDBETA, that performs normal mode analysis (NMA) based on an elastic network model that uses dihedral angles as independent variables. Taking advantage of the relatively small number of degrees of freedom required to describe a molecular structure in dihedral angle space and a simple potential-energy function independent of atom types, we aimed to develop a program applicable to a full-atom system of any molecule in the Protein Data Bank (PDB). The algorithm for NMA used in PDBETA is the same as the computer program FEDER/2, developed previously. Therefore, the main challenge in developing PDBETA was to find a method that can automatically convert PDB data into molecular structure information in dihedral angle space. Here, we illustrate the performance of PDBETA with a protein-DNA complex, a protein-tRNA complex, and some non-protein small molecules, and show that the atomic fluctuations calculated by PDBETA reproduce the temperature factor data of these molecules in the PDB. A comparison was also made with elastic-network-model based NMA in a Cartesian-coordinate system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Morphology and linear-elastic moduli of random network solids.

    Science.gov (United States)

    Nachtrab, Susan; Kapfer, Sebastian C; Arns, Christoph H; Madadi, Mahyar; Mecke, Klaus; Schröder-Turk, Gerd E

    2011-06-17

    The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).

    Science.gov (United States)

    Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko

    2010-10-11

    We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.

  6. Identification of key residues for protein conformational transition using elastic network model.

    Science.gov (United States)

    Su, Ji Guo; Xu, Xian Jin; Li, Chun Hua; Chen, Wei Zu; Wang, Cun Xin

    2011-11-07

    Proteins usually undergo conformational transitions between structurally disparate states to fulfill their functions. The large-scale allosteric conformational transitions are believed to involve some key residues that mediate the conformational movements between different regions of the protein. In the present work, a thermodynamic method based on the elastic network model is proposed to predict the key residues involved in protein conformational transitions. In our method, the key functional sites are identified as the residues whose perturbations largely influence the free energy difference between the protein states before and after transition. Two proteins, nucleotide binding domain of the heat shock protein 70 and human/rat DNA polymerase β, are used as case studies to identify the critical residues responsible for their open-closed conformational transitions. The results show that the functionally important residues mainly locate at the following regions for these two proteins: (1) the bridging point at the interface between the subdomains that control the opening and closure of the binding cleft; (2) the hinge region between different subdomains, which mediates the cooperative motions between the corresponding subdomains; and (3) the substrate binding sites. The similarity in the positions of the key residues for these two proteins may indicate a common mechanism in their conformational transitions.

  7. Non-Gaussian theory of rubberlike elasticity based on rotational isomeric state simulations of network chain configurations. II. Bimodal poly(dimethylsiloxane) networks

    International Nuclear Information System (INIS)

    Curro, J.G.; Mark, J.E.

    1984-01-01

    Bimodal, poly(dimethylsiloxane) (PDMS) networks containing a large mole fraction of very short chains have been shown to be unusually tough elastomers. The purpose of this investigation is to understand the rubber elasticity behavior of these bimodal networks. As a first approach, we have assumed that the average chain deformation is affine. This deformation, however, is partitioned nonaffinely between the long and short chains so that the free energy is minimized. Gaussian statistics are used for the long chains. The distribution function for the short chains is found from Monte Carlo calculations. This model predicts an upturn in the stress-strain curve, the steepness depending on the network composition, as is observed experimentally

  8. Energy-efficient routing, modulation and spectrum allocation in elastic optical networks

    Science.gov (United States)

    Tan, Yanxia; Gu, Rentao; Ji, Yuefeng

    2017-07-01

    With tremendous growth in bandwidth demand, energy consumption problem in elastic optical networks (EONs) becomes a hot topic with wide concern. The sliceable bandwidth-variable transponder in EON, which can transmit/receive multiple optical flows, was recently proposed to improve a transponder's flexibility and save energy. In this paper, energy-efficient routing, modulation and spectrum allocation (EE-RMSA) in EONs with sliceable bandwidth-variable transponder is studied. To decrease the energy consumption, we develop a Mixed Integer Linear Programming (MILP) model with corresponding EE-RMSA algorithm for EONs. The MILP model jointly considers the modulation format and optical grooming in the process of routing and spectrum allocation with the objective of minimizing the energy consumption. With the help of genetic operators, the EE-RMSA algorithm iteratively optimizes the feasible routing path, modulation format and spectrum resources solutions by explore the whole search space. In order to save energy, the optical-layer grooming strategy is designed to transmit the lightpath requests. Finally, simulation results verify that the proposed scheme is able to reduce the energy consumption of the network while maintaining the blocking probability (BP) performance compare with the existing First-Fit-KSP algorithm, Iterative Flipping algorithm and EAMGSP algorithm especially in large network topology. Our results also demonstrate that the proposed EE-RMSA algorithm achieves almost the same performance as MILP on an 8-node network.

  9. Control Plane Strategies for Elastic Optical Networks

    DEFF Research Database (Denmark)

    Turus, Ioan

    Networks (EONs) concept is proposed as a solution to enable a more flexible handling of the optical capacity and allows an increase of available capacity over the existing optical infrastructure. One main requirement for enabling EONs is to have a flexible spectrum structure (i.e.Flex-Grid) which allows...... the spectrum to be used as an on-demand resource. Flex-Grid raises new challenges for controlling the dynamic spectrum slots environment. This thesis addresses, as part of the Celtic project “Elastic Optical Networks” (EONet), the control of Flex-Grid architectures by extending the capabilities of a GMPLS...... (Generalized Multi-Protocol Label Switching)-based control framework in accordance with existing IETF standards and recommendations. The usual approach of extending capacity in transport networks by incrementally adding more optical resources results in a very inefficient usage and determines a high power...

  10. Technologies for Elastic Optical Networking Systems in Spatial, Temporal and Spectral Domains

    Science.gov (United States)

    Qin, Chuan

    As the demand for more data capacity keeps increasing, the need for the more efficient use of the data channel becomes more imperative. The fixed wavelength grid which has been in use for more than ten years in conventional wavelength division multiplexing (WDM) is a bottleneck that prevents the capacity from upgrading towards 400 Gb/s and above. A new elastic optical networking scheme where both transceivers and interconnects become flexible break the boundary of wavelength grids and allow a more efficient use of the limited optical bands for communication. This dissertation focuses on a few enabling technologies for elastic optical networking systems. Optical arbitrary waveform generation (OAWG) uses Fourier synthesis and generates user-defined broad-band scalable optical waveforms with high-fidelity through line-by-line full field control of a coherent optical frequency comb. OAWG finds its niche in elastic optical networking since it provides no grids, and scales to user-defined bandwidth. When elastic optical networking builds various connections to use an arbitrary number of subcarriers depending on the users' bandwidth needs, the flexibility also creates non-contiguous spectral fragmentation, much like a computer hard disk generating fragments. Spectral defragmentation aims to re-optimize and re-assign the optical spectrum to achieve more efficient use of the spectrum. One of the technologies is "hop tuning" defragmentation method with a fast auto-tracking local oscillator (LO). In the demonstrated defragmentation experiment, I used a field-programmable gate array (FPGA) to monitor the wavelength change in the signal laser and tune the front and rear current that controls the wavelength of the local oscillator laser. However, the control of the front and rear current needs a complete and accurate calibration of the LO laser and may not apply to a larger number of coherent communication links. A single-tone optical frequency shifter can shift the LO laser

  11. Remarks on orthotropic elastic models applied to wood

    Directory of Open Access Journals (Sweden)

    Nilson Tadeu Mascia

    2006-09-01

    Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.

  12. Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network

    Science.gov (United States)

    Yao, Weigang; Liou, Meng-Sing

    2012-01-01

    The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis

  13. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics

    Directory of Open Access Journals (Sweden)

    van Gulik Walter M

    2006-12-01

    Full Text Available Abstract Background Dynamic modeling of metabolic reaction networks under in vivo conditions is a crucial step in order to obtain a better understanding of the (disfunctioning of living cells. So far dynamic metabolic models generally have been based on mechanistic rate equations which often contain so many parameters that their identifiability from experimental data forms a serious problem. Recently, approximative rate equations, based on the linear logarithmic (linlog format have been proposed as a suitable alternative with fewer parameters. Results In this paper we present a method for estimation of the kinetic model parameters, which are equal to the elasticities defined in Metabolic Control Analysis, from metabolite data obtained from dynamic as well as steady state perturbations, using the linlog kinetic format. Additionally, we address the question of parameter identifiability from dynamic perturbation data in the presence of noise. The method is illustrated using metabolite data generated with a dynamic model of the glycolytic pathway of Saccharomyces cerevisiae based on mechanistic rate equations. Elasticities are estimated from the generated data, which define the complete linlog kinetic model of the glycolysis. The effect of data noise on the accuracy of the estimated elasticities is presented. Finally, identifiable subset of parameters is determined using information on the standard deviations of the estimated elasticities through Monte Carlo (MC simulations. Conclusion The parameter estimation within the linlog kinetic framework as presented here allows the determination of the elasticities directly from experimental data from typical dynamic and/or steady state experiments. These elasticities allow the reconstruction of the full kinetic model of Saccharomyces cerevisiae, and the determination of the control coefficients. MC simulations revealed that certain elasticities are potentially unidentifiable from dynamic data only

  14. The elastic buckling of super-graphene and super-square carbon nanotube networks

    International Nuclear Information System (INIS)

    Li Ying; Qiu Xinming; Yin Yajun; Yang Fan; Fan Qinshan

    2010-01-01

    The super-graphene (SG) and super-square (SS) carbon nanotube network are built by the straight single-walled carbon nanotubes and corresponding junctions. The elastic buckling behaviors of these carbon nanotube networks under different boundary conditions are explored through the molecular structural mechanics method. The following results are obtained: (a) The critical buckling forces of the SG and SS networks decrease as the side lengths or aspect ratios of the networks increase. The continuum plate theory could give good predictions to the buckling of the SS network but not the SG network with non-uniform buckling modes. (b) The carbon nanotube networks are more stable structures than the graphene structures with less carbon atoms.

  15. Experimental Observation of Two Features Unexpected from the Classical Theories of Rubber Elasticity

    Science.gov (United States)

    Nishi, Kengo; Fujii, Kenta; Chung, Ung-il; Shibayama, Mitsuhiro; Sakai, Takamasa

    2017-12-01

    Although the elastic modulus of a Gaussian chain network is thought to be successfully described by classical theories of rubber elasticity, such as the affine and phantom models, verification experiments are largely lacking owing to difficulties in precisely controlling of the network structure. We prepared well-defined model polymer networks experimentally, and measured the elastic modulus G for a broad range of polymer concentrations and connectivity probabilities, p . In our experiment, we observed two features that were distinct from those predicted by classical theories. First, we observed the critical behavior G ˜|p -pc|1.95 near the sol-gel transition. This scaling law is different from the prediction of classical theories, but can be explained by analogy between the electric conductivity of resistor networks and the elasticity of polymer networks. Here, pc is the sol-gel transition point. Furthermore, we found that the experimental G -p relations in the region above C* did not follow the affine or phantom theories. Instead, all the G /G0-p curves fell onto a single master curve when G was normalized by the elastic modulus at p =1 , G0. We show that the effective medium approximation for Gaussian chain networks explains this master curve.

  16. Model-Based Reconstructive Elasticity Imaging Using Ultrasound

    Directory of Open Access Journals (Sweden)

    Salavat R. Aglyamov

    2007-01-01

    Full Text Available Elasticity imaging is a reconstructive imaging technique where tissue motion in response to mechanical excitation is measured using modern imaging systems, and the estimated displacements are then used to reconstruct the spatial distribution of Young's modulus. Here we present an ultrasound elasticity imaging method that utilizes the model-based technique for Young's modulus reconstruction. Based on the geometry of the imaged object, only one axial component of the strain tensor is used. The numerical implementation of the method is highly efficient because the reconstruction is based on an analytic solution of the forward elastic problem. The model-based approach is illustrated using two potential clinical applications: differentiation of liver hemangioma and staging of deep venous thrombosis. Overall, these studies demonstrate that model-based reconstructive elasticity imaging can be used in applications where the geometry of the object and the surrounding tissue is somewhat known and certain assumptions about the pathology can be made.

  17. Constitutive modelling of composite biopolymer networks.

    Science.gov (United States)

    Fallqvist, B; Kroon, M

    2016-04-21

    The mechanical behaviour of biopolymer networks is to a large extent determined at a microstructural level where the characteristics of individual filaments and the interactions between them determine the response at a macroscopic level. Phenomena such as viscoelasticity and strain-hardening followed by strain-softening are observed experimentally in these networks, often due to microstructural changes (such as filament sliding, rupture and cross-link debonding). Further, composite structures can also be formed with vastly different mechanical properties as compared to the individual networks. In this present paper, we present a constitutive model presented in a continuum framework aimed at capturing these effects. Special care is taken to formulate thermodynamically consistent evolution laws for dissipative effects. This model, incorporating possible anisotropic network properties, is based on a strain energy function, split into an isochoric and a volumetric part. Generalisation to three dimensions is performed by numerical integration over the unit sphere. Model predictions indicate that the constitutive model is well able to predict the elastic and viscoelastic response of biological networks, and to an extent also composite structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Parameter Optimisation for the Behaviour of Elastic Models over Time

    DEFF Research Database (Denmark)

    Mosegaard, Jesper

    2004-01-01

    Optimisation of parameters for elastic models is essential for comparison or finding equivalent behaviour of elastic models when parameters cannot simply be transferred or converted. This is the case with a large range of commonly used elastic models. In this paper we present a general method tha...

  19. The ultra-structural organization of the elastic network in the intra- and inter-lamellar matrix of the intervertebral disc.

    Science.gov (United States)

    Tavakoli, J; Elliott, D M; Costi, J J

    2017-08-01

    The inter-lamellar matrix (ILM)-located between adjacent lamellae of the annulus fibrosus-consists of a complex structure of elastic fibers, while elastic fibers of the intra-lamellar region are aligned predominantly parallel to the collagen fibers. The organization of elastic fibers under low magnification, in both inter- and intra-lamellar regions, was studied by light microscopic analysis of histologically prepared samples; however, little is known about their ultrastructure. An ultrastructural visualization of elastic fibers in the inter-lamellar matrix is crucial for describing their contribution to structural integrity, as well as mechanical properties of the annulus fibrosus. The aims of this study were twofold: first, to present an ultrastructural analysis of the elastic fiber network in the ILM and intra-lamellar region, including cross section (CS) and in-plane (IP) lamellae, of the AF using Scanning Electron Microscopy (SEM) and second, to -compare the elastic fiber orientation between the ILM and intra-lamellar region. Four samples (lumbar sheep discs) from adjacent sections (30μm thickness) of anterior annulus were partially digested by a developed NaOH-sonication method for visualization of elastic fibers by SEM. Elastic fiber orientation and distribution were quantified relative to the tangential to circumferential reference axis. Visualization of the ILM under high magnification revealed a dense network of elastic fibers that has not been previously described. Within the ILM, elastic fibers form a complex network, consisting of different size and shape fibers, which differed to those located in the intra-lamellar region. For both regions, the majority of fibers were oriented near 0° with respect to tangential to circumferential (TCD) direction and two minor symmetrical orientations of approximately±45°. Statistically, the orientation of elastic fibers between the ILM and intra-lamellar region was not different (p=0.171). The present study used

  20. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.

    Science.gov (United States)

    Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali

    2014-03-01

    The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. Copyright © 2013 John Wiley & Sons, Ltd.

  1. All-optical OXC transition strategy from WDM optical network to elastic optical network.

    Science.gov (United States)

    Chen, Xin; Li, Juhao; Guo, Bingli; Zhu, Paikun; Tang, Ruizhi; Chen, Zhangyuan; He, Yongqi

    2016-02-22

    Elastic optical network (EON) has been proposed recently as a spectrum-efficient optical layer to adapt to rapidly-increasing traffic demands instead of current deployed wavelength-division-multiplexing (WDM) optical network. In contrast with conventional WDM optical cross-connect (OXCs) based on wavelength selective switches (WSSs), the EON OXCs are based on spectrum selective switches (SSSs) which are much more expensive than WSSs, especially for large-scale switching architectures. So the transition cost from WDM OXCs to EON OXCs is a major obstacle to realizing EON. In this paper, we propose and experimentally demonstrate a transition OXC (TOXC) structure based on 2-stage cascading switching architectures, which make full use of available WSSs in current deployed WDM OXCs to reduce number and port count of required SSSs. Moreover, we propose a contention-aware spectrum allocation (CASA) scheme for EON built with the proposed TOXCs. We show by simulation that the TOXCs reduce the network capital expenditure transiting from WDM optical network to EON about 50%, with a minor traffic blocking performance degradation and about 10% accommodated traffic number detriment compared with all-SSS EON OXC architectures.

  2. Design and deployment of an elastic network test-bed in IHEP data center based on SDN

    Science.gov (United States)

    Zeng, Shan; Qi, Fazhi; Chen, Gang

    2017-10-01

    High energy physics experiments produce huge amounts of raw data, while because of the sharing characteristics of the network resources, there is no guarantee of the available bandwidth for each experiment which may cause link congestion problems. On the other side, with the development of cloud computing technologies, IHEP have established a cloud platform based on OpenStack which can ensure the flexibility of the computing and storage resources, and more and more computing applications have been deployed on virtual machines established by OpenStack. However, under the traditional network architecture, network capability can’t be required elastically, which becomes the bottleneck of restricting the flexible application of cloud computing. In order to solve the above problems, we propose an elastic cloud data center network architecture based on SDN, and we also design a high performance controller cluster based on OpenDaylight. In the end, we present our current test results.

  3. Modeling elastic anisotropy in strained heteroepitaxy.

    Science.gov (United States)

    Dixit, Gopal Krishna; Ranganathan, Madhav

    2017-09-20

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.

  4. Modeling elastic anisotropy in strained heteroepitaxy

    Science.gov (United States)

    Krishna Dixit, Gopal; Ranganathan, Madhav

    2017-09-01

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to facets on the surface.

  5. Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method.

    Science.gov (United States)

    Su, Ji Guo; Qi, Li Sheng; Li, Chun Hua; Zhu, Yan Ying; Du, Hui Jing; Hou, Yan Xue; Hao, Rui; Wang, Ji Hua

    2014-08-01

    Allostery is a rapid and efficient way in many biological processes to regulate protein functions, where binding of an effector at the allosteric site alters the activity and function at a distant active site. Allosteric regulation of protein biological functions provides a promising strategy for novel drug design. However, how to effectively identify the allosteric sites remains one of the major challenges for allosteric drug design. In the present work, a thermodynamic method based on the elastic network model was proposed to predict the allosteric sites on the protein surface. In our method, the thermodynamic coupling between the allosteric and active sites was considered, and then the allosteric sites were identified as those where the binding of an effector molecule induces a large change in the binding free energy of the protein with its ligand. Using the proposed method, two proteins, i.e., the 70 kD heat shock protein (Hsp70) and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, were studied and the allosteric sites on the protein surface were successfully identified. The predicted results are consistent with the available experimental data, which indicates that our method is a simple yet effective approach for the identification of allosteric sites on proteins.

  6. Modeling and optimization of cloud-ready and content-oriented networks

    CERN Document Server

    Walkowiak, Krzysztof

    2016-01-01

    This book focuses on modeling and optimization of cloud-ready and content-oriented networks in the context of different layers and accounts for specific constraints following from protocols and technologies used in a particular layer. It addresses a wide range of additional constraints important in contemporary networks, including various types of network flows, survivability issues, multi-layer networking, and resource location. The book presents recent existing and new results in a comprehensive and cohesive way. The contents of the book are organized in five chapters, which are mostly self-contained. Chapter 1 briefly presents information on cloud computing and content-oriented services, and introduces basic notions and concepts of network modeling and optimization. Chapter 2 covers various optimization problems that arise in the context of connection-oriented networks. Chapter 3 focuses on modeling and optimization of Elastic Optical Networks. Chapter 4 is devoted to overlay networks. The book concludes w...

  7. Modeling Pseudo-elastic Behavior of Springback

    International Nuclear Information System (INIS)

    Xia, Z. Cedric

    2005-01-01

    One of the principal foundations of mathematical theory of conventional plasticity for rate-independent metals is that there exists a well-defined yield surface in stress space for any material point under deformation. A material point can undergo further plastic deformation if the applied stresses are beyond current yield surface which is generally referred as 'plastic loading'. On the other hand, if the applied stress state falls within or on the yield surface, the metal will deform elastically only and is said to be undergoing 'elastic unloading'. Although it has been always recognized throughout the history of development of plasticity theory that there is indeed inelastic deformation accompanying elastic unloading, which leads to metal's hysteresis behavior, its effects were thought to be negligible and were largely ignored in the mathematical treatment.Recently there have been renewed interests in the study of unloading behavior of sheet metals upon large plastic deformation and its implications on springback prediction. Springback is essentially an elastic recovery process of a formed sheet metal blank when it is released from the forming dies. Its magnitude depends on the stress states and compliances of the deformed sheet metal if no further plastic loading occurs during the relaxation process. Therefore the accurate determination of material compliances during springback and its effective incorporation into simulation software are important aspects for springback calculation. Some of the studies suggest that the unloading curve might deviate from linearity, and suggestions were made that a reduced elastic modulus be used for springback simulation.The aim of this study is NOT to take a position on the debate of whether elastic moduli are changed during sheet metal forming process. Instead we propose an approach of modeling observed psuedoelastic behavior within the context of mathematical theory of plasticity, where elastic moduli are treated to be

  8. The elastic network model reveals a consistent picture on intrinsic functional dynamics of type II restriction endonucleases

    International Nuclear Information System (INIS)

    Uyar, A; Kurkcuoglu, O; Doruker, P; Nilsson, L

    2011-01-01

    The vibrational dynamics of various type II restriction endonucleases, in complex with cognate/non-cognate DNA and in the apo form, are investigated with the elastic network model in order to reveal common functional mechanisms in this enzyme family. Scissor-like and tong-like motions observed in the slowest modes of all enzymes and their complexes point to common DNA recognition and cleavage mechanisms. Normal mode analysis further points out that the scissor-like motion has an important role in differentiating between cognate and non-cognate sequences at the recognition site, thus implying its catalytic relevance. Flexible regions observed around the DNA-binding site of the enzyme usually concentrate on the highly conserved β-strands, especially after DNA binding. These β-strands may have a structurally stabilizing role in functional dynamics for target site recognition and cleavage. In addition, hot spot residues based on high-frequency modes reveal possible communication pathways between the two distant cleavage sites in the enzyme family. Some of these hot spots also exist on the shortest path between the catalytic sites and are highly conserved

  9. Modelling of the elastic behaviour of metallic powders

    International Nuclear Information System (INIS)

    Riera, M.D.; Prado, J.M.

    1998-01-01

    In this work the elastic behaviour of metal powders compacted to different densities is studied. The authors apply a model based on the experimental observation that the elastic volumetric strain and the hydrostatic component of the applied stress are exponentially related. While a complete analysis should include both the volumetric and deviatoric components of the elastic strain, we only present here the first one. (Author) 9 refs

  10. An improved non-affine Arruda-Boyce type constitutive model for collagen networks

    NARCIS (Netherlands)

    Cioroianu, A.R.; Spiesz, E.M.; Storm, C.

    2013-01-01

    This work investigates, by means of computational modeling, the mechanical properties of soft collagen tissues on the basis of elasticity theory. Bio-polymer networks are structurally disordered and thus compelled to deform non-affine. To capture that in our computational modeling, we supplement the

  11. The integration of elastic wave properties and machine learning for the distribution of petrophysical properties in reservoir modeling

    Science.gov (United States)

    Ratnam, T. C.; Ghosh, D. P.; Negash, B. M.

    2018-05-01

    Conventional reservoir modeling employs variograms to predict the spatial distribution of petrophysical properties. This study aims to improve property distribution by incorporating elastic wave properties. In this study, elastic wave properties obtained from seismic inversion are used as input for an artificial neural network to predict neutron porosity in between well locations. The method employed in this study is supervised learning based on available well logs. This method converts every seismic trace into a pseudo-well log, hence reducing the uncertainty between well locations. By incorporating the seismic response, the reliance on geostatistical methods such as variograms for the distribution of petrophysical properties is reduced drastically. The results of the artificial neural network show good correlation with the neutron porosity log which gives confidence for spatial prediction in areas where well logs are not available.

  12. Elastic tracking versus neural network tracking for very high multiplicity problems

    International Nuclear Information System (INIS)

    Harlander, M.; Gyulassy, M.

    1991-04-01

    A new Elastic Tracking (ET) algorithm is proposed for finding tracks in very high multiplicity and noisy environments. It is based on a dynamical reinterpretation and generalization of the Radon transform and is related to elastic net algorithms for geometrical optimization. ET performs an adaptive nonlinear fit to noisy data with a variable number of tracks. Its numerics is more efficient than that of the traditional Radon or Hough transform method because it avoids binning of phase space and the costly search for valid minima. Spurious local minima are avoided in ET by introducing a time-dependent effective potential. The method is shown to be very robust to noise and measurement error and extends tracking capabilities to much higher track densities than possible via local road finding or even the novel Denby-Peterson neural network tracking algorithms. 12 refs., 2 figs

  13. A nonaffine network model for elastomers undergoing finite deformations

    Science.gov (United States)

    Davidson, Jacob D.; Goulbourne, N. C.

    2013-08-01

    In this work, we construct a new physics-based model of rubber elasticity to capture the strain softening, strain hardening, and deformation-state dependent response of rubber materials undergoing finite deformations. This model is unique in its ability to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and can also be easily identified with the important characteristics of the macroscopic stress-stretch response. The microscopic picture consists of two components: a crosslinked network of Langevin chains and an entangled network with chains confined to a nonaffine tube. These represent, respectively, changes in entropy due to thermally averaged chain conformations and changes in entropy due to the magnitude of these conformational fluctuations. A simple analytical form for the strain energy density is obtained using Rubinstein and Panyukov's single-chain description of network behavior. The model only depends on three parameters that together define the initial modulus, extent of strain softening, and the onset of strain hardening. Fits to large stretch data for natural rubber, silicone rubber, VHB 4905 (polyacrylate rubber), and b186 rubber (a carbon black-filled rubber) are presented, and a comparison is made with other similar constitutive models of large-stretch rubber elasticity. We demonstrate that the proposed model provides a complete description of elastomers undergoing large deformations for different applied loading configurations. Moreover, since the strain energy is obtained using a clear set of physical assumptions, this model may be tested and used to interpret the results of computer simulation and experiments on polymers of known microscopic structure.

  14. Performance evaluation of multi-stratum resources integration based on network function virtualization in software defined elastic data center optical interconnect.

    Science.gov (United States)

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tian, Rui; Han, Jianrui; Lee, Young

    2015-11-30

    Data center interconnect with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resilience between IP and elastic optical networks that allows to accommodate data center services. In view of this, this study extends to consider the resource integration by breaking the limit of network device, which can enhance the resource utilization. We propose a novel multi-stratum resources integration (MSRI) architecture based on network function virtualization in software defined elastic data center optical interconnect. A resource integrated mapping (RIM) scheme for MSRI is introduced in the proposed architecture. The MSRI can accommodate the data center services with resources integration when the single function or resource is relatively scarce to provision the services, and enhance globally integrated optimization of optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of OpenFlow-based enhanced software defined networking (eSDN) testbed. The performance of RIM scheme under heavy traffic load scenario is also quantitatively evaluated based on MSRI architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning schemes.

  15. A study of self-propelled elastic cylindrical micro-swimmers using modeling and computation

    Science.gov (United States)

    Shi, Lingling; Čanić, Sunčica; Quaini, Annalisa; Pan, Tsorng-Whay

    2016-06-01

    We study propulsion of micro-swimmers in 3D creeping flow. The swimmers are assumed to be made of elastic cylindrical hollow tubes. The swimming is generated by the contractions of the tube's elastic membrane walls producing a traveling wave in the form of a ;step-function; traversing the swimmer from right to left, propelling the swimmer from left to right. The problem is motivated by medical applications such as drug delivery. The influence of several non-dimensional design parameters on the velocity of the swimmer is investigated, including the swimmer aspect ratio, and the amplitude of the traveling wave relative to the swimmer radius. An immersed boundary method based on a finite element method approach is successfully combined with an elastic spring network model to simulate the two-way fluid-structure interaction coupling between the elastic cylindrical tube and the flow of a 3D viscous, incompressible fluid. To gain a deeper insight into the influence of various parameters on the swimmer speed, a reduced 1D fluid-structure interaction model was derived and validated. It was found that fast swimmers are those with large tube aspect ratios, and with the amplitude of the traveling wave which is roughly 50% of the reference swimmer radius. It was shown that the speed of our ;optimal swimmer; is around 1.5 swimmer lengths per second, which is at the top of the class of all currently manufactured micro-swimmers swimming in low Reynolds number flows (Re =10-6), reported in [11].

  16. Towards an elastic model of wurtzite AlN nanowires

    International Nuclear Information System (INIS)

    Mitrushchenkov, A; Chambaud, G; Yvonnet, J; He, Q-C

    2010-01-01

    Starting with ab initio calculations of AlN wurtzite [0001] nanowires with diameters up to 4 nm, a finite element method is developed to deal with larger nanostructures/nanoparticles. The ab initio calculations show that the structure of the nanowires can be well represented by an internal part with AlN bulk elastic properties, and one atomic surface layer with its own elastic behavior. The proposed finite element method includes surface elements with their own elastic properties using surface elastic coefficients deduced from the ab initio calculations. The elastic properties obtained with the finite element model compare very well with those obtained with the full ab initio calculations.

  17. Langevin-elasticity-theory-based description of the tensile properties of double network rubbers

    Czech Academy of Sciences Publication Activity Database

    Meissner, Bohumil; Matějka, Libor

    2003-01-01

    Roč. 44, č. 16 (2003), s. 4611-4617 ISSN 0032-3861 R&D Projects: GA ČR GA104/00/1311; GA AV ČR IAA4050008 Institutional research plan: CEZ:AV0Z4050913 Keywords : theory of rubber elasticity * double network rubbers * experimental testing Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.340, year: 2003

  18. Vibrational dynamics of icosahedrally symmetric biomolecular assemblies compared with predictions based on continuum elasticity.

    Science.gov (United States)

    Yang, Zheng; Bahar, Ivet; Widom, Michael

    2009-06-03

    Coarse-grained elastic network models elucidate the fluctuation dynamics of proteins around their native conformations. Low-frequency collective motions derived by simplified normal mode analysis are usually involved in biological function, and these motions often possess noteworthy symmetries related to the overall shape of the molecule. Here, insights into these motions and their frequencies are sought by considering continuum models with appropriate symmetry and boundary conditions to approximately represent the true atomistic molecular structure. We solve the elastic wave equations analytically for the case of spherical symmetry, yielding a symmetry-based classification of molecular motions together with explicit predictions for their vibrational frequencies. We address the case of icosahedral symmetry as a perturbation to the spherical case. Applications to lumazine synthase, satellite tobacco mosaic virus, and brome mosaic virus show that the spherical elastic model efficiently provides insights on collective motions that are otherwise obtained by detailed elastic network models. A major utility of the continuum models is the possibility of estimating macroscopic material properties such as the Young's modulus or Poisson's ratio for different types of viruses.

  19. Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs.

    Science.gov (United States)

    Zhang, Hui; Liu, Nishuang; Shi, Yuling; Liu, Weijie; Yue, Yang; Wang, Siliang; Ma, Yanan; Wen, Li; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua

    2016-08-31

    Pressure sensors with high elasticity are in great demand for the realization of intelligent sensing, but there is a need to develope a simple, inexpensive, and scalable method for the manufacture of the sensors. Here, we reported an efficient, simple, facile, and repeatable "dipping and coating" process to manufacture a piezoresistive sensor with high elasticity, based on homogeneous 3D hybrid network of carbon nanotubes@silver nanoparticles (CNTs@Ag NPs) anchored on a skeleton sponge. Highly elastic, sensitive, and wearable sensors are obtained using the porous structure of sponge and the synergy effect of CNTs/Ag NPs. Our sensor was also tested for over 2000 compression-release cycles, exhibiting excellent elasticity and cycling stability. Sensors with high performance and a simple fabrication process are promising devices for commercial production in various electronic devices, for example, sport performance monitoring and man-machine interfaces.

  20. Design and performance evaluation of an OpenFlow-based control plane for software-defined elastic optical networks with direct-detection optical OFDM (DDO-OFDM) transmission.

    Science.gov (United States)

    Liu, Lei; Peng, Wei-Ren; Casellas, Ramon; Tsuritani, Takehiro; Morita, Itsuro; Martínez, Ricardo; Muñoz, Raül; Yoo, S J B

    2014-01-13

    Optical Orthogonal Frequency Division Multiplexing (O-OFDM), which transmits high speed optical signals using multiple spectrally overlapped lower-speed subcarriers, is a promising candidate for supporting future elastic optical networks. In contrast to previous works which focus on Coherent Optical OFDM (CO-OFDM), in this paper, we consider the direct-detection optical OFDM (DDO-OFDM) as the transport technique, which leads to simpler hardware and software realizations, potentially offering a low-cost solution for elastic optical networks, especially in metro networks, and short or medium distance core networks. Based on this network scenario, we design and deploy a software-defined networking (SDN) control plane enabled by extending OpenFlow, detailing the network architecture, the routing and spectrum assignment algorithm, OpenFlow protocol extensions and the experimental validation. To the best of our knowledge, it is the first time that an OpenFlow-based control plane is reported and its performance is quantitatively measured in an elastic optical network with DDO-OFDM transmission.

  1. Modeling of a light elastic beam by a system of rigid bodies

    Directory of Open Access Journals (Sweden)

    Šalinić Slaviša

    2004-01-01

    Full Text Available This paper has shown that a light elastic beam, in the case of small elastic deformations, can be modeled by a kinematic chain without branching composed of rigid bodies which are connected by passive revolute or prismatic joints with corresponding springs in them. Elastic properties of the beam are modeled by the springs introduced. The potential energy of the elastic beam is expressed as a function of components of the vector of elastic displacement and the vector of elastic rotation calculated for the elastic centre of the beam, which results in the diagonal stiffness matrix of the beam. As the potential energy of the introduced system of bodies with springs is expressed in the function of relative joint displacements, the diagonal stiffness matrix is obtained. In addition, these two stiffness matrices are equal. The modeling process has been demonstrated on the example of an elastic beam rotating about a fixed vertical axis, with a rigid body whose mass is considerably larger than the beam mass fixed to its free end. Differential equations of motion have been formed for this mechanical system. The modeling technique described here aims at expanding of usage of well developed methods of dynamics of systems of rigid bodies to the analysis of systems with elastic bodies. .

  2. Elastic properties of synthetic materials for soft tissue modeling

    International Nuclear Information System (INIS)

    Mansy, H A; Grahe, J R; Sandler, R H

    2008-01-01

    Mechanical models of soft tissue are useful for studying vibro-acoustic phenomena. They may be used for validating mathematical models and for testing new equipment and techniques. The objective of this study was to measure density and visco-elastic properties of synthetic materials that can be used to build such models. Samples of nine different materials were tested under dynamic (0.5 Hz) compressive loading conditions. The modulus of elasticity of the materials was varied, whenever possible, by adding a softener during manufacturing. The modulus was measured over a nine month period to quantify the effect of ageing and softener loss on material properties. Results showed that a wide range of the compression elasticity modulus (10 to 1400 kPa) and phase (3.5 0 -16.7 0 ) between stress and strain were possible. Some materials tended to exude softener over time, resulting in a weight loss and elastic properties change. While the weight loss under normal conditions was minimal in all materials (<3% over nine months), loss under accelerated weight-loss conditions can reach 59%. In the latter case an elasticity modulus increase of up to 500% was measured. Key advantages and limitations of candidate materials were identified and discussed

  3. Three-Dimensional Computer-Assisted Two-Layer Elastic Models of the Face.

    Science.gov (United States)

    Ueda, Koichi; Shigemura, Yuka; Otsuki, Yuki; Fuse, Asuka; Mitsuno, Daisuke

    2017-11-01

    To make three-dimensional computer-assisted elastic models for the face, we decided on five requirements: (1) an elastic texture like skin and subcutaneous tissue; (2) the ability to take pen marking for incisions; (3) the ability to be cut with a surgical knife; (4) the ability to keep stitches in place for a long time; and (5) a layered structure. After testing many elastic solvents, we have made realistic three-dimensional computer-assisted two-layer elastic models of the face and cleft lip from the computed tomographic and magnetic resonance imaging stereolithographic data. The surface layer is made of polyurethane and the inner layer is silicone. Using this elastic model, we taught residents and young doctors how to make several typical local flaps and to perform cheiloplasty. They could experience realistic simulated surgery and understand three-dimensional movement of the flaps.

  4. Nematic elastomers: from a microscopic model to macroscopic elasticity theory.

    Science.gov (United States)

    Xing, Xiangjun; Pfahl, Stephan; Mukhopadhyay, Swagatam; Goldbart, Paul M; Zippelius, Annette

    2008-05-01

    A Landau theory is constructed for the gelation transition in cross-linked polymer systems possessing spontaneous nematic ordering, based on symmetry principles and the concept of an order parameter for the amorphous solid state. This theory is substantiated with help of a simple microscopic model of cross-linked dimers. Minimization of the Landau free energy in the presence of nematic order yields the neoclassical theory of the elasticity of nematic elastomers and, in the isotropic limit, the classical theory of isotropic elasticity. These phenomenological theories of elasticity are thereby derived from a microscopic model, and it is furthermore demonstrated that they are universal mean-field descriptions of the elasticity for all chemical gels and vulcanized media.

  5. A coarse-grained elastic network atom contact model and its use in the simulation of protein dynamics and the prediction of the effect of mutations.

    Directory of Open Access Journals (Sweden)

    Vincent Frappier

    2014-04-01

    Full Text Available Normal mode analysis (NMA methods are widely used to study dynamic aspects of protein structures. Two critical components of NMA methods are coarse-graining in the level of simplification used to represent protein structures and the choice of potential energy functional form. There is a trade-off between speed and accuracy in different choices. In one extreme one finds accurate but slow molecular-dynamics based methods with all-atom representations and detailed atom potentials. On the other extreme, fast elastic network model (ENM methods with Cα-only representations and simplified potentials that based on geometry alone, thus oblivious to protein sequence. Here we present ENCoM, an Elastic Network Contact Model that employs a potential energy function that includes a pairwise atom-type non-bonded interaction term and thus makes it possible to consider the effect of the specific nature of amino-acids on dynamics within the context of NMA. ENCoM is as fast as existing ENM methods and outperforms such methods in the generation of conformational ensembles. Here we introduce a new application for NMA methods with the use of ENCoM in the prediction of the effect of mutations on protein stability. While existing methods are based on machine learning or enthalpic considerations, the use of ENCoM, based on vibrational normal modes, is based on entropic considerations. This represents a novel area of application for NMA methods and a novel approach for the prediction of the effect of mutations. We compare ENCoM to a large number of methods in terms of accuracy and self-consistency. We show that the accuracy of ENCoM is comparable to that of the best existing methods. We show that existing methods are biased towards the prediction of destabilizing mutations and that ENCoM is less biased at predicting stabilizing mutations.

  6. Determination of Elastic and Dissipative Properties of Material Using Combination of FEM and Complex Artificial Neural Networks

    Science.gov (United States)

    Soloviev, A. N.; Giang, N. D. T.; Chang, S.-H.

    This paper describes the application of complex artificial neural networks (CANN) in the inverse identification problem of the elastic and dissipative properties of solids. Additional information for the inverse problem serves the components of the displacement vector measured on the body boundary, which performs harmonic oscillations at the first resonant frequency. The process of displacement measurement in this paper is simulated using calculation of finite element (FE) software ANSYS. In the shown numerical example, we focus on the accurate identification of elastic modulus and quality of material depending on the number of measurement points and their locations as well as on the architecture of neural network and time of the training process, which is conducted by using algorithms RProp, QuickProp.

  7. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling

    KAUST Repository

    Han, Fei

    2014-01-01

    We present two modeling approaches for predicting the macroscopic elastic properties of carbon nanotubes/polymer composites with thick interphase regions at the nanotube/matrix frontier. The first model is based on local continuum mechanics; the second one is based on hybrid local/non-local continuum mechanics. The key computational issues, including the peculiar homogenization technique and treatment of periodical boundary conditions in the non-local continuum model, are clarified. Both models are implemented through a three-dimensional geometric representation of the carbon nanotubes network, which has been detailed in Part I. Numerical results are shown and compared for both models in order to test convergence and sensitivity toward input parameters. It is found that both approaches provide similar results in terms of homogenized quantities but locally can lead to very different microscopic fields. © 2013 Elsevier B.V. All rights reserved.

  8. The study of the elasticity of spider dragline silk with liquid crystal model

    International Nuclear Information System (INIS)

    Cui Linying; Liu Fei; Ouyang Zhongcan

    2009-01-01

    Spider dragline silk is an optimal biomaterial with a combination of high tensile strength and high elasticity, and it has long been suggested to belong to liquid crystalline materials. However, a satisfactory liquid crystal description for the mechanical properties of the dragline is still missing. To solve the long existing problem, we generalized the Maier-Saupe theory of nematics to construct a liquid crystal model of the deformation mechanism of the dragline silk. We show that the remarkable elasticity of the dragline can be understood as the isotropic-nematic phase transition of the chain network with the beginning of the transition corresponding to the yield point. The calculated curve fits well with the measurements and the yield point is obtained self-consistently within our framework. The present theory can also qualitatively account for the drop of stress in supercontracted spider silk. All these comprehensive agreements between theory and experiments strongly indicate the dragline to belong to liquid crystal materials.

  9. A three-dimensional computational model of collagen network mechanics.

    Directory of Open Access Journals (Sweden)

    Byoungkoo Lee

    Full Text Available Extracellular matrix (ECM strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned. We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions.

  10. Optimal Full Waveform Inversion Strategy in Azimuthally Rotated Elastic Orthorhombic Media

    KAUST Repository

    Oh, Juwon; Alkhalifah, Tariq Ali

    2017-01-01

    The elastic orthorhombic assumption is one of the most practical Earth models that takes into account the horizontal anisotropic layering and vertical fracture network. In this model, the rotation angle of the vertical planes of symmetry is a

  11. Proposed higher order continuum-based models for an elastic ...

    African Journals Online (AJOL)

    Three new variants of continuum-based models for an elastic subgrade are proposed. The subgrade is idealized as a homogenous, isotropic elastic layer of thickness H overlying a firm stratum. All components of the stress tensor in the subgrade are taken into account. Reasonable assumptions are made regarding the ...

  12. Power Efficient Service Differentiation Based on Traffic-Aware Survivable Elastic Optical Networks

    DEFF Research Database (Denmark)

    Turus, Ioan; Fagertun, Anna Manolova; Dittmann, Lars

    2014-01-01

    This study assesses the feasible energy savings whendefining different service classes based on protection schemesincore optical networks.Wepropose a dedicated energy savingstrategy for each of the service classes in order to minimize theoverall power consumption of the network.Four Classes of Se...... while for the proposed approach the difference in power consumption is almost negligible.Moreover, incase of the proposed approach,silver serviceclass can benefit for superior quality of service compared to the gold service class, due to the grooming mechanism.......This study assesses the feasible energy savings whendefining different service classes based on protection schemesincore optical networks.Wepropose a dedicated energy savingstrategy for each of the service classes in order to minimize theoverall power consumption of the network.Four Classes...... the sleep-mode capability of the opto-electronic devices as well as the elastic data-rateadaptation based on symbol-rate and modulation-format re-configurations. The results show that in the baseline approach the power consumption is strongly dependent on the ratio between the different service classes...

  13. Elastic models for the non-Arrhenius relaxation time of glass-forming liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time...... elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....

  14. Elastic models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2006-01-01

    We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time...... elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....

  15. Computational Modelling of Fracture Propagation in Rocks Using a Coupled Elastic-Plasticity-Damage Model

    Directory of Open Access Journals (Sweden)

    Isa Kolo

    2016-01-01

    Full Text Available A coupled elastic-plasticity-damage constitutive model, AK Model, is applied to predict fracture propagation in rocks. The quasi-brittle material model captures anisotropic effects and the distinct behavior of rocks in tension and compression. Calibration of the constitutive model is realized using experimental data for Carrara marble. Through the Weibull distribution function, heterogeneity effect is captured by spatially varying the elastic properties of the rock. Favorable comparison between model predictions and experiments for single-flawed specimens reveal that the AK Model is reliable and accurate for modelling fracture propagation in rocks.

  16. SLA-aware differentiated QoS in elastic optical networks

    Science.gov (United States)

    Agrawal, Anuj; Vyas, Upama; Bhatia, Vimal; Prakash, Shashi

    2017-07-01

    The quality of service (QoS) offered by optical networks can be improved by accurate provisioning of service level specifications (SLSs) included in the service level agreement (SLA). A large number of users coexisting in the network require different services. Thus, a pragmatic network needs to offer a differentiated QoS to a variety of users according to the SLA contracted for different services at varying costs. In conventional wavelength division multiplexed (WDM) optical networks, service differentiation is feasible only for a limited number of users because of its fixed-grid structure. Newly introduced flex-grid based elastic optical networks (EONs) are more adaptive to traffic requirements as compared to the WDM networks because of the flexibility in their grid structure. Thus, we propose an efficient SLA provisioning algorithm with improved QoS for these flex-grid EONs empowered by optical orthogonal frequency division multiplexing (O-OFDM). The proposed algorithm, called SLA-aware differentiated QoS (SADQ), employs differentiation at the level of routing, spectrum allocation, and connection survivability. The proposed SADQ aims to accurately provision the SLA using such multilevel differentiation with an objective to improve the spectrum utilization from the network operator's perspective. SADQ is evaluated for three different CoSs under various traffic demand patterns and for different ratios of the number of requests belonging to the three considered CoSs. We propose two new SLA metrics for the improvement of functional QoS requirements, namely, security, confidentiality and survivability of high class of service (CoS) traffic. Since, to the best of our knowledge, the proposed SADQ is the first scheme in optical networks to employ exhaustive differentiation at the levels of routing, spectrum allocation, and survivability in a single algorithm, we first compare the performance of SADQ in EON and currently deployed WDM networks to assess the

  17. Applying the elastic model for various nucleus-nucleus fusion

    International Nuclear Information System (INIS)

    HASSAN, G.S.; RAGAB, H.S.; SEDDEEK, M.K.

