WorldWideScience

Sample records for elastic deformation

  1. Non-linear elastic deformations

    CERN Document Server

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  2. Stressed-deformed state of mountain rocks in elastic stage and between elasticity

    Directory of Open Access Journals (Sweden)

    Samedov A.M.

    2017-12-01

    Full Text Available The problems of the stress-strain state of rocks in the elastic stage and beyond the elastic limits, and the ways of schematizing the tension and compression diagrams were reviewed in the article. To simplify calculations outside the elastic range, the tension (compression diagrams are usually schematized, i.e. are replaced by curved smooth lines having a fairly simple mathematical expression and at the same time well coinciding with the experimentally obtained diagrams. When diagram is to be schematized, it is necessary to take a constant temperature of superheated water steam if a rock test is planned in a relaxed form. Note that when the diagram is schematizing, the difference between the limits of proportionality and fluidity is erased. This allows the limit of proportionality to be considered the limit of fluidity. Schematicization can be carried out in the area where the tensile strength (compression is planned to be destroyed with the established weakening of rocks by exposure to water steam or chemical reagents. Samples of rocks in natural form were tested and weakened by means of superheated water steam (220 °C and more and chemical reagents for tension and compression. The data are obtained, the diagrams of deformation are constructed and schematized in the elastic stage and beyond the elastic limit. Based on the schematic diagrams of deformation, the components of stress and strain were composed in the elastic stage and beyond the elastic limit. It is established in the publication that rocks under compression and stretching deform, both within the elastic stage, and beyond the limits of elasticity. This could be seen when the samples, both in natural and in weakened state, with superheated water steam (more than 220 °C or chemical reagents were tested. In their natural form, they are mainly deformed within the elastic stage and are destroyed as a brittle material, and in a weakened form they can deform beyond the elastic stage and

  3. Thermodynamic analysis of elastic-plastic deformation

    International Nuclear Information System (INIS)

    Lubarda, V.

    1981-01-01

    The complete set of constitutive equations which fully describes the behaviour of material in elastic-plastic deformation is derived on the basis of thermodynamic analysis of the deformation process. The analysis is done after the matrix decomposition of the deformation gradient is introduced into the structure of thermodynamics with internal state variables. The free energy function, is decomposed. Derive the expressions for the stress response, entropy and heat flux, and establish the evolution equation. Finally, we establish the thermodynamic restrictions of the deformation process. (Author) [pt

  4. Theory of reversal nonisothermal elastic-plastic deformation

    International Nuclear Information System (INIS)

    Shorr, B.F.

    1979-01-01

    Considered is approximated theory of nonisothermal elastic-plastic deformation at arbitrary laws of loading, permitting to describe nonisothermal isotropic and anisotropic strengthening of the material, Bauschinger effect and different tempo of plastic deformation development over different directions of loading depending on the deformation prehistory. The comparison of the theory with the experimental data showed good coincidence and sufficient simplicity permits to use it in technical calcualtions

  5. FRICTION ANALYSIS ON SCRATCH DEFORMATION MODES OF VISCO-ELASTIC-PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Budi Setiyana

    2013-11-01

    Full Text Available Understanding of abrasion resistance and associated surfaces deformation mechanisms is of primary importance in materials engineering and design. Instrumented scratch testing has proven to be a useful tool for characterizing the abrasion resistance of materials. Using a conical indenter in a scratch test may result in different deformation modes, like as elastic deformation, ironing, ductile ploughing and cutting. This paper presents the friction analysis of some deformation modes of visco-elastic-plastic behaving polymer materials, especially PEEK (poly ether ether ketone.In general, it is accepted that the friction consist of an adhesion and a deformation component, which can be assumed to be independent to each others. During a scratch test, the friction coefficient is influenced by some parameters, such as the sharpness of indenter, the deformation modes and the degree of elastic recovery. Results show that the adhesion component strongly influences the friction in the elastic and ironing deformation mode (scratching with a blunt cone, friction for the cutting deformation mode (scratching with a sharp cone is dominantly influenced by the deformation component. From the analysis, it can be concluded that the adhesion friction model is suitable for ironing - elastic deformation mode and the deformation friction model with elastic recovery is good for cutting mode. Moreover, the ductile ploughing mode is combination of the adhesion and plastic deformation friction model. ANALISIS FRIKSI PADA BENTUK DEFORMASI AKIBAT GORESAN PADA MATERIAL VISKO-ELASTIK-PLASTIK. Pemahaman tentang ketahanan abrasi dan deformasi permukaan  yang  menyertainya merupakan hal yang penting dalam rekayasa dan disain material. Peralatan uji gores terbukti ampuh untuk menyatakan ketahanan abrasi dari material. Pemakaian indenter kerucut dalam uji gores akan menghasilkan beberapa bentuk deformasi seperti halnya deformasi elastik, penyetrikaan, plowing dan pemotongan

  6. Elastic limit at macroscopic deformation of icosahedral Al-Pd-Mn single quasicrystals

    International Nuclear Information System (INIS)

    Ledig, L.; Bartsch, M.; Messerschmidt, U.

    2006-01-01

    Al 70.5 Pd 21 Mn 8.5 single quasicrystals were plastically deformed between 482 and 821 deg. C. The strain rate sensitivity of the flow stress was measured by stress relaxation tests. At several temperatures, the dislocation structures were imaged by diffraction contrast in a high-voltage electron microscope for determining the dislocation densities. At all temperatures, the plastic deformation starts with a range of very high work-hardening. The transition point between almost elastic and elastic-plastic deformation is called the elastic limit. At low temperatures, the deformation was stopped at about 1.5 GPa to prevent fracture. Above about 580 deg. C, the stress-strain curves bend down and show a yield point effect followed by a range of almost steady state deformation. At low temperatures, the elastic limit is much lower than the steady state flow stress or the maximum stresses reached without fracture. The activation parameters are different for the elastic limit, the range of high work-hardening and steady state deformation. The flow stresses are interpreted by the stress necessary to move individual dislocations and the athermal component due to the elastic interaction between dislocations. At low temperatures, a further component is necessary to explain the very high flow stresses reached by work-hardening

  7. Constitutive relations for non-elastic deformation

    International Nuclear Information System (INIS)

    Hart, E.W.

    1978-01-01

    A new class of constitutive equations is described for non-elastic deformation of metals. The relations are embodied in a model that has had considerable experimental investigation. The model employs two deformation state variables of which one is a scalar hardness variable and the other is a stored anelastic strain. The description is entirely in terms of real time strain rates. The model and its experimental background is discussed. The relationship to mechanical calculations and a possible extension to radiation environment is also considered. (Auth.)

  8. Electrical resistivity response due to elastic-plastic deformations

    International Nuclear Information System (INIS)

    Stout, R.B.

    1987-01-01

    The electrical resistivity of many materials is sensitive to changes in the electronic band configurations surrounding the atoms, changes in the electron-phonon interaction cross-sections, and changes in the density of intrinsic defect structures. These changes are most directly dependent on interatomic measures of relative deformation. For this reason, a model for resistivity response is developed in terms of interatomic measures of relative deformation. The relative deformation consists of two terms, a continuous function to describe the recoverable displacement between two atoms in the atomic lattice structure and a functional to describe the nonrecoverable displacement between two atoms as a result of interatomic discontinuities from dislocation kinetics. This model for resistivity extends the classical piezoresistance representation and relates electric resistance change directly to physical mechanisms. An analysis for the resistivity change of a thin foil ideally embedded in a material that undergoes elastic-plastic deformation is presented. For the case of elastic deformations, stress information in the material surrounding the thin foil is inferred for the cases of pure strain coupling boundary conditions, pure stress coupling boundary conditions, and a combination of stress-strain coupling boundary conditions. 42 refs., 4 figs

  9. Effects of Host-rock Fracturing on Elastic-deformation Source Models of Volcano Deflation.

    Science.gov (United States)

    Holohan, Eoghan P; Sudhaus, Henriette; Walter, Thomas R; Schöpfer, Martin P J; Walsh, John J

    2017-09-08

    Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.

  10. Thermal elastic deformations of the planet Mercury.

    Science.gov (United States)

    Liu, H.-S.

    1972-01-01

    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is found that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of .004 and a period of 176 days.

  11. A non-linear elastic constitutive framework for replicating plastic deformation in solids.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Scott Alan; Schunk, Peter Randall

    2014-02-01

    Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.

  12. Static elastic deformation in an orthotropic half-space with rigid ...

    Indian Academy of Sciences (India)

    Yogita Godara

    2017-10-06

    Oct 6, 2017 ... The solution of static elastic deformation of a homogeneous, orthotropic elastic uniform half-space with ... Faults are fractures in Earth's crust where rocks ...... Mavko G M 1981 Mechanics of motion on major faults; Ann. Rev.

  13. Method of control of machining accuracy of low-rigidity elastic-deformable shafts

    Directory of Open Access Journals (Sweden)

    Antoni Świć

    Full Text Available The paper presents an analysis of the possibility of increasing the accuracy and stability of machining of low-rigidity shafts while ensuring high efficiency and economy of their machining. An effective way of improving the accuracy of machining of shafts is increasing their rigidity as a result of oriented change of the elastic-deformable state through the application of a tensile force which, combined with the machining force, forms longitudinal-lateral strains. The paper also presents mathematical models describing the changes of the elastic-deformable state resulting from the application of the tensile force. It presents the results of experimental studies on the deformation of elastic low-rigidity shafts, performed on a special test stand developed on the basis of a lathe. An estimation was made of the effectiveness of the method of control of the elastic-deformable state with the use, as the regulating effects, the tensile force and eccentricity. It was demonstrated that controlling the two parameters: tensile force and eccentricity, one can improve the accuracy of machining, and thus achieve a theoretically assumed level of accuracy.

  14. Elastic-plastic deformation of fiber composites with a tetragonal structure

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, E.IU.; Svistkova, L.A. (Permskii Politekhnicheskii Institut, Perm (USSR))

    1991-02-01

    Results of numerical solutions are presented for elastic-plastic problems concerning arbitrary loading of unidirectional composites in the transverse plane. The nucleation and evolution of microplastic zones in the matrix and the effect of this process on the macroscopic characteristics of the composite are discussed. Attention is also given to the effect of the fiber shape on the elastic-plastic deformation of the matrix and to deformation paths realized in simple microdeformation processes. The discussion is illustrated by results obtained for a composite consisting of a VT1-0 titanium alloy matrix reinforced by Ti-Mo fibers.

  15. Change and anisotropy of elastic modulus in sheet metals due to plastic deformation

    Science.gov (United States)

    Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru

    2015-03-01

    In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.

  16. A work-hardening rule for finite elastic-plastic deformation of metals at elevated temperatures

    International Nuclear Information System (INIS)

    Lee, L.H.N.; Horng, J.T.

    1975-01-01

    The paper is concerned with an extension of Prager-Ziegler's kinematic work-hardening rule for infinitesimal elastic-plastic deformation to a work-hardening rule for finite elastic-plastic deformation of a polycrystalline metal. It is shown that the finite work-hardening rule, which accounts for the Bauschinger and temperature effects within certain pressure and temperature ranges, satisfies certain invariant, continuity and thermodynamic requirements. A description of the kinematics of an elastic-plastic body is employed with reference to three separate configurations: initial, current and an intermediate configuration. The intermediate configuration is a conceptual, local configuration obtained by removing the stress and temperature changes in the neighborhood of an element. A rigid body rotation of the intermediate configuration is allowed. Piola-Kirchhoff stresses and Green deformation tensors referred to the initial and intermediate configurations are employed as stress and strain measures. The plastic deformation has been associated with the motion and production of dislocations. It has been observed that the motion of mobile dislocations usually occur in the narrow slip bands in each grain, leaving the basic lattice structure practically intact, so that the macroscopic elastic properties of the material are essentially independent of plastic deformation. Employing this fact and the thermodynamic laws, a simplified elastic stress-strain relationship of the plastically deformed material, which agrees with the results of Naghdi and Trapp, is obtained

  17. Study on elastic-plastic deformation analysis using a cyclic stress-strain curve

    International Nuclear Information System (INIS)

    Igari, Toshihide; Setoguchi, Katsuya; Yamauchi, Masafumi

    1983-01-01

    This paper presents the results of the elastic-plastic deformation analysis using a cyclic stress-strain curve with an intention to apply this method for predicting the low-cycle fatigue life. Uniaxial plastic cycling tests were performed on 2 1/4Cr-1Mo steel to investigate the correspondence between the cyclic stress-strain curve and the hysteresis loop, and also to determine what mathematical model should be used for analysis of deformation at stress reversal. Furthermore, a cyclic in-plane bending test was performed on a flat plate to clarify the validity of the cyclic stress-strain curve-based theoretical analysis. The results obtained are as follows: (1) The cyclic stress-strain curve corresponds nearly to the ascending curve of hysteresis loop scaled by a factor of 1/2 for both stress and strain. Therefore, the cyclic stress-strain curve can be determined from the shape of hysteresis loop, for simplicity. (2) To perform the elastic-plastic deformation analysis using the cyclic stress-strain curve is both practical and effective for predicting the cyclic elastic-plastic deformation of structures at the stage of advanced cycles. And Masing model can serve as a suitable mathematical model for such a deformation analysis. (author)

  18. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    Science.gov (United States)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  19. Static deformation of an orthotropic elastic layered medium due to a ...

    African Journals Online (AJOL)

    Closed-form analytic expressions for the deformation field at any point of a homogeneous, orthotropic, homogeneous elastic layer interfacing differently to a base due to non-uniform discontinuity (slip) along a very long strike-slip fault situated in the orthotropic elastic layer have been obtained. Four non-uniform slip profiles: ...

  20. Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations.

    Directory of Open Access Journals (Sweden)

    Schanila Nawaz

    Full Text Available The measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself. Here, we have analyzed the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30-600 pN, resulting in indentations ranging from 0.2 to 1.2 micrometer. To investigate the cellular response at lower forces up to 10 pN, we developed an optical trap to indent the cell in vertical direction, normal to the plane of the coverslip. Deformations of up to two hundred nanometers achieved at forces of up to 30 pN showed a reversible, thus truly elastic response that was independent on the rate of deformation. We found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex. At higher indentations, viscous effects led to an increase of the apparent elastic modulus. This viscous contribution that followed a weak power law, increased at larger cell indentations. Both AFM and optical trapping indentation experiments give consistent results for the cell elasticity. Optical trapping has the benefit of a lower force noise, which allows a more accurate determination of the absolute indentation. The combination of both techniques allows the investigation of single cells at small and large indentations and enables the separation of their viscous and elastic components.

  1. Correlating elastic and plastic deformation with magnetic permeability values

    Science.gov (United States)

    Papadopoulou, S.

    2017-12-01

    This paper investigates the utilization of magnetic permeability method in determining elastic and plastic deformation state of ferromagnetic steels. The results have shown a strong degradation of the magnetic values on plastically region due to the irreversible movements of the magnetic domain walls.

  2. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  3. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.; Larson, Ben C.; Tischler, Jon Z.; El-Azab, Anter

    2015-01-01

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  4. Crack nucleation and elastic / plastic deformation of TiAl alloys investigated by in-situ loaded atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, F.; Pyczak, F.; Neumeier, S.; Göken, M.

    2017-03-24

    The crack propagation mechanisms of γ-titanium aluminides with fully lamellar microstructure have been studied using in-situ deformation in the Atomic Force Microscope (AFM). AFM demonstrated the unique capability to detect elastic as well as plastic deformation during in-situ tests from topography changes on the surface. It was found that the crack nucleation, which can occur at γ/γ and α{sub 2}/γ interfaces as well as inside the γ-phase, is always preceded by strong local elastic deformation. No cracking inside the α{sub 2}-phase was observed. The elastic and plastic deformation was confined inside the γ-phase and especially pronounced near interfaces which can be explained by the differences of the elastic and plastic deformation behavior of the γ- and α{sub 2}- phase.

  5. Role of elastic deformation in determining the mixed alkaline earth effect of hardness in silicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Potuzak, M.

    2015-01-01

    been investigated previously, but the link between the resistance to elastic deformation and hardness has not yet been studied. In this work, we investigate the link between elastic deformation during indentation and Vickers hardness in a series of mixed magnesium-barium boroaluminosilicate glasses. We...

  6. Low temperature uniform plastic deformation of metallic glasses during elastic iteration

    International Nuclear Information System (INIS)

    Fujita, Takeshi; Wang Zheng; Liu Yanhui; Sheng, Howard; Wang Weihua; Chen Mingwei

    2012-01-01

    Molecular dynamics simulations and dynamic mechanical analysis experiments were employed to investigate the mechanical behavior of metallic glasses subjected to iteration deformation in a nominally elastic region. It was found that cyclic deformation leads to the formation of irreversible shear transformation zones (STZs) and a permanent uniform strain. The initiation of STZs is directly correlated with the atomic heterogeneity of the metallic glass and the accumulated permanent strain has a linear relation with the number of STZs. This study reveals a new deformation mode and offers insights into the atomic mechanisms of STZ formation and low temperature uniform plastic deformation of metallic glasses.

  7. Molecular dynamics simulation on double-elastic deformation of zigzag graphene nanoribbons at low temperature

    International Nuclear Information System (INIS)

    Sun, Y.J.; Huang, Y.H.; Ma, F.; Ma, D.Y.; Hu, T.W.; Xu, K.W.

    2014-01-01

    Highlights: • Molecular dynamics simulation was performed to study the deformation behaviors of Zigzag Graphene Nano-Ribbons (ZGNRs). • The “phase transformation” from hexagonal to quasi-rectangular and the subsequent second elastic deformation were observed. • Related thermal effects model was built to predict fracture strain of ZGNRs, and was consistent with simulation results. -- Abstract: Molecular dynamics simulation was performed to study the deformation behaviors of Zigzag Graphene Nano-Ribbons (ZGNRs) 150 Å × 150 Å in size, and double-elastic deformation was observed at temperatures lower than 90 K. Essentially, at such a low temperature, the lattice vibration was significantly weakened and thus the lifetime of C-C bonds was prolonged considerably. Moreover, it was difficult for broken bonds to accumulate and resulted in the destructive fracture of ZGNRs at low temperature. As a result, the “phase transformation” from hexagonal to quasi-rectangular and subsequently the second elastic deformation took place. However, at higher temperatures, says, 300 K, brittle fracture was observed and the fracture strength decreased with temperature, which was consistent with previously reported results. Additionally at higher strain rate, the atoms could not respond to the external loading in time, the fracture strain and fracture strength were enhanced

  8. Nonlinear electroelastic deformations of dielectric elastomer composites: II - Non-Gaussian elastic dielectrics

    Science.gov (United States)

    Lefèvre, Victor; Lopez-Pamies, Oscar

    2017-02-01

    This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi

  9. The instability of the spiral wave induced by the deformation of elastic excitable media

    International Nuclear Information System (INIS)

    Ma Jun; Jia Ya; Wang Chunni; Li Shirong

    2008-01-01

    There are some similarities between the spiral wave in excitable media and in cardiac tissue. Much evidence shows that the appearance and instability of the spiral wave in cardiac tissue can be linked to one kind of heart disease. There are many models that can be used to investigate the formation and instability of the spiral wave. Cardiac tissue is excitable and elastic, and it is interesting to simulate the transition and instability of the spiral wave induced by media deformation. For simplicity, a class of the modified Fitzhugh-Nagumo (MFHN) model, which can generate a stable rotating spiral wave, meandering spiral wave and turbulence within appropriate parameter regions, will be used to simulate the instability of the spiral wave induced by the periodical deformation of media. In the two-dimensional case, the total acreage of elastic media is supposed to be invariable in the presence of deformation, and the problem is described with L x x L y = N x ΔxN x Δy = L' x L' y = N x Δx'N x Δy'. In our studies, elastic media are decentralized into N x N sites and the space of the adjacent sites is changed to simulate the deformation of elastic media. Based on the nonlinear dynamics theory, the deformation effect on media is simplified and simulated by perturbing the diffusion coefficients D x and D y with different periodical signals, but the perturbed diffusion coefficients are compensatory. The snapshots of our numerical results find that the spiral wave can coexist with the spiral turbulence, instability of the spiral wave and weak deformation of the spiral wave in different conditions. The ratio parameter ε and the frequency of deformation forcing play a deterministic role in inducing instability of the spiral wave. Extensive studies confirm that the instability of the spiral wave can be induced and developed only if an appropriate frequency for deformation is used. We analyze the power spectrum for the time series of the mean activator of four sampled sites

  10. The instability of the spiral wave induced by the deformation of elastic excitable media

    Science.gov (United States)

    Ma, Jun; Jia, Ya; Wang, Chun-Ni; Li, Shi-Rong

    2008-09-01

    There are some similarities between the spiral wave in excitable media and in cardiac tissue. Much evidence shows that the appearance and instability of the spiral wave in cardiac tissue can be linked to one kind of heart disease. There are many models that can be used to investigate the formation and instability of the spiral wave. Cardiac tissue is excitable and elastic, and it is interesting to simulate the transition and instability of the spiral wave induced by media deformation. For simplicity, a class of the modified Fitzhugh-Nagumo (MFHN) model, which can generate a stable rotating spiral wave, meandering spiral wave and turbulence within appropriate parameter regions, will be used to simulate the instability of the spiral wave induced by the periodical deformation of media. In the two-dimensional case, the total acreage of elastic media is supposed to be invariable in the presence of deformation, and the problem is described with Lx × Ly = N × ΔxN × Δy = L'xL'y = N × Δx'N × Δy'. In our studies, elastic media are decentralized into N × N sites and the space of the adjacent sites is changed to simulate the deformation of elastic media. Based on the nonlinear dynamics theory, the deformation effect on media is simplified and simulated by perturbing the diffusion coefficients Dx and Dy with different periodical signals, but the perturbed diffusion coefficients are compensatory. The snapshots of our numerical results find that the spiral wave can coexist with the spiral turbulence, instability of the spiral wave and weak deformation of the spiral wave in different conditions. The ratio parameter ɛ and the frequency of deformation forcing play a deterministic role in inducing instability of the spiral wave. Extensive studies confirm that the instability of the spiral wave can be induced and developed only if an appropriate frequency for deformation is used. We analyze the power spectrum for the time series of the mean activator of four sampled sites

  11. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  12. Basic investigation of the laminated alginate impression technique: Setting time, permanent deformation, elastic deformation, consistency, and tensile bond strength tests.

    Science.gov (United States)

    Kitamura, Aya; Kawai, Yasuhiko

    2015-01-01

    Laminated alginate impression for edentulous is simple and time efficient compared to border molding technique. The purpose of this study was to examine clinical applicability of the laminated alginate impression, by measuring the effects of different Water/Powder (W/P) and mixing methods, and different bonding methods in the secondary impression of alginate impression. Three W/P: manufacturer-designated mixing water amount (standard), 1.5-fold (1.5×) and 1.75-fold (1.75×) water amount were mixed by manual and automatic mixing methods. Initial and complete setting time, permanent and elastic deformation, and consistency of the secondary impression were investigated (n=10). Additionally, tensile bond strength between the primary and secondary impression were measured in the following surface treatment; air blow only (A), surface baking (B), and alginate impression material bonding agent (ALGI-BOND: AB) (n=12). Initial setting times significantly shortened with automatic mixing for all W/P (p<0.05). The permanent deformation decreased and elastic deformation increased as high W/P, regardless of the mixing method. Elastic deformation significantly reduced in 1.5× and 1.75× with automatic mixing (p<0.05). All of these properties resulted within JIS standards. For all W/P, AB showed a significantly high bonding strength as compared to A and B (p<0.01). The increase of mixing water, 1.5× and 1.75×, resulted within JIS standards in setting time, suggesting its applicability in clinical setting. The use of automatic mixing device decreased elastic strain and shortening of the curing time. For the secondary impression application of adhesives on the primary impression gives secure adhesion. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  13. The Simulation and Correction to the Brain Deformation Based on the Linear Elastic Model in IGS

    Institute of Scientific and Technical Information of China (English)

    MU Xiao-lan; SONG Zhi-jian

    2004-01-01

    @@ The brain deformation is a vital factor affecting the precision of the IGS and it becomes a hotspot to simulate and correct the brain deformation recently.The research organizations, which firstly resolved the brain deformation with the physical models, have the Image Processing and Analysis department of Yale University, Biomedical Modeling Lab of Vanderbilt University and so on. The former uses the linear elastic model; the latter uses the consolidation model.The linear elastic model only needs to drive the model using the surface displacement of exposed brain cortex,which is more convenient to be measured in the clinic.

  14. Coupling characteristics of rigid body motion and elastic deformation of a 3-PRR parallel manipulator with flexible links

    International Nuclear Information System (INIS)

    Zhang Xuping; Mills, James K.; Cleghorn, William L.

    2009-01-01

    Modeling of multibody dynamics with flexible links is a challenging task, which not only involves the effect of rigid body motion on elastic deformations, but also includes the influence of elastic deformations on rigid body motion. This paper presents coupling characteristics of rigid body motions and elastic motions of a 3-PRR parallel manipulator with three flexible intermediate links. The intermediate links are modeled as Euler-Bernoulli beams with pinned-pinned boundary conditions based on the assumed mode method (AMM). Using Lagrange multipliers, the fully coupled equations of motions of the flexible parallel manipulator are developed by incorporating the rigid body motions with elastic motions. The mutual dependence of elastic deformations and rigid body motions are investigated from the analysis of the derived equations of motion. Open-loop simulation without joint motion controls and closed-loop simulation with joint motion controls are performed to illustrate the effect of elastic motion on rigid body motions and the coupling effect amongst flexible links. These analyses and results provide valuable insight to the design and control of the parallel manipulator with flexible intermediate links

  15. Static deformation of two welded monoclinic elastic half-spaces due ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    Static deformation of two monoclinic elastic half-spaces in welded contact due to a long inclined strike-slip fault situated in one of the half-spaces is studied analytically and numerically. Closed- form algebraic expressions for the displacement at any point of the medium are obtained. The variation of the displacement at the ...

  16. Birefringence and incipient plastic deformation in elastically overdriven [100] CaF2 under shock compression

    Science.gov (United States)

    Li, Y.; Zhou, X. M.; Cai, Y.; Liu, C. L.; Luo, S. N.

    2018-04-01

    [100] CaF2 single crystals are shock-compressed via symmetric planar impact, and the flyer plate-target interface velocity histories are measured with a laser displacement interferometry. The shock loading is slightly above the Hugoniot elastic limit to investigate incipient plasticity and its kinetics, and its effects on optical properties and deformation inhomogeneity. Fringe patterns demonstrate different features in modulation of fringe amplitude, including birefringence and complicated modulations. The birefringence is attributed to local lattice rotation accompanying incipient plasticity. Spatially resolved measurements show inhomogeneity in deformation, birefringence, and fringe pattern evolutions, most likely caused by the inhomogeneity associated with lattice rotation and dislocation slip. Transiently overdriven elastic states are observed, and the incubation time for incipient plasticity decreases inversely with increasing overdrive by the elastic shock.

  17. Structural aspects of elastic deformation of a metallic glass

    International Nuclear Information System (INIS)

    Hufnagel, T. C.; Ott, R. T.; Almer, J.

    2006-01-01

    We report the use of high-energy x-ray scattering to measure strain in a Zr 57 Ti 5 Cu 20 Ni 8 Al 10 bulk metallic glass in situ during uniaxial compression in the elastic regime up to stresses of approximately 60% of the yield stress. The strains extracted in two ways--directly from the normalized scattering data and from the pair correlation functions--are in good agreement with each other for length scales greater than 4 A. The elastic modulus calculated on the basis of this strain is in good agreement with that reported for closely related amorphous alloys based on macroscopic measurements. The strain measured for atoms in the nearest-neighbor shell, however, is smaller than that for more distant shells, and the effective elastic modulus calculated from the strain on this scale is therefore larger, comparable to crystalline alloys of similar composition. These observations are in agreement with previously proposed models in which the nominally elastic deformation of a metallic glass has a significant anelastic component due to atomic rearrangements in topologically unstable regions of the structure. We also observe that the distribution of the atomic-level stresses in the glass becomes more uniform during loading. This implies that the stiffness of metallic glasses may have an entropic contribution, analogous to the entropic contribution in rubber elasticity

  18. On the modelling of the dynamics of elastically deformable floating structures

    DEFF Research Database (Denmark)

    Seng, Sopheak; Malenica, Sime; Jensen, Jørgen Juncher

    2015-01-01

    In this paper we are reexamining the dynamic equations of an elastically deformable floating structure to identify and evaluate the contribution from the inertia cross coupling terms which commonly have been neglected due to the assumption of small structural deformation. Numerical experiments...... on two vessels, a flexible barge, and a full scale ultra large container vessel, are designed for revealing the magnitude of errors introduced into the numerical solutions when these inertia cross coupling terms have been ignored. The results shows that in realistic conditions with strong structural...

  19. Plastic deformation and contact area of an elastic-plastic contact of ellipsoid bodies after unloading

    NARCIS (Netherlands)

    Jamari, Jamari; Schipper, Dirk J.

    2007-01-01

    This paper presents theoretical and experimental results of the residual or plastic deformation and the plastic contact area of an elastic–plastic contact of ellipsoid bodies after unloading. There are three regime responses of the deformation and contact area: elastic, elastic–plastic and fully

  20. Practical solution of plastic deformation problems in elastic-plastic range

    Science.gov (United States)

    Mendelson, A; Manson, S

    1957-01-01

    A practical method for solving plastic deformation problems in the elastic-plastic range is presented. The method is one of successive approximations and is illustrated by four examples which include a flat plate with temperature distribution across the width, a thin shell with axial temperature distribution, a solid cylinder with radial temperature distribution, and a rotating disk with radial temperature distribution.

  1. Molecular Dynamics Simulation of Structural Characterization of Elastic and Inelastic Deformation in ZrCu Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Shidong Feng

    2014-01-01

    Full Text Available The nanoscopic deformation behaviors in a ZrCu metallic glass model during loading-unloading process under uniaxial compression have been analyzed on the basis of the molecular dynamics (MD. The reversible degree of shear origin zones (SOZs is used as the structural indicator to distinguish the elastic deformation and inelastic deformation of ZrCu metallic glass at the atomic level. We find that the formation of SOZs is reversible at the elastic stage but irreversible at the inelastic stage during the loading and unloading processes. At the inelastic stage, the full-icosahedra fraction in SOZs is quickly reduced with increased strain and the decreasing process is also irreversible during the unloading processes.

  2. A preconditioner for the finite element computation of incompressible, nonlinear elastic deformations

    Science.gov (United States)

    Whiteley, J. P.

    2017-10-01

    Large, incompressible elastic deformations are governed by a system of nonlinear partial differential equations. The finite element discretisation of these partial differential equations yields a system of nonlinear algebraic equations that are usually solved using Newton's method. On each iteration of Newton's method, a linear system must be solved. We exploit the structure of the Jacobian matrix to propose a preconditioner, comprising two steps. The first step is the solution of a relatively small, symmetric, positive definite linear system using the preconditioned conjugate gradient method. This is followed by a small number of multigrid V-cycles for a larger linear system. Through the use of exemplar elastic deformations, the preconditioner is demonstrated to facilitate the iterative solution of the linear systems arising. The number of GMRES iterations required has only a very weak dependence on the number of degrees of freedom of the linear systems.

  3. Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor.

    Science.gov (United States)

    Ozbey, Burak; Demir, Hilmi Volkan; Kurc, Ozgur; Erturk, Vakur B; Altintas, Ayhan

    2014-10-20

    We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment.

  4. Mathematical model of rolling an elastic wheel over deformable support base

    Science.gov (United States)

    Volskaia, V. N.; Zhileykin, M. M.; Zakharov, A. Y.

    2018-02-01

    to provide the most accurate description of the interaction process of a wheeled propulsion devices and the ground, also this method allows to define tension in the ground, deformation of the ground and the tire and ground’s compression. However, the high laboriousness of computations is essential shortcoming of that method therefore it’s hard to use these models as part of the general motion model of multi-axis wheeled vehicles. The purpose of this research is the elaboration of mathematical model of elastic wheel rolling over deformable rough support base taking into account the contact patch deformation. The mathematical model of rectilinear rolling an elastic wheel over rough deformable support base, taking into account variation of contact patch area and variation in the direction of the radial and tangential reactions also load bearing capacity of the ground, is developed. The efficiency of developed mathematical model of rectilinear rolling an elastic wheel over rough deformable support base is proved by the simulation methods.