    2000-01-01

    The Elastic Model of two free parameters m,d given by Scalia has been used for wider energy regions to fit the available experimental data for potential barriers and cross sections. In order to generalize Scalia's formula in both sub- and above-barrier regions, we calculated m, d for pairs rather than those given by Scalia and compared the calculated cross sections with the experimental data. This makes a generalization of the Elastic Model in describing fusion process. On the other hand, Scalia's range of interacting systems was 24 ≤ A ≤194 where A is the compound nucleus mass number. Our extension of that model includes an example of the pairs of A larger than his final limit aiming to make it as a general formula for any type of reactants: light, intermediate or heavy systems. A significant point is the comparison of Elastic Model calculations with the well known methods studying complete fusion and compound nucleus formation, namely with the resultants of using Proximity potential with either Sharp or Smooth cut-off approximations

  18. Elasticity of Hard-Spheres-And-Tether Systems

    International Nuclear Information System (INIS)

    Farago, O.; Kantor, Y.

    1999-01-01

    Physical properties of a large class of systems ranging from noble gases to polymers and rubber are primarily determined by entropy, while the internal energy plays a minor role. Such systems can be conveniently modeled and numerically studied using ''hard' (i.e., ''infinity-or-zero'') potentials, such as hard sphere repulsive interactions, or inextensible (''tether'') bonds which limit the distance between the bonded monomers, but have zero energy at all permitted distances. The knowledge of elastic constants is very important for understanding the behavior of entropy-dominated systems. Computational methods for determination of the elastic constants in such systems are broadly classified into ''strain'' methods and (fluctuation methods. In the former, the elastic constants are extracted from stress-strain relations, while in the latter they are determined from measurements of stress fluctuations. The fluctuation technique usually enables more accurate and well-controlled determination of the elastic constants since in this method the elastic constants are computed directly from simulations of the un strained system with no need to deform the simulation cell and perform numerical differentiations. For central forces systems, the original ''fluctuation'' formalism can be applied provided the pair potential is twice differentiable. We have extended this formalism to apply to hard-spheres-and-tether models in which this requirement is not fulfilled. We found that for such models the components of the tensor of elastic constants can be related to (two-, three- and four-point) probability densities of contacts between hard spheres and stretched bonds. We have tested our formalism on simple (phantom networks and three-dimensional hard spheres systems

  19. Modeling universal dynamics of cell spreading on elastic substrates.

    Science.gov (United States)

    Fan, Houfu; Li, Shaofan

    2015-11-01

    A three-dimensional (3D) multiscale moving contact line model is combined with a soft matter cell model to study the universal dynamics of cell spreading over elastic substrates. We have studied both the early stage and the late stage cell spreading by taking into account the actin tension effect. In this work, the cell is modeled as an active nematic droplet, and the substrate is modeled as a St. Venant Kirchhoff elastic medium. A complete 3D simulation of cell spreading has been carried out. The simulation results show that the spreading area versus spreading time at different stages obeys specific power laws, which is in good agreement with experimental data and theoretical prediction reported in the literature. Moreover, the simulation results show that the substrate elasticity may affect force dipole distribution inside the cell. The advantage of this approach is that it combines the hydrodynamics of actin retrograde flow with moving contact line model so that it can naturally include actin tension effect resulting from actin polymerization and actomyosin contraction, and thus it might be capable of simulating complex cellular scale phenomenon, such as cell spreading or even crawling.

  20. Multicasting based optical inverse multiplexing in elastic optical network.

    Science.gov (United States)

    Guo, Bingli; Xu, Yingying; Zhu, Paikun; Zhong, Yucheng; Chen, Yuanxiang; Li, Juhao; Chen, Zhangyuan; He, Yongqi

    2014-06-16

    Optical multicasting based inverse multiplexing (IM) is introduced in spectrum allocation of elastic optical network to resolve the spectrum fragmentation problem, where superchannels could be split and fit into several discrete spectrum blocks in the intermediate node. We experimentally demonstrate it with a 1-to-7 optical superchannel multicasting module and selecting/coupling components. Also, simulation results show that, comparing with several emerging spectrum defragmentation solutions (e.g., spectrum conversion, split spectrum), IM could reduce blocking performance significantly but without adding too much system complexity as split spectrum. On the other hand, service fairness for traffic with different granularity of these schemes is investigated for the first time and it shows that IM performs better than spectrum conversion and almost as well as split spectrum, especially for smaller size traffic under light traffic intensity.

  1. 14O+p elastic scattering in a microscopic cluster model

    International Nuclear Information System (INIS)

    Descouvemont, P.; Baye, D.; Leo, F.

    2006-01-01

    The 14O+p elastic scattering is analyzed in a fully microscopic cluster model. With the Resonating Group Method associated with the microscopic R-matrix theory, phase shifts and cross sections are calculated. Data on 16O+p are used to test the precision of the model. For the 14O+p elastic scattering, an excellent agreement is found with recent experimental data. Resonances properties in 15F are discussed

  2. Performance evaluation of data center service localization based on virtual resource migration in software defined elastic optical network.

    Science.gov (United States)

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tan, Yuanlong; Lin, Yi; Han, Jianrui; Lee, Young

    2015-09-07

    Data center interconnection with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate data center services. In view of this, this study extends the data center resources to user side to enhance the end-to-end quality of service. We propose a novel data center service localization (DCSL) architecture based on virtual resource migration in software defined elastic data center optical network. A migration evaluation scheme (MES) is introduced for DCSL based on the proposed architecture. The DCSL can enhance the responsiveness to the dynamic end-to-end data center demands, and effectively reduce the blocking probability to globally optimize optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of our OpenFlow-based enhanced SDN testbed. The performance of MES scheme under heavy traffic load scenario is also quantitatively evaluated based on DCSL architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning scheme.

  3. Armington elasticities for energy policy modeling: Evidence from four European countries

    International Nuclear Information System (INIS)

    Welsch, Heinz

    2008-01-01

    Elasticities of substitution among imports and competing domestic production (Armington elasticities) play an important role in computable general equilibrium (CGE) assessments of energy and climate policy. This paper provides estimates of Armington elasticities for 15 commodity groups in four European countries. Since Armington elasticities are found to be rather low on average, researchers may want to reconsider the device of using high values of Armington elasticities in CGE models to avoid unrealistic competitiveness effects or emission leakage rates associated with energy or carbon taxes or other forms of energy-related regulation. Estimated elasticities tend to be higher in the case of machinery and other investment goods than in the case of primary products, ores and chemicals, as well as consumer goods

  4. Elastic constants of stressed and unstressed materials in the phase-field crystal model

    Science.gov (United States)

    Wang, Zi-Le; Huang, Zhi-Feng; Liu, Zhirong

    2018-04-01

    A general procedure is developed to investigate the elastic response and calculate the elastic constants of stressed and unstressed materials through continuum field modeling, particularly the phase-field crystal (PFC) models. It is found that for a complete description of system response to elastic deformation, the variations of all the quantities of lattice wave vectors, their density amplitudes (including the corresponding anisotropic variation and degeneracy breaking), the average atomic density, and system volume should be incorporated. The quantitative and qualitative results of elastic constant calculations highly depend on the physical interpretation of the density field used in the model, and also importantly, on the intrinsic pressure that usually pre-exists in the model system. A formulation based on thermodynamics is constructed to account for the effects caused by constant pre-existing stress during the homogeneous elastic deformation, through the introducing of a generalized Gibbs free energy and an effective finite strain tensor used for determining the elastic constants. The elastic properties of both solid and liquid states can be well produced by this unified approach, as demonstrated by an analysis for the liquid state and numerical evaluations for the bcc solid phase. The numerical calculations of bcc elastic constants and Poisson's ratio through this method generate results that are consistent with experimental conditions, and better match the data of bcc Fe given by molecular dynamics simulations as compared to previous work. The general theory developed here is applicable to the study of different types of stressed or unstressed material systems under elastic deformation.

  5. A note on modeling road accident frequency: a flexible elasticity model.

    Science.gov (United States)

    Couto, António; Ferreira, Sara

    2011-11-01

    Count data models and their variants have been widely applied in accident modeling. The traditional log-linear function is used to represent the relationship between explanatory variables and the dependent variable (accident frequency). However, this function assumes constant elasticity for the estimation parameters, which is a limitation in the analysis of the effects of explanatory variables on accident risk. Although interaction effects between explanatory variables have been studied in the road safety context (where they are normally assessed by logistic regression), no one has yet examined the possibility of using a flexible function form allowing non-constant elasticity values. This paper seeks to explore the use of the translog function usually used in the economics context to allow the elasticity to vary with the values of other explanatory variables. Therefore, the objective of this study was to evaluate the application of the translog function to accident modeling and to compare the results with those of the traditional log-linear function negative binomial (NB) model. The results show that, in terms of goodness-of-fit statistics and residual analysis, the NB model with the translog function performs better than the traditional NB model. Additional evaluations in terms of predictive performance, hotspot identification and uncertainty associated with the estimated values were taken into account. Although this study is exploratory in nature, it suggests that the translog function has considerable potential for modeling accident observations. It is hoped that this novel accident modeling methodology will open the door to the reliable interpretation and evaluation of the influence of explanatory variables on accident frequency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package

    Energy Technology Data Exchange (ETDEWEB)

    Kuhr, Bryan [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Component Science and Mechanics; Lechman, Jeremy B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanoscale and Reactive Processes

    2015-03-01

    The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.

  7. Modeling and analysis of voice and data in cognitive radio networks

    CERN Document Server

    Gunawardena, Subodha

    2014-01-01

    This Springer Brief investigates the voice and elastic/interactive data service support over cognitive radio networks (CRNs), in terms of their delay requirements. The increased demand for wireless communication conflicts with the scarcity of the radio spectrum, but CRNS allow for more efficient use of the networks. The authors review packet level delay requirements of the voice service and session level delay requirements of the elastic/interactive data services, particularly constant-rate and on-o? voice tra?c capacities in CRNs with centralized and distributed network coordination. Some gen

  8. Unsteady Model for Transverse Fluid Elastic Instability of Heat Exchange Tube Bundle

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2014-01-01

    Full Text Available From the viewpoint of practical application, based on the unsteady analytical model for transverse fluid elastic instability of tube array proposed by Yetisir and the linear attenuation function introduced by Li Ming, a new explicit model based on nonsteady state “streamtube” hypothesis is proposed and solved using complex number method. In the model, numerical integral is avoided and inappropriate aspects in Li Ming model are modified. Using the model, the fluid elastic instability analysis of a single flexible tube is made. The stability graphs for four typical types of tube array are plotted and contrasted with experimental results. It is found that the current explicit model is effective in the analysis of transverse fluid elastic instability of tube bundle.

  9. Estimation of Elastic Modulus of Intact Rocks by Artificial Neural Network

    Science.gov (United States)

    Ocak, Ibrahim; Seker, Sadi Evren

    2012-11-01

    The modulus of elasticity of intact rock ( E i) is an important rock property that is used as an input parameter in the design stage of engineering projects such as dams, slopes, foundations, tunnel constructions and mining excavations. However, it is sometimes difficult to determine the modulus of elasticity in laboratory tests because high-quality cores are required. For this reason, various methods for predicting E i have been popular research topics in recently published literature. In this study, the relationships between the uniaxial compressive strength, unit weight ( γ) and E i for different types of rocks were analyzed, employing an artificial neural network and 195 data obtained from laboratory tests carried out on cores obtained from drilling holes within the area of three metro lines in Istanbul, Turkey. Software was developed in Java language using Weka class libraries for the study. To determine the prediction capacity of the proposed technique, the root-mean-square error and the root relative squared error indices were calculated as 0.191 and 92.587, respectively. Both coefficients indicate that the prediction capacity of the study is high for practical use.

  10. Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    the trailing edge flap deflection to actively reduce the fatigue loads on the structure. The performance of the smart rotor configuration and its control algorithms are finally quantified by aero-servo-elastic simulations of the smart rotor turbine operating in a standard turbulent wind field.......This book presents the formulation of an aero-servo-elastic model for a wind turbine rotor equipped with Adaptive Trailing Edge Flaps (ATEF), a smart rotor configuration. As the name suggests, an aero-servo-elastic model consists of three main components: an aerodynamic model, a structural model......, and a control model. The book first presents an engineering type of aerodynamic model that accounts for the dynamic effects of flap deflection. The aerodynamic model is implemented in a Blade Element Momentum framework, and coupled with a multi-body structural model in the aero-servoelastic simulation code HAWC...

  11. Modeling generator power plant portfolios and pollution taxes in electric power supply chain networks: a transportation network equilibrium transformation

    International Nuclear Information System (INIS)

    Kai Wu; Nagurney, A.; University of Massachusetts, Amherst, MA; Zugang Liu; Stranlund, J.K.

    2006-01-01

    Global climate change and fuel security risks have encouraged international and regional adoption of pollution/carbon taxes. A major portion of such policy interventions is directed at the electric power industry with taxes applied according to the type of fuel used by the power generators in their power plants. This paper proposes an electric power supply chain network model that captures the behavior of power generators faced with a portfolio of power plant options and subject to pollution taxes. We demonstrate that this general model can be reformulated as a transportation network equilibrium model with elastic demands and qualitatively analyzed and solved as such. The connections between these two different modeling schemas is done through finite-dimensional variational inequality theory. The numerical examples illustrate how changes in the pollution/carbon taxes affect the equilibrium electric power supply chain network production outputs, the transactions between the various decision-makers the demand market prices, as well as the total amount of carbon emissions generated. (author)

  12. Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion

    Science.gov (United States)

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Renard, François; Galland, Olivier; Jamtveit, Bjørn; Meakin, Paul; Dysthe, Dag Kristian

    2014-11-01

    A simple and reproducible analog experiment was used to simulate fracture formation in a low-permeability elastic solid during internal fluid/gas production, with the objective of developing a better understanding of the mechanisms that control the dynamics of fracturing, fracture opening and closing, and fluid transport. In the experiment, nucleation, propagation, and coalescence of fractures within an elastic gelatin matrix, confined in a Hele-Shaw cell, occurred due to CO2 production via fermentation of sugar, and it was monitored by optical means. We first quantified how a fracture network develops, and then how intermittent fluid transport is controlled by the dynamics of opening and closing of fractures. The gas escape dynamics exhibited three characteristic behaviors: (1) Quasiperiodic release of gas with a characteristic frequency that depends on the gas production rate but not on the system size. (2) A 1 /f power spectrum for the fluctuations in the total open fracture area over an intermediate range of frequencies (f ), which we attribute to collective effects caused by interaction between fractures in the drainage network. (3) A 1 /f2 power spectrum was observed at high frequencies, which can be explained by the characteristic behavior of single fractures.

  13. A micromechanics model of the elastic properties of human dentine

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, J. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Balooch, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marshall, G. W. [Univ. of California, San Francisco, CA (United States). Dept. of Restorative Dentistry; Marshall, S. J. [Univ. of California, San Francisco, CA (United States). Dept. of Restorative Dentistry

    1999-10-01

    A generalized self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentin. Closed form expressions for the five independent elastic constants of dentin were derived in terms of tubule concentration, and the Young's moduli and Poisson ratios of peri- and intertubular dentin. An atomic force microscope (AFM) indentation technique determined the Young's moduli of the peri- and intertubular dentin as approximately 30 GPa and 15 GPa, respectively. Over the natural variation in tubule density found in dentin, there was only a slight variation in the axial and transverse shear moduli with position in the tooth, and there was no measurable effect of tubule orientation. We conclude that tubule orientation has no appreciable effect on the elastic behavior of normal dentin, and that the elastic properties of healthy dentin can be modeled as an isotropic continuum with a Young's modulus of approximately 16 GPa and a shear modulus of 6.2 GPa.

  14. Dynamic routing and spectrum assignment based on multilayer virtual topology and ant colony optimization in elastic software-defined optical networks

    Science.gov (United States)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun

    2017-07-01

    Elastic software-defined optical networks greatly improve the flexibility of the optical switching network while it has brought challenges to the routing and spectrum assignment (RSA). A multilayer virtual topology model is proposed to solve RSA problems. Two RSA algorithms based on the virtual topology are proposed, which are the ant colony optimization (ACO) algorithm of minimum consecutiveness loss and the ACO algorithm of maximum spectrum consecutiveness. Due to the computing power of the control layer in the software-defined network, the routing algorithm avoids the frequent link-state information between routers. Based on the effect of the spectrum consecutiveness loss on the pheromone in the ACO, the path and spectrum of the minimal impact on the network are selected for the service request. The proposed algorithms have been compared with other algorithms. The results show that the proposed algorithms can reduce the blocking rate by at least 5% and perform better in spectrum efficiency. Moreover, the proposed algorithms can effectively decrease spectrum fragmentation and enhance available spectrum consecutiveness.

  15. Metamodel-based inverse method for parameter identification: elastic-plastic damage model

    Science.gov (United States)

    Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb

    2017-04-01

    This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.

  16. An optimization method of VON mapping for energy efficiency and routing in elastic optical networks

    Science.gov (United States)

    Liu, Huanlin; Xiong, Cuilian; Chen, Yong; Li, Changping; Chen, Derun

    2018-03-01

    To improve resources utilization efficiency, network virtualization in elastic optical networks has been developed by sharing the same physical network for difference users and applications. In the process of virtual nodes mapping, longer paths between physical nodes will consume more spectrum resources and energy. To address the problem, we propose a virtual optical network mapping algorithm called genetic multi-objective optimize virtual optical network mapping algorithm (GM-OVONM-AL), which jointly optimizes the energy consumption and spectrum resources consumption in the process of virtual optical network mapping. Firstly, a vector function is proposed to balance the energy consumption and spectrum resources by optimizing population classification and crowding distance sorting. Then, an adaptive crossover operator based on hierarchical comparison is proposed to improve search ability and convergence speed. In addition, the principle of the survival of the fittest is introduced to select better individual according to the relationship of domination rank. Compared with the spectrum consecutiveness-opaque virtual optical network mapping-algorithm and baseline-opaque virtual optical network mapping algorithm, simulation results show the proposed GM-OVONM-AL can achieve the lowest bandwidth blocking probability and save the energy consumption.

  17. Effects of Host-rock Fracturing on Elastic-deformation Source Models of Volcano Deflation.

    Science.gov (United States)

    Holohan, Eoghan P; Sudhaus, Henriette; Walter, Thomas R; Schöpfer, Martin P J; Walsh, John J

    2017-09-08

    Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.

  18. Modeling and simulation of different and representative engineering problems using Network Simulation Method.

    Science.gov (United States)

    Sánchez-Pérez, J F; Marín, F; Morales, J L; Cánovas, M; Alhama, F

    2018-01-01

    Mathematical models simulating different and representative engineering problem, atomic dry friction, the moving front problems and elastic and solid mechanics are presented in the form of a set of non-linear, coupled or not coupled differential equations. For different parameters values that influence the solution, the problem is numerically solved by the network method, which provides all the variables of the problems. Although the model is extremely sensitive to the above parameters, no assumptions are considered as regards the linearization of the variables. The design of the models, which are run on standard electrical circuit simulation software, is explained in detail. The network model results are compared with common numerical methods or experimental data, published in the scientific literature, to show the reliability of the model.

  19. Elastic deformation and failure in protein filament bundles: Atomistic simulations and coarse-grained modeling.

    Science.gov (United States)

    Hammond, Nathan A; Kamm, Roger D

    2008-07-01

    The synthetic peptide RAD16-II has shown promise in tissue engineering and drug delivery. It has been studied as a vehicle for cell delivery and controlled release of IGF-1 to repair infarcted cardiac tissue, and as a scaffold to promote capillary formation for an in vitro model of angiogenesis. The structure of RAD16-II is hierarchical, with monomers forming long beta-sheets that pair together to form filaments; filaments form bundles approximately 30-60 nm in diameter; branching networks of filament bundles form macroscopic gels. We investigate the mechanics of shearing between the two beta-sheets constituting one filament, and between cohered filaments of RAD16-II. This shear loading is found in filament bundle bending or in tensile loading of fibers composed of partial-length filaments. Molecular dynamics simulations show that time to failure is a stochastic function of applied shear stress, and that for a given loading time behavior is elastic for sufficiently small shear loads. We propose a coarse-grained model based on Langevin dynamics that matches molecular dynamics results and facilities extending simulations in space and time. The model treats a filament as an elastic string of particles, each having potential energy that is a periodic function of its position relative to the neighboring filament. With insight from these simulations, we discuss strategies for strengthening RAD16-II and similar materials.

  20. Swelling of polymer networks with topological constraints: Application of the Helmis-Heinrich-Straube model

    Directory of Open Access Journals (Sweden)

    B. Basterra-Beroiz

    2018-08-01

    Full Text Available For the first time since its formulation in 1986, the theoretical approach proposed by Helmis, Heinrich and Straube (HHS model, which considers the contribution of topological restrictions from entanglements to the swelling of polymer networks, is applied to experimental data. The main aspects and key equations are reviewed and their application is illustrated for unfilled rubber compounds. The HHS model is based on real networks and gives new perspectives to the interpretation of experimental swelling data for which the entanglement contributions are usually neglected by considering phantom network models. This investigation applies a reliable constrained-chain approach through a deformation-dependent tube model for defining the elastic contribution of swollen networks, which is one of the main limitations on the applicability of classical (affine Flory-Rehner and (non-affine phantom models. This short communication intends to provide a baseline for the application and validation of this modern approach for a broader class of rubber materials.

  1. Experimental models of Elastic Structures: Tensile Buckling and Eshelby-like Forces

    OpenAIRE

    Misseroni, Diego

    2013-01-01

    Mechanical models have been invented, designed and realized to experimentally confirm unexpected behaviours theoretically predicted in elasticity: - instabilities and bifurcations occurring in structures under ‘tensile dead load’ and the influence of the constraint’s curvature; - the presence of an ‘Eshelby-like’ or ‘configurational’ force in structures with movable constraints. Furthermore, ‘classical’ features in elasticity have been substantied by testing small-scale models and ob...

  2. Modeling of Hydraulic Fracture Propagation at the kISMET Site Using a Fully Coupled 3D Network-Flow and Quasi- Static Discrete Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mattson, Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Herb F. [Univ. of Wisconsin, Madison, WI (United States); Haimson, Bezalel C. [Univ. of Wisconsin, Madison, WI (United States); Doe, Thomas W. [Golder Associates Inc., Redmond, VA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, Patrick F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-02-01

    Aimed at supporting the design of hydraulic fracturing experiments at the kISMET site, ~1500 m below ground in a deep mine, we performed pre-experimental hydraulic fracturing simulations in order to estimate the breakdown pressure, propagation pressure, fracture geometry, and the magnitude of induced seismicity using a newly developed fully coupled three-dimensional (3D) network flow and quasi-static discrete element model (DEM). The quasi-static DEM model, which is constructed by Delaunay tessellation of the rock volume, considers rock fabric heterogeneities by using the “disordered” DEM mesh and adding random perturbations to the stiffness and tensile/shear strengths of individual DEM elements and the elastic beams between them. A conjugate 3D flow network based on the DEM lattice is constructed to calculate the fluid flow in both the fracture and porous matrix. One distinctive advantage of the model is that fracturing is naturally described by the breakage of elastic beams between DEM elements. It is also extremely convenient to introduce mechanical anisotropy into the model by simply assigning orientation-dependent tensile/shear strengths to the elastic beams. In this paper, the 3D hydraulic fracturing model was verified against the analytic solution for a penny-shaped crack model. We applied the model to simulate fracture propagation from a vertical open borehole based on initial estimates of rock mechanical properties and in-situ stress conditions. The breakdown pressure and propagation pressure are directly obtained from the simulation. In addition, the released elastic strain energies of individual fracturing events were calculated and used as a conservative estimate for the magnitudes of the potential induced seismic activities associated with fracturing. The comparisons between model predictions and experimental results are still ongoing.

  3. An elastic-plastic contact model for line contact structures

    Science.gov (United States)

    Zhu, Haibin; Zhao, Yingtao; He, Zhifeng; Zhang, Ruinan; Ma, Shaopeng

    2018-06-01

    Although numerical simulation tools are now very powerful, the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications. For the line contact structures widely used in the engineering field, few analytical models are available for predicting the mechanical behaviour when the structures deform plastically, as the classic Hertz's theory would be invalid. Thus, the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism. A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained. The proposed model was verified through an actual line contact test and a corresponding numerical simulation. The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.

  4. Optical model theory of elastic electron- and positron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Joachain, C.J.

    1977-01-01

    It is stated that the basic idea of the optical model theory is to enable analysis of the elastic scattering of a particle from a complex target by replacing the complicated interactions between the beam and the target by an optical potential, or pseudopotential, in which the incident particle moves. Once the optical potential is determined the original many-body elastic scattering problem reduces to a one-body situation. The resulting optical potential is, however, a very complicated operator, and the formal expressions obtained from first principles for the optical potential can only be evaluated approximately in a few simple cases, such as high energy elastic hadron-nucleus scattering, for the the optical potential can be expressed in terms of two-body hadron-nucleon amplitudes, and the non-relativistic elastic scattering of fast charged particles by atoms. The elastic scattering of an electron or positron by a neutral atom at intermediate energies is here considered. Exchange effects between the projectile and the atomic electrons are considered; also absorption and polarisation effects. Applications of the full-wave optical model have so far only been made to the elastic scattering of fast electrons and positrons by atomic H, He, Ne, and Ar. Agreements of the optical model results with absolute measurements of differential cross sections for electron scattering are very good, an agreement that improves as the energy increases, but deteriorates quickly as the incident energy becomes lower than 50 eV for atomic H or 100 eV for He. For more complex atoms the optical model calculations also appear very encouraging. With regard to positron-atom elastic scattering the optical model results for positron-He scattering differ markedly at small angles from the corresponding electron-He values. It would be interesting to have experimental angular distributions of positron-atom elastic scattering in order to check predictions of the optical model theory. (U.K.)

  5. On Improved Network Models for Rubber Elasticity and Their Applications to Orientation Hardening in Glassy Polymers

    NARCIS (Netherlands)

    Wu, P.D.; Giessen, E. van der

    1993-01-01

    Three-dimensional molecular network theories are studied which use a non-Gaussian statistical mechanics model for the large strain extension of molecules. Invoking an affine deformation assumption, the evolution of the network-consisting of a large number of molecular chains per unit volume, which

  6. Elasticity of fractal materials using the continuum model with non-integer dimensional space

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-01-01

    Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.

  7. On model-independent analyses of elastic hadron scattering

    International Nuclear Information System (INIS)

    Avila, R.F.; Campos, S.D.; Menon, M.J.; Montanha, J.

    2007-01-01

    By means of an almost model-independent parametrization for the elastic hadron-hadron amplitude, as a function of the energy and the momentum transfer, we obtain good descriptions of the physical quantities that characterize elastic proton-proton and antiproton-proton scattering (total cross section, r parameter and differential cross section). The parametrization is inferred on empirical grounds and selected according to high energy theorems and limits from axiomatic quantum field theory. Based on the predictive character of the approach we present predictions for the above physical quantities at the Brookhaven RHIC, Fermilab Tevatron and CERN LHC energies. (author)

  8. A new model for elastic deuteron-deuteron scattering

    International Nuclear Information System (INIS)

    Etim, E.; Satta, L.

    1988-01-01

    Straightforward application of the Glauber multiple scattering theory is drammatically challenged by data on elastic deuteron-deuteron scattering. The challenge has been argued to be met by an improved representation of the ground state wave function of the deuteron as an admixture of S-and D-waves. In the light of the failure of the Glauber and geometrical picture models in general, to explain proton-proton and proton-antiproton scattering data up to and including collider energies and for all momentum transfers, this argument becomes less and less compelling and more and more unconvincing. A model inspired by unitarity and which produces substantial elastic scattering through a unitarity sum over a specific class of intermediate states is presented. The model fits not only deuteron-deuteron, but also proton-proton, proton-antiproton and αN -> αN (N =α, d, He 3 ) data for all energies and momentum transfers. No detailed knowledge of ground state wave functions is required

  9. Least loaded and route fragmentation aware RSA strategies for elastic optical networks

    Science.gov (United States)

    Batham, Deepak; Yadav, Dharmendra Singh; Prakash, Shashi

    2017-12-01

    Elastic optical networks (EONs) provide flexibility to assign wide range of spectral resources to the connection requests. In this manuscript, we address two issues related to spectrum assignment in EONs: the non uniform spectrum assignment along different links of the route and the spectrum fragmentation in the network. To address these issues, two routing and spectrum assignment (RSA) strategies have been proposed: Least Loaded RSA (LLRSA) and Route Fragmentation Aware RSA (RFARSA). The LLRSA allocates spectrum homogeneously along different links in the network, where as RFARSA accords priority to the routes which are less fragmented. To highlight the salient features of the two strategies, two new metrics, route fragmentation index (RFI) and standard deviation (SD) are introduced. RFI is defined as the ratio of non-contiguous FSs to the total available free FSs on the route, and SD relates to the measure of non-uniformity in the allocation of resources on the links in the network. A simulation program has been developed to evaluate the performance of the proposed (LLRSA and RFARSA) strategies, and the existing strategies of shortest path RSA (SPRSA) and spectrum compactness based defragmentation (SCD) strategies, on the metric of RFI, bandwidth blocking probability (BBP), network capacity utilized, and SD. The variation in the metrics on the basis of number of requests and the bandwidth (number of FSs) requested has been studied. It has been conclusively established that the proposed strategies (LLRSA and RFARSA) outperform the existing strategies in terms of all the metrics.

  10. Size effect of the elastic modulus of rectangular nanobeams: Surface elasticity effect

    International Nuclear Information System (INIS)

    Yao Hai-Yan; Fan Wen-Liang; Yun Guo-Hong

    2013-01-01

    The size-dependent elastic property of rectangular nanobeams (nanowires or nanoplates) induced by the surface elasticity effect is investigated by using a developed modified core-shell model. The effect of surface elasticity on the elastic modulus of nanobeams can be characterized by two surface related parameters, i.e., inhomogeneous degree constant and surface layer thickness. The analytical results show that the elastic modulus of the rectangular nanobeam exhibits a distinct size effect when its characteristic size reduces below 100 nm. It is also found that the theoretical results calculated by a modified core-shell model have more obvious advantages than those by other models (core-shell model and core-surface model) by comparing them with relevant experimental measurements and computational results, especially when the dimensions of nanostructures reduce to a few tens of nanometers. (condensed matter: structural, mechanical, and thermal properties)

  11. Self-consistent Modeling of Elastic Anisotropy in Shale

    Science.gov (United States)

    Kanitpanyacharoen, W.; Wenk, H.; Matthies, S.; Vasin, R.

    2012-12-01

    Elastic anisotropy in clay-rich sedimentary rocks has increasingly received attention because of significance for prospecting of petroleum deposits, as well as seals in the context of nuclear waste and CO2 sequestration. The orientation of component minerals and pores/fractures is a critical factor that influences elastic anisotropy. In this study, we investigate lattice and shape preferred orientation (LPO and SPO) of three shales from the North Sea in UK, the Qusaiba Formation in Saudi Arabia, and the Officer Basin in Australia (referred to as N1, Qu3, and L1905, respectively) to calculate elastic properties and compare them with experimental results. Synchrotron hard X-ray diffraction and microtomography experiments were performed to quantify LPO, weight proportions, and three-dimensional SPO of constituent minerals and pores. Our preliminary results show that the degree of LPO and total amount of clays are highest in Qu3 (3.3-6.5 m.r.d and 74vol%), moderately high in N1 (2.4-5.6 m.r.d. and 70vol%), and lowest in L1905 (2.3-2.5 m.r.d. and 42vol%). In addition, porosity in Qu3 is as low as 2% while it is up to 6% in L1605 and 8% in N1, respectively. Based on this information and single crystal elastic properties of mineral components, we apply a self-consistent averaging method to calculate macroscopic elastic properties and corresponding seismic velocities for different shales. The elastic model is then compared with measured acoustic velocities on the same samples. The P-wave velocities measured from Qu3 (4.1-5.3 km/s, 26.3%Ani.) are faster than those obtained from L1905 (3.9-4.7 km/s, 18.6%Ani.) and N1 (3.6-4.3 km/s, 17.7%Ani.). By making adjustments for pore structure (aspect ratio) and single crystal elastic properties of clay minerals, a good agreement between our calculation and the ultrasonic measurement is obtained.

  12. A fast mass spring model solver for high-resolution elastic objects

    Science.gov (United States)

    Zheng, Mianlun; Yuan, Zhiyong; Zhu, Weixu; Zhang, Guian

    2017-03-01

    Real-time simulation of elastic objects is of great importance for computer graphics and virtual reality applications. The fast mass spring model solver can achieve visually realistic simulation in an efficient way. Unfortunately, this method suffers from resolution limitations and lack of mechanical realism for a surface geometry model, which greatly restricts its application. To tackle these problems, in this paper we propose a fast mass spring model solver for high-resolution elastic objects. First, we project the complex surface geometry model into a set of uniform grid cells as cages through *cages mean value coordinate method to reflect its internal structure and mechanics properties. Then, we replace the original Cholesky decomposition method in the fast mass spring model solver with a conjugate gradient method, which can make the fast mass spring model solver more efficient for detailed surface geometry models. Finally, we propose a graphics processing unit accelerated parallel algorithm for the conjugate gradient method. Experimental results show that our method can realize efficient deformation simulation of 3D elastic objects with visual reality and physical fidelity, which has a great potential for applications in computer animation.

  13. Quantitative Modeling of Coupled Piezo-Elastodynamic Behavior of Piezoelectric Actuators Bonded to an Elastic Medium for Structural Health Monitoring: A Review

    Directory of Open Access Journals (Sweden)

    Guoliang Huang

    2010-04-01

    Full Text Available Elastic waves, especially guided waves, generated by a piezoelectric actuator/sensor network, have shown great potential for on-line health monitoring of advanced aerospace, nuclear, and automotive structures in recent decades. Piezoelectric materials can function as both actuators and sensors in these applications due to wide bandwidth, quick response and low costs. One of the most fundamental issues surrounding the effective use of piezoelectric actuators is the quantitative evaluation of the resulting elastic wave propagation by considering the coupled piezo-elastodynamic behavior between the actuator and the host medium. Accurate characterization of the local interfacial stress distribution between the actuator and the host medium is the key issue for the problem. This paper presents a review of the development of analytical, numerical and hybrid approaches for modeling of the coupled piezo-elastodynamic behavior. The resulting elastic wave propagation for structural health monitoring is also summarized.

  14. Quantitative Modeling of Coupled Piezo-Elastodynamic Behavior of Piezoelectric Actuators Bonded to an Elastic Medium for Structural Health Monitoring: A Review

    Science.gov (United States)

    Huang, Guoliang; Song, Fei; Wang, Xiaodong

    2010-01-01

    Elastic waves, especially guided waves, generated by a piezoelectric actuator/sensor network, have shown great potential for on-line health monitoring of advanced aerospace, nuclear, and automotive structures in recent decades. Piezoelectric materials can function as both actuators and sensors in these applications due to wide bandwidth, quick response and low costs. One of the most fundamental issues surrounding the effective use of piezoelectric actuators is the quantitative evaluation of the resulting elastic wave propagation by considering the coupled piezo-elastodynamic behavior between the actuator and the host medium. Accurate characterization of the local interfacial stress distribution between the actuator and the host medium is the key issue for the problem. This paper presents a review of the development of analytical, numerical and hybrid approaches for modeling of the coupled piezo-elastodynamic behavior. The resulting elastic wave propagation for structural health monitoring is also summarized. PMID:22319319

  15. High Energy pp Elastic Scattering in Condensate Enclosed Chiral Bag Model and TOTEM Elastic Measurements at LHC at 7 TeV

    CERN Document Server

    Islam, M M

    2013-01-01

    We study high energy $\\small{\\rm{pp}}$ and $\\small{\\rm{\\bar {p}p}}$ elastic scattering in the TeV region based on an effective field theory model of the proton. We phenomenologically investigate the main processes underlying elastic scattering and quantitatively describe the measured elastic d$\\small{\\sigma}$/dt at energies 7.0 TeV (LHC $\\small{\\rm{pp}}$), 1.96 TeV (Tevatron $\\small{\\rm{\\bar {p}p}}$), and 0.630 TeV (SPS $\\small{\\rm{\\bar {p}p}}$). Finally, we give our prediction for $\\small{\\rm{pp}}$ elastic d$\\small{\\sigma}$/dt at 14 TeV that will be measured by the TOTEM Collaboration.

  16. Modeling and simulation of different and representative engineering problems using Network Simulation Method

    Science.gov (United States)

    2018-01-01

    Mathematical models simulating different and representative engineering problem, atomic dry friction, the moving front problems and elastic and solid mechanics are presented in the form of a set of non-linear, coupled or not coupled differential equations. For different parameters values that influence the solution, the problem is numerically solved by the network method, which provides all the variables of the problems. Although the model is extremely sensitive to the above parameters, no assumptions are considered as regards the linearization of the variables. The design of the models, which are run on standard electrical circuit simulation software, is explained in detail. The network model results are compared with common numerical methods or experimental data, published in the scientific literature, to show the reliability of the model. PMID:29518121

  17. The molecular kink paradigm for rubber elasticity: Numerical simulations of explicit polyisoprene networks at low to moderate tensile strains

    Science.gov (United States)

    Hanson, David E.

    2011-08-01

    Based on recent molecular dynamics and ab initio simulations of small isoprene molecules, we propose a new ansatz for rubber elasticity. We envision a network chain as a series of independent molecular kinks, each comprised of a small number of backbone units, and the strain as being imposed along the contour of the chain. We treat chain extension in three distinct force regimes: (Ia) near zero strain, where we assume that the chain is extended within a well defined tube, with all of the kinks participating simultaneously as entropic elastic springs, (II) when the chain becomes sensibly straight, giving rise to a purely enthalpic stretching force (until bond rupture occurs) and, (Ib) a linear entropic regime, between regimes Ia and II, in which a force limit is imposed by tube deformation. In this intermediate regime, the molecular kinks are assumed to be gradually straightened until the chain becomes a series of straight segments between entanglements. We assume that there exists a tube deformation tension limit that is inversely proportional to the chain path tortuosity. Here we report the results of numerical simulations of explicit three-dimensional, periodic, polyisoprene networks, using these extension-only force models. At low strain, crosslink nodes are moved affinely, up to an arbitrary node force limit. Above this limit, non-affine motion of the nodes is allowed to relax unbalanced chain forces. Our simulation results are in good agreement with tensile stress vs. strain experiments.

  18. Link importance incorporated failure probability measuring solution for multicast light-trees in elastic optical networks

    Science.gov (United States)

    Li, Xin; Zhang, Lu; Tang, Ying; Huang, Shanguo

    2018-03-01

    The light-tree-based optical multicasting (LT-OM) scheme provides a spectrum- and energy-efficient method to accommodate emerging multicast services. Some studies focus on the survivability technologies for LTs against a fixed number of link failures, such as single-link failure. However, a few studies involve failure probability constraints when building LTs. It is worth noting that each link of an LT plays different important roles under failure scenarios. When calculating the failure probability of an LT, the importance of its every link should be considered. We design a link importance incorporated failure probability measuring solution (LIFPMS) for multicast LTs under independent failure model and shared risk link group failure model. Based on the LIFPMS, we put forward the minimum failure probability (MFP) problem for the LT-OM scheme. Heuristic approaches are developed to address the MFP problem in elastic optical networks. Numerical results show that the LIFPMS provides an accurate metric for calculating the failure probability of multicast LTs and enhances the reliability of the LT-OM scheme while accommodating multicast services.

  19. Modeling dynamic acousto-elastic testing experiments: validation and perspectives.

    Science.gov (United States)

    Gliozzi, A S; Scalerandi, M

    2014-10-01

    Materials possessing micro-inhomogeneities often display a nonlinear response to mechanical solicitations, which is sensitive to the confining pressure acting on the sample. Dynamic acoustoelastic testing allows measurement of the instantaneous variations in the elastic modulus due to the change of the dynamic pressure induced by a low-frequency wave. This paper shows that a Preisach-Mayergoyz space based hysteretic multi-state elastic model provides an explanation for experimental observations in consolidated granular media and predicts memory and nonlinear effects comparable to those measured in rocks.

  20. Form finding in elastic gridshells

    Science.gov (United States)

    Baek, Changyeob; Sageman-Furnas, Andrew O.; Jawed, Mohammad K.; Reis, Pedro M.

    2018-01-01

    Elastic gridshells comprise an initially planar network of elastic rods that are actuated into a shell-like structure by loading their extremities. The resulting actuated form derives from the elastic buckling of the rods subjected to inextensibility. We study elastic gridshells with a focus on the rational design of the final shapes. Our precision desktop experiments exhibit complex geometries, even from seemingly simple initial configurations and actuation processes. The numerical simulations capture this nonintuitive behavior with excellent quantitative agreement, allowing for an exploration of parameter space that reveals multistable states. We then turn to the theory of smooth Chebyshev nets to address the inverse design of hemispherical elastic gridshells. The results suggest that rod inextensibility, not elastic response, dictates the zeroth-order shape of an actuated elastic gridshell. As it turns out, this is the shape of a common household strainer. Therefore, the geometry of Chebyshev nets can be further used to understand elastic gridshells. In particular, we introduce a way to quantify the intrinsic shape of the empty, but enclosed regions, which we then use to rationalize the nonlocal deformation of elastic gridshells to point loading. This justifies the observed difficulty in form finding. Nevertheless, we close with an exploration of concatenating multiple elastic gridshell building blocks.

  1. CONCERNING THE ELASTIC ORTHOTROPIC MODEL APPLIED TO WOOD ELASTIC PROPERTIES

    OpenAIRE

    Tadeu Mascia,Nilson

    2003-01-01

    Among the construction materials, wood reveals an orthotropic pattern, because of unique characteristics in its internal structure with three axes of wood biological directions (longitudinal, tangential and radial). elastic symmetry: longitudinal, tangential and radial, reveals an orthotropic pattern. The effect of grain angle orientation onin the elastic modulus constitutes the fundamental cause forof wood anisotropy. It is responsible for the greatest changes in the values of the constituti...

  2. Blocky inversion of multichannel elastic impedance for elastic parameters

    Science.gov (United States)

    Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza

    2018-04-01

    Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.

  3. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-05-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.

  4. Radius anomaly in the diffraction model for heavy-ion elastic scattering

    Science.gov (United States)

    Pandey, L. N.; Mukherjee, S. N.

    1984-04-01

    The elastic scattering of heavy ions, 20Ne on 208Pb, 20Ne on 235U, 84Kr on 208Pb, and 84Kr on 232Th, is examined within the framework of Frahn's diffraction model. An analysis of the experiment using the "quarter point recipe" of the expected Fresnel cross sections yields a larger radius for 208Pb than the radii for 235U and 232Th. It is shown that inclusion of the nuclear deformation in the model removes the above anomaly in the radii, and the assumption of smooth cutoff of the angular momentum simultaneously leads to a better fit to elastic scattering data, compared to those obtained by the earlier workers on the assumption of sharp cutoff. [NUCLEAR REACTIONS Elastic scattering, 20Ne+208Pb (161.2 MeV), 20Ne+235U (175 MeV), 84Kr+208Pb (500 MeV), 84Kr+232Th (500 MeV), diffraction model, nuclear deformation.

  5. Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares

    Science.gov (United States)

    Orr, Jeb S.

    2012-01-01

    A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed

  6. Simulating an elastic bipedal robot based on musculoskeletal modeling

    NARCIS (Netherlands)

    Bortoletto, Roberto; Sartori, Massimo; He, Fuben; Pagello, Enrico

    2012-01-01

    Many of the processes involved into the synthesis of human motion have much in common with problems found in robotics research. This paper describes the modeling and the simulation of a novel bipedal robot based on series elastic actuators [1]. The robot model takes in- spiration from the human

  7. Estimation of parameters of constant elasticity of substitution production functional model

    Science.gov (United States)

    Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi

    2017-11-01

    Nonlinear model building has become an increasing important powerful tool in mathematical economics. In recent years the popularity of applications of nonlinear models has dramatically been rising up. Several researchers in econometrics are very often interested in the inferential aspects of nonlinear regression models [6]. The present research study gives a distinct method of estimation of more complicated and highly nonlinear model viz Constant Elasticity of Substitution (CES) production functional model. Henningen et.al [5] proposed three solutions to avoid serious problems when estimating CES functions in 2012 and they are i) removing discontinuities by using the limits of the CES function and its derivative. ii) Circumventing large rounding errors by local linear approximations iii) Handling ill-behaved objective functions by a multi-dimensional grid search. Joel Chongeh et.al [7] discussed the estimation of the impact of capital and labour inputs to the gris output agri-food products using constant elasticity of substitution production function in Tanzanian context. Pol Antras [8] presented new estimates of the elasticity of substitution between capital and labour using data from the private sector of the U.S. economy for the period 1948-1998.

  8. Excitation function of elastic $pp$ scattering from a unitarily extended Bialas-Bzdak model

    CERN Document Server

    Nemes, F.; Csanád, M.

    2015-01-01

    The Bialas-Bzdak model of elastic proton-proton scattering assumes a purely imaginary forward scattering amplitude, which consequently vanishes at the diffractive minima. We extended the model to arbitrarily large real parts in a way that constraints from unitarity are satisfied. The resulting model is able to describe elastic $pp$ scattering not only at the lower ISR energies but also at $\\sqrt{s}=$7~TeV in a statistically acceptable manner, both in the diffractive cone and in the region of the first diffractive minimum. The total cross-section as well as the differential cross-section of elastic proton-proton scattering is predicted for the future LHC energies of $\\sqrt{s}=$13, 14, 15~TeV and also to 28~TeV. A non-trivial, significantly non-exponential feature of the differential cross-section of elastic proton-proton scattering is analyzed and the excitation function of the non-exponential behavior is predicted. The excitation function of the shadow profiles is discussed and related to saturation at small ...

  9. Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids.

    Science.gov (United States)

    Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A

    2003-06-01

    Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.

  10. REDUCED ISOTROPIC CRYSTAL MODEL WITH RESPECT TO THE FOURTH-ORDER ELASTIC MODULI

    Directory of Open Access Journals (Sweden)

    O. Burlayenko

    2018-04-01

    Full Text Available Using a reduced isotropic crystal model the relationship between the fourth-order elastic moduli of an isotropic medium and the independent components of the fourth-order elastic moduli tensor of real crystals of various crystal systems is found. To calculate the coefficients of these relations, computer algebra systems Redberry and Mathematica for working with high order tensors in the symbolic and explicit form were used, in light of the overly complex computation. In an isotropic medium, there are four independent fourth order elastic moduli. This is due to the presence of four invariants for an eighth-rank tensor in the three-dimensional space, that has symmetries over the pairs of indices. As an example, the moduli of elasticity of an isotropic medium corresponding to certain crystals of cubic system are given (LiF, NaCl, MgO, CaF2. From the obtained results it can be seen that the reduced isotropic crystal model can be most effectively applied to high-symmetry crystal systems.

  11. Elastic coupling of nascent apCAM adhesions to flowing actin networks.

    Science.gov (United States)

    Mejean, Cecile O; Schaefer, Andrew W; Buck, Kenneth B; Kress, Holger; Shundrovsky, Alla; Merrill, Jason W; Dufresne, Eric R; Forscher, Paul

    2013-01-01

    Adhesions are multi-molecular complexes that transmit forces generated by a cell's acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions' mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement.