  5. The transverse shear deformation behaviour of magneto-electro-elastic shell

    International Nuclear Information System (INIS)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H.; Faris, Waleed

    2016-01-01

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour

  6. The transverse shear deformation behaviour of magneto-electro-elastic shell

    Energy Technology Data Exchange (ETDEWEB)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H. [UniversitiTeknologi PETRONAS, Perak (Malaysia); Faris, Waleed [International Islamic University Malaysia, Perak (Malaysia)

    2016-01-15

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour.

  7. Experimental Research on the Elastic Deformation Mode of S235JR Rolled Steel Fastened between the Centers of a Universal Lathe

    Science.gov (United States)

    Tabacaru, LL; Axinte, E.; Musca, G.

    2016-11-01

    Elastic deformations of the technological system occur during the mechanical treatment of a blank, regardless of the manner in which it is fastened. The elastic deformation of the blank is significant especially when machining shaft-like parts. The purpose of our research is to compare the mathematical model of blank deformation to the experimental model when the blank, which is a part belonging to the shaft class, is fastened between centers.

  8. X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Lyle E. [National Institute of Standards and Technology (NIST); Larson, Ben C [ORNL; Yang, Wenge [Carnegie Institution of Washington; Kassner, Michael E. [University of Southern California; Tischler, Jonathan Zachary [ORNL; Delos-Reyes, Michael A. [University of Southern California; Fields, Richard J. [National Institute of Standards and Technology (NIST); Liu, Wenjun [Argonne National Laboratory (ANL)

    2006-01-01

    The distribution of elastic strains (and thus stresses) at the sub-micrometer length scale within deformed metal single crystals has surprisingly broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behavior within individual grains [1-4], the transport of dislocations through such structures [5-7], changes in mechanical properties that occur during reverse loading [8-10] (e.g. sheet metal forming), and the analyses of diffraction line profiles for microstructural studies of these phenomena [11-17]. We present the first direct, spatially-resolved measurements of the elastic strains within individual dislocation cells in copper single crystals deformed in tension and compression along <100> axes. Broad distributions of elastic strains are found, with profound implications for theories of dislocation structure evolution [4,18], dislocation transport [5-7], and the extraction of dislocation parameters from X-ray line profiles [11-17,19].

  9. How mechanical behavior of glassy polymers enables us to characterize melt deformation: elastic yielding in glassy state after melt stretching?

    Science.gov (United States)

    Wang, Shi-Qing; Zhao, Zhichen; Tsige, Mesfin; Zheng, Yexin

    Fast melt deformation well above the glass transition temperature Tg is known to produce elastic stress in an entangled polymer due to the chain entropy loss at the length scale of the network mesh size. Here chains of high molecular weight are assumed to form an entanglement network so that such a polymer behaves transiently like vulcanized rubber capable of affine deformation. We consider quenching a melt-deformed glassy polymer to well below Tg to preserve the elastic stress. Upon heating such a sample to Tg, the sample can return to the shape it took before melt deformation. This is the basic principle behind the design of all polymer-based shape-memory materials. This work presents intriguing evidence based on both experiment and computer simulation that the chain network, deformed well above Tg, can drive the glassy polymer to undergo elastic yielding. Our experimental systems include polystyrene, poly(methyl methacrylate) and polycarbonate; the molecular dynamics simulation is based on Kremer-Grest bead-spring model. National Science Foundation (DMR-1444859 and DMR-1609977).

  10. Deformations of a pre-stretched and lubricated finite elastic membrane driven by non-uniform external forcing

    Science.gov (United States)

    Boyko, Evgeniy; Gat, Amir; Bercovici, Moran

    2017-11-01

    We study viscous-elastic dynamics of a fluid confined between a rigid plate and a finite pre-stretched circular elastic membrane, pinned at its boundaries. The membrane is subjected to forces acting either directly on the membrane or through a pressure distribution in the fluid. Under the assumptions of strong pre-stretching and small deformations of the elastic sheet, and by applying the lubrication approximation for the flow, we derive the Green's function for the resulting linearized 4th order diffusion equation governing the deformation field in cylindrical coordinates. In addition, defining an asymptotic expansion with the ratio of the induced to prescribed tension serving as the small parameter, we reduce the coupled Reynolds and non-linear von-Karman equations to a set of three one-way coupled linear equations. The solutions to these equations provide insight onto the effects of induced tension, and enable simplified prediction of the correction for the deformation field. Funded by the European Research Council (ERC) under the European Union'sHorizon 2020 Research and Innovation Programme, Grant Agreement No. 678734 (MetamorphChip). E.B. is supported by the Adams Fellowship Program.

  11. Partitioning of elastic energy in open-cell foams under finite deformations

    International Nuclear Information System (INIS)

    Harb, Rani; Taciroglu, Ertugrul; Ghoniem, Nasr

    2013-01-01

    The challenges associated with the computational modeling and simulation of solid foams are threefold—namely, the proper representation of an intricate geometry, the capability to accurately describe large deformations, and the extremely arduous numerical detection and enforcement of self-contact during crushing. The focus of this study is to assess and accurately quantify the effects of geometric nonlinearities (i.e. finite deformations, work produced under buckling-type motions) on the predicted mechanical response of open-cell foams of aluminum and polyurethane prior to the onset of plasticity and contact. Beam elements endowed with three-dimensional finite deformation kinematics are used to represent the foam ligaments. Ligament cross-sections are discretized through a fiber-based formulation that provides accurate information regarding the onset of plasticity, given the uniaxial yield stress–strain data for the bulk material. It is shown that the (hyper-) elastic energy partition within ligaments is significantly influenced by kinematic nonlinearities, which frequently cause strong coupling between the axial, bending, shear and torsional deformation modes. This deformation mode-coupling is uniquely obtained as a result of evaluating equilibrium in the deformed configuration, and is undetectable when small deformations are assumed. The relationship between the foam topology and energy partitioning at various stages of moderate deformation is also investigated. Coupled deformation modes are shown to play an important role, especially in perturbed Kelvin structures where over 70% of the energy is stored in coupled axial-shear and axial-bending modes. The results from this study indicate that it may not always be possible to accurately simulate the onset of plasticity (and the response beyond this regime) if finite deformation kinematics are neglected

  12. Plastic incompatibility stresses and stored elastic energy in plastically deformed copper

    Energy Technology Data Exchange (ETDEWEB)

    Baczmanski, A. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)], E-mail: baczman@ftj.agh.edu.pl; Hfaiedh, N.; Francois, M. [LASMIS, Universite de Technologie de Troyes, 11 rue Marie Curie, B.P. 2060, 10010 Troyes (France); Wierzbanowski, K. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2009-02-15

    The X-ray diffraction method and theoretical model of elastoplastic deformation were used to examine the residual stresses in polycrystalline copper. To this end, the {l_brace}2 2 0{r_brace} strain pole figures were determined for samples subjected to different magnitudes of tensile deformation. Using diffraction data and the self-consistent model, the tensor of plastic incompatibility stress was found for each orientation of a polycrystalline grain. Crystallographic textures, macroscopic and second-order residual stresses were considered in the analysis. As a result, the distributions of elastic stored energy and von Mises equivalent stress were presented in Euler space and correlated with the preferred orientations of grains. Moreover, using the model prediction, the variation of the critical resolved shear stress with grain orientation was determined.

  13. Thermomechanical theory of materials undergoing large elastic and viscoplastic deformation (AWBA development program)

    International Nuclear Information System (INIS)

    Martin, S.E.; Newman, J.B.

    1980-11-01

    A thermomechanical theory of large deformation elastic-inelastic material behavior is developed which is based on a multiplicative decomposition of the strain. Very general assumptions are made for the elastic and inelastic constitutive relations and effects such as thermally-activated creep, fast-neutron-flux-induced creep and growth, annealing, and strain recovery are compatible with the theory. Reduced forms of the constitutive equations are derived by use of the second law of thermodynamics in the form of the Clausius-Duhem inequality. Observer invariant equations are derived by use of an invariance principle which is a generalization of the principle of material frame indifference

  14. INFLUENCE ANALYSIS OF ELASTIC DEFORMATIONS OF THE TRACK CABLE ON EFFORTS IN THE HAULING ROPE OF AERIAL ROPEWAY

    Directory of Open Access Journals (Sweden)

    S. V. Raksha

    2013-10-01

    Full Text Available Purpose. To estimate influence of elastic deformations of the track cable arising at movement of cars, on effort in a hauling rope of the aerial ropeway. Methodology. The method of consecutive approaches was used for research influence of elastic deformations of a track cable on effort in a hauling rope. Thus, definition of a tension of a track cable was carried out with use of the technique based on principles of modular configuration, the essence of which consists in formation of mathematical model by a combination of blocks of the formulas describing balance of the track cable on supports. Findings. The research has shown that influence of elastic deformations of a track cable on effort in a hauling rope was insignificant (less than 1 %. That points to possibility not to consider change of the track cable length, caused by its elastic properties, when modeling loading of elements of system «drive – traction rope – tension device». Also it has been found that use of the tension device of a track cable increased influence of its elastic properties on loading of rope system elements. At the same time the elastic component of the track cable tension in the test flight does not depend on a car position in the adjacent span, but only determines by the parameters of the rope system. Originality. The possibility of excluding the changes of track cable length caused by its elastic properties, when modeling loading of elements of system «drive – traction rope – tension device» was proved. Practical value. The use of these techniques and the results will simplify the mathematical model of loading of elements of the cable system and the system «drive – traction rope – tension device» as a whole.

  15. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    Science.gov (United States)

    Lawrence, S. K.; Somerday, B. P.; Ingraham, M. D.; Bahr, D. F.

    2018-04-01

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases 20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.

  16. A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals

    Science.gov (United States)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2015-09-01

    Based on the experimental observations on the anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals done by Gall and Maier (2002), a crystal plasticity based micromechanical constitutive model is constructed to describe such anisotropic cyclic deformation. To model the internal stress caused by the unmatched inelastic deformation between the austenite and martensite phases on the plastic deformation of austenite phase, 24 induced martensite variants are assumed to be ellipsoidal inclusions with anisotropic elasticity and embedded in the austenite matrix. The homogeneous stress fields in the austenite matrix and each induced martensite variant are obtained by using the Mori-Tanaka homogenization method. Two different inelastic mechanisms, i.e., martensite transformation and transformation-induced plasticity, and their interactions are considered in the proposed model. Following the assumption of instantaneous domain growth (Cherkaoui et al., 1998), the Helmholtz free energy of a representative volume element of a NiTi shape memory single crystal is established and the thermodynamic driving forces of the internal variables are obtained from the dissipative inequalities. The capability of the proposed model to describe the anisotropic cyclic deformation of super-elastic NiTi single crystals is first verified by comparing the predicted results with the experimental ones. It is concluded that the proposed model can capture the main quantitative features observed in the experiments. And then, the proposed model is further used to predict the uniaxial and multiaxial transformation ratchetting of a NiTi single crystal.

  17. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    Directory of Open Access Journals (Sweden)

    Laith K. Abbas

    2014-01-01

    Full Text Available The application and workflow of Computational Fluid Dynamics (CFD/Computational Structure Dynamics (CSD on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which verified the accuracy of CFD output. The results of the analysis for elastic rocket in the nonspinning and spinning states are compared with the rigid ones. The results highlight that the rocket deformation aspects are decided by the normal force distribution along the rocket length. Rocket deformation becomes larger with increasing the flight angle of attack. Drag and lift force coefficients decrease and pitching moment coefficients increase due to rocket deformations, center of pressure location forwards, and stability of the rockets decreases. Accordingly, the flight trajectory may be affected by the change of these aerodynamic coefficients and stability.

  18. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Masaki [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kim, Hee Young, E-mail: heeykim@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Inamura, Tomonari; Hosoda, Hideki [Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Miyazaki, Shuichi, E-mail: miyazaki@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); School of Materials Science and Engineering and ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2013-11-15

    Highlights: ► {110}{sub β}〈11{sup ¯}0〉{sub β} transverse type lattice modulation is confirmed in β phase. ► Nanosized modulated region (nanodomain) distributes homogeneously and randomly. ► Nanodomains act as obstacles against the long-ranged martensitic transformation. ► The origin of non-linear elastic deformation behavior is the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation. -- Abstract: In order to clarify the effect of interstitial atoms on the non-linear elastic deformation behavior of the Ti–Nb alloy, the microstructure of (Ti–26Nb)–1.0O alloy was closely investigated by transmission electron microscope (TEM) and in situ X-ray diffraction (XRD) measurements. The 〈1 1 0〉{sub β}* rel rods and {1 1 1}{sub β}* rel planes were observed in a reciprocal space for the (Ti–26Nb)–1.0O alloy. Their origin was {110}{sub β}〈11{sup ¯}0〉{sub β} transverse type lattice modulation generated by oxygen atoms. Nanosized modulated domain structure (nanodomain) distributed homogeneously and randomly in the β phase and acted as obstacles for the long-ranged martensitic transformation in the (Ti–26Nb)–1.0O alloy. The non-linear elastic strain of the (Ti–26Nb)–1.0O alloy was generated by the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation.

  19. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy

    International Nuclear Information System (INIS)

    Tahara, Masaki; Kim, Hee Young; Inamura, Tomonari; Hosoda, Hideki; Miyazaki, Shuichi

    2013-01-01

    Highlights: ► {110} β 〈11 ¯ 0〉 β transverse type lattice modulation is confirmed in β phase. ► Nanosized modulated region (nanodomain) distributes homogeneously and randomly. ► Nanodomains act as obstacles against the long-ranged martensitic transformation. ► The origin of non-linear elastic deformation behavior is the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation. -- Abstract: In order to clarify the effect of interstitial atoms on the non-linear elastic deformation behavior of the Ti–Nb alloy, the microstructure of (Ti–26Nb)–1.0O alloy was closely investigated by transmission electron microscope (TEM) and in situ X-ray diffraction (XRD) measurements. The 〈1 1 0〉 β * rel rods and {1 1 1} β * rel planes were observed in a reciprocal space for the (Ti–26Nb)–1.0O alloy. Their origin was {110} β 〈11 ¯ 0〉 β transverse type lattice modulation generated by oxygen atoms. Nanosized modulated domain structure (nanodomain) distributed homogeneously and randomly in the β phase and acted as obstacles for the long-ranged martensitic transformation in the (Ti–26Nb)–1.0O alloy. The non-linear elastic strain of the (Ti–26Nb)–1.0O alloy was generated by the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation

  20. Dependence of laser radiation intensity on the elastic deformation of a revolving optical disk with a reflective coating

    Science.gov (United States)

    Gladyshev, V. O.; Portnov, D. I.

    2016-12-01

    The physical mechanism of alteration of intensity of linearly polarized monochromatic electromagnetic radiation with λ = 630 nm in a revolving dielectric disk with a mirror coating is examined. The effect is induced by elastic deformation due to the revolution and by thermoelastic deformation of the optically transparent disk. These deformations result in birefringence, the polarization plane rotation, and a 30-40% change in the intensity of reflected radiation.

  1. Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    The elastic modulus of cellulose Iß in the axial and transverse directions was obtained from atomistic simulations using both the standard uniform deformation approach and a complementary approach based on nanoscale indentation. This allowed comparisons between the methods and closer connectivity to experimental measurement techniques. A reactive...

  2. Elastic properties of Gum Metal

    International Nuclear Information System (INIS)

    Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi

    2006-01-01

    In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation

  3. An analysis of heat field of metal sheet during elastic-plastic deformation

    International Nuclear Information System (INIS)

    Li, S.X.; Huang, Y.; Shih, C.H.

    1985-08-01

    This paper describes the application of the finite element analysis to calculate the temperature distribution generated during the process of elastic-plastic deformation. A better agreement is found between the results of heat field computed by use of the finite element analysis and that measured by use of an infrared camera. The results indicate that the method of finite element analysis used for heat field evaluation is reliable. (author)

  4. Analysis of HD Journal Bearings Considering Elastic Deformation and Non-Newtonian Rabinowitsch Fluid Model

    Directory of Open Access Journals (Sweden)

    J. Javorova

    2016-06-01

    Full Text Available The purpose of this paper is to study the performance of a finite length journal bearing, taking into account effects of non-Newtonian Rabinowitsch flow rheology and elastic deformations of the bearing liner. According to the Rabinowitsch fluid model, the cubic-stress constitutive equation is used to account for the non-Newtonian effects of pseudoplastic and dilatant lubricants. Integrating the continuity equation across the film, the nonlinear non-Newtonian Reynolds-type equation is derived. The elasticity part of the problem is solved on the base of Vlassov model of an elastic foundation. The numerical solution of the modified Reynolds equation is carried out by using FDM with over-relaxation technique. The results for steady state bearing performance characteristics have been calculated for various values of nonlinear factor and elasticity parameters. It was concluded that in comparison with the Newtonian lubricants, higher values of film pressure and load carrying capacity have been obtained for dilatant lubricants, while the case was reversed for pseudoplastic lubricants.

  5. Elastically deformable models based on the finite element method accelerated on graphics hardware using CUDA

    NARCIS (Netherlands)

    Verschoor, M.; Jalba, A.C.

    2012-01-01

    Elastically deformable models have found applications in various areas ranging from mechanical sciences and engineering to computer graphics. The method of Finite Elements has been the tool of choice for solving the underlying PDE, when accuracy and stability of the computations are more important

  6. Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids

    International Nuclear Information System (INIS)

    Wang Weihua

    2011-01-01

    We study the similarity and correlations between relaxations and plastic deformation in metallic glasses (MGs) and MG-forming liquids. It is shown that the microscope plastic events, the initiation and formation of shear bands, and the mechanical yield in MGs where the atomic sites are topologically unstable induced by applied stress, can be treated as the glass to supercooled liquid state transition induced by external shear stress. On the other hand, the glass transition, the primary and secondary relaxations, plastic deformation and yield can be attributed to the free volume increase induced flow, and the flow can be modeled as the activated hopping between the inherent states in the potential energy landscape. We then propose an extended elastic model to describe the flow based on the energy landscape theory. That is, the flow activation energy density is linear proportional to the instantaneous elastic moduli, and the activation energy density ρ E is determined to be a simple expression of ρ E =(10/11)G+(1/11)K. The model indicates that both shear and bulk moduli are critical parameters accounting for both the homogeneous and inhomogeneous flows in MGs and MG-forming liquids. The elastic model is experimentally certified. We show that the elastic perspectives offers a simple scenario for the flow in MGs and MG-forming liquids and are suggestive for understanding the glass transition, plastic deformation, and nature and characteristics of MGs

  7. Quantitative stress measurement of elastic deformation using mechanoluminescent sensor: An intensity ratio model

    Science.gov (United States)

    Cai, Tao; Guo, Songtao; Li, Yongzeng; Peng, Di; Zhao, Xiaofeng; Liu, Yingzheng

    2018-04-01

    The mechanoluminescent (ML) sensor is a newly developed non-invasive technique for stress/strain measurement. However, its application has been mostly restricted to qualitative measurement due to the lack of a well-defined relationship between ML intensity and stress. To achieve accurate stress measurement, an intensity ratio model was proposed in this study to establish a quantitative relationship between the stress condition and its ML intensity in elastic deformation. To verify the proposed model, experiments were carried out on a ML measurement system using resin samples mixed with the sensor material SrAl2O4:Eu2+, Dy3+. The ML intensity ratio was found to be dependent on the applied stress and strain rate, and the relationship acquired from the experimental results agreed well with the proposed model. The current study provided a physical explanation for the relationship between ML intensity and its stress condition. The proposed model was applicable in various SrAl2O4:Eu2+, Dy3+-based ML measurement in elastic deformation, and could provide a useful reference for quantitative stress measurement using the ML sensor in general.

  8. Structural control of elastic moduli in ferrogels and the importance of non-affine deformations

    Science.gov (United States)

    Pessot, Giorgio; Cremer, Peet; Borin, Dmitry Y.; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M.

    2014-09-01

    One of the central appealing properties of magnetic gels and elastomers is that their elastic moduli can reversibly be adjusted from outside by applying magnetic fields. The impact of the internal magnetic particle distribution on this effect has been outlined and analyzed theoretically. In most cases, however, affine sample deformations are studied and often regular particle arrangements are considered. Here we challenge these two major simplifications by a systematic approach using a minimal dipole-spring model. Starting from different regular lattices, we take into account increasingly randomized structures, until we finally investigate an irregular texture taken from a real experimental sample. On the one hand, we find that the elastic tunability qualitatively depends on the structural properties, here in two spatial dimensions. On the other hand, we demonstrate that the assumption of affine deformations leads to increasingly erroneous results the more realistic the particle distribution becomes. Understanding the consequences of the assumptions made in the modeling process is important on our way to support an improved design of these fascinating materials.

  9. Tidal deformations of neutron stars: The role of stratification and elasticity

    International Nuclear Information System (INIS)

    Penner, A. J.; Andersson, N.; Hawke, I.; Jones, D. I.; Samuelsson, L.

    2011-01-01

    We discuss the response of neutron stars to the tidal interaction in a compact binary system, as encoded in the Love number associated with the induced deformation. This problem is of interest for gravitational-wave astronomy as there may be a detectable imprint on the signal from the late stages of binary coalescence. Previous work has focused on simple barotropic neutron star models, providing an understanding of the role of the stellar compactness and overall density profile. We add realism to the discussion by developing the framework required to model stars with varying composition and an elastic crust. These effects are not expected to be significant for the next generation of detectors, but it is nevertheless useful to be able to quantify them. Our results show that (perhaps surprisingly) internal stratification has no impact whatsoever on the Love number. We also show that crust elasticity provides a (predictably) small correction to existing models.

  10. Process Modelling of Curing Process-Induced Internal Stress and Deformation of Composite Laminate Structure with Elastic and Viscoelastic Models

    Science.gov (United States)

    Li, Dongna; Li, Xudong; Dai, Jianfeng

    2018-06-01

    In this paper, two kinds of transient models, the viscoelastic model and the linear elastic model, are established to analyze the curing deformation of the thermosetting resin composites, and are calculated by COMSOL Multiphysics software. The two models consider the complicated coupling between physical and chemical changes during curing process of the composites and the time-variant characteristic of material performance parameters. Subsequently, the two proposed models are implemented respectively in a three-dimensional composite laminate structure, and a simple and convenient method of local coordinate system is used to calculate the development of residual stresses, curing shrinkage and curing deformation for the composite laminate. Researches show that the temperature, degree of curing (DOC) and residual stresses during curing process are consistent with the study in literature, so the curing shrinkage and curing deformation obtained on these basis have a certain referential value. Compared the differences between the two numerical results, it indicates that the residual stress and deformation calculated by the viscoelastic model are more close to the reference value than the linear elastic model.

  11. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-10-01

    This paper develops nonlocal elasticity equations and magneto-electro-elastic relations to size-dependent electro-magneto-elastic bending analyses of the functionally graded axisymmetric circular nanoplates based on the first-order shear deformation theory. All material properties are graded along the thickness direction based on exponential varying. It is assumed that a circular nanoplate is made from piezo-magnetic materials. The energy method and Ritz approach is employed for the derivation of governing equations of electro-magneto-elastic bending and the solution of the problem, respectively. The nanoplate is subjected to applied electric and magnetic potentials at top and transverse loads while it is rested on Pasternak's foundation. Some important numerical results are presented in various figures to show the influence of applied electric and magnetic potentials, small scale parameter and inhomogeneous index of an exponentially graded nanoplate.

  12. Elastic interaction of hydrogen atoms on graphene: A multiscale approach from first principles to continuum elasticity

    Science.gov (United States)

    Branicio, Paulo S.; Vastola, Guglielmo; Jhon, Mark H.; Sullivan, Michael B.; Shenoy, Vivek B.; Srolovitz, David J.

    2016-10-01

    The deformation of graphene due to the chemisorption of hydrogen atoms on its surface and the long-range elastic interaction between hydrogen atoms induced by these deformations are investigated using a multiscale approach based on first principles, empirical interactions, and continuum modeling. Focus is given to the intrinsic low-temperature structure and interactions. Therefore, all calculations are performed at T =0 , neglecting possible temperature or thermal fluctuation effects. Results from different methods agree well and consistently describe the local deformation of graphene on multiple length scales reaching 500 Å . The results indicate that the elastic interaction mediated by this deformation is significant and depends on the deformation of the graphene sheet both in and out of plane. Surprisingly, despite the isotropic elasticity of graphene, within the linear elastic regime, atoms elastically attract or repel each other depending on (i) the specific site they are chemisorbed; (ii) the relative position of the sites; (iii) and if they are on the same or on opposite surface sides. The interaction energy sign and power-law decay calculated from molecular statics agree well with theoretical predictions from linear elasticity theory, considering in-plane or out-of-plane deformations as a superposition or in a coupled nonlinear approach. Deviations on the exact power law between molecular statics and the linear elastic analysis are evidence of the importance of nonlinear effects on the elasticity of monolayer graphene. These results have implications for the understanding of the generation of clusters and regular formations of hydrogen and other chemisorbed atoms on graphene.

  13. Coupled elasticity-diffusion model for the effects of cytoskeleton deformation on cellular uptake of cylindrical nanoparticles.

    Science.gov (United States)

    Wang, Jizeng; Li, Long

    2015-01-06

    Molecular dynamic simulations and experiments have recently demonstrated how cylindrical nanoparticles (CNPs) with large aspect ratios penetrate animal cells and inevitably deform cytoskeletons. Thus, a coupled elasticity-diffusion model was adopted to elucidate this interesting biological phenomenon by considering the effects of elastic deformations of cytoskeleton and membrane, ligand-receptor binding and receptor diffusion. The mechanism by which the binding energy drives the CNPs with different orientations to enter host cells was explored. This mechanism involved overcoming the resistance caused by cytoskeleton and membrane deformations and the change in configurational entropy of the ligand-receptor bonds and free receptors. Results showed that deformation of the cytoskeleton significantly influenced the engulfing process by effectively slowing down and even hindering the entry of the CNPs. Additionally, the engulfing depth was determined quantitatively. CNPs preferred or tended to vertically attack target cells until they were stuck in the cytoskeleton as implied by the speed of vertically oriented CNPs that showed much faster initial engulfing speeds than horizontally oriented CNPs. These results elucidated the most recent molecular dynamics simulations and experimental observations on the cellular uptake of carbon nanotubes and phagocytosis of filamentous Escherichia coli bacteria. The most efficient engulfment showed the stiffness-dependent optimal radius of the CNPs. Cytoskeleton stiffness exhibited more significant influence on the optimal sizes of the vertical uptake than the horizontal uptake. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Free vibration analysis of a cracked shear deformable beam on a two-parameter elastic foundation using a lattice spring model

    Science.gov (United States)

    Attar, M.; Karrech, A.; Regenauer-Lieb, K.

    2014-05-01

    The free vibration of a shear deformable beam with multiple open edge cracks is studied using a lattice spring model (LSM). The beam is supported by a so-called two-parameter elastic foundation, where normal and shear foundation stiffnesses are considered. Through application of Timoshenko beam theory, the effects of transverse shear deformation and rotary inertia are taken into account. In the LSM, the beam is discretised into a one-dimensional assembly of segments interacting via rotational and shear springs. These springs represent the flexural and shear stiffnesses of the beam. The supporting action of the elastic foundation is described also by means of normal and shear springs acting on the centres of the segments. The relationship between stiffnesses of the springs and the elastic properties of the one-dimensional structure are identified by comparing the homogenised equations of motion of the discrete system and Timoshenko beam theory.

  15. Thermo-elastic optical coherence tomography

    NARCIS (Netherlands)

    Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, A.F.W.; Huber, Robert; Van Soest, Gijs

    2017-01-01

    The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive

  16. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-04-15

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  17. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    International Nuclear Information System (INIS)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-01-01

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  18. Mechanical behaviour of nanoparticles: Elasticity and plastic ...

    Indian Academy of Sciences (India)

    2015-06-03

    Jun 3, 2015 ... Mechanical behaviour of nanoparticles: Elasticity and plastic deformation mechanisms ... The main results in terms of elasticity and plastic deformation mechanisms are then reported ... Pramana – Journal of Physics | News.

  19. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents.

    Science.gov (United States)

    Tian, Yuxing; Yu, Zhentao; Ong, Chun Yee Aaron; Kent, Damon; Wang, Gui

    2015-05-01

    Cold-deformability and mechanical compatibility of the biomedical β-type titanium alloy are the foremost considerations for their application in stents, because the lower ductility restricts the cold-forming of thin-tube and unsatisfactory mechanical performance causes a failed tissue repair. In this paper, β-type titanium alloy (Ti-25Nb-3Zr-3Mo-2Sn, wt%) thin-tube fabricated by routine cold rolling is reported for the first time, and its elastic behavior and mechanical properties are discussed for the various microstructures. The as cold-rolled tube exhibits nonlinear elastic behavior with large recoverable strain of 2.3%. After annealing and aging, a nonlinear elasticity, considered as the intermediate stage between "double yielding" and normal linear elasticity, is attributable to a moderate precipitation of α phase. Quantitive relationships are established between volume fraction of α phase (Vα) and elastic modulus, strength as well as maximal recoverable strain (εmax-R), where the εmax-R of above 2.0% corresponds to the Vα range of 3-10%. It is considered that the "mechanical" stabilization of the (α+β) microstructure is a possible elastic mechanism for explaining the nonlinear elastic behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Three-Dimensional Dynamics of a Flexible Marine Riser Undergoing Large Elastic Deformations

    International Nuclear Information System (INIS)

    Raman-Nair, W.; Baddour, R.E.

    2003-01-01

    The equations of the three dimensional motion of a marine riser undergoing large elastic deformations are formulated using Kane's formalism. The riser is modeled using lumped masses connected by extensional and rotational springs including structural damping. Surface waves are described by Stokes? second-order wave theory. Fluid-structure coupling is achieved by application of the hydrodynamic loads via Morison's equation and added-mass coefficients using the instantaneous relative velocities and accelerations between the fluid field and the riser segments. In the same way, a model for incorporating the effects of vortex-induced lift forces is included. The effect of internal flow is included in the model. The detailed algorithm is presented and the equations are solved using a robust implementation of the Runge-Kutta method provided in MATLAB. The mathematical model and associated algorithm are validated by comparing the steady-state equilibrium configuration of the riser with special cases of an elastic catenary mooring line and large deflection statics of a cantilever beam. The results of sample simulations are presented

  1. Size-dependent bending, buckling and vibration of higher-order shear deformable magneto-electro-thermo-elastic rectangular nanoplates

    Science.gov (United States)

    Gholami, Raheb; Ansari, Reza; Gholami, Yousef

    2017-06-01

    The aim of the present study is to propose a unified size-dependent higher-order shear deformable plate model for magneto-electro-thermo-elastic (METE) rectangular nanoplates by adopting the nonlocal elasticity theory to capture the size effect, and by utilizing a generalized shape function to consider the effects of transverse shear deformation and rotary inertia. By considering various shape functions, the proposed plate model can be reduced to the nonlocal plate model based upon the Kirchhoff, Mindlin and Reddy plate theories, as well as the parabolic, trigonometric, hyperbolic and exponential shear deformation plate theories. The governing equations of motion and corresponding boundary conditions of METE nanoplates subjected to external in-plane, transverse loads as well as magnetic, electric and thermal loadings, are obtained using Hamilton’s principle. Then, as in some case studies, the static bending, buckling, and free vibration characteristics of simply-supported METE rectangular nanoplates are investigated based upon the Navier solution approach. Numerical results are provided in order to investigate the influences of various parameters including the nondimensional nonlocal parameter, type of transverse loading, temperature change, applied voltage, and external magnetic potential on the mechanical behaviors of METE nanoplates. Furthermore, comparisons are made between the results predicted by different nonlocal plate models by utilizing the developed unified nonlocal plate model and selecting the associated shape functions. It is illustrated that by using the presented unified nonlocal plate model, the development of a nonlocal plate model based upon any existing higher-order shear deformable plate theory is a simple task.

  2. New constitutive equations to describe infinitesimal elastic-plastic deformations

    International Nuclear Information System (INIS)

    Boecke, B.; Link, F.; Schneider, G.; Bruhns, O.T.