  12. Elastic coupling of nascent apCAM adhesions to flowing actin networks.

    Directory of Open Access Journals (Sweden)

    Cecile O Mejean

    Full Text Available Adhesions are multi-molecular complexes that transmit forces generated by a cell's acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions' mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement.

  13. Dynamic behavior of acrylic acid clusters as quasi-mobile nodes in a model of hydrogel network

    Science.gov (United States)

    Zidek, Jan; Milchev, Andrey; Vilgis, Thomas A.

    2012-12-01

    Using a molecular dynamics simulation, we study the thermo-mechanical behavior of a model hydrogel subject to deformation and change in temperature. The model is found to describe qualitatively poly-lactide-glycolide hydrogels in which acrylic acid (AA)-groups are believed to play the role of quasi-mobile nodes in the formation of a network. From our extensive analysis of the structure, formation, and disintegration of the AA-groups, we are able to elucidate the relationship between structure and viscous-elastic behavior of the model hydrogel. Thus, in qualitative agreement with observations, we find a softening of the mechanical response at large deformations, which is enhanced by growing temperature. Several observables as the non-affinity parameter A and the network rearrangement parameter V indicate the existence of a (temperature-dependent) threshold degree of deformation beyond which the quasi-elastic response of the model system turns over into plastic (ductile) one. The critical stretching when the affinity of the deformation is lost can be clearly located in terms of A and V as well as by analysis of the energy density of the system. The observed stress-strain relationship matches that of known experimental systems.

  14. An Effective Way to Control Numerical Instability of a Nonordinary State-Based Peridynamic Elastic Model

    Directory of Open Access Journals (Sweden)

    Xin Gu

    2017-01-01

    Full Text Available The constitutive modeling and numerical implementation of a nonordinary state-based peridynamic (NOSB-PD model corresponding to the classical elastic model are presented. Besides, the numerical instability problem of the NOSB-PD model is analyzed, and a penalty method involving the hourglass force is proposed to control the instabilities. Further, two benchmark problems, the static elastic deformation of a simple supported beam and the elastic wave propagation in a two-dimensional rod, are discussed with the present method. It proves that the penalty instability control method is effective in suppressing the displacement oscillations and improving the accuracy of calculated stress fields with a proper hourglass force coefficient, and the NOSB-PD approach with instability control can analyze the problems of structure deformation and elastic wave propagation well.

  15. The elastic solid solution model for minerals at high pressures and temperatures

    Science.gov (United States)

    Myhill, R.

    2018-02-01

    Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function

  16. Macroscopic modelization of the cloud elasticity*

    Directory of Open Access Journals (Sweden)

    Etancelin J.-M.

    2013-12-01

    Full Text Available In order to achieve its promise of providing information technologies (IT on demand, cloud computing needs to rely on a mathematical model capable of directing IT on and off according to a demand pattern to provide a true elasticity. This article provides a first method to reach this goal using a “fluid type” partial differential equations model. On the one hand it examines the question of service time optimization for the simultaneous satisfaction of the cloud consumer and provider. On the other hand it tries to model a way to deliver resources according to the real time capacity of the cloud that depends on parameters such as burst requests and application timeouts. All these questions are illustrated via an implicit finite volume scheme.

  17. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles

    Science.gov (United States)

    Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.

    1985-01-01

    The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.

  18. Heuristic algorithms for joint optimization of unicast and anycast traffic in elastic optical network–based large–scale computing systems

    Directory of Open Access Journals (Sweden)

    Markowski Marcin

    2017-09-01

    Full Text Available In recent years elastic optical networks have been perceived as a prospective choice for future optical networks due to better adjustment and utilization of optical resources than is the case with traditional wavelength division multiplexing networks. In the paper we investigate the elastic architecture as the communication network for distributed data centers. We address the problems of optimization of routing and spectrum assignment for large-scale computing systems based on an elastic optical architecture; particularly, we concentrate on anycast user to data center traffic optimization. We assume that computational resources of data centers are limited. For this offline problems we formulate the integer linear programming model and propose a few heuristics, including a meta-heuristic algorithm based on a tabu search method. We report computational results, presenting the quality of approximate solutions and efficiency of the proposed heuristics, and we also analyze and compare some data center allocation scenarios.

  19. Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities

    Science.gov (United States)

    Baylin-Stern, Adam C.

    This paper demonstrates how an U.S. application of CIMS, a technologically explicit and behaviourally realistic energy-economy simulation model which includes macro-economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) and autonomous energy efficiency index (AEEI) parameters. The ability of economies to reduce greenhouse gas emissions depends on the potential for households and industry to decrease overall energy usage, and move from higher to lower emissions fuels. Energy economists commonly refer to ESUB estimates to understand the degree of responsiveness of various sectors of an economy, and use estimates to inform computable general equilibrium models used to study climate policies. Using CIMS, I have generated a set of future, 'pseudo-data' based on a series of simulations in which I vary energy and capital input prices over a wide range. I then used this data set to estimate the parameters for transcendental logarithmic production functions using regression techniques. From the production function parameter estimates, I calculated an array of elasticity of substitution values between input pairs. Additionally, this paper demonstrates how CIMS can be used to calculate price-independent changes in energy-efficiency in the form of the AEEI, by comparing energy consumption between technologically frozen and 'business as usual' simulations. The paper concludes with some ideas for model and methodological improvement, and how these might figure into future work in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog; autonomous energy efficiency index; rebound effect; fuel switching.

  20. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part I: Micro-structural characterization and geometric modeling

    KAUST Repository

    Han, Fei

    2014-01-01

    A computational strategy to predict the elastic properties of carbon nanotube-reinforced polymer composites is proposed in this two-part paper. In Part I, the micro-structural characteristics of these nano-composites are discerned. These characteristics include networks/agglomerations of carbon nanotubes and thick polymer interphase regions between the nanotubes and the surrounding matrix. An algorithm is presented to construct three-dimensional geometric models with large amounts of randomly dispersed and aggregated nanotubes. The effects of the distribution of the nanotubes and the thickness of the interphase regions on the concentration of the interphase regions are demonstrated with numerical results. © 2013 Elsevier B.V. All rights reserved.

  1. Modeling, Analysis, and Control of a Hypersonic Vehicle with Significant Aero-Thermo-Elastic-Propulsion Interactions: Elastic, Thermal and Mass Uncertainty

    Science.gov (United States)

    Khatri, Jaidev

    This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fidelity computational fluid dynamics and finite element methods are needed for more precise intermediate and final evaluations. The methods presented within this thesis were shown to be useful for guiding initial control relevant design. The model was used to examine the vehicle's static and dynamic characteristics over the vehicle's trimmable region. The vehicle has significant longitudinal coupling between the fuel equivalency ratio (FER) and the flight path angle (FPA). For control system design, a two-input two-output plant (FER - elevator to speed-FPA) with 11 states (including 3 flexible modes) was used. Velocity, FPA, and pitch were assumed to be available for feedback. Aerodynamic heat modeling and design for the assumed TPS was incorporated to original Bolender's model to study the change in static and dynamic properties. De-centralized control stability, feasibility and limitations issues were dealt with the change in TPS elasticity, mass and physical dimension. The impact of elasticity due to TPS mass, TPS physical dimension as well as prolonged heating was also analyzed to understand performance limitations of de-centralized control designed for nominal model.

  2. Microscopic cluster model analysis of 14O+p elastic scattering

    International Nuclear Information System (INIS)

    Baye, D.; Descouvemont, P.; Leo, F.

    2005-01-01

    The 14 O+p elastic scattering is discussed in detail in a fully microscopic cluster model. The 14 O cluster is described by a closed p shell for protons and a closed p3/2 subshell for neutrons in the translation-invariant harmonic-oscillator model. The exchange and spin-orbit parameters of the effective forces are tuned on the energy levels of the 15 C mirror system. With the generator-coordinate and microscopic R-matrix methods, phase shifts and cross sections are calculated for the 14 O+p elastic scattering. An excellent agreement is found with recent experimental data. A comparison is performed with phenomenological R-matrix fits. Resonances properties in 15 F are discussed

  3. Shaping through buckling in elastic gridshells: from camping tents to architectural roofs

    Science.gov (United States)

    Reis, Pedro

    Elastic gridshells comprise an initially planar network of elastic rods that is actuated into a 3D shell-like structure by loading its extremities. This shaping results from elastic buckling and the subsequent geometrically nonlinear deformation of the grid structure. Architectural elastic gridshells first appeared in the 1970's. However, to date, only a limited number of examples have been constructed around the world, primarily due to the challenges involved in their structural design. Yet, elastic gridshells are highly appealing: they can cover wide spans with low self-weight, they allow for aesthetically pleasing shapes and their construction is typically simple and rapid. We study the mechanics of elastic gridshells by combining precision model experiments that explore their scale invariance, together with computer simulations that employ the Discrete Elastic Rods method. Excellent agreement is found between the two. Upon validation, the numerics are then used to systematically explore parameter space and identify general design principles for specific target final shapes. Our findings are rationalized using the theory of discrete Chebyshev nets, together with the group theory for crystals. Higher buckling modes occur for some configurations due to geometric incompatibility at the boundary and result in symmetry breaking. Along with the systematic classification of the various possible modes of deformation, we provide a reduced model that rationalizes form-finding in elastic gridshells. This work was done in collaboration with Changyeob Baek, Khalid Jawed and Andrew Sageman-Furnas. We are grateful to the NSF for funding (CAREER, CMMI-1351449).

  4. Implementation of orthogonal frequency division multiplexing (OFDM) and advanced signal processing for elastic optical networking in accordance with networking and transmission constraints

    Science.gov (United States)

    Johnson, Stanley

    An increasing adoption of digital signal processing (DSP) in optical fiber telecommunication has brought to the fore several interesting DSP enabled modulation formats. One such format is orthogonal frequency division multiplexing (OFDM), which has seen great success in wireless and wired RF applications, and is being actively investigated by several research groups for use in optical fiber telecom. In this dissertation, I present three implementations of OFDM for elastic optical networking and distributed network control. The first is a field programmable gate array (FPGA) based real-time implementation of a version of OFDM conventionally known as intensity modulation and direct detection (IMDD) OFDM. I experimentally demonstrate the ability of this transmission system to dynamically adjust bandwidth and modulation format to meet networking constraints in an automated manner. To the best of my knowledge, this is the first real-time software defined networking (SDN) based control of an OFDM system. In the second OFDM implementation, I experimentally demonstrate a novel OFDM transmission scheme that supports both direct detection and coherent detection receivers simultaneously using the same OFDM transmitter. This interchangeable receiver solution enables a trade-off between bit rate and equipment cost in network deployment and upgrades. I show that the proposed transmission scheme can provide a receiver sensitivity improvement of up to 1.73 dB as compared to IMDD OFDM. I also present two novel polarization analyzer based detection schemes, and study their performance using experiment and simulation. In the third implementation, I present an OFDM pilot-tone based scheme for distributed network control. The first instance of an SDN-based OFDM elastic optical network with pilot-tone assisted distributed control is demonstrated. An improvement in spectral efficiency and a fast reconfiguration time of 30 ms have been achieved in this experiment. Finally, I

  5. Service models and realization of differentiated services networks

    Science.gov (United States)

    Elizondo, Antonio J.; Garcia Osma, Maria L.; Einsiedler, Hans J.; Roth, Rudolf; Smirnov, Michael I.; Bartoli, Maurizio; Castelli, Paolo; Varga, Balazs; Krampell, Magnus

    2001-07-01

    Internet Service Providers need to offer Quality of Service (QoS) to fulfil the requirements of applications of their customers. Moreover, in a competitive market environment costs must be low. The selected service model must be effective and low in complexity, but it should still provide high quality and service differentiation, that the current Internet is not yet capable to support. The Differentiated Services (DiffServ) Architecture has been proposed for enabling a range of different Classes of Service (CoS). In the EURESCOM project P1006 several European service providers co-operated to examine various aspects involved in the introduction of service differentiation using the DiffServ approach. The project explored a set of service models for Expedited Forwarding (EF) and Assured Forwarding (AF) and identified requirements for network nodes. Besides, we addressed also measurement issues, charging and accounting issues. Special attention has been devoted to requirements of elastic traffic that adapts its sending rate to congestion state and available bandwidth. QoS mechanisms must prove Transmission Control Protocol (TCP) friendliness. TCP performance degrades under multiple losses. Since RED based queue management may still cause multiple discards, a modified marking scheme called Capped Leaky Bucket is proposed to improve the performance of elastic applications.

  6. The effects of gamma irradiation on the elastic properties of soda lime glass doped with cerium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Laopaiboon, R.; Laopaiboon, J.; Pencharee, S. [Glass Technology Excellent Center (GTEC), Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand); Nontachat, S. [Department of Radiotherapy, Ubon Ratchathani Cancer Centre, Ubon Ratchathani, 34190 (Thailand); Bootjomchai, C., E-mail: cherdsak_per@hotmail.co.th [Glass Technology Excellent Center (GTEC), Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand)

    2016-05-05

    Soda lime glass doped with cerium oxide was prepared using a conventional melt quenching technique. The density and molar volume of the glass samples were measured. Ultrasonic wave velocities of the glass samples were carried out using a pulse echo technique. The density and ultrasonic velocities were used for determining elastic moduli of the glass samples, both before and after irradiation with gamma rays at 1 kGy. The results revealed that the influence of gamma irradiation caused the matrix structure of the glass samples to be damaged by creating displacements, electronic defects and/or breaks in the network bonds, leading to the formation of non-bridging oxygens (NBOs). Elastic properties were investigated under the influence of gamma irradiation. The results also revealed that the structures of the glass samples were distorted by irradiation. Damage by irradiation created the NBOs and/or the transformation of main glass network structures from Q{sub 4} to Q{sub 3}. Evidence of these results was acquired from FTIR spectra. The results of FTIR supported the results and were obtained from ultrasonic velocities. In addition, the elastic properties obtained from experiments were compared with theoretical values calculated from the Makishima and Mackenzie model (M–M model). - Highlights: • Results show good agreement between experimental and theoretical of elastic moduli. • Influence of irradiation created a distorted network structure. • Transformation of network structure from Ref. Q{sub 4} to Q{sub 3} after irradiation. • FTIR result is good evidence of the result is obtained from ultrasonic technique.

  7. The elastic scattering between heavy ions using Glauber model

    International Nuclear Information System (INIS)

    Esmael, E.H.; El-Muhbad, SH.A.

    2002-01-01

    The differential cross sections of the elastic scattering of 1 2 C+ 12 C at energies 1016, 1449 and 2400 MeV and 1 6O +1 2C at energy 1503 MeV are calculated using high energy folding model. An analytical expression for the optical potential is derived. The effect of introducing imaginary phase and the dependence of the ratio of the real to imaginary parts of the forward nucleon-nucleon scattering amplitude on the square of momentum transfer are taken into consideration. Two different types of nuclear densities of the projectile and the target nuclei are considered. The considered systems of interaction are studied by using both modified Glauber I and modified Glauber II. The results show that the elastic scattering differential cross section for the considered interacting systems can be satisfactorily reproduced by this model

  8. Fingerprint Matching by Thin-plate Spline Modelling of Elastic Deformations

    NARCIS (Netherlands)

    Bazen, A.M.; Gerez, Sabih H.

    2003-01-01

    This paper presents a novel minutiae matching method that describes elastic distortions in fingerprints by means of a thin-plate spline model, which is estimated using a local and a global matching stage. After registration of the fingerprints according to the estimated model, the number of matching

  9. Elastic models application for thorax image registration

    International Nuclear Information System (INIS)

    Correa Prado, Lorena S; Diaz, E Andres Valdez; Romo, Raul

    2007-01-01

    This work consist of the implementation and evaluation of elastic alignment algorithms of biomedical images, which were taken at thorax level and simulated with the 4D NCAT digital phantom. Radial Basis Functions spatial transformations (RBF), a kind of spline, which allows carrying out not only global rigid deformations but also local elastic ones were applied, using a point-matching method. The applied functions were: Thin Plate Spline (TPS), Multiquadric (MQ) Gaussian and B-Spline, which were evaluated and compared by means of calculating the Target Registration Error and similarity measures between the registered images (the squared sum of intensity differences (SSD) and correlation coefficient (CC)). In order to value the user incurred error in the point-matching and segmentation tasks, two algorithms were also designed that calculate the Fiduciary Localization Error. TPS and MQ were demonstrated to have better performance than the others. It was proved RBF represent an adequate model for approximating the thorax deformable behaviour. Validation algorithms showed the user error was not significant

  10. Phenomenological models of elastic nucleon scattering and predictions for LHC

    CERN Document Server

    Kundrat, V; Lokajicek, M; Prochazka, J

    2011-01-01

    The hitherto analyses of elastic collisions of charged nucleons involving common influence of Coulomb and hadronic scattering have been based practically on West and Yennie formula. However, this approach has been shown recently to be inadequate from experimental as well as theoretical points of view. The eikonal model enabling to determine physical characteristics in impact parameter space seems to be more pertinent. The contemporary phenomenological models admit, of course, different distributions of collision processes in the impact parameter space and cannot give any definite answer. Nevertheless, some predictions for the planned LHC energy that have been given on their basis may be useful, as well as the possibility of determining the luminosity from elastic scattering. (C) 2010 Elsevier B.V. All rights reserved.

  11. A general one-dimension nonlinear magneto-elastic coupled constitutive model for magnetostrictive materials

    International Nuclear Information System (INIS)

    Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao

    2015-01-01

    For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications

  12. Problems of phenomenological description of elastic pp scattering at the LHC predictions of contemporary models

    CERN Document Server

    Kundrát, Vojtech; Kaspar, Jan; Procházka, Jirí

    2010-01-01

    The standard description of common influence of both the Coulomb and hadronic elastic scattering in the proton - proton elastic collisions at high energies with the help of West and Yennie complete amplitude is shown to be theoretically inconsistent. The approach being based on the eikonal model amplitude removes these troubles. The preference of its applica- tion to the analysis of experimental data and in obtaining the predictions of contemporary models for proton - proton high energy elastic hadronic scattering are discussed.

  13. Elastic models: a comparative study applied to retinal images.

    Science.gov (United States)

    Karali, E; Lambropoulou, S; Koutsouris, D

    2011-01-01

    In this work various methods of parametric elastic models are compared, namely the classical snake, the gradient vector field snake (GVF snake) and the topology-adaptive snake (t-snake), as well as the method of self-affine mapping system as an alternative to elastic models. We also give a brief overview of the methods used. The self-affine mapping system is implemented using an adapting scheme and minimum distance as optimization criterion, which is more suitable for weak edges detection. All methods are applied to glaucomatic retinal images with the purpose of segmenting the optical disk. The methods are compared in terms of segmentation accuracy and speed, as these are derived from cross-correlation coefficients between real and algorithm extracted contours and segmentation time, respectively. As a result, the method of self-affine mapping system presents adequate segmentation time and segmentation accuracy, and significant independence from initialization.

  14. Contemporary models of elastic nucleon scattering and their predictions for LHC

    CERN Document Server

    Kaspar, Jan; Lokajicek, Milos

    2009-01-01

    The analyses of elastic collisions of charged nucleons have been based standardly on West and Yennie formula. However, this approach has been shown recently to be inadequate from experimental as well as theoretical points of view. The eikonal model seems to be more pertinent as it enables to determine physical characteristics in impact parameter space. The contemporary phenomenological models cannot give, of course, any definite answer as the elastic collisions may be interpreted differently, as central or peripheral processes. Nevertheless, the predictions for the planned LHC energy have been given on their basis and the possibility of exact determination of luminosity has been considered.

  15. Mesoscopic approach to modeling elastic-plastic polycrystalline material behaviour

    International Nuclear Information System (INIS)

    Kovac, M.; Cizelj, L.

    2001-01-01

    Extreme loadings during severe accident conditions might cause failure or rupture of the pressure boundary of a reactor coolant system. Reliable estimation of the extreme deformations can be crucial to determine the consequences of such an accident. One of important drawbacks of classical continuum mechanics is idealization of inhomogenous microstructure of materials. This paper discusses the mesoscopic approach to modeling the elastic-plastic behavior of a polycrystalline material. The main idea is to divide the continuum (e.g., polycrystalline aggregate) into a set of sub-continua (grains). The overall properties of the polycrystalline aggregate are therefore determined by the number of grains in the aggregate and properties of randomly shaped and oriented grains. The random grain structure is modeled with Voronoi tessellation and random orientations of crystal lattices are assumed. The elastic behavior of monocrystal grains is assumed to be anisotropic. Crystal plasticity is used to describe plastic response of monocrystal grains. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to two-dimensional models.(author)

  16. Linear models of income patterns in consumer demand for foods and evaluation of its elasticity

    Directory of Open Access Journals (Sweden)

    Pavel Syrovátka

    2005-01-01

    Full Text Available The paper is focused on the use of the linear constructions for developing of Engel’s demand models in the field of the food-consumer demand. In the theoretical part of the paper, the linear approximations of this demand models are analysed on the bases of the linear interpolation. In the same part of this text, the hyperbolic elasticity function was defined for the linear Engel model. The behaviour of the hyperbolic elasticity function and its properties were consequently investigated too. The behaviour of the determined elasticity function was investigated according to the values of the intercept point and the direction parameter in the original linear Engel model. The obtained theoretical findings were tested using the real data of Czech Statistical Office. The developed linear Engel model was explicitly dynamised, because the achieved database was formed into the time series. With respect to the two variables definitions of the hyperbolic function in the theoretical part of the text, the determined dynamic model of the Engel demand for food was transformed into the form with parametric intercept point:ret* = At + 0.0946 · rmt*,where the values of absolute member are defined as:At = 1773.0973 + 9.3064 · t – 0.3023 · t2; (t = 1, 2, ... 32.The value of At in the parametric linear model of Engel consumer demand for food was during the observed period (1995–2002 always positive. Thus, the hyperbolic elasticity function achieved the elasticity coefficients from the interval:ηt ∈〈+0; +1.Within quantitative analysis of Engel demand for food in the Czech Republic during the given time period, it was founded, that income elasticity of food expenditures of the average Czech household was moved between +0.4080 and +0.4511. The Czech-household demand for food is thus income inelastic with the normal income reactions.

  17. Elastic scattering of surface plasmon polaritons: Modeling and experiment

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Coello, V.

    1998-01-01

    excitation wavelengths (594 and 633 nm) and different metal (silver and gold) films. The near-field optical images obtained are related to the calculated SPP intensity distributions demonstrating that the model developed can be successfully used in studies of SPP elastic scattering, e.g., to design...

  18. Modeling the citation network by network cosmology.

    Science.gov (United States)

    Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing

    2015-01-01

    Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.

  19. On the elastic properties of carbon nanotube-based composites: modelling and characterization

    CERN Document Server

    Thostenson, E T

    2003-01-01

    The exceptional mechanical and physical properties observed for carbon nanotubes has stimulated the development of nanotube-based composite materials, but critical challenges exist before we can exploit these extraordinary nanoscale properties in a macroscopic composite. At the nanoscale, the structure of the carbon nanotube strongly influences the overall properties of the composite. The focus of this research is to develop a fundamental understanding of the structure/size influence of carbon nanotubes on the elastic properties of nanotube-based composites. Towards this end, the nanoscale structure and elastic properties of a model composite system of aligned multi-walled carbon nanotubes embedded in a polystyrene matrix were characterized, and a micromechanical approach for modelling of short fibre composites was modified to account for the structure of the nanotube reinforcement to predict the elastic modulus of the nanocomposite as a function of the constituent properties, reinforcement geometry and nanot...

  20. Elasticity theory of ultrathin nanofilms

    International Nuclear Information System (INIS)

    Li, Jiangang; Yun, Guohong; Narsu, B; Yao, Haiyan

    2015-01-01

    A self-consistent theoretical scheme for describing the elastic behavior of ultrathin nanofilms (UTNFs) was proposed. Taking into account the lower symmetry of an UTNF compared to its bulk counterpart, additional elastic and magnetoelastic parameters were introduced to model the elasticity rigorously. The applications of current theory to several elastic and magnetoelastic systems gave excellent agreement with experiments. More importantly, the surface elastic and magnetoelastic parameters used to fit the experimental results are physically reasonable and in close agreement with those obtained from experiment and simulation. This fact suggests that the additional elastic (magnetoelastic) constants due to symmetry breaking are of great importance in theoretical description of the mechanical properties of UTNFs. And we proved that the elasticity of UTNFs should be described by a three-dimensional model just including the intrinsic surface and bulk parameters, but not the effective surface parameters. It is believed that the theory reported here is a universal strategy for elasticity and magnetoelasticity of ultrathin films. (paper)

  1. Elastic least-squares reverse time migration

    KAUST Repository

    Feng, Zongcai

    2017-03-08

    We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.

  2. Elastic least-squares reverse time migration

    KAUST Repository

    Feng, Zongcai; Schuster, Gerard T.

    2017-01-01

    We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.

  3. Downlink User Selection and Resource Allocation for Semi-Elastic Flows in an OFDM Cell

    OpenAIRE

    Yang, Chao; Jordan, Scott

    2013-01-01

    We are concerned with user selection and resource allocation in wireless networks for semi-elastic applications such as video conferencing. While many packet scheduling algorithms have been proposed for elastic applications, and many user selection algorithms have been proposed for inelastic applications, little is known about optimal user selection and resource allocation for semi-elastic applications in wireless networks. We consider user selection and allocation of downlink transmission po...

  4. A modified elastic foundation contact model for application in 3D models of the prosthetic knee.

    Science.gov (United States)

    Pérez-González, Antonio; Fenollosa-Esteve, Carlos; Sancho-Bru, Joaquín L; Sánchez-Marín, Francisco T; Vergara, Margarita; Rodríguez-Cervantes, Pablo J

    2008-04-01

    Different models have been used in the literature for the simulation of surface contact in biomechanical knee models. However, there is a lack of systematic comparisons of these models applied to the simulation of a common case, which will provide relevant information about their accuracy and suitability for application in models of the implanted knee. In this work a comparison of the Hertz model (HM), the elastic foundation model (EFM) and the finite element model (FEM) for the simulation of the elastic contact in a 3D model of the prosthetic knee is presented. From the results of this comparison it is found that although the nature of the EFM offers advantages when compared with that of the HM for its application to realistic prosthetic surfaces, and when compared with the FEM in CPU time, its predictions can differ from FEM in some circumstances. These differences are considerable if the comparison is performed for prescribed displacements, although they are less important for prescribed loads. To solve these problems a new modified elastic foundation model (mEFM) is proposed that maintains basically the simplicity of the original model while producing much more accurate results. In this paper it is shown that this new mEFM calculates pressure distribution and contact area with accuracy and short computation times for toroidal contacting surfaces. Although further work is needed to confirm its validity for more complex geometries the mEFM is envisaged as a good option for application in 3D knee models to predict prosthetic knee performance.

  5. Viscoelastic Model for Lung Parenchyma for Multi-Scale Modeling of Respiratory System Phase I: Hypo-Elastic Model for CFD Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Freed, Alan D.; Einstein, Daniel R.

    2011-04-14

    An isotropic constitutive model for the parenchyma of lung has been derived from the theory of hypo-elasticity. The intent is to use it to represent the mechanical response of this soft tissue in sophisticated, computational, fluid-dynamic models of the lung. This demands that the continuum model be accurate, yet simple and effcient. An objective algorithm for its numeric integration is provided. The response of the model is determined for several boundary-value problems whose experiments are used for material characterization. The effective elastic, bulk, and shear moduli, and Poisson’s ratio, as tangent functions, are also derived. The model is characterized against published experimental data for lung. A bridge between this continuum model and a dodecahedral model of alveolar geometry is investigated, with preliminary findings being reported.

  6. Modelling computer networks

    International Nuclear Information System (INIS)

    Max, G

    2011-01-01

    Traffic models in computer networks can be described as a complicated system. These systems show non-linear features and to simulate behaviours of these systems are also difficult. Before implementing network equipments users wants to know capability of their computer network. They do not want the servers to be overloaded during temporary traffic peaks when more requests arrive than the server is designed for. As a starting point for our study a non-linear system model of network traffic is established to exam behaviour of the network planned. The paper presents setting up a non-linear simulation model that helps us to observe dataflow problems of the networks. This simple model captures the relationship between the competing traffic and the input and output dataflow. In this paper, we also focus on measuring the bottleneck of the network, which was defined as the difference between the link capacity and the competing traffic volume on the link that limits end-to-end throughput. We validate the model using measurements on a working network. The results show that the initial model estimates well main behaviours and critical parameters of the network. Based on this study, we propose to develop a new algorithm, which experimentally determines and predict the available parameters of the network modelled.

  7. From Process Modeling to Elastic Property Prediction for Long-Fiber Injection-Molded Thermoplastics

    International Nuclear Information System (INIS)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Frame, Barbara J.; Phelps, Jay; Tucker III, Charles L.; Bapanapalli, Satish K.; Holbery, James D.; Smith, Mark T.

    2007-01-01

    This paper presents an experimental-modeling approach to predict the elastic properties of long-fiber injection-molded thermoplastics (LFTs). The approach accounts for fiber length and orientation distributions in LFTs. LFT samples were injection-molded for the study, and fiber length and orientation distributions were measured at different locations for use in the computation of the composite properties. The current fiber orientation model was assessed to determine its capability to predict fiber orientation in LFTs. Predicted fiber orientations for the studied LFT samples were also used in the calculation of the elastic properties of these samples, and the predicted overall moduli were then compared with the experimental results. The elastic property prediction was based on the Eshelby-Mori-Tanaka method combined with the orientation averaging technique. The predictions reasonably agree with the experimental LFT data

  8. A nonlinear magneto-thermo-elastic coupled hysteretic constitutive model for magnetostrictive alloys

    International Nuclear Information System (INIS)

    Jin Ke; Kou Yong; Zheng Xiaojing

    2012-01-01

    This paper presents a general hysteretic constitutive law of nonlinear magneto-thermo-elastic coupling for magnetostrictive alloys. The model considered here is thermodynamically motivated and based on the Gibbs free energy function. A nonlinear part of the elastic strain arising from magnetic domain rotation induced by the pre-stress is taken into account. Furthermore, the movement of the domain walls is incorporated to describe hysteresis based on Jiles–Atherton's model. Then a set of closed and analytical expressions of the constitutive law for the magnetostrictive rods and films are obtained, and the parameters appearing in the model can be determined by those measurable experiments in mechanics and physics. Comparing this model with other existing models in this field, the quantitative results show that the relationships obtained here are more effective to describe the effects of the pre-stress or in-plane residual stress and ambient temperature on the magnetization or the magnetostriction hysteresis loops. - Highlights: ► A general hysteretic constitutive law of nonlinear magneto-thermo-elastic coupling for magnetostrictive materials is proposed. ► Model is thermodynamically motivated and the reversible magnetic domain rotation and irreversible domain wall motion are taken. ► The predictions are in good accordance with the experimental data including both rods and films. ► Magnetostrictive alloys are sensitive to environment temperature and pre-stress or residual stress.

  9. Elastic instability model of rapid beak closure in hummingbirds.

    Science.gov (United States)

    Smith, M L; Yanega, G M; Ruina, A

    2011-08-07

    The hummingbird beak, specialized for feeding on floral nectars, is also uniquely adapted to eating flying insects. During insect capture the beak often appears to close at a rate that cannot be explained by direct muscular action alone. Here we show that the lower jaw of hummingbirds has a shape and compliance that allows for a controlled elastic snap. Furthermore, hummingbirds have the musculature needed to independently bend and twist the sides of the lower jaw. According to both our simple physical model and our elastic instability calculation, the jaw can be smoothly opened and then snapped closed through an appropriate sequence of bending and twisting actions by the muscles of the lower jaw. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. An elastic-visco-plastic damage model: from theory to application

    International Nuclear Information System (INIS)

    Wang, X.C.; Habraken, A.M.

    1996-01-01

    An energy-based two-variable damage theory is applied to Bodner's model. It gives an elastic-viscoplastic damage model. Some theoretical details are described in this paper. The parameters identification procedure is discussed and a complete set of parameters for an aluminium is presented. Numerical modelling of the laboratory tests are used to validate the model. An industrial aeronautic rod fabrication process is simulated and some numerical results are presented in this paper. (orig.)

  11. Three-Dimensional Network Model for Coupling of Fracture and Mass Transport in Quasi-Brittle Geomaterials

    Directory of Open Access Journals (Sweden)

    Peter Grassl

    2016-09-01

    Full Text Available Dual three-dimensional networks of structural and transport elements were combined to model the effect of fracture on mass transport in quasi-brittle geomaterials. Element connectivity of the structural network, representing elasticity and fracture, was defined by the Delaunay tessellation of a random set of points. The connectivity of transport elements within the transport network was defined by the Voronoi tessellation of the same set of points. A new discretisation strategy for domain boundaries was developed to apply boundary conditions for the coupled analyses. The properties of transport elements were chosen to evolve with the crack opening values of neighbouring structural elements. Through benchmark comparisons involving non-stationary transport and fracture, the proposed dual network approach was shown to be objective with respect to element size and orientation.

  12. Experimentally-based multiscale model of the elastic moduli of bovine trabecular bone and its constituents

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, Elham [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801 (United States); Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [University of California, San Diego, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Li, Jun; Jasiuk, Iwona [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801 (United States); McKittrick, Joanna [University of California, San Diego, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2015-09-01

    The elastic moduli of trabecular bone were modeled using an analytical multiscale approach. Trabecular bone was represented as a porous nanocomposite material with a hierarchical structure spanning from the collagen–mineral level to the trabecular architecture level. In parallel, compression testing was done on bovine femoral trabecular bone samples in two anatomical directions, parallel to the femoral neck axis and perpendicular to it, and the measured elastic moduli were compared with the corresponding theoretical results. To gain insights on the interaction of collagen and minerals at the nanoscale, bone samples were deproteinized or demineralized. After such processing, the treated samples remained as self-standing structures and were tested in compression. Micro-computed tomography was used to characterize the hierarchical structure of these three bone types and to quantify the amount of bone porosity. The obtained experimental data served as inputs to the multiscale model and guided us to represent bone as an interpenetrating composite material. Good agreement was found between the theory and experiments for the elastic moduli of the untreated, deproteinized, and demineralized trabecular bone. - Highlights: • A multiscale model was used to predict the elastic moduli of trabecular bone. • Samples included demineralized, deproteinized and untreated bone. • The model portrays bone as a porous, interpenetrating two phase composite. • The experimental elastic moduli for trabecular bone fell between theoretical bounds.

  13. Experimentally-based multiscale model of the elastic moduli of bovine trabecular bone and its constituents

    International Nuclear Information System (INIS)

    Hamed, Elham; Novitskaya, Ekaterina; Li, Jun; Jasiuk, Iwona; McKittrick, Joanna

    2015-01-01

    The elastic moduli of trabecular bone were modeled using an analytical multiscale approach. Trabecular bone was represented as a porous nanocomposite material with a hierarchical structure spanning from the collagen–mineral level to the trabecular architecture level. In parallel, compression testing was done on bovine femoral trabecular bone samples in two anatomical directions, parallel to the femoral neck axis and perpendicular to it, and the measured elastic moduli were compared with the corresponding theoretical results. To gain insights on the interaction of collagen and minerals at the nanoscale, bone samples were deproteinized or demineralized. After such processing, the treated samples remained as self-standing structures and were tested in compression. Micro-computed tomography was used to characterize the hierarchical structure of these three bone types and to quantify the amount of bone porosity. The obtained experimental data served as inputs to the multiscale model and guided us to represent bone as an interpenetrating composite material. Good agreement was found between the theory and experiments for the elastic moduli of the untreated, deproteinized, and demineralized trabecular bone. - Highlights: • A multiscale model was used to predict the elastic moduli of trabecular bone. • Samples included demineralized, deproteinized and untreated bone. • The model portrays bone as a porous, interpenetrating two phase composite. • The experimental elastic moduli for trabecular bone fell between theoretical bounds

  14. Analysis of HD Journal Bearings Considering Elastic Deformation and Non-Newtonian Rabinowitsch Fluid Model

    Directory of Open Access Journals (Sweden)

    J. Javorova

    2016-06-01

    Full Text Available The purpose of this paper is to study the performance of a finite length journal bearing, taking into account effects of non-Newtonian Rabinowitsch flow rheology and elastic deformations of the bearing liner. According to the Rabinowitsch fluid model, the cubic-stress constitutive equation is used to account for the non-Newtonian effects of pseudoplastic and dilatant lubricants. Integrating the continuity equation across the film, the nonlinear non-Newtonian Reynolds-type equation is derived. The elasticity part of the problem is solved on the base of Vlassov model of an elastic foundation. The numerical solution of the modified Reynolds equation is carried out by using FDM with over-relaxation technique. The results for steady state bearing performance characteristics have been calculated for various values of nonlinear factor and elasticity parameters. It was concluded that in comparison with the Newtonian lubricants, higher values of film pressure and load carrying capacity have been obtained for dilatant lubricants, while the case was reversed for pseudoplastic lubricants.

  15. Shells on elastic foundations

    International Nuclear Information System (INIS)

    Das, Y.C.; Kedia, K.K.

    1977-01-01

    No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)

  16. Polynomial constitutive model for shape memory and pseudo elasticity

    International Nuclear Information System (INIS)

    Savi, M.A.; Kouzak, Z.

    1995-01-01

    This paper reports an one-dimensional phenomenological constitutive model for shape memory and pseudo elasticity using a polynomial expression for the free energy which is based on the classical Devonshire theory. This study identifies the main characteristics of the classical theory and introduces a simple modification to obtain better results. (author). 9 refs., 6 figs

  17. How can cells sense the elasticity of a substrate? An analysis using a cell tensegrity model

    Directory of Open Access Journals (Sweden)

    G De Santis

    2011-10-01

    Full Text Available A eukaryotic cell attaches and spreads on substrates, whether it is the extracellular matrix naturally produced by the cell itself, or artificial materials, such as tissue-engineered scaffolds. Attachment and spreading require the cell to apply forces in the nN range to the substrate via adhesion sites, and these forces are balanced by the elastic response of the substrate. This mechanical interaction is one determinant of cell morphology and, ultimately, cell phenotype. In this paper we use a finite element model of a cell, with a tensegrity structure to model the cytoskeleton of actin filaments and microtubules, to explore the way cells sense the stiffness of the substrate and thereby adapt to it. To support the computational results, an analytical 1D model is developed for comparison. We find that (i the tensegrity hypothesis of the cytoskeleton is sufficient to explain the matrix-elasticity sensing, (ii cell sensitivity is not constant but has a bell-shaped distribution over the physiological matrix-elasticity range, and (iii the position of the sensitivity peak over the matrix-elasticity range depends on the cytoskeletal structure and in particular on the F-actin organisation. Our model suggests that F-actin reorganisation observed in mesenchymal stem cells (MSCs in response to change of matrix elasticity is a structural-remodelling process that shifts the sensitivity peak towards the new value of matrix elasticity. This finding discloses a potential regulatory role of scaffold stiffness for cell differentiation.

  18. A 2D nonlinear multiring model for blood flow in large elastic arteries

    Science.gov (United States)

    Ghigo, Arthur R.; Fullana, Jose-Maria; Lagrée, Pierre-Yves

    2017-12-01

    In this paper, we propose a two-dimensional nonlinear ;multiring; model to compute blood flow in axisymmetric elastic arteries. This model is designed to overcome the numerical difficulties of three-dimensional fluid-structure interaction simulations of blood flow without using the over-simplifications necessary to obtain one-dimensional blood flow models. This multiring model is derived by integrating over concentric rings of fluid the simplified long-wave Navier-Stokes equations coupled to an elastic model of the arterial wall. The resulting system of balance laws provides a unified framework in which both the motion of the fluid and the displacement of the wall are dealt with simultaneously. The mathematical structure of the multiring model allows us to use a finite volume method that guarantees the conservation of mass and the positivity of the numerical solution and can deal with nonlinear flows and large deformations of the arterial wall. We show that the finite volume numerical solution of the multiring model provides at a reasonable computational cost an asymptotically valid description of blood flow velocity profiles and other averaged quantities (wall shear stress, flow rate, ...) in large elastic and quasi-rigid arteries. In particular, we validate the multiring model against well-known solutions such as the Womersley or the Poiseuille solutions as well as against steady boundary layer solutions in quasi-rigid constricted and expanded tubes.

  19. Modeling of demand response in electricity markets : effects of price elasticity

    International Nuclear Information System (INIS)

    Banda, E.C.; Tuan, L.A.

    2007-01-01

    A design mechanism for the optimal participation of customer load in electricity markets was presented. In particular, this paper presented a modified market model for the optimal procurement of interruptible loads participating in day-ahead electricity markets. The proposed model considers the effect of price elasticity and demand-response functions. The objective was to determine the role that price elasticity plays in electricity markets. The simulation model can help the Independent System Operator (ISO) identify customers offering the lowest price of interruptible loads and load flow patterns that avoid problems associated with transmission congestion and transmission losses. Various issues associated with procurement of demand-response offerings such as advance notification, locational aspect of load, and power factor of the loads, were considered. It was shown that demand response can mitigate price volatility by allowing the ISO to maintain operating reserves during peak load periods. It was noted that the potential benefits of the demand response program would be reduced when price elasticity of demand is taken into account. This would most likely occur in actual developed open electricity markets, such as Nordpool. This study was based on the CIGRE 32-bus system, which represents the Swedish high voltage power system. It was modified for this study to include a broad range of customer characteristics. 18 refs., 2 tabs., 14 figs

  20. Global model for the lithospheric strength and effective elastic thickness

    NARCIS (Netherlands)

    Tesauro, M.; Kaban, M.K.; Cloetingh, S.A.P.L.

    2013-01-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young

  1. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling

    KAUST Repository

    Han, Fei; Azdoud, Yan; Lubineau, Gilles

    2014-01-01

    We present two modeling approaches for predicting the macroscopic elastic properties of carbon nanotubes/polymer composites with thick interphase regions at the nanotube/matrix frontier. The first model is based on local continuum mechanics

  2. Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1992-01-01

    A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  3. Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses

    International Nuclear Information System (INIS)

    Sauer, G.

    1998-01-01

    Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)

  4. Modelling elasticity in solids using active cubes - application to simulated operations

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1995-01-01

    The paper describes an approach to elastic modelling of human tissue based on the use of 3D solid active models-active cubes (M. Bro-Nielsen, 1994)-and a shape description based on the metric tensor in a solid. Active cubes are used because they provide a natural parameterization of the surface a...

  5. Money flexibility, price elasticity, and elasticity of marginal utility of consumption

    OpenAIRE

    Malakhov, Sergey

    2014-01-01

    The development of G.Stigler’s original model of search describes the mathematical relationship between the elasticity of the marginal utility of consumption, the price elasticity, and the elasticity of the marginal utility of money income with respect to increase in the price of living and/or to inflation. This relationship can be used not only in economics of well-being but also in microeconomics where the increase in the price of living, i.e., in purchase price, can make consumption “bad” ...

  6. Brain Network Modelling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther

    Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...

  7. A REMARK ON FORMAL MODELS FOR NONLINEARLY ELASTIC MEMBRANE SHELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper gives all the two-dimensional membrane models obtained from formal asymptotic analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural nonlinear ones. The author also gives the formal equations solved by the associated stress tensor and points out that only one of those models leads, by linearization, to the “classical” linear limiting membrane model, whose juetification has already been established by a convergence theorem.

  8. Eavesdropping-aware routing and spectrum allocation based on multi-flow virtual concatenation for confidential information service in elastic optical networks

    Science.gov (United States)

    Bai, Wei; Yang, Hui; Yu, Ao; Xiao, Hongyun; He, Linkuan; Feng, Lei; Zhang, Jie

    2018-01-01

    The leakage of confidential information is one of important issues in the network security area. Elastic Optical Networks (EON) as a promising technology in the optical transport network is under threat from eavesdropping attacks. It is a great demand to support confidential information service (CIS) and design efficient security strategy against the eavesdropping attacks. In this paper, we propose a solution to cope with the eavesdropping attacks in routing and spectrum allocation. Firstly, we introduce probability theory to describe eavesdropping issue and achieve awareness of eavesdropping attacks. Then we propose an eavesdropping-aware routing and spectrum allocation (ES-RSA) algorithm to guarantee information security. For further improving security and network performance, we employ multi-flow virtual concatenation (MFVC) and propose an eavesdropping-aware MFVC-based secure routing and spectrum allocation (MES-RSA) algorithm. The presented simulation results show that the proposed two RSA algorithms can both achieve greater security against the eavesdropping attacks and MES-RSA can also improve the network performance efficiently.

  9. Teaching nonlinear dynamics through elastic cords

    International Nuclear Information System (INIS)

    Chacon, R; Galan, C A; Sanchez-Bajo, F

    2011-01-01

    We experimentally studied the restoring force of a length of stretched elastic cord. A simple analytical expression for the restoring force was found to fit all the experimental results for different elastic materials. Remarkably, this analytical expression depends upon an elastic-cord characteristic parameter which exhibits two limiting values corresponding to two nonlinear springs with different Hooke's elastic constants. Additionally, the simplest model of elastic cord dynamics is capable of exhibiting a great diversity of nonlinear phenomena, including bifurcations and chaos, thus providing a suitable alternative model system for discussing the basic essentials of nonlinear dynamics in the context of intermediate physics courses at university level.

  10. Modelling Analysis of Forestry Input-Output Elasticity in China

    Directory of Open Access Journals (Sweden)

    Guofeng Wang

    2016-01-01

    Full Text Available Based on an extended economic model and space econometrics, this essay analyzed the spatial distributions and interdependent relationships of the production of forestry in China; also the input-output elasticity of forestry production were calculated. Results figure out there exists significant spatial correlation in forestry production in China. Spatial distribution is mainly manifested as spatial agglomeration. The output elasticity of labor force is equal to 0.6649, and that of capital is equal to 0.8412. The contribution of land is significantly negative. Labor and capital are the main determinants for the province-level forestry production in China. Thus, research on the province-level forestry production should not ignore the spatial effect. The policy-making process should take into consideration the effects between provinces on the production of forestry. This study provides some scientific technical support for forestry production.

  11. Elastic-plastic adhesive contact of rough surfaces using n-point asperity model

    International Nuclear Information System (INIS)

    Sahoo, Prasanta; Mitra, Anirban; Saha, Kashinath

    2009-01-01

    This study considers an analysis of the elastic-plastic contact of rough surfaces in the presence of adhesion using an n-point asperity model. The multiple-point asperity model, developed by Hariri et al (2006 Trans ASME: J. Tribol. 128 505-14) is integrated into the elastic-plastic adhesive contact model developed by Roy Chowdhury and Ghosh (1994 Wear 174 9-19). This n-point asperity model differs from the conventional Greenwood and Williamson model (1966 Proc. R. Soc. Lond. A 295 300-19) in considering the asperities not as fixed entities but as those that change through the contact process, and hence it represents the asperities in a more realistic manner. The newly defined adhesion index and plasticity index defined for the n-point asperity model are used to consider the different conditions that arise because of varying load, surface and material parameters. A comparison between the load-separation behaviour of the new model and the conventional one shows a significant difference between the two depending on combinations of mean separation, adhesion index and plasticity index.