    1983-01-01

    A set of constitutive equations is presented to describe infinitesimal elastic-plastic deformations of austenitic steel in the range up to 600 deg C. This model can describe the hardening behaviour in the case of mechanical loading and hardening, and softening behaviour in the case of thermal loading. The loading path can be either monotonic or cyclic. For this purpose, the well-known isotropic hardening model is continually transferred into the kinematic model according to Prager, whereby suitable internal variables are chosen. The occurring process-dependent material functions are to be determined by uniaxial experiments. The hardening function g and the translation function c are determined by means of a linearized stress-strain behaviour in the plastic range, whereby a coupling condition must be taken into account. As a linear hardening process is considered to be too unrealistic, nonlinearity is achieved by introducing a small function w, the determination procedure of which is given. (author)

  3. LibHalfSpace: A C++ object-oriented library to study deformation and stress in elastic half-spaces

    Science.gov (United States)

    Ferrari, Claudio; Bonafede, Maurizio; Belardinelli, Maria Elina

    2016-11-01

    The study of deformation processes in elastic half-spaces is widely employed for many purposes (e.g. didactic, scientific investigation of real processes, inversion of geodetic data, etc.). We present a coherent programming interface containing a set of tools designed to make easier and faster the study of processes in an elastic half-space. LibHalfSpace is presented in the form of an object-oriented library. A set of well known and frequently used source models (Mogi source, penny shaped horizontal crack, inflating spheroid, Okada rectangular dislocation, etc.) are implemented to describe the potential usage and the versatility of the library. The common interface given to library tools enables us to switch easily among the effects produced by different deformation sources that can be monitored at the free surface. Furthermore, the library also offers an interface which simplifies the creation of new source models exploiting the features of object-oriented programming (OOP). These source models can be built as distributions of rectangular boundary elements. In order to better explain how new models can be deployed some examples are included in the library.

  4. Thermo-elastic optical coherence tomography.

    Science.gov (United States)

    Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, Antonius F W; Huber, Robert; Soest, Gijs van

    2017-09-01

    The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.

  5. Interactive Character Deformation Using Simplified Elastic Models

    NARCIS (Netherlands)

    Luo, Z.

    2016-01-01

    This thesis describes the results of our research into realistic skin and model deformation methods aimed at the field of character deformation and animation. The main contributions lie in the properties of our deformation scheme. Our approach preserves the volume of the deformed object while

  6. X-Ray Microbeam Measurements of Individual Dislocation Cell Elastic Strains in Deformed Single-Crystal Copper

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Lyle E. [National Institute of Standards and Technology (NIST); Larson, Ben C [ORNL; Yang, Wenge [ORNL; Kassner, Michael E. [University of Southern California; Tischler, Jonathan Zachary [ORNL; Delos-Reyes, Michael A. [University of Southern California; Fields, Richard J. [National Institute of Standards and Technology (NIST); Liu, Wenjun [ORNL

    2006-01-01

    The distribution of elastic strains at the submicrometre length scale within deformed metal single crystals has remarkably broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behaviour within individual grains, the transport of dislocations through such structures, changes in mechanical properties that occur during reverse loading (for example, sheet-metal forming and fatigue), and the analyses of diffraction line profiles for microstructural studies of these phenomena.

  7. Elastic stresses and plastic deformations in 'Santa Clara' tomato fruits caused by package dependent compression

    Directory of Open Access Journals (Sweden)

    PEREIRA ADRIANA VARGAS

    2000-01-01

    Full Text Available The objective of this work was to study the fruit compression behavior aiming to develop new tomato packages. Deformations caused by compression forces were observed inside packages and in individual 'Santa Clara' tomato fruit. The forces applied by a transparent acrylic lever to the fruit surface caused pericarp deformation and the flattened area was proportional to the force magnitude. The deformation was associated to the reduction in the gas volume (Vg, caused by expulsion of the air from the loculus cavity and reduction in the intercellular air volume of the pericarp. As ripening advanced, smaller fractions of the Vg reduced by the compressive force were restored after the stress was relieved. The lack of complete Vg restoration was an indication of permanent plastic deformations of the stressed cells. Vg regeneration (elastic recovery was larger in green fruits than in the red ones. The ratio between the applied force and the flattened area (flattening pressure, which depends on cell turgidity, decreased during ripening. Fruit movements associated with its depth in the container were observed during storage in a transparent glass container (495 x 355 x 220 mm. The downward movement of the fruits was larger in the top layers because these movements seem to be driven by a summation of the deformation of many fruits in all layers.

  8. Elasto-capillarity: deforming an elastic structure with a liquid droplet

    International Nuclear Information System (INIS)

    Roman, B; Bico, J

    2010-01-01

    Although negligible at macroscopic scales, capillary forces become dominant as the sub-millimetric scales of micro-electro-mechanical systems (MEMS) are considered. We review various situations, not limited to micro-technologies, where capillary forces are able to deform elastic structures. In particular, we define the different length scales that are relevant for 'elasto-capillary' problems. We focus on the case of slender structures (lamellae, rods and sheets) and describe the size of a bundle of wet hair, the condition for a flexible rod to pierce a liquid interface or the fate of a liquid droplet deposited on a flexible thin sheet. These results can be generalized to similar situations involving adhesion or fracture energy, which widens the scope of possible applications from biological systems, to stiction issues in micro-fabrication processes, the manufacturing of 3D microstructures or the formation of blisters in thin film coatings. (topical review)

  9. Emergent gravity in the cubic tight-binding model of Weyl semimetal in the presence of elastic deformations

    Energy Technology Data Exchange (ETDEWEB)

    Cortijo, Alberto [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Zubkov, M.A., E-mail: zubkov@itep.ru [ITEP, B. Cheremushkinskaya 25, Moscow, 117259 (Russian Federation); Moscow Institute of Physics and Technology, 9, Institutskii per., Dolgoprudny, Moscow Region, 141700 (Russian Federation); Far Eastern Federal University, School of Biomedicine, 690950 Vladivostok (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway 31, 115409 Moscow (Russian Federation)

    2016-03-15

    We consider the tight-binding model with cubic symmetry that may be relevant for the description of a certain class of Weyl semimetals. We take into account elastic deformations of the semimetal through the modification of hopping parameters. This modification results in the appearance of emergent gauge field and the coordinate dependent anisotropic Fermi velocity. The latter may be interpreted as emergent gravitational field.

  10. Dependence of the frequency spectrum of small amplitude vibrations superimposed on finite deformations of a nonlinear, cylindrical elastic body on residual stress

    KAUST Repository

    Gorb, Yuliya; Walton, Jay R.

    2010-01-01

    We model and analyze the response of nonlinear, residually stressed elastic bodies subjected to small amplitude vibrations superimposed upon large deformations. The problem derives from modeling the use of intravascular ultrasound (IVUS) imaging

  11. A unified phenomenological model for non-elastic deformation of Type 316 stainless steel

    International Nuclear Information System (INIS)

    Schmidt, C.G.; Miller, A.K.

    1981-01-01

    A complete model is provided for the non-elastic deformation of unaged type 316 stainless steel. The fitting flexibility, breadth of application, and predictive capabilities of the model are demonstrated for a wide variety of data. Satisfactory descriptions are given of the steady-state and transient creep behaviour as well as the monotonic stress-strain behaviour from the yield stress to steady-state flow. These descriptions apply over a broad range of temperatures and strain rates for both solution annealed and 20% cold worked material. Furthermore, cyclic stress-strain curves, cyclic hysteresis loops, and stress relaxation data are shown to be well described for solution annealed material. (author)

  12. Effect of hydrostatic pressure in the ground state on the perturbed elastic deformable bodies in first post-Newtonian approximation

    International Nuclear Information System (INIS)

    Song Guoxuan

    2009-01-01

    Based on the dynamical equations for a nonrotating elastic deformable astronomical body in the first post-Newtonian approximation of Einstein's theory of gravity, we re-examined the boundary(junction) conditions and have proven that a term, which is missing in the customary boundary(junction) conditions, is found. This term is induced by the existence of initial equilibrium hydrostatic pressure. A physical explanation of this term is given in the Newtonian approximation as well. By using the correcting boundary conditions the relation of the free spherically symmetrical radial oscillation frequency of a nonrotating homogeneously and isotropically elastic sphere with constant density is derived.

  13. Prediction of fretting fatigue behavior under elastic-plastic conditions

    International Nuclear Information System (INIS)

    Shin, Ki Su

    2009-01-01

    Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations

  14. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    Science.gov (United States)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  15. Quantifying the Mechanical Properties of Materials and the Process of Elastic-Plastic Deformation under External Stress on Material

    Directory of Open Access Journals (Sweden)

    Jan Valíček

    2015-11-01

    Full Text Available The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ, especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.

  16. Quantifying the Mechanical Properties of Materials and the Process of Elastic-Plastic Deformation under External Stress on Material

    Science.gov (United States)

    Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef

    2015-01-01

    The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ. PMID:28793645

  17. The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2014-01-01

    Based on stress-controlled cyclic tension–unloading experiments with different peak stresses, the effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy micro-tubes is investigated and discussed. The experimental results show that the reverse transformation from the induced martensite phase to the austenite phase is gradually restricted by the plastic deformation of the induced martensite phase caused by an applied peak stress that is sufficiently high (higher than 900 MPa), and the extent of such restriction increases with further increasing the peak stress. The residual and peak strains of super-elastic NiTi shape memory alloy accumulate progressively, i.e., transformation ratchetting occurs during the cyclic tension–unloading with peak stresses from 600 to 900 MPa, and the transformation ratchetting strain increases with the increase of the peak stress. When the peak stress is higher than 900 MPa, the peak strain becomes almost unchanged, but the residual strain accumulates and the dissipation energy per cycle decreases very quickly with the increasing number of cycles due to the restricted reverse transformation by the martensite plasticity. Furthermore, a quantitative relationship between the applied stress and the stabilized residual strain is obtained to reasonably predict the evolution of the peak strain and the residual strain. (paper)

  18. A mathematical model for the deformation of the eyeball by an elastic band.

    Science.gov (United States)

    Keeling, Stephen L; Propst, Georg; Stadler, Georg; Wackernagel, Werner

    2009-06-01

    In a certain kind of eye surgery, the human eyeball is deformed sustainably by the application of an elastic band. This article presents a mathematical model for the mechanics of the combined eye/band structure along with an algorithm to compute the model solutions. These predict the immediate and the lasting indentation of the eyeball. The model is derived from basic physical principles by minimizing a potential energy subject to a volume constraint. Assuming spherical symmetry, this leads to a two-point boundary-value problem for a non-linear second-order ordinary differential equation that describes the minimizing static equilibrium. By comparison with laboratory data, a preliminary validation of the model is given.

  19. Effect of heat radiation in a Walter’s liquid B fluid over a stretching sheet with non-uniform heat source/sink and elastic deformation

    Directory of Open Access Journals (Sweden)

    A.K. Abdul Hakeem

    2014-07-01

    Full Text Available In this present article heat transfer in a Walter’s liquid B fluid over an impermeable stretching sheet with non-uniform heat source/sink, elastic deformation and radiation are reported. The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The dimensionless governing equations for this investigation are solved analytically using hyper geometric functions. The results are carried out for prescribed surface temperature (PST and prescribed power law surface heat flux (PHF. The effects of viscous dissipation, Prandtl number, Eckert number, heat source/sink parameter with elastic deformation and radiation are shown in the several plots and addressed.

  20. Direct determination of elastic strains and dislocation densities in individual subgrains in deformation structures

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, U.

    2007-01-01

    A novel synchrotron-based technique "high angular resolution 3DXRD" is presented in detail, and applied to the characterization of oxygen-free, high-conductivity copper at a tensile deformation of 2%. The position and shape in reciprocal space of 14 peaks originating from deeply embedded individual...... subgrains is reported. From this dataset the density of redundant dislocations in the individual subgrains is inferred to be below 12 × 1012 m-2 on average. It is found that the subgrains on average experience a reduction in strain of 0.9 × 10-4 with respect to the mean elastic strain of the full grain...

  1. Non-linear theory of elasticity and optimal design

    CERN Document Server

    Ratner, LW

    2003-01-01

    In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it

  2. Numerical study of suspensions of deformable particles.

    Science.gov (United States)

    Brandt, Luca; Rosti, Marco Edoardo

    2017-11-01

    We consider a model non-Newtonian fluid consisting of a suspension of deformable particles in a Newtonian solvent. Einstein showed in his pioneering work that the relative increase in effective viscosity is a linear function of the particle volume fraction for dilute suspensions of rigid particles. Inertia has been shown to introduce deviations from the behaviour predicted by the different empirical fits, an effect that can be related to an increase of the effective volume fraction. We here focus on the effect of elasticity, i.e. visco-elastic deformable particles. To tackle the problem at hand, we perform three-dimensional Direct Numerical Simulation of a plane Couette flow with a suspension of neutrally buoyant deformable viscous hyper-elastic particles. We show that elasticity produces a shear-thinning effect in elastic suspensions (in comparison to rigid ones) and that it can be understood in terms of a reduction of the effective volume fraction of the suspension. The deformation modifies the particle motion reducing the level of mutual interaction. Normal stress differences will also be considered. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).

  3. The self-trapping of anion excitons in alkali halides at elastic deformation

    International Nuclear Information System (INIS)

    Tulepbergenov, S.K.; Dzhumanov, S.; Spivak-Lavrov, I.F.; Shunkeev, K.Sh.

    2001-01-01

    The self-trapping of electronic excitations (EE) (excitons, holes and electrons) in alkali halides (AH), fluorides and oxides plays an important roles in luminescence and defect formation. Therein the specific features of self-trapping of EE in various materials are essentially different. In particular, the self-trapping of excitons in some AH (i.e. alkali iodides and bromides) occurs with overcoming of the potential barrier and in other AH (e.g. alkali fluorides and chlorides) such a barrier is absent. Here we develop the continuum theory of self-trapping of within the adiabatic approximation elastically stressed AH. In the continuum model of solids the functional of the total energy of are interacting exciton-phonon system in the deformed ionic crystal just as in the undeformed crystal depends on the dilation Δ(r) described by the deformation potential of acoustic phonon, the electrostatic potential φ[r) due to the lattice polarization at optical lattice vibrations and the wave function of exciton chosen for hydro statically and uniaxially stressed 3D crystals. The functionals of the total energy of the interfacing exciton-phonon system E{Δ(r),φ(r),ψ(r)} are minimized relative to Δ, φ and ψ for the cases of isotropic and anisotropic 3D crystals. As a result, we obtained the functionals depending on μ and determined their possible extremum. We have show that the linear deformations under the hydrostatic and uniaxial stress at 80 K lead to the decreasing of the self trapping barrier for exciton and to the increasing of the luminescence of self-trapped excitons (STE). While the nonlinear deformations under the such stress at 80 K lead to the increasing of the self-trapping barrier for excitons and to the decreasing at the STE luminescence in AH. At T=0 K the small hydrostatic and uniaxial pressures lead to the same effects. Further at hydrostatic and uniaxial compressions of AH the minimums of the adiabatic potentials of quasifree and STE are shifted to

  4. Modeling Pseudo-elastic Behavior of Springback

    International Nuclear Information System (INIS)

    Xia, Z. Cedric

    2005-01-01

    One of the principal foundations of mathematical theory of conventional plasticity for rate-independent metals is that there exists a well-defined yield surface in stress space for any material point under deformation. A material point can undergo further plastic deformation if the applied stresses are beyond current yield surface which is generally referred as 'plastic loading'. On the other hand, if the applied stress state falls within or on the yield surface, the metal will deform elastically only and is said to be undergoing 'elastic unloading'. Although it has been always recognized throughout the history of development of plasticity theory that there is indeed inelastic deformation accompanying elastic unloading, which leads to metal's hysteresis behavior, its effects were thought to be negligible and were largely ignored in the mathematical treatment.Recently there have been renewed interests in the study of unloading behavior of sheet metals upon large plastic deformation and its implications on springback prediction. Springback is essentially an elastic recovery process of a formed sheet metal blank when it is released from the forming dies. Its magnitude depends on the stress states and compliances of the deformed sheet metal if no further plastic loading occurs during the relaxation process. Therefore the accurate determination of material compliances during springback and its effective incorporation into simulation software are important aspects for springback calculation. Some of the studies suggest that the unloading curve might deviate from linearity, and suggestions were made that a reduced elastic modulus be used for springback simulation.The aim of this study is NOT to take a position on the debate of whether elastic moduli are changed during sheet metal forming process. Instead we propose an approach of modeling observed psuedoelastic behavior within the context of mathematical theory of plasticity, where elastic moduli are treated to be

  5. Equivalent elastic moduli of a zigzag single-walled carbon nanotube given by uniform radial deformation

    International Nuclear Information System (INIS)

    Li Ying; Qiu Xinming; Yin Yajun; Yang Fan; Fan Qinshan

    2009-01-01

    Under hydrostatic pressure, the equivalent elastic moduli of a zigzag single-walled carbon nanotube (SWNT) are analytically determined by energy conservation, with the consideration of the covalent bond deformation. The theoretical predictions on the transverse mechanical properties of a zigzag SWNT agree reasonably well with those given by the molecular structures mechanics simulations and also the ab initio calculations. From the simple geometry calculation, the circumferential strain is about 2-3 times of the axial strain of a zigzag SWNT under hydrostatic pressure. The bulk modulus of a zigzag SWNT is found to be 3/7 times of its radial Young's modulus.

  6. Non-linear theory of elasticity

    CERN Document Server

    Lurie, AI

    2012-01-01

    This book examines in detail the Theory of Elasticity which is a branch of the mechanics of a deformable solid. Special emphasis is placed on the investigation of the process of deformation within the framework of the generally accepted model of a medium which, in this case, is an elastic body. A comprehensive list of Appendices is included providing a wealth of references for more in depth coverage. The work will provide both a stimulus for future research in this field as well as useful reference material for many years to come.

  7. On the concept of elasticity used in some fast reactor accident analysis codes

    International Nuclear Information System (INIS)

    Malmberg, T.

    1975-01-01

    The analysis presented restricts attention to the elastic part of the elastic-plastic equation used in several Fast Reactor Accident Analysis Codes and originally applied by M.L. Wilkins: Calculation of Elastic-Plastic Flow, UCRL-7322, Rev. 1, Jan 1969. It is shown that the used elasticity concept is within the frame of hypo-elasticity. On the basis of a test found by Bernstein it is proven that the state of stress is generally depending on the path of deformation. Therefore this concept of elasticity is not compatible with finite elasticity. For several deformation processes this special hypo-elastic constitutive equation is integrated to give a stress-strain relation. The path-dependence of this relation is demonstrated. Further the phenomenon of hypo-elastic yield under shear deformation is pointed out. The relevance to modelling material behaviour in primary containment analysis is discussed. (Auth.)

  8. Magnetic Fluid-Based Squeeze Film Behaviour in Curved Porous-Rotating Rough Annular Plates and Elastic Deformation Effect

    Directory of Open Access Journals (Sweden)

    M. E. Shimpi

    2012-01-01

    Full Text Available Efforts have been directed to study and analyze the squeeze film performance between rotating transversely rough curved porous annular plates in the presence of a magnetic fluid lubricant considering the effect of elastic deformation. A stochastic random variable with nonzero mean, variance, and skewness characterizes the random roughness of the bearing surfaces. With the aid of suitable boundary conditions, the associated stochastically averaged Reynolds' equation is solved to obtain the pressure distribution in turn, which results in the calculation of the load-carrying capacity. The graphical representations establish that the transverse roughness, in general, adversely affects the performance characteristics. However, the magnetization registers a relatively improved performance. It is found that the deformation causes reduced load-carrying capacity which gets further decreased by the porosity. This investigation tends to indicate that the adverse effect of porosity, standard deviation and deformation can be compensated to certain extent by the positive effect of the magnetic fluid lubricant in the case of negatively skewed roughness by choosing the rotational inertia and the aspect ratio, especially for suitable ratio of curvature parameters.

  9. Observation of elastic topological states in soft materials.

    Science.gov (United States)

    Li, Shuaifeng; Zhao, Degang; Niu, Hao; Zhu, Xuefeng; Zang, Jianfeng

    2018-04-10

    Topological elastic metamaterials offer insight into classic motion law and open up opportunities in quantum and classic information processing. Theoretical modeling and numerical simulation of elastic topological states have been reported, whereas the experimental observation remains relatively unexplored. Here we present an experimental observation and numerical simulation of tunable topological states in soft elastic metamaterials. The on-demand reversible switch in topological phase has been achieved by changing filling ratio, tension, and/or compression of the elastic metamaterials. By combining two elastic metamaterials with distinct topological invariants, we further demonstrate the formation and dynamic tunability of topological interface states by mechanical deformation, and the manipulation of elastic wave propagation. Moreover, we provide a topological phase diagram of elastic metamaterials under deformation. Our approach to dynamically control interface states in soft materials paves the way to various phononic systems involving thermal management and soft robotics requiring better use of energy.

  10. A calculational round robin in elastic-plastic fracture mechanics

    International Nuclear Information System (INIS)

    Larsson, L.H.

    1983-01-01

    Eighteen organisations participated in this elastic-plastic fracture mechanics (EPFM) numerical analysis round robin which treated the same three-point bend problem as a similar round robin conducted by ASTM four years earlier. The work involved the calculation of overall deformation, J, CTOD and crack profile using plane strain elastic-plastic finite element analysis for a monotonically increasing load up to a maximum deformation which was far beyond the elastic regime. It was found that all of the elastic solutions were accurate to within a few per cent. In the elastic-plastic regime, however, there was a large scatter of the results, increasing with increasing plastic deformation and roughly of the same order as in the ASTM round robin which contained ten solutions. No significant progress has taken place in the state of the art of numerical EPFM analysis over the four-year interval. The reasons for this scatter and tentative conclusions on the most suitable numerical analysis methods in EPFM are discussed. (author)

  11. On the concept of elasticity used in some fast reactor accident analysis codes

    International Nuclear Information System (INIS)

    Malmberg, T.

    1975-01-01

    The analysis to be presented will restrict attention to the elastic part of the elastic-plastic constitutive equation used in several Fast Reactor Accident Analysis Codes and originally applied by M.L. Wilkins: Calculation of Elastic-Plastic Flow, UCRL-7322, Rev. 1, Jan. 1969. It is shown that the used elasticity concept is within the frame of hypo-elasticity. On the basis of a test found by Bernstein it is proven that the state of stress is generally depending on the path of deformation. Therefore this concept of elasticity is not compatible with finite elasticity. For several simple deformation processes this special hypo-elastic constitutive equation is integrated to give a stress-strain relation. The path-dependence of this relation is demonstrated. Further the phenomenon of hypo-elastic yield under shear deformation is pointed out. The relevance to modelling material behaviour in primary containment analysis is discussed

  12. Dynamic elasticity measurement for prosthetic socket design.

    Science.gov (United States)

    Kim, Yujin; Kim, Junghoon; Son, Hyeryon; Choi, Youngjin

    2017-07-01

    The paper proposes a novel apparatus to measure the dynamic elasticity of human limb in order to help the design and fabrication of the personalized prosthetic socket. To take measurements of the dynamic elasticity, the desired force generated as an exponential chirp signal in which the frequency increases and amplitude is maintained according to time progress is applied to human limb and then the skin deformation is recorded, ultimately, to obtain the frequency response of its elasticity. It is referred to as a Dynamic Elasticity Measurement Apparatus (DEMA) in the paper. It has three core components such as linear motor to provide the desired force, loadcell to implement the force feedback control, and potentiometer to record the skin deformation. After measuring the force/deformation and calculating the dynamic elasticity of the limb, it is visualized as 3D color map model of the limb so that the entire dynamic elasticity can be shown at a glance according to the locations and frequencies. For the visualization, the dynamic elasticities measured at specific locations and frequencies are embodied using the color map into 3D limb model acquired by using 3D scanner. To demonstrate the effectiveness, the visualized dynamic elasticities are suggested as outcome of the proposed system, although we do not have any opportunity to apply the proposed system to the amputees. Ultimately, it is expected that the proposed system can be utilized to design and fabricate the personalized prosthetic socket in order for releasing the wearing pain caused by the conventional prosthetic socket.

  13. A calculational round robin in elastic-plastic fracture mechanics

    International Nuclear Information System (INIS)

    Larsson, L.H.

    Eighteen organizations participated in this round robin which treated the same three-point bend problem as an ASTM round robin four years earlier. Overall deformation, J, CTOD and crack profile were the main results required using plane strain elastic-plastic finite element analysis for a monotonically increasing load up to a maximum deformation which was far beyond the elastic regime. All elastic solutions were accurate to within a few percent. In the elastic-plastic regime, however, there was a large scatter of the results, increasing with increasing plastic deformation and roughly of the same order as in the ASTM round robin which contained ten solutions. Apparently no significant progress has taken place in the state of the art of numerical EPFM analysis in four years time. The paper discusses the reasons for this scatter and draws tentative conclusions on the most suitable numerical analysis methods in EPFM. (Auth.)

  14. Elastic-plastic cyclic deformation of the TEXTOR 94 modified liner under conditions of heating and plasma disruption

    International Nuclear Information System (INIS)

    Bohn, F.H.; Czymek, G.; Giesen, B.; Bondarchuk, E.; Doinikov, N.; Kozhukhovskaja, N.; Panin, A.

    2001-01-01

    The present liner of the TEXTOR 94 tokamak installed inside the vacuum vessel represents the thin toroidal shell that is rested on the vessel inner surface. In order to integrate the dynamic ergodic divertor into the tokamak the liner design has been drastically changed. The 120 deg. sector of the liner shell facing the ergodic coils system is removed and some additional holes in the liner are provisioned. This demands a new liner supporting system allowing for the liner thermal expansion and taking the electromagnetic load occurring in the liner during plasma disruption. The cyclic elasto-plastic deformations of the liner caused by the electromagnetic forces and temperature rise have been studied. It is shown that the local plastic deformations occur in the liner elements after the first heating and electromagnetic loading. The most thermal stresses take place in the reinforcing structures around the holes because of the thermal expansion difference of the inconel shell and the steel reinforcements. These stresses are coupled with the bending stress due to the electromagnetic loading. Subsequent repetitive loading does not lead to any significant increment of the plastic deformation. After the materials' hardening the structure cyclically works mostly in the elastic range

  15. Formulation of stiffness equation for a three-dimensional isoparametric element with elastic-plastic material and large deformation

    International Nuclear Information System (INIS)

    Chang, T.Y.; Prachuktam, S.; Reich, M.

    1975-01-01

    The formulation of the stiffness equation for an 8 to 21 node isoparametric element with elastic-plastic material and large deformation is presented. The formulation has been implemented in a nonlinear finite element program for the analysis of three-dimensional continuums. To demonstrate the utility of the formulation, a thick-walled cylinder was analyzed and the results are compared favorably with a known solution. The element type presented can be applied not only to 3-D continuums, but also to plate or shell structures, for which degenerated isoparametric elements may be used

  16. Nonlinear continuum mechanics and large inelastic deformations

    CERN Document Server

    Dimitrienko, Yuriy I

    2010-01-01

    This book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics - kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead t...

  17. Interaction of Droplets Separated by an Elastic Film.

    Science.gov (United States)

    Liu, Tianshu; Xu, Xuejuan; Nadermann, Nichole; He, Zhenping; Jagota, Anand; Hui, Chung-Yuen

    2017-01-10

    The Laplace pressure of a droplet placed on one side of an elastic thin film can cause significant deformation in the form of a bulge on its opposite side. Here, we show that this deformation can be detected by other droplets suspended on the opposite side of the film, leading to interaction between droplets separated by the solid (but deformable) film. The interaction is repulsive when the drops have a large overlap and attractive when they have a small overlap. Thus, if two identical droplets are placed right on top of each other (one on either side of the thin film), they tend to repel each other, eventually reaching an equilibrium configuration where there is a small overlap. This observation can be explained by analyzing the energy landscape of the droplets interacting via an elastically deformed film. We further demonstrate this idea by designing a pattern comprising a big central drop with satellite droplets. This phenomenon can lead to techniques for directed motion of droplets confined to one side of a thin elastic membrane by manipulations on the other side.

  18. Elastic band prediction equations for combined free-weight and elastic band bench presses and squats.

    Science.gov (United States)

    Shoepe, Todd C; Ramirez, David A; Almstedt, Hawley C

    2010-01-01

    Elastic bands added to traditional free-weight techniques have become a part of suggested training routines in recent years. Because of the variable loading patterns of elastic bands (i.e., greater stretch produces greater resistance), it is necessary to quantify the exact loading patterns of bands to identify the volume and intensity of training. The purpose of this study was to determine the length vs. tension properties of multiple sizes of a set of commonly used elastic bands to quantify the resistance that would be applied to free-weight plus elastic bench presses (BP) and squats (SQ). Five elastic bands of varying thickness were affixed to an overhead support beam. Dumbbells of varying weights were progressively added to the free end while the linear deformation was recorded with each subsequent weight increment. The resistance was plotted as a factor of linear deformation, and best-fit nonlinear logarithmic regression equations were then matched to the data. For both the BP and SQ loading conditions and all band thicknesses tested, R values were greater than 0.9623. These data suggest that differences in load exist as a result of the thickness of the elastic band, attachment technique, and type of exercise being performed. Facilities should adopt their own form of loading quantification to match their unique set of circumstances when acquiring, researching, and implementing elastic band and free-weight exercises into the training programs.

  19. Strength and deformation of shocked diamond single crystals: Orientation dependence

    Science.gov (United States)

    Lang, J. M.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response

  20. Mechanics of deformable bodies

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm

    1950-01-01

    Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.

  1. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    Science.gov (United States)

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  2. Effect of plastic deformation and strain history on X-ray elastic constants

    International Nuclear Information System (INIS)

    Iadicola, Mark A.; Foecke, Tim

    2005-01-01

    The use of X-ray diffraction to measure residual stress in a crystalline material is well known. This method is currently being reapplied to the surface measurement of in situ stresses during biaxial straining of sheet metal specimens. This leads to questions of precision and calibration of the method through plastic deformation. Little is known of the change, with plastic work, in the X-ray elastic constants (XECs) that are required by the technique for stress measurement. Experiments to determine the formability of various materials using this stress measurement technique in conjunction with a typical Marciniak test (with the Raghavan variation of specimen shapes) have been performed assuming a constant value for XECs. New results of calibration experiments are presented which admit the possibility of variation of the XECs with plastic strain history and initial texture of the material. Adjustment of the data from the previously performed formability experiments is shown. Additionally, various phenomena are captured including initial yielding, change of XECs with plastic strain level (both with uniaxial and biaxial strain histories), and some of the effects of texture on the technique. This technique has potential application in verification of the assumptions made during other standard testing methods (in-plane biaxial specimen geometries and bulge testing), verifying stress predictions from finite element analyses (i.e. benchmarking experiments such as BM3), analysis of stress states in localized deformation (yield point effects), and tracking of the effect of prestraining on material formability through the process of multistage forming

  3. Static response of deformable microchannels

    Science.gov (United States)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  4. NEW CONCEPTUAL SOLUTIONS FOR ELASTIC COUPLINGS WITH HIGH CAPABILITY COMPENSATION OF MISALIGNMENTS

    Directory of Open Access Journals (Sweden)

    DOBRE Daniel

    2015-06-01

    Full Text Available The paper develops a problem of great interest in power transmissions, very widely applied in practice: the use of elastic couplings having an adequate level of torque transmission and a reasonable axial and angular misalignment capability based on elastic deformations of specific flexible elements. A characterization (discussion of two elastic couplings characteristic for the area of compensative couplings is offered. An innovative principle of elastic coupling with reinforced flexible elements is proposed. The mechanical strength analysis for both elastic couplings (with spoked metallic membranes and reinforced elastic elements in the case of existing axial and angular deviations is discussed also. It is revealed that the study of these couplings based on elastic deformations is of great theoretical and practical importance today.

  5. Corrugated Membrane Nonlinear Deformation Process Calculation

    Directory of Open Access Journals (Sweden)

    A. S. Nikolaeva

    2015-01-01

    Full Text Available Elastic elements are widely used in instrumentation. They are used to create a particular interference between the parts, for accumulating mechanical energy, as the motion transmission elements, elastic supports, and sensing elements of measuring devices. Device reliability and quality depend on the calculation accuracy of the elastic elements. A corrugated membrane is rather common embodiment of the elastic element.The corrugated membrane properties depend largely on its profile i.e. a generatrix of the meridian surface.Unlike other types of pressure elastic members (bellows, tube spring, the elastic characteristics of which are close to linear, an elastic characteristic of the corrugated membrane (typical movement versus external load is nonlinear. Therefore, the corrugated membranes can be used to measure quantities, nonlinearly related to the pressure (e.g., aircraft air speed, its altitude, pipeline fluid or gas flow rate. Another feature of the corrugated membrane is that significant movements are possible within the elastic material state. However, a significant non-linearity of membrane characteristics leads to severe complicated calculation.This article is aimed at calculating the corrugated membrane to obtain the elastic characteristics and the deformed shape of the membrane meridian, as well as at investigating the processes of buckling. As the calculation model, a thin-walled axisymmetric shell rotation is assumed. The material properties are linearly elastic. We consider a corrugated membrane of sinusoidal profile. The membrane load is a uniform pressure.The algorithm for calculating the mathematical model of an axisymmetric corrugated membrane of constant thickness, based on the Reissner’s theory of elastic thin shells, was realized as the author's program in C language. To solve the nonlinear problem were used a method of changing the subspace of control parameters, developed by S.S., Gavriushin, and a parameter marching method

  6. Prediction of elastic-plastic response of structural elements subjected to cyclic loading

    International Nuclear Information System (INIS)

    El Haddad, M.H.; Samaan, S.

    1985-01-01

    A simplified elastic-plastic analysis is developed to predict stress strain and force deformation response of structural metallic elements subjected to irregular cyclic loadings. In this analysis a simple elastic-plastic method for predicting the skeleton force deformation curve is developed. In this method, elastic and fully plastic solutions are first obtained for unknown quantities, such as deflection or local strains. Elastic and fully plastic contributions are then combined to obtain an elastic-plastic solution. The skeleton curve is doubled to establish the shape of the hysteresis loop. The complete force deformation response can therefore be simulated through reversal by reversal in accordance with hysteresis looping and material memory. Several examples of structural elements with various cross sections made from various materials and subjected to irregular cyclic loadings, are analysed. A close agreement is obtained between experimental results found in the literature and present predictions. (orig.)

  7. Treatise on classical elasticity theory and related problems

    CERN Document Server

    Teodorescu, Petre P

    2013-01-01

    Deformable solids have a particularly complex character; mathematical modeling is not always simple and often leads to inextricable difficulties of computation. One of the simplest mathematical models and, at the same time, the most used model, is that of the elastic body – especially the linear one. But, notwithstanding its simplicity, even this model of a real body may lead to great difficulties of computation. The practical importance of a work about the theory of elasticity, which is also an introduction to the mechanics of deformable solids, consists of the use of scientific methods of computation in a domain in which simplified methods are still used. This treatise takes into account the consideration made above, with special attention to the theoretical study of the state of strain and stress of a deformable solid. The book draws on the known specialized literature, as well as the original results of the author and his 50+ years experience as Professor of Mechanics and Elasticity at the University o...

  8. Coulomb-like elastic interaction induced by symmetry breaking in nematic liquid crystal colloids.

    Science.gov (United States)

    Lee, Beom-Kyu; Kim, Sung-Jo; Kim, Jong-Hyun; Lev, Bohdan

    2017-11-21

    It is generally thought that colloidal particles in a nematic liquid crystal do not generate the first multipole term called deformation elastic charge as it violates the mechanical equilibrium. Here, we demonstrate theoretically and experimentally that this is not the case, and deformation elastic charges, as well as dipoles and quadrupoles, can be induced through anisotropic boundary conditions. We report the first direct observation of Coulomb-like elastic interactions between colloidal particles in a nematic liquid crystal. The behaviour of two spherical colloidal particles with asymmetric anchoring conditions induced by asymmetric alignment is investigated experimentally; the interaction of two particles located at the boundary of twist and parallel aligned regions is observed. We demonstrate that such particles produce deformation elastic charges and interact by Coulomb-like interactions.

  9. In-plane anisotropic strain of elastically and plastically deformed III-nitrides on lithium gallate

    Energy Technology Data Exchange (ETDEWEB)

    Namkoong, Gon, E-mail: gnamkoon@odu.ed [Old Dominion University, Electrical and Computer Engineering, Applied Research Center, 12050 Jefferson Avenue, Newport News, VA 23606 (United States); Huang, Sa; Moseley, Michael; Doolittle, W. Alan [Georgia Institute of Technology, School of Electrical and Computer Engineering, 777 Atlantic Dr., Atlanta, GA 30332 (United States)

    2009-10-30

    We have investigated both elastically and plastically deformed GaN films on lithium gallate, LiGaO{sub 2}, by molecular beam epitaxy. The in-plane lattice parameters were determined from high resolution X-ray diffraction and indicated two different groups of in-plane lattice parameters, influenced by the a- and b-axis of LiGaO{sub 2}. The measured in-plane lattice parameters indicate that there exist both compressive and tensile strains of in-plane GaN along the a- and b-axis of LiGaO{sub 2}, respectively. This anisotropic strain in GaN films forms a slight distortion of the basal-plane hexagonal structure of GaN films, leading to a different critical thickness of 4.0 {+-} 0.17 and 7.8 {+-} 0.7 nm along the a- and b-axis of LiGaO{sub 2}, respectively.

  10. In-plane anisotropic strain of elastically and plastically deformed III-nitrides on lithium gallate

    International Nuclear Information System (INIS)

    Namkoong, Gon; Huang, Sa; Moseley, Michael; Doolittle, W. Alan

    2009-01-01

    We have investigated both elastically and plastically deformed GaN films on lithium gallate, LiGaO 2 , by molecular beam epitaxy. The in-plane lattice parameters were determined from high resolution X-ray diffraction and indicated two different groups of in-plane lattice parameters, influenced by the a- and b-axis of LiGaO 2 . The measured in-plane lattice parameters indicate that there exist both compressive and tensile strains of in-plane GaN along the a- and b-axis of LiGaO 2 , respectively. This anisotropic strain in GaN films forms a slight distortion of the basal-plane hexagonal structure of GaN films, leading to a different critical thickness of 4.0 ± 0.17 and 7.8 ± 0.7 nm along the a- and b-axis of LiGaO 2 , respectively.

  11. Stress fields and energy of disclination-type defects in zones of localized elastic distortions

    Science.gov (United States)

    Sukhanov, Ivan I.; Tyumentsev, Alexander N.; Ditenberg, Ivan A.

    2016-11-01

    This paper studies theoretically the elastically deformed state and analyzes deformation mechanisms in nanocrystals in the zones of localized elastic distortions and related disclination-type defects, such as dipole, quadrupole and multipole of partial disclinations. Significant differences in the energies of quadrupole and multipole configurations in comparison with nanodipole are revealed. The mechanism of deformation localization in the field of elastic distortions is proposed, which is a quasi-periodic sequence of formation and relaxation of various disclination ensembles with a periodic change in the energy of the defect.

  12. The mechanism of strength and deformation in Gum Metal

    International Nuclear Information System (INIS)

    Furuta, T.; Kuramoto, S.; Morris, J.W.; Nagasako, N.; Withey, E.; Chrzan, D.C.

    2013-01-01

    “Gum Metal” refers to β-Ti alloys that achieve exceptional elastic elongation and, with a specific alloy composition, appear to deform via a dislocation-free mechanism involving elastic instability at the limit of strength. This paper describes the current status of research on its strength, deformation mechanism and the possible role of stress-induced martensite. The theoretical basis for deformation at ideal strength is presented. The relevant experimental data is then discussed, including ex situ nanoindentation behavior and in situ pillar compression observed by transmission electron microscopy

  13. Size-dependent deformation behavior of nanocrystalline graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Huang, Yuhong [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Sun, Yunjin [Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Laboratory of Food Quality and Safety, Beijing 102206 (China); Xu, Kewei, E-mail: kwxu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Opt-electronic Engineering, Xi’an University of Arts and Science, Xi’an 710065, Shaanxi (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Highlights: • MD simulation is conducted to study the deformation of nanocrystalline graphene. • Unexpectedly, the elastic modulus decreases with the grain size considerably. • But the fracture stress and strain are nearly insensitive to the grain size. • A composite model with grain domains and GBs as two components is suggested. - Abstract: Molecular dynamics (MD) simulation is conducted to study the deformation behavior of nanocrystalline graphene sheets. It is found that the graphene sheets have almost constant fracture stress and strain, but decreased elastic modulus with grain size. The results are different from the size-dependent strength observed in nanocrystalline metals. Structurally, the grain boundaries (GBs) become a principal component in two-dimensional materials with nano-grains and the bond length in GBs tends to be homogeneously distributed. This is almost the same for all the samples. Hence, the fracture stress and strain are almost size independent. As a low-elastic-modulus component, the GBs increase with reducing grain size and the elastic modulus decreases accordingly. A composite model is proposed to elucidate the deformation behavior.

  14. Effect of elastic deformation and the magnetic field on the electrical conductivity of p-Si crystals

    Science.gov (United States)

    Lys, R.; Pavlyk, B.; Didyk, R.; Shykorjak, J.; Karbovnyk, I.

    2018-03-01

    It is shown that at a deformation rate of 0.41 kg/min, the characteristic feature of the dependence of the surface resistance of the p-Si sample on the magnitude of its elastic deformation (R(σ)) is the reduction of the resistance during compression and unclamping. With the increase in the number of "compression-unclamping" cycles, the difference between the positions of the compression and unclamping curves decreases. The transformation of two types of magnetically sensitive defects occurs under the impact of a magnetic field on p-Si crystals. The defects are interrelated with two factors that cause the mutually opposite influence on the conductivity of the crystal. The first factor is that the action of the magnetic field decreases the activation energy of the dislocation holders, which leads to an increase in the electrical conductivity of the sample. The second factor is that due to the decay of molecules of oxygen-containing impurities in the magnetic field, the stable chemisorption bonds appear in the crystal that leads to a decrease in its conductivity. If the sample stays in the magnetic field for a long time, the one or the other mechanism predominates, causing a slow growth or decrease in resistance around a certain (averaged) value. Moreover, the frequency of such changes is greater in the deformed sample. The value of the surface resistance of p-Si samples does not change for a long time without the influence of the magnetic field.

  15. Homogenized Elastic Properties of Graphene for Small Deformations

    Directory of Open Access Journals (Sweden)

    Jurica Sorić

    2013-09-01

    Full Text Available In this paper, we provide the quantification of the linear and non-linear elastic mechanical properties of graphene based upon the judicious combination of molecular mechanics simulation results and homogenization methods. We clarify the influence on computed results by the main model features, such as specimen size, chirality of microstructure, the effect of chosen boundary conditions (imposed displacement versus force and the corresponding plane stress transformation. The proposed approach is capable of explaining the scatter of the results for computed stresses, energy and stiffness and provides the bounds on graphene elastic properties, which are quite important in modeling and simulation of the virtual experiments on graphene-based devices.

  16. Elastic characteristics and microplastic deformation of amorphous alloys on iron base

    International Nuclear Information System (INIS)

    Pol'dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret'yakov, B.N.

    1983-01-01

    Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit σsub(0.01) and yield limit σsub(0.2)) of three amorphous alloys on iron base Fe 80 B 20 , Fe 70 Cr 10 B 20 and Fe 70 Cr 5 Ni 5 B 20 are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials

  17. Elastic interaction between twins during tensile deformation of austenitic stainless steel

    DEFF Research Database (Denmark)

    Juul, Nicolai Ytterdal; Winther, Grethe; Dale, Darren

    2016-01-01

    . However, the components of the Type II stress normal to the twin boundary plane exhibit the same large variations as for the grain boundaries. Elastic grain interactions are therefore complex and must involve the entire set of neighbouring grains. The elastic-regime stress along the tensile direction......In austenite, the twin boundary normal is a common elastically stiff direction shared by the two twins, which may induce special interactions. By means of three-dimensional X-ray diffraction this elastic interaction has been analysed and compared to grains separated by conventional grain boundaries...

  18. Elastic metamaterials for tuning circular polarization of electromagnetic waves.

    Science.gov (United States)

    Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A

    2016-06-20

    Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.

  19. Inelastic deformations of fault and shear zones in granitic rock

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1986-02-01

    Deformations during heating and cooling of three drifts in granitic rock were influenced by the presence of faults and shear zones. Thermal deformations were significantly larger in sheared and faulted zones than where the rock was jointed, but neither sheared nor faulted. Furthermore, thermal deformations in faulted or sheared rock were not significantly recovered during subsequent cooling, thus a permanent deformation remained. This inelastic response is in contrast with elastic behavior identified in unfaulted and unsheared rock segments. A companion paper indicates that deformations in unsheared or unfaulted rock were effectively modeled as an elastic response. We conclude that permanent deformations occurred in fractures with crushed minerals and fracture filling or gouge materials. Potential mechanisms for this permanent deformation are asperity readjustments during thermal deformations, micro-shearing, asperity crushing and crushing of the secondary fracture filling minerals. Additionally, modulus differences in sheared or faulted rock as compared to more intact rock would result in greater deformations in response to the same thermal loads

  20. Elastic characteristics and microplastic deformation of amorphous alloys on iron base

    Energy Technology Data Exchange (ETDEWEB)

    Pol' dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret' yakov, B.N. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1983-01-01

    Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit sigmasub(0.01) and yield limit sigmasub(0.2)) of three amorphous alloys on iron base Fe/sub 80/B/sub 20/, Fe/sub 70/Cr/sub 10/B/sub 20/ and Fe/sub 70/Cr/sub 5/Ni/sub 5/B/sub 20/ are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials.

  1. Continuum mechanics elasticity, plasticity, viscoelasticity

    CERN Document Server

    Dill, Ellis H

    2006-01-01

    FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...

  2. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism

    Science.gov (United States)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde

    2018-02-01

    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems {010} and {110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system {001} and rotation axis [010]. The slip system {110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of

  3. X-Ray Elastic Constants for Cubic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Malen, K.

    1974-10-15

    The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account

  4. X-Ray Elastic Constants for Cubic Materials

    International Nuclear Information System (INIS)

    Malen, K.

    1974-10-01

    The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account

  5. X-Ray Elastic Constants for Cubic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Malen, K

    1974-10-15

    The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account

  6. Internal strain and texture evolution during deformation twinning in magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W. [MS-H805, BLDG 622, TA-53, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)]. E-mail: dbrown@lanl.gov; Agnew, S.R. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Bourke, M.A.M. [MS-H805, BLDG 622, TA-53, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Holden, T.M. [Northern Stress Technologies, Deep River, Ont., K0J 1P0 (Canada); Vogel, S.C. [MS-H805, BLDG 622, TA-53, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tome, C.N. [MS-H805, BLDG 622, TA-53, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    The development of a twinned microstructure in hexagonal close-packed rolled magnesium compressed in the in-plane direction has been monitored in situ with neutron diffraction. The continuous conversion of the parent to daughter microstructure is tracked through the variation of diffraction peak intensities corresponding to each. Approximately 80% of the parent microstructure twins by 8% compression. Elastic lattice strain measurements indicate that the stress in the newly formed twins (daughters) is relaxed relative to the stress field in the surrounding matrix. However, since the daughters are in a plastically 'hard' deformation orientation, they quickly accumulate elastic strain as surrounding grains deform plastically. Polycrystal modeling of the deformation process provides insight about the crystallographic deformation mechanism involved.

  7. Computation of deformations and stresses in graphite blocks for HTR core survey purposes

    International Nuclear Information System (INIS)

    Besdo, Dieter; Theymann, W.

    1975-01-01

    Stresses and deformations in graphite fuel elements for HTRs are caused by the temperature distribution and by irradiation under influence of creep, shrinking, thermal strains, and elastic deformations. The global deformations and the stress distribution in a prismatic fuel-element containing regularly distributed axial holes for the coolant flow and the fuel sticks, can be computed in the following manner: the block with its holes is treated as an effective homogeneous continuum with an equivalent global behaviour. Assuming that the fourth-order-tensor of the elastic constants is proportional to the corresponding tensor in the constitutive equations for creep, only the effective strains are of interest. The values of temperature and dose may be given in n points of the block at certain points of time. Then, the inelastic nonthermal strains are integrated by a Runge-Kutta-procedure in the n points. When interpolated and combined with thermal strains, they are incompatible. Hence, they produce elastic deformations which cause creep and can be computed by use of a Ritz-polynomial-series by help of a specific principle of the minimum of potential energy. Excessive computing time can be avoided easily since the influence of the local variation of the elastic constants within the block is almost negligible and, therefore, of practically no importance for the determination of the elastic strains. By this reason some matrices can be calculated a priori, and the elastic deformations are obtained by multiplications of these matrices rather than inversions. Therefore, this method is particularly suited for the computation of deformations and stresses for reactor core survey purposes where a large number (up to 7000 blocks) have to be treated

  8. Deformation of the Japanese Islands and seismic coupling: an interpretation based on GSI permanent GPS observations

    Science.gov (United States)

    Le Pichon, Xavier; Mazzotti, Stéphane; Henry, Pierre; Hashimoto, Manabu

    1998-08-01

    The entire area of the Japanese Islands has been covered by the permanent GPS observation network of the Geographical Survey Institute since 1994. In this paper we use a solution for the vectors of motion during 1995 for a selection of 116 stations to discuss the origin of the observed deformation field. We refer the displacement field to Eurasia using the VLBI-determined motion of Kashima and demonstrate that other choices such as the Okhotsk or North American plates for north Japan are not compatible with the data. 1 yr GPS velocities are much higher than geological constraints would allow because these short-term measurements include transient elastic deformation. However, the good qualitative agreement between the observed geodetic deformation tensors and those inferred from active faults and earthquakes suggests that the Quaternary permanent deformation is essentially the result of the transfer of part of the subduction-induced elastic deformation into permanent plastic deformation. We then compute the elastic deformation of the Japanese Islands caused by interseismic loading of the Pacific and Philippine subduction planes. The geometry of the coupled zone and its downward extension are determined from the distribution of earthquakes for the Pacific slab. For the Philippine slab we use the geometry proposed by Hyndman et al. (1995). These elastic models account for most of the observed velocity field if the subduction movement of the Philippine Sea Plate is 100 per cent locked and if that of the Pacific Plate is 75-85 per cent locked. We note that the boundaries of the areas where significant elastic deformation is predicted (more than 10 mm yr-1 of motion with respect to Eurasia) coincide with the main zones of permanent deformation: the Eastern Japan Sea deformation zone for the Pacific subduction elastic deformation field and the Setouchi/MTL deformation zone for the Nankai field. Each zone probably accommodates 10-15 mm yr-1 of motion in the long term

  9. Large poroelastic deformation of a soft material

    Science.gov (United States)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2014-11-01

    Flow through a porous material will drive mechanical deformation when the fluid pressure becomes comparable to the stiffness of the solid skeleton. This has applications ranging from hydraulic fracture for recovery of shale gas, where fluid is injected at high pressure, to the mechanics of biological cells and tissues, where the solid skeleton is very soft. The traditional linear theory of poroelasticity captures this fluid-solid coupling by combining Darcy's law with linear elasticity. However, linear elasticity is only volume-conservative to first order in the strain, which can become problematic when damage, plasticity, or extreme softness lead to large deformations. Here, we compare the predictions of linear poroelasticity with those of a large-deformation framework in the context of two model problems. We show that errors in volume conservation are compounded and amplified by coupling with the fluid flow, and can become important even when the deformation is small. We also illustrate these results with a laboratory experiment.

  10. Form finding in elastic gridshells

    Science.gov (United States)

    Baek, Changyeob; Sageman-Furnas, Andrew O.; Jawed, Mohammad K.; Reis, Pedro M.

    2018-01-01

    Elastic gridshells comprise an initially planar network of elastic rods that are actuated into a shell-like structure by loading their extremities. The resulting actuated form derives from the elastic buckling of the rods subjected to inextensibility. We study elastic gridshells with a focus on the rational design of the final shapes. Our precision desktop experiments exhibit complex geometries, even from seemingly simple initial configurations and actuation processes. The numerical simulations capture this nonintuitive behavior with excellent quantitative agreement, allowing for an exploration of parameter space that reveals multistable states. We then turn to the theory of smooth Chebyshev nets to address the inverse design of hemispherical elastic gridshells. The results suggest that rod inextensibility, not elastic response, dictates the zeroth-order shape of an actuated elastic gridshell. As it turns out, this is the shape of a common household strainer. Therefore, the geometry of Chebyshev nets can be further used to understand elastic gridshells. In particular, we introduce a way to quantify the intrinsic shape of the empty, but enclosed regions, which we then use to rationalize the nonlocal deformation of elastic gridshells to point loading. This justifies the observed difficulty in form finding. Nevertheless, we close with an exploration of concatenating multiple elastic gridshell building blocks.

  11. Astronomical optics and elasticity theory

    CERN Document Server

    Lemaitre, Gerard Rene

    2008-01-01

    Astronomical Optics and Elasticity Theory provides a very thorough and comprehensive account of what is known in this field. After an extensive introduction to optics and elasticity, the book discusses variable curvature and multimode deformable mirrors, as well as, in depth, active optics, its theory and applications. Further, optical design utilizing the Schmidt concept and various types of Schmidt correctors, as well as the elasticity theory of thin plates and shells are elaborated upon. Several active optics methods are developed for obtaining aberration corrected diffraction gratings. Further, a weakly conical shell theory of elasticity is elaborated for the aspherization of grazing incidence telescope mirrors. The very didactic and fairly easy-to-read presentation of the topic will enable PhD students and young researchers to actively participate in challenging astronomical optics and instrumentation projects.

  12. Contour Propagation With Riemannian Elasticity Regularization

    DEFF Research Database (Denmark)

    Bjerre, Troels; Hansen, Mads Fogtmann; Sapru, W.

    2011-01-01

    Purpose/Objective(s): Adaptive techniques allow for correction of spatial changes during the time course of the fractionated radiotherapy. Spatial changes include tumor shrinkage and weight loss, causing tissue deformation and residual positional errors even after translational and rotational image...... the planning CT onto the rescans and correcting to reflect actual anatomical changes. For deformable registration, a free-form, multi-level, B-spline deformation model with Riemannian elasticity, penalizing non-rigid local deformations, and volumetric changes, was used. Regularization parameters was defined...... on the original delineation and tissue deformation in the time course between scans form a better starting point than rigid propagation. There was no significant difference of locally and globally defined regularization. The method used in the present study suggests that deformed contours need to be reviewed...

  13. Integrodifferential relations in linear elasticity

    CERN Document Server

    Kostin, Georgy V

    2012-01-01

    This work treats the elasticity of deformed bodies, including the resulting interior stresses and displacements.It also takes into account that some of constitutive relations can be considered in a weak form. To discuss this problem properly, the method of integrodifferential relations is used, and an advanced numerical technique for stress-strain analysis is presented and evaluated using various discretization techniques. The methods presented in this book are of importance for almost all elasticity problems in materials science and mechanical engineering.

  14. Nonlinear transverse vibrations of elastic beams under tension

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Konno, Kimiaki; Wadati, Miki.

    1980-02-01

    Nonlinear transverse vibrations of elastic beams under end-thrust have been examined with full account of the rigorous nonlinear relation of curvature and deformation of elastic beams. When the beams are subject to tension, the derived equation is shown to be reduced to one of the new integrable evolution equations discovered by us. (author)

  15. Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes

    KAUST Repository

    Goriely, A.; Tabor, M.

    2013-01-01

    Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells

  16. THE STRESS-STRAIN STATE OF AN INFINITELY LONG ELASTIC ARRAYS OF DIFFERENT WIDTHS AND LIMITED THICKNESS ON THE HARD GROUND WHEN THEY HAVE FLAT DEFORMATION

    Directory of Open Access Journals (Sweden)

    I. K. Badalakha

    2009-12-01

    Full Text Available The article presents the results of solving several problems of a flat deformation of elastic infinitely long massifs of different width and limited thickness. Various cases of conditions at the massif/base contact. The relationships between stressed and strained states previously suggested by the author, which differ from the generalized Hooke’s law, are used in the solutions.

  17. Local and global deformations in a strain-stiffening fibrin gel

    Energy Technology Data Exchange (ETDEWEB)

    Wen Qi [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Basu, Anindita [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Winer, Jessamine P [Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Yodh, Arjun [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Janmey, Paul A [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2007-11-15

    Extracellular matrices composed of filamentous biopolymers like collagen and fibrin have viscoelastic properties that differ from those of rubberlike elastomers or hydrogels formed by flexible polymers. Compared to flexible polymer gels, filamentous biopolymer networks generally have larger elastic moduli, a striking increase in elastic modulus with increasing strain, and a pronounced negative normal stress when deformed in simple shear. All three of these unusual features can be accounted for by a theory that extends concepts of entropic elasticity to a regime where the polymer chains are already significantly extended in the absence of external forces because of their finite bending stiffness. An essential assumption of the theories that relate microscopic structural parameters such as persistence length and mesh size of biopolymer gels to their macroscopic rheology is that the deformation of these materials is affine: that is, the macroscopic strain of the bulk material is equal to the local strain within the material at each point. The validity of this assumption for the dilute open meshworks of most biopolymer gels has been experimentally tested by embedding micron diameter fluorescent beads within the networks formed by fibrin and quantifying their displacements as the macroscopic samples are deformed in a rheometer. Measures of non-affine deformation are small at small strains and decrease as strain increases and the sample stiffens. These results are consistent with the entropic model for non-linear elasticity of semiflexible polymer networks and show that strain-stiffening does not require non-affine deformations.

  18. Morphoelasticity: A theory of elastic growth

    KAUST Repository

    Goriely, Alain; Moulton, Derek

    2011-01-01

    This chapter is concerned with the modelling of growth processes in the framework of continuum mechanics and nonlinear elasticity. It begins by considering growth and deformation in a one-dimensional setting, illustrating the key relationship between growth, the elastic response of the material, and the generation of residual stresses. The general three-dimensional theory of morphoelasticity is then developed from conservation of mass and momentum balance equations. In the formulation, the multiplicative decomposition of the deformation tensor, the standard approach in morphoelasticity, is derived in a new way. A discussion of continuous growth is also included. The chapter concludes by working through a sample problem of a growing cylindrical tube. A stability analysis is formulated, and the effect of growth on mucosal folding, a commonly seen instability in biological tubes, is demonstrated.

  19. Morphoelasticity: A theory of elastic growth

    KAUST Repository

    Goriely, Alain

    2011-10-11

    This chapter is concerned with the modelling of growth processes in the framework of continuum mechanics and nonlinear elasticity. It begins by considering growth and deformation in a one-dimensional setting, illustrating the key relationship between growth, the elastic response of the material, and the generation of residual stresses. The general three-dimensional theory of morphoelasticity is then developed from conservation of mass and momentum balance equations. In the formulation, the multiplicative decomposition of the deformation tensor, the standard approach in morphoelasticity, is derived in a new way. A discussion of continuous growth is also included. The chapter concludes by working through a sample problem of a growing cylindrical tube. A stability analysis is formulated, and the effect of growth on mucosal folding, a commonly seen instability in biological tubes, is demonstrated.

  20. Burial stress and elastic strain of carbonate rocks

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2014-01-01

    Burial stress on a sediment or sedimentary rock is relevant for predicting compaction or failure caused by changes in, e.g., pore pressure in the subsurface. For this purpose, the stress is conventionally expressed in terms of its effect: “the effective stress” defined as the consequent elastic...... strain multiplied by the rock frame modulus. We cannot measure the strain directly in the subsurface, but from the data on bulk density and P‐wave velocity, we can estimate the rock frame modulus and Biot's coefficient and then calculate the “effective vertical stress” as the total vertical stress minus...... the product of pore pressure and Biot's coefficient. We can now calculate the elastic strain by dividing “effective stress” with the rock frame modulus. By this procedure, the degree of elastic deformation at a given time and depth can be directly expressed. This facilitates the discussion of the deformation...

  1. How the continents deform: The evidence from tectonic geodesy

    Science.gov (United States)

    Thatcher, Wayne R.

    2009-01-01

    Space geodesy now provides quantitative maps of the surface velocity field within tectonically active regions, supplying constraints on the spatial distribution of deformation, the forces that drive it, and the brittle and ductile properties of continental lithosphere. Deformation is usefully described as relative motions among elastic blocks and is block-like because major faults are weaker than adjacent intact crust. Despite similarities, continental block kinematics differs from global plate tectonics: blocks are much smaller, typically ∼100–1000 km in size; departures from block rigidity are sometimes measurable; and blocks evolve over ∼1–10 Ma timescales, particularly near their often geometrically irregular boundaries. Quantitatively relating deformation to the forces that drive it requires simplifying assumptions about the strength distribution in the lithosphere. If brittle/elastic crust is strongest, interactions among blocks control the deformation. If ductile lithosphere is the stronger, its flow properties determine the surface deformation, and a continuum approach is preferable.

  2. Elastic constants of stressed and unstressed materials in the phase-field crystal model

    Science.gov (United States)

    Wang, Zi-Le; Huang, Zhi-Feng; Liu, Zhirong

    2018-04-01

    A general procedure is developed to investigate the elastic response and calculate the elastic constants of stressed and unstressed materials through continuum field modeling, particularly the phase-field crystal (PFC) models. It is found that for a complete description of system response to elastic deformation, the variations of all the quantities of lattice wave vectors, their density amplitudes (including the corresponding anisotropic variation and degeneracy breaking), the average atomic density, and system volume should be incorporated. The quantitative and qualitative results of elastic constant calculations highly depend on the physical interpretation of the density field used in the model, and also importantly, on the intrinsic pressure that usually pre-exists in the model system. A formulation based on thermodynamics is constructed to account for the effects caused by constant pre-existing stress during the homogeneous elastic deformation, through the introducing of a generalized Gibbs free energy and an effective finite strain tensor used for determining the elastic constants. The elastic properties of both solid and liquid states can be well produced by this unified approach, as demonstrated by an analysis for the liquid state and numerical evaluations for the bcc solid phase. The numerical calculations of bcc elastic constants and Poisson's ratio through this method generate results that are consistent with experimental conditions, and better match the data of bcc Fe given by molecular dynamics simulations as compared to previous work. The general theory developed here is applicable to the study of different types of stressed or unstressed material systems under elastic deformation.

  3. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  4. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi

    International Nuclear Information System (INIS)

    Qiu, S.; Clausen, B.; Padula, S.A.; Noebe, R.D.; Vaidyanathan, R.

    2011-01-01

    A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.

  5. Aspects of similitude theory in solid mechanics. Pt. 1. Deformation behaviour

    International Nuclear Information System (INIS)

    Malmberg, T.

    1995-12-01

    The core melt down and the subsequent steam explosion in a Light Water Reactor is an accident scenario under discussion. Here the resulting impact loading of the vessel head and its integrity is of primary concern. In the part I the analysis is resctricted to the deformation behavior. Using the 'method of differential equations', similarity laws are derived and size effecs are discussed for two important phenomena: - Motion and deformation of an elastic-viscoplastic continuum with isotropic hardening; - motion and deformation of an elastic-time independent plastic continuum with isotropic hardening. The presence of gravitational forces is discussed. (orig./HP) [de

  6. Elastic gauge fields and Hall viscosity of Dirac magnons

    Science.gov (United States)

    Ferreiros, Yago; Vozmediano, María A. H.

    2018-02-01

    We analyze the coupling of elastic lattice deformations to the magnon degrees of freedom of magnon Dirac materials. For a honeycomb ferromagnet we find that, as happens in the case of graphene, elastic gauge fields appear coupled to the magnon pseudospinors. For deformations that induce constant pseudomagnetic fields, the spectrum around the Dirac nodes splits into pseudo-Landau levels. We show that when a Dzyaloshinskii-Moriya interaction is considered, a topological gap opens in the system and a Chern-Simons effective action for the elastic degrees of freedom is generated. Such a term encodes a phonon Hall viscosity response, entirely generated by quantum fluctuations of magnons living in the vicinity of the Dirac points. The magnon Hall viscosity vanishes at zero temperature, and grows as temperature is raised and the states around the Dirac points are increasingly populated.

  7. Modelling of the deformation of shot peened cylindrical specimens of 42 CrMo4 in uniaxial tension and deformation and of the resulting macro residual stresses

    International Nuclear Information System (INIS)

    Schulze, V.; Voehringer, O.; Macherauch, E.

    1998-01-01

    Tensile and compressive stress-strain-curves of shot peened and unpeened specimens of quenched and tempered 42 CrMo 4 (AISI 4140) with a diameter of 5 mm only differ in the yield strengths and in the Lueders-deformation. In comparison to the core the regions close to the surface of shot peened cylindrical specimens bear relatively large axial and tangential residual stresses and show different deformation properties. A multi-layer-model was developed to describe both the tensile as well as the compressive deformation behaviour of shot peened cylindrical specimens quantitatively. The calculated transitions from the elastic to the elastic-plastic deformation state during tensile and compressive loading agree quite well with the experimental observations. Also the changes of axial and tangential macro residual stresses after distinct tensile or compressive deformations are in best agreement with the measurements. (orig.)