  12. Examining platelet-fibrin interactions during traumatic shock in a swine model using platelet contractile force and clot elastic modulus.

    Science.gov (United States)

    White, Nathan J; Martin, Erika J; Brophy, Donald F; Ward, Kevin R

    2011-07-01

    A significant proportion of severely injured patients develop early coagulopathy, characterized by abnormal clot formation, which impairs resuscitation and increases mortality. We have previously demonstrated an isolated decrease in clot strength by thrombelastography in a swine model of nonresuscitated traumatic shock. In order to more closely examine platelet-fibrin interactions in this setting, we define the observed decrease in clot strength in terms of platelet-induced clot contraction and clot elastic modulus using the Hemostasis Analysis System (HAS) (Hemodyne Inc., Richmond, Virginia, USA). Whole blood was sampled for HAS measurements, metabolic measurements, cell counts, and fibrinogen concentration at baseline prior to injury and again at a predetermined level of traumatic shock defined by oxygen debt. Male swine (N=17) received femur fracture and controlled arterial hemorrhage to achieve an oxygen debt of 80 ml/kg. Platelet counts were unchanged, but fibrinogen concentration was reduced significantly during shock (167.6 vs. 66.7 mg/dl, P=0.0007). Platelet contractile force generated during clot formation did not change during shock (11.7 vs. 10.4 kdynes, P=0.41), but clot elastic modulus was dynamically altered, resulting in a lower final value (22.9 vs. 17.3 kdynes/cm, Pshock, platelet function was preserved, whereas terminal clot elastic modulus was reduced during shock in a manner most consistent with early changes in the mechanical properties of the developing fibrin fiber network.

  13. Elastic reflection waveform inversion with variable density

    KAUST Repository

    Li, Yuanyuan

    2017-08-17

    Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion (RWI) provides a method to build a good background model, which can serve as an initial model for elastic FWI. Therefore, we introduce the concept of RWI for elastic media, and propose elastic RWI with variable density. We apply Born modeling to generate the synthetic reflection data by using optimized perturbations of P- and S-wave velocities and density. The inversion for the perturbations in P- and S-wave velocities and density is similar to elastic least-squares reverse time migration (LSRTM). An incorrect initial model will lead to some misfits at the far offsets of reflections; thus, can be utilized to update the background velocity. We optimize the perturbation and background models in a nested approach. Numerical tests on the Marmousi model demonstrate that our method is able to build reasonably good background models for elastic FWI with absence of low frequencies, and it can deal with the variable density, which is needed in real cases.

  14. Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry

    Directory of Open Access Journals (Sweden)

    Just Agbodjan Prince

    2016-09-01

    Full Text Available This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment’s shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object.

  15. Foreign trade elasticities in centre-periphery models of growth and development

    Directory of Open Access Journals (Sweden)

    Anthony Philip Thirlwall

    1983-09-01

    Full Text Available The Author looks at the difference in growth rates among countries and argues that they can be traced to the strength of the balance of payments position, determined largely by the propensity to export relative to the propensity to import. Relative growth performance, thus, can be understood by looking to income elasticities of demand for exports and imports. This insight into the process of income determination in open economies, found in Harrod as well as in the literature on economic development, is developed through so-called centre-periphery models of growth and development. However, their essential conclusions were already contained in the early classic papers. The author concentrates on three of them (prebisch, seers, kaldor to argue that a country’s growth rate relative to another’s can be approximated by the ratio of its income elasticity of demand for exports to its income elasticity of demand for imports.

  16. Constraints on equivalent elastic source models from near-source data

    International Nuclear Information System (INIS)

    Stump, B.

    1993-01-01

    A phenomenological based seismic source model is important in quantifying the important physical processes that affect the observed seismic radiation in the linear-elastic regime. Representations such as these were used to assess yield effects on seismic waves under a Threshold Test Ban Treaty and to help transport seismic coupling experience at one test site to another. These same characterizations in a non-proliferation environment find applications in understanding the generation of the different types of body and surface waves from nuclear explosions, single chemical explosions, arrays of chemical explosions used in mining, rock bursts and earthquakes. Seismologists typically begin with an equivalent elastic representation of the source which when convolved with the propagation path effects produces a seismogram. The Representation Theorem replaces the true source with an equivalent set of body forces, boundary conditions or initial conditions. An extension of this representation shows the equivalence of the body forces, boundary conditions and initial conditions and replaces the source with a set of force moments, the first degree moment tensor for a point source representation. The difficulty with this formulation, which can completely describe the observed waveforms when the propagation path effects are known, is in the physical interpretation of the actual physical processes acting in the source volume. Observational data from within the source region, where processes are often nonlinear, linked to numerical models of the important physical processes in this region are critical to a unique physical understanding of the equivalent elastic source function

  17. Elastic Model Transitions: a Hybrid Approach Utilizing Quadratic Inequality Constrained Least Squares (LSQI) and Direct Shape Mapping (DSM)

    Science.gov (United States)

    Jurenko, Robert J.; Bush, T. Jason; Ottander, John A.

    2014-01-01

    A method for transitioning linear time invariant (LTI) models in time varying simulation is proposed that utilizes both quadratically constrained least squares (LSQI) and Direct Shape Mapping (DSM) algorithms to determine physical displacements. This approach is applicable to the simulation of the elastic behavior of launch vehicles and other structures that utilize multiple LTI finite element model (FEM) derived mode sets that are propagated throughout time. The time invariant nature of the elastic data for discrete segments of the launch vehicle trajectory presents a problem of how to properly transition between models while preserving motion across the transition. In addition, energy may vary between flex models when using a truncated mode set. The LSQI-DSM algorithm can accommodate significant changes in energy between FEM models and carries elastic motion across FEM model transitions. Compared with previous approaches, the LSQI-DSM algorithm shows improvements ranging from a significant reduction to a complete removal of transients across FEM model transitions as well as maintaining elastic motion from the prior state.

  18. How mechanical behavior of glassy polymers enables us to characterize melt deformation: elastic yielding in glassy state after melt stretching?

    Science.gov (United States)

    Wang, Shi-Qing; Zhao, Zhichen; Tsige, Mesfin; Zheng, Yexin

    Fast melt deformation well above the glass transition temperature Tg is known to produce elastic stress in an entangled polymer due to the chain entropy loss at the length scale of the network mesh size. Here chains of high molecular weight are assumed to form an entanglement network so that such a polymer behaves transiently like vulcanized rubber capable of affine deformation. We consider quenching a melt-deformed glassy polymer to well below Tg to preserve the elastic stress. Upon heating such a sample to Tg, the sample can return to the shape it took before melt deformation. This is the basic principle behind the design of all polymer-based shape-memory materials. This work presents intriguing evidence based on both experiment and computer simulation that the chain network, deformed well above Tg, can drive the glassy polymer to undergo elastic yielding. Our experimental systems include polystyrene, poly(methyl methacrylate) and polycarbonate; the molecular dynamics simulation is based on Kremer-Grest bead-spring model. National Science Foundation (DMR-1444859 and DMR-1609977).

  19. Modelling of the Elasticity Modulus for Rock Using Genetic Expression Programming

    Directory of Open Access Journals (Sweden)

    Umit Atici

    2016-01-01

    Full Text Available In rock engineering projects, statically determined parameters are more reflective of actual load conditions than dynamic parameters. This study reports a new and efficient approach to the formulation of the static modulus of elasticity Es applying gene expression programming (GEP with nondestructive testing (NDT methods. The results obtained using GEP are compared with the results of multivariable linear regression analysis (MRA, univariate nonlinear regression analysis (URA, and the dynamic elasticity modulus (Ed. The GEP model was found to produce the most accurate calculation of Es. The proposed approach is a simple, nondestructive, and practical way to determine Es for anisotropic and heterogeneous rocks.

  20. Spectral dimension of elastic Sierpinski gaskets with general elastic forces

    International Nuclear Information System (INIS)

    Liu, S.H.; Liu, A.J.

    1985-01-01

    The spectral dimension is calculated for a Sierpinski gasket with the most general elastic restoring forces allowed by symmetry. The elastic forces consist of bond-stretching and angle-bending components. The spectral dimension is the same as that for the bond-stretching-force (central-force) model. This demonstrates that on the Sierpinski gasket the two types of forces belong to the same universality class

  1. Modelling and Intelligent Control of an Elastic Link Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Malik Loudini

    2013-01-01

    Full Text Available In this paper, precise control of the end-point position of a planar single-link elastic manipulator robot is discussed. The Timoshenko beam theory (TBT has been used to characterize the structural link elasticity including important damping mechanisms. A suitable nonlinear model is derived based on the Lagrangian assumed modes method. Elastic link manipulators are classified as systems possessing highly complex dynamics. In addition, the environment in which they operate may have a lot of disturbances. These give rise to special problems that may be solved using intelligent control techniques. The application of two advanced control strategies based on fuzzy set theory is investigated. The first closed-loop control scheme to be applied is the standard Proportional-Derivative (PD type fuzzy logic controller (FLC, also known as PD-type Mamdani's FLC (MPDFLC. Then, a genetic algorithm (GA is used to optimize the MPDFLC parameters with innovative tuning procedures. Both the MPDFLC and the GA optimized FLC (GAOFLC are implemented and tested to achieve a precise control of the manipulator end-point. The performances of the adopted closed-loop intelligent control strategies are examined via simulation experiments.

  2. The Simulation and Correction to the Brain Deformation Based on the Linear Elastic Model in IGS

    Institute of Scientific and Technical Information of China (English)

    MU Xiao-lan; SONG Zhi-jian

    2004-01-01

    @@ The brain deformation is a vital factor affecting the precision of the IGS and it becomes a hotspot to simulate and correct the brain deformation recently.The research organizations, which firstly resolved the brain deformation with the physical models, have the Image Processing and Analysis department of Yale University, Biomedical Modeling Lab of Vanderbilt University and so on. The former uses the linear elastic model; the latter uses the consolidation model.The linear elastic model only needs to drive the model using the surface displacement of exposed brain cortex,which is more convenient to be measured in the clinic.

  3. High-energy elastic and quasi-elastic deuteron-nucleus scattering

    International Nuclear Information System (INIS)

    Tekou, Amouzou

    1974-01-01

    A study is made of deuteron-nucleus elastic and quasi-elastic scattering and the connection between the opaque nucleus model and the Glauber model is pointed out. The contributions to different cross-sections of the collisions in which the nucleus, excited by one of the nucleons of the deuteron, is brought back to the ground state by the other nucleon is analysed. Coherent deuteron disintegration is found to be highly improbable when the target nucleus is heavy and incoherent disintegration accounts for nearly all the deuteron disintegration. Thus a correct comparison between theoretical and experimental data on proton stripping must take the incoherent deuteron disintegration into consideration

  4. Optimizing Thermal-Elastic Properties of C/C–SiC Composites Using a Hybrid Approach and PSO Algorithm

    Science.gov (United States)

    Xu, Yingjie; Gao, Tian

    2016-01-01

    Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343

  5. Elastic-Plastic Endochronic Constitutive Model of 0Crl7Ni4Cu4Nb Stainless Steels

    Directory of Open Access Journals (Sweden)

    Jinquan Guo

    2016-01-01

    Full Text Available We presented an elastic-plastic endochronic constitutive model of 0Crl7Ni4Cu4Nb stainless steel based on the plastic endochronic theory (which does not need the yield surface and experimental stress-strain curves. The key feature of the model is that it can precisely describe the relation of stress and strain under various loading histories, including uniaxial tension, cyclic loading-unloading, cyclic asymmetric-stress axial tension and compression, and cyclic asymmetric-stress axial tension and compression. The effects of both mean stress and amplitude of stress on hysteresis loop based on the elastic-plastic endochronic constitutive model were investigated. Compared with the experimental and calculated results, it is demonstrated that there was a good agreement between the model and the experiments. Therefore, the elastic-plastic endochronic constitutive model provides a method for the accurate prediction of mechanical behaviors of 0Crl7Ni4Cu4Nb stainless steel subjected to various loadings.

  6. High energy elastic hadron scattering

    International Nuclear Information System (INIS)

    Fearnly, T.A.

    1986-04-01

    The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described

  7. Large-scale evaluation of dynamically important residues in proteins predicted by the perturbation analysis of a coarse-grained elastic model

    Directory of Open Access Journals (Sweden)

    Tekpinar Mustafa

    2009-07-01

    Full Text Available Abstract Backgrounds It is increasingly recognized that protein functions often require intricate conformational dynamics, which involves a network of key amino acid residues that couple spatially separated functional sites. Tremendous efforts have been made to identify these key residues by experimental and computational means. Results We have performed a large-scale evaluation of the predictions of dynamically important residues by a variety of computational protocols including three based on the perturbation and correlation analysis of a coarse-grained elastic model. This study is performed for two lists of test cases with >500 pairs of protein structures. The dynamically important residues predicted by the perturbation and correlation analysis are found to be strongly or moderately conserved in >67% of test cases. They form a sparse network of residues which are clustered both in 3D space and along protein sequence. Their overall conservation is attributed to their dynamic role rather than ligand binding or high network connectivity. Conclusion By modeling how the protein structural fluctuations respond to residue-position-specific perturbations, our highly efficient perturbation and correlation analysis can be used to dissect the functional conformational changes in various proteins with a residue level of detail. The predictions of dynamically important residues serve as promising targets for mutational and functional studies.

  8. Elastic properties of graphene: A pseudo-beam model with modified internal bending moment and its application

    Science.gov (United States)

    Xia, Z. M.; Wang, C. G.; Tan, H. F.

    2018-04-01

    A pseudo-beam model with modified internal bending moment is presented to predict elastic properties of graphene, including the Young's modulus and Poisson's ratio. In order to overcome a drawback in existing molecular structural mechanics models, which only account for pure bending (constant bending moment), the presented model accounts for linear bending moments deduced from the balance equations. Based on this pseudo-beam model, an analytical prediction is accomplished to predict the Young's modulus and Poisson's ratio of graphene based on the equation of the strain energies by using Castigliano second theorem. Then, the elastic properties of graphene are calculated compared with results available in literature, which verifies the feasibility of the pseudo-beam model. Finally, the pseudo-beam model is utilized to study the twisting wrinkling characteristics of annular graphene. Due to modifications of the internal bending moment, the wrinkling behaviors of graphene sheet are predicted accurately. The obtained results show that the pseudo-beam model has a good ability to predict the elastic properties of graphene accurately, especially the out-of-plane deformation behavior.

  9. Modelling Elastic Scattering and Light Transport in 3D Collagen Gel Constructs

    National Research Council Canada - National Science Library

    Bixio, L

    2001-01-01

    A model of elastic scattering and light propagation is presented, which can be used to obtain the scattering coefficient, the index of refraction and the distribution of the collagen fibrils in a gel...

  10. An efficient hybrid protection scheme with shared/dedicated backup paths on elastic optical networks

    Directory of Open Access Journals (Sweden)

    Nogbou G. Anoh

    2017-02-01

    Full Text Available Fast recovery and minimum utilization of resources are the two main criteria for determining the protection scheme quality. We address the problem of providing a hybrid protection approach on elastic optical networks under contiguity and continuity of available spectrum constraints. Two main hypotheses are used in this paper for backup paths computation. In the first case, it is assumed that backup paths resources are dedicated. In the second case, the assumption is that backup paths resources are available shared resources. The objective of the study is to minimize spectrum utilization to reduce blocking probability on a network. For this purpose, an efficient survivable Hybrid Protection Lightpath (HybPL algorithm is proposed for providing shared or dedicated backup path protection based on the efficient energy calculation and resource availability. Traditional First-Fit and Best-Fit schemes are employed to search and assign the available spectrum resources. The simulation results show that HybPL presents better performance in terms of blocking probability, compared with the Minimum Resources Utilization Dedicated Protection (MRU-DP algorithm which offers better performance than the Dedicated Protection (DP algorithm.

  11. A Smoothed Finite Element-Based Elasticity Model for Soft Bodies

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    2017-01-01

    Full Text Available One of the major challenges in mesh-based deformation simulation in computer graphics is to deal with mesh distortion. In this paper, we present a novel mesh-insensitive and softer method for simulating deformable solid bodies under the assumptions of linear elastic mechanics. A face-based strain smoothing method is adopted to alleviate mesh distortion instead of the traditional spatial adaptive smoothing method. Then, we propose a way to combine the strain smoothing method and the corotational method. With this approach, the amplitude and frequency of transient displacements are slightly affected by the distorted mesh. Realistic simulation results are generated under large rotation using a linear elasticity model without adding significant complexity or computational cost to the standard corotational FEM. Meanwhile, softening effect is a by-product of our method.

  12. Collaborative networks: Reference modeling

    NARCIS (Netherlands)

    Camarinha-Matos, L.M.; Afsarmanesh, H.

    2008-01-01

    Collaborative Networks: Reference Modeling works to establish a theoretical foundation for Collaborative Networks. Particular emphasis is put on modeling multiple facets of collaborative networks and establishing a comprehensive modeling framework that captures and structures diverse perspectives of

  13. Elasticity in Elastics-An in-vitro study.

    Science.gov (United States)

    Kamisetty, Supradeep Kumar; Nimagadda, Chakrapani; Begam, Madhoom Ponnachi; Nalamotu, Raghuveer; Srivastav, Trilok; Gs, Shwetha

    2014-04-01

    Orthodontic tooth movement results from application of forces to teeth. Elastics in orthodontics have been used both intra-orally and extra- orally to a great effect. Their use, combined with good patient co-operation provides the clinician with the ability to correct both anteroposterior and vertical discrepancies. Force decay over a period of time is a major problem in the clinical usage of latex elastics and synthetic elastomers. This loss of force makes it difficult for the clinician to determine the actual force transmitted to the dentition. It's the intent of the clinician to maintain optimal force values over desired period of time. The majority of the orthodontic elastics on the market are latex elastics. Since the early 1990s, synthetic products have been offered in the market for latex-sensitive patients and are sold as nonlatex elastics. There is limited information on the risk that latex elastics may pose to patients. Some have estimated that 0.12-6% of the general population and 6.2% of dental professionals have hypersensitivity to latex protein. There are some reported cases of adverse reactions to latex in the orthodontic population but these are very limited to date. Although the risk is not yet clear, it would still be inadvisable to prescribe latex elastics to a patient with a known latex allergy. To compare the in-vitro performance of latex and non latex elastics. Samples of 0.25 inch, latex and non latex elastics (light, medium, heavy elastics) were obtained from three manufacturers (Forestadent, GAC, Glenroe) and a sample size of ten elastics per group was tested. The properties tested included cross sectional area, internal diameter, initial force generated by the elastics, breaking force and the force relaxation for the different types of elastics. Force relaxation testing involved stretching the elastics to three times marketed internal diameter (19.05 mm) and measuring force level at intervals over a period of 48 hours. The data were

  14. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    Science.gov (United States)

    Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.

    2017-02-01

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple

  15. Mathematical Modeling of Contact Problems of Elasticity Theory with Continuous Unilateral Contact

    Directory of Open Access Journals (Sweden)

    I. V. Stankevich

    2015-01-01

    Full Text Available The work [1] presents the formulation and numerical solution of the problem concerning the unilateral discrete contact interaction of an elastic body and a rigid half-space. However, many parts and components of engineering structures have a pronounced continuous contact within a given surface [2, 3]. In this paper we consider a special case of this option of contact interaction when, the elastic body of finite size, subjected to external forces, is based on a rigid half-space. Contact occurs through a dedicated contact surface, which in general can change their sizes.Developed to solve this problem, a numerical algorithm is a further adaptation and development of the approaches described in [1]. The paper shows results of solving the model problem of the elasticity theory with and without taking friction into account. In the latter case, were additionally obtained numerical data characterizing the convergence of the solution.

  16. Elastic and plastic characteristics of a model Cu–Zr amorphous alloy

    International Nuclear Information System (INIS)

    Nakamura, Akiho; Kamimura, Yasushi; Edagawa, Keiichi; Takeuchi, Shin

    2014-01-01

    Athermal quasistatic simulation of shear deformation has been conducted for a realistic model Cu–Zr amorphous alloy to investigate characteristic features of elasticity and plasticity of the material. Significant reduction of the shear modulus by nonaffine atomic displacements and appreciable nonlinearity of elasticity have been observed. The fourth-order elastic constant in shear deformation and the ideal shear strength have been evaluated. Plastic deformation has been observed to start with isolated local shear transformations (LSTs) followed by collective LSTs leading to the formation of a shear band. Participation-ratio analysis (PRA) has demonstrated how the nonaffine displacement field converges as the system approaches the critical point of losing structural stability. PRA has also evaluated quantitatively the numbers of atoms participating in LSTs – the average number is about 30. Spatially anisotropic development of nascent shear band on a plane has been shown, attributable to anisotropic internal stress field induced by an LST. The evaluated stresses for the shear-band nucleation and for its propagation have indicated that the yielding in real materials is controlled by the shear-band propagation, as previously pointed out

  17. Full Dynamic Ball Bearing Model with Elastic Outer Ring for High Speed Applications

    Directory of Open Access Journals (Sweden)

    Christian Wagner

    2017-06-01

    Full Text Available Ball bearings are commonly used in high speed turbomachinery and have a critical influence on the rotordynamic behavior. Therefore, a simulation model of the bearing to predict the dynamic influence is essential. The presented model is a further step to develop an accurate and efficient characterization of the ball bearing’s rotor dynamic parameters such as stiffness and deflections as well as vibrational excitations induced by the discrete rolling elements. To make it applicable to high speed turbomachinery, the model considers centrifugal forces, gyroscopic effects and ball spinning. The consideration of an elastic outer ring makes the bearing model suitable for integrated lightweight bearing constructions used in modern aircraft turbines. In order to include transient rotordynamic behavior, the model is built as a full dynamic multibody simulation with time integration. To investigate the influence of the elasticity of the outer ring, a comparison with a rigid formulation for several rotational speeds and loads is presented.

  18. Membrane-elasticity model of Coatless vesicle budding induced by ESCRT complexes.

    Directory of Open Access Journals (Sweden)

    Bartosz Różycki

    Full Text Available The formation of vesicles is essential for many biological processes, in particular for the trafficking of membrane proteins within cells. The Endosomal Sorting Complex Required for Transport (ESCRT directs membrane budding away from the cytosol. Unlike other vesicle formation pathways, the ESCRT-mediated budding occurs without a protein coat. Here, we propose a minimal model of ESCRT-induced vesicle budding. Our model is based on recent experimental observations from direct fluorescence microscopy imaging that show ESCRT proteins colocalized only in the neck region of membrane buds. The model, cast in the framework of membrane elasticity theory, reproduces the experimentally observed vesicle morphologies with physically meaningful parameters. In this parameter range, the minimum energy configurations of the membrane are coatless buds with ESCRTs localized in the bud neck, consistent with experiment. The minimum energy configurations agree with those seen in the fluorescence images, with respect to both bud shapes and ESCRT protein localization. On the basis of our model, we identify distinct mechanistic pathways for the ESCRT-mediated budding process. The bud size is determined by membrane material parameters, explaining the narrow yet different bud size distributions in vitro and in vivo. Our membrane elasticity model thus sheds light on the energetics and possible mechanisms of ESCRT-induced membrane budding.

  19. Intrinsic Sensing and Evolving Internal Model Control of Compact Elastic Module for a Lower Extremity Exoskeleton

    Directory of Open Access Journals (Sweden)

    Likun Wang

    2018-03-01

    Full Text Available To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human–robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human–robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility.

  20. Intrinsic Sensing and Evolving Internal Model Control of Compact Elastic Module for a Lower Extremity Exoskeleton

    Science.gov (United States)

    Wang, Likun; Du, Zhijiang; Dong, Wei; Shen, Yi; Zhao, Guangyu

    2018-01-01

    To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human–robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human–robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility. PMID:29562684

  1. Intrinsic Sensing and Evolving Internal Model Control of Compact Elastic Module for a Lower Extremity Exoskeleton.

    Science.gov (United States)

    Wang, Likun; Du, Zhijiang; Dong, Wei; Shen, Yi; Zhao, Guangyu

    2018-03-19

    To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human-robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human-robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility.

  2. Effect of crosslink torsional stiffness on elastic behavior of semiflexible polymer networks

    Science.gov (United States)

    Hatami-Marbini, H.

    2018-02-01

    Networks of semiflexible filaments are building blocks of different biological and structural materials such as cytoskeleton and extracellular matrix. The mechanical response of these systems when subjected to an applied strain at zero temperature is often investigated numerically using networks composed of filaments, which are either rigidly welded or pinned together at their crosslinks. In the latter, filaments during deformation are free to rotate about their crosslinks while the relative angles between filaments remain constant in the former. The behavior of crosslinks in actual semiflexible networks is different than these idealized models and there exists only partial constraint on torques at crosslinks. The present work develops a numerical model in which two intersecting filaments are connected to each other by torsional springs with arbitrary stiffness. We show that fiber networks composed of rigid and freely rotating crosslinks are the limiting case of the present model. Furthermore, we characterize the effects of stiffness of crosslinks on effective Young's modulus of semiflexible networks as a function of filament flexibility and crosslink density. The effective Young's modulus is determined as a function of the mechanical properties of crosslinks and is found to vanish for networks composed of very weak torsional springs. Independent of the stiffness of crosslinks, it is found that the effective Young's modulus is a function of fiber flexibility and crosslink density. In low density networks, filaments primarily bend and the effective Young's modulus is much lower than the affine estimate. With increasing filament bending stiffness and/or crosslink density, the mechanical behavior of the networks becomes more affine and the stretching of filaments depicts itself as the dominant mode of deformation. The torsional stiffness of the crosslinks significantly affects the effective Young's modulus of the semiflexible random fiber networks.

  3. Fluid limits for bandwidth-sharing networks with rate constraints

    NARCIS (Netherlands)

    M. Frolkova (Masha); J. Reed (Josh); A.P. Zwart (Bert)

    2013-01-01

    htmlabstractBandwidth-sharing networks as introduced by Massouli\\'e~\\& Roberts (1998) model the dynamic interaction among an evolving population of elastic flows competing for several links. With policies based on optimization procedures, such models are of interest both from a~Queueing Theory and

  4. Optimization of micro and nanoimprint de-embossing by elastic fracture modelling

    OpenAIRE

    Balla, Tobias; Spearing, Simon Mark

    2013-01-01

    A semi-analytical model is presented for the de-embossing phase of the nanoimprint patterning process. The model is based on established principles of elastic fracture mechanics as developed for fibre-bridged cracking in composites. De-embossing is idealized as a steady-state fracture process, which enables the energy change to be considered by reference to a unit cell of a cylindrical polymer post, de-embossing from an axisymmetric stamp. The model provides predictions of the achievable limi...

  5. Blasting Vibration Safety Criterion Analysis with Equivalent Elastic Boundary: Based on Accurate Loading Model

    Directory of Open Access Journals (Sweden)

    Qingwen Li

    2015-01-01

    Full Text Available In the tunnel and underground space engineering, the blasting wave will attenuate from shock wave to stress wave to elastic seismic wave in the host rock. Also, the host rock will form crushed zone, fractured zone, and elastic seismic zone under the blasting loading and waves. In this paper, an accurate mathematical dynamic loading model was built. And the crushed zone as well as fractured zone was considered as the blasting vibration source thus deducting the partial energy for cutting host rock. So this complicated dynamic problem of segmented differential blasting was regarded as an equivalent elastic boundary problem by taking advantage of Saint-Venant’s Theorem. At last, a 3D model in finite element software FLAC3D accepted the constitutive parameters, uniformly distributed mutative loading, and the cylindrical attenuation law to predict the velocity curves and effective tensile curves for calculating safety criterion formulas of surrounding rock and tunnel liner after verifying well with the in situ monitoring data.

  6. An orthogonality condition model treatment of elastic and inelastic (α, 12C) scattering

    International Nuclear Information System (INIS)

    Suzuki, Y.; Imanishi, B.

    1981-02-01

    Elastic and inelastic scattering of α-particles on the deformed nucleus 12 C are investigated in the range of incident α-particle energies of 9 to 11 MeV by using the coupled-channel method with orthogonality condition. A doubly folded potential generated by the shell model wave functions of the α-particle and the deformed nucleus 12 C is employed for the relative motion between the α-particle and 12 C. Good agreement between theory and experiment is obtained for the elastic and inelastic angular distributions and the resonance structures. It is found, from the Born series expansion of the T-matrix, that the orthogonality constraint stresses the effects of the channel-coupling between the elastic and inelastic processes, and it indicates that the DWBA does not work well in this system. (author)

  7. The elastic body model: a pedagogical approach integrating real time measurements and modelling activities

    International Nuclear Information System (INIS)

    Fazio, C; Guastella, I; Tarantino, G

    2007-01-01

    In this paper, we describe a pedagogical approach to elastic body movement based on measurements of the contact times between a metallic rod and small bodies colliding with it and on modelling of the experimental results by using a microcomputer-based laboratory and simulation tools. The experiments and modelling activities have been built in the context of the laboratory of mechanical wave propagation of the two-year graduate teacher education programme of Palermo's University. Some considerations about observed modifications in trainee teachers' attitudes in utilizing experiments and modelling are discussed

  8. Mathematical Modeling of Contact Problems of Elasticity Theory with Unilateral Discrete Contact

    Directory of Open Access Journals (Sweden)

    I. V. Stankevich

    2015-01-01

    Full Text Available Development and operation of modern machinery and latest technology require reliable estimates of the strength characteristics of the critical elements of structures and technological equipment under the impact of high-intensity thermomechanical loading, accompanied, as a rule, by complex contact interaction. Mathematical modeling of stress-strain state of such parts and components in the contact area, based on adequate mathematical models, modern numerical methods and efficient algorithms that implement the direct determination of displacement fields, strains and stresses, is the main tool that allows fast acquisition of data required for the calculations of strength and durability. The paper considers an algorithm for constructing the numerical solution of the contact problem of elasticity theory in relation to the body, which has an obvious one-sided discrete contact interaction with an elastic half-space. The proposed algorithm is specially designed to have a correction of the tangential forces at discrete contact points, allowing us to achieve sufficiently accurate implementation of the adopted law of friction. The algorithm is embedded in a general finite element technology, with which the application code is generated. Numerical study of discrete unilateral contact interaction of an elastic plate and a rigid half-space showed a high efficiency of the developed algorithm and the application code that implements it.

  9. On the dynamic Stability of a quadratic-cubic elastic model structure ...

    African Journals Online (AJOL)

    The main substance of this investigation is the determination of the dynamic buckling load of an imperfect quadratic-cubic elastic model structure , which ,in itself, is a Mathematical generalization of some of the many physical structures normally encountered in engineering practice and allied fields. The load function in ...

  10. Active patterning and asymmetric transport in a model actomyosin network

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shenshen [Department of Chemical Engineering and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Wolynes, Peter G. [Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005 (United States)

    2013-12-21

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  11. The effective Schroedinger equation of the optical model of composite nuclei elastic collisions

    International Nuclear Information System (INIS)

    Mondragon, A.; Hernandez, E.

    1980-01-01

    An effective hamiltonian for elastic collisions between composite nuclei is obtained from the Schroedinger equation of the complete many-body system and its fully antisymmetric wave functions by means of a projection operator technique. This effective hamiltonian, defined in such a way that it has to reproduce the scattering amplitude in full detail, including exchange effects, is explicitly Galilean invariant. The effective interaction operator is a function of the relative distance between the centers of mass of the colliding nuclei and the constants of the motion of the whole system. The interaction operator of the optical model is obtained next, requiring as usual, that it reproduces the average over the energy of the scattering amplitude and keeping the Galilean invariance. The resulting optical potential operator has some terms identical to those obtained in the Resonating Group Method, and others coming from the elimination of all non elastic channels and the delayed elastic scattering. This result makes the relation existing among the projection operator method to the Feshbach and the cluster model equations of motion for positive energies (RGM) explicit. The additional interaction terms due to the flux loss in the elastic channel are non-local, and non-hermitean operators expressed in terms of the transition amplitudes and the density of states of the compound nucleus in such a way that an approximate evaluation, in a systematic fashion, seems possible. Theangular momentum dependence of the optical potential operator is discussed in some detail. (author)

  12. The Glauber model and heavy ion reaction and elastic scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Mehndiratta, Ajay [Physics Department, Indian Institute of Technology, Guwahati (India); Shukla, Prashant, E-mail: pshukla@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094 (India)

    2017-05-15

    We revisit the Glauber model to study the heavy ion reaction cross sections and elastic scattering angular distributions at low and intermediate energies. The Glauber model takes nucleon–nucleon cross sections and nuclear densities as inputs and has no free parameter and thus can predict the cross sections for unknown systems. The Glauber model works at low energies down to Coulomb barrier with very simple modifications. We present new parametrization of measured total cross sections as well as ratio of real to imaginary parts of the scattering amplitudes for pp and np collisions as a function of nucleon kinetic energy. The nuclear (charge) densities obtained by electron scattering form factors measured in large momentum transfer range are used in the calculations. The heavy ion reaction cross sections are calculated for light and heavy systems and are compared with available data measured over large energy range. The model gives excellent description of the data. The elastic scattering angular distributions are calculated for various systems at different energies. The model gives good description of the data at small momentum transfer but the calculations deviate from the data at large momentum transfer.

  13. Deuteron-deuteron elastic scattering at high energies

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Ali, S.

    1991-01-01

    The eikonal picture which has theoretical foundations in some areas of physics has been successful in explaining various aspects of elastic scattering at high energies. Chou and Yang first proposed a preliminary version of the eikonal model for hadron-hadron elastic scattering. The model is based on geometrical considerations in which hadrons are treated as extended objects. Elastic scattering then results from the propagation of attenuated wave function. By assuming that at high energies the scattering amplitude is purely imaginary and that the hadronic matter distribution is proportional to the charge distribution on protons, Durand and Lipes studied high energy pp scattering on the basis of this prestine model. Later on, the model was extended to other elastic reactions. However, a survey of literature shows that it has been successful only in the diffraction peak region. It has been shown that the pristine Chou-Yange model can explain the differential cross section for deuteron-deuteron elastic scattering at √s = 53 GeV in the diffraction peak region. In order to fit the large momentum transfer data, the generalized Chou-Yang model is used

  14. Volcanic source inversion using a genetic algorithm and an elastic-gravitational layered earth model for magmatic intrusions

    Science.gov (United States)

    Tiampo, K. F.; Fernández, J.; Jentzsch, G.; Charco, M.; Rundle, J. B.

    2004-11-01

    Here we present an inversion methodology using the combination of a genetic algorithm (GA) inversion program, and an elastic-gravitational earth model to determine the parameters of a volcanic intrusion. Results from the integration of the elastic-gravitational model, a suite of FORTRAN 77 programs developed to compute the displacements due to volcanic loading, with the GA inversion code, written in the C programming language, are presented. These codes allow for the calculation of displacements (horizontal and vertical), tilt, vertical strain and potential and gravity changes on the surface of an elastic-gravitational layered Earth model due to the magmatic intrusion. We detail the appropriate methodology for examining the sensitivity of the model to variation in the constituent parameters using the GA, and present, for the first time, a Monte Carlo technique for evaluating the propagation of error through the GA inversion process. One application example is given at Mayon volcano, Philippines, for the inversion program, the sensitivity analysis, and the error evaluation. The integration of the GA with the complex elastic-gravitational model is a blueprint for an efficient nonlinear inversion methodology and its implementation into an effective tool for the evaluation of parameter sensitivity. Finally, the extension of this inversion algorithm and the error assessment methodology has important implications to the modeling and data assimilation of a number of other nonlinear applications in the field of geosciences.

  15. Positron interactions with water–total elastic, total inelastic, and elastic differential cross section measurements

    International Nuclear Information System (INIS)

    Tattersall, Wade; Chiari, Luca; Machacek, J. R.; Anderson, Emma; Sullivan, James P.; White, Ron D.; Brunger, M. J.; Buckman, Stephen J.; Garcia, Gustavo; Blanco, Francisco

    2014-01-01

    Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions

  16. A neighbourhood evolving network model

    International Nuclear Information System (INIS)

    Cao, Y.J.; Wang, G.Z.; Jiang, Q.Y.; Han, Z.X.

    2006-01-01

    Many social, technological, biological and economical systems are best described by evolved network models. In this short Letter, we propose and study a new evolving network model. The model is based on the new concept of neighbourhood connectivity, which exists in many physical complex networks. The statistical properties and dynamics of the proposed model is analytically studied and compared with those of Barabasi-Albert scale-free model. Numerical simulations indicate that this network model yields a transition between power-law and exponential scaling, while the Barabasi-Albert scale-free model is only one of its special (limiting) cases. Particularly, this model can be used to enhance the evolving mechanism of complex networks in the real world, such as some social networks development

  17. Surface accuracy analysis and mathematical modeling of deployable large aperture elastic antenna reflectors

    Science.gov (United States)

    Coleman, Michael J.

    One class of deployable large aperture antenna consists of thin light-weight parabolic reflectors. A reflector of this type is a deployable structure that consists of an inflatable elastic membrane that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. A design may not hold the parabolic shape to within a desired tolerance due to an elastic deformation of the surface, particularly near the rim. We can compute the equilibrium configuration of the reflector system using an optimization-based solution procedure that calculates the total system energy and determines a configuration of minimum energy. Analysis of the equilibrium configuration reveals the behavior of the reflector shape under various loading conditions. The pressure, film strain energy, tendon strain energy, and gravitational energy are all considered in this analysis. The surface accuracy of the antenna reflector is measured by an RMS calculation while the reflector phase error component of the efficiency is determined by computing the power density at boresight. Our error computation methods are tailored for the faceted surface of our model and they are more accurate for this particular problem than the commonly applied Ruze Equation. Previous analytical work on parabolic antennas focused on axisymmetric geometries and loads. Symmetric equilibria are not assumed in our analysis. In addition, this dissertation contains two principle original findings: (1) the typical supporting tendon system tends to flatten a parabolic reflector near its edge. We find that surface accuracy can be significantly improved by fixing the edge of the inflated reflector to a rigid structure; (2) for large membranes assembled from flat sheets of thin material, we demonstrate that the surface accuracy of the resulting inflated membrane reflector can be improved by altering the cutting pattern of the flat components. Our findings demonstrate that the proper choice

  18. Mathematical methods in elasticity imaging

    CERN Document Server

    Ammari, Habib; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae; Wahab, Abdul

    2015-01-01

    This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic...

  19. A Membrane Model from Implicit Elasticity Theory

    Science.gov (United States)

    Freed, A. D.; Liao, J.; Einstein, D. R.

    2014-01-01

    A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal-energy function. The theory utilizes Biot’s (1939) definitions for stress and strain that, in 1-dimension, are the stress/strain measures adopted by Fung (1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from a porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly non-linear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model. PMID:24282079

  20. On Elasticity Measurement in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Wei Ai

    2016-01-01

    Full Text Available Elasticity is the foundation of cloud performance and can be considered as a great advantage and a key benefit of cloud computing. However, there is no clear, concise, and formal definition of elasticity measurement, and thus no effective approach to elasticity quantification has been developed so far. Existing work on elasticity lack of solid and technical way of defining elasticity measurement and definitions of elasticity metrics have not been accurate enough to capture the essence of elasticity measurement. In this paper, we present a new definition of elasticity measurement and propose a quantifying and measuring method using a continuous-time Markov chain (CTMC model, which is easy to use for precise calculation of elasticity value of a cloud computing platform. Our numerical results demonstrate the basic parameters affecting elasticity as measured by the proposed measurement approach. Furthermore, our simulation and experimental results validate that the proposed measurement approach is not only correct but also robust and is effective in computing and comparing the elasticity of cloud platforms. Our research in this paper makes significant contribution to quantitative measurement of elasticity in cloud computing.

  1. A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.

    Energy Technology Data Exchange (ETDEWEB)

    English, Shawn Allen

    2014-09-01

    A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.

  2. Non-Conventional Thermodynamics and Models of Gradient Elasticity

    Directory of Open Access Journals (Sweden)

    Hans-Dieter Alber

    2018-03-01

    Full Text Available We consider material bodies exhibiting a response function for free energy, which depends on both the strain and its gradient. Toupin–Mindlin’s gradient elasticity is characterized by Cauchy stress tensors, which are given by space-like Euler–Lagrange derivative of the free energy with respect to the strain. The present paper aims at developing a first version of gradient elasticity of non-Toupin–Mindlin’s type, i.e., a theory employing Cauchy stress tensors, which are not necessarily expressed as Euler–Lagrange derivatives. This is accomplished in the framework of non-conventional thermodynamics. A one-dimensional boundary value problem is solved in detail in order to illustrate the differences of the present theory with Toupin–Mindlin’s gradient elasticity theory.

  3. Torsion of cracked nanorods using a nonlocal elasticity model

    International Nuclear Information System (INIS)

    Loya, J A; Aranda-Ruiz, J; Fernández-Sáez, J

    2014-01-01

    This paper presents a nonlocal cracked-rod model from which we have analysed the torsional vibrations of a carbon nanotube with a circumferential crack. Several types of boundary conditions, including the consideration of a buckyball at the end of the nanotube, have been studied. The nonlocal Eringen elasticity theory is used to formulate the problem. The cracked rod is modelled by dividing the cracked element into two segments connected by a torsional linear spring whose stiffness is related to the crack severity. The effect of the nonlocal small-scale parameter, crack severity, cracked section position, different boundary conditions and attached mass are examined in this work. (paper)

  4. Telecommunications network modelling, planning and design

    CERN Document Server

    Evans, Sharon

    2003-01-01

    Telecommunication Network Modelling, Planning and Design addresses sophisticated modelling techniques from the perspective of the communications industry and covers some of the major issues facing telecommunications network engineers and managers today. Topics covered include network planning for transmission systems, modelling of SDH transport network structures and telecommunications network design and performance modelling, as well as network costs and ROI modelling and QoS in 3G networks.

  5. Transient Vibrations of an Elastic Cylinder Inserted in the Elastic Medium

    Directory of Open Access Journals (Sweden)

    Sulym Heorgij

    2016-06-01

    Full Text Available Using method of Laguerre polynomials we have obtained the solution of the dynamic problem of the theory of elasticity for elastic cylinder inserted into massive body modeled as a space. The source of non-stationary processes in composite is high intensity force load of the inner surface of the cylinder. On the surface separation of materials of space and cylinder the conditions of ideal mechanical contact are satisfied. The solution is obtained as series of Laguerre polynomials, which coefficients are found from recurrent relations. The results of numerical analysis of transient stress-strain state in elastic space with cylindrical insertion might be used for the technological process of hydraulic fracturing during shale gas extraction.

  6. Sound transmission through lined, composite panel structures: Transversely isotropic poro-elastic model

    Science.gov (United States)

    Kim, Jeong-Woo

    A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a

  7. Mechanical characterization and non-linear elastic modeling of poly(glycerol sebacate) for soft tissue engineering.

    Science.gov (United States)

    Mitsak, Anna G; Dunn, Andrew M; Hollister, Scott J

    2012-07-01

    Scaffold tissue engineering strategies for repairing and replacing soft tissue aim to improve reconstructive and corrective surgical techniques whose limitations include suboptimal mechanical properties, fibrous capsule formation and volume loss due to graft resorption. An effective tissue engineering strategy requires a scaffolding material with low elastic modulus that behaves similarly to soft tissue, which has been characterized as a nonlinear elastic material. The material must also have the ability to be manufactured into specifically designed architectures. Poly(glycerol sebacate) (PGS) is a thermoset elastomer that meets these criteria. We hypothesize that the mechanical properties of PGS can be modulated through curing condition and architecture to produce materials with a range of stiffnesses. To evaluate this hypothesis, we manufactured PGS constructs cured under various conditions and having one of two architectures (solid or porous). Specimens were then tensile tested according to ASTM standards and the data were modeled using a nonlinear elastic Neo-Hookean model. Architecture and testing conditions, including elongation rate and wet versus dry conditions, affected the mechanical properties. Increasing curing time and temperature led to increased tangent modulus and decreased maximum strain for solid constructs. Porous constructs had lower nonlinear elastic properties, as did constructs of both architectures tested under simulated physiological conditions (wetted at 37 °C). Both solid and porous PGS specimens could be modeled well with the Neo-Hookean model. Future studies include comparing PGS properties to other biological tissue types and designing and characterizing PGS scaffolds for regenerating these tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Mathematical model predicts the elastic behavior of composite materials

    Directory of Open Access Journals (Sweden)

    Zoroastro de Miranda Boari

    2005-03-01

    Full Text Available Several studies have found that the non-uniform distribution of reinforcing elements in a composite material can markedly influence its characteristics of elastic and plastic deformation and that a composite's overall response is influenced by the physical and geometrical properties of its reinforcing phases. The finite element method, Eshelby's method and dislocation mechanisms are usually employed in formulating a composite's constitutive response. This paper discusses a composite material containing SiC particles in an aluminum matrix. The purpose of this study was to find the correlation between a composite material's particle distribution and its resistance, and to come up with a mathematical model to predict the material's elastic behavior. The proposed formulation was applied to establish the thermal stress field in the aluminum-SiC composite resulting from its fabrication process, whereby the mixture is prepared at 600 °C and the composite material is used at room temperature. The analytical results, which are presented as stress probabilities, were obtained from the mathematical model proposed herein. These results were compared with the numerical ones obtained by the FEM method. A comparison of the results of the two methods, analytical and numerical, reveals very similar average thermal stress values. It is also shown that Maxwell-Boltzmann's distribution law can be applied to identify the correlation between the material's particle distribution and its resistance, using Eshelby's thermal stresses.

  9. A new approach to ultrasonic elasticity imaging

    Science.gov (United States)

    Hoerig, Cameron; Ghaboussi, Jamshid; Fatemi, Mostafa; Insana, Michael F.

    2016-04-01

    Biomechanical properties of soft tissues can provide information regarding the local health status. Often the cells in pathological tissues can be found to form a stiff extracellular environment, which is a sensitive, early diagnostic indicator of disease. Quasi-static ultrasonic elasticity imaging provides a way to image the mechanical properties of tissues. Strain images provide a map of the relative tissue stiffness, but ambiguities and artifacts limit its diagnostic value. Accurately mapping intrinsic mechanical parameters of a region may increase diagnostic specificity. However, the inverse problem, whereby force and displacement estimates are used to estimate a constitutive matrix, is ill conditioned. Our method avoids many of the issues involved with solving the inverse problem, such as unknown boundary conditions and incomplete information about the stress field, by building an empirical model directly from measured data. Surface force and volumetric displacement data gathered during imaging are used in conjunction with the AutoProgressive method to teach artificial neural networks the stress-strain relationship of tissues. The Autoprogressive algorithm has been successfully used in many civil engineering applications and to estimate ocular pressure and corneal stiffness; here, we are expanding its use to any tissues imaged ultrasonically. We show that force-displacement data recorded with an ultrasound probe and displacements estimated at a few points in the imaged region can be used to estimate the full stress and strain vectors throughout an entire model while only assuming conservation laws. We will also demonstrate methods to parameterize the mechanical properties based on the stress-strain response of trained neural networks. This method is a fundamentally new approach to medical elasticity imaging that for the first time provides full stress and strain vectors from one set of observation data.