  8. Elastic and plastic soil deformation and its influence on emission of greenhouse gases

    Science.gov (United States)

    Haas, Christoph; Holthusen, Dörthe; Mordhorst, Anneka; Lipiec, Jerzy; Horn, Rainer

    2016-04-01

    Soil management alters physical, chemical and biological soil properties. Stress application affects microbiological activity and habitats for microorganisms in the root zone and causes soil degradation. We hypothesized that stress application results in altered greenhouse gas emissions if soil strength is exceeded. In the experiments, soil management dependent greenhouse gas emissions of intact soil cores (no, reduced, conventional tillages) were determined using two experimental setups; CO2 emissions were determined with: a dynamic measurement system, and a static chamber method before and after a vertical soil stress had been applied. For the latter CH4 and N2O emissions were analyzed additionally. Stress dependent effects can be summed as follows: In the elastic deformation range microbiological activity increased in conventional tillage soil and decreased in reduced tillage and no tillage. Beyond the precompression stress a release of formerly protected soil organic carbon and an almost total loss of CH4 oxidizability occurred. Only swelling and shrinkage of no tillage and reduced tillage regenerated their microhabitat function. Thus, the direct link between soil strength and microbial activity can be applied as a marker for soil rigidity and the transition to new disequilibria concerning microbial activity and composition.

  9. Filamin A Mediates Wound Closure by Promoting Elastic Deformation and Maintenance of Tension in the Collagen Matrix

    Science.gov (United States)

    Mohammadi, Hamid; Pinto, Vanessa I.; Wang, Yongqiang; Hinz, Boris; Janmey, Paul A.; McCulloch, Christopher A.

    2016-01-01

    Cell-mediated remodeling and wound closure are critical for efficient wound healing, but the contribution of actin-binding proteins to contraction of the extracellular matrix is not defined. We examined the role of filamin A (FLNa), an actin filament cross-linking protein, in wound contraction and maintenance of matrix tension. Conditional deletion of FLNa in fibroblasts in mice was associated with ~ 4 day delay of full-thickness skin wound contraction compared with wild-type (WT) mice. We modeled the healing wound matrix using cultured fibroblasts plated on grid-supported collagen gels that create lateral boundaries, which are analogues to wound margins. In contrast to WT cells, FLNa knockdown (KD) cells could not completely maintain tension when matrix compaction was resisted by boundaries, which manifested as relaxed matrix tension. Similarly, WT cells on cross-linked collagen, which requires higher levels of sustained tension, exhibited approximately fivefold larger deformation fields and approximately twofold greater fiber alignment compared with FLNa KD cells. Maintenance of boundary-resisted tension markedly influenced the elongation of cell extensions: in WT cells, the number (~50%) and length (~300%) of cell extensions were greater than FLNa KD cells. We conclude that FLNa is required for wound contraction, in part by enabling elastic deformation and maintenance of tension in the matrix. PMID:26134946

  10. Deformation of a flexible disk bonded to an elastic half space-application to the lung.

    Science.gov (United States)

    Lai-Fook, S J; Hajji, M A; Wilson, T A

    1980-08-01

    An analysis is presented of the deformation of a homogeneous, isotropic, elastic half space subjected to a constant radial strain in a circular area on the boundary. Explicit analytic expressions for the normal and radial displacements and the shear stress on the boundary are used to interpret experiments performed on inflated pig lungs. The boundary strain was induced by inflating or deflating the lung after bonding a flexible disk to the lung surface. The prediction that the surface bulges outward for positive boundary strain and inward for negative strain was observed in the experiments. Poisson's ratio at two transpulmonary pressures was measured, by use of the normal displacement equation evaluated at the surface. A direct estimate of Poisson's ratio was possible because the normal displacement of the surface depended uniquely on the compressibility of the material. Qualitative comparisons between theory and experiment support the use of continuum analyses in evaluating the behavior of the lung parenchyma when subjected to small local distortions.

  11. Fully coupled heat conduction and deformation analyses of visco-elastic solids

    KAUST Repository

    Khan, Kamran

    2012-04-21

    Visco-elastic materials are known for their capability of dissipating energy. This energy is converted into heat and thus changes the temperature of the materials. In addition to the dissipation effect, an external thermal stimulus can also alter the temperature in a viscoelastic body. The rate of stress relaxation (or the rate of creep) and the mechanical and physical properties of visco-elastic materials, such as polymers, vary with temperature. This study aims at understanding the effect of coupling between the thermal and mechanical response that is attributed to the dissipation of energy, heat conduction, and temperature-dependent material parameters on the overall response of visco-elastic solids. The non-linearly viscoelastic constitutive model proposed by Schapery (Further development of a thermodynamic constitutive theory: stress formulation, 1969,Mech. Time-Depend. Mater. 1:209-240, 1997) is used and modified to incorporate temperature- and stress-dependent material properties. This study also formulates a non-linear energy equation along with a dissipation function based on the Gibbs potential of Schapery (Mech. Time-Depend. Mater. 1:209-240, 1997). A numerical algorithm is formulated for analyzing a fully coupled thermo-visco-elastic response and implemented it in a general finite-element (FE) code. The non-linear stress- and temperature-dependent material parameters are found to have significant effects on the coupled thermo-visco-elastic response of polymers considered in this study. In order to obtain a realistic temperature field within the polymer visco-elastic bodies undergoing a non-uniform heat generation, the role of heat conduction cannot be ignored. © Springer Science+Business Media, B. V. 2012.

  12. ELASTIC-PLASTIC AND RESIDUAL STRESS ANALYSIS OF AN ALUMINUM DISC UNDER INTERNAL PRESSURES

    Directory of Open Access Journals (Sweden)

    Numan Behlül BEKTAŞ

    2004-02-01

    Full Text Available This paper deals with elastic-plastic stress analysis of a thin aluminum disc under internal pressures. An analytical solution is performed for satisfying elastic-plastic stress-strain relations and boundary conditions for small plastic deformations. The Von-Mises Criterion is used as a yield criterion, and elastic perfectly plastic material is assumed. Elastic-plastic and residual stress distributions are obtained from inner radius to outer radius, and they are presented in tables and figures. All radial stress components, ?r, are compressive, and they are highest at the inner radius. All tangential stress components, ??, are tensile, and they are highest where the plastic deformation begins. Magnitude of the tangential residual stresses is higher than those the radial residual stresses.

  13. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  14. High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structures

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo

    2014-01-01

    With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile......-deformed copper, individual, almost dislocation-free subgrains are identified from high-intensity peaks and distinguished by their unique combination of orientation and elastic strain; dislocation walls manifest themselves as a smooth cloud of lower intensity. The elastic strain shows only minor variations within...... dynamics is followed in situ during varying loading conditions by reciprocal space mapping: during uninterrupted tensile deformation, formation of subgrains is observed concurrently with broadening of Bragg reflections shortly after the onset of plastic deformation. When the traction is terminated, stress...

  15. Characterization of phase properties and deformation in ferritic-austenitic duplex stainless steels by nanoindentation and finite element method

    International Nuclear Information System (INIS)

    Schwarm, Samuel C.; Mburu, Sarah; Ankem, Sreeramamurthy

    2016-01-01

    The phase properties and deformation behavior of the δ–ferrite and γ–austenite phases of CF–3 and CF–8 cast duplex stainless steels were characterized by nanoindentation and microstructure-based finite element method (FEM) models. We evaluated the elastic modulus of each phase and the results indicate that the mean elastic modulus of the δ–ferrite phase is greater than that of the γ–austenite phase, and the mean nanoindentation hardness values of each phase are approximately the same. Furthermore, the elastic FEM model results illustrate that greater von Mises stresses are located within the δ–ferrite phase, while greater von Mises strains are located in the γ–austenite phase in response to elastic deformation. The elastic moduli calculated by FEM agree closely with those measured by tensile testing. Finally, the plastically deformed specimens exhibit an increase in misorientation, deformed grains, and subgrain structure formation as measured by electron backscatter diffraction (EBSD).

  16. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, S. [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States); Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Padula, S.A.; Noebe, R.D. [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Vaidyanathan, R., E-mail: raj@mail.ucf.edu [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States)

    2011-08-15

    A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.

  17. Deformation of ovalbumin-alginate capsules in a T-Junction

    Science.gov (United States)

    Häner, Edgar; Juel, Anne

    2015-11-01

    We study experimentally the flow-induced deformation of liquid-filled ovalbumin-alginate capsules in a T-junction. In applications, capsules/cells often negotiate branched networks with junctions thus experiencing large deformations. We investigate the constant volume-flux viscous flow of buoyancy-neutral thin-walled capsules close to the centreline of rectangular channels, by comparison to near-rigid gelled beads. The motion of the capsules in straight channels scales with the capillary number - the ration of viscous to elastic forces. However, the effect of elastic deformation on the motion is sufficiently weak that a rigid sphere model predicts the velocity of capsules with diameters of up to 70% of that of the channel to within 5%. In the T-junction, systematic selection of daughter channel (right-left) occurs outside a finite region around the channel centreline, by contrast with near-rigid gelled beads, where the actual centreline is the separator. We quantify the behaviour of capsules in terms of their longitudinal stretching (up to a factor of three without rupture). We show the large range of deformations encountered can be applied to the measurement of the elastic properties of capsules as well as to the geometric-induced sorting and manipulation of capsules.

  18. Dependence of the frequency spectrum of small amplitude vibrations superimposed on finite deformations of a nonlinear, cylindrical elastic body on residual stress

    KAUST Repository

    Gorb, Yuliya

    2010-11-01

    We model and analyze the response of nonlinear, residually stressed elastic bodies subjected to small amplitude vibrations superimposed upon large deformations. The problem derives from modeling the use of intravascular ultrasound (IVUS) imaging to interrogate atherosclerotic plaques in vivo in large arteries. The goal of this investigation is twofold: (i) introduce a modeling framework for residual stress that unlike traditional Fung type classical opening angle models may be used for a diseased artery, and (ii) investigate the sensitivity of the spectra of small amplitude high frequency time harmonic vibrations superimposed on a large deformation to the details of the residual stress stored in arteries through a numerical simulation using physiologic parameter values under both low and high blood pressure loadings. The modeling framework also points the way towards an inverse problem using IVUS techniques to estimate residual stress in healthy and diseased arteries. © 2010 Elsevier Ltd. All rights reserved.

  19. Creeping gaseous flows through elastic tube and annulus micro-configurations

    Science.gov (United States)

    Elbaz, Shai; Jacob, Hila; Gat, Amir

    2016-11-01

    Gaseous flows in elastic micro-configurations is relevant to biological systems (e.g. alveolar ducts in the lungs) as well as to applications such as gas actuated soft micro-robots. We here examine the effect of low-Mach-number compressibility on creeping gaseous axial flows through linearly elastic tube and annulus micro-configurations. For steady flows, the leading-order effects of elasticity on the pressure distribution and mass-flux are obtained. For transient flow in a tube with small deformations, elastic effects are shown to be negligible in leading order due to compressibility. We then examine transient flows in annular configurations where the deformation is significant compared with the gap between the inner and outer cylinders defining the annulus. Both compressibility and elasticity are obtained as dominant terms interacting with viscosity. For a sudden flux impulse, the governing non-linear leading order diffusion equation is initially approximated by a porous-medium-equation of order 2.5 for the pressure square. However, as the fluid expand and the pressure decreases, the governing equation degenerates to a porous-medium-equation of order 2 for the pressure.

  20. ACCEPT: a three-dimensional finite element program for large deformation elastic-plastic-creep analysis of pressurized tubes (LWBR/AWBA Development Program)

    International Nuclear Information System (INIS)

    Hutula, D.N.; Wiancko, B.E.

    1980-03-01

    ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports

  1. Predicting welding distortion in a panel structure with longitudinal stiffeners using inherent deformations obtained by inverse analysis method.

    Science.gov (United States)

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.

  2. Deformation behavior of human enamel and dentin-enamel junction under compression.

    Science.gov (United States)

    Zaytsev, Dmitry; Panfilov, Peter

    2014-01-01

    Deformation behavior under uniaxial compression of human enamel and dentin-enamel junction (DEJ) is considered in comparison with human dentin. This deformation scheme allows estimating the total response from all levels of the hierarchical composite material in contrast with the indentation, which are limited by the mesoscopic and microscopic scales. It was shown for the first time that dental enamel is the strength (up to 1850MPa) hard tissue, which is able to consider some elastic (up to 8%) and plastic (up to 5%) deformation under compression. In so doing, it is almost undeformable substance under the creep condition. Mechanical properties of human enamel depend on the geometry of sample. Human dentin exhibits the similar deformation behavior under compression, but the values of its elasticity (up to 40%) and plasticity (up to 18%) are much more, while its strength (up to 800MPa) is less in two times. Despite the difference in mechanical properties, human enamel is able to suppress the cracking alike dentin. Deformation behavior under the compression of the samples contained DEJ as the same to dentin. This feature allows a tooth to be elastic-plastic (as dentin) and wear resistible (as enamel), simultaneously. © 2013 Elsevier B.V. All rights reserved.

  3. Motion of Passive Scalar by Elasticity-Induced Instability in Curved Microchannel

    Directory of Open Access Journals (Sweden)

    Xiao-Bin Li

    2014-08-01

    Full Text Available This paper presented a direct numerical simulation (DNS study on the elasticity-induced irregular flow, passive mixing, and scalar evolution in the curvilinear microchannel. The mixing enhancement was achieved at vanishingly low-Reynolds-number chaotic flow raised by elastic instabilities. Along with the mixing process, the passive scalar transportation carried by the flow was greatly affected by the flow structure and the underlying interaction between microstructures of viscoelastic fluid and flow structure itself. The simulations are conducted for a wide range of viscoelasticity. As the elastic effect exceeds the critical value, the flow tends to a chaotic state, while the evolution of scalar gets strong and fast, showing excellent agreement with experimental results. For the temporal changing of scalar gradients, they vary rapidly in the form of isosurfaces, with the shape of “rolls” in the bulk and evolving into “threads” near the wall. That indicates that the flow fields should be related to the deformation of viscoelastic micromolecules. The probability distribution function analysis between micromolecular deformation and flow field deformation shows that the main direction of molecular stretching is perpendicular to the main direction of flow field deformation. It implies they are weakly correlated, due to the confinement of channel wall.

  4. Induced motion of a sphere due to a flexible elastic sheet

    Science.gov (United States)

    Rallabandi, Bhargav; Oppenheimer, Naomi; Salez, Thomas; Stone, Howard A.

    2017-11-01

    A sphere translating parallel to a rigid wall in Stokes flow experiences an increased drag but no normal force. In contrast, a sphere translating along the surface of a soft elastic substrate experiences an induced normal force due to the coupling between hydrodynamic stresses and elastic deformation. Here, we use theory and experiments to show that an analogous effect occurs for a particle moving near a flexible elastic membrane with bending and stretching resistances. Applying the Lorentz reciprocal theorem in the lubrication limit, we find that the induced force on the particle is repulsive, scaling with the square of its translational speed and inversely with the bending modulus and tension of the membrane. The theoretical predictions are validated by experiments of a sphere driven by gravity down a vertically suspended elastic sheet, where we observe a spontaneous motion of the sphere away from the sheet. The general theoretical approach and the specific results are pertinent to the dynamics of objects near biological membranes and other deformable interfaces.

  5. Elastic and plastic characteristics of a model Cu–Zr amorphous alloy

    International Nuclear Information System (INIS)

    Nakamura, Akiho; Kamimura, Yasushi; Edagawa, Keiichi; Takeuchi, Shin

    2014-01-01

    Athermal quasistatic simulation of shear deformation has been conducted for a realistic model Cu–Zr amorphous alloy to investigate characteristic features of elasticity and plasticity of the material. Significant reduction of the shear modulus by nonaffine atomic displacements and appreciable nonlinearity of elasticity have been observed. The fourth-order elastic constant in shear deformation and the ideal shear strength have been evaluated. Plastic deformation has been observed to start with isolated local shear transformations (LSTs) followed by collective LSTs leading to the formation of a shear band. Participation-ratio analysis (PRA) has demonstrated how the nonaffine displacement field converges as the system approaches the critical point of losing structural stability. PRA has also evaluated quantitatively the numbers of atoms participating in LSTs – the average number is about 30. Spatially anisotropic development of nascent shear band on a plane has been shown, attributable to anisotropic internal stress field induced by an LST. The evaluated stresses for the shear-band nucleation and for its propagation have indicated that the yielding in real materials is controlled by the shear-band propagation, as previously pointed out

  6. Relativistic elasticity of stationary fluid branes

    DEFF Research Database (Denmark)

    Armas, J.; Obers, N.A.

    2013-01-01

    under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent...

  7. Dynamic elastic-plastic behaviour of a frame including coupled bending and torsion

    International Nuclear Information System (INIS)

    Messmer, S.; Sayir, M.

    1989-01-01

    The full time response of a space frame under impact loading perpendicular to the frame plane is discussed. Theoretical solutions and experimental results are presented and compared. A space frame clamped at its two ends is loaded by a 0.22 lead bullet that hits a mass in the middle of the transversal beam of the frame. The loading time is about 40 to 60 μs and the resulting linear momentum of the impact in the experiment is 0.5 to 1 N s. The time response of this frame can be divided in four phases where different physical effects are dominant: (a) The loading phase where elastic wave motion dominates the time response. Because of the high impact forces, plastic deformation occurs in the vicinity of the mass and must be included in a theoretical model. The influence of reflections at the corners on the time response is shown in theory and experiment. (b) The evolution phase. Within this phase, a plastic collapse mechanism develops. Most of this phase is dominated by elastic deformation but local plastic deformations beside the mass are also present. Because many reflections at corners, clamps and the mass occur within this phase, a modal analysis method is used to predict time histories. (c) The plastic phase with plastic zones at the clamps. The phase sets in after the bending wave reaches the clamps. It is characterized by plastic deformation near the clamps and elastic deformation of the other parts of the frame. We used a modal analysis including plastic 'modes' to get accurate results. (d) The elastic vibration phase

  8. Dynamic response of beams on elastic foundations to impact loading

    International Nuclear Information System (INIS)

    Prasad, B.B.; Sinha, B.P.

    1987-01-01

    The beam considered is a Timoshenko beam in which the effects of rotatory inertia and shear deformations are included and the foundation model consists of Winkler-Zimmermann type having Hookean linear elastic springs. The analysis is very useful for predicting the dynamic response of structural components of aircraft or nuclear reactors or even runways if that component may be mathematically idealized as a beam on elastic foundation. The effect of rotatory inertia and shear deformation is very much pronounced and hence should not be neglected in solving such impact problems. In general the effect of foundation modulus is to further increase the values of frequencies of vibrations. (orig./HP)

  9. Deformation of an Elastic Substrate Due to a Resting Sessile Droplet

    Science.gov (United States)

    Bardall, Aaron; Daniels, Karen; Shearer, Michael

    2017-11-01

    On a sufficiently soft substrate, a resting fluid droplet will cause significant deformation of the substrate. This deformation is driven by a combination of capillary forces at the contact line and the fluid pressure at the solid surface. These forces are balanced at the surface by the solid traction stress induced by the substrate deformation. Young's Law, which predicts the equilibrium contact angle of the droplet, also indicates an a priori radial force balance for rigid substrates, but not necessarily for soft substrates which deform under loading. It remains an open question whether the contact line transmits a non-zero force tangent to the substrate surface in addition to the conventional normal force. This talk will present a model for the static deformation of the substrate that includes a non-zero tangential contact line force as well as general interfacial energy conditions governing the angle of a two-dimensional droplet. We discuss extensions of this model to non-symmetric droplets and their effect on the static configuration of the droplet/substrate system. NSF #DMS-1517291.

  10. Mimicking the effect of gravity using an elastic membrane

    International Nuclear Information System (INIS)

    Wu, Yecun; Zhu, Changqing; Wang, Yijun; Shi, Qingfan

    2014-01-01

    Comparing astrospace with an elastic membrane is an interesting analogy but it lacks a theoretical basis and experimental support. We develop a theoretical model that brings to light the relationship between the conceptual model of a gravity well and an elastic deformation equation of a membrane supporting a heavy ball, and further derive the ‘gravitational constant’ for such a small ‘elastic space’. The experimental data obtained are consistent with the prediction of our model, in mimicking the revolution of a small planet. Teaching practice shows that using an elastic membrane is a simple, intuitive and reliable method to enhance the quality of learning about the effect of gravity. (paper)

  11. Negative stiffness honeycombs as tunable elastic metamaterials

    Science.gov (United States)

    Goldsberry, Benjamin M.; Haberman, Michael R.

    2018-03-01

    Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.

  12. Disordered long-range internal stresses in deformed copper and the mechanisms underlying plastic deformation

    International Nuclear Information System (INIS)

    Levine, Lyle E.; Geantil, Peter; Larson, Bennett C.; Tischler, Jonathan Z.; Kassner, Michael E.; Liu, Wenjun; Stoudt, Mark R.; Tavazza, Francesca

    2011-01-01

    Highlights: → Axial elastic strains were measured from numerous individual, contiguous dislocation cell walls and cell interiors. → The mean stresses for the cell walls and cell interiors were of opposite sign, in agreement with theoretical predictions. → The separation between the mean cell wall and cell interior stresses was about 20% of the flow stress. → Broad distributions of dipolar stresses were observed that are consistent with a simple size-scaling model. - Abstract: The strength of wavy glide metals increases dramatically during deformation as dislocations multiply and entangle, forming dense dislocation wall structures. Numerous competing models have been proposed for this process but experimental validation and guidance for further model development require new experimental approaches capable of resolving local stresses within the dislocation microstructure. We use three-dimensional X-ray microscopy combining submicrometer spatial resolution with diffracted-beam masking to make direct measurements of axial elastic strain (and thus stress) in individual dislocation cell walls and their adjacent cell interiors in heavily deformed copper. These spatially resolved measurements show broad, asymmetric distributions of dipolar stresses that directly discriminate between long-standing deformation models and demonstrate that the distribution of local stresses is statistically connected to the global behavior through simple rules.

  13. High resolution, large deformation 3D traction force microscopy.

    Directory of Open Access Journals (Sweden)

    Jennet Toyjanova

    Full Text Available Traction Force Microscopy (TFM is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D imaging and traction force analysis (3D TFM have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients.

  14. Cusp-Shaped Elastic Creases and Furrows

    Science.gov (United States)

    Karpitschka, S.; Eggers, J.; Pandey, A.; Snoeijer, J. H.

    2017-11-01

    The surfaces of growing biological tissues, swelling gels, and compressed rubbers do not remain smooth, but frequently exhibit highly localized inward folds. We reveal the morphology of this surface folding in a novel experimental setup, which permits us to deform the surface of a soft gel in a controlled fashion. The interface first forms a sharp furrow, whose tip size decreases rapidly with deformation. Above a critical deformation, the furrow bifurcates to an inward folded crease of vanishing tip size. We show experimentally and numerically that both creases and furrows exhibit a universal cusp shape, whose width scales like y3 /2 at a distance y from the tip. We provide a similarity theory that captures the singular profiles before and after the self-folding bifurcation, and derive the length of the fold from finite deformation elasticity.

  15. Elastic and elastic-plastic behaviour of a piping system during blowdown - Comparison of measurement and calculation

    International Nuclear Information System (INIS)

    Petruschke, W.; Strunk, G.

    1987-01-01

    The investigations according to the system identification show that the piping model using beam theory and flexibility factors according to the Karman theory are adequate for evaluating natural frequencies, mode shapes, static displacements and stresses. The same accuracy can be seen by comparing the piping response due to blowdown within the elastic range. The simplified elastic-plastic analysis in general overestimates the maximum amplitudes while the frequency content is not simulated very well. For practical purposes, it can be an adequate tool in many cases. The elastic-plastic analysis is the most expensive procedure but gives also the best results. The use of beam elements with multilinear moment-curvature relationships results in a good approximation for the global behaviour (displacements). The strains according to this theory only include the beam deformation modes

  16. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh

    Science.gov (United States)

    DeBenedictis, Andrew; Atherton, Timothy J.; Rodarte, Andrea L.; Hirst, Linda S.

    2018-03-01

    A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.

  17. Deformation-induced crystallographic-preferred orientation of hcp-iron: An experimental study using a deformation-DIA apparatus

    Science.gov (United States)

    Nishihara, Yu; Ohuchi, Tomohiro; Kawazoe, Takaaki; Seto, Yusuke; Maruyama, Genta; Higo, Yuji; Funakoshi, Ken-ichi; Tange, Yoshinori; Irifune, Tetsuo

    2018-05-01

    Shear and uniaxial deformation experiments on hexagonal close-packed iron (hcp-Fe) was conducted using a deformation-DIA apparatus at a pressure of 13-17 GPa and a temperature of 723 K to determine its deformation-induced crystallographic-preferred orientation (CPO). Development of the CPO in the deforming sample is determined in-situ based on two-dimensional X-ray diffraction using monochromatic synchrotron X-rays. In the shear deformation geometry, the and axes gradually align to be sub-parallel to the shear plane normal and shear direction, respectively, from the initial random texture. In the uniaxial compression and tensile geometry, the and axes, respectively, gradually align along the direction of the uniaxial deformation axis. These results suggest that basal slip (0001) is the dominant slip system in hcp-Fe under the studied deformation conditions. The P-wave anisotropy for a shear deformed sample was calculated using elastic constants at the inner core condition by recent ab-initio calculations. Strength of the calculated anisotropy was comparable to or higher than axisymmetric anisotropy in Earth's inner core.

  18. Multi-phase-field method for surface tension induced elasticity

    Science.gov (United States)

    Schiedung, Raphael; Steinbach, Ingo; Varnik, Fathollah

    2018-01-01

    A method, based on the multi-phase-field framework, is proposed that adequately accounts for the effects of a coupling between surface free energy and elastic deformation in solids. The method is validated via a number of analytically solvable problems. In addition to stress states at mechanical equilibrium in complex geometries, the underlying multi-phase-field framework naturally allows us to account for the influence of surface energy induced stresses on phase transformation kinetics. This issue, which is of fundamental importance on the nanoscale, is demonstrated in the limit of fast diffusion for a solid sphere, which melts due to the well-known Gibbs-Thompson effect. This melting process is slowed down when coupled to surface energy induced elastic deformation.

  19. Strain localization and elastic-plastic coupling during deformation of porous sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Dewers, Thomas A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Issen, Kathleen A. [Clarkson Univ., Potsdam, NY (United States). Mechanical and Aeronautical Engineering; Holcomb, David J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Olsson, William A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Ingraham, Mathew D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.

    2017-09-12

    Results of axisymmetric compression tests on weak, porous Castlegate Sandstone (Cretaceous, Utah, USA), covering a range of dilational and compactional behaviors, are examined for localization behavior. Assuming isotropy, bulk and shear moduli evolve as increasing functions of mean stress and Mises equivalent shear stress respectively, and as decreasing functions of work-conjugate plastic strains. Acoustic emissions events located during testing show onset of localization and permit calculation of observed shear and low-angle compaction localization zones, or bands, as localization commences. Total strain measured experimentally partitions into: A) elastic strain with constant moduli, B) elastic strain due to stress dependence of moduli, C) elastic strain due to moduli degradation with increasing plastic strain, and D) plastic strain. The third term is the elastic-plastic coupling strain, and though often ignored, contributes significantly to pre-failure total strain for brittle and transitional tests. Constitutive parameters and localization predictions derived from experiments are compared to theoretical predictions. In the brittle regime, predictions of band angles (angle between band normal and maximum compression) demonstrate good agreement with observed shear band angles. Compaction localization was observed in the transitional regime in between shear localization and spatially pervasive compaction, over a small range of mean stresses. In contrast with predictions however, detailed acoustic emissions analyses in this regime show low angle, compaction-dominated but shear-enhanced, localization.

  20. Vascular elastic photoacoustic tomography in humans

    Science.gov (United States)

    Hai, Pengfei; Zhou, Yong; Liang, Jinyang; Li, Chiye; Wang, Lihong V.

    2016-03-01

    Quantification of vascular elasticity can help detect thrombosis and prevent life-threatening conditions such as acute myocardial infarction or stroke. Here, we propose vascular elastic photoacoustic tomography (VE-PAT) to measure vascular elasticity in humans. VE-PAT was developed by incorporating a linear-array-based photoacoustic computed tomography system with a customized compression stage. By measuring the deformation of blood vessels under uniaxial loading, VE-PAT was able to quantify the vascular compliance. We first demonstrated the feasibility of VE-PAT in blood vessel phantoms. In large vessel phantoms, VE-PAT detected a decrease in vascular compliance due to simulated thrombosis, which was validated by a standard compression test. In small blood vessel phantoms embedded 3 mm deep in gelatin, VE-PAT detected elasticity changes at depths that are difficult to image using other elasticity imaging techniques. We then applied VE-PAT to assess vascular compliance in a human subject and detected a decrease in vascular compliance when an occlusion occurred downstream from the measurement point, demonstrating the potential of VE-PAT in clinical applications such as detection of deep venous thrombosis.

  1. Experimental evaluation of a polycrystal deformation modeling scheme using neutron diffraction measurements

    DEFF Research Database (Denmark)

    Clausen, Bjørn; Lorentzen, Torben

    1997-01-01

    The uniaxial behavior of aluminum polycrystals is simulated using a rate-independent incremental self-consistent elastic-plastic polycrystal deformation model, and the results are evaluated by neutron diffraction measurements. The elastic strains deduced from the model show good agreement...

  2. Deformation regime and long-term precursors to eruption at large calderas: Rabaul, Papua New Guinea

    Science.gov (United States)

    Robertson, Robert M.; Kilburn, Christopher R. J.

    2016-03-01

    Eruptions at large calderas are normally preceded by variable rates of unrest that continue for decades or more. A classic example is the 1994 eruption of Rabaul caldera, in Papua New Guinea, which began after 23 years of surface uplift and volcano-tectonic (VT) seismicity at rates that changed unevenly with time by an order of magnitude. Although the VT event rate and uplift rate peaked in 1983-1985, eruptions only began a decade later and followed just 27 hours of anomalous changes in precursory signal. Here we argue that the entire 23 years of unrest belongs to a single sequence of damage accumulation in the crust and that, in 1991-1992, the crust's response to applied stress changed from quasi-elastic (elastic deformation with minor fault movement) to inelastic (deformation predominantly by fault movement alone). The change in behaviour yields limiting trends in the variation of VT event rate with deformation and can be quantified with a mean-field model for an elastic crust that contains a dispersed population of small faults. The results show that identifying the deformation regime for elastic-brittle crust provides new criteria for using precursory time series to evaluate the potential for eruption. They suggest that, in the quasi-elastic regime, short-term increases in rates of deformation and VT events are unreliable indicators of an imminent eruption, but that, in the inelastic regime, the precursory rates may follow hyperbolic increases with time and offer the promise of developing forecasts of eruption as much as months beforehand.

  3. Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes

    KAUST Repository

    Goriely, A.

    2013-03-06

    Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells reinforced by one or two families of fibres. We consider both small and large deformations and the reduction from thick cylindrical shells (tubes) to thin shells (cylindrical membranes). In particular, a number of universal parameter regimes can be identified where the response behaviour of the cylinder is qualitatively different. This include the possibility of inversion of twist or axial strain when the cylinder is subject to internal pressure. Copyright © The Royal Society 2013.

  4. An Effective Way to Control Numerical Instability of a Nonordinary State-Based Peridynamic Elastic Model

    Directory of Open Access Journals (Sweden)

    Xin Gu

    2017-01-01

    Full Text Available The constitutive modeling and numerical implementation of a nonordinary state-based peridynamic (NOSB-PD model corresponding to the classical elastic model are presented. Besides, the numerical instability problem of the NOSB-PD model is analyzed, and a penalty method involving the hourglass force is proposed to control the instabilities. Further, two benchmark problems, the static elastic deformation of a simple supported beam and the elastic wave propagation in a two-dimensional rod, are discussed with the present method. It proves that the penalty instability control method is effective in suppressing the displacement oscillations and improving the accuracy of calculated stress fields with a proper hourglass force coefficient, and the NOSB-PD approach with instability control can analyze the problems of structure deformation and elastic wave propagation well.

  5. Anisotropic Ripple Deformation in Phosphorene.

    Science.gov (United States)

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  6. Elastic Gauge Fields in Weyl Semimetals

    Science.gov (United States)

    Cortijo, Alberto; Ferreiros, Yago; Landsteiner, Karl; Hernandez Vozmediano, Maria Angeles

    We show that, as it happens in graphene, elastic deformations couple to the electronic degrees of freedom as pseudo gauge fields in Weyl semimetals. We derive the form of the elastic gauge fields in a tight-binding model hosting Weyl nodes and see that this vector electron-phonon coupling is chiral, providing an example of axial gauge fields in three dimensions. As an example of the new response functions that arise associated to these elastic gauge fields, we derive a non-zero phonon Hall viscosity for the neutral system at zero temperature. The axial nature of the fields provides a test of the chiral anomaly in high energy with three axial vector couplings. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007).

  7. Equivalence between short-time biphasic and incompressible elastic material responses.

    Science.gov (United States)

    Ateshian, Gerard A; Ellis, Benjamin J; Weiss, Jeffrey A

    2007-06-01

    Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltatelasticity tensor, and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components.