  10. Fracton-Elasticity Duality

    Science.gov (United States)

    Pretko, Michael; Radzihovsky, Leo

    2018-05-01

    Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.

  11. Comparison of elastic-viscous-plastic and viscous-plastic dynamics models using a high resolution Arctic sea ice model

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, E.C. [Los Alamos National Lab., NM (United States); Zhang, Y. [Naval Postgraduate School, Monterey, CA (United States)

    1997-12-31

    A nonlinear viscous-plastic (VP) rheology proposed by Hibler (1979) has been demonstrated to be the most suitable of the rheologies commonly used for modeling sea ice dynamics. However, the presence of a huge range of effective viscosities hinders numerical implementations of this model, particularly on high resolution grids or when the ice model is coupled to an ocean or atmosphere model. Hunke and Dukowicz (1997) have modified the VP model by including elastic waves as a numerical regularization in the case of zero strain rate. This modification (EVP) allows an efficient, fully explicit discretization that adapts well to parallel architectures. The authors present a comparison of EVP and VP dynamics model results from two 5-year simulations of Arctic sea ice, obtained with a high resolution sea ice model. The purpose of the comparison is to determine how differently the two dynamics models behave, and to decide whether the elastic-viscous-plastic model is preferable for high resolution climate simulations, considering its high efficiency in parallel computation. Results from the first year of this experiment (1990) are discussed in detail in Hunke and Zhang (1997).

  12. Modeling fracture in the context of a strain-limiting theory of elasticity: a single anti-plane shear crack

    KAUST Repository

    Rajagopal, K. R.

    2011-01-06

    This paper is the first part of an extended program to develop a theory of fracture in the context of strain-limiting theories of elasticity. This program exploits a novel approach to modeling the mechanical response of elastic, that is non-dissipative, materials through implicit constitutive relations. The particular class of models studied here can also be viewed as arising from an explicit theory in which the displacement gradient is specified to be a nonlinear function of stress. This modeling construct generalizes the classical Cauchy and Green theories of elasticity which are included as special cases. It was conjectured that special forms of these implicit theories that limit strains to physically realistic maximum levels even for arbitrarily large stresses would be ideal for modeling fracture by offering a modeling paradigm that avoids the crack-tip strain singularities characteristic of classical fracture theories. The simplest fracture setting in which to explore this conjecture is anti-plane shear. It is demonstrated herein that for a specific choice of strain-limiting elasticity theory, crack-tip strains do indeed remain bounded. Moreover, the theory predicts a bounded stress field in the neighborhood of a crack-tip and a cusp-shaped opening displacement. The results confirm the conjecture that use of a strain limiting explicit theory in which the displacement gradient is given as a function of stress for modeling the bulk constitutive behavior obviates the necessity of introducing ad hoc modeling constructs such as crack-tip cohesive or process zones in order to correct the unphysical stress and strain singularities predicted by classical linear elastic fracture mechanics. © 2011 Springer Science+Business Media B.V.

  13. Modelling energy and non-energy substitution: A brief survey of elasticities

    International Nuclear Information System (INIS)

    Frondel, Manuel

    2011-01-01

    Estimating the degree of substitution between energy and non-energy inputs is the key for any evaluation of environmental and energy policies. Yet, given the variety of substitution elasticities, the central question arises as to which measure would be most appropriate. Apparently, Allen's elasticities of substitution have been the most-used measures in applied production analysis. In line with , this paper argues that cross-price elasticities are preferable for many practical purposes. This conclusion is based on a survey of classical substitution measures, such as those from Allen, Morishima, and McFadden. The survey highlights the fact that cross-price elasticities are their essential ingredients. - Highlights: → Given the large variety of substitution elasticities, the central question arises as to which measure would be most appropriate. Apparently, Allen's elasticities of substitution have been the most-used measures in applied production analysis. → In line with , this paper argues that cross-price elasticities are preferable for many practical purposes. → This conclusion is based on a survey of classical substitution measures, such as those from Allen, Morishima, and McFadden. → The survey also highlights the fact that cross-price elasticities are their essential ingredients.

  14. Remarks on stability of magneto-elastic shocks

    Directory of Open Access Journals (Sweden)

    Włodzimierz Domański

    2015-12-01

    Full Text Available The problem of stability of plane shock waves for a model of perfect magnetoelasticityis investigated. Important mathematical properties, like loss of strict hyperbolicityand loss of genuine nonlinearity, and their consequences for the stability ofmagneto-elastic shocks are discussed. It is shown that some of these shocks do not satisfyclassical Lax stability conditions. Both compressible and incompressible models ofmagneto-elasticity are discussed.[b]Keywords[/b]: perfect magneto-elasticity, shock waves, stability conditions

  15. Model of K+p elastic scattering at high energies

    International Nuclear Information System (INIS)

    Fazal-e-Aleem

    1985-01-01

    Very recent measurements of the angular distribution for K + p elastic scattering which show a structure near -t = 3.8(GeV/c) 2 , together with the total cross section and ratio of the real and imaginary parts of the scattering amplitude for 50 2 , have been fitted by using a simple Regge-pole model with phenomenological residue functions. The break in the slope near -t = 0.5 (GeV/c) 2 observed in the differential cross section has also been explained

  16. THE ELASTICITY OF EXPORT DEMAND FOR US COTTON

    OpenAIRE

    Paudel, Laxmi; Houston, Jack E.; Adhikari, Murali; Devkota, Nirmala

    2004-01-01

    There exist conflicting views among the researchers about the magnitudes of US cotton export demand elasticity, ranging from the highly inelastic to highly elastic. An Armington model was used to analyze the export demand elasticity of US Cotton. Our analysis confirms an elastic nature of US cotton export demand.

  17. Are rapid changes in brain elasticity possible?

    Science.gov (United States)

    Parker, K. J.

    2017-09-01

    Elastography of the brain is a topic of clinical and preclinical research, motivated by the potential for viscoelastic measures of the brain to provide sensitive indicators of pathological processes, and to assist in early diagnosis. To date, studies of the normal brain and of those with confirmed neurological disorders have reported a wide range of shear stiffness and shear wave speeds, even within similar categories. A range of factors including the shear wave frequency, and the age of the individual are thought to have a possible influence. However, it may be that short term dynamics within the brain may have an influence on the measured stiffness. This hypothesis is addressed quantitatively using the framework of the microchannel flow model, which derives the tissue stiffness, complex modulus, and shear wave speed as a function of the vascular and fluid network in combination with the elastic matrix that comprise the brain. Transformation rules are applied so that any changes in the fluid channels or the elastic matrix can be mapped to changes in observed elastic properties on a macroscopic scale. The results are preliminary but demonstrate that measureable, time varying changes in brain stiffness are possible simply by accounting for vasodynamic or electrochemical changes in the state of any region of the brain. The value of this preliminary exploration is to identify possible mechanisms and order-of-magnitude changes that may be testable in vivo by specialized protocols.

  18. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim

    2014-12-03

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  19. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim; Chasparis, Georgios; Shamma, Jeff S.

    2014-01-01

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  20. The modified Black-Scholes model via constant elasticity of variance for stock options valuation

    Science.gov (United States)

    Edeki, S. O.; Owoloko, E. A.; Ugbebor, O. O.

    2016-02-01

    In this paper, the classical Black-Scholes option pricing model is visited. We present a modified version of the Black-Scholes model via the application of the constant elasticity of variance model (CEVM); in this case, the volatility of the stock price is shown to be a non-constant function unlike the assumption of the classical Black-Scholes model.

  1. Modeling online social signed networks

    Science.gov (United States)

    Li, Le; Gu, Ke; Zeng, An; Fan, Ying; Di, Zengru

    2018-04-01

    People's online rating behavior can be modeled by user-object bipartite networks directly. However, few works have been devoted to reveal the hidden relations between users, especially from the perspective of signed networks. We analyze the signed monopartite networks projected by the signed user-object bipartite networks, finding that the networks are highly clustered with obvious community structure. Interestingly, the positive clustering coefficient is remarkably higher than the negative clustering coefficient. Then, a Signed Growing Network model (SGN) based on local preferential attachment is proposed to generate a user's signed network that has community structure and high positive clustering coefficient. Other structural properties of the modeled networks are also found to be similar to the empirical networks.

  2. Muon-Neutrino Electron Elastic Scattering and a Search for the Muon-Neutrino Magnetic Moment in the NOvA Near Detector

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao [Southern Methodist U.

    2017-01-01

    We use the NOvA near detector and the NuMI beam at Fermilab to study the neutrino- electron elastic scattering and the muon neutrino magnetic process beyond the Standard Model physics. The particle identications of neutrino on electron elastic scattering are trained by using the multi-layer neural networks. This thesis provides a general discussion of this technique and shows a good agreement between data and MC for the neutrino-electron elastic weak scattering. So that beneting from the precise cross-section of this channel, we are able to tune the neutrino beam ux simulation in the future. Giving the exposure of 3:62 1020 POT in the NOvA near detector, we report 1:58 10

  3. Elastic properties of graphite and interstitial defects

    International Nuclear Information System (INIS)

    Ayasse, J.-B.

    1977-01-01

    The graphite elastic constants C 33 and C 44 , reflecting the interaction of the graphitic planes, were experimentally measured as a function of irradiation and temperature. A model of non-central strength atomic interaction was established to explain the experimental results obtained. This model is valid at zero temperature. The temperature dependence of the elastic properties was analyzed. The influence of the elastic property variations on the specific heat of the lattice at very low temperature was investigated [fr

  4. Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials

    Directory of Open Access Journals (Sweden)

    S. Psakhie

    2013-04-01

    Full Text Available A general approach to realization of models of elasticity, plasticity and fracture of heterogeneous materials within the framework of particle-based numerical methods is proposed in the paper. It is based on building many-body forces of particle interaction, which provide response of particle ensemble correctly conforming to the response (including elastic-plastic behavior and fracture of simulated solids. Implementation of proposed approach within particle-based methods is demonstrated by the example of the movable cellular automaton (MCA method, which integrates the possibilities of particle-based discrete element method (DEM and cellular automaton methods. Emergent advantages of the developed approach to formulation of many-body interaction are discussed. Main of them are its applicability to various realizations of the concept of discrete elements and a possibility to realize various rheological models (including elastic-plastic or visco-elastic-plastic and models of fracture to study deformation and fracture of solid-phase materials and media. Capabilities of particle-based modeling of heterogeneous solids are demonstrated by the problem of simulation of deformation and fracture of particle-reinforced metal-ceramic composites.

  5. Fluid Limits for Bandwidth-Sharing Networks in Overload.

    NARCIS (Netherlands)

    Borst, S.; Egorova, R.; Zwart, A.P.

    2014-01-01

    Bandwidth-sharing networks as considered by Roberts and Massoulié [28] (Roberts JW, Massoulié L (1998) Bandwidth sharing and admission control for elastic traffic. Proc. ITC Specialist Seminar, Yokohama, Japan) provide a natural modeling framework for describing the dynamic flow-level interaction

  6. Fluid limits for bandwidth-sharing networks in overload

    NARCIS (Netherlands)

    Borst, S.C.; Egorova, R.R.; Zwart, B.

    2014-01-01

    Bandwidth-sharing networks as considered by Roberts and Massoulié [28] (Roberts JW, Massoulié L (1998) Bandwidth sharing and admission control for elastic traffic. Proc. ITC Specialist Seminar, Yokohama, Japan) provide a natural modeling framework for describing the dynamic flow-level interaction

  7. A 3D Orthotropic Elastic Continuum Damage Material Model

    Energy Technology Data Exchange (ETDEWEB)

    English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brown, Arthur A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-08-01

    A three dimensional orthotropic elastic constitutive model with continuum damage is implemented for polymer matrix composite lamina. Damage evolves based on a quadratic homogeneous function of thermodynamic forces in the orthotropic planes. A small strain formulation is used to assess damage. In order to account for large deformations, a Kirchhoff material formulation is implemented and coded for numerical simulation in Sandia’s Sierra Finite Element code suite. The theoretical formulation is described in detail. An example of material parameter determination is given and an example is presented.

  8. Process Modelling of Curing Process-Induced Internal Stress and Deformation of Composite Laminate Structure with Elastic and Viscoelastic Models

    Science.gov (United States)

    Li, Dongna; Li, Xudong; Dai, Jianfeng

    2018-06-01

    In this paper, two kinds of transient models, the viscoelastic model and the linear elastic model, are established to analyze the curing deformation of the thermosetting resin composites, and are calculated by COMSOL Multiphysics software. The two models consider the complicated coupling between physical and chemical changes during curing process of the composites and the time-variant characteristic of material performance parameters. Subsequently, the two proposed models are implemented respectively in a three-dimensional composite laminate structure, and a simple and convenient method of local coordinate system is used to calculate the development of residual stresses, curing shrinkage and curing deformation for the composite laminate. Researches show that the temperature, degree of curing (DOC) and residual stresses during curing process are consistent with the study in literature, so the curing shrinkage and curing deformation obtained on these basis have a certain referential value. Compared the differences between the two numerical results, it indicates that the residual stress and deformation calculated by the viscoelastic model are more close to the reference value than the linear elastic model.

  9. Radiation processed composite materials of wood and elastic polyester resins

    International Nuclear Information System (INIS)

    Tapolcai, I.; Czvikovszky, T.

    1983-01-01

    The radiation polymerization of multifunctional unsaturated polyester-monomer mixtures in wood forms interpenetrating network system. The mechanical resistance (compression, abrasion, hardness, etc.) of these composite materials are generally well over the original wood, however the impact strength is almost the same or even reduced, in comparison to the wood itself. An attempt is made using elastic polyester resins to produced wood-polyester composite materials with improved modulus of elasticity and impact properties. For the impregnation of European beech wood two types of elastic unsaturated polyester resins were used. The exothermic effect of radiation copolymerization of these resins in wood has been measured and the dose rate effects as well as hardening dose was determined. Felxural strength and impact properties were examined. Elastic unsaturated polyester resins improved the impact strength of wood composite materials. (author)

  10. Statistical Models for Social Networks

    NARCIS (Netherlands)

    Snijders, Tom A. B.; Cook, KS; Massey, DS

    2011-01-01

    Statistical models for social networks as dependent variables must represent the typical network dependencies between tie variables such as reciprocity, homophily, transitivity, etc. This review first treats models for single (cross-sectionally observed) networks and then for network dynamics. For

  11. Forest biomass and Armington elasticities in Europe

    International Nuclear Information System (INIS)

    Lundmark, Robert; Shahrammehr, Shima

    2011-01-01

    The purpose of this paper is to provide estimated Armington elasticities for selected European countries and for three forest biomass commodities of main interest in many energy models: roundwood, chips and particles and wood residues. The Armington elasticity is based on the assumption that a specific forest biomass commodity is differentiated by its origin. The statistically significant estimated Armington elasticities range from 0.52 for roundwood in Hungary to approximately 4.53 for roundwood in Estonia. On average, the statistically significant Armington elasticity for chips and particles over all countries is 1.7 and for wood residues and roundwood 1.3 and 1.5, respectively. These elasticities can provide benchmark values for simulation models trying to assess trade patterns of forest biomass commodities and energy policy effects for European countries or for the EU as a whole.

  12. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  13. An auxiliary graph based dynamic traffic grooming algorithm in spatial division multiplexing enabled elastic optical networks with multi-core fibers

    Science.gov (United States)

    Zhao, Yongli; Tian, Rui; Yu, Xiaosong; Zhang, Jiawei; Zhang, Jie

    2017-03-01

    A proper traffic grooming strategy in dynamic optical networks can improve the utilization of bandwidth resources. An auxiliary graph (AG) is designed to solve the traffic grooming problem under a dynamic traffic scenario in spatial division multiplexing enabled elastic optical networks (SDM-EON) with multi-core fibers. Five traffic grooming policies achieved by adjusting the edge weights of an AG are proposed and evaluated through simulation: maximal electrical grooming (MEG), maximal optical grooming (MOG), maximal SDM grooming (MSG), minimize virtual hops (MVH), and minimize physical hops (MPH). Numeric results show that each traffic grooming policy has its own features. Among different traffic grooming policies, an MPH policy can achieve the lowest bandwidth blocking ratio, MEG can save the most transponders, and MSG can obtain the fewest cores for each request.

  14. Modeling Epidemic Network Failures

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova

    2013-01-01

    This paper presents the implementation of a failure propagation model for transport networks when multiple failures occur resulting in an epidemic. We model the Susceptible Infected Disabled (SID) epidemic model and validate it by comparing it to analytical solutions. Furthermore, we evaluate...... the SID model’s behavior and impact on the network performance, as well as the severity of the infection spreading. The simulations are carried out in OPNET Modeler. The model provides an important input to epidemic connection recovery mechanisms, and can due to its flexibility and versatility be used...... to evaluate multiple epidemic scenarios in various network types....

  15. Mechanics of anisotropic spring networks.

    Science.gov (United States)

    Zhang, T; Schwarz, J M; Das, Moumita

    2014-12-01

    We construct and analyze a model for a disordered linear spring network with anisotropy. The modeling is motivated by, for example, granular systems, nematic elastomers, and ultimately cytoskeletal networks exhibiting some underlying anisotropy. The model consists of a triangular lattice with two different bond occupation probabilities, p(x) and p(y), for the linear springs. We develop an effective medium theory (EMT) to describe the network elasticity as a function of p(x) and p(y). We find that the onset of rigidity in the EMT agrees with Maxwell constraint counting. We also find beyond linear behavior in the shear and bulk modulus as a function of occupation probability in the rigid phase for small strains, which differs from the isotropic case. We compare our EMT with numerical simulations to find rather good agreement. Finally, we discuss the implications of extending the reach of effective medium theory as well as draw connections with prior work on both anisotropic and isotropic spring networks.

  16. Networks with fourfold connectivity in two dimensions.

    Science.gov (United States)

    Tessier, Frédéric; Boal, David H; Discher, Dennis E

    2003-01-01

    The elastic properties of planar, C4-symmetric networks under stress and at nonzero temperature are determined by simulation and mean field approximations. Attached at fourfold coordinated junction vertices, the networks are self-avoiding in that their elements (or bonds) may not intersect each other. Two different models are considered for the potential energy of the elements: either Hooke's law springs or flexible tethers (square well potential). For certain ranges of stress and temperature, the properties of the networks are captured by one of several models: at large tensions, the networks behave like a uniform system of square plaquettes, while at large compressions or high temperatures, they display many characteristics of an ideal gas. Under less severe conditions, mean field models with more general shapes (parallelograms) reproduce many essential features of both networks. Lastly, the spring network expands without limit at a two-dimensional tension equal to the force constant of the spring; however, it does not appear to collapse under compression, except at zero temperature.

  17. AeroPropulsoServoElasticity: Dynamic Modeling of the Variable Cycle Propulsion System

    Science.gov (United States)

    Kopasakis, George

    2012-01-01

    This presentation was made at the 2012 Fundamental Aeronautics Program Technical Conference and it covers research work for the Dynamic Modeling of the Variable cycle Propulsion System that was done under the Supersonics Project, in the area of AeroPropulsoServoElasticity. The presentation covers the objective for the propulsion system dynamic modeling work, followed by the work that has been done so far to model the variable Cycle Engine, modeling of the inlet, the nozzle, the modeling that has been done to model the affects of flow distortion, and finally presenting some concluding remarks and future plans.

  18. Extraction of fibre network architecture by X-ray tomography and prediction of elastic properties using an affine analytical model

    International Nuclear Information System (INIS)

    Tsarouchas, D.; Markaki, A.E.

    2011-01-01

    This paper proposes a method for extracting reliable architectural characteristics from complex porous structures using micro-computed tomography (μCT) images. The work focuses on a highly porous material composed of a network of fibres bonded together. The segmentation process, allowing separation of the fibres from the remainder of the image, is the most critical step in constructing an accurate representation of the network architecture. Segmentation methods, based on local and global thresholding, were investigated and evaluated by a quantitative comparison of the architectural parameters they yielded, such as the fibre orientation and segment length (sections between joints) distributions and the number of inter-fibre crossings. To improve segmentation accuracy, a deconvolution algorithm was proposed to restore the original images. The efficacy of the proposed method was verified by comparing μCT network architectural characteristics with those obtained using high resolution CT scans (nanoCT). The results indicate that this approach resolves the architecture of these complex networks and produces results approaching the quality of nanoCT scans. The extracted architectural parameters were used in conjunction with an affine analytical model to predict the axial and transverse stiffnesses of the fibre network. Transverse stiffness predictions were compared with experimentally measured values obtained by vibration testing.

  19. Entropic vs. elastic models of fragility of glass-forming liquids: Two sides of the same coin?

    Science.gov (United States)

    Sen, Sabyasachi

    2012-10-01

    The two most influential atomistic models that have been proposed in the literature to explain the temperature dependent activation energy of viscous flow of a glass-forming liquid, i.e., its fragility, are the configurational entropy model of Adam and Gibbs [J. Chem. Phys. 43, 139 (1965), 10.1063/1.1696442] and the elastic "shoving" model of Dyre et al. [J. Non-Cryst. Solids 352, 4635 (2006), 10.1016/j.jnoncrysol.2006.02.173]. Here we demonstrate a qualitative equivalence between these two models starting from the well-established general relationships between the interatomic potentials, elastic constants, structural rearrangement, and entropy in amorphous materials. The unification of these two models provides important predictions that are consistent with experimental observations and shed new light into the problem of glass transition.

  20. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  1. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  2. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  3. Phase-field models of microstructure evolution in a system with elastic inhomogeneity and defects

    Science.gov (United States)

    Hu, Shenyang

    In this thesis, the phase-field approach is employed to study the effect of elastic inhomogeneity and structural defects on phase separation kinetics and morphological evolution in bulk and film systems, the precipitation of theta ' phase (Al2Cu) in Al-Cu alloys, and solute strengthening of alloys. By combining the iteration method for calculating the elastic energy and a semi-implicit spectral method for solving the Cahn-Hilliard equation an extremely efficient phase-field model is developed for studying morphological evolution in coherent systems with large elastic inhomogeneity. Spinodal decomposition in a thin film with periodically distributed arrays of interfacial dislocations is simulated. The results show that the periodic stress field associated with the array of interfacial dislocations leads to a directional phase separation and the formation of ordered microstructures. The metastable theta' (Al2Cu) precipitates are one of the primary strengthening precipitates in Al-Cu alloys. They are of a plate-like shape with strong interfacial energy and mobility anisotropies. A phase-field model which can automatically incorporate the thermodynamic and kinetic information from databases is developed. The relationships between phase-field model parameters and material thermodynamic and kinetic properties are established. Systematic simulations of theta' growth in 1D, 2D and 3D are carried out. The growth of a single theta ' precipitate in 1D exactly reproduces the results from analytical solutions. The phase-filed model can serve as a basis for quantitative understanding of the influence of elastic energy, interface energy anisotropy and interface mobility anisotropy on the precipitation of theta' in Al-Cu alloys. Precipitates and solutes are commonly used to strengthen alloys. A phase field model of dislocation dynamics, which employs 12 order parameter fields to describe the dislocation distribution in a single fcc crystal, and one composition field to describe

  4. Facies Constrained Elastic Full Waveform Inversion

    KAUST Repository

    Zhang, Z.

    2017-05-26

    Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.

  5. Facies Constrained Elastic Full Waveform Inversion

    KAUST Repository

    Zhang, Z.; Zabihi Naeini, E.; Alkhalifah, Tariq Ali

    2017-01-01

    Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.

  6. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  7. Measurement of nu/sub e/ and anti nu/sub e/ elastic scattering as a test of the standard model

    International Nuclear Information System (INIS)

    Abe, K.; Taylor, F.E.; White, D.H.

    1982-01-01

    Various tests of standard SU(2) x U(1) model of weak interactions which can be performed by measurements of electron and muon neutrino-electron elastic scattering are reviewed. Electron neutrino-electron elastic scattering has both a neutral current part as well as a charged current part, and therefore offers a unique place to measure the interference of these two amplitudes. A measurement of the y-dependence of neutrino-electron elastic scattering can separately measure g/sub V/ and g/sub A/ as well as test for the presence of S, P, or T terms. Several measurable quantities involving cross sections and the interference term are derived from the standard model. Various design considerations for an experiment to determine the NC-CC interference term and the y-dependence of muon neutrino-electron elastic scattering are discussed

  8. VARIATIONAL PRINCIPLES FOR NONLOCAL CONTINUUM MODEL OF ORTHOTROPIC GRAPHENE SHEETS EMBEDDED IN AN ELASTIC MEDIUM

    Institute of Scientific and Technical Information of China (English)

    Sarp Adali

    2012-01-01

    Equations governing the vibrations and buckling of multilayered orthotropic graphene sheets can be expressed as a system of n partial differential equations where n refers to the number of sheets.This description is based on the continuum model of the graphene sheets which can also take the small scale effects into account by employing a nonlocal theory.In the present article a variational principle is derived for the nonlocal elastic theory of rectangular graphene sheets embedded in an elastic medium and undergoing transverse vibrations.Moreover the graphene sheets are subject to biaxial compression.Rayleigh quotients are obtained for the frequencies of freely vibrating graphene sheets and for the buckling load. The influence of small scale effects on the frequencies and the buckling load can be observed qualiatively from the expressions of the Rayleigh quotients.Elastic medium is modeled as a combination of Winkler and Pasternak foundations acting on the top and bottom layers of the mutilayered nano-structure.Natural boundary conditions of the problem are derived using the variational principle formulated in the study.It is observed that free boundaries lead to coupled boundary conditions due to nonlocal theory used in the continuum formulation while the local (classical) elasticity theory leads to uncoupled boundary conditions.The mathematical methods used in the study involve calculus of variations and the semi-inverse method for deriving the variational integrals.

  9. Numerical study on the rotation of an elastic rod in a viscous fluid using an immersed boundary method

    International Nuclear Information System (INIS)

    Maniyeri, Ranjith; Kang, Sang Mo

    2012-01-01

    We present a three dimensional computational model based on an immersed boundary (IB) method to study the hydrodynamic features of a solid flexible cylindrical rod in a viscous fluid driven at one side by a tiny motor. The elastic rod is modelled by a number of circular cross-sections with twelve IB points on each cross-section. Three types of elastic links are created from each IB point to obtain an elastic network model of the rod and the first cross-section is modelled as the motor part. The elastic forces are computed based on an elastic energy approach and the motor forces are obtained from the applied angular frequency of rotation of the motor. The Stokes equations governing the fluid are solved on a staggered Cartesian grid system using the fractional-step based finite-volume method. Numerical simulations are performed to demonstrate the three dynamical stages of rod motion- twirling, whirling and overwhirling for different rotational frequency of the motor. It is revealed that for low rotational frequencies, the rod undergoes stable rigid body motion known as twirling. For high rotational frequencies of the motor, it is observed that the rod initially undergoes whirling motion and attains an unstable helical shape. Further, it is noticed that a discontinuous shape transition occurs for the rod and it folds back on itself. This unstable motion is referred to as overwhirling. It is also found that there exists a critical value of angular frequency of rotation of the motor below which the rod is subjected to twirling motion and above which it undergoes overwhirling motion

  10. π- -12C elastic scattering above the Δ resonance using diffraction model

    International Nuclear Information System (INIS)

    Arafah, M.R.

    2008-01-01

    Phenomenological analysis of the π - - 12 C elastic scattering differential cross-section at 400, 486, 500, 584, 663, 672 and 766 MeV is presented. The analysis is made in the diffraction model framework using recently proposed parameterization of the phase-shift function. Good description of the experimental data is achieved at all energies. Microscopic interpretation of the parameters of the phase-shift function is provided in terms of Helm's model density parameters. (author)

  11. Structural Modeling and Characteristics Analysis of Flow Interaction Networks in the Internet

    International Nuclear Information System (INIS)

    Wu Xiao-Yu; Gu Ren-Tao; Pan Zhuo-Ya; Jin Wei-Qi; Ji Yue-Feng

    2015-01-01

    Applying network duality and elastic mechanics, we investigate the interactions among Internet flows by constructing a weighted undirected network, where the vertices and the edges represent the flows and the mutual dependence between flows, respectively. Based on the obtained flow interaction network, we find the existence of ‘super flow’ in the Internet, indicating that some flows have a great impact on a huge number of other flows; moreover, one flow can spread its influence to another through a limited quantity of flows (less than 5 in the experimental simulations), which shows strong small-world characteristics like the social network. To reflect the flow interactions in the physical network congestion evaluation, the ‘congestion coefficient’ is proposed as a new metric which shows a finer observation on congestion than the conventional one. (paper)

  12. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes

    Science.gov (United States)

    Matsuhisa, Naoji; Inoue, Daishi; Zalar, Peter; Jin, Hanbit; Matsuba, Yorishige; Itoh, Akira; Yokota, Tomoyuki; Hashizume, Daisuke; Someya, Takao

    2017-08-01

    Printable elastic conductors promise large-area stretchable sensor/actuator networks for healthcare, wearables and robotics. Elastomers with metal nanoparticles are one of the best approaches to achieve high performance, but large-area utilization is limited by difficulties in their processability. Here we report a printable elastic conductor containing Ag nanoparticles that are formed in situ, solely by mixing micrometre-sized Ag flakes, fluorine rubbers, and surfactant. Our printable elastic composites exhibit conductivity higher than 4,000 S cm-1 (highest value: 6,168 S cm-1) at 0% strain, and 935 S cm-1 when stretched up to 400%. Ag nanoparticle formation is influenced by the surfactant, heating processes, and elastomer molecular weight, resulting in a drastic improvement of conductivity. Fully printed sensor networks for stretchable robots are demonstrated, sensing pressure and temperature accurately, even when stretched over 250%.

  13. Global model for the lithospheric strength and effective elastic thickness

    OpenAIRE

    Magdala Tesauro; Mikhail Kaban; S. A. P. L. Cloetingh

    2013-01-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member ‘hard’ (HRM) and a ‘soft’ (SR...

  14. Elasticity and physico-chemical properties during drinking water biofilm formation.

    Science.gov (United States)

    Abe, Yumiko; Polyakov, Pavel; Skali-Lami, Salaheddine; Francius, Grégory

    2011-08-01

    Atomic force microscope techniques and multi-staining fluorescence microscopy were employed to study the steps in drinking water biofilm formation. During the formation of a conditioning layer, surface hydrophobic forces increased and the range of characteristic hydrophobic forces diversified with time, becoming progressively complex in macromolecular composition, which in return triggered irreversible cellular adhesion. AFM visualization of 1 to 8 week drinking water biofilms showed a spatially discontinuous and heterogeneous distribution comprising an extensive network of filamentous fungi in which biofilm aggregates were embedded. The elastic modulus of 40-day-old biofilms ranged from 200 to 9000 kPa, and the biofilm deposits with a height >0.5 μm had an elastic modulus water biofilms were composed of a soft top layer and a basal layer with significantly higher elastic modulus values falling in the range of fungal elasticity.

  15. Elastic anisotropy of polycrystalline Au films: Modeling and respective contributions of X-ray diffraction, nanoindentation and Brillouin light scattering

    International Nuclear Information System (INIS)

    Faurie, D.; Djemia, P.; Le Bourhis, E.; Renault, P.-O.; Roussigne, Y.; Cherif, S.M.; Brenner, R.; Castelnau, O.; Patriarche, G.; Goudeau, Ph.

    2010-01-01

    Elastic properties of non-textured and {1 1 1}-fiber-textured gold thin films were investigated experimentally by several complementary techniques, namely in situ tensile testing under X-ray diffraction (XRD), nanoindentation and Brillouin light scattering (BLS). Specimens were probed along different directions to reveal the strong effects of elastic anisotropy at the (local) grain and (global) film scales. XRD allows the investigation of both local and global anisotropies, while BLS and nanoindentation are limited to global analyses. A micromechanical model, based on the self-consistent scheme, and accounting for the actual microstructure of the films, is applied to interpret experimental data. Although different types of elastic constants can be determined with the used experimental techniques (static/dynamic, local/global), a good agreement is obtained, showing that comparison of these techniques is feasible when carried out carefully. In particular, the use of a micromechanical model to estimate the effects of the local elastic anisotropy at the film scale is unavoidable. The presented results show that XRD, BLS and nanoindentation should capture anisotropic texture effects on elastic constants measurements for materials with a Zener anisotropy index larger than 2. Conversely, the actual texture of a given specimen should be taken into account for a proper analysis of elastic constants measurements using those three experimental techniques.

  16. Allosteric transitions of supramolecular systems explored by network models: application to chaperonin GroEL.

    Directory of Open Access Journals (Sweden)

    Zheng Yang

    2009-04-01

    Full Text Available Identification of pathways involved in the structural transitions of biomolecular systems is often complicated by the transient nature of the conformations visited across energy barriers and the multiplicity of paths accessible in the multidimensional energy landscape. This task becomes even more challenging in exploring molecular systems on the order of megadaltons. Coarse-grained models that lend themselves to analytical solutions appear to be the only possible means of approaching such cases. Motivated by the utility of elastic network models for describing the collective dynamics of biomolecular systems and by the growing theoretical and experimental evidence in support of the intrinsic accessibility of functional substates, we introduce a new method, adaptive anisotropic network model (aANM, for exploring functional transitions. Application to bacterial chaperonin GroEL and comparisons with experimental data, results from action minimization algorithm, and previous simulations support the utility of aANM as a computationally efficient, yet physically plausible, tool for unraveling potential transition pathways sampled by large complexes/assemblies. An important outcome is the assessment of the critical inter-residue interactions formed/broken near the transition state(s, most of which involve conserved residues.

  17. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation.

    Science.gov (United States)

    Liebermeister, Wolfram; Uhlendorf, Jannis; Klipp, Edda

    2010-06-15

    Standard rate laws are a key requisite for systematically turning metabolic networks into kinetic models. They should provide simple, general and biochemically plausible formulae for reaction velocities and reaction elasticities. At the same time, they need to respect thermodynamic relations between the kinetic constants and the metabolic fluxes and concentrations. We present a family of reversible rate laws for reactions with arbitrary stoichiometries and various types of regulation, including mass-action, Michaelis-Menten and uni-uni reversible Hill kinetics as special cases. With a thermodynamically safe parameterization of these rate laws, parameter sets obtained by model fitting, sampling or optimization are guaranteed to lead to consistent chemical equilibrium states. A reformulation using saturation values yields simple formulae for rates and elasticities, which can be easily adjusted to the given stationary flux distributions. Furthermore, this formulation highlights the role of chemical potential differences as thermodynamic driving forces. We compare the modular rate laws to the thermodynamic-kinetic modelling formalism and discuss a simplified rate law in which the reaction rate directly depends on the reaction affinity. For automatic handling of modular rate laws, we propose a standard syntax and semantic annotations for the Systems Biology Markup Language. An online tool for inserting the rate laws into SBML models is freely available at www.semanticsbml.org. Supplementary data are available at Bioinformatics online.

  18. Proton-proton elastic scattering at ultrahigh energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1981-05-30

    The authors use a geometrical model of high-energy pp elastic scattering as proposed by Chou and Yong to analyse experimental data available at present and consider the predictions of the dipole pomeron model for pp elastic scattering at ultrahigh energies. Theoretical results for differential cross sections are compared with experimental data.

  19. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  20. Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps

    CERN Document Server

    Bergami, Leonardo

    2014-01-01

    A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam

  1. On the the Contact Lens Problem: Modeling Rigid and Elastic Beams on Thin Films

    Science.gov (United States)

    Trinh, Philippe; Wilson, Stephen; Stone, Howard

    2011-11-01

    Generally, contact lenses are prescribed by the practitioner to fit each individual patient's eye, but these fitting-philosophies are based on empirical studies and a certain degree of trial-and-error. A badly fitted lens can cause a range of afflictions, which varies from mild dry-eye-discomfort, to more serious corneal diseases. Thus, at this heart of this problem, is the question of how a rigid or elastic plate interacts with the free-surface of a thin viscous film. In this talk, we present several mathematical models for the study of these plate-and-fluid problems. Asymptotic and numerical results are described, and we explain the role of elasticity, surface tension, viscosity, and pressure in determining the equilibrium solutions. Finally, we discuss the implications of our work on the contact lens problem, as well as on other coating processes which involve elastic substrates.

  2. Split-Ring Springback Simulations with the Non-associated Flow Rule and Evolutionary Elastic-Plasticity Models

    Science.gov (United States)

    Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.

    2018-06-01

    Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.

  3. Quantitative stress measurement of elastic deformation using mechanoluminescent sensor: An intensity ratio model

    Science.gov (United States)

    Cai, Tao; Guo, Songtao; Li, Yongzeng; Peng, Di; Zhao, Xiaofeng; Liu, Yingzheng

    2018-04-01

    The mechanoluminescent (ML) sensor is a newly developed non-invasive technique for stress/strain measurement. However, its application has been mostly restricted to qualitative measurement due to the lack of a well-defined relationship between ML intensity and stress. To achieve accurate stress measurement, an intensity ratio model was proposed in this study to establish a quantitative relationship between the stress condition and its ML intensity in elastic deformation. To verify the proposed model, experiments were carried out on a ML measurement system using resin samples mixed with the sensor material SrAl2O4:Eu2+, Dy3+. The ML intensity ratio was found to be dependent on the applied stress and strain rate, and the relationship acquired from the experimental results agreed well with the proposed model. The current study provided a physical explanation for the relationship between ML intensity and its stress condition. The proposed model was applicable in various SrAl2O4:Eu2+, Dy3+-based ML measurement in elastic deformation, and could provide a useful reference for quantitative stress measurement using the ML sensor in general.

  4. Tuition Elasticity of the Demand for Higher Education among Current Students: A Pricing Model.

    Science.gov (United States)

    Bryan, Glenn A.; Whipple, Thomas W.

    1995-01-01

    A pricing model is offered, based on retention of current students, that colleges can use to determine appropriate tuition. A computer-based model that quantifies the relationship between tuition elasticity and projected net return to the college was developed and applied to determine an appropriate tuition rate for a small, private liberal arts…

  5. Mimicking the effect of gravity using an elastic membrane

    International Nuclear Information System (INIS)

    Wu, Yecun; Zhu, Changqing; Wang, Yijun; Shi, Qingfan

    2014-01-01

    Comparing astrospace with an elastic membrane is an interesting analogy but it lacks a theoretical basis and experimental support. We develop a theoretical model that brings to light the relationship between the conceptual model of a gravity well and an elastic deformation equation of a membrane supporting a heavy ball, and further derive the ‘gravitational constant’ for such a small ‘elastic space’. The experimental data obtained are consistent with the prediction of our model, in mimicking the revolution of a small planet. Teaching practice shows that using an elastic membrane is a simple, intuitive and reliable method to enhance the quality of learning about the effect of gravity. (paper)

  6. Postbuckling of magneto-electro-elastic CNT-MT composite nanotubes resting on a nonlinear elastic medium in a non-uniform thermal environment

    Science.gov (United States)

    Kamali, M.; Shamsi, M.; Saidi, A. R.

    2018-03-01

    As a first endeavor, the effect of nonlinear elastic foundation on the postbuckling behavior of smart magneto-electro-elastic (MEE) composite nanotubes is investigated. The composite nanotube is affected by a non-uniform thermal environment. A typical MEE composite nanotube consists of microtubules (MTs) and carbon nanotubes (CNTs) with a MEE cylindrical nanoshell for smart control. It is assumed that the nanoscale layers of the system are coupled by a polymer matrix or filament network depending on the application. In addition to thermal loads, magneto-electro-mechanical loads are applied to the composite nanostructure. Length scale effects are taken into account using the nonlocal elasticity theory. The principle of virtual work and von Karman's relations are used to derive the nonlinear governing differential equations of MEE CNT-MT nanotubes. Using Galerkin's method, nonlinear critical buckling loads are determined. Various types of non-uniform temperature distribution in the radial direction are considered. Finally, the effects of various parameters such as the nonlinear constant of elastic medium, thermal loading factor and small scale coefficient on the postbuckling of MEE CNT-MT nanotubes are studied.

  7. Effective elastic properties of damaged isotropic solids

    International Nuclear Information System (INIS)

    Lee, U Sik

    1998-01-01

    In continuum damage mechanics, damaged solids have been represented by the effective elastic stiffness into which local damage is smoothly smeared. Similarly, damaged solids may be represented in terms of effective elastic compliances. By virtue of the effective elastic compliance representation, it may become easier to derive the effective engineering constants of damaged solids from the effective elastic compliances, all in closed form. Thus, in this paper, by using a continuum modeling approach based on both the principle of strain energy equivalence and the equivalent elliptical micro-crack representation of local damage, the effective elastic compliance and effective engineering constants are derived in terms of the undamaged (virgin) elastic properties and a scalar damage variable for both damaged two-and three-dimensional isotropic solids

  8. Token-Aware Completion Functions for Elastic Processor Verification

    Directory of Open Access Journals (Sweden)

    Sudarshan K. Srinivasan

    2009-01-01

    Full Text Available We develop a formal verification procedure to check that elastic pipelined processor designs correctly implement their instruction set architecture (ISA specifications. The notion of correctness we use is based on refinement. Refinement proofs are based on refinement maps, which—in the context of this problem—are functions that map elastic processor states to states of the ISA specification model. Data flow in elastic architectures is complicated by the insertion of any number of buffers in any place in the design, making it hard to construct refinement maps for elastic systems in a systematic manner. We introduce token-aware completion functions, which incorporate a mechanism to track the flow of data in elastic pipelines, as a highly automated and systematic approach to construct refinement maps. We demonstrate the efficiency of the overall verification procedure based on token-aware completion functions using six elastic pipelined processor models based on the DLX architecture.

  9. Generalized Network Psychometrics : Combining Network and Latent Variable Models

    NARCIS (Netherlands)

    Epskamp, S.; Rhemtulla, M.; Borsboom, D.

    2017-01-01

    We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between

  10. Brazilian sawn wood price and income elasticity

    Directory of Open Access Journals (Sweden)

    Rommel Noce

    2010-09-01

    Full Text Available This study estimated the sawn wood demand price and income elasticity. Specifically it was estimated the priceelasticity of sawn wood, the cross price elasticity of wood panels and the income elasticity of Brazilian GDP. A log-log model withcorrection through outline of the mobile average (MA(1 was used, adjusted for the period of 1971 to 2006, which showed to bestable, with satisfactory significance levels. It was observed that sawn wood demand is inelastic in relation to price and elastic inrelation to income.

  11. Probabilistic Elastic Part Model: A Pose-Invariant Representation for Real-World Face Verification.

    Science.gov (United States)

    Li, Haoxiang; Hua, Gang

    2018-04-01

    Pose variation remains to be a major challenge for real-world face recognition. We approach this problem through a probabilistic elastic part model. We extract local descriptors (e.g., LBP or SIFT) from densely sampled multi-scale image patches. By augmenting each descriptor with its location, a Gaussian mixture model (GMM) is trained to capture the spatial-appearance distribution of the face parts of all face images in the training corpus, namely the probabilistic elastic part (PEP) model. Each mixture component of the GMM is confined to be a spherical Gaussian to balance the influence of the appearance and the location terms, which naturally defines a part. Given one or multiple face images of the same subject, the PEP-model builds its PEP representation by sequentially concatenating descriptors identified by each Gaussian component in a maximum likelihood sense. We further propose a joint Bayesian adaptation algorithm to adapt the universally trained GMM to better model the pose variations between the target pair of faces/face tracks, which consistently improves face verification accuracy. Our experiments show that we achieve state-of-the-art face verification accuracy with the proposed representations on the Labeled Face in the Wild (LFW) dataset, the YouTube video face database, and the CMU MultiPIE dataset.

  12. Mathematical model of rolling an elastic wheel over deformable support base

    Science.gov (United States)

    Volskaia, V. N.; Zhileykin, M. M.; Zakharov, A. Y.

    2018-02-01

    to provide the most accurate description of the interaction process of a wheeled propulsion devices and the ground, also this method allows to define tension in the ground, deformation of the ground and the tire and ground’s compression. However, the high laboriousness of computations is essential shortcoming of that method therefore it’s hard to use these models as part of the general motion model of multi-axis wheeled vehicles. The purpose of this research is the elaboration of mathematical model of elastic wheel rolling over deformable rough support base taking into account the contact patch deformation. The mathematical model of rectilinear rolling an elastic wheel over rough deformable support base, taking into account variation of contact patch area and variation in the direction of the radial and tangential reactions also load bearing capacity of the ground, is developed. The efficiency of developed mathematical model of rectilinear rolling an elastic wheel over rough deformable support base is proved by the simulation methods.

  13. Bayesian Network Webserver: a comprehensive tool for biological network modeling.

    Science.gov (United States)

    Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan

    2013-11-01

    The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.

  14. Folding models for elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1982-01-01

    The most widely used models are the optical model potential (OMP) for elastic scattering, and its generalization to non-spherical shapes, the deformed optical model potential (DOMP) for inelastic scattering. These models are simple and phenomenological; their parameters are adjusted so as to reproduce empirical data. Nonetheless, there are certain, not always well-defined, constraints to be imposed. The potential shapes and their parameter values must be reasonable and should vary in a smooth and systematic way with the masses of the colliding nuclei and their energy. One way of satisfying these constraints, without going back to a much more fundamental theory, is through the use of folding models. The basic justification for using potentials of the Woods-Saxon shape for nucleon-nucleus scattering, for example, is our knowledge that a nuclear density distribution is more-or-less constant in the nuclear interior with a diffuse surface. When this is folded with a short-range nucleon-nucleon interaction, the result is a similar shape with a more diffuse surface. Folding procedures allow us to incorporate many aspects of nuclear structure (although the nuclear size is one of the most important), as well as theoretical ideas about the effective interaction of two nucleons within nuclear matter. It also provides us with a means of linking information obtained from nuclear (hadronic) interactions with that from other sources, as well as correlating that from the use of different hadronic probes. Folding model potentials, single-folded potentials, and the double-folding model including applications to heavy-ion scattering are discussed

  15. Eight challenges for network epidemic models

    Directory of Open Access Journals (Sweden)

    Lorenzo Pellis

    2015-03-01

    Full Text Available Networks offer a fertile framework for studying the spread of infection in human and animal populations. However, owing to the inherent high-dimensionality of networks themselves, modelling transmission through networks is mathematically and computationally challenging. Even the simplest network epidemic models present unanswered questions. Attempts to improve the practical usefulness of network models by including realistic features of contact networks and of host–pathogen biology (e.g. waning immunity have made some progress, but robust analytical results remain scarce. A more general theory is needed to understand the impact of network structure on the dynamics and control of infection. Here we identify a set of challenges that provide scope for active research in the field of network epidemic models.

  16. Three dimensional vibration and bending analysis of carbon nanotubes embedded in elastic medium based on theory of elasticity

    Directory of Open Access Journals (Sweden)

    M. Shaban

    Full Text Available This paper studies free vibration and bending behavior of singlewalled carbon nanotubes (SWCNTs embedded on elastic medium based on three-dimensional theory of elasticity. To accounting the size effect of carbon nanotubes, non-local theory is adopted to shell model. The nonlocal parameter is incorporated into all constitutive equations in three dimensions. The surrounding medium is modeled as two-parameter elastic foundation. By using Fourier series expansion in axial and circumferential direction, the set of coupled governing equations are reduced to the ordinary differential equations in thickness direction. Then, the state-space method as an efficient and accurate method is used to solve the resulting equations analytically. Comprehensive parametric studies are carried out to show the influences of the nonlocal parameter, radial and shear elastic stiffness, thickness-to-radius ratio and radiusto-length ratio.

  17. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  18. Complex networks-based energy-efficient evolution model for wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Hailin [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China)], E-mail: zhuhailin19@gmail.com; Luo Hong [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China); Peng Haipeng; Li Lixiang; Luo Qun [Information Secure Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China)

    2009-08-30

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  19. Complex networks-based energy-efficient evolution model for wireless sensor networks

    International Nuclear Information System (INIS)

    Zhu Hailin; Luo Hong; Peng Haipeng; Li Lixiang; Luo Qun

    2009-01-01

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  20. A network model of correlated growth of tissue stiffening in pulmonary fibrosis

    Science.gov (United States)

    Oliveira, Cláudio L. N.; Bates, Jason H. T.; Suki, Béla

    2014-06-01

    During the progression of pulmonary fibrosis, initially isolated regions of high stiffness form and grow in the lung tissue due to collagen deposition by fibroblast cells. We have previously shown that ongoing collagen deposition may not lead to significant increases in the bulk modulus of the lung until these local remodeled regions have become sufficiently numerous and extensive to percolate in a continuous path across the entire tissue (Bates et al 2007 Am. J. Respir. Crit. Care Med. 176 617). This model, however, did not include the possibility of spatially correlated deposition of collagen. In the present study, we investigate whether spatial correlations influence the bulk modulus in a two-dimensional elastic network model of lung tissue. Random collagen deposition at a single site is modeled by increasing the elastic constant of the spring at that site by a factor of 100. By contrast, correlated collagen deposition is represented by stiffening the springs encountered along a random walk starting from some initial spring, the rationale being that excess collagen deposition is more likely in the vicinity of an already stiff region. A combination of random and correlated deposition is modeled by performing random walks of length N from randomly selected initial sites, the balance between the two processes being determined by N. We found that the dependence of bulk modulus, B(N,c), on both N and the fraction of stiff springs, c, can be described by a strikingly simple set of empirical equations. For c0.8, B(N,c) is linear in c and independent of N, such that B(N,c)=100\\;{{B}_{0}}-100{{a}_{III}}(1-c){{B}_{0}}, where {{a}_{III}}=2.857. For small concentrations, the physiologically most relevant regime, the forces in the network springs are distributed according to a power law. When c = 0.3, the exponent of this power law increases from -4.5, when N = 1, and saturates to about -2, as N increases above 40. These results suggest that the spatial correlation of

  1. Elastic spheres can walk on water.

    Science.gov (United States)

    Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T

    2016-02-04

    Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.

  2. Turbofan Volume Dynamics Model for Investigations of Aero-Propulso-Servo-Elastic Effects in a Supersonic Commercial Transport

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George; Lemon, Kimberly A.

    2010-01-01

    A turbofan simulation has been developed for use in aero-propulso-servo-elastic coupling studies, on supersonic vehicles. A one-dimensional lumped volume approach is used whereby each component (fan, high-pressure compressor, combustor, etc.) is represented as a single volume using characteristic performance maps and conservation equations for continuity, momentum and energy. The simulation is developed in the MATLAB/SIMULINK (The MathWorks, Inc.) environment in order to facilitate controls development, and ease of integration with a future aero-servo-elastic vehicle model being developed at NASA Langley. The complete simulation demonstrated steady state results that closely match a proposed engine suitable for a supersonic business jet at the cruise condition. Preliminary investigation of the transient simulation revealed expected trends for fuel flow disturbances as well as upstream pressure disturbances. A framework for system identification enables development of linear models for controller design. Utilizing this framework, a transfer function modeling an upstream pressure disturbance s impacts on the engine speed is developed as an illustrative case of the system identification. This work will eventually enable an overall vehicle aero-propulso-servo-elastic model

  3. Brand Marketing Model on Social Networks

    Directory of Open Access Journals (Sweden)

    Jolita Jezukevičiūtė

    2014-04-01

    Full Text Available The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalysis of a single case study revealed a brand marketingsocial networking tools that affect consumers the most. Basedon information analysis and methodological studies, develop abrand marketing model on social networks.

  4. Water hammer in elastic pipes

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2002-01-01

    One dimensional two-fluid six-equation model of two-phase flow, that can be found in computer codes like RELAP5, TRAC, and CATHARE, was upgraded with additional terms, which enable modelling of the pressure waves in elastic pipes. It is known that pipe elasticity reduces the propagation velocity of the shock and other pressure waves in the piping systems. Equations that include the pipe elasticty terms are used in WAHA code, which is being developed within the WAHALoads project of 5't'h EU research program.(author)

  5. Introducing Synchronisation in Deterministic Network Models

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.

    2006-01-01

    The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading...... to the suggestion of suitable network models. An existing model for flow control is presented and an inherent weakness is revealed and remedied. Examples are given and numerically analysed through deterministic network modelling. Results are presented to highlight the properties of the suggested models...

  6. Inferred demand and supply elasticities from a comparison of world oil models

    International Nuclear Information System (INIS)

    Huntington, H.G.

    1992-01-01

    This paper summarizes the responses of oil supply and demand to prices and income in 11 world oil models that were compared in a recent Energy Modeling Forum (EMF) study. In May 1989, the EMF commenced a study of international oil supplies and demands (hereafter, EMF-11) to compare alternative perspectives on supply and demand issues and how these developments influence the level and direction of world oil prices. In analysing these issues, the EMF-11 working group relied partly upon results from 11 world oil models, using standardized assumptions about oil prices and gross domestic product (GDP). During the study, inferred price elasticities of supply and demand were derived from a comparison of results across different oil price scenarios with the same GDP growth path. Inferred income elasticities of demand were derived from a comparison of results across different economic growth scenarios with the same oil price-path. Together, these estimates summarize several important relationships for understanding oil markets. The first section provides some background on the EMF study and on general trends in the scenarios of interest that help to understand the results. Following sections explain the derivation and qualifications of the inferred estimates, report the results and summarize the key conclusions. (author)

  7. A mathematical model of the rail track presented as a bar on elastic and dissipative supports under the influence of moving loads

    Directory of Open Access Journals (Sweden)

    Darenskiy Alexander

    2017-01-01

    Full Text Available At present, the most common track model is the one in which rails are presented as bars of infinite length rested on continuous elastic foundation. However, some specialists consider the model to be rather ideal for railways in terms of track and the technical state of track. Calculation of track as a bar rested on numerous elastic supports with variable characteristics of stiffness under static loads has shown that application of methods of elastic foundation gives results understated by 17-24%. The study presents mathematic models of the vehicle/track dynamic system, and a design scheme of track presented as a bar on numerous elastic dissipative supports with non-linear characteristics, which is taken on the base of this system. The authors developed models and methods to define the reduced vertical stiffness of the track in the wheel/rail contact point, which considers rail elastic and geometric characteristics, stiffness of supports, distance between supports and distributed track mass. The value of stiffness is variable by time for each wheel at any time and various for the vehicle’s wheels. The mathematical model proposed has been implemented in Matlab software and will make it possible to conduct numerical research into the track/vehicle dynamics.

  8. A fully microscopic model of 200 MeV proton-12C elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Karataglidis, S.; Dortmans, P.J.; Amos, K.; de Swiniarski, R.

    1996-01-01

    An effective two nucleon (NN) interaction in the nuclear medium is defined from an accurate mapping of the NN g matrices obtained by solving the Brueckner-Bethe-Goldstone equations for infinite nuclear matter. That effective interaction is used in a fully microscopic calculation of the nonlocal effective proton- 12 C interaction from which are obtained predictions of the differential cross section and analysing power for 200 MeV elastic scattering. The relative motion wave functions so found are used as the distorted waves in a distorted wave approximation (DWA) study of select inelastic scattering events. The effective NN interaction is used as the transition operator in those calculations. The relevant nuclear spectroscopy for the elastic and DWA (p, p') calculations is found from a full (0 + 2) ℎω shell model evaluation of the positive parity states while a restricted (1 + 3)ℎω has been used to give the negative parity states. Results are compared with those of the 0p-shell model of Cohen and Kurath or with those based upon axially symmetric, projected Hartree-Fock calculations. The diverse structure model wave functions are assessed by using them in calculations to compare with measured longitudinal, transverse electric and transverse magnetic form factors from electron scattering to many of the excited states of 12 C. Using those models of the structure of 12 C in the completely microscopic model of the elastic and inelastic scattering of 200 MeV protons, good fits have been found to the cross section and analysing power data. 50 refs., 3 tabs., 20 figs

  9. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi

    International Nuclear Information System (INIS)

    Qiu, S.; Clausen, B.; Padula, S.A.; Noebe, R.D.; Vaidyanathan, R.

    2011-01-01

    A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.

  10. Modeling Network Interdiction Tasks

    Science.gov (United States)

    2015-09-17

    118 xiii Table Page 36 Computation times for weighted, 100-node random networks for GAND Approach testing in Python ...in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 38 Accuracy measures for weighted, 100-node random networks for GAND...networks [15:p. 1]. A common approach to modeling network interdiction is to formulate the problem in terms of a two-stage strategic game between two

  11. Mobility Models for Next Generation Wireless Networks Ad Hoc, Vehicular and Mesh Networks

    CERN Document Server

    Santi, Paolo

    2012-01-01

    Mobility Models for Next Generation Wireless Networks: Ad Hoc, Vehicular and Mesh Networks provides the reader with an overview of mobility modelling, encompassing both theoretical and practical aspects related to the challenging mobility modelling task. It also: Provides up-to-date coverage of mobility models for next generation wireless networksOffers an in-depth discussion of the most representative mobility models for major next generation wireless network application scenarios, including WLAN/mesh networks, vehicular networks, wireless sensor networks, and

  12. Numerical Modeling and Experimental Study of Elastic-Plastic Behavior of Carbon Nanotubes Reinforced Nanocompsites of PA6/NBR Using a Microfinite Element Model

    Directory of Open Access Journals (Sweden)

    Mir Hamid Reza Ghoreishy

    2014-12-01

    Full Text Available A theoretical and experimental study was conducted on the mechanical behavior of nanocomposites based on PA6/NBR thermoplastic elastomer reinforced by single wall carbon nanotubes (SWNTs. The selected samples include 60 and 40% NBR with 0.5, 1.0 and 1.5% SWNT. The modeling methodology was based on the use of two-dimensional "representative volume elements" (RVE. The Abaqus/standard code was employed to carry out the non-linear finite element calculations. Plane stress elements were selected for discretization of the domain. Linear elastic and isotropic hardening elastic-plastic models were utilized to describe the mechanical behaviors of the carbon nanotubes and polymer matrix, respectively. The samples were simultaneously prepared using melt mixing method in a laboratory internal mixer. Different orientations including regular in both longitudinal and transverse directions and random were selected for the nanotubes in the matrix. Also, two structural forms including hollow and solid for the carbon nanotubes were chosen. The highest and lowest predicted moduli were obtained from models with regular orientation in longitudinal and transverse directions, respectively. On the other hand, comparison between the predicted elastic modulus and elastic-plastic behaviors of the samples with their corresponding experimental data revealed that the random orientation in conjunction with hollow structural form gives the best results. Moreover, the selected material model for the thermoplastic elastomer i.e., isotropic hardening can precisely describe the mechanical behavior in both tension and compression modes. It is also concluded that the main source of error in this modeling methodology can be attributed to the effects of interface between polymer and nanotubes and orientation in perpendicular directions.

  13. Complex Networks in Psychological Models

    Science.gov (United States)

    Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.

    We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.

  14. A Novel Dedicated Route Protection Scheme for Survivability of Link Failure in Elastic Optical Networks

    Directory of Open Access Journals (Sweden)

    Sridhar Iyer

    2017-11-01

    Full Text Available The spectrally efficient transportation of the high bit rate(s data is achievable by the Elastic optical networks (EONs. However, in the EONs, owing to the failure occurrence even in an individual simple element, different service(s maybe interrupted. Hence, it is imperative that the schemes for survivability be developed so that the issues due to the possible failure(s can be overcome. In the current work, in view of survivability of the link failure(s in the EONs, we propose the Spectrum Continuity and Contiguity Established DRP (SCC-E-DRP algorithm which is a novel dedicated route protection (DRP scheme that attempts to avoid the problem of trap topology during its exploration for a pair of link disjoint path. Further, to evaluate the link disjoint paths, we resort to the use of the SCC Established Shortest Route (SCC-E-SR algorithm which is a modified Dijkstra’s algorithm based scheme that selects the path(s pair(s based on the end-toend SCC. We conduct extensive simulations considering realistic network topologies, and compare the performance of the SCCE-DRP scheme with the existing techniques. The obtained results show that, compared to the existing schemes, the SCC-E-DRP scheme achieves better results in terms of blocking probability.

  15. Topology determines force distributions in one-dimensional random spring networks

    Science.gov (United States)

    Heidemann, Knut M.; Sageman-Furnas, Andrew O.; Sharma, Abhinav; Rehfeldt, Florian; Schmidt, Christoph F.; Wardetzky, Max

    2018-02-01

    Networks of elastic fibers are ubiquitous in biological systems and often provide mechanical stability to cells and tissues. Fiber-reinforced materials are also common in technology. An important characteristic of such materials is their resistance to failure under load. Rupture occurs when fibers break under excessive force and when that failure propagates. Therefore, it is crucial to understand force distributions. Force distributions within such networks are typically highly inhomogeneous and are not well understood. Here we construct a simple one-dimensional model system with periodic boundary conditions by randomly placing linear springs on a circle. We consider ensembles of such networks that consist of N nodes and have an average degree of connectivity z but vary in topology. Using a graph-theoretical approach that accounts for the full topology of each network in the ensemble, we show that, surprisingly, the force distributions can be fully characterized in terms of the parameters (N ,z ) . Despite the universal properties of such (N ,z ) ensembles, our analysis further reveals that a classical mean-field approach fails to capture force distributions correctly. We demonstrate that network topology is a crucial determinant of force distributions in elastic spring networks.

  16. Anisotropy function for proton-proton elastic scattering

    International Nuclear Information System (INIS)

    Saleem, Mohammad; Fazal-e-Aleem; Azhar, I.A.

    1990-01-01

    By using the generalized Chou-Yang model and the experimental data on pp elastic scattering at 53 GeV, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction pp→pp. (author)

  17. Passive and active ventricular elastances of the left ventricle

    Directory of Open Access Journals (Sweden)

    Ng Eddie YK

    2005-02-01

    Full Text Available Abstract Background Description of the heart as a pump has been dominated by models based on elastance and compliance. Here, we are presenting a somewhat new concept of time-varying passive and active elastance. The mathematical basis of time-varying elastance of the ventricle is presented. We have defined elastance in terms of the relationship between ventricular pressure and volume, as: dP = EdV + VdE, where E includes passive (Ep and active (Ea elastance. By incorporating this concept in left ventricular (LV models to simulate filling and systolic phases, we have obtained the time-varying expression for Ea and the LV-volume dependent expression for Ep. Methods and Results Using the patient's catheterization-ventriculogram data, the values of passive and active elastance are computed. Ea is expressed as: ; Epis represented as: . Ea is deemed to represent a measure of LV contractility. Hence, Peak dP/dt and ejection fraction (EF are computed from the monitored data and used as the traditional measures of LV contractility. When our computed peak active elastance (Ea,max is compared against these traditional indices by linear regression, a high degree of correlation is obtained. As regards Ep, it constitutes a volume-dependent stiffness property of the LV, and is deemed to represent resistance-to-filling. Conclusions Passive and active ventricular elastance formulae can be evaluated from a single-beat P-V data by means of a simple-to-apply LV model. The active elastance (Ea can be used to characterize the ventricle's contractile state, while passive elastance (Ep can represent a measure of resistance-to-filling.

  18. Multi-Objective Demand Response Model Considering the Probabilistic Characteristic of Price Elastic Load

    Directory of Open Access Journals (Sweden)

    Shengchun Yang

    2016-01-01

    Full Text Available Demand response (DR programs provide an effective approach for dealing with the challenge of wind power output fluctuations. Given that uncertain DR, such as price elastic load (PEL, plays an important role, the uncertainty of demand response behavior must be studied. In this paper, a multi-objective stochastic optimization problem of PEL is proposed on the basis of the analysis of the relationship between price elasticity and probabilistic characteristic, which is about stochastic demand models for consumer loads. The analysis aims to improve the capability of accommodating wind output uncertainty. In our approach, the relationship between the amount of demand response and interaction efficiency is developed by actively participating in power grid interaction. The probabilistic representation and uncertainty range of the PEL demand response amount are formulated differently compared with those of previous research. Based on the aforementioned findings, a stochastic optimization model with the combined uncertainties from the wind power output and the demand response scenario is proposed. The proposed model analyzes the demand response behavior of PEL by maximizing the electricity consumption satisfaction and interaction benefit satisfaction of PEL. Finally, a case simulation on the provincial power grid with a 151-bus system verifies the effectiveness and feasibility of the proposed mechanism and models.

  19. Study of the proton-proton elastic scattering at high energies through eikonal models

    International Nuclear Information System (INIS)

    Martini, Alvaro Favinha

    1995-01-01

    The proton-proton elastic scattering in the center of mass energy region 23 to 63 GeV is investigated through a multiple diffraction model. As an introduction to the subject, a detailed review of the fundamental basis of the Multiple Diffraction Formalism and a survey of the multiple diffraction models (geometrical) currently used are presented. The goal of this investigation is to reformulate one of these models, which makes use of an elementary (parton-parton) amplitude purely imaginary and is not able to predict the ρ-parameter (the ratio of the forward real and imaginary parts of the hadronic amplitude). Introducing a real part for the elementary amplitude proportional to the imaginary part, improvements in the formalism are obtained. It is shown that this new approach is able to reproduce all experimental data on differential and integrated cross sections (total, elastic and inelastic), but not the ρ-parameter as function of the energy. Then, starting from fitting of this parameter an overall reproduction of the physical observables is obtained, with the exception of the dip region (diffractive minimum in the differential cross section) overall description are also not firmly reached in all these models. Finally, alternatives to improve the results in a future research are suggested and discussed. (author)

  20. Dynamic elasticity measurement for prosthetic socket design.

    Science.gov (United States)

    Kim, Yujin; Kim, Junghoon; Son, Hyeryon; Choi, Youngjin

    2017-07-01

    The paper proposes a novel apparatus to measure the dynamic elasticity of human limb in order to help the design and fabrication of the personalized prosthetic socket. To take measurements of the dynamic elasticity, the desired force generated as an exponential chirp signal in which the frequency increases and amplitude is maintained according to time progress is applied to human limb and then the skin deformation is recorded, ultimately, to obtain the frequency response of its elasticity. It is referred to as a Dynamic Elasticity Measurement Apparatus (DEMA) in the paper. It has three core components such as linear motor to provide the desired force, loadcell to implement the force feedback control, and potentiometer to record the skin deformation. After measuring the force/deformation and calculating the dynamic elasticity of the limb, it is visualized as 3D color map model of the limb so that the entire dynamic elasticity can be shown at a glance according to the locations and frequencies. For the visualization, the dynamic elasticities measured at specific locations and frequencies are embodied using the color map into 3D limb model acquired by using 3D scanner. To demonstrate the effectiveness, the visualized dynamic elasticities are suggested as outcome of the proposed system, although we do not have any opportunity to apply the proposed system to the amputees. Ultimately, it is expected that the proposed system can be utilized to design and fabricate the personalized prosthetic socket in order for releasing the wearing pain caused by the conventional prosthetic socket.

  1. Pricing perpetual American options under multiscale stochastic elasticity of variance

    International Nuclear Information System (INIS)

    Yoon, Ji-Hun

    2015-01-01

    Highlights: • We study the effects of the stochastic elasticity of variance on perpetual American option. • Our SEV model consists of a fast mean-reverting factor and a slow mean-revering factor. • A slow scale factor has a very significant impact on the option price. • We analyze option price structures through the market prices of elasticity risk. - Abstract: This paper studies pricing the perpetual American options under a constant elasticity of variance type of underlying asset price model where the constant elasticity is replaced by a fast mean-reverting Ornstein–Ulenbeck process and a slowly varying diffusion process. By using a multiscale asymptotic analysis, we find the impact of the stochastic elasticity of variance on the option prices and the optimal exercise prices with respect to model parameters. Our results enhance the existing option price structures in view of flexibility and applicability through the market prices of elasticity risk

  2. Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids

    International Nuclear Information System (INIS)

    Wang Weihua

    2011-01-01

    We study the similarity and correlations between relaxations and plastic deformation in metallic glasses (MGs) and MG-forming liquids. It is shown that the microscope plastic events, the initiation and formation of shear bands, and the mechanical yield in MGs where the atomic sites are topologically unstable induced by applied stress, can be treated as the glass to supercooled liquid state transition induced by external shear stress. On the other hand, the glass transition, the primary and secondary relaxations, plastic deformation and yield can be attributed to the free volume increase induced flow, and the flow can be modeled as the activated hopping between the inherent states in the potential energy landscape. We then propose an extended elastic model to describe the flow based on the energy landscape theory. That is, the flow activation energy density is linear proportional to the instantaneous elastic moduli, and the activation energy density ρ E is determined to be a simple expression of ρ E =(10/11)G+(1/11)K. The model indicates that both shear and bulk moduli are critical parameters accounting for both the homogeneous and inhomogeneous flows in MGs and MG-forming liquids. The elastic model is experimentally certified. We show that the elastic perspectives offers a simple scenario for the flow in MGs and MG-forming liquids and are suggestive for understanding the glass transition, plastic deformation, and nature and characteristics of MGs

  3. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  4. First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    International Nuclear Information System (INIS)

    Yun-Jiang, Wang; Chong-Yu, Wang

    2009-01-01

    A model system consisting of Ni[001](100)/Ni 3 Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni 3 Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni 3 Al multilayer can be well predicted by the Voigt–Reuss–Hill rule of mixtures. (classical areas of phenomenology)

  5. Quantification the Effect of the Thickness of Thin Films on their Elastic Parameters

    International Nuclear Information System (INIS)

    Gacem, A.; Doghmane, A.; Hadjoub, Z

    2011-01-01

    The determination of the characteristics and properties of thin films deposited on substrates is necessary in any device application in various fields. Adequate mechanical properties are highly required for the majority of surface waves and semiconductor devices. In this context, modelling the ultrasonic-material interaction, we present results of simulation curves of acoustic signatures for multiple thin film/substrate combinations. The results obtained on several structures (Al, SiO 2 , ZnO, Cu, AlN, SiC and Cr)/(Al 2 O 3 , Si, Cu or Quartz) showed a velocity dispersion of the Rayleigh wave as a function of layer thickness. The development of a theoretical calculation model based on the acoustic behaviour of these structures has enabled us to quantify the dispersive evolution (positive and negative) density. Thus, we have established a universal relationship describing the density-thickness variation. In addition, networks of dispersion curves, representing the evolution of elasticity modulus (Young and shear), were determined. These charts can be used to extract the influence of thickness of layers on the variation of elastic constants.(author)

  6. Anisotropy function for proton-proton elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Mohammad; Fazal-e-Aleem; Azhar, I.A. (Punjab Univ., Lahore (Pakistan). Centre for High Energy Physics)

    1990-07-01

    By using the generalized Chou-Yang model and the experimental data on pp elastic scattering at 53 GeV, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction pp{yields}pp. (author).

  7. Analysing power for quasi-elastic pp scattering in carbon and for elastic pp scattering on free protons

    International Nuclear Information System (INIS)

    Bystricky, J.; Deregel, J.; Lehar, F.

    1984-01-01

    The ratio of the analysing powers for quasi-elastic pp scattering in carbon and for elastic scattering on free protons was measured from T = 0.52 to 2.8 GeV by scattering of the SATURNE II polarized proton beam on carbon and CH 2 . It was found to have a maximum at about 0.8 GeV. The energy dependence for quasi-elastic scattering on carbon had not been measured before above 1 GeV. The observed effect was not expected from simple models

  8. The role of series ankle elasticity in bipedal walking.

    Science.gov (United States)

    Zelik, Karl E; Huang, Tzu-Wei P; Adamczyk, Peter G; Kuo, Arthur D

    2014-04-07

    The elastic stretch-shortening cycle of the Achilles tendon during walking can reduce the active work demands on the plantarflexor muscles in series. However, this does not explain why or when this ankle work, whether by muscle or tendon, needs to be performed during gait. We therefore employ a simple bipedal walking model to investigate how ankle work and series elasticity impact economical locomotion. Our model shows that ankle elasticity can use passive dynamics to aid push-off late in single support, redirecting the body's center-of-mass (COM) motion upward. An appropriately timed, elastic push-off helps to reduce dissipative collision losses at contralateral heelstrike, and therefore the positive work needed to offset those losses and power steady walking. Thus, the model demonstrates how elastic ankle work can reduce the total energetic demands of walking, including work required from more proximal knee and hip muscles. We found that the key requirement for using ankle elasticity to achieve economical gait is the proper ratio of ankle stiffness to foot length. Optimal combination of these parameters ensures proper timing of elastic energy release prior to contralateral heelstrike, and sufficient energy storage to redirect the COM velocity. In fact, there exist parameter combinations that theoretically yield collision-free walking, thus requiring zero active work, albeit with relatively high ankle torques. Ankle elasticity also allows the hip to power economical walking by contributing indirectly to push-off. Whether walking is powered by the ankle or hip, ankle elasticity may aid walking economy by reducing collision losses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A Low-Stress, Elastic, and Improved Hardness Hydrogenated Amorphous Carbon Film

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2015-01-01

    Full Text Available The evolution of hydrogenated amorphous carbon films with fullerene-like microstructure was investigated with a different proportion of hydrogen supply in deposition. The results showed at hydrogen flow rate of 50 sccm, the deposited films showed a lower compressive stress (lower 48.6%, higher elastic recovery (higher 19.6%, near elastic recovery rate 90%, and higher hardness (higher 7.4% compared with the films deposited without hydrogen introduction. Structural analysis showed that the films with relatively high sp2 content and low bonded hydrogen content possessed high hardness, elastic recovery rate, and low compressive stress. It was attributed to the curved graphite microstructure, which can form three-dimensional covalently bonded network.

  10. Elastic constants of diamond from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Gao Guangtu; Van Workum, Kevin; Schall, J David; Harrison, Judith A

    2006-01-01

    The elastic constants of diamond between 100 and 1100 K have been calculated for the first time using molecular dynamics and the second-generation, reactive empirical bond-order potential (REBO). This version of the REBO potential was used because it was redesigned to be able to model the elastic properties of diamond and graphite at 0 K while maintaining its original capabilities. The independent elastic constants of diamond, C 11 , C 12 , and C 44 , and the bulk modulus were all calculated as a function of temperature, and the results from the three different methods are in excellent agreement. By extrapolating the elastic constant data to 0 K, it is clear that the values obtained here agree with the previously calculated 0 K elastic constants. Because the second-generation REBO potential was fit to obtain better solid-state force constants for diamond and graphite, the agreement with the 0 K elastic constants is not surprising. In addition, the functional form of the second-generation REBO potential is able to qualitatively model the functional dependence of the elastic constants and bulk modulus of diamond at non-zero temperatures. In contrast, reactive potentials based on other functional forms do not reproduce the correct temperature dependence of the elastic constants. The second-generation REBO potential also correctly predicts that diamond has a negative Cauchy pressure in the temperature range examined

  11. Gossip spread in social network Models

    Science.gov (United States)

    Johansson, Tobias

    2017-04-01

    Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.

  12. Multigene Genetic Programming for Estimation of Elastic Modulus of Concrete

    Directory of Open Access Journals (Sweden)

    Alireza Mohammadi Bayazidi

    2014-01-01

    Full Text Available This paper presents a new multigene genetic programming (MGGP approach for estimation of elastic modulus of concrete. The MGGP technique models the elastic modulus behavior by integrating the capabilities of standard genetic programming and classical regression. The main aim is to derive precise relationships between the tangent elastic moduli of normal and high strength concrete and the corresponding compressive strength values. Another important contribution of this study is to develop a generalized prediction model for the elastic moduli of both normal and high strength concrete. Numerous concrete compressive strength test results are obtained from the literature to develop the models. A comprehensive comparative study is conducted to verify the performance of the models. The proposed models perform superior to the existing traditional models, as well as those derived using other powerful soft computing tools.

  13. Experimental determination of third-order elastic constants of diamond.

    Science.gov (United States)

    Lang, J M; Gupta, Y M

    2011-03-25

    To determine the nonlinear elastic response of diamond, single crystals were shock compressed along the [100], [110], and [111] orientations to 120 GPa peak elastic stresses. Particle velocity histories and elastic wave velocities were measured by using laser interferometry. The measured elastic wave profiles were used, in combination with published acoustic measurements, to determine the complete set of third-order elastic constants. These constants represent the first experimental determination, and several differ significantly from those calculated by using theoretical models.

  14. Micro-CT based finite element models for elastic properties of glass-ceramic scaffolds.

    Science.gov (United States)

    Tagliabue, Stefano; Rossi, Erica; Baino, Francesco; Vitale-Brovarone, Chiara; Gastaldi, Dario; Vena, Pasquale

    2017-01-01

    In this study, the mechanical properties of porous glass-ceramic scaffolds are investigated by means of three-dimensional finite element models based on micro-computed tomography (micro-CT) scan data. In particular, the quantitative relationship between the morpho-architectural features of the obtained scaffolds, such as macroscopic porosity and strut thickness, and elastic properties, is sought. The macroscopic elastic properties of the scaffolds have been obtained through numerical homogenization approaches using the mechanical characteristics of the solid walls of the scaffolds (assessed through nanoindentation) as input parameters for the numerical simulations. Anisotropic mechanical properties of the produced scaffolds have also been investigated by defining a suitable anisotropy index. A comparison with morphological data obtained through the micro-CT scans is also presented. The proposed study shows that the produced glass-ceramic scaffolds exhibited a macroscopic porosity ranging between 29% and 97% which corresponds to an average stiffness ranging between 42.4GPa and 36MPa. A quantitative estimation of the isotropy of the macroscopic elastic properties has been performed showing that the samples with higher solid fractions were those closest to an isotropic material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, S. [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States); Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Padula, S.A.; Noebe, R.D. [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Vaidyanathan, R., E-mail: raj@mail.ucf.edu [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States)

    2011-08-15

    A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.

  16. Elasticity of Substitution and Antidumping Measures

    DEFF Research Database (Denmark)

    Drud Hansen, Jørgen; Meinen, Philipp; Nielsen, Jørgen Ulff-Møller

    Abstract This paper analyzes the role of the elasticity of substitution for anti-dumping decisions across countries. In monopolistic competition models with cost heterogeneous firms across countries, price differences vary inversely with the elasticity of substitution. Anti-dumping duties should...... therefore also vary inversely with the elasticity of substitution at least for countries which have a strong focus on prices in the determination of their anti-dumping measures. We test this for ten countries from 1990 to 2009 using data on anti-dumping from Chad Bown (2010) and US-data at 8-digit level...... in our empirical investigation support the predicted role of the elasticity of substitution as we find a significant negative relation between the elasticity of substitution and the final anti-dumping duties for the ‘lesser duty rule’ group of countries. The countries which do not follow the ‘lesser duty...

  17. Elastic modulus of tree frog adhesive toe pads.

    Science.gov (United States)

    Barnes, W Jon P; Goodwyn, Pablo J Perez; Nokhbatolfoghahai, Mohsen; Gorb, Stanislav N

    2011-10-01

    Previous work using an atomic force microscope in nanoindenter mode indicated that the outer, 10- to 15-μm thick, keratinised layer of tree frog toe pads has a modulus of elasticity equivalent to silicone rubber (5-15 MPa) (Scholz et al. 2009), but gave no information on the physical properties of deeper structures. In this study, micro-indentation is used to measure the stiffness of whole toe pads of the tree frog, Litoria caerulea. We show here that tree frog toe pads are amongst the softest of biological structures (effective elastic modulus 4-25 kPa), and that they exhibit a gradient of stiffness, being stiffest on the outside. This stiffness gradient results from the presence of a dense network of capillaries lying beneath the pad epidermis, which probably has a shock absorbing function. Additionally, we compare the physical properties (elastic modulus, work of adhesion, pull-off force) of the toe pads of immature and adult frogs.

  18. The elastic transfer model of angular rate modulation in F1-ATPase stalling and controlled rotation experiments

    Science.gov (United States)

    Volkán-Kacsó, S.

    2017-06-01

    The recent experimental, theoretical and computational advances in the field of F1-ATPase single-molecule microscopy are briefly surveyed. The role of theory is revealed in the statistical analysis, interpretation and prediction of single-molecule experimental trajectories, and in linking them with atomistic simulations. In particular, a theoretical model of elastically coupled molecular group transfer is reviewed and a detailed method for its application in stalling and controlled rotation experiments is provided. It is shown how the model can predict, using previous experiments, the rates of ligand binding/release processes (steps) and their exponential dependence on rotor angle in these experiments. The concept of Brønsted slopes is reviewed in the context of the single-molecule experiments, and the rate versus rotor angle relations are explained using the elastic model. These experimental data are treated in terms of the effect of thermodynamic driving forces on the rates assuming that the rotor shaft is elastically coupled to stator ring subunits in which the steps occur. In the application of the group transfer model on an extended angular range processes leading up to the transfer are discussed. Implications for large-scale atomistic simulation are suggested for the treatment of torque-generating steps.

  19. Stochastic reduced-order model for an automotive vehicle in presence of numerous local elastic modes in the low-frequency range

    OpenAIRE

    Arnoux , A.; Batou , Anas; Soize , Christian; Gagliardini , L.

    2012-01-01

    International audience; This paper is devoted to the construction of a stochastic reduced-order model for dynamical structures having a high modal density in the low-frequency range, such as an automotive vehicle. This type of structure is characterized by the fact that it exhibits, in the low-frequency range, not only the classical global elastic modes but also numerous local elastic modes which cannot easily be separated from the global elastic modes. An approach has recently been proposed ...

  20. Extrapolation of bulk rock elastic moduli of different rock types to high pressure conditions and comparison with texture-derived elastic moduli

    Science.gov (United States)

    Ullemeyer, Klaus; Lokajíček, Tomás; Vasin, Roman N.; Keppler, Ruth; Behrmann, Jan H.

    2018-02-01

    In this study elastic moduli of three different rock types of simple (calcite marble) and more complex (amphibolite, micaschist) mineralogical compositions were determined by modeling of elastic moduli using texture (crystallographic preferred orientation; CPO) data, experimental investigation and extrapolation. 3D models were calculated using single crystal elastic moduli, and CPO measured using time-of-flight neutron diffraction at the SKAT diffractometer in Dubna (Russia) and subsequently analyzed using Rietveld Texture Analysis. To define extrinsic factors influencing elastic behaviour, P-wave and S-wave velocity anisotropies were experimentally determined at 200, 400 and 600 MPa confining pressure. Functions describing variations of the elastic moduli with confining pressure were then used to predict elastic properties at 1000 MPa, revealing anisotropies in a supposedly crack-free medium. In the calcite marble elastic anisotropy is dominated by the CPO. Velocities continuously increase, while anisotropies decrease from measured, over extrapolated to CPO derived data. Differences in velocity patterns with sample orientation suggest that the foliation forms an important mechanical anisotropy. The amphibolite sample shows similar magnitudes of extrapolated and CPO derived velocities, however the pattern of CPO derived velocity is closer to that measured at 200 MPa. Anisotropy decreases from the extrapolated to the CPO derived data. In the micaschist, velocities are higher and anisotropies are lower in the extrapolated data, in comparison to the data from measurements at lower pressures. Generally our results show that predictions for the elastic behavior of rocks at great depths are possible based on experimental data and those computed from CPO. The elastic properties of the lower crust can, thus, be characterized with an improved degree of confidence using extrapolations. Anisotropically distributed spherical micro-pores are likely to be preserved, affecting

  1. Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites. Part II; Finite Element Model

    Science.gov (United States)

    Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol

    2015-01-01

    This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.

  2. Modelling and simulation of multi-phase effects on X-ray elasticity constants

    CERN Document Server

    Freour, S; Guillen, R; François, M X

    2003-01-01

    This paper deals with the calculation of X-ray Elasticity Constants (XEC) of phases embedded in multi-phase polycrystals. A three scales (macroscopic, pseudo-macroscopic, mesoscopic) model based on the classical self-consistent formalism is developed in order to analyse multi-phase effects on XEC values. Simulations are performed for cubic or hexagonal crystallographic structure phases embedded in several two-phases materials. In fact, it is demonstrated that XEC vary with the macroscopic stiffness of the whole polycrystal. In consequence, the constants of one particular phase depend on the elastic behaviour and the volume fraction of all the phases constituting the material. Now, XEC play a leading role in pseudo-macroscopic stresses determination by X-Ray Diffraction (XRD) methods. In this work, a quantitative analysis of the multi-phase effects on stresses determination by XRD methods was performed. Numerical results will be compared and discussed. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  3. Brand Marketing Model on Social Networks

    OpenAIRE

    Jolita Jezukevičiūtė; Vida Davidavičienė

    2014-01-01

    The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalys...

  4. Investor response to consumer elasticity

    International Nuclear Information System (INIS)

    Grenaa Jensen, Stine; Meibom, Peter; Ravn, H.F.; Straarup, Sarah

    2004-01-01

    In the Nordic electricity system there is considerable uncertainty with respect to the long-term development in production capacity. The process towards liberalisation of the electricity sector started in a situation with a large reserve margin, but this margin is gradually vanishing. Since the potential investors in new production capacity are unaccustomed with investments under the new regime it is unknown if and when investments will take place. The electricity price is the key market signal to potential investors. The price is settled as a balance between supply and demand, and it is generally assumed that the demand side has an important role in this, and increasingly so. However, since consumers have not earlier had the incentive to respond to electricity prices, no reliable estimate of demand elasticity is known. The purpose of the present study is to analyse the role of electricity demand elasticity for investments in new electricity production capacity. Electricity price scenarios generated with a partial equilibrium model (Balmorel) are combined with a model of investment decisions. In this, various scenarios concerning the development in the demand elasticity are used. The simulated investment decisions are taken in a stochastic, dynamic setting, where a key point is the timing of the investment decision in relation to the gathering of new information relative to the stochastic elements. Based on this, the consequences of the development in consumer price elasticity for investments in a base load and a peak load plant are investigated. The main result of the analysis is that peak load investments can be made unprofitable by the development in consumer price elasticity, such that an investor will tend to wait with his peak load investment, until the development in consumer price elasticity has been revealed. (au)

  5. Elastic moduli of biological fibers in a coarse-grained model: crystalline cellulose and β-amyloids.

    Science.gov (United States)

    Poma, Adolfo B; Chwastyk, Mateusz; Cieplak, Marek

    2017-10-25

    We study the mechanical response of cellulose and β-amyloid microfibrils to three types of deformation: tensile, indentational, and shear. The cellulose microfibrils correspond to the allomorphs Iα or Iβ whereas the β-amyloid microfibrils correspond to the polymorphs of either two- or three-fold symmetry. This response can be characterized by three elastic moduli, namely, Y L , Y T , and S. We use a structure-based coarse-grained model to analyze the deformations in a unified manner. We find that each of the moduli is almost the same for the two allomorphs of cellulose but Y L is about 20 times larger than Y T (140 GPa vs. 7 GPa), indicating the existence of significant anisotropy. For cellulose we note that the anisotropy results from the involvement of covalent bonds in stretching. For β-amyloid, the sense of anisotropy is opposite to that of cellulose. In the three-fold symmetry case, Y L is about half of Y T (3 vs. 7) whereas for two-fold symmetry the anisotropy is much larger (1.6 vs. 21 GPa). The S modulus is derived to be 1.2 GPa for three-fold symmetry and one half of it for the other symmetry and 3.0 GPa for cellulose. The values of the moduli reflect deformations in the hydrogen-bond network. Unlike in our theoretical approach, no experiment can measure all three elastic moduli with the same apparatus. However, our theoretical results are consistent with various measured values: typical Y L for cellulose Iβ ranges from 133 to 155 GPa, Y T from 2 to 25 GPa, and S from 1.8 to 3.8 GPa. For β-amyloid, the experimental values of S and Y T are about 0.3 GPa and 3.3 GPa respectively, while the value of Y L has not been reported.

  6. Foundation plate on the elastic half-space, deterministic and probabilistic approach

    Directory of Open Access Journals (Sweden)

    Tvrdá Katarína

    2017-01-01

    Full Text Available Interaction between the foundation plate and subgrade can be described by different mathematical - physical model. Elastic foundation can be modelled by different types of models, e.g. one-parametric model, two-parametric model and a comprehensive model - Boussinesque (elastic half-space had been used. The article deals with deterministic and probabilistic analysis of deflection of the foundation plate on the elastic half-space. Contact between the foundation plate and subsoil was modelled using contact elements node-node. At the end the obtained results are presented.

  7. Traffic-aware Elastic Optical Networks to leverage Energy Savings

    DEFF Research Database (Denmark)

    Turus, Ioan; Fagertun, Anna Manolova; Dittmann, Lars

    2014-01-01

    Because of the static nature of the deployed optical networks, large energy wastage is experienced today in production networks such as Telecom networks . With power-adaptive optical interfaces and suitable grooming procedures, we propose the design of more energy efficient transport networks....... Optical network reconfigurations are performed by GMPLS node controllers according to monitored traffic information. The investigated energy reduction strategies are simulated on two large scale transport networks (DT17 and COST37). The results show that the energy savings obtained by these strategies......-Europea n COST37 network, for both symbol-rate and modulation format adaptations significant savings are obtained . Mixed adaptation (jointly performing symbol-rate and modulation format adaptations) used together with optical grooming allows up to 4 4 % and 4 7 % power savings in DT17 and COST37 networks...

  8. A model of coauthorship networks

    Science.gov (United States)

    Zhou, Guochang; Li, Jianping; Xie, Zonglin

    2017-10-01

    A natural way of representing the coauthorship of authors is to use a generalization of graphs known as hypergraphs. A random geometric hypergraph model is proposed here to model coauthorship networks, which is generated by placing nodes on a region of Euclidean space randomly and uniformly, and connecting some nodes if the nodes satisfy particular geometric conditions. Two kinds of geometric conditions are designed to model the collaboration patterns of academic authorities and basic researches respectively. The conditions give geometric expressions of two causes of coauthorship: the authority and similarity of authors. By simulation and calculus, we show that the forepart of the degree distribution of the network generated by the model is mixture Poissonian, and the tail is power-law, which are similar to these of some coauthorship networks. Further, we show more similarities between the generated network and real coauthorship networks: the distribution of cardinalities of hyperedges, high clustering coefficient, assortativity, and small-world property

  9. Elastic properties, reaction kinetics, and structural relaxation of an epoxy resin polymer during cure

    Science.gov (United States)

    Heili, Manon; Bielawski, Andrew; Kieffer, John

    The cure kinetics of a DGEBA/DETA epoxy is investigated using concurrent Raman and Brillouin light scattering. Raman scattering allows us to monitor the in-situ reaction and quantitatively assess the degree of cure. Brillouin scattering yields the elastic properties of the system, providing a measure of network connectivity. We show that the adiabatic modulus evolves non-uniquely as a function of cure degree, depending on the cure temperature and the molar ratio of the epoxy. Two mechanisms contribute to the increase in the elastic modulus of the material during curing. First, there is the formation of covalent bonds in the network during the curing process. Second, following bond formation, the epoxy undergoes structural relaxation toward an optimally packed network configuration, enhancing non-bonded interactions. We investigate to what extent the non-bonded interaction contribution to structural rigidity in cross-linked polymers is reversible, and to what extent it corresponds to the difference between adiabatic and isothermal moduli obtained from static tensile, i.e. the so-called relaxational modulus. To this end, we simultaneously measure the adiabatic and isothermal elastic moduli as a function of applied strain and deformation rate.

  10. Anisotropy function for pion-proton elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Mohammad; Fazal-e-Aleem; Rashid, Haris

    1988-09-01

    By using the generalised Chou-Yang model and the experimental data on ..pi../sup -/p elastic scattering at 200 GeV/c, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction ..pi../sup -/p -> ..pi../sup -/p.

  11. Anisotropy function for pion-proton elastic scattering

    International Nuclear Information System (INIS)

    Saleem, Mohammad; Fazal-e-Aleem; Rashid, Haris

    1988-01-01

    By using the generalised Chou-Yang model and the experimental data on π - p elastic scattering at 200 GeV/c, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction π - p → π - p. (author)

  12. The thermo-elastic instability model of melting of alkali halides in the Debye approximation

    Science.gov (United States)

    Owens, Frank J.

    2018-05-01

    The Debye model of lattice vibrations of alkali halides is used to show that there is a temperature below the melting temperature where the vibrational pressure exceeds the electrostatic pressure. The onset temperature of this thermo-elastic instability scales as the melting temperature of NaCl, KCl, and KBr, suggesting its role in the melting of the alkali halides in agreement with a previous more rigorous model.

  13. Entropic elasticity in the generation of muscle Force - A theoretical model

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2002-01-01

    A novel simplified structural model of sarcomeric force production in striate muscle is presented. Using some simple assumptions regarding the distribution of myosin spring lengths at different sliding velocities it is possible to derive a very simple expression showing the main components...... of the experimentally observed force-velocity relationship of muscle: nonlinearity during contraction (Hill, 1938), maximal force production during stretching equal to two times the isometric force (Katz, 1939), yielding at high stretching velocity, slightly concave force-extension relationship during sudden length......-bridges are explored [linear, power function and worm-like chain (WLC) model based], and it is shown that the best results are obtained if the individual myosin-spring forces are modelled using a WLC model, thus hinting that entropic elasticity could be the main source of force in myosin undergoing the conformational...