  8. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  9. Registration of deformed multimodality medical images

    International Nuclear Information System (INIS)

    Moshfeghi, M.; Naidich, D.

    1989-01-01

    The registration and combination of images from different modalities have several potential applications, such as functional and anatomic studies, 3D radiation treatment planning, surgical planning, and retrospective studies. Image registration algorithms should correct for any local deformations caused by respiration, heart beat, imaging device distortions, and so forth. This paper reports on an elastic matching technique for registering deformed multimodality images. Correspondences between contours in the two images are used to stretch the deformed image toward its goal image. This process is repeated a number of times, with decreasing image stiffness. As the iterations continue, the stretched image better approximates its goal image

  10. Vertebroplasty reduces progressive ׳creep' deformity of fractured vertebrae.

    Science.gov (United States)

    Luo, J; Pollintine, P; Annesley-Williams, D J; Dolan, P; Adams, M A

    2016-04-11

    Elderly vertebrae frequently develop an "anterior wedge" deformity as a result of fracture and creep mechanisms. Injecting cement into a damaged vertebral body (vertebroplasty) is known to help restore its shape and stiffness. We now hypothesise that vertebroplasty is also effective in reducing subsequent creep deformations. Twenty-eight spine specimens, comprising three complete vertebrae and the intervening discs, were obtained from cadavers aged 67-92 years. Each specimen was subjected to increasingly-severe compressive loading until one of its vertebrae was fractured, and the damaged vertebral body was then treated by vertebroplasty. Before and after fracture, and again after vertebroplasty, each specimen was subjected to a static compressive force of 1kN for 1h while elastic and creep deformations were measured in the anterior, middle and posterior regions of each adjacent vertebral body cortex, using a 2D MacReflex optical tracking system. After fracture, creep in the anterior and central regions of the vertebral body cortex increased from an average 4513 and 885 microstrains, respectively, to 54,107 and 34,378 microstrains (both increases: Pcreep in the anterior and central cortex by 61% (P=0.006) and 66% (P=0.017) respectively. Elastic strains were reduced by less than half this amount. Results suggest that the beneficial effects of vertebroplasty on the vertebral body continue long after the post-operative radiographs. Injected cement not only helps to restore vertebral shape and elastic properties, but also reduces subsequent creep deformation of the damaged vertebra. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Shaping through buckling in elastic gridshells: from camping tents to architectural roofs

    Science.gov (United States)

    Reis, Pedro

    Elastic gridshells comprise an initially planar network of elastic rods that is actuated into a 3D shell-like structure by loading its extremities. This shaping results from elastic buckling and the subsequent geometrically nonlinear deformation of the grid structure. Architectural elastic gridshells first appeared in the 1970's. However, to date, only a limited number of examples have been constructed around the world, primarily due to the challenges involved in their structural design. Yet, elastic gridshells are highly appealing: they can cover wide spans with low self-weight, they allow for aesthetically pleasing shapes and their construction is typically simple and rapid. We study the mechanics of elastic gridshells by combining precision model experiments that explore their scale invariance, together with computer simulations that employ the Discrete Elastic Rods method. Excellent agreement is found between the two. Upon validation, the numerics are then used to systematically explore parameter space and identify general design principles for specific target final shapes. Our findings are rationalized using the theory of discrete Chebyshev nets, together with the group theory for crystals. Higher buckling modes occur for some configurations due to geometric incompatibility at the boundary and result in symmetry breaking. Along with the systematic classification of the various possible modes of deformation, we provide a reduced model that rationalizes form-finding in elastic gridshells. This work was done in collaboration with Changyeob Baek, Khalid Jawed and Andrew Sageman-Furnas. We are grateful to the NSF for funding (CAREER, CMMI-1351449).

  12. Deformation Behavior of Human Dentin under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Dmitry Zaytsev

    2012-01-01

    Full Text Available Deformation behavior of a human dentin under compression including size and rate effects is studied. No difference between mechanical properties of crown and root dentin is found. It is mechanically isotropic high elastic and strong hard tissue, which demonstrates considerable plasticity and ability to suppress a crack growth. Mechanical properties of dentin depend on a shape of samples and a deformation rate.

  13. Measurement of Static Characteristics Pneumatic Motors with Elastic Working Elements

    Directory of Open Access Journals (Sweden)

    Kamil FOJTÁŠEK

    2012-06-01

    Full Text Available Into a category of pneumatic motors with elastic working parts belong air bellows, diaphragm motors and fluid muscles. All three types of these motors have some elastic part usually made of rubber. This part is deformed under the pressure of a compressed air or a mass load resulting in a final working effect. This paper deals with measuring of static characteristics of these motors.

  14. The deformation of Gum Metal through in situ compression of nanopillars

    International Nuclear Information System (INIS)

    Withey, E.A.; Minor, A.M.; Chrzan, D.C.; Morris, J.W.; Kuramoto, S.

    2010-01-01

    The name 'Gum Metal' has been given to a set of β-Ti alloys that achieve exceptional elastic elongation and, with appropriate preparation, appear to deform by a dislocation-free mechanism triggered by elastic instability at the limit of strength. We have studied the compressive deformation of these materials with in situ nanocompression in a quantitative stage in a transmission electron microscope. The samples studied are cylindrical nanopillars 80-250 nm in diameter. The deformation pattern is monitored in real time using bright-field microscopy, dark-field microscopy or electron diffraction. Interesting results include the following: (i) nanopillars approach, and in several examples appear to reach, ideal strength; (ii) in contrast to conventional crystalline materials, there is no substantial 'size effect' in pillar strength; (iii) the deformation mode is fine-scale with respect to the sample dimension, even in pillars of 100 nm size; (iv) shear bands ('giant faults') do form in some tests, but only after yield and plastic deformation; and (v) a martensitic transformation to the base-centered orthorhombic α'' phase is sometimes observed, but is an incidental feature of the deformation rather than a significant cause of it.

  15. Plastic deformation of particles of zirconium and titanium carbide subjected to vibration grinding

    Energy Technology Data Exchange (ETDEWEB)

    Kravchik, A.E.; Neshpor, V.S.; Savel' ev, G.A.; Ordan' yan, S.S.

    1976-12-01

    A study is made of the influence of stoichiometry on the characteristics of microplastic deformation in powders of zirconium and titanium carbide subjected to vibration grinding. The carbide powders were produced by direct synthesis from the pure materials: metallic titanium and zirconium and acetylene black. As to the nature of their elastic deformation, zirconium and titanium carbides can be considered elastic-isotropic materials. During vibration grinding, the primary fracture planes are the (110) planes. Carbides of nonstoichiometric composition are more brittle.

  16. Accelerating dewetting on deformable substrates by adding a liquid underlayer.

    Science.gov (United States)

    Xu, Lin; Reiter, Günter; Shi, Tongfei; An, Lijia

    2010-05-18

    We investigated the dependence of the dewetting velocity of a thin, low-viscosity polystyrene (PS) top film on a poly(methyl methacrylate) (PMMA) double layer consisting of a low-viscosity underlayer of thickness h(L) coated with a high-viscosity middle layer of thickness h(M). The addition of the liquid underlayer generated complex nonmonotonic behavior of the dewetting velocity as a function of increasing h(M). In particular, we observed an acceleration of dewetting for an intermediate range of h(M). This phenomenon has been interpreted by a combination deformation of the middle elastic layer and a concurrent change in the contact angle. On one hand, deformation led to the formation of a trench that dissipated energy during its movement through the liquid underlayer and thus caused a slowing down of dewetting. However, with an increase in the thickness of the elastic middle layer, the size of the trench decreased and its influence on the dewetting velocity also decreased. On the other hand, the deformation of the elastic layer also led to an increase in the contact angle. This increase in the driving capillary forces caused an increase in the dewetting velocity.

  17. Elastic models application for thorax image registration

    International Nuclear Information System (INIS)

    Correa Prado, Lorena S; Diaz, E Andres Valdez; Romo, Raul

    2007-01-01

    This work consist of the implementation and evaluation of elastic alignment algorithms of biomedical images, which were taken at thorax level and simulated with the 4D NCAT digital phantom. Radial Basis Functions spatial transformations (RBF), a kind of spline, which allows carrying out not only global rigid deformations but also local elastic ones were applied, using a point-matching method. The applied functions were: Thin Plate Spline (TPS), Multiquadric (MQ) Gaussian and B-Spline, which were evaluated and compared by means of calculating the Target Registration Error and similarity measures between the registered images (the squared sum of intensity differences (SSD) and correlation coefficient (CC)). In order to value the user incurred error in the point-matching and segmentation tasks, two algorithms were also designed that calculate the Fiduciary Localization Error. TPS and MQ were demonstrated to have better performance than the others. It was proved RBF represent an adequate model for approximating the thorax deformable behaviour. Validation algorithms showed the user error was not significant

  18. The Faraday Pavilion: activating bending in the design and analysis of an elastic gridshell

    DEFF Research Database (Denmark)

    Nicholas, Paul; Lafuente Hernandez, Elisa; Gengnagel, Christoph

    2013-01-01

    This paper reports the architectural and engineering design, and construction, of The Faraday Pavilion, a GFRP elastic gridshell with an irregular grid topology. Gridshell structures are self-formed through an erection process in which they are elastically deformed, and the prediction and steering...

  19. An orthogonality condition model treatment of elastic and inelastic (α, 12C) scattering

    International Nuclear Information System (INIS)

    Suzuki, Y.; Imanishi, B.

    1981-02-01

    Elastic and inelastic scattering of α-particles on the deformed nucleus 12 C are investigated in the range of incident α-particle energies of 9 to 11 MeV by using the coupled-channel method with orthogonality condition. A doubly folded potential generated by the shell model wave functions of the α-particle and the deformed nucleus 12 C is employed for the relative motion between the α-particle and 12 C. Good agreement between theory and experiment is obtained for the elastic and inelastic angular distributions and the resonance structures. It is found, from the Born series expansion of the T-matrix, that the orthogonality constraint stresses the effects of the channel-coupling between the elastic and inelastic processes, and it indicates that the DWBA does not work well in this system. (author)

  20. The multiple V-shaped double peeling of elastic thin films from elastic soft substrates

    Science.gov (United States)

    Menga, N.; Afferrante, L.; Pugno, N. M.; Carbone, G.

    2018-04-01

    In this paper, a periodic configuration of V-shaped double peeling process is investigated. Specifically, an elastic thin film is detached from a soft elastic material by applying multiple concentrated loads periodically distributed with spatial periodicity λ. The original Kendall's idea is extended to take into account the change in elastic energy occurring in the substrate when the detachment fronts propagate. The symmetric configuration typical of a V-peeling process causes the energy release rate to be sensitive to variations of the elastic energy stored in the soft substrate. This results in an enhancement of the adhesion strength because part of the external work required to trigger the peeling mechanism is converted in substrate elastic energy. A key role is played by both spatial periodicity λ and elasticity ratio E/Eh, between tape and substrate elastic moduli, in determining the conditions of stable adhesion. Indeed, the presence of multiple peeling fronts determines a modification of the mechanism of interaction, because deformations close to each peeling front are also affected by the stresses related to the other fronts. Results show that the energy release rate depends on the detached length of the tape so that conditions can be established which lead to an increase of the supported load compared to the classical peeling on rigid substrates. Finally, we also find that for any given value of the load per unit length, an optimum value of the wavelength λ exists that maximizes the tolerance of the system, before unstable propagation of the peeling front can occur.

  1. Multitaper spectral method to estimate the elastic thickness of South China: Implications for intracontinental deformation

    Directory of Open Access Journals (Sweden)

    Yangfan Deng

    2014-03-01

    Full Text Available The effective elastic thickness (Te represents the thickness of the elastic layer or the flexural rigidity of the lithosphere, the equivalent of which can be calculated from the spectral analysis of gravity and topographic data. Studies of Te have profound influence on intracontinental deformation, and coupling of the tectonic blocks. In this paper, we use the multitaper spectral estimation method to calculate the coherence between Bouguer gravity and topography data, and to obtain the Te map of South China. Through the process of correction, we discuss the relationships of Te versus heat flow, and Te versus seismicity. The results show that Te distribution of South China is affected by three factors: the original age, which controls the basic feature; the Mesozoic evolution, which affects the Te distribution; and the neotectonic movement, which shaped the final distribution. The crust age has a positive correlation with the first-order Te distribution; thus the Yangtze Craton has a relatively higher Te (about 50 km whereas the Te in Cathaysia block is only 10–20 km. By analysis and comparison among the tectonic models of South China, the Te distribution can be well explained using the flat-subduction model. As is typical with neotectonics, the region with a higher heat flow is related with a lower Te. The seismicity does not have a clear relationship with Te, but the strong seismicity could cause a low Te. Seismogenic layer (Ts has a similar trend as Te in the craton, whereas in other areas the relationship is complex.

  2. Non-proportional deformation paths for sheet metal: experiments and models

    OpenAIRE

    van den Boogaard, Antonius H.; van Riel, M.; Hora, P.

    2009-01-01

    For mild steel, after significant plastic deformation in one direction, a subsequent deformation in an orthogonal direction shows a typical stress overshoot compared to monotonic deformation. This phenomenon is investigated experimentally and numerically on a DC06 material. Two models that incorporate the observed overshoot are compared. In the Teodosiu-Hu model, pre-strain influences the rate of kinematic hardening by a rather complex set of evolution equations. The shape of the elastic doma...

  3. Vanadium and heat treatments effect on elastic characteristics of niobium

    International Nuclear Information System (INIS)

    Vasil'eva, E.V.; Tret'yakov, V.I.; Prokoshkin, D.A.; Pustovalov, V.A.

    1975-01-01

    The effect of vanadium content and of heat treatment conditions on the elastic properties of niobium at temperatures of 20 to 800 deg C was studied. Nb-V alloys were produced by binary vacuum remelting. The Nb-V alloys have been then subjected to thermal treatment. The total degree of deformation amounts to about 95%. The specimens were tested with a view to determine their microhardness, specific electric resistance, elasticity limit and modulus of elasticity. The elastic limit of niobium rises when alloyed with vanadium. With the increase of vanadium content the elastic limit of the alloy becomes greater. Pre-crystallization annealing at 600 - 700 deg C considerably increases the elastic limit, which is explained by development of the thermally activated processes leading to a decrease of dislocation mobility and thereby to a strengthening of the alloy

  4. Downstream pressure and elastic wall reflection of droplet flow in a T-junction microchannel

    Science.gov (United States)

    Pang, Yan; Liu, Zhaomiao; Zhao, Fuwang

    2016-08-01

    This paper discusses pressure variation on a wall during the process of liquid flow and droplet formation in a T-junction microchannel. Relevant pressure in the channel, deformation of the elastic wall, and responses of the droplet generation are analyzed using a numerical method. The pressure difference between the continuous and dispersed phases can indicate the droplet-generation period. The pressure along the channel of the droplet flow is affected by the position of droplets, droplet-generation period, and droplet escape from the outlet. The varying pressures along the channel cause a nonuniform deformation of the wall when they are elastic. The deformation is a vibration and has the same period as the droplet generation arising from the process of droplet formation.

  5. Non-invasive determination of the complete elastic moduli of spider silks

    Science.gov (United States)

    Koski, Kristie J.; Akhenblit, Paul; McKiernan, Keri; Yarger, Jeffery L.

    2013-03-01

    Spider silks possess nature’s most exceptional mechanical properties, with unrivalled extensibility and high tensile strength. Unfortunately, our understanding of silks is limited because the complete elastic response has never been measured—leaving a stark lack of essential fundamental information. Using non-invasive, non-destructive Brillouin light scattering, we obtain the entire stiffness tensors (revealing negative Poisson’s ratios), refractive indices, and longitudinal and transverse sound velocities for major and minor ampullate spider silks: Argiope aurantia, Latrodectus hesperus, Nephila clavipes, Peucetia viridans. These results completely quantify the linear elastic response for all possible deformation modes, information unobtainable with traditional stress-strain tests. For completeness, we apply the principles of Brillouin imaging to spatially map the elastic stiffnesses on a spider web without deforming or disrupting the web in a non-invasive, non-contact measurement, finding variation among discrete fibres, junctions and glue spots. Finally, we provide the stiffness changes that occur with supercontraction.

  6. Radius anomaly in the diffraction model for heavy-ion elastic scattering

    Science.gov (United States)

    Pandey, L. N.; Mukherjee, S. N.

    1984-04-01

    The elastic scattering of heavy ions, 20Ne on 208Pb, 20Ne on 235U, 84Kr on 208Pb, and 84Kr on 232Th, is examined within the framework of Frahn's diffraction model. An analysis of the experiment using the "quarter point recipe" of the expected Fresnel cross sections yields a larger radius for 208Pb than the radii for 235U and 232Th. It is shown that inclusion of the nuclear deformation in the model removes the above anomaly in the radii, and the assumption of smooth cutoff of the angular momentum simultaneously leads to a better fit to elastic scattering data, compared to those obtained by the earlier workers on the assumption of sharp cutoff. [NUCLEAR REACTIONS Elastic scattering, 20Ne+208Pb (161.2 MeV), 20Ne+235U (175 MeV), 84Kr+208Pb (500 MeV), 84Kr+232Th (500 MeV), diffraction model, nuclear deformation.

  7. Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.

    Science.gov (United States)

    Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A

    2010-03-01

    The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.

  8. Shape oscillations of elastic particles in shear flow.

    Science.gov (United States)

    Subramaniam, Dhananjay Radhakrishnan; Gee, David J

    2016-09-01

    Particle suspensions are common to biological fluid flows; for example, flow of red- and white-blood cells, and platelets. In medical technology, current and proposed methods for drug delivery use membrane-bounded liquid capsules for transport via the microcirculation. In this paper, we consider a 3D linear elastic particle inserted into a Newtonian fluid and investigate the time-dependent deformation using a numerical simulation. Specifically, a boundary element technique is used to investigate the motion and deformation of initially spherical or spheroidal particles in bounded linear shear flow. The resulting deformed shapes reveal a steady-state profile that exhibits a 'tank-treading' motion for initially spherical particles. Wall effects on particle trajectory are seen to include a modified Jeffrey׳s orbit for spheroidal inclusions with a period that varies inversely with the strength of the shear flow. Alternately, spheroidal inclusions may exhibit either a 'tumbling' or 'trembling' motion depending on the initial particle aspect ratio and the capillary number (i.e., ratio of fluid shear to elastic restoring force). We find for a capillary number of 0.1, a tumbling mode transitions to a trembling mode at an aspect ratio of 0.87 (approx.), while for a capillary number of 0.2, this transition takes place at a lower aspect ratio. These oscillatory modes are consistent with experimental observations involving similarly shaped vesicles and thus serves to validate the use of a simple elastic constitutive model to perform relevant physiological flow calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials

    International Nuclear Information System (INIS)

    Ma, Young Wha; Yoon, Kee Bong

    2009-01-01

    Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials

  10. Adaptive Method Using Controlled Grid Deformation

    Directory of Open Access Journals (Sweden)

    Florin FRUNZULICA

    2011-09-01

    Full Text Available The paper presents an adaptive method using the controlled grid deformation over an elastic, isotropic and continuous domain. The adaptive process is controlled with the principal strains and principal strain directions and uses the finite elements method. Numerical results are presented for several test cases.

  11. Elastic properties of rigid fiber-reinforced composites

    Science.gov (United States)

    Chen, J.; Thorpe, M. F.; Davis, L. C.

    1995-05-01

    We study the elastic properties of rigid fiber-reinforced composites with perfect bonding between fibers and matrix, and also with sliding boundary conditions. In the dilute region, there exists an exact analytical solution. Around the rigidity threshold we find the elastic moduli and Poisson's ratio by decomposing the deformation into a compression mode and a rotation mode. For perfect bonding, both modes are important, whereas only the compression mode is operative for sliding boundary conditions. We employ the digital-image-based method and a finite element analysis to perform computer simulations which confirm our analytical predictions.

  12. Theory of photoinduced deformation of molecular films

    DEFF Research Database (Denmark)

    Gaididei, Yuri B.; Christiansen, Peter Leth; Ramanujam, P.S.

    2002-01-01

    Azobenzene-containing polymers exhibit strong surface-relief features when irradiated with polarized light. Currently proposed theories do not explain all the observed features. Here we propose a theory based on elastic deformation of the polymer due to interaction between dipoles ordered through...

  13. Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1992-01-01

    A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  14. A Smoothed Finite Element-Based Elasticity Model for Soft Bodies

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    2017-01-01

    Full Text Available One of the major challenges in mesh-based deformation simulation in computer graphics is to deal with mesh distortion. In this paper, we present a novel mesh-insensitive and softer method for simulating deformable solid bodies under the assumptions of linear elastic mechanics. A face-based strain smoothing method is adopted to alleviate mesh distortion instead of the traditional spatial adaptive smoothing method. Then, we propose a way to combine the strain smoothing method and the corotational method. With this approach, the amplitude and frequency of transient displacements are slightly affected by the distorted mesh. Realistic simulation results are generated under large rotation using a linear elasticity model without adding significant complexity or computational cost to the standard corotational FEM. Meanwhile, softening effect is a by-product of our method.

  15. Elastic anisotropy and low-temperature thermal expansion in the shape memory alloy Cu-Al-Zn.

    Science.gov (United States)

    Kuruvilla, Santhosh Potharay; Menon, C S

    2008-04-01

    Cu-based shape memory alloys are known for their technologically important pseudo-elastic and shapememory properties, which are intimately associated with the martensitic transformation. A combination of deformation theory and finite-strain elasticity theory has been employed to arrive at the expressions for higher order elastic constants of Cu-Al-Zn based on Keating's approach. The second- and third-order elastic constants are in good agreement with the measurements. The aggregate elastic properties like bulk modulus, pressure derivatives, mode Grüneisen parameters of the elastic waves, low temperature limit of thermal expansion, and the Anderson-Grüneisen parameter are also presented.

  16. In-situ measurement of texture and elastic strains with HIPPO-CRATES

    International Nuclear Information System (INIS)

    Hartig, Ch.; Vogel, S.C.; Mecking, H.

    2006-01-01

    In this paper, the micromechanical interaction between constituents of a metallic material during elastic and plastic deformation are analyzed by comparing experimental results with modeling predictions. This comparison aims at determining the locally acting internal stresses, the spatial distribution of strains and the rules allowing deriving the macroscopic behavior of the material from the behavior of its microscopic constituents. We report the application of a new deformation apparatus CRATES, which allows measuring texture and crystal lattice spacings, and from these crystal lattice strains, using neutron diffraction. From the in-situ measured elastic lattice strains ε hkl the corresponding local stresses can be derived. The deformation apparatus allows uni-axial tensile or compressive deformation up to 100 kN and is specifically designed for use in the HIPPO neutron time-of-flight diffractometer. In this paper, we report initial results on an iron-copper model system (Fe100, Fe33Cu67, Fe67Cu33, vol.%) and commercial magnesium alloys (Mg-AZ31 and Mg-AZ80). Finite element calculations using a crystal-plastic constitutive law, allowing for shear and hardening of crystallographic slip-systems, were used for the interpretation of the measurements

  17. Exploring the elasticity and adhesion behavior of cardiac fibroblasts by atomic force microscopy indentation

    Energy Technology Data Exchange (ETDEWEB)

    Codan, B.; Del Favero, G. [Department of Engineering and Architecture, University of Trieste (Italy); Martinelli, V. [Department of Engineering and Architecture, University of Trieste (Italy); International Center for Genetic Engineering and Biotechnology, Trieste (Italy); Long, C.S.; Mestroni, L. [University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora, CO (United States); Sbaizero, O., E-mail: sbaizero@units.it [Department of Engineering and Architecture, University of Trieste (Italy)

    2014-07-01

    AFM was used to collect the whole force–deformation cell curves. They provide both the elasticity and adhesion behavior of mouse primary cardiac fibroblasts. To confirm the hypothesis that a link exists between the membrane receptors and the cytoskeletal filaments causing therefore changing in both elasticity and adhesion behavior, actin-destabilizing Cytochalsin D was administrated to the fibroblasts. From immunofluorescence observation and AFM loading/unloading curves, cytoskeletal reorganization as well as a change in the elasticity and adhesion was indeed observed. Elasticity of control fibroblasts is three times higher than that for fibroblasts treated with 0.5 μM Cytochalasin. Moreover, AFM loading–unloading curves clearly show the different mechanical behavior of the two different cells analyzed: (i) for control cells the AFM cantilever rises during the dwell time while cells with Cytochalasin fail to show such an active resistance; (ii) the maximum force to deform control cells is quite higher and as far as adhesion is concern (iii) the maximum separation force, detachment area and the detachment process time are much larger for control compared to the Cytochalasin treated cells. Therefore, alterations in the cytoskeleton suggest that a link must exist between the membrane receptors and the cytoskeletal filaments beneath the cellular surface and inhibition of actin polymerization has effects on the whole cell mechanical behavior as well as adhesion. - Highlights: • The whole AFM force–deformation cell curves were analyzed. • They provide information on both the elasticity and adhesion behavior. • Actin-destabilizing Cytochalasin D was administrated to the fibroblasts. • Change in elasticity and adhesion was ascribed to cytoskeletal reorganization. • A link exists between the membrane receptors and the cytoskeletal filaments.

  18. Exploring the elasticity and adhesion behavior of cardiac fibroblasts by atomic force microscopy indentation

    International Nuclear Information System (INIS)

    Codan, B.; Del Favero, G.; Martinelli, V.; Long, C.S.; Mestroni, L.; Sbaizero, O.

    2014-01-01

    AFM was used to collect the whole force–deformation cell curves. They provide both the elasticity and adhesion behavior of mouse primary cardiac fibroblasts. To confirm the hypothesis that a link exists between the membrane receptors and the cytoskeletal filaments causing therefore changing in both elasticity and adhesion behavior, actin-destabilizing Cytochalsin D was administrated to the fibroblasts. From immunofluorescence observation and AFM loading/unloading curves, cytoskeletal reorganization as well as a change in the elasticity and adhesion was indeed observed. Elasticity of control fibroblasts is three times higher than that for fibroblasts treated with 0.5 μM Cytochalasin. Moreover, AFM loading–unloading curves clearly show the different mechanical behavior of the two different cells analyzed: (i) for control cells the AFM cantilever rises during the dwell time while cells with Cytochalasin fail to show such an active resistance; (ii) the maximum force to deform control cells is quite higher and as far as adhesion is concern (iii) the maximum separation force, detachment area and the detachment process time are much larger for control compared to the Cytochalasin treated cells. Therefore, alterations in the cytoskeleton suggest that a link must exist between the membrane receptors and the cytoskeletal filaments beneath the cellular surface and inhibition of actin polymerization has effects on the whole cell mechanical behavior as well as adhesion. - Highlights: • The whole AFM force–deformation cell curves were analyzed. • They provide information on both the elasticity and adhesion behavior. • Actin-destabilizing Cytochalasin D was administrated to the fibroblasts. • Change in elasticity and adhesion was ascribed to cytoskeletal reorganization. • A link exists between the membrane receptors and the cytoskeletal filaments

  19. Fingerprint Matching by Thin-plate Spline Modelling of Elastic Deformations

    NARCIS (Netherlands)

    Bazen, A.M.; Gerez, Sabih H.

    2003-01-01

    This paper presents a novel minutiae matching method that describes elastic distortions in fingerprints by means of a thin-plate spline model, which is estimated using a local and a global matching stage. After registration of the fingerprints according to the estimated model, the number of matching

  20. Deformable nematic droplets in a magnetic field

    NARCIS (Netherlands)

    Otten, R.H.J.; van der Schoot, P. P. A. M.

    2012-01-01

    We present a Frank-Oseen elasticity theory for the shape and structure of deformable nematic droplets with homeotropic surface anchoring in the presence of a magnetic field. Inspired by recent experimental observations, we focus on the case where the magnetic susceptibility is negative, and find

  1. Intensity-based hierarchical elastic registration using approximating splines.

    Science.gov (United States)

    Serifovic-Trbalic, Amira; Demirovic, Damir; Cattin, Philippe C

    2014-01-01

    We introduce a new hierarchical approach for elastic medical image registration using approximating splines. In order to obtain the dense deformation field, we employ Gaussian elastic body splines (GEBS) that incorporate anisotropic landmark errors and rotation information. Since the GEBS approach is based on a physical model in form of analytical solutions of the Navier equation, it can very well cope with the local as well as global deformations present in the images by varying the standard deviation of the Gaussian forces. The proposed GEBS approximating model is integrated into the elastic hierarchical image registration framework, which decomposes a nonrigid registration problem into numerous local rigid transformations. The approximating GEBS registration scheme incorporates anisotropic landmark errors as well as rotation information. The anisotropic landmark localization uncertainties can be estimated directly from the image data, and in this case, they represent the minimal stochastic localization error, i.e., the Cramér-Rao bound. The rotation information of each landmark obtained from the hierarchical procedure is transposed in an additional angular landmark, doubling the number of landmarks in the GEBS model. The modified hierarchical registration using the approximating GEBS model is applied to register 161 image pairs from a digital mammogram database. The obtained results are very encouraging, and the proposed approach significantly improved all registrations comparing the mean-square error in relation to approximating TPS with the rotation information. On artificially deformed breast images, the newly proposed method performed better than the state-of-the-art registration algorithm introduced by Rueckert et al. (IEEE Trans Med Imaging 18:712-721, 1999). The average error per breast tissue pixel was less than 2.23 pixels compared to 2.46 pixels for Rueckert's method. The proposed hierarchical elastic image registration approach incorporates the GEBS

  2. Relativistic elasticity of stationary fluid branes

    Science.gov (United States)

    Armas, Jay; Obers, Niels A.

    2013-02-01

    Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.

  3. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    OpenAIRE

    Ren Penghao; Wang Aimin; Wang Xiaolong; Zhang Yanlin

    2017-01-01

    After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation ...

  4. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles

    Science.gov (United States)

    Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.

    1985-01-01

    The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.

  5. Fatigue analysis - computation of the actual strain range using elastic calculation

    International Nuclear Information System (INIS)

    Roche, R.L.

    1987-04-01

    The design codes used in nuclear industry do not contain all the same rules allowing to deduce from an elastic calculation the actual deformation variation. Knowledge of strain range is needed for fatigue analysis. Elastic calculation does not give the actual range. The aim of this paper is discussing ways to correct elastic results and proposing a practical method to do it. Two corrections are required. The first one is related to elastic follow up effect when shakedown is not obtained (correction on secondary stress). The second one is related to stress raisers effect (correction on peak stress). It is shown that NEUBER's rule is not convenient for the second correction when shakedown is not fulfilled [fr

  6. Neutron scattering on deformed nuclei

    International Nuclear Information System (INIS)

    Hansen, L.F.; Haight, R.C.; Pohl, B.A.; Wong, C.; Lagrange, C.

    1984-09-01

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9 Be, C, 181 Ta, 232 Th, 238 U and 239 Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP

  7. The deformation behavior of soil mass in the subsidence region of Beijing, China

    Directory of Open Access Journals (Sweden)

    F. Tian

    2015-11-01

    Full Text Available Land subsidence induced by excessive groundwater withdrawal has been a major environmental and geological problem in the Beijing plain area. The monitoring network of land subsidence in Beijing has been established since 2002 and has covered the entire plain area by the end of 2008. Based on data from extensometers and groundwater observation wells, this paper establishes curves of variations over time for both soil mass deformation and water levels and the relationship between soil mass deformation and water level. In addition, an analysis of deformation behavior is carried out for soil mass with various lithologies at different depths depending on the corresponding water level. Finally, the deformation behavior of soil mass is generalized into five categories. The conclusions include: (i the current rate of deformation of the shallow soil mass is slowing, and most of the mid-deep and deep soil mass continue to compress at a more rapid speed; (ii the sand strata behaves elastically, while the clay soil mass at different depths is usually characterized by elastic-plastic and creep deformation, which can be considered as visco-elastoplastic.

  8. Preliminary deformation model for National Seismic Hazard map of Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Meilano, Irwan; Gunawan, Endra; Sarsito, Dina; Prijatna, Kosasih; Abidin, Hasanuddin Z. [Geodesy Research Division, Faculty of Earth Science and Technology, Institute of Technology Bandung (Indonesia); Susilo,; Efendi, Joni [Agency for Geospatial Information (BIG) (Indonesia)

    2015-04-24

    Preliminary deformation model for the Indonesia’s National Seismic Hazard (NSH) map is constructed as the block rotation and strain accumulation function at the elastic half-space. Deformation due to rigid body motion is estimated by rotating six tectonic blocks in Indonesia. The interseismic deformation due to subduction is estimated by assuming coupling on subduction interface while deformation at active fault is calculated by assuming each of the fault‘s segment slips beneath a locking depth or in combination with creeping in a shallower part. This research shows that rigid body motion dominates the deformation pattern with magnitude more than 15 mm/year, except in the narrow area near subduction zones and active faults where significant deformation reach to 25 mm/year.

  9. Real-time simulation of the nonlinear visco-elastic deformations of soft tissues.

    Science.gov (United States)

    Basafa, Ehsan; Farahmand, Farzam

    2011-05-01

    Mass-spring-damper (MSD) models are often used for real-time surgery simulation due to their fast response and fairly realistic deformation replication. An improved real time simulation model of soft tissue deformation due to a laparoscopic surgical indenter was developed and tested. The mechanical realization of conventional MSD models was improved using nonlinear springs and nodal dampers, while their high computational efficiency was maintained using an adapted implicit integration algorithm. New practical algorithms for model parameter tuning, collision detection, and simulation were incorporated. The model was able to replicate complex biological soft tissue mechanical properties under large deformations, i.e., the nonlinear and viscoelastic behaviors. The simulated response of the model after tuning of its parameters to the experimental data of a deer liver sample, closely tracked the reference data with high correlation and maximum relative differences of less than 5 and 10%, for the tuning and testing data sets respectively. Finally, implementation of the proposed model and algorithms in a graphical environment resulted in a real-time simulation with update rates of 150 Hz for interactive deformation and haptic manipulation, and 30 Hz for visual rendering. The proposed real time simulation model of soft tissue deformation due to a laparoscopic surgical indenter was efficient, realistic, and accurate in ex vivo testing. This model is a suitable candidate for testing in vivo during laparoscopic surgery.

  10. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations.

    Science.gov (United States)

    Kim, Dae-Hyeong; Song, Jizhou; Choi, Won Mook; Kim, Hoon-Sik; Kim, Rak-Hwan; Liu, Zhuangjian; Huang, Yonggang Y; Hwang, Keh-Chih; Zhang, Yong-wei; Rogers, John A

    2008-12-02

    Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90 degrees in approximately 1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to approximately 140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.

  11. Nonlinear analysis of flexible plates lying on elastic foundation

    Directory of Open Access Journals (Sweden)

    Trushin Sergey

    2017-01-01

    Full Text Available This article describes numerical procedures for analysis of flexible rectangular plates lying on elastic foundation. Computing models are based on the theory of plates with account of transverse shear deformations. The finite difference energy method of discretization is used for reducing the initial continuum problem to finite dimensional problem. Solution procedures for nonlinear problem are based on Newton-Raphson method. This theory of plates and numerical methods have been used for investigation of nonlinear behavior of flexible plates on elastic foundation with different properties.

  12. Investigation into some regularities in acoustic emission during deformation of the 16 GNMA steel

    International Nuclear Information System (INIS)

    Chelyshev, N.A.; Chervov, G.A.; Petrov, V.I.; Yakovenko, V.S.; Kazakov, V.V.

    1981-01-01

    A device with variable band of transmission and regulated width of emission band (3-20 kHz) is the most optimal variant of acoustic emission recorder. Change of signal registration frequency of acoustic emission results in change of both qualitative and quantitative peculiarities of summary emission during deformation. A zone of elastic deformation transition to elastic-plastic for the given steel is well marked out according to the data of summary acoustic emission and intensity of signals. Application of devices with variable registration frequency requires usage of wide-band transformers [ru

  13. Deformation aspects of time dependent fracture

    International Nuclear Information System (INIS)

    Li, C.Y.; Turner, A.P.L.; Diercks, D.R.; Laird, C.; Langdon, T.G.; Nix, W.D.; Swindeman, R.; Wolfer, W.G.; Woodford, D.A.

    1979-01-01

    For all metallic materials, particularly at elevated temperatures, deformation plays an important role in fracture. On the macro-continuum level, the inelastic deformation behavior of the material determines how stress is distributed in the body and thus determines the driving force for fracture. At the micro-continuum level, inelastic deformation alters the elastic stress singularity at the crack tip and so determines the local environment in which crack advance takes place. At the microscopic and mechanistic level, there are many possibilities for the mechanisms of deformation to be related to those for crack initiation and growth. At elevated temperatures, inelastic deformation in metallic systems is time dependent so that the distribution of stress in a body will vary with time, affecting conditions for crack initiation and propagation. Creep deformation can reduce the tendency for fracture by relaxing the stresses at geometric stress concentrations. It can also, under suitable constraints, cause a concentration of stresses at specific loading points as a result of relaxation elsewhere in the body. A combination of deformation and unequal heating, as in welding, can generate large residual stress which cannot be predicted from the external loads on the body. Acceleration of deformation by raising the temperature can be an effective way to relieve such residual stresses

  14. Deformation behavior of human dentin in liquid nitrogen: a diametral compression test.

    Science.gov (United States)

    Zaytsev, Dmitry; Panfilov, Peter

    2014-09-01

    Contribution of the collagen fibers into the plasticity of human dentin is considered. Mechanical testing of dentin at low temperature allows excluding the plastic response of its organic matrix. Therefore, deformation and fracture behavior of the dentin samples under diametral compression at room temperature and liquid nitrogen temperature are compared. At 77K dentin behaves like almost brittle material: it is deformed exclusively in the elastic regime and it fails due to growth of the sole crack. On the contrary, dentin demonstrates the ductile response at 300K. There are both elastic and plastic contributions in the deformation of dentin samples. Multiple cracking and crack tip blunting precede the failure of samples. Organic phase plays an important role in fracture of dentin: plasticity of the collagen fibers could inhibit the crack growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Ultrafast imaging of cell elasticity with optical microelastography.

    Science.gov (United States)

    Grasland-Mongrain, Pol; Zorgani, Ali; Nakagawa, Shoma; Bernard, Simon; Paim, Lia Gomes; Fitzharris, Greg; Catheline, Stefan; Cloutier, Guy

    2018-01-30

    Elasticity is a fundamental cellular property that is related to the anatomy, functionality, and pathological state of cells and tissues. However, current techniques based on cell deformation, atomic force microscopy, or Brillouin scattering are rather slow and do not always accurately represent cell elasticity. Here, we have developed an alternative technique by applying shear wave elastography to the micrometer scale. Elastic waves were mechanically induced in live mammalian oocytes using a vibrating micropipette. These audible frequency waves were observed optically at 200,000 frames per second and tracked with an optical flow algorithm. Whole-cell elasticity was then mapped using an elastography method inspired by the seismology field. Using this approach we show that the elasticity of mouse oocytes is decreased when the oocyte cytoskeleton is disrupted with cytochalasin B. The technique is fast (less than 1 ms for data acquisition), precise (spatial resolution of a few micrometers), able to map internal cell structures, and robust and thus represents a tractable option for interrogating biomechanical properties of diverse cell types. Copyright © 2018 the Author(s). Published by PNAS.

  16. Small and large deformation behaviour of mixtures of xanthan and enzyme modified galactomannans

    NARCIS (Netherlands)

    Kloek, W.; Luyten, H.; Vliet, van T.

    1996-01-01

    Small and large deformation properties of aqueous mixtures of xanthan with enzyme modified galactomannans at low ionic strength are discussed in terms of the theory of rubber elasticity and the structure of the galactomannans. The linear deformation region of the gels is small indicating that the

  17. Exploring the Local Elastic Properties of Bilayer Membranes Using Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Pieffet, Gilles; Botero, Alonso; Peters, Günther H.J.

    2014-01-01

    Membrane mechanical elastic properties regulate a variety of cellular processes involving local membrane deformation, such as ion channel function and vesicle fusion. In this work, we used molecular dynamics simulations to estimate the local elastic properties of a membrane. For this, we calculated...... the stretching process in molecular detail, allowing us to fit this profile to a previously proposed continuum elastic model. Through this approach, we calculated an effective membrane spring constant of 42 kJ-2.mol-1, which is in good agreement with the PMF calculation. Furthermore, the solvation energy we...

  18. Driven self-assembly of hard nanoplates on soft elastic shells

    International Nuclear Information System (INIS)

    Zhang Yao-Yang; Hua Yun-Feng; Deng Zhen-Yu

    2015-01-01

    The driven self-assembly behaviors of hard nanoplates on soft elastic shells are investigated by using molecular dynamics (MD) simulation method, and the driven self-assembly structures of adsorbed hard nanoplates depend on the shape of hard nanoplates and the bending energy of soft elastic shells. Three main structures for adsorbed hard nanoplates, including the ordered aggregation structures of hard nanoplates for elastic shells with a moderate bending energy, the collapsed structures for elastic shells with a low bending energy, and the disordered aggregation structures for hard shells, are observed. The self-assembly process of adsorbed hard nanoplates is driven by the surface tension of the elastic shell, and the shape of driven self-assembly structures is determined on the basis of the minimization of the second moment of mass distribution. Meanwhile, the deformations of elastic shells can be controlled by the number of adsorbed rods as well as the length of adsorbed rods. This investigation can help us understand the complexity of the driven self-assembly of hard nanoplates on elastic shells. (paper)

  19. The Time-Dependency of Deformation in Porous Carbonate Rocks

    Science.gov (United States)

    Kibikas, W. M.; Lisabeth, H. P.; Zhu, W.

    2016-12-01

    Porous carbonate rocks are natural reservoirs for freshwater and hydrocarbons. More recently, due to their potential for geothermal energy generation as well as carbon sequestration, there are renewed interests in better understanding of the deformation behavior of carbonate rocks. We conducted a series of deformation experiments to investigate the effects of strain rate and pore fluid chemistry on rock strength and transport properties of porous limestones. Indiana limestone samples with initial porosity of 16% are deformed at 25 °C under effective pressures of 10, 30, and 50 MPa. Under nominally dry conditions, the limestone samples are deformed under 3 different strain rates, 1.5 x 10-4 s-1, 1.5 x 10-5 s-1 and 1.5 x 10-6 s-1 respectively. The experimental results indicate that the mechanical behavior is both rate- and pressure-dependent. At low confining pressures, post-yielding deformation changes from predominantly strain softening to strain hardening as strain rate decreases. At high confining pressures, while all samples exhibit shear-enhanced compaction, decreasing strain rate leads to an increase in compaction. Slower strain rates enhance compaction at all confining pressure conditions. The rate-dependence of deformation behaviors of porous carbonate rocks at dry conditions indicates there is a strong visco-elastic coupling for the degradation of elastic modulus with increasing plastic deformation. In fluid saturated samples, inelastic strain of limestone is partitioned among low temperature plasticity, cataclasis and solution transport. Comparison of inelastic behaviors of samples deformed with distilled water and CO2-saturated aqueous solution as pore fluids provide experimental constraints on the relative activities of the various mechanisms. Detailed microstructural analysis is conducted to take into account the links between stress, microstructure and the inelastic behavior and failure mechanisms.

  20. The elastic constants and anisotropy of superconducting MgCNi3 and CdCNi3 under different pressure

    KAUST Repository

    Feng, Huifang; Wu, Xiaozhi; Gan, Liyong; Wang, Rui; Wei, Qunyi

    2013-01-01

    The second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of MgCNi3 and CdCNi3 are presented by using first-principles methods combined with homogeneous deformation theory. The Voigt-Reuss-Hill (VRH) approximation are used

  1. Elastic and plastic strains and the stress corrosion cracking of austenitic stainless steels. Final report

    International Nuclear Information System (INIS)

    Vaccaro, F.P.; Hehemann, R.F.; Troiano, A.R.

    1979-08-01

    The influence of elastic (stress) and plastic (cold work) strains on the stress corrosion cracking of a transformable austenitic stainless steel was studied in several aqueous chloride environments. Initial polarization behavior was active for all deformation conditions as well as for the annealed state. Visual observation, potential-time, and current-time curves indicated the development of a pseudo-passive (flawed) film leading to localized corrosion, occluded cells and SCC. SCC did not initiate during active corrosion regardless of the state of strain unless severe low temperature deformation produced a high percentage of martensite. Both elastic and plastic deformation increased the sensitivity to SCC when examined on the basis of percent yield strength. The corrosion potential, the critical cracking potential, and the potential at which the current changes from anodic to cathodic were essentially unaffected by deformation. It is apparent that the basic electrochemical parameters are independent of the bulk properties of the alloy and totally controlled by surface phenomena

  2. Advances in biomimetic regeneration of elastic matrix structures

    Science.gov (United States)

    Sivaraman, Balakrishnan; Bashur, Chris A.

    2012-01-01

    Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960

  3. Large Deformation of an Elastic Rod with Structural Anisotropy Subjected to Fluid Flow

    Science.gov (United States)

    Hassani, Masoud; Mureithi, Njuki; Gosselin, Frederick

    2015-11-01

    In the present work, we seek to understand the fundamental mechanisms of three-dimensional reconfiguration of plants by studying the large deformation of a flexible rod in fluid flow. Flexible rods made of Polyurethane foam and reinforced with Nylon fibers are tested in a wind tunnel. The rods have bending-torsion coupling which induces a torsional deformation during asymmetric bending. A mathematical model is also developed by coupling the Kirchhoff rod theory with a semi-empirical drag formulation. Different alignments of the material frame with respect to the flow direction and a range of structural properties are considered to study their effect on the deformation of the flexible rod and its drag scaling. Results show that twisting causes the flexible rods to reorient and bend with the minimum bending rigidity. It is also found that the drag scaling of the rod in the large deformation regime is not affected by torsion. Finally, using a proper set of dimensionless numbers, the state of a bending and twisting rod is characterized as a beam undergoing a pure bending deformation.

  4. Charge-regularized swelling kinetics of polyelectrolyte gels: Elasticity and diffusion

    Science.gov (United States)

    Sen, Swati; Kundagrami, Arindam

    2017-11-01

    We apply a recently developed method [S. Sen and A. Kundagrami, J. Chem. Phys. 143, 224904 (2015)], using a phenomenological expression of osmotic stress, as a function of polymer and charge densities, hydrophobicity, and network elasticity for the swelling of spherical polyelectrolyte (PE) gels with fixed and variable charges in a salt-free solvent. This expression of stress is used in the equation of motion of swelling kinetics of spherical PE gels to numerically calculate the spatial profiles for the polymer and free ion densities at different time steps and the time evolution of the size of the gel. We compare the profiles of the same variables obtained from the classical linear theory of elasticity and quantitatively estimate the bulk modulus of the PE gel. Further, we obtain an analytical expression of the elastic modulus from the linearized expression of stress (in the small deformation limit). We find that the estimated bulk modulus of the PE gel decreases with the increase of its effective charge for a fixed degree of deformation during swelling. Finally, we match the gel-front locations with the experimental data, taken from the measurements of charged reversible addition-fragmentation chain transfer gels to show an increase in gel-size with charge and also match the same for PNIPAM (uncharged) and imidazolium-based (charged) minigels, which specifically confirms the decrease of the gel modulus value with the increase of the charge. The agreement between experimental and theoretical results confirms general diffusive behaviour for swelling of PE gels with a decreasing bulk modulus with increasing degree of ionization (charge). The new formalism captures large deformations as well with a significant variation of charge content of the gel. It is found that PE gels with large deformation but same initial size swell faster with a higher charge.

  5. AERODYNAMIC LOAD OF AN AIRCRAFT WITH A HIGHLY ELASTIC WING

    Directory of Open Access Journals (Sweden)

    Pavel Schoř

    2017-09-01

    Full Text Available In this article, a method for calculation of air loads of an aircraft with an elastic wing is presented. The method can predict a redistribution of air loads when the elastic wing deforms. Unlike the traditional Euler or Navier-Stokes CFD to FEM coupling, the method uses 3D panel method as a source of aerodynamic data. This makes the calculation feasible on a typical recent workstation. Due to a short computational time and low hardware demands this method is suitable for both the preliminary design stage and the load evaluation stage. A case study is presented. The study compares a glider wing performing a pull maneuver at both rigid and and elastic state. The study indicates a significant redistribution of air load at the elastic case.

  6. Longitudinal waves in carbon nanotubes in the presence of transverse magnetic field and elastic medium

    Science.gov (United States)

    Liu, Hu; Liu, Hua; Yang, Jialing

    2017-09-01

    In the present paper, the coupling effect of transverse magnetic field and elastic medium on the longitudinal wave propagation along a carbon nanotube (CNT) is studied. Based on the nonlocal elasticity theory and Hamilton's principle, a unified nonlocal rod theory which takes into account the effects of small size scale, lateral inertia and radial deformation is proposed. The existing rod theories including the classic rod theory, the Rayleigh-Love theory and Rayleigh-Bishop theory for macro solids can be treated as the special cases of the present model. A two-parameter foundation model (Pasternak-type model) is used to represent the elastic medium. The influence of transverse magnetic field, Pasternak-type elastic medium and small size scale on the longitudinal wave propagation behavior of the CNT is investigated in detail. It is shown that the influences of lateral inertia and radial deformation cannot be neglected in analyzing the longitudinal wave propagation characteristics of the CNT. The results also show that the elastic medium and the transverse magnetic field will also affect the longitudinal wave dispersion behavior of the CNT significantly. The results obtained in this paper are helpful for understanding the mechanical behaviors of nanostructures embedded in an elastic medium.

  7. Automatic selective feature retention in patient specific elastic surface registration

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2011-01-01

    Full Text Available The accuracy with which a recent elastic surface registration algorithm deforms the complex geometry of a skull is examined. This algorithm is then coupled to a line based algorithm as is frequently used in patient specific feature registration...

  8. Texture-geometric deformational effects in some metal-hydrogen systems

    International Nuclear Information System (INIS)

    Spivak, L.V.; Kats, M.Ya.

    1992-01-01

    Possible deformation effects were studied in vanadium, tantalum, niobium, palladium and iron which occurred during electrolytic hydrogenation of specimens preliminarily deformed by torsion and then annealed. Noticeable texture-geometric effects were observed and related to the system tendency to enhance the degree of specimen form symmetry during hydrogenation. The latter was an off-beat realization of Le-Chatelier principle. It was assumed that the nature of deformation effects was connected with one of minimization channels for overall elastic stress fields in metals being hydrogenated. Some distinction was revealed in behaviour of 5a group metal, palladium and iron

  9. Effective stress law for anisotropic elastic deformation

    International Nuclear Information System (INIS)

    Carroll, M.M.

    1979-01-01

    An effective stress law is derived analytically to describe the effect of pore fluid pressure on the linearly elastic response of saturated porous rocks which exhibit anisotropy. For general anisotropy the difference between the effective stress and the applied stress is not hydrostatic. The effective stress law involves two constants for transversely isotropic response and three constants for orthotropic response; these constants can be expressed in terms of the moduli of the porous material and of the solid material. These expressions simplify considerably when the anisotropy is structural rather than intrinsic, i.e., in the case of an isotropic solid material with an anisotropic pore structure. In this case the effective stress law involves the solid or grain bulk modulus and two or three moduli of the porous material, for transverse isotropy and orthotropy, respectively. The law reduces, in the case of isotropic response, to that suggested by Geertsma (1957) and by Skempton (1961) and derived analytically by Nur and Byerlee

  10. The 3D model: explaining densification and deformation mechanisms by using 3D parameter plots.

    Science.gov (United States)

    Picker, Katharina M

    2004-04-01

    The aim of the study was to analyze very differently deforming materials using 3D parameter plots and consequently to gain deeper insights into the densification and deformation process described with the 3D model in order to define an ideal tableting excipient. The excipients used were dicalcium phosphate dihydrate (DCPD), sodium chloride (NaCl), microcrystalline cellulose (MCC), xylitol, mannitol, alpha-lactose monohydrate, maltose, hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC), cellulose acetate (CAC), maize starch, potato starch, pregelatinized starch, and maltodextrine. All of the materials were tableted to graded maximum relative densities (rhorel, max) using an eccentric tableting machine. The data which resulted, namely force, displacement, and time, were analyzed by the application of 3D modeling. Different particle size fractions of DCPD, CAC, and MCC were analyzed in addition. Brittle deforming materials such as DCPD exhibited a completely different 3D parameter plot, with low time plasticity, d, and low pressure plasticity, e, and a strong decrease in omega values when densification increased, in contrast to the plastically deforming MCC, which had much higher d, e, and omega values. e and omega values changed only slightly when densification increased for MCC. NaCl showed less of a decrease in omega values than DCPD did, and the d and e values were between those of MCC and DCPD. The sugar alcohols, xylitol and mannitol, behaved in a similar fashion to sodium chloride. This is also valid for the crystalline sugars, alpha-lactose monohydrate, and maltose. However, the sugars are more brittle than the sugar alcohols. The cellulose derivatives, HPMC, NaCMC, and CAC, are as plastic as MCC, however, their elasticity depends on substitution indicated by lower (more elastic) or higher (less elastic) omega values. The native starches, maize starch and potato starch, are very elastic, and pregelatinized starch and maltodextrine are

  11. Deformation of a layered half-space due to a very long tensile fault

    Indian Academy of Sciences (India)

    The problem of the coseismic deformation of an earth model consisting of an elastic layer of uniform thickness overlying an elastic half-space due to a very long tensile fault in the layer is solved analytically. Integral expressions for the surface displacements are obtained for a vertical tensile fault and a horizontal tensile fault.

  12. Fully coupled heat conduction and deformation analyses of visco-elastic solids

    KAUST Repository

    Khan, Kamran; Muliana, Anastasia Hanifah

    2012-01-01

    the temperature in a viscoelastic body. The rate of stress relaxation (or the rate of creep) and the mechanical and physical properties of visco-elastic materials, such as polymers, vary with temperature. This study aims at understanding the effect of coupling

  13. The Finite Deformation Dynamic Sphere Test Problem

    Energy Technology Data Exchange (ETDEWEB)

    Versino, Daniele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brock, Jerry Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are ri = 10mm, ro = 20mm and p = 1000Kg/m3 respectively.

  14. High Strain Rate and Shock-Induced Deformation in Metals

    Science.gov (United States)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as

  15. Characterization of residual stresses generated during inhomogeneous plastic deformation

    DEFF Research Database (Denmark)

    Lorentzen, T.; Faurholdt, T.; Clausen, B.

    1998-01-01

    Residual stresses generated by macroscopic inhomogeneous plastic deformation are predicted by an explicit finite element (FE) technique. The numerical predictions are evaluated by characterizing the residual elastic strains by neutron diffraction using two different (hkl) reflections. Intergranular...... compare well and verify the capability of the numerical technique as well as the possibilities of experimental validation using neutron diffraction. The presented experimental and numerical approach will subsequently be utilized for the evaluation of more complicated plastic deformation processes...

  16. Modelling of planar interface elastic behaviour: Application to grain boundaries in polycrystals

    International Nuclear Information System (INIS)

    Gelebart, L.

    2010-01-01

    In polycrystalline elastic simulations, grain boundaries can be considered as volume inter-phases or as elastic interfaces assuming a displacement jump across the interface. Such an interface description does not account for the in-plane deformation of the interface and Poisson effects cannot be reproduced. The purpose of this Note is to provide an enriched description of the elastic interface which takes into account such effects. When considering a multilayer material, the interphase description and the enriched interface description yield identical homogenized behaviour while quite important discrepancies can be observed with the classical interface description. (author)

  17. Measurement of in-plane elasticity of live cell layers using a pressure sensor embedded microfluidic device

    Science.gov (United States)

    Lin, Chien-Han; Wang, Chien-Kai; Chen, Yu-An; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2016-11-01

    In various physiological activities, cells experience stresses along their in-plane direction when facing substrate deformation. Capability of continuous monitoring elasticity of live cell layers during a period is highly desired to investigate cell property variation during various transformations under normal or disease states. This paper reports time-lapsed measurement of live cell layer in-plane elasticity using a pressure sensor embedded microfluidic device. The sensor converts pressure-induced deformation of a flexible membrane to electrical signals. When cells are cultured on top of the membrane, flexural rigidity of the composite membrane increases and further changes the output electrical signals. In the experiments, human embryonic lung fibroblast (MRC-5) cells are cultured and analyzed to estimate the in-plane elasticity. In addition, the cells are treated with a growth factor to simulate lung fibrosis to study the effects of cell transformation on the elasticity variation. For comparison, elasticity measurement on the cells by atomic force microscopy (AFM) is also performed. The experimental results confirm highly anisotropic configuration and material properties of cells. Furthermore, the in-plane elasticity can be monitored during the cell transformation after the growth factor stimulation. Consequently, the developed microfluidic device provides a powerful tool to study physical properties of cells for fundamental biophysics and biomedical researches.

  18. Special Features of Strain Localization and Nanodipoles of Partial Disclinations in the Region of Elastic Distortions

    Science.gov (United States)

    Tyumentsev, A. N.; Ditenberg, I. A.; Sukhanov, I. I.

    2018-02-01

    In the zones of strain localization in the region of elastic distortions and nanodipoles of partial disclinations representing the defects of elastically deformed medium, a theoretical analysis of the elastically stressed state and the energy of these defects, including the cases of their transformation into more complex ensembles of interrelated disclinations, is performed. Using the analytical results, the mechanisms of strain localization are discussed in the stages of nucleation and propagation of the bands of elastic and plastic strain localization formed in these zones (including the cases of nanocrystalline structure formation).

  19. Deformation effects in the heavy ion quarter-point angle

    International Nuclear Information System (INIS)

    Almeida, F.I.A. de; Hussein, M.S.

    1984-01-01

    The effects of static and dynamic deformation on the heavy-ion elastic scattering quarter-point angle are discussed and analyzed in the sudden approximation. Simple expressions are derived within the Fresnel model and applications to several heavy-ion systems are presented. (Author) [pt

  20. On the correlation between deformation twinning and Lueders-like deformation in an extruded Mg alloy: In situ neutron diffraction and EPSC.4 modelling

    International Nuclear Information System (INIS)

    Muransky, O.; Barnett, M.R.; Luzin, V.; Vogel, S.

    2010-01-01

    The current work focuses on the yielding and immediate post-yielding deformation of fine-grained and coarse-grained ZM20 Mg alloys obtained by extrusion. Compressive deformations along the extrusion direction, known to be governed by profuse twinning are examined in detail. It is shown that the fine-grained alloy exhibits Lueders-like plateaux suggesting heterogeneous transition from elastic to plastic deformation. This is due to the cooperative twinning of neighbouring grains which is promoted in the fine-grained alloy by the high internal stresses borne by the parent grain families in the vicinity of yielding, and the auto-catalytic nature of twin nucleation. The elasto-plastic response of tested alloys was also simulated using version 4 of the Elasto-Plastic Self-Consistent (EPSC) model. The finite initial fraction (FIF) assumption is employed to account for the stress relaxation related to the twin nucleation process. It is shown that the new EPSC.4 model is superior to its previous version as it enables realistic predictions of the development of elastic lattice strains in variously oriented grain families and the macroscopic stress-strain response of a polycrystalline aggregate undergoing profuse twinning.

  1. Effect of elastic anisotropy of crystal grain on stress intensity factor

    Energy Technology Data Exchange (ETDEWEB)

    Kamaya, Masayuki [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    The stress intensity factor (SIF) is used widely for evaluating integrity of cracked components. Usually, the SIF obtained under isotropic elastic conditions is used for the evaluations. Although, macroscopic elastic behaviors of polycrystal materials can be considered isotropic, each crystal has anisotropic elastic properties. This implies that if the crack size is small and the influence of anisotropic elastic properties on the stress around cracks is significant, the SIF evaluated under anisotropic elastic conditions may differ from the SIF obtained under isotropic elastic conditions. In the present study, the effect of anisotropic elasticity on the SIF was evaluated by using the finite element analysis (FEA). First, the SIF of semi-circular cracks located in a single crystal was evaluated. It was found that the SIF is affected crystal orientation. Secondly, FEA using a polycrystal model was performed. It was found that the change in the SIF was caused by crack tip crystal orientation as well as the deformation constraint from neighboring crystals. Finally, the statistical tendency of change in the SIF caused by the anisotropic elastic properties and the relationship with crack size were examined. The influence of the local SIF on crack growth behavior is also discussed. (author)

  2. Effect of elastic anisotropy of crystal grain on stress intensity factor

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2002-01-01

    The stress intensity factor (SIF) is used widely for evaluating integrity of cracked components. Usually, the SIF obtained under isotropic elastic conditions is used for the evaluations. Although, macroscopic elastic behaviors of polycrystal materials can be considered isotropic, each crystal has anisotropic elastic properties. This implies that if the crack size is small and the influence of anisotropic elastic properties on the stress around cracks is significant, the SIF evaluated under anisotropic elastic conditions may differ from the SIF obtained under isotropic elastic conditions. In the present study, the effect of anisotropic elasticity on the SIF was evaluated by using the finite element analysis (FEA). First, the SIF of semi-circular cracks located in a single crystal was evaluated. It was found that the SIF is affected crystal orientation. Secondly, FEA using a polycrystal model was performed. It was found that the change in the SIF was caused by crack tip crystal orientation as well as the deformation constraint from neighboring crystals. Finally, the statistical tendency of change in the SIF caused by the anisotropic elastic properties and the relationship with crack size were examined. The influence of the local SIF on crack growth behavior is also discussed. (author)

  3. Phase separation and shape deformation of two-phase membranes

    International Nuclear Information System (INIS)

    Jiang, Y.; Lookman, T.; Saxena, A.

    2000-01-01

    Within a coupled-field Ginzburg-Landau model we study analytically phase separation and accompanying shape deformation on a two-phase elastic membrane in simple geometries such as cylinders, spheres, and tori. Using an exact periodic domain wall solution we solve for the shape and phase separating field, and estimate the degree of deformation of the membrane. The results are pertinent to preferential phase separation in regions of differing curvature on a variety of vesicles. (c) 2000 The American Physical Society

  4. Calculation of elastic constants of BCC transition metals: tight-binding recursion method

    International Nuclear Information System (INIS)

    Masuda, K.; Hamada, N.; Terakura, K.

    1984-01-01

    The elastic constants of BCC transition metals (Fe, Nb, Mo and W) are calculated by using the tight-binding d band and the Born-Mayer repulsive potential. Introducing a small distortion characteristic to C 44 (or C') elastic deformation and calculating the energy change up to second order in the atomic displacement, the shear elastic constants C 44 and C' are determined. The elastic constants C 11 and C 12 are then calculated by using the relations B=1/3(C 11 + 2C 12 ) and C'=1/2(C 11 -C 12 ), where B is the bulk modulus. In general, the agreement between the present results and the experimental values is satisfactory. The characteristic elasticity behaviour, i.e. the strong Nsub(d) (number of d electrons) dependence of the observed anisotropy factor A=C 44 /C', will also be discussed. (author)

  5. Geometric method for stability of non-linear elastic thin shells

    CERN Document Server

    Ivanova, Jordanka

    2002-01-01

    PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surfac...

  6. Nonlinear Elasticity

    Science.gov (United States)

    Fu, Y. B.; Ogden, R. W.

    2001-05-01

    This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.

  7. MABEL-1. A code to analyse cladding deformation in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Bowring, R.W.; Cooper, C.A.

    1978-06-01

    The MABEL-1 code has been written to investigate the deformation, of fuel pin cladding and its effects on fuel pin temperature transients during a loss-of-coolant accident. The code considers a single fuel pin with heated fuel concentric within the cladding. The fuel pin temperature distribution is evaluated using a one-dimensional conduction model with heat transfer to the coolant represented by an input set of heat transfer coefficients. The cladding deformation is calculated using the code CANSWEL, which assumes all strain to be elastic or creep and models the creep under a multi-axial stress system by a spring/dashpot combination undergoing alternate relaxation and elastic strain. (author)

  8. Nonlinear Elasticity of Borocarbide Superconductor YNi2B2C: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Lili Liu

    2017-01-01

    Full Text Available First-principles calculations combined with homogeneous deformation methods are used to investigate the second- and third-order elastic constants of YNi2B2C with tetragonal structure. The predicted lattice constants and second-order elastic constants of YNi2B2C agree well with the available data. The effective second-order elastic constants are obtained from the second- and third-order elastic constants for YNi2B2C. Based on the effective second-order elastic constants, Pugh’s modulus ratio, Poisson’s ratio, and Vickers hardness of YNi2B2C under high pressure are further investigated. It is shown that the ductility of YNi2B2C increases with increasing pressure.

  9. On The Stress Free Deformation Of Linear FGM Interface Under Constant Temperature

    Directory of Open Access Journals (Sweden)

    Ganczarski Artur

    2015-09-01

    Full Text Available This paper demonstrates the stress free thermo-elastic problem of the FGM thick plate. Existence of such a purely thermal deformation is proved in two ways. First proof is based on application of the Iljushin thermo-elastic potential to displacement type system of equations. This reduces 3D problem to the plane stress state problem. Next it is shown that the unique solution fulfils conditions of simultaneous constant temperature and linear gradation of thermal expansion coefficient. Second proof is based directly on stress type system of equations which straightforwardly reduces to compatibility equations for purely thermal deformation. This occurs if only stress field is homogeneous in domain and at boundary. Finally an example of application to an engineering problem is presented.