  14. Permeability and elastic properties of cracked glass under pressure

    Science.gov (United States)

    Ougier-Simonin, A.; GuéGuen, Y.; Fortin, J.; Schubnel, A.; Bouyer, F.

    2011-07-01

    Fluid flow in rocks is allowed through networks of cracks and fractures at all scales. In fact, cracks are of high importance in various applications ranging from rock elastic and transport properties to nuclear waste disposal. The present work aims at investigating thermomechanical cracking effects on elastic wave velocities, mechanical strength, and permeability of cracked glass under pressure. We performed the experiments on a triaxial cell at room temperature which allows for independent controls of the confining pressure, the axial stress, and pore pressure. We produced cracks in original borosilicate glass samples with a reproducible method (thermal treatment with a thermal shock of 300°C). The evolution of the elastic and transport properties have been monitored using elastic wave velocity sensors, strain gage, and flow measurements. The results obtained evidence for (1) a crack family with identified average aspect ratio and crack aperture, (2) a very small permeability which decreases as a power (exponential) function of pressure, and depends on (3) the crack aperture cube. We also show that permeability behavior of a cracked elastic brittle solid is reversible and independent of the fluid nature. Two independent methods (permeability and elastic wave velocity measurements) give these consistent results. This study provides data on the mechanical and transport properties of an almost ideal elastic brittle solid in which a crack population has been introduced. Comparisons with similar data on rocks allow for drawing interesting conclusions. Over the timescale of our experiments, our results do not provide any data on stress corrosion, which should be considered in further study.

  15. Twist and Stretch of Helices Explained via the Kirchhoff-Love Rod Model of Elastic Filaments

    KAUST Repository

    Đuričković, Bojan; Goriely, Alain; Maddocks, John H.

    2013-01-01

    that within the context of the classic Kirchhoff-Love rod model of elastic filaments, both behaviors are possible, depending on the precise constitutive relations of the polymer. More generally, our analysis provides an effective linear response theory

  16. A bilinear elastic constitutive model applied for midpalatal suture behavior during rapid maxillary expansion

    Directory of Open Access Journals (Sweden)

    Larissa Carvalho Trojan Serpe

    Full Text Available Introduction : This study aims to evaluate the influence of the biomechanical behavior of the midpalatal suture (MPS during the rapid maxillary expansion (RME when modeled by the Finite Element Method. Methods Four simulation alternatives are discussed and, for each analysis, the suture is considered as a functional unit with a different mechanical behavior: (i without MPS elements, (ii MPS with Young's modulus (E equal to 1 MPa, (ii MPS with E equal to 0.01 MPa and (iv MPS with bilinear elastic behavior. Results The stress analysis showed that, when MPS is not considered in the model, stress peaks are reduced in magnitude and their distribution is restricted to a smaller area when compared to the model with the inclusion of MPS (E=1 MPa. The increased suture stiffness also has a direct influence on MPS displacements after 30 expander activations. Conclusion The consideration of the MPS in RME computer models influences greatly the calculated displacements between the suture bone ends, even as the stress levels in maxillary structures. Furthermore, as proposed for the described model, the elastic bilinear behavior assigned to MPS allows coherent prediction of stresses and displacements results, being a good representation for this suture overall behavior.

  17. Brand marketing model on social networks

    OpenAIRE

    Jezukevičiūtė, Jolita; Davidavičienė, Vida

    2014-01-01

    Paper analyzes the brand and its marketing solutions on social networks. This analysis led to the creation of improved brand marketing model on social networks, which will contribute to the rapid and cheap organization brand recognition, increase competitive advantage and enhance consumer loyalty. Therefore, the brand and a variety of social networks are becoming a hot research area for brand marketing model on social networks. The world‘s most successful brand marketing models exploratory an...

  18. Universal fit to p-p elastic diffraction scattering from the Lorentz contracted geometrical model

    International Nuclear Information System (INIS)

    Hansen, P.H.; Krisch, A.D.

    1976-01-01

    The prediction of the Lorentz contracted geometical model for proton-proton elastic scattering at small angles is examined. The model assumes that when two high energy particles collide, each behaves as a geometrical object which has a Gaussian density and is spherically symmetric except for the Lorentz contraction in the incident direction. It is predicted that dsigma/dt should be independent of energy when plotted against the variable β 2 P 2 sub(perpendicular) sigmasub(TOT)(s)/38.3. Thus the energy dependence of the diffraction peak slope (b in an esup(-b mod(t))plot) is given by b(s)=A 2 β 2 sigmasub(TOT)(s)/38.3 where β is the proton's c.m. velocity and A is its radius. Recently measured values of sigmasub(TOT)(s) were used and an excellent fit obtained to the elastic slope in both t regions [-t 2 and 0.1 2 ] at all energies from s=6 to 4000(GeV/c) 2 . (Auth.)

  19. Improved elastic collision modeling in DEGAS 2 for low-temperature plasmas

    International Nuclear Information System (INIS)

    Kanzleiter, Randall J.; Stotler, Daren P.; Karney, Charles F. F.; Steiner, Don

    2000-01-01

    Recent emphasis on low-temperature divertor operations has focused attention on proper treatment of neutral-elastic collisions in low-temperature environments. For like species collisions, as in D + +D, quantum mechanical indistinguishability precludes differentiation of small-angle elastic scattering from resonant charge exchange for collision energies + +D 2 are included for the first time. An integration technique is utilized that reduces the total collision cross section while keeping the other transport cross sections invariant. The inclusion of ion-molecular elastic collisions results in significant increases in energy exchange between background ions and neutral test species

  20. DESTRUCTION CRITERION IN MODEL OF NON-LINEAR ELASTIC PLASTIC MEDIUM

    Directory of Open Access Journals (Sweden)

    O. L. Shved

    2014-01-01

    Full Text Available The paper considers a destruction criterion in a specific phenomenological model of elastic plastic medium which significantly differs from the known criteria. In case of vector interpretation of rank-2 symmetric tensors yield surface in the Cauchy stress space is formed by closed piecewise concave surfaces of its deviator sections with due account of experimental data. Section surface is determined by normal vector which is selected from two private vectors of criterial “deviator” operator. Such selection is not always possible in the case of anisotropy growth. It is expected that destruction can only start when a process point in the stress space is located in the current deviator section of the yield surface. It occurs when a critical point appears in the section, and a private value of an operator becomes N-fold in the point that determines the private vector corresponding to the normal vector. Unique and reasonable selection of the normal vector becomes impossible in the critical point and an yield criteria loses its significance in the point.When the destruction initiation is determined there is a possibility of a special case due to the proposed conic form of the yield surface. The deviator section degenerates into the point at the yield surface peak. Criterion formulation at the surface peak lies in the fact that there is no physically correct solution while using a state equation in regard to elastic distortion measures with a fixed tensor of elastic turn. Such usage of the equation is always possible for the rest points of the yield surface and it is considered as an obligatory condition for determination of the deviator section. A critical point is generally absent at any deviator section of the yield surface for isotropic material. A limiting value of the mean stress has been calculated at uniform tension.

  1. Autonomic Vertical Elasticity of Docker Containers with ElasticDocker

    OpenAIRE

    Al-Dhuraibi , Yahya; Paraiso , Fawaz; Djarallah , Nabil; Merle , Philippe

    2017-01-01

    International audience; Elasticity is the key feature of cloud computing to scale computing resources according to application workloads timely. In the literature as well as in industrial products, much attention was given to the elasticity of virtual machines, but much less to the elasticity of containers. However, containers are the new trend for packaging and deploying microservices-based applications. Moreover, most of approaches focus on horizontal elasticity, fewer works address vertica...

  2. A simple model to estimate plantarflexor muscle-tendon mechanics and energetics during walking with elastic ankle exoskeletons

    Science.gov (United States)

    Sawicki, Gregory S.; Khan, Nabil S.

    2016-01-01

    Goal A recent experiment demonstrated that when humans wear unpowered elastic ankle exoskeletons with intermediate spring stiffness they can reduce their metabolic energy cost to walk by ~7%. Springs that are too compliant or too stiff have little benefit. The purpose of this study was to use modeling and simulation to explore the muscle-level mechanisms for the ‘sweet-spot’ in stiffness during exoskeleton assisted walking. Methods We developed a simple lumped, uniarticular musculoskeletal model of the plantarflexors operating in parallel with an elastic ‘exo-tendon’. Using an inverse approach with constrained kinematics and kinetics, we rapidly simulated human walking over a range of exoskeleton stiffness values and examined the underlying neuromechanics and energetics of the biological plantarflexors. Results Stiffer ankle exoskeleton springs resulted in larger decreases in plantarflexor muscle forces, activations and metabolic energy consumption. However, in the process of unloading the compliant biological muscle-tendon unit (MTU), the muscle fascicles (CE) experienced larger excursions that negatively impacted series elastic element (SEE) recoil that is characteristic of a tuned ‘catapult mechanism’. Conclusion The combination of disrupted muscle-tendon dynamics and the need to produce compensatory forces/moments to maintain overall net ankle moment invariance could explain the ‘sweet spot’ in metabolic performance at intermediate ankle exoskeleton stiffness. Future work will aim to provide experimental evidence to support the model predictions presented here using ultrasound imaging of muscle-level dynamics during walking with elastic ankle exoskeletons. Significance Engineers must account for the muscle-level effects of exoskeleton designs in order to achieve maximal performance objectives. PMID:26485350

  3. The creep low application for numerical modeling of elastic-plastic flows

    Science.gov (United States)

    Tyapin, Anatoly; Rudenko, Vladimir; Chekhunov, Evgeny; Shaburov, Michail

    1999-06-01

    The present paper demonstrates the applicability of Lomnitz logarithm creep law [1] in some approximated version for calculating the elastic-plastic flows. The model has been developed resulting from the intention to have appropriate calculation approximation for particle-velocity -vs-time histories observed in plate 6061-T6 Al samples of various thickness under shock loading and subsequent release and additional compression. The approximation is unique in the whole loading range, from very low to such that elastic precursor is swallowed up by plastic wave . The model is based on Lipkin and Asay [2] remark on scale similarity of the above mentioned particle velocity -vs-time histories for equal shock loading and on approximate equality of velocities that initial portions of release and recompression waves travel at. A Lomnitz creep law presents an ideal phenomenological tool providing both of the requirements be fulfilled at the same time. Its application to high rate processes of loading and release has required some law modification and a nontrivial review of the dislocation mechanism for stress relaxation. The agreement achieved with the experiment is illustrated in figures. The model is worked out and realized in the 1D user software MAG. 1. Lomnitz C. Joun. of Geology, 1956, vol. 64, p. 473-479. 2. Lipkin J., Asay J.R. J. Appl. Phys. ,1977, vol. 48, 1, p.182-189. 3. Johnson J., Barker L. J. Appl. Phys., 1969, vol. 40, 11, p. 4321-4334. 4. Asay J.R., Chhabildas L. M.: Metallurgia., 1984, p. 110-120.

  4. Diverging strains near threshold: Breakdown of the elastic description of a charge density wave model

    International Nuclear Information System (INIS)

    Mungan, M.; Coppersmith, S.; Vinokur, V.M.

    1999-01-01

    We analyze the strains near threshold in 1-d charge density wave models at zero temperature and strong pinning. We show that in these models local strains diverge near the depinning threshold and characterize the scaling behavior of the phenomenon. This helps quantify when the underlying elastic description breaks down and plastic effects have to be included

  5. Target-Centric Network Modeling

    DEFF Research Database (Denmark)

    Mitchell, Dr. William L.; Clark, Dr. Robert M.

    In Target-Centric Network Modeling: Case Studies in Analyzing Complex Intelligence Issues, authors Robert Clark and William Mitchell take an entirely new approach to teaching intelligence analysis. Unlike any other book on the market, it offers case study scenarios using actual intelligence...... reporting formats, along with a tested process that facilitates the production of a wide range of analytical products for civilian, military, and hybrid intelligence environments. Readers will learn how to perform the specific actions of problem definition modeling, target network modeling......, and collaborative sharing in the process of creating a high-quality, actionable intelligence product. The case studies reflect the complexity of twenty-first century intelligence issues by dealing with multi-layered target networks that cut across political, economic, social, technological, and military issues...

  6. A Complex Network Approach to Distributional Semantic Models.

    Directory of Open Access Journals (Sweden)

    Akira Utsumi

    Full Text Available A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.

  7. QSAR modelling using combined simple competitive learning networks and RBF neural networks.

    Science.gov (United States)

    Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E

    2018-04-01

    The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.

  8. Observation of elastic topological states in soft materials.

    Science.gov (United States)

    Li, Shuaifeng; Zhao, Degang; Niu, Hao; Zhu, Xuefeng; Zang, Jianfeng

    2018-04-10

    Topological elastic metamaterials offer insight into classic motion law and open up opportunities in quantum and classic information processing. Theoretical modeling and numerical simulation of elastic topological states have been reported, whereas the experimental observation remains relatively unexplored. Here we present an experimental observation and numerical simulation of tunable topological states in soft elastic metamaterials. The on-demand reversible switch in topological phase has been achieved by changing filling ratio, tension, and/or compression of the elastic metamaterials. By combining two elastic metamaterials with distinct topological invariants, we further demonstrate the formation and dynamic tunability of topological interface states by mechanical deformation, and the manipulation of elastic wave propagation. Moreover, we provide a topological phase diagram of elastic metamaterials under deformation. Our approach to dynamically control interface states in soft materials paves the way to various phononic systems involving thermal management and soft robotics requiring better use of energy.

  9. Mechanical response of biopolymer double networks

    Science.gov (United States)

    Carroll, Joshua; Das, Moumita

    We investigate a double network model of articular cartilage (AC) and characterize its equilibrium mechanical response. AC has very few cells and the extracellular matrix mainly determines its mechanical response. This matrix can be thought of as a double polymer network made of collagen and aggrecan. The collagen fibers are stiff and resist tension and compression forces, while aggrecans are flexible and control swelling and hydration. We construct a microscopic model made of two interconnected disordered polymer networks, with fiber elasticity chosen to qualitatively mimic the experimental system. We study the collective mechanical response of this double network as a function of the concentration and stiffness of the individual components as well as the strength of the connection between them using rigidity percolation theory. Our results may provide a better understanding of mechanisms underlying the mechanical resilience of AC, and more broadly may also lead to new perspectives on the mechanical response of multicomponent soft materials. This work was partially supported by a Cottrell College Science Award.

  10. Elastic properties

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1983-01-01

    This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites

  11. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    Science.gov (United States)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  12. Indentation of elastically soft and plastically compressible solids

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.

    2015-01-01

    rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction......The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...

  13. Modeling Renewable Penertration Using a Network Economic Model

    Science.gov (United States)

    Lamont, A.

    2001-03-01

    This paper evaluates the accuracy of a network economic modeling approach in designing energy systems having renewable and conventional generators. The network approach models the system as a network of processes such as demands, generators, markets, and resources. The model reaches a solution by exchanging prices and quantity information between the nodes of the system. This formulation is very flexible and takes very little time to build and modify models. This paper reports an experiment designing a system with photovoltaic and base and peak fossil generators. The level of PV penetration as a function of its price and the capacities of the fossil generators were determined using the network approach and using an exact, analytic approach. It is found that the two methods agree very closely in terms of the optimal capacities and are nearly identical in terms of annual system costs.

  14. Geophysical models of heat and fluid flow in damageable poro-elastic continua

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš

    2017-01-01

    Roč. 29, č. 2 (2017), s. 625-646 ISSN 0935-1175 R&D Projects: GA ČR(CZ) GA16-03823S; GA ČR GA14-15264S Institutional support: RVO:61388998 Keywords : poro-elastic rocks * damage * biot model Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.529, year: 2016 https://link.springer.com/article/10.1007/s00161-016-0547-5

  15. Relativistic one-boson-exchange model and elastic electron-deuteron scattering at high momentum transfer

    International Nuclear Information System (INIS)

    Hummel, E.; Tjon, J.A.

    1989-01-01

    Using the one-boson-exchange model a relativistic covariant analysis is carried out of the elastic electromagnetic form factors of the deuteron including the ρπγ and ωεγ mesonic-exchange-current contributions. The theoretical predictions are compared with the recent experimental data at high momentum transfer

  16. The pion-deuteron forward elastic amplitude in the non-overlapping potentials model

    International Nuclear Information System (INIS)

    Butterworth, D.S.

    1978-01-01

    The pion-deuteron forward elastic amplitude has been calculated in the non-overlapping potentials model, which enables a description of off-shell propagation effects in terms of on-shell amplitudes. Calculations include spin, isospin and deuteron D-state probability effects. Two energy regions are considered. First the pion-nucleon P 33 resonance region, where, using a formalism developed by Agassi and Gal (Ann. Phys.; 75:56 (1973) and 94:184 (1975)), the full multiple-scattering series is summed in an approximation of P 33 wave dominance of the higher-order scatterings. Second, for the subsequent highest-energy region, the double-scattering term only is calculated. Fermi smearing effects are included in both cases. Predictions for the total cross section, its dependence on the deuteron alignment and the real part of the forward elastic amplitude are compared with those of Glauber theory, and data where available. Convergence of the multiple-scattering series is also discussed. (author)

  17. Applicability of a particularly simple model to nonlinear elasticity of slide-ring gels with movable cross-links as revealed by unequal biaxial deformation.

    Science.gov (United States)

    Kondo, Yuuki; Urayama, Kenji; Kidowaki, Masatoshi; Mayumi, Koichi; Takigawa, Toshikazu; Ito, Kohzo

    2014-10-07

    The strain energy density function (F) of the polyrotaxane-based slide-ring (SR) gels with movable cross-links along the network strands is characterized by unequal biaxial stretching which can achieve various types of deformation. The SR gels as prepared without any post-preparation complication exhibit considerably smaller values of the ratio of the stresses (σy/σx) in the stretched (x) and constrained (y) directions in planar extension than classical chemical gels with heterogeneous and nearly homogeneous network structures do. This feature of the SR gels leads to the peculiar characteristic that the strain energy density function (F) has no explicit cross term of strains in different directions, which is in contrast to F with explicit strain cross terms for most chemical gels and elastomers. The biaxial stress-strain data of the SR gels are successfully described by F of the Gent model with only two parameters (small-strain shear modulus and a parameter representing ultimate elongation), which introduces the finite extensibility effect into the neo-Hookean model with no explicit cross term of strain. The biaxial data of the deswollen SR gels examined in previous study, which underwent a considerable reduction in volume from the preparation state, are also well described by the Gent model, which is in contrast to the case of the classical chemical gels that the stress-strain relations before and after large deswelling are not described by a common type of F due to a significant degree of collapse of the network strands in the deswollen state. These intriguing features of nonlinear elasticity of the SR gels originate from a novel function of the slidable cross-links that can maximize the arrangement entropy of cross-linked and non-cross-linked cyclic molecules in the deformed networks.

  18. Toward an Elasticity of Chip-N-Saw: Demand and Supply Models of Chip-N-Saw Stumpage in Louisiana

    Directory of Open Access Journals (Sweden)

    Shaun M. Tanger

    2018-04-01

    Full Text Available Softwood chip-n-saw (CNS is a relatively new stumpage product in the sawtimber- and pulpwood-dominated stumpage markets in the U.S. South. Based on a quarterly data series from 2003 to 2016, this study estimates the demand and supply models of the softwood CNS stumpage market in Louisiana. The two-stage least squares (2SLS results reveal that own price elasticity of demand (PED is price elastic, and the cross-price elasticity (XEDwith sawtimber approaches unit elasticity. On the supply side, CNS is price inelastic in supply (PES, but more responsive to own price changesthan sawtimber quantity supplied. Further, severance tax increases are found to decrease the supply of CNS, indicating that suppliers are responsive to severance tax incidence. As the first empirical estimation of CNS, the findings should be of interest to those involved in the analysis of Southeastern stumpage markets.

  19. Mesoscopic model of actin-based propulsion.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  20. An evolving network model with community structure

    International Nuclear Information System (INIS)

    Li Chunguang; Maini, Philip K

    2005-01-01

    Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

  1. Multilevel method for modeling large-scale networks.

    Energy Technology Data Exchange (ETDEWEB)

    Safro, I. M. (Mathematics and Computer Science)

    2012-02-24

    Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties do not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from

  2. Research on the model of home networking

    Science.gov (United States)

    Yun, Xiang; Feng, Xiancheng

    2007-11-01

    It is the research hotspot of current broadband network to combine voice service, data service and broadband audio-video service by IP protocol to transport various real time and mutual services to terminal users (home). Home Networking is a new kind of network and application technology which can provide various services. Home networking is called as Digital Home Network. It means that PC, home entertainment equipment, home appliances, Home wirings, security, illumination system were communicated with each other by some composing network technology, constitute a networking internal home, and connect with WAN by home gateway. It is a new network technology and application technology, and can provide many kinds of services inside home or between homes. Currently, home networking can be divided into three kinds: Information equipment, Home appliances, Communication equipment. Equipment inside home networking can exchange information with outer networking by home gateway, this information communication is bidirectional, user can get information and service which provided by public networking by using home networking internal equipment through home gateway connecting public network, meantime, also can get information and resource to control the internal equipment which provided by home networking internal equipment. Based on the general network model of home networking, there are four functional entities inside home networking: HA, HB, HC, and HD. (1) HA (Home Access) - home networking connects function entity; (2) HB (Home Bridge) Home networking bridge connects function entity; (3) HC (Home Client) - Home networking client function entity; (4) HD (Home Device) - decoder function entity. There are many physical ways to implement four function entities. Based on theses four functional entities, there are reference model of physical layer, reference model of link layer, reference model of IP layer and application reference model of high layer. In the future home network

  3. Elastic interaction of hydrogen atoms on graphene: A multiscale approach from first principles to continuum elasticity

    Science.gov (United States)

    Branicio, Paulo S.; Vastola, Guglielmo; Jhon, Mark H.; Sullivan, Michael B.; Shenoy, Vivek B.; Srolovitz, David J.

    2016-10-01

    The deformation of graphene due to the chemisorption of hydrogen atoms on its surface and the long-range elastic interaction between hydrogen atoms induced by these deformations are investigated using a multiscale approach based on first principles, empirical interactions, and continuum modeling. Focus is given to the intrinsic low-temperature structure and interactions. Therefore, all calculations are performed at T =0 , neglecting possible temperature or thermal fluctuation effects. Results from different methods agree well and consistently describe the local deformation of graphene on multiple length scales reaching 500 Å . The results indicate that the elastic interaction mediated by this deformation is significant and depends on the deformation of the graphene sheet both in and out of plane. Surprisingly, despite the isotropic elasticity of graphene, within the linear elastic regime, atoms elastically attract or repel each other depending on (i) the specific site they are chemisorbed; (ii) the relative position of the sites; (iii) and if they are on the same or on opposite surface sides. The interaction energy sign and power-law decay calculated from molecular statics agree well with theoretical predictions from linear elasticity theory, considering in-plane or out-of-plane deformations as a superposition or in a coupled nonlinear approach. Deviations on the exact power law between molecular statics and the linear elastic analysis are evidence of the importance of nonlinear effects on the elasticity of monolayer graphene. These results have implications for the understanding of the generation of clusters and regular formations of hydrogen and other chemisorbed atoms on graphene.

  4. Derivation of capture and reaction cross sections from experimental quasi-elastic and elastic backscattering probabilities

    International Nuclear Information System (INIS)

    Sargsyan, V.V.; Adamian, G.G.; Antonenko, N.V.; Gomes, P.R.S.

    2014-01-01

    We suggest simple and useful methods to extract reaction and capture (fusion) cross sections from the experimental elastic and quasi-elastic backscattering data.The direct measurement of the reaction or capture (fusion) cross section is a difficult task since it would require the measurement of individual cross sections of many reaction channels, and most of them could be reached only by specific experiments. This would require different experimental setups not always available at the same laboratory and, consequently, such direct measurements would demand a large amount of beam time and would take probably some years to be reached. Because of that, the measurements of elastic scattering angular distributions that cover full angular ranges and optical model analysis have been used for the determination of reaction cross sections. This traditional method consists in deriving the parameters of the complex optical potentials which fit the experimental elastic scattering angular distributions and then of deriving the reaction cross sections predicted by these potentials. Even so, both the experimental part and the analysis of this latter method are not so simple. In the present work we present a much simpler method to determine reaction and capture (fusion) cross sections. It consists of measuring only elastic or quasi-elastic scattering at one backward angle, and from that, the extraction of the reaction or capture cross sections can easily be performed. (author)

  5. Network models in economics and finance

    CERN Document Server

    Pardalos, Panos; Rassias, Themistocles

    2014-01-01

    Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis  that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.

  6. Invester Response to Consumer Elasticity, Nordic Energy Research

    DEFF Research Database (Denmark)

    Jensen, Stine Grenaa; Meibom, Peter; Ravn, Hans V.

    2004-01-01

    . The simulated investment decisions are taken in a stochastic, dynamic setting, where a key point is the timing of the investment decision in relation to the gathering of new information relative to the stochastic elements. Based on this, the consequences of the development in consumer price elasticity......, and it is generally assumed that the demand side has an important role in this, and increasingly so. However, since consumers have not earlier had the incentive to respond to electricity prices, no reliable estimate of demand elasticity is known. The purpose of the present study is to analyse the role of electricity...... demand elasticity for investments in new electricity production capacity. Electricity price scenarios generated with a partial equilibrium model (Balmorel) are combined with a model of investment decisions. In this, various scenarios concerning the development in the demand elasticity are used...

  7. Phason elasticity and surface roughening

    International Nuclear Information System (INIS)

    Tang Leihan; Jaric, M.V.

    1990-01-01

    The phason elasticity of two-dimensional (2D) equilibrium quasicrystals is discussed in analogy with surface roughening phenomena. Taking a Penrose tiling model as an example, we show that the phason elastic energy is linear in the phason strain at zero temperature (T = 0), but becomes quadratic at any T > 0 and sufficiently small strain. Heuristic and real-space renormalization group arguments are given for the thermal roughening of the hyper-surface which represents quasicrystal tiling. Monte Carlo method is applied to illustrate the logarithmically diverging phason fluctuations and power-law diffraction intensities at T > 0. For three-dimensional systems, we present arguments which suggest a finite temperature transition between two quasicrystal phases, characterized by linear and quadratic phason elastic energy, respectively. (author). 17 refs, 12 figs

  8. Subsidence estimation of breakwater built on loosely deposited sandy seabed foundation: Elastic model or elasto-plastic model

    Directory of Open Access Journals (Sweden)

    Jianhua Shen

    2017-07-01

    Full Text Available In offshore area, newly deposited Quaternary loose seabed soils are widely distributed. There are a great number of offshore structures has been built on them in the past, or will be built on them in the future due to the fact that there would be no very dense seabed soil foundation could be chosen at planed sites sometimes. However, loosely deposited seabed foundation would bring great risk to the service ability of offshore structures after construction. Currently, the understanding on wave-induced liquefaction mechanism in loose seabed foundation has been greatly improved; however, the recognition on the consolidation characteristics and settlement estimation of loose seabed foundation under offshore structures is still limited. In this study, taking a semi-coupled numerical model FSSI-CAS 2D as the tool, the consolidation and settlement of loosely deposited sandy seabed foundation under an offshore breakwater is investigated. The advanced soil constitutive model Pastor-Zienkiewics Mark III (PZIII is used to describe the quasi-static behavior of loose sandy seabed soil. The computational results show that PZIII model is capable of being used for settlement estimation problem of loosely deposited sandy seabed foundation. For loose sandy seabed foundation, elastic deformation is the dominant component in consolidation process. It is suggested that general elastic model is acceptable for subsidence estimation of offshore structures on loose seabed foundation; however, Young's modulus E must be dependent on the confining effective stress, rather than a constant in computation.

  9. An application of the Dipole Pomeron model to the pion-proton elastic scattering

    International Nuclear Information System (INIS)

    Covolan, R.J.M.; Leite, E.E.; Montanha, J.; Soares, M.S.

    1994-01-01

    The Pomeron model is applied to the pion-proton elastic scattering aiming to describe the total and differential cross sections and the ρ ratio between the scattering amplitude real and imaginary parts. It is also discussed how far the present available experimental results lead to the necessity of adopting a (α 0 > 1) supercritical trajectory. (author). 3 refs., 4 figs

  10. Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-healing, and Elastic Hydrogels with Synergistic "Soft and Hard" Hybrid Networks.

    Science.gov (United States)

    Liu, Yan-Jun; Cao, Wen-Tao; Ma, Ming-Guo; Wan, Pengbo

    2017-08-02

    Robust, stretchable, and strain-sensitive hydrogels have recently attracted immense research interest because of their potential application in wearable strain sensors. The integration of the synergistic characteristics of decent mechanical properties, reliable self-healing capability, and high sensing sensitivity for fabricating conductive, elastic, self-healing, and strain-sensitive hydrogels is still a great challenge. Inspired by the mechanically excellent and self-healing biological soft tissues with hierarchical network structures, herein, functional network hydrogels are fabricated by the interconnection between a "soft" homogeneous polymer network and a "hard" dynamic ferric (Fe 3+ ) cross-linked cellulose nanocrystals (CNCs-Fe 3+ ) network. Under stress, the dynamic CNCs-Fe 3+ coordination bonds act as sacrificial bonds to efficiently dissipate energy, while the homogeneous polymer network leads to a smooth stress-transfer, which enables the hydrogels to achieve unusual mechanical properties, such as excellent mechanical strength, robust toughness, and stretchability, as well as good self-recovery property. The hydrogels demonstrate autonomously self-healing capability in only 5 min without the need of any stimuli or healing agents, ascribing to the reorganization of CNCs and Fe 3+ via ionic coordination. Furthermore, the resulted hydrogels display tunable electromechanical behavior with sensitive, stable, and repeatable variations in resistance upon mechanical deformations. Based on the tunable electromechanical behavior, the hydrogels can act as a wearable strain sensor to monitor finger joint motions, breathing, and even the slight blood pulse. This strategy of building synergistic "soft and hard" structures is successful to integrate the decent mechanical properties, reliable self-healing capability, and high sensing sensitivity together for assembling a high-performance, flexible, and wearable strain sensor.

  11. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  12. Hierarchical modeling and its numerical implementation for layered thin elastic structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin-Rae [Hongik University, Sejong (Korea, Republic of)

    2017-05-15

    Thin elastic structures such as beam- and plate-like structures and laminates are characterized by the small thickness, which lead to classical plate and laminate theories in which the displacement fields through the thickness are assumed linear or higher-order polynomials. These classical theories are either insufficient to represent the complex stress variation through the thickness or may encounter the accuracy-computational cost dilemma. In order to overcome the inherent problem of classical theories, the concept of hierarchical modeling has been emerged. In the hierarchical modeling, the hierarchical models with different model levels are selected and combined within a structure domain, in order to make the modeling error be distributed as uniformly as possible throughout the problem domain. The purpose of current study is to explore the potential of hierarchical modeling for the effective numerical analysis of layered structures such as laminated composite. For this goal, the hierarchical models are constructed and the hierarchical modeling is implemented by selectively adjusting the level of hierarchical models. As well, the major characteristics of hierarchical models are investigated through the numerical experiments.

  13. Adaptive-network models of collective dynamics

    Science.gov (United States)

    Zschaler, G.

    2012-09-01

    Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge

  14. Linear approximation model network and its formation via ...

    Indian Academy of Sciences (India)

    To overcome the deficiency of `local model network' (LMN) techniques, an alternative `linear approximation model' (LAM) network approach is proposed. Such a network models a nonlinear or practical system with multiple linear models fitted along operating trajectories, where individual models are simply networked ...

  15. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  16. Elastic reflection based waveform inversion with a nonlinear approach

    KAUST Repository

    Guo, Qiang

    2017-08-16

    Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.

  17. Elastic reflection based waveform inversion with a nonlinear approach

    KAUST Repository

    Guo, Qiang; Alkhalifah, Tariq Ali

    2017-01-01

    Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.

  18. Continuum mechanics elasticity, plasticity, viscoelasticity

    CERN Document Server

    Dill, Ellis H

    2006-01-01

    FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...

  19. The impact of ice I rheology on interior models of Ganymede: The elastic vs. the visco-elastic case

    Science.gov (United States)

    Steinbrügge, Gregor; Hussmann, Hauke; Sohl, Frank; Oberst, Jürgen

    2015-04-01

    Many investigations on key processes of icy satellites are driven by the rheological behavior of planetary ices. Future missions to Jupiter's icy moons (e.g. JUICE / Europa clipper) aimed at constraining the thickness of the outer ice shell using radio science and/or laser altimetry will have to address this problem. We investigate for the case of Ganymede under which conditions the ice I viscosity could be constrained by measuring the phase-lag of the tidal response using laser altimetry. In the absence of seismic data, interior structure models are constrained by the satellite's mean density and mean moment-of-inertia factor. One key observable to reduce the ambiguity of the corresponding structural models is the measurement of the dynamic response of the satellite's outer ice shells to tidal forces exerted by Jupiter and characterized by the body tide surface Love numbers h2 and k2. The Love number k2 measures the variation of the gravitational potential due to tidally induced internal redistribution of mass and can be inferred from radio science experiments. The Love number h2 is a measure for the tide-induced radial displacement of the satellite's surface. It is an advantage that Ganymede's surface displacement Love number h2 can be expected to be measured with a high accuracy using laser altimetry (Steinbrügge et al., 2014). However, the determination of the resulting ice thickness further depends on the possible existence of a liquid subsurface water ocean and on the tidally effective rheology of the outer ice shell (Moore and Schubert, 2003). Here, we distinguish between an elastic, visco-elastic or even fluid behavior in the sense of the Maxwell model and alternative rheological models. In the case of Ganymede the fluid case would imply high ice temperatures which are at odds with thermal equilibrium models calculated by Spohn and Schubert (2003). However the visco-elastic case is still possible. Laboratory measurements of ice I (e.g. Sotin et al., 1998

  20. Thermodynamic model for the elastic form factor in diffraction scattering of protons

    International Nuclear Information System (INIS)

    Grashin, A.F.; Evstratenko, A.S.; Lepeshkin, M.V.

    1988-01-01

    An explicit expression is obtained for the differential pp(p-bar)-scattering cross section in the diffraction-cone region by employing the thermodynamic model for the elastic form factor previously proposed in Ref. 4. Data for the energy region 16.3≤(s)/sup 1/2/ ≤546 GeV have been analyzed and significant deviations have been discovered from the commonly used approximations in the form of linear or quadratic exponentials

  1. Modelling the structure of complex networks

    DEFF Research Database (Denmark)

    Herlau, Tue

    networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...

  2. Non-linear theory of elasticity and optimal design

    CERN Document Server

    Ratner, LW

    2003-01-01

    In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it

  3. Elastic interactions between hydrogen atoms in metals. II. Elastic interaction energies

    International Nuclear Information System (INIS)

    Shirley, A.I.; Hall, C.K.

    1986-01-01

    The fully harmonic lattice approximation derived in a previous paper is used to calculate the elastic interaction energies in the niobium-hydrogen system. The permanent-direct, permanent-indirect, induced-direct, and induced-indirect forces calculated previously each give rise to a corresponding elastic interaction between hydrogen atoms. The latter three interactions have three- and four-body terms in addition to the usual two-body terms. These quantities are calculated and compared with the corresponding two-body permanent elastic interactions obtained in the harmonic-approximation treatment of Horner and Wagner. The results show that the total induced elastic energy is approximately (1/3) the size of the total permanent elastic energy and opposite to it in sign. The total elastic energy due to three-body interactions is approximately (1/4) the size of the total two-body elastic energy, while the total four-body elastic energy is approximately 5% of the total two-body energy. These additional elastic energies are expected to have a profound effect on the thermodynamic and phase-change behavior of a metal hydride

  4. Heavy ion elastic scattering of code : OPTHI

    International Nuclear Information System (INIS)

    Ismail, M.; Divatia, A.S.

    1982-01-01

    A computer code, OPTHI has been designed to calculate nuclear optical model elastic cross sections for the scattering of heavy ions. The program has been designed to be utilitarian rather than capable of giving an exact description of elastic scattering. Input format is described and the program listing is given. (M.G.B.)

  5. Transient response of nonlinear polymer networks: A kinetic theory

    Science.gov (United States)

    Vernerey, Franck J.

    2018-06-01

    Dynamic networks are found in a majority of natural materials, but also in engineering materials, such as entangled polymers and physically cross-linked gels. Owing to their transient bond dynamics, these networks display a rich class of behaviors, from elasticity, rheology, self-healing, or growth. Although classical theories in rheology and mechanics have enabled us to characterize these materials, there is still a gap in our understanding on how individuals (i.e., the mechanics of each building blocks and its connection with others) affect the emerging response of the network. In this work, we introduce an alternative way to think about these networks from a statistical point of view. More specifically, a network is seen as a collection of individual polymer chains connected by weak bonds that can associate and dissociate over time. From the knowledge of these individual chains (elasticity, transient attachment, and detachment events), we construct a statistical description of the population and derive an evolution equation of their distribution based on applied deformation and their local interactions. We specifically concentrate on nonlinear elastic response that follows from the strain stiffening response of individual chains of finite size. Upon appropriate averaging operations and using a mean field approximation, we show that the distribution can be replaced by a so-called chain distribution tensor that is used to determine important macroscopic measures such as stress, energy storage and dissipation in the network. Prediction of the kinetic theory are then explored against known experimental measurement of polymer responses under uniaxial loading. It is found that even under the simplest assumptions of force-independent chain kinetics, the model is able to reproduce complex time-dependent behaviors of rubber and self-healing supramolecular polymers.

  6. Spatial Epidemic Modelling in Social Networks

    Science.gov (United States)

    Simoes, Joana Margarida

    2005-06-01

    The spread of infectious diseases is highly influenced by the structure of the underlying social network. The target of this study is not the network of acquaintances, but the social mobility network: the daily movement of people between locations, in regions. It was already shown that this kind of network exhibits small world characteristics. The model developed is agent based (ABM) and comprehends a movement model and a infection model. In the movement model, some assumptions are made about its structure and the daily movement is decomposed into four types: neighborhood, intra region, inter region and random. The model is Geographical Information Systems (GIS) based, and uses real data to define its geometry. Because it is a vector model, some optimization techniques were used to increase its efficiency.

  7. Modeling of fluctuating reaction networks

    International Nuclear Information System (INIS)

    Lipshtat, A.; Biham, O.

    2004-01-01

    Full Text:Various dynamical systems are organized as reaction networks, where the population size of one component affects the populations of all its neighbors. Such networks can be found in interstellar surface chemistry, cell biology, thin film growth and other systems. I cases where the populations of reactive species are large, the network can be modeled by rate equations which provide all reaction rates within mean field approximation. However, in small systems that are partitioned into sub-micron size, these populations strongly fluctuate. Under these conditions rate equations fail and the master equation is needed for modeling these reactions. However, the number of equations in the master equation grows exponentially with the number of reactive species, severely limiting its feasibility for complex networks. Here we present a method which dramatically reduces the number of equations, thus enabling the incorporation of the master equation in complex reaction networks. The method is examplified in the context of reaction network on dust grains. Its applicability for genetic networks will be discussed. 1. Efficient simulations of gas-grain chemistry in interstellar clouds. Azi Lipshtat and Ofer Biham, Phys. Rev. Lett. 93 (2004), 170601. 2. Modeling of negative autoregulated genetic networks in single cells. Azi Lipshtat, Hagai B. Perets, Nathalie Q. Balaban and Ofer Biham, Gene: evolutionary genomics (2004), In press

  8. Elastic diffraction interactions of hadrons at high energies

    International Nuclear Information System (INIS)

    Ismatov, E.I.; Ubaev, J.K.; Tshay, K.V.; Zholdasova, S.M.; Juraev, Sh.Kh.; Essaniazov, Sh.P.

    2006-01-01

    Full text: 1. The diffraction theory of elastic and inelastic scattering of hadron-hadron and hadron-nucleus processes is developed. The description of experimental data on differential cross section of elastic scattering p p, p-bar p in wide range of transferred momentum is made in the frames of the developed inelastic overlap function model. The investigation of nuclei elastic scattering at the low, middle and high energies is carried out, that allowed to execute quantitative control of efficiency or quantum-field and phenomenological theories and make critical analysis of their utility. The principle of construction of realistic amplitudes of the elastic scattering is confirmed on the basic of the s- and t-channel approaches both conditions stationary of amplitudes. For a wide range of models the comparative analysis of amplitude of inelastic scattering in representation of impact parameter is executed. The expression for effective radius of interaction, effective trajectory Regge and slope of inelastic function of overlapping are analysed. In diffraction approximation the satisfactory description of the data on hadrons interaction at the energy of tens GeV with proton and deuterons is received. The features of spectra of fast particles are analysed. The theory of collective variables S, T, P which characterize a deviation degree of angular distribution of particles from spherical symmetry, the general formula for dispersion of any density of obtained, the particles decays are investigated [1-2]. 2. The solution of Lippmann-Schwinger equation investigated within the frameworks of frameworks of high -energy approximation satisfies the generalized Huygens principle used in the diffraction theory nuclear processes. The diffraction emission is considered at the interaction of charged hadrons one with another and the nuclei [3]. 3. Study of elastic interactions of hadrons at high energies is of great interest due to the fact that the amplitude of this process is the

  9. The elastic model for arbitrary radially cracked fuel implemented in COMETHE-4D

    Energy Technology Data Exchange (ETDEWEB)

    Shihab, S [Belgonucleaire S.A., Brussels (Belgium)

    1997-08-01

    Among high burnup effects, the swelling occurring in the pellet rim is such that the fuel presents a radial bridging in its periphery. This secondary bridging has an important effect on the mechanical reaction of the fuel in case of PCI. The present paper describes the elastic mechanical model of the fuel to be implemented in COMETHE-4D which alleviates problems encountered with the previously model which assumed such bridging to occur solely in the central part of the fuel. (author). 9 refs, 4 figs.

  10. Deterministic ripple-spreading model for complex networks.

    Science.gov (United States)

    Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel

    2011-04-01

    This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.

  11. Network model of security system

    Directory of Open Access Journals (Sweden)

    Adamczyk Piotr

    2016-01-01

    Full Text Available The article presents the concept of building a network security model and its application in the process of risk analysis. It indicates the possibility of a new definition of the role of the network models in the safety analysis. Special attention was paid to the development of the use of an algorithm describing the process of identifying the assets, vulnerability and threats in a given context. The aim of the article is to present how this algorithm reduced the complexity of the problem by eliminating from the base model these components that have no links with others component and as a result and it was possible to build a real network model corresponding to reality.

  12. Theory of a new elastic-plastic-viscous model and its application to the nuclear fuel mechanical analysis

    International Nuclear Information System (INIS)

    Moreno, A.

    1977-01-01

    A new elastic-plastic-viscous model is described. The model is one of the multiple integral type, and has been included in a numerical code to predict the behaviour of a nuclear fuel of cylindrical form. Some features of this code are also described. (author)

  13. Modeling amorphous Si3B3N7: Structure and elastic properties

    International Nuclear Information System (INIS)

    Hannemann, A.; Schoen, J.C.; Jansen, M.; Putz, H.; Lengauer, T.

    2004-01-01

    We investigate the structure and elastic properties of the amorphous high-temperature ceramic a-Si 3 B 3 N 7 . Several different structural models are generated and their properties such as the radial and angular distribution functions, the degree of local order, the density, the bulk modulus and the phonon spectrum, are calculated and compared with the experiment. The best structural agreement between model and experimental observations is found for models exhibiting a certain degree of local ( 3 B 3 N 7 has not been synthesized by cooling from the melt but via the polymerization and subsequent pyrolysis of molecular precursors. Furthermore, we suggest that, due to the synthesis process, stable nanoscale cavities (diameter 3 )

  14. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  15. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials.

    Science.gov (United States)

    Chan, Ariel W; Neufeld, Ronald J

    2009-10-01

    Semisynthetic network alginate polymer (SNAP), synthesized by acetalization of linear alginate with di-aldehyde, is a pH-responsive tetrafunctionally linked 3D gel network, and has potential application in oral delivery of protein therapeutics and active biologicals, and as tissue bioscaffold for regenerative medicine. A constitutive polyelectrolyte gel model based on non-Gaussian polymer elasticity, Flory-Huggins liquid lattice theory, and non-ideal Donnan membrane equilibria was derived, to describe SNAP gel swelling in dilute and ionic solutions containing uni-univalent, uni-bivalent, bi-univalent or bi-bi-valent electrolyte solutions. Flory-Huggins interaction parameters as a function of ionic strength and characteristic ratio of alginates of various molecular weights were determined experimentally to numerically predict SNAP hydrogel swelling. SNAP hydrogel swells pronouncedly to 1000 times in dilute solution, compared to its compact polymer volume, while behaving as a neutral polymer with limited swelling in high ionic strength or low pH solutions. The derived model accurately describes the pH-responsive swelling of SNAP hydrogel in acid and alkaline solutions of wide range of ionic strength. The pore sizes of the synthesized SNAP hydrogels of various crosslink densities were estimated from the derived model to be in the range of 30-450 nm which were comparable to that measured by thermoporometry, and diffusion of bovine serum albumin. The derived equilibrium swelling model can characterize hydrogel structure such as molecular weight between crosslinks and crosslinking density, or can be used as predictive model for swelling, pore size and mechanical properties if gel structural information is known, and can potentially be applied to other point-link network polyelectrolytes such as hyaluronic acid gel.

  16. Variable elasticity of substituition in a discrete time Solow–Swan growth model with differential saving

    International Nuclear Information System (INIS)

    Brianzoni, Serena; Mammana, Cristiana; Michetti, Elisabetta

    2012-01-01

    Highlights: ► One dimensional piecewise smooth map: border collision bifurcations. ► Numerical simulations: complex dynamics. ► Ves production function in the solow–swan growth model and comparison with the ces production function. - Abstract: We study the dynamics shown by the discrete time neoclassical one-sector growth model with differential savings as in Bohm and Kaas while assuming VES production function in the form given by Revankar . It is shown that the model can exhibit unbounded endogenous growth despite the absence of exogenous technical change and the presence of non-reproducible factors if the elasticity of substitution is greater than one. We then consider parameters range related to non-trivial dynamics (i.e. the elasticity of substitution in less than one and shareholders save more than workers) and we focus on local and global bifurcations causing the transition to more and more complex asymptotic dynamics. In particular, as our map is non-differentiable in a subset of the states space, we show that border collision bifurcations occur. Several numerical simulations support the analysis.

  17. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  18. A fully microscopic model of 200 MeV proton-{sup 12}C elastic and inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Karataglidis, S; Dortmans, P J; Amos, K; de Swiniarski, R

    1996-03-01

    An effective two nucleon (NN) interaction in the nuclear medium is defined from an accurate mapping of the NN g matrices obtained by solving the Brueckner-Bethe-Goldstone equations for infinite nuclear matter. That effective interaction is used in a fully microscopic calculation of the nonlocal effective proton-{sup 12}C interaction from which are obtained predictions of the differential cross section and analysing power for 200 MeV elastic scattering. The relative motion wave functions so found are used as the distorted waves in a distorted wave approximation (DWA) study of select inelastic scattering events. The effective NN interaction is used as the transition operator in those calculations. The relevant nuclear spectroscopy for the elastic and DWA (p, p`) calculations is found from a full (0 + 2) {Dirac_h}{omega} shell model evaluation of the positive parity states while a restricted (1 + 3){Dirac_h}{omega} has been used to give the negative parity states. Results are compared with those of the 0p-shell model of Cohen and Kurath or with those based upon axially symmetric, projected Hartree-Fock calculations. The diverse structure model wave functions are assessed by using them in calculations to compare with measured longitudinal, transverse electric and transverse magnetic form factors from electron scattering to many of the excited states of {sup 12}C. Using those models of the structure of {sup 12}C in the completely microscopic model of the elastic and inelastic scattering of 200 MeV protons, good fits have been found to the cross section and analysing power data. 50 refs., 3 tabs., 20 figs.

  19. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M

    2013-01-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  20. Magnetic hysteresis at the domain scale of a multi-scale material model for magneto-elastic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Vanoost, D., E-mail: dries.vanoost@kuleuven-kulak.be [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven Kulak, Wave Propagation and Signal Processing Research Group, Kortrijk B-8500 (Belgium); Steentjes, S. [Institute of Electrical Machines, RWTH Aachen University, Aachen D-52062 (Germany); Peuteman, J. [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven, Department of Electrical Engineering, Electrical Energy and Computer Architecture, Heverlee B-3001 (Belgium); Gielen, G. [KU Leuven, Department of Electrical Engineering, Microelectronics and Sensors, Heverlee B-3001 (Belgium); De Gersem, H. [KU Leuven Kulak, Wave Propagation and Signal Processing Research Group, Kortrijk B-8500 (Belgium); TU Darmstadt, Institut für Theorie Elektromagnetischer Felder, Darmstadt D-64289 (Germany); Pissoort, D. [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven, Department of Electrical Engineering, Microelectronics and Sensors, Heverlee B-3001 (Belgium); Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Aachen D-52062 (Germany)

    2016-09-15

    This paper proposes a multi-scale energy-based material model for poly-crystalline materials. Describing the behaviour of poly-crystalline materials at three spatial scales of dominating physical mechanisms allows accounting for the heterogeneity and multi-axiality of the material behaviour. The three spatial scales are the poly-crystalline, grain and domain scale. Together with appropriate scale transitions rules and models for local magnetic behaviour at each scale, the model is able to describe the magneto-elastic behaviour (magnetostriction and hysteresis) at the macroscale, although the data input is merely based on a set of physical constants. Introducing a new energy density function that describes the demagnetisation field, the anhysteretic multi-scale energy-based material model is extended to the hysteretic case. The hysteresis behaviour is included at the domain scale according to the micro-magnetic domain theory while preserving a valid description for the magneto-elastic coupling. The model is verified using existing measurement data for different mechanical stress levels. - Highlights: • A ferromagnetic hysteretic energy-based multi-scale material model is proposed. • The hysteresis is obtained by new proposed hysteresis energy density function. • Avoids tedious parameter identification.

  1. Elastic and inelastic psi production by muons

    International Nuclear Information System (INIS)

    Loken, S.C.

    1981-06-01

    Results are presented on the elastic and inelastic production of psi (3.1). The elastic data are qualitative agreement with the predictions of photon-gluon fusion but have a steeper dependence on Q 2 than the model predicts. A QCD calculation accounts well for the shape of the inelastic data in inelasticity, Q 2 and E/sub γ/, but fails to account for the absolute cross section. At 209 GeV, the cross-section for elastic psi production is 0.36 +- 0.07 nb; for inelastic, 0.28 +- 0.06nb

  2. Elastically deformable models based on the finite element method accelerated on graphics hardware using CUDA

    NARCIS (Netherlands)

    Verschoor, M.; Jalba, A.C.

    2012-01-01

    Elastically deformable models have found applications in various areas ranging from mechanical sciences and engineering to computer graphics. The method of Finite Elements has been the tool of choice for solving the underlying PDE, when accuracy and stability of the computations are more important

  3. Energy-efficient multicast traffic grooming strategy based on light-tree splitting for elastic optical networks

    Science.gov (United States)

    Liu, Huanlin; Yin, Yarui; Chen, Yong

    2017-07-01

    In order to address the problem of optimizing the spectrum resources and power consumption in elastic optical networks (EONs), we investigate the potential gains by jointly employing the light-tree splitting and traffic grooming for multicast requests. An energy-efficient multicast traffic grooming strategy based on light-tree splitting (EED-MTGS-LS) is proposed in this paper. Firstly, we design a traffic pre-processing mechanism to decide the multicast requests' routing order, which considers the request's bandwidth requirement and physical hops synthetically. Then, by dividing a light-tree to some sub-light-trees and grooming the request to these sub-light-trees, the light-tree sharing ratios of multicast requests can be improved. What's more, a priority scheduling vector is constructed, which aims to improve the success rate of spectrum assignment for grooming requests. Finally, a grooming strategy is designed to optimize the total power consumption by reducing the use of transponders and IP routers during routing. Simulation results show that the proposed strategy can significantly improve the spectrum utilization and save the power consumption.

  4. An optimal hierarchical decision model for a regional logistics network with environmental impact consideration.

    Science.gov (United States)

    Zhang, Dezhi; Li, Shuangyan; Qin, Jin

    2014-01-01

    This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level.

  5. An Optimal Hierarchical Decision Model for a Regional Logistics Network with Environmental Impact Consideration

    Directory of Open Access Journals (Sweden)

    Dezhi Zhang

    2014-01-01

    Full Text Available This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users’ demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators’ service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level.

  6. An Optimal Hierarchical Decision Model for a Regional Logistics Network with Environmental Impact Consideration

    Science.gov (United States)

    Zhang, Dezhi; Li, Shuangyan

    2014-01-01

    This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level. PMID:24977209

  7. A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals

    Science.gov (United States)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2015-09-01

    Based on the experimental observations on the anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals done by Gall and Maier (2002), a crystal plasticity based micromechanical constitutive model is constructed to describe such anisotropic cyclic deformation. To model the internal stress caused by the unmatched inelastic deformation between the austenite and martensite phases on the plastic deformation of austenite phase, 24 induced martensite variants are assumed to be ellipsoidal inclusions with anisotropic elasticity and embedded in the austenite matrix. The homogeneous stress fields in the austenite matrix and each induced martensite variant are obtained by using the Mori-Tanaka homogenization method. Two different inelastic mechanisms, i.e., martensite transformation and transformation-induced plasticity, and their interactions are considered in the proposed model. Following the assumption of instantaneous domain growth (Cherkaoui et al., 1998), the Helmholtz free energy of a representative volume element of a NiTi shape memory single crystal is established and the thermodynamic driving forces of the internal variables are obtained from the dissipative inequalities. The capability of the proposed model to describe the anisotropic cyclic deformation of super-elastic NiTi single crystals is first verified by comparing the predicted results with the experimental ones. It is concluded that the proposed model can capture the main quantitative features observed in the experiments. And then, the proposed model is further used to predict the uniaxial and multiaxial transformation ratchetting of a NiTi single crystal.

  8. Application of the Modified Vlasov Model to the Free Vibration Analysis of Thick Plates Resting on Elastic Foundations

    OpenAIRE

    Ozgan, Korhan; Daloglu, Ayse T.

    2009-01-01

    The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4) is used for plate bending analysis based on Mindlin plate theory which is effectively appli...

  9. Actin filaments growing against an elastic membrane: Effect of membrane tension

    Science.gov (United States)

    Sadhu, Raj Kumar; Chatterjee, Sakuntala

    2018-03-01

    We study the force generation by a set of parallel actin filaments growing against an elastic membrane. The elastic membrane tries to stay flat and any deformation from this flat state, either caused by thermal fluctuations or due to protrusive polymerization force exerted by the filaments, costs energy. We study two lattice models to describe the membrane dynamics. In one case, the energy cost is assumed to be proportional to the absolute magnitude of the height gradient (gradient model) and in the other case it is proportional to the square of the height gradient (Gaussian model). For the gradient model we find that the membrane velocity is a nonmonotonic function of the elastic constant μ and reaches a peak at μ =μ* . For μ membrane energy keeps increasing with time. For the Gaussian model, the system always reaches a steady state and the membrane velocity decreases monotonically with the elastic constant ν for all nonzero values of ν . Multiple filaments give rise to protrusions at different regions of the membrane and the elasticity of the membrane induces an effective attraction between the two protrusions in the Gaussian model which causes the protrusions to merge and a single wide protrusion is present in the system. In both the models, the relative time scale between the membrane and filament dynamics plays an important role in deciding whether the shape of elasticity-velocity curve is concave or convex. Our numerical simulations agree reasonably well with our analytical calculations.

  10. The modelling of two DOF joints controlled by elastic inner ties

    Directory of Open Access Journals (Sweden)

    Ożóg Dominik

    2017-01-01

    Full Text Available This paper considers the mathematical model of two types of joints that can be used to connect the arms of two robots. The first of them is a simple revolute joint with one degree of freedom and the second is a universal joint with two degrees of freedom. Each of them is controlled using elastic ties that run in the joints and are connected to the inside of the arm joints. This paper describes a study of kinematics, dynamics properties and Extended Denavit-Hartenberg Notation parameters mentioned joints.

  11. Mechanical properties of polymer-infiltrated-ceramic-network materials.

    Science.gov (United States)

    Coldea, Andrea; Swain, Michael V; Thiel, Norbert

    2013-04-01

    To determine and identify correlations between flexural strength, strain at failure, elastic modulus and hardness versus ceramic network densities of a range of novel polymer-infiltrated-ceramic-network (PICN) materials. Four ceramic network densities ranging from 59% to 72% of theoretical density, resin infiltrated PICN as well as pure polymer and dense ceramic cross-sections were subjected to Vickers Indentations (HV 5) for hardness evaluation. The flexural strength and elastic modulus were measured using three-point-bending. The fracture response of PICNs was determined for cracks induced by Vickers-indentation. Optical and scanning electron microscopy (SEM) was employed to observe the indented areas. Depending on the density of the porous ceramic the flexural strength of PICNs ranged from 131 to 160MPa, the hardness values ranged between 1.05 and 2.10GPa and the elastic modulus between 16.4 and 28.1GPa. SEM observations of the indentation induced cracks indicate that the polymer network causes greater crack deflection than the dense ceramic material. The results were compared with simple analytical expressions for property variation of two phase composite materials. This study points out the correlation between ceramic network density, elastic modulus and hardness of PICNs. These materials are considered to more closely imitate natural tooth properties compared with existing dental restorative materials. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  12. Modeling the interdependent network based on two-mode networks

    Science.gov (United States)

    An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian

    2017-10-01

    Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.

  13. Adhesive friction for elastic-plastic contacting rough surfaces considering asperity interaction

    International Nuclear Information System (INIS)

    Sahoo, Prasanta

    2006-01-01

    The paper describes a theoretical study of adhesive friction at the contact between rough surfaces taking asperity interaction into consideration and using an elastic-plastic model of contact deformation that is based on an accurate finite element analysis of an elastic-plastic single asperity contact. The micro-contact model of asperity interactions, developed by Zhao and Chang, is integrated into the improved elastic-plastic rough surface adhesive contact analysis to consider the adhesive friction behaviour of rough surfaces. The model considers a large range of interference values from fully elastic through elastic-plastic to fully plastic regimes of contacting asperities. Two well-established adhesion indices are used to consider different conditions that arise as a result of varying load, surface and material parameters. Results are obtained for the coefficient of friction against applied load for various combinations of these parameters. The results show that the coefficient of friction depends strongly on the applied load for the no-interaction case while it becomes insensitive to the load for interaction consideration. Moreover, the inclusion of elastic-plastic asperities further reduces the friction coefficient

  14. Phenomenological optical model for p-/sup 4/He elastic scattering. [560 to 1730 MeV: Dirac equation optical model analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, R L [International Business Machines Corp., Yorktown Heights, N.Y. (USA); Arnold, L G; Clark, B C [Ohio State Univ., Columbus (USA). Dept. of Physics

    1978-01-30

    The results of a Dirac equation optical model analysis of p-/sup 4/He elastic scattering data are reported. The optical potential obtained at 1029 MeV reproduces the systematics of p-/sup 4/He data over the energy range from 560 to 1730 MeV.

  15. Entropy Characterization of Random Network Models

    Directory of Open Access Journals (Sweden)

    Pedro J. Zufiria

    2017-06-01

    Full Text Available This paper elaborates on the Random Network Model (RNM as a mathematical framework for modelling and analyzing the generation of complex networks. Such framework allows the analysis of the relationship between several network characterizing features (link density, clustering coefficient, degree distribution, connectivity, etc. and entropy-based complexity measures, providing new insight on the generation and characterization of random networks. Some theoretical and computational results illustrate the utility of the proposed framework.

  16. The model of social crypto-network

    Directory of Open Access Journals (Sweden)

    Марк Миколайович Орел

    2015-06-01

    Full Text Available The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks

  17. Modeling the growth and interaction of stylolite networks, using the discrete element method for pressure solution

    Science.gov (United States)

    Makedonska, N.; Sparks, D. W.; Aharonov, E.

    2012-12-01

    heteregeneous, but stress-dependent dissolution tends to equalize them. We apply our model to the simulation of stylolite networks, particularly the interaction of stylolite tips. The stress concentrations from these tips are transmitted through the intervening rock, which can cause elastic strain, brittle damage and frictional sliding. Our model shows that grain rearrangement and compaction rate depend on the surface friction coefficient of grains. Simulation results show the development of shear zones between stylolites, and a high porosity process zone at the tips of stylolites. These features, which have been observed in field studies, are modeled and predicted for the first time. This modeling tool holds a promise to provide many new insights regarding the coupling between pressure solution and brittle deformation, i.e. between mechanical and chemical compaction.

  18. Towards reproducible descriptions of neuronal network models.

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2009-08-01

    Full Text Available Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing--and thinking about--complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain.

  19. Designing Network-based Business Model Ontology

    DEFF Research Database (Denmark)

    Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz

    2015-01-01

    Survival on dynamic environment is not achieved without a map. Scanning and monitoring of the market show business models as a fruitful tool. But scholars believe that old-fashioned business models are dead; as they are not included the effect of internet and network in themselves. This paper...... is going to propose e-business model ontology from the network point of view and its application in real world. The suggested ontology for network-based businesses is composed of individuals` characteristics and what kind of resources they own. also, their connections and pre-conceptions of connections...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....

  20. An Improved Car-Following Model in Vehicle Networking Based on Network Control

    Directory of Open Access Journals (Sweden)

    D. Y. Kong

    2014-01-01

    Full Text Available Vehicle networking is a system to realize information interoperability between vehicles and people, vehicles and roads, vehicles and vehicles, and cars and transport facilities, through the network information exchange, in order to achieve the effective monitoring of the vehicle and traffic flow. Realizing information interoperability between vehicles and vehicles, which can affect the traffic flow, is an important application of network control system (NCS. In this paper, a car-following model using vehicle networking theory is established, based on network control principle. The car-following model, which is an improvement of the traditional traffic model, describes the traffic in vehicle networking condition. The impact that vehicle networking has on the traffic flow is quantitatively assessed in a particular scene of one-way, no lane changing highway. The examples show that the capacity of the road is effectively enhanced by using vehicle networking.

  1. Multiplicative Attribute Graph Model of Real-World Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myunghwan [Stanford Univ., CA (United States); Leskovec, Jure [Stanford Univ., CA (United States)

    2010-10-20

    Large scale real-world network data, such as social networks, Internet andWeb graphs, is ubiquitous in a variety of scientific domains. The study of such social and information networks commonly finds patterns and explain their emergence through tractable models. In most networks, especially in social networks, nodes also have a rich set of attributes (e.g., age, gender) associatedwith them. However, most of the existing network models focus only on modeling the network structure while ignoring the features of nodes in the network. Here we present a class of network models that we refer to as the Multiplicative Attribute Graphs (MAG), which naturally captures the interactions between the network structure and node attributes. We consider a model where each node has a vector of categorical features associated with it. The probability of an edge between a pair of nodes then depends on the product of individual attributeattribute similarities. The model yields itself to mathematical analysis as well as fit to real data. We derive thresholds for the connectivity, the emergence of the giant connected component, and show that the model gives rise to graphs with a constant diameter. Moreover, we analyze the degree distribution to show that the model can produce networks with either lognormal or power-law degree distribution depending on certain conditions.

  2. ELASTIC CHARACTERIZATION OF Eucalyptus citriodora WOOD

    Directory of Open Access Journals (Sweden)

    Adriano Wagner Ballarin

    2003-01-01

    Full Text Available This paper contributed to the elastic characterization of Eucalyptus citriodora grown inBrazil, considering an orthotropic model and evaluating its most important elastic constants.Considering this as a reference work to establish basic elastic ratios — several important elasticconstants of Brazilian woods were not determined yet - the experimental set-up utilized one tree of 65years old from plantations of “Horto Florestal Navarro de Andrade”, at Rio Claro-SP, Brazil. All theexperimental procedures attended NBR 7190/97 – Brazilian Code for wooden structures –withconventional tension and compression tests. Results showed statistical identity between compressionand tension modulus of elasticity. The relation observed between longitudinal and radial modulus ofelasticity was 10 (EL/ER ≈ 10 and same relation, considering shear modulus (modulus of rigidity was20 (EL/GLR ≈ 20. These results, associated with Poisson’s ratios herein determined, allow theoreticalmodeling of wood mechanical behavior in structures.

  3. Efficient education policy: A second-order elasticity rule

    OpenAIRE

    Richter, Wolfram F.

    2010-01-01

    Assuming a two-period model with endogenous choices of labour, education, and saving, efficient education policy is characterized for a Ramsey-like scenario in which the government is constrained to use linear instruments. It is shown that education should be effectively subsidized if, and only if, the elasticity of the earnings function is increasing in education. The strength of second-best subsidization increases in the elasticity of the elasticity of the earnings function. This second-ord...

  4. MODELING A ROCKET ELASTIC STRUCTURE AS A BECK’S COLUMN UNDER FOLLOWER FORCE

    OpenAIRE

    Brejão, Leandro Forne; Brasil, Reyolando M. L. R. F.

    2017-01-01

    It is intended, in this paper, to develop a mathematical model of an elastic space rocket structure as a Beck’s column excited by a follower (or circulatory) force. This force represents the rocket motor thrust that should be always in the direction of the tangent to the structure deformed axis at the base of the vehicle. We present a simplified two degree of freedom rigid bars discrete model. Its system of two second order nonlinear ordinary differential equations of motion are derived via L...

  5. Developing Personal Network Business Models

    DEFF Research Database (Denmark)

    Saugstrup, Dan; Henten, Anders

    2006-01-01

    The aim of the paper is to examine the issue of business modeling in relation to personal networks, PNs. The paper builds on research performed on business models in the EU 1ST MAGNET1 project (My personal Adaptive Global NET). The paper presents the Personal Network concept and briefly reports...

  6. Analysis of elastic interactions of hadrons at high energies

    International Nuclear Information System (INIS)

    Yuldashev, B.S.; Fazilova, Z.F.; Ismatov, E.I.; Kurmanbai, M.S.; Ajniyazova, G.T.; Tskhay, K.V.; Medeuova, A.B.

    2004-01-01

    Study of elastic interactions of hadrons at high energies if of great interest due to the fact that the amplitude of this process is the simplest, and at the same time, it is a fundamental object for theoretical and experimental researches. Study of this process allows one to have a quantitative check of various theories and models, and to make a critical selection. By using of fundamental property of theory - unitarity condition of scattering matrix - elastic scattering can be connected with inelastic reaction. Based on S-channel unitarity condition expressing elastic amplitude via inelastic overlapping function, to study the latter, as well as to describe the experimentally measured characteristics of hadron-nucleon interactions at high-energies, as well as for results prediction. By using experimental data on differential cross-section of elastic scattering of hadrons at various energies and by theoretical information on ratio of a real part and an imaginary part of scattering amplitude δ(t) the t-dependence of inelastic and elastic overlapping functions is studied. Influence of a zigzag form of differential cross-section of elastic pp(p) scattering on profile function and inelastic overlapping function to violation of geometric scaling was studied. In frames of the scaling the general expressions for s- and t-dependences of inelastic overlapping function are derived. Comparison of this function in three elastic scattering models was carried out. It was demonstrated that one would need to assume that hadrons become blacker at central part in order to correctly describe experimental angular distribution data. Dependence of differential cross-section on transfer momentum square for elastic hadrons scattering at energies of ISR and SPS in the model of inelastic overlapping function is studied. (author)

  7. Analysis of elastic interactions of hadrons at high energies

    International Nuclear Information System (INIS)

    Fazylov, M.I.; Yuldashev, B.S.; Azhniyazova, G.T.; Ismatov, E.I.; Sartbay, T.; Kurmanbay, M.S.; Tskhay, K.V.

    2004-01-01

    Full text: Study of elastic interactions of hadrons at high energies if of great interest due to the fact that the amplitude of this process is the simplest, and at the same time, it is a fundamental object for theoretical and experimental researches. Study of this process allows one to have a quantitative check of various theories and models, and to make a critical selection. By using of fundamental property of theory - unitarity condition of scattering matrix - elastic scattering can be connected with inelastic reaction. Based on S-channel unitarity condition expressing elastic amplitude via inelastic overlapping function, to study the latter, as well as to describe the experimentally measured characteristics of hadron-nucleon interactions at high-energies, as well as for results prediction. By using experimental data on differential cross-section of elastic scattering of hadrons at various energies and by theoretical information on ratio of a real part and an imaginary part of scattering amplitude δ(t) the t-dependence of inelastic and elastic overlapping functions is studied. Influence of a zigzag form of differential cross-section of elastic pp(p) scattering on profile function and inelastic overlapping function to violation of geometric scaling was studied. In frames of the scaling the general expressions for s- and t-dependences of inelastic overlapping function are derived. Comparison of this function in three elastic scattering models was carried out. It was demonstrated that one would need to assume that hadrons become blacker at central part in order to correctly describe experimental angular distribution data. Dependence of differential cross-section on transfer momentum square for elastic hadrons scattering at energies of ISR and SPS in the model of inelastic overlapping function is studied

  8. Elastic constants from microscopic strain fluctuations

    Science.gov (United States)

    Sengupta; Nielaba; Rao; Binder

    2000-02-01

    Fluctuations of the instantaneous local Lagrangian strain epsilon(ij)(r,t), measured with respect to a static "reference" lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic computer simulations. The measured strains are systematically coarse-grained by averaging them within subsystems (of size L(b)) of a system (of total size L) in the canonical ensemble. Using a simple finite size scaling theory we predict the behavior of the fluctuations as a function of L(b)/L and extract elastic constants of the system in the thermodynamic limit at nonzero temperature. Our method is simple to implement, efficient, and general enough to be able to handle a wide class of model systems, including those with singular potentials without any essential modification. We illustrate the technique by computing isothermal elastic constants of "hard" and "soft" disk triangular solids in two dimensions from Monte Carlo and molecular dynamics simulations. We compare our results with those from earlier simulations and theory.

  9. A novel Direct Small World network model

    Directory of Open Access Journals (Sweden)

    LIN Tao

    2016-10-01

    Full Text Available There is a certain degree of redundancy and low efficiency of existing computer networks.This paper presents a novel Direct Small World network model in order to optimize networks.In this model,several nodes construct a regular network.Then,randomly choose and replot some nodes to generate Direct Small World network iteratively.There is no change in average distance and clustering coefficient.However,the network performance,such as hops,is improved.The experiments prove that compared to traditional small world network,the degree,average of degree centrality and average of closeness centrality are lower in Direct Small World network.This illustrates that the nodes in Direct Small World networks are closer than Watts-Strogatz small world network model.The Direct Small World can be used not only in the communication of the community information,but also in the research of epidemics.

  10. A complete solution of cartographic displacement based on elastic beams model and Delaunay triangulation

    Science.gov (United States)

    Liu, Y.; Guo, Q.; Sun, Y.

    2014-04-01

    In map production and generalization, it is inevitable to arise some spatial conflicts, but the detection and resolution of these spatial conflicts still requires manual operation. It is become a bottleneck hindering the development of automated cartographic generalization. Displacement is the most useful contextual operator that is often used for resolving the conflicts arising between two or more map objects. Automated generalization researches have reported many approaches of displacement including sequential approaches and optimization approaches. As an excellent optimization approach on the basis of energy minimization principles, elastic beams model has been used in resolving displacement problem of roads and buildings for several times. However, to realize a complete displacement solution, techniques of conflict detection and spatial context analysis should be also take into consideration. So we proposed a complete solution of displacement based on the combined use of elastic beams model and constrained Delaunay triangulation (CDT) in this paper. The solution designed as a cyclic and iterative process containing two phases: detection phase and displacement phase. In detection phase, CDT of map is use to detect proximity conflicts, identify spatial relationships and structures, and construct auxiliary structure, so as to support the displacement phase on the basis of elastic beams. In addition, for the improvements of displacement algorithm, a method for adaptive parameters setting and a new iterative strategy are put forward. Finally, we implemented our solution on a testing map generalization platform, and successfully tested it against 2 hand-generated test datasets of roads and buildings respectively.

  11. Non-consensus Opinion Models on Complex Networks

    Science.gov (United States)

    Li, Qian; Braunstein, Lidia A.; Wang, Huijuan; Shao, Jia; Stanley, H. Eugene; Havlin, Shlomo

    2013-04-01

    Social dynamic opinion models have been widely studied to understand how interactions among individuals cause opinions to evolve. Most opinion models that utilize spin interaction models usually produce a consensus steady state in which only one opinion exists. Because in reality different opinions usually coexist, we focus on non-consensus opinion models in which above a certain threshold two opinions coexist in a stable relationship. We revisit and extend the non-consensus opinion (NCO) model introduced by Shao et al. (Phys. Rev. Lett. 103:01870, 2009). The NCO model in random networks displays a second order phase transition that belongs to regular mean field percolation and is characterized by the appearance (above a certain threshold) of a large spanning cluster of the minority opinion. We generalize the NCO model by adding a weight factor W to each individual's original opinion when determining their future opinion (NCO W model). We find that as W increases the minority opinion holders tend to form stable clusters with a smaller initial minority fraction than in the NCO model. We also revisit another non-consensus opinion model based on the NCO model, the inflexible contrarian opinion (ICO) model (Li et al. in Phys. Rev. E 84:066101, 2011), which introduces inflexible contrarians to model the competition between two opinions in a steady state. Inflexible contrarians are individuals that never change their original opinion but may influence the opinions of others. To place the inflexible contrarians in the ICO model we use two different strategies, random placement and one in which high-degree nodes are targeted. The inflexible contrarians effectively decrease the size of the largest rival-opinion cluster in both strategies, but the effect is more pronounced under the targeted method. All of the above models have previously been explored in terms of a single network, but human communities are usually interconnected, not isolated. Because opinions propagate not

  12. Modal Damping Ratio and Optimal Elastic Moduli of Human Body Segments for Anthropometric Vibratory Model of Standing Subjects.

    Science.gov (United States)

    Gupta, Manoj; Gupta, T C

    2017-10-01

    The present study aims to accurately estimate inertial, physical, and dynamic parameters of human body vibratory model consistent with physical structure of the human body that also replicates its dynamic response. A 13 degree-of-freedom (DOF) lumped parameter model for standing person subjected to support excitation is established. Model parameters are determined from anthropometric measurements, uniform mass density, elastic modulus of individual body segments, and modal damping ratios. Elastic moduli of ellipsoidal body segments are initially estimated by comparing stiffness of spring elements, calculated from a detailed scheme, and values available in literature for same. These values are further optimized by minimizing difference between theoretically calculated platform-to-head transmissibility ratio (TR) and experimental measurements. Modal damping ratios are estimated from experimental transmissibility response using two dominant peaks in the frequency range of 0-25 Hz. From comparison between dynamic response determined form modal analysis and experimental results, a set of elastic moduli for different segments of human body and a novel scheme to determine modal damping ratios from TR plots, are established. Acceptable match between transmissibility values calculated from the vibratory model and experimental measurements for 50th percentile U.S. male, except at very low frequencies, establishes the human body model developed. Also, reasonable agreement obtained between theoretical response curve and experimental response envelop for average Indian male, affirms the technique used for constructing vibratory model of a standing person. Present work attempts to develop effective technique for constructing subject specific damped vibratory model based on its physical measurements.

  13. Elastic properties of magnetostrictive rare-earth-iron alloys

    International Nuclear Information System (INIS)

    Cullen, J.R.; Blessing, G.; Rinaldi, S.

    1978-01-01

    The elastic properties of certain magnetostrictive rare-earth-iron alloys, namely polycrystalline Tbsub(0.3)Dysub(0.7)Fesub(2), Smsub(0.88)Dysub(0.12)Fesub(2)and amorphous TbFesub(2), were investigated ultrasonically. In all cases two shear waves were observed propagating simultaneously when a magnetic field was applied perpendicular to the direction of propagation. A model to explain this behaviour, based on magnetic-elastic coupling within local regions of these disordered materials, is developed and discussed in two limiting cases: (i) strongly coupled regions for which an effective isotropic magneto-elastic coupling is appropriate, and (ii) materials for which the elastic properties of the conglomerate are determined by averaging over those of independent regions. Experimental results up to fields of 25 kOe on the alloys mentioned above are exhibited and compared with the limiting cases (i) and (ii). In the case of polycrystalline Tbsub(0.3)Dysub(0.7)Fesub(2) further comparison is made between the determination of the magneto-elastic coupling constants using this model and the determination by using the results of a previous single-crystal study. (author)

  14. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    Science.gov (United States)

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  15. Gradient effects in a new class of electro-elastic bodies

    Science.gov (United States)

    Arvanitakis, Antonios

    2018-06-01

    Continuum theories for electro-elastic solids suggest the development of electric field or polarization-based models. Advanced versions of these models are the so-called gradient models, i.e., polarization gradient and electric field gradient models, which prove to be more than capable of explaining the behavior of a continuum in a wider range of length scales. In this work, implicit constitutive relations for electro-elastic bodies are considered with the introduction of polarization and electric field gradient effects. In this sense, the new class of electro-elastic bodies extends even further to account for nonlocality in constitutive equations, besides strain-limiting behavior and polarization saturation for large values of stresses and electric field, respectively. Nonlocality in constitutive equations is essential in modeling various phenomena.

  16. A mathematical model for the deformation of the eyeball by an elastic band.

    Science.gov (United States)

    Keeling, Stephen L; Propst, Georg; Stadler, Georg; Wackernagel, Werner

    2009-06-01

    In a certain kind of eye surgery, the human eyeball is deformed sustainably by the application of an elastic band. This article presents a mathematical model for the mechanics of the combined eye/band structure along with an algorithm to compute the model solutions. These predict the immediate and the lasting indentation of the eyeball. The model is derived from basic physical principles by minimizing a potential energy subject to a volume constraint. Assuming spherical symmetry, this leads to a two-point boundary-value problem for a non-linear second-order ordinary differential equation that describes the minimizing static equilibrium. By comparison with laboratory data, a preliminary validation of the model is given.

  17. Simulations of biopolymer networks under shear

    NARCIS (Netherlands)

    Huisman, Elisabeth Margaretha

    2011-01-01

    In this thesis we present a new method to simulate realistic three-dimensional networks of biopolymers under shear. These biopolymer networks are important for the structural functions of cells and tissues. We use the method to analyze these networks under shear, and consider the elastic modulus,

  18. Elastic contact mechanics: percolation of the contact area and fluid squeeze-out.

    Science.gov (United States)

    Persson, B N J; Prodanov, N; Krick, B A; Rodriguez, N; Mulakaluri, N; Sawyer, W G; Mangiagalli, P

    2012-01-01

    The dynamics of fluid flow at the interface between elastic solids with rough surfaces depends sensitively on the area of real contact, in particular close to the percolation threshold, where an irregular network of narrow flow channels prevails. In this paper, numerical simulation and experimental results for the contact between elastic solids with isotropic and anisotropic surface roughness are compared with the predictions of a theory based on the Persson contact mechanics theory and the Bruggeman effective medium theory. The theory predictions are in good agreement with the experimental and numerical simulation results and the (small) deviation can be understood as a finite-size effect. The fluid squeeze-out at the interface between elastic solids with randomly rough surfaces is studied. We present results for such high contact pressures that the area of real contact percolates, giving rise to sealed-off domains with pressurized fluid at the interface. The theoretical predictions are compared to experimental data for a simple model system (a rubber block squeezed against a flat glass plate), and for prefilled syringes, where the rubber plunger stopper is lubricated by a high-viscosity silicon oil to ensure functionality of the delivery device. For the latter system we compare the breakloose (or static) friction, as a function of the time of stationary contact, to the theory prediction.

  19. Application of backpropagation neural networks to evaluate residual properties of thermally damaged concrete

    International Nuclear Information System (INIS)

    Vasconcelos, W.L.; Shigaki, Y.; Tolentino, E.

    2009-01-01

    In this work it was analyzed the residual performance of Portland cement concretes, when cold after heat-treated up to 600 deg C. Granite-gneiss was used in the three concrete mix proportions as the coarse aggregate, and river sand with finesses modulus of 2.7 as the fine aggregate. Ultrasonic pulse tests were performed on all the specimens and ultrasonic dynamic modulus were obtained. An artificial neural network of the backpropagation type was trained to evaluate and apply models in predicting residual properties of Portland cement concretes. The input layer for both models consists of an external layer input vector of the temperature. The hidden layer has two processing units with hyperbolic tangent sigmoid transfer functions (tansig for short), and the output layer contains one processing unit that represents the network's output (ultrasonic pulse velocity or modulus of elasticity) for each input vector. The training phase of the network converged for reasonable results after 5.000 epochs approximately, resulting in mean squared errors less than 0.02 for the normalized data. The neural network developed for modeling residual properties of Portland cement concretes was shown to be efficient in both the training phase and the test. From the results reasonable predictions could be made for the ultrasonic pulse velocity or dynamic modulus of elasticity by using temperature. (author)

  20. MODELING OF RAILWAY TRACK OPERATION AS A SYSTEM OF QUASI-ELASTIC ORTHOTROPIC LAYERS

    Directory of Open Access Journals (Sweden)

    Sychev Vyacheslav Petrovich

    2016-03-01

    Full Text Available In this paper the authors give a solution to the problem of the impact of a rolling stock on the rail track on the basis of modeling a railway track as a multi-layered space, introducing each of the layers is a quasi-elastic orthotropic layer with cylindrical anisotropy in the polar coordinate system. The article describes wave equations, taking into account the rotational inertia of cross sectional and transverse shear strains. From the point of view of classical structural mechanics train path can be represented as a multilayer system comprising separate layers with different stiffness, lying on the foundation being the elastic-isotropic space. Winkler model provides that the basis is linearly deformable space, there are loads influencing its surface. These loads are transferred through a layered deformable half-space. This representation is used in this study as an initial approximation. For more accurate results of the deformation of a railway track because of rolling dynamic loads it is proposed to present a railway track in the form of a layered structure, where each element (assembled rails and sleepers, ballast section, the soil in the embankment, basement soils is modeled as a planar quasi-elastic orthotropic layer with cylindrical anisotropy. The equations describing the dynamic behaviour of flat element in a polar coordinate system are hyperbolic in nature and take into account the rotational inertia of the cross sectional and the transverse shear strains. This allows identifying the impact on the final characteristics of the blade wave effects, and oscillatory processes. In order to determine the unknown functions included in the constitutive equations it is proposed to use decomposition in power series in spatial coordinate and time. In order to determine the coefficients of ray series for the required functions, it is necessary to differentiate the defining wave equations k times on time, to take their difference on the different

  1. A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network

    Science.gov (United States)

    Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.

    2018-02-01

    Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.

  2. Treatise on classical elasticity theory and related problems

    CERN Document Server

    Teodorescu, Petre P

    2013-01-01

    Deformable solids have a particularly complex character; mathematical modeling is not always simple and often leads to inextricable difficulties of computation. One of the simplest mathematical models and, at the same time, the most used model, is that of the elastic body – especially the linear one. But, notwithstanding its simplicity, even this model of a real body may lead to great difficulties of computation. The practical importance of a work about the theory of elasticity, which is also an introduction to the mechanics of deformable solids, consists of the use of scientific methods of computation in a domain in which simplified methods are still used. This treatise takes into account the consideration made above, with special attention to the theoretical study of the state of strain and stress of a deformable solid. The book draws on the known specialized literature, as well as the original results of the author and his 50+ years experience as Professor of Mechanics and Elasticity at the University o...

  3. Visualisation and characterisation of heterogeneous bimodal PDMS networks

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Fleury, Clemence

    2014-01-01

    The existence of short-chain domains in heterogeneous bimodal PDMS networks has been confirmed visually, for the first time, through confocal fluorescence microscopy. The networks were prepared using a controlled reaction scheme where short PDMS chains were reacted below the gelation point...... bimodal networks with short-chain domains within a long-chain network. The average sizes of the short-chain domains were found to vary from 2.1 to 5.7 mm depending on the short-chain content. The visualised network structure could be correlated thereafter to the elastic properties, which were determined...... by rheology. All heterogeneous bimodal networks displayed significantly lower moduli than mono-modal PDMS elastomers prepared from the long polymer chains. Low-loss moduli as well as low-sol fractions indicate that low-elastic moduli can be obtained without compromising the network's structure...

  4. Non-linear theory of elasticity

    CERN Document Server

    Lurie, AI

    2012-01-01

    This book examines in detail the Theory of Elasticity which is a branch of the mechanics of a deformable solid. Special emphasis is placed on the investigation of the process of deformation within the framework of the generally accepted model of a medium which, in this case, is an elastic body. A comprehensive list of Appendices is included providing a wealth of references for more in depth coverage. The work will provide both a stimulus for future research in this field as well as useful reference material for many years to come.

  5. Network structure exploration via Bayesian nonparametric models

    International Nuclear Information System (INIS)

    Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z

    2015-01-01

    Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)

  6. Comparison of linear-elastic-plastic, and fully plastic failure models in the assessment of piping integrity

    International Nuclear Information System (INIS)

    Streit, R.D.

    1981-01-01

    The failure evaluation of Pressurized Water Reactor (PWR) primary coolant loop pipe is often based on a plastic limit load criterion; i.e., failure occurs when the stress on the pipe section exceeds the material flow stress. However, in addition the piping system must be safe against crack propagation at stresses less than those leading to plastic instability. In this paper, elastic, elastic-plastic, and fully-plastic failure models are evaluated, and the requirements for piping integrity based on these models are compared. The model yielding the 'more' critical criteria for the given geometry and loading conditions defines the appropriate failure criterion. The pipe geometry and loading used in this study was choosen based on an evaluation of a guillotine break in a PWR primary coolant loop. It is assumed that the piping may contain cracks. Since a deep circumferential crack, can lead to a guillotine pipe break without prior leaking and thus without warning it is the focus of the failure model comparison study. The hot leg pipe, a 29 in. I.D. by 2.5 in. wall thickness stainless pipe, was modeled in this investigation. Cracks up to 90% through the wall were considered. The loads considered in this evaluation result from the internal pressure, dead weight, and seismic stresses. For the case considered, the internal pressure contributes the most to the failure loading. The maximum moment stress due to the dead weight and seismic moments are simply added to the pressure stress. Thus, with the circumferential crack geometry and uniform pressure stress, the problem is axisymmetric. It is analyzed using NIKE2D--an implicit, finite deformation, finite element code for analyzing two-dimensional elastic-plastic problems. (orig./GL)

  7. Theory of a new elastic-plastic-viscous model and its application to the nuclear fuel mechanical analysis

    International Nuclear Information System (INIS)

    Moreno, A.

    1977-01-01

    In this work a new elastic-plastic-viscous model is described. The model is one of the multiple integral type, and has been included in a numerical code to predict the behaviour of a nuclear fuel of cylindrical form. Some features of this code are also described. (Author) 91 refs

  8. Elastic K-means using posterior probability.

    Science.gov (United States)

    Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris

    2017-01-01

    The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model.

  9. Homophyly/Kinship Model: Naturally Evolving Networks

    Science.gov (United States)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-10-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network.

  10. Modeling, robust and distributed model predictive control for freeway networks

    NARCIS (Netherlands)

    Liu, S.

    2016-01-01

    In Model Predictive Control (MPC) for traffic networks, traffic models are crucial since they are used as prediction models for determining the optimal control actions. In order to reduce the computational complexity of MPC for traffic networks, macroscopic traffic models are often used instead of

  11. Modeling and simulation of liquid diffusion through a porous finitely elastic solid

    KAUST Repository

    Zhao, Qiangsheng

    2013-01-29

    A new theory is proposed for the continuum modeling of liquid flow through a porous elastic solid. The solid and the voids are assumed to jointly constitute the macroscopic solid phase, while the liquid volume fraction is included as a separate state variable. A finite element implementation is employed to assess the predictive capacity of the proposed theory, with particular emphasis on the mechanical response of Nafion® membranes to the flow of water. © 2013 Springer-Verlag Berlin Heidelberg.

  12. Cyber threat model for tactical radio networks

    Science.gov (United States)

    Kurdziel, Michael T.

    2014-05-01

    The shift to a full information-centric paradigm in the battlefield has allowed ConOps to be developed that are only possible using modern network communications systems. Securing these Tactical Networks without impacting their capabilities has been a challenge. Tactical networks with fixed infrastructure have similar vulnerabilities to their commercial counterparts (although they need to be secure against adversaries with greater capabilities, resources and motivation). However, networks with mobile infrastructure components and Mobile Ad hoc Networks (MANets) have additional unique vulnerabilities that must be considered. It is useful to examine Tactical Network based ConOps and use them to construct a threat model and baseline cyber security requirements for Tactical Networks with fixed infrastructure, mobile infrastructure and/or ad hoc modes of operation. This paper will present an introduction to threat model assessment. A definition and detailed discussion of a Tactical Network threat model is also presented. Finally, the model is used to derive baseline requirements that can be used to design or evaluate a cyber security solution that can be scaled and adapted to the needs of specific deployments.

  13. Elastic and inelastic photon scattering on the atomic nuclei

    International Nuclear Information System (INIS)

    Piskarev, I.M.

    1982-01-01

    Works on investigation of elastic and inelastic scattering of photons on heavy and intermediate nuclei are briefly reviewed. Theoretical problems of nuclear and electron Tompson, Releev and Delbrueck scatterings as well as nuclear resonance scattering are briefly discussed. It is shown that differential cross section of coherent elastic scattering is expressed by means of partial amplitudes of shown processes. Experimental investigations on elastic scattering in the region of threshold energies of photonucleon reactions are described. Problems of theoretical description of elastic scattering in different variants of collective models are considered. Discussed are works, investigating channels of inelastic photon scattering with excitation of nuclear Raman effect. It is noted that to describe channels of inelastic photon scattering it is necessary to use models, that correctly regard the microscopic structure of giant resonance levels to obtain information on the nature of these levels. Investigations of processes of photon elastic and inelastic scattering connected with fundamental characteristics of atomic nucleus, permit to obtain valuable spectroscopic information on high-lying levels of nucleus. Detail investigation of photon scattering in a wide range of energies is necessary [ru

  14. Tool wear modeling using abductive networks

    Science.gov (United States)

    Masory, Oren

    1992-09-01

    A tool wear model based on Abductive Networks, which consists of a network of `polynomial' nodes, is described. The model relates the cutting parameters, components of the cutting force, and machining time to flank wear. Thus real time measurements of the cutting force can be used to monitor the machining process. The model is obtained by a training process in which the connectivity between the network's nodes and the polynomial coefficients of each node are determined by optimizing a performance criteria. Actual wear measurements of coated and uncoated carbide inserts were used for training and evaluating the established model.

  15. Controlling elastic waves with small phononic crystals containing rigid inclusions

    KAUST Repository

    Peng, Pai

    2014-05-01

    We show that a two-dimensional elastic phononic crystal comprising rigid cylinders in a solid matrix possesses a large complete band gap below a cut-off frequency. A mechanical model reveals that the band gap is induced by negative effective mass density, which is affirmed by an effective medium theory based on field averaging. We demonstrate, by two examples, that such elastic phononic crystals can be utilized to design small devices to control low-frequency elastic waves. One example is a waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic crystal loaded with solid inclusions. The effective mass density and reciprocal of the modulus of the single-layer elastic phononic crystal are simultaneously near zero. © CopyrightEPLA, 2014.

  16. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-01-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects

  17. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo; Artina, Marco; Foransier, Massimo; Markowich, Peter A.

    2015-01-01

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation

  18. Synergistic effects in threshold models on networks

    Science.gov (United States)

    Juul, Jonas S.; Porter, Mason A.

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  19. Modeling geomagnetic induced currents in Australian power networks

    Science.gov (United States)

    Marshall, R. A.; Kelly, A.; Van Der Walt, T.; Honecker, A.; Ong, C.; Mikkelsen, D.; Spierings, A.; Ivanovich, G.; Yoshikawa, A.

    2017-07-01

    Geomagnetic induced currents (GICs) have been considered an issue for high-latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understanding the impact of geomagnetic storms on power networks in Australia, with particular focus on the Queensland and Tasmanian networks. The model incorporates a "geoelectric field" determined using a plane wave magnetic field incident on a uniform conducting Earth, and the network model developed by Lehtinen and Pirjola (1985). Model results for two intense geomagnetic storms of solar cycle 24 are compared with transformer neutral monitors at three locations within the Queensland network and one location within the Tasmanian network. The model is then used to assess the impacts of the superintense geomagnetic storm of 29-31 October 2003 on the flow of GICs within these networks. The model results show good correlation with the observations with coefficients ranging from 0.73 to 0.96 across the observing sites. For Queensland, modeled GIC magnitudes during the superstorm of 29-31 October 2003 exceed 40 A with the larger GICs occurring in the south-east section of the network. Modeled GICs in Tasmania for the same storm do not exceed 30 A. The larger distance spans and general east-west alignment of the southern section of the Queensland network, in conjunction with some relatively low branch resistance values, result in larger modeled GICs despite Queensland being a lower latitude network than Tasmania.

  20. Spline-Interpolation Solution of One Elasticity Theory Problem

    CERN Document Server

    Shirakova, Elena A

    2011-01-01

    The book presents methods of approximate solution of the basic problem of elasticity for special types of solids. Engineers can apply the approximate methods (Finite Element Method, Boundary Element Method) to solve the problems but the application of these methods may not be correct for solids with the certain singularities or asymmetrical boundary conditions. The book is recommended for researchers and professionals working on elasticity modeling. It explains methods of solving elasticity problems for special solids. Approximate methods (Finite Element Method, Boundary Element Method) have b