  10. Large deformation analysis of adhesive by Eulerian method with new material model

    International Nuclear Information System (INIS)

    Maeda, K; Nishiguchi, K; Iwamoto, T; Okazawa, S

    2010-01-01

    The material model to describe large deformation of a pressure sensitive adhesive (PSA) is presented. A relationship between stress and strain of PSA includes viscoelasticity and rubber-elasticity. Therefore, we propose the material model for describing viscoelasticity and rubber-elasticity, and extend the presented material model to the rate form for three dimensional finite element analysis. After proposing the material model for PSA, we formulate the Eulerian method to simulate large deformation behavior. In the Eulerian calculation, the Piecewise Linear Interface Calculation (PLIC) method for capturing material surface is employed. By using PLIC method, we can impose dynamic and kinematic boundary conditions on captured material surface. The representative two computational examples are calculated to check validity of the present methods.

  11. Hydro-elastic analysis and optimization of a composite marine propeller

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Berggreen, Christian; Andersen, Poul

    2010-01-01

    The present paper addresses the design and optimization of a flexible composite marine propeller. The aim is to tailor the laminate to control the deformed shape of the blade and consequently the developed thrust. The development of a hydro-elastic model is presented, and the laminate lay-up which...

  12. Hydro-Elastic Tailoring and Optimization of a Composite Marine Propeller

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Berggreen, Christian; Andersen, Poul

    2008-01-01

    The following paper deals with the design and optimization of a flexible composite marine propeller. The blade shape is obtained from an existing high skew metal propeller. The aim is to tailor the laminate to control the elastic couplings and therefore the deformed shape of the blade. The develo...

  13. EFFECTS OF PARENT ARTERY SEGMENTATION AND ANEURISMALWALL ELASTICITY ON PATIENT-SPECIFIC HEMODYNAMIC SIMULATIONS

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia-liang; DING Guang-hong; YANG Xin-jian; LI Hai-yun

    2011-01-01

    It is well known that hemodynamics and wall tension play an important role in the formation,growth and rupture of aneurysms.In the present study,the authors investigated the influence of parent artery segmentation and aneurismal-wall elasticity on patient-specific hemodynamic simulations with two patient-specific eases of cerebral aneurysms.Realistic models of the aneurysms were constructed from 3-D angiography images and blood flow dynamics was studied under physiologically representative waveform of inflow.For each aneurysm three computational models were constructed:Model 1 with more extensive upstream parent artery with the rigid arterial and aneurismal wall,Model 2 with the partial upstream parent artery with the elastic arterial and aneurismal wall,Model 3 with more extensive upstream parent artery with the rigid wall for arterial wall far from the aneurysm and the elastic wall for arterial wall near the aneurysm.The results show that Model 1 could predict complex intra-aneurismal flow patterns and wall shear stress distribution in the aneurysm,but is unable to give aneurismal wall deformation and tension,Model 2 demonstrates aneurismal wall deformation and tension,but fails to properly model inflow pattern contributed by the upstream parent artery,resulting in local misunderstanding Wall Shear Stress (WSS) distribution,Model 3 can overcome limitations of the former two models,and give an overall and accurate analysis on intra-aneurismal flow patterns,wall shear stress distribution,aneurismal-wall deformation and tension.Therefore we suggest that the proper length of extensive upstream parent artery and aneuri-smal-wall elasticity should be considered carefully in establishing computational model to predict the intra-aneurismal hemodynamic and wall tension.

  14. Adhesive friction for elastic-plastic contacting rough surfaces considering asperity interaction

    International Nuclear Information System (INIS)

    Sahoo, Prasanta

    2006-01-01

    The paper describes a theoretical study of adhesive friction at the contact between rough surfaces taking asperity interaction into consideration and using an elastic-plastic model of contact deformation that is based on an accurate finite element analysis of an elastic-plastic single asperity contact. The micro-contact model of asperity interactions, developed by Zhao and Chang, is integrated into the improved elastic-plastic rough surface adhesive contact analysis to consider the adhesive friction behaviour of rough surfaces. The model considers a large range of interference values from fully elastic through elastic-plastic to fully plastic regimes of contacting asperities. Two well-established adhesion indices are used to consider different conditions that arise as a result of varying load, surface and material parameters. Results are obtained for the coefficient of friction against applied load for various combinations of these parameters. The results show that the coefficient of friction depends strongly on the applied load for the no-interaction case while it becomes insensitive to the load for interaction consideration. Moreover, the inclusion of elastic-plastic asperities further reduces the friction coefficient

  15. Interaction and deformation of viscoelastic particles: Nonadhesive particles

    International Nuclear Information System (INIS)

    Attard, Phil

    2001-01-01

    A viscoelastic theory is formulated for the deformation of particles that interact with finite-ranged surface forces. The theory generalizes the static approach based upon classic continuum elasticity theory to account for time-dependent effects, and goes beyond contact theories such as Hertz and that given by Johnson, Kendall, and Roberts by including realistic surface interactions. Common devices used to measure load and deformation are modeled and the theory takes into account the driving velocity of the apparatus and the relaxation time of the material. Nonadhesive particles are modeled by an electric double layer repulsion. Triangular, step, and sinusoidal trajectories are analyzed in a unified treatment of loading and unloading. The load-deformation and the load-contact area curves are shown to be velocity dependent and hysteretic

  16. Anisotropic elasticity of silicon and its application to the modelling of X-ray optics

    International Nuclear Information System (INIS)

    Zhang, Lin; Barrett, Raymond; Cloetens, Peter; Detlefs, Carsten; Sanchez del Rio, Manuel

    2014-01-01

    Anisotropic elasticity of single-crystal silicon, applications to modelling of a bent X-ray mirror, and thermal deformation of a liquid-nitrogen-cooled monochromator crystal are presented. The crystal lattice of single-crystal silicon gives rise to anisotropic elasticity. The stiffness and compliance coefficient matrix depend on crystal orientation and, consequently, Young’s modulus, the shear modulus and Poisson’s ratio as well. Computer codes (in Matlab and Python) have been developed to calculate these anisotropic elasticity parameters for a silicon crystal in any orientation. These codes facilitate the evaluation of these anisotropy effects in silicon for applications such as microelectronics, microelectromechanical systems and X-ray optics. For mechanically bent X-ray optics, it is shown that the silicon crystal orientation is an important factor which may significantly influence the optics design and manufacturing phase. Choosing the appropriate crystal orientation can both lead to improved performance whilst lowering mechanical bending stresses. The thermal deformation of the crystal depends on Poisson’s ratio. For an isotropic constant Poisson’s ratio, ν, the thermal deformation (RMS slope) is proportional to (1 + ν). For a cubic anisotropic material, the thermal deformation of the X-ray optics can be approximately simulated by using the average of ν 12 and ν 13 as an effective isotropic Poisson’s ratio, where the direction 1 is normal to the optic surface, and the directions 2 and 3 are two normal orthogonal directions parallel to the optical surface. This average is independent of the direction in the optical surface (the crystal plane) for Si(100), Si(110) and Si(111). Using the effective isotropic Poisson’s ratio for these orientations leads to an error in thermal deformation smaller than 5.5%

  17. Anisotropic elasticity of silicon and its application to the modelling of X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin, E-mail: zhang@esrf.fr; Barrett, Raymond; Cloetens, Peter; Detlefs, Carsten; Sanchez del Rio, Manuel [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP 220, 38043 Grenoble (France)

    2014-04-04

    Anisotropic elasticity of single-crystal silicon, applications to modelling of a bent X-ray mirror, and thermal deformation of a liquid-nitrogen-cooled monochromator crystal are presented. The crystal lattice of single-crystal silicon gives rise to anisotropic elasticity. The stiffness and compliance coefficient matrix depend on crystal orientation and, consequently, Young’s modulus, the shear modulus and Poisson’s ratio as well. Computer codes (in Matlab and Python) have been developed to calculate these anisotropic elasticity parameters for a silicon crystal in any orientation. These codes facilitate the evaluation of these anisotropy effects in silicon for applications such as microelectronics, microelectromechanical systems and X-ray optics. For mechanically bent X-ray optics, it is shown that the silicon crystal orientation is an important factor which may significantly influence the optics design and manufacturing phase. Choosing the appropriate crystal orientation can both lead to improved performance whilst lowering mechanical bending stresses. The thermal deformation of the crystal depends on Poisson’s ratio. For an isotropic constant Poisson’s ratio, ν, the thermal deformation (RMS slope) is proportional to (1 + ν). For a cubic anisotropic material, the thermal deformation of the X-ray optics can be approximately simulated by using the average of ν{sub 12} and ν{sub 13} as an effective isotropic Poisson’s ratio, where the direction 1 is normal to the optic surface, and the directions 2 and 3 are two normal orthogonal directions parallel to the optical surface. This average is independent of the direction in the optical surface (the crystal plane) for Si(100), Si(110) and Si(111). Using the effective isotropic Poisson’s ratio for these orientations leads to an error in thermal deformation smaller than 5.5%.

  18. Forces and torques on rigid inclusions in an elastic environment: Resulting matrix-mediated interactions, displacements, and rotations

    Science.gov (United States)

    Puljiz, Mate; Menzel, Andreas M.

    2017-05-01

    Embedding rigid inclusions into elastic matrix materials is a procedure of high practical relevance, for instance, for the fabrication of elastic composite materials. We theoretically analyze the following situation. Rigid spherical inclusions are enclosed by a homogeneous elastic medium under stick boundary conditions. Forces and torques are directly imposed from outside onto the inclusions or are externally induced between them. The inclusions respond to these forces and torques by translations and rotations against the surrounding elastic matrix. This leads to elastic matrix deformations, and in turn results in mutual long-ranged matrix-mediated interactions between the inclusions. Adapting a well-known approach from low-Reynolds-number hydrodynamics, we explicitly calculate the displacements and rotations of the inclusions from the externally imposed or induced forces and torques. Analytical expressions are presented as a function of the inclusion configuration in terms of displaceability and rotateability matrices. The role of the elastic environment is implicitly included in these relations. That is, the resulting expressions allow a calculation of the induced displacements and rotations directly from the inclusion configuration, without having to explicitly determine the deformations of the elastic environment. In contrast to the hydrodynamic case, compressibility of the surrounding medium is readily taken into account. We present the complete derivation based on the underlying equations of linear elasticity theory. In the future, the method will, for example, be helpful to characterize the behavior of externally tunable elastic composite materials, to accelerate numerical approaches, as well as to improve the quantitative interpretation of microrheological results.

  19. Postseismic viscoelastic surface deformation and stress. Part 1: Theoretical considerations, displacement and strain calculations

    Science.gov (United States)

    Cohen, S. C.

    1979-01-01

    A model of viscoelastic deformations associated with earthquakes is presented. A strike-slip fault is represented by a rectangular dislocation in a viscoelastic layer (lithosphere) lying over a viscoelastic half-space (asthenosphere). Deformations occur on three time scales. The initial response is governed by the instantaneous elastic properties of the earth. A slower response is associated with viscoelastic relaxation of the lithosphere and a yet slower response is due to viscoelastic relaxation of the asthenosphere. The major conceptual contribution is the inclusion of lithospheric viscoelastic properties into a dislocation model of earthquake related deformations and stresses. Numerical calculations using typical fault parameters reveal that the postseismic displacements and strains are small compared to the coseismic ones near the fault, but become significant further away. Moreover, the directional sense of the deformations attributable to the elastic response, the lithospheric viscoelastic softening, and the asthenospheric viscoelastic flow may differ and depend on location and model details. The results and theoretical arguments suggest that the stress changes accompanying lithospheric relaxation may also be in a different sense than and be larger than the strain changes.

  20. Texture, residual strain, and plastic deformation around scratches in alloy 600 using synchrotron X-ray Laue micro-diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Suominen Fuller, M.L. [Surface Science Western, Room G-1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada)], E-mail: mfuller@uwo.ca; Klassen, R.J. [Department of Mechanical and Materials Engineering, Room 3002 Spencer Engineering Building, University of Western Ontario, London, Ontario, N6A 5B9 (Canada); McIntyre, N.S. [Surface Science Western, Room G-1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Gerson, A.R. [Applied Centre for Structural and Synchrotron Studies, Mawson Lakes Campus, University of South Australia, Adelaide, South Australia 5095 (Australia); Ramamurthy, S. [Surface Science Western, Room G-1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); King, P.J. [Babcock and Wilcox Canada, 581 Coronation Blvd., Cambridge, Ontario, N1R5V3 (Canada); Liu, W. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2008-03-15

    Deformation around two scratches in Alloy 600 (A600) was studied nondestructively using synchrotron Laue differential aperture X-ray microscopy. The orientation of grains and elastic strain distribution around the scratches were measured. A complex residual deviatoric elastic strain state was found to exist around the scratches. Heavy plastic deformation was observed up to a distance of 20 {mu}m from the scratches. In the region 20-30 {mu}m from the scratches the diffraction spots were heavily streaked and split indicating misoriented dislocation cell structures.

  1. Finite element simulation of thermal, elastic and plastic phenomena in fuel elements

    International Nuclear Information System (INIS)

    Soba, Alejandro; Denis, Alicia C.

    1999-01-01

    Taking as starting point an irradiation experiment of the first Argentine MOX fuel prototype, performed at the HFR reactor of Petten, Holland, the deformation suffered by the fuel element materials during burning has been numerically studied. Analysis of the pellet-cladding interaction is made by the finite element method. The code determines the temperature distribution and analyzes elastic and creep deformations, taking into account the dependency of the physical parameters of the problem on temperature. (author)

  2. Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study

    Science.gov (United States)

    Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.

    2014-04-01

    Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of /{100} and /{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of /{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in /{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in /{111} shows higher strength and elastic modulus than /{100} oriented nanowire.

  3. Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube

    International Nuclear Information System (INIS)

    Eraslan, Ahmet N.; Akis, Tolga

    2006-01-01

    Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states are investigated. It is shown that the elastoplastic response of the functionally graded pressurized tube is affected significantly by the material nonhomogeneity. Different modes of plasticization may take place unlike the homogeneous case. It is also shown mathematically that the nonhomogeneous elastoplastic solution presented here reduces to that of a homogeneous one by appropriate choice of the material parameters

  4. Modelling of the deformation of shot peened cylindrical specimens of 42 CrMo4 in uniaxial tension and deformation and of the resulting macro residual stresses; Modellierung der einachsigen Zug- und Druck-Verformung kugelgestrahlter Zylinderproben aus verguetetem 42 CrMo4 und der dabei auftretenden Makroeigenspannungsaenderungen

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, V.; Voehringer, O.; Macherauch, E. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Werkstoffkunde 1

    1998-10-01

    Tensile and compressive stress-strain-curves of shot peened and unpeened specimens of quenched and tempered 42 CrMo 4 (AISI 4140) with a diameter of 5 mm only differ in the yield strengths and in the Lueders-deformation. In comparison to the core the regions close to the surface of shot peened cylindrical specimens bear relatively large axial and tangential residual stresses and show different deformation properties. A multi-layer-model was developed to describe both the tensile as well as the compressive deformation behaviour of shot peened cylindrical specimens quantitatively. The calculated transitions from the elastic to the elastic-plastic deformation state during tensile and compressive loading agree quite well with the experimental observations. Also the changes of axial and tangential macro residual stresses after distinct tensile or compressive deformations are in best agreement with the measurements. (orig.) 29 refs.

  5. Plastic and Elastic Responses of a Jacket Platform Subjected to Ship Impacts

    Directory of Open Access Journals (Sweden)

    Liang Li

    2013-01-01

    Full Text Available This paper deals with ship-jacket platform collisions. An examination on NORSOK N-004 rule is carried out. Furthermore, elastic and plastic response of jacket platform is studied. This paper also conducts a sensitivity analysis, focusing on collision points. Simulation models of a ductile and a rigid supply vessel were developed, as well as models of two typical jacket platforms. Data such as collision force, kinetic energy, and deformation energy have been obtained. Several conclusions have been drawn: NORSOK rule underestimates the resistance for certain indention, due to inaccurate description of column deformation mode. Elastic response is extremely important in dynamic analysis of ship-platform impacts, by contributing to reducing impact loads and local energy dissipation. Struck members are therefore subjected to impacts to a low extent, which can be regarded as result of a buffering effect. Before a buffering effect works, a time delay exists. This is caused because the topside has to take up adequate kinetic energy. Striking position has an effect on dynamic behavior of platform. High local strength is in favor of buffering an effect. Elastic response is more significant in a flexible platform than in a sticky one.

  6. Plastic deformation of 2D crumpled wires

    International Nuclear Information System (INIS)

    Gomes, M A F; Donato, C C; Brito, V P; Coelho, A S O

    2008-01-01

    When a single long piece of elastic wire is injected through channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper this packing process is investigated but using plastic wires which give rise to completely irreversible structures of different morphology. In particular, the plastic deformation from circular to oblate configurations of crumpled wires is experimentally studied, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility and very large deformations, scaling is still observed.

  7. Asperity interaction in elastic-plastic contact of rough surfaces in presence of adhesion

    International Nuclear Information System (INIS)

    Sahoo, Prasanta; Banerjee, Atanu

    2005-01-01

    This paper presents an analysis of the effect of asperity interaction in elastic-plastic contact of rough surfaces in the presence of adhesion. The micro-contact model of asperity interactions, developed by Zhao and Chang (2001 Trans. ASME: J. Tribol. 123 857-64), is integrated into the elastic-plastic contact model developed by Roy Chowdhury and Ghosh (1994 Wear 174 9-19) to allow the asperity interaction and elastic-plastic deformation in the presence of surface forces to be considered simultaneously. The well-established elastic and plastic adhesion indices are used to consider the different conditions that arise as a result of varying load and material parameters. Results show that asperity interaction influences the loading-unloading behaviour in elastic-plastic adhesive contact of rough surfaces and in general asperity interactions reduce the effect of surface forces

  8. Elastic stability of thick auxetic plates

    International Nuclear Information System (INIS)

    Lim, Teik-Cheng

    2014-01-01

    Auxetic materials and structures exhibit a negative Poisson’s ratio while thick plates encounter shear deformation, which is not accounted for in classical plate theory. This paper investigates the effect of a negative Poisson’s ratio on thick plates that are subjected to buckling loads, taking into consideration the shear deformation using Mindlin plate theory. Using a highly accurate shear correction factor that allows for the effect of Poisson’s ratio, the elastic stability of circular and square plates are evaluated in terms of dimensionless parameters, namely the Mindlin-to-Kirchhoff critical buckling load ratio and Mindlin critical buckling load factors. Results for thick square plates reveal that both parameters increase as the Poisson’s ratio becomes more negative. In the case of thick circular plates, the Mindlin-to-Kirchhoff critical buckling load ratios and the Mindlin critical buckling load factors increase and decrease, respectively, as the Poisson’s ratio becomes more negative. The results obtained herein show that thick auxetic plates behave as thin conventional plates, and therefore suggest that the classical plate theory can be used to evaluate the elastic stability of thick plates if the Poisson’s ratio of the plate material is sufficiently negative. The results also suggest that materials with highly negative Poisson’s ratios are recommended for square plates, but not circular plates, that are subjected to buckling loads. (paper)

  9. Study of elastoplastic deformations self-fretting of flat cylinders by mandrelling

    International Nuclear Information System (INIS)

    Caron, Roger

    1974-04-01

    An application of the theory of thick tubes to the special case of flat cylinders which have been self-fretted by mandrelling, is presented. The following materials were used: 1 - a soft steel, XC 18 F, considered to be perfectly elastoplastic; 2 - an alloyed steel, 35 NCD 16, designated consolidable. In the first case, the slip trajectories observed on the polished cylinder surface enabled the plastic deformation region to be defined. It was found, in particular, that the average value of the mean boundary radius at the maximum pressure differs very little from that determined using basic formulas. In the second case, the plastic deformations uniformly affect the internal layers, and privileged trajectories do not exist in this region. On the other hand, the ε θ and ε r expansion curves (from deformation measurements), are continuous from the inner radius to the outer radius; the boundary radius was thus localized from considerations of its correspondence with the ε θ -ε r (shearing deformation) at the elastic limit of the material. This characteristic was determined from measurements made using a test piece provided for this purpose. The radii obtained with this method agree with the theoretical radii over only 4/5 of the total deformation, the uncertainty region being taken into consideration. The maximum value of this parameter was determined in such a way as to obtain a return to a completely elastic rest position. (author) [fr

  10. Introduction of non-linear elasticity models for characterization of shape and deformation statistics: application to contractility assessment of isolated adult cardiocytes.

    Science.gov (United States)

    Bazan, Carlos; Hawkins, Trevor; Torres-Barba, David; Blomgren, Peter; Paolini, Paul

    2011-08-22

    We are exploring the viability of a novel approach to cardiocyte contractility assessment based on biomechanical properties of the cardiac cells, energy conservation principles, and information content measures. We define our measure of cell contraction as being the distance between the shapes of the contracting cell, assessed by the minimum total energy of the domain deformation (warping) of one cell shape into another. To guarantee a meaningful vis-à-vis correspondence between the two shapes, we employ both a data fidelity term and a regularization term. The data fidelity term is based on nonlinear features of the shapes while the regularization term enforces the compatibility between the shape deformations and that of a hyper-elastic material. We tested the proposed approach by assessing the contractile responses in isolated adult rat cardiocytes and contrasted these measurements against two different methods for contractility assessment in the literature. Our results show good qualitative and quantitative agreements with these methods as far as frequency, pacing, and overall behavior of the contractions are concerned. We hypothesize that the proposed methodology, once appropriately developed and customized, can provide a framework for computational cardiac cell biomechanics that can be used to integrate both theory and experiment. For example, besides giving a good assessment of contractile response of the cardiocyte, since the excitation process of the cell is a closed system, this methodology can be employed in an attempt to infer statistically significant model parameters for the constitutive equations of the cardiocytes.

  11. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    OpenAIRE

    Abbas, Laith K.; Chen, Dongyang; Rui, Xiaoting

    2014-01-01

    The application and workflow of Computational Fluid Dynamics (CFD)/Computational Structure Dynamics (CSD) on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which ver...

  12. Sensing surface mechanical deformation using active probes driven by motor proteins

    Science.gov (United States)

    Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira

    2016-01-01

    Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937

  13. Elasticity of Hard-Spheres-And-Tether Systems

    International Nuclear Information System (INIS)

    Farago, O.; Kantor, Y.

    1999-01-01

    Physical properties of a large class of systems ranging from noble gases to polymers and rubber are primarily determined by entropy, while the internal energy plays a minor role. Such systems can be conveniently modeled and numerically studied using ''hard' (i.e., ''infinity-or-zero'') potentials, such as hard sphere repulsive interactions, or inextensible (''tether'') bonds which limit the distance between the bonded monomers, but have zero energy at all permitted distances. The knowledge of elastic constants is very important for understanding the behavior of entropy-dominated systems. Computational methods for determination of the elastic constants in such systems are broadly classified into ''strain'' methods and (fluctuation methods. In the former, the elastic constants are extracted from stress-strain relations, while in the latter they are determined from measurements of stress fluctuations. The fluctuation technique usually enables more accurate and well-controlled determination of the elastic constants since in this method the elastic constants are computed directly from simulations of the un strained system with no need to deform the simulation cell and perform numerical differentiations. For central forces systems, the original ''fluctuation'' formalism can be applied provided the pair potential is twice differentiable. We have extended this formalism to apply to hard-spheres-and-tether models in which this requirement is not fulfilled. We found that for such models the components of the tensor of elastic constants can be related to (two-, three- and four-point) probability densities of contacts between hard spheres and stretched bonds. We have tested our formalism on simple (phantom networks and three-dimensional hard spheres systems

  14. Modeling of a light elastic beam by a system of rigid bodies

    Directory of Open Access Journals (Sweden)

    Šalinić Slaviša

    2004-01-01

    Full Text Available This paper has shown that a light elastic beam, in the case of small elastic deformations, can be modeled by a kinematic chain without branching composed of rigid bodies which are connected by passive revolute or prismatic joints with corresponding springs in them. Elastic properties of the beam are modeled by the springs introduced. The potential energy of the elastic beam is expressed as a function of components of the vector of elastic displacement and the vector of elastic rotation calculated for the elastic centre of the beam, which results in the diagonal stiffness matrix of the beam. As the potential energy of the introduced system of bodies with springs is expressed in the function of relative joint displacements, the diagonal stiffness matrix is obtained. In addition, these two stiffness matrices are equal. The modeling process has been demonstrated on the example of an elastic beam rotating about a fixed vertical axis, with a rigid body whose mass is considerably larger than the beam mass fixed to its free end. Differential equations of motion have been formed for this mechanical system. The modeling technique described here aims at expanding of usage of well developed methods of dynamics of systems of rigid bodies to the analysis of systems with elastic bodies. .

  15. Elastic constants of the C15 laves phase compound NbCr2

    International Nuclear Information System (INIS)

    Chu, F.; He, Y.; Thoma, D.J.; Mitchell, T.E.

    1995-01-01

    Elastic properties of a solid are important because they relate to various fundamental solid-state phenomena such as interatomic potentials, equations of state, and phonon spectra. Elastic properties are also linked thermodynamically with specific heat, thermal expansion, Debye temperature, and Gruneisen parameter. Most important, knowledge of elastic constants is essential for many practical applications related to the mechanical properties of a solid as well: load-deflection, thermoelastic stress, internal strain (residual stress), sound velocities, dislocation core structure, and fracture toughness. In order to understand better the physical properties and deformation behavior of the C15 compound NbCr 2 , the authors have studied its elastic properties in this paper. In Section 2, the experimental methods are described, including the preparation of the sample and the measurement of the elastic constants. In Section 3, the experimental results are presented and the implications of these experimental results are discussed. Conclusions are drawn in Section 4

  16. Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack

    2016-01-01

    This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.

  17. Elasticity and inelasticity of silicon nitride/boron nitride fibrous monoliths.

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. I.; Burenkov, Yu. A.; Kardashev, B. K.; Singh, D.; Goretta, K. C.; de Arellano-Lopez, A. R.; Energy Technology; Russian Academy of Sciences; Univer. de Sevilla

    2001-01-01

    A study is reported on the effect of temperature and elastic vibration amplitude on Young's modulus E and internal friction in Si{sub 3}N{sub 4} and BN ceramic samples and Si{sub 3}N{sub 4}/BN monoliths obtained by hot pressing of BN-coated Si{sub 3}N{sub 4} fibers. The fibers were arranged along, across, or both along and across the specimen axis. The E measurements were carried out under thermal cycling within the 20-600 C range. It was found that high-modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heating and cooling coincide well with one another. The low-modulus BN ceramic exhibits a considerable hysteresis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Monoliths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is possible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the materials studied is supported by the character of the amplitude dependences of internal friction and the Young's modulus. The experimental data obtained are discussed in terms of a model in which the temperature dependences of the elastic modulus and their features are accounted for by both microplastic deformation and nonlinear lattice-atom vibrations, which depend on internal stresses.

  18. Anticavitation and Differential Growth in Elastic Shells

    KAUST Repository

    Moulton, Derek E.

    2010-07-22

    Elastic anticavitation is the phenomenon of a void in an elastic solid collapsing on itself. Under the action of mechanical loading alone typical materials do not admit anticavitation. We study the possibility of anticavitation as a consequence of an imposed differential growth. Working in the geometry of a spherical shell, we seek radial growth functions which cause the shell to deform to a solid sphere. It is shown, surprisingly, that most material models do not admit full anticavitation, even when infinite growth or resorption is imposed at the inner surface of the shell. However, void collapse can occur in a limiting sense when radial and circumferential growth are properly balanced. Growth functions which diverge or vanish at a point arise naturally in a cumulative growth process. © 2010 Springer Science+Business Media B.V.

  19. X-ray diffraction measurements to determine longitudinal and transverse lattice deformation in shocked LiF

    International Nuclear Information System (INIS)

    Rigg, P.A.; Gupta, Y.M.

    2000-01-01

    Experimental methods using both single and multiple x-ray diffraction were developed to determine real time, lattice deformation in directions parallel and perpendicular to shock wave propagation in single crystals subjected to plate impact loading. Initial experiments used single diffraction to monitor the interplanar spacing change, parallel to the shock propagation direction, in LiF crystals shocked along the [111] and [100] directions. These measurements, in combination with the macroscopic volume compression, were used to determine the state of compression of the unit cell. Subsequent development of a multiple diffraction technique permitted simultaneous determination of both the longitudinal and transverse lattice deformations. The present results showed that shock compression, below 4 GPa, along the [111] orientation--which results in macroscopic elastic deformation - produced one-dimensional unit cell compression. In contrast, shock compression along the [100] orientation - which results in macroscopic elastic-plastic deformation--produced isotropic unit cell compression. The implications of the present results and the ability to make quantitative x-ray diffraction measurements under shock loading are discussed

  20. Dynamics of viscoplastic deformation in amorphous solids

    International Nuclear Information System (INIS)

    Falk, M.L.; Langer, J.S.

    1998-01-01

    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations. copyright 1998 The American Physical Society

  1. Fundamental topics for thermo-elastic stress analyses

    International Nuclear Information System (INIS)

    Biermann, M.

    1989-01-01

    This paper delivers a consistent collection of theoretical fundamentals needed to perform rather sound experimental stress analyses on thermo-elastic materials. An exposition of important concepts of symmetry and so-called peer groups, yielding the very base for a rational description of materials, goes ahead and is followed by an introduction to the constitutive theory of simple materials. Neat distinction is made between stress contributions determined by deformational and thermal impressions, on the one part, and stress constraints not accessible to strain gauging, on the other part. The mathematical formalism required for establishing constitutive equations is coherently developed from scratch and aided, albeit not subrogated, by intuition. The main intention goes to turning some of the recent advances in the nonlinear field theories of thermomechanics to practical account. A full success therein, obviously, results under the restriction to thermo-elasticity. In adverting to more particular subjects, the elementary static effects of nonlinear isotropic elasticity are pointed out. Due allowance is made for thermal effects likely to occur in heat conducting materials also beyond the isothermal or isentropic limit cases. Linearization of the constitutive equations for anisotropic thermo-elastic materials is then shown to entail the formulas of the classical theory. (orig./MM) [de

  2. Monitoring microstructural evolution in-situ during cyclic deformation by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika Martina; Thiel, Felix; Fischer, Torben

    2017-01-01

    The recently developed synchrotron technique High Resolution Reciprocal Space Mapping (HRRSM) is used to characterize the deformation structures evolving during cyclic deformation of commercially pure, polycrystalline aluminium AA1050. Insight into the structural reorganization within single grains...... is gained by in-situ monitoring of the microstructural evolution during cyclic deformation. By HRRSM, a large number of individual subgrains can be resolved within individual grains in the bulk of polycrystalline specimens and their fate, their individual orientation and elastic stresses, tracked during...

  3. Aluminium. II - A review of deformation properties of high purity aluminium and dilute aluminium alloys.

    Science.gov (United States)

    Reed, R. P.

    1972-01-01

    The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.

  4. Dynamic stability of a cantilevered Timoshenko beam on partial elastic foundations subjected to a follower force

    International Nuclear Information System (INIS)

    Ryu, Bong Jo; Shin, Kwang Bok; Yim, Kyung Bin; Yoon, Young Sik

    2006-01-01

    This paper presents the dynamic stability of a cantilevered Timoshenko beam with a concentrated mass, partially attached to elastic foundations, and subjected to a follower force. Governing equations are derived from the extended Hamilton's principle, and FEM is applied to solve the discretized equation. The influence of some parameters such as the elastic foundation parameter, the positions of partial elastic foundations, shear deformations, the rotary inertia of the beam, and the mass and the rotary inertia of the concentrated mass on the critical flutter load is investigated. Finally, the optimal attachment ratio of partial elastic foundation that maximizes the critical flutter load is presented

  5. ACOUSTIC WAVES EMISSION IN THE TWO-COMPONENT HEREDITARY-ELASTIC MEDIUM

    Directory of Open Access Journals (Sweden)

    V. S. Polenov

    2014-01-01

    Full Text Available Summary. On the dynamics of two-component media a number of papers, which address the elastic waves in a homogeneous, unbounded fluid-saturated porous medium. In other studies address issues of dissipative processes in harmonic deformation hereditary elastic medium. In the article the dissipative processes of the viscoelastic porous medium, which hereditary properties are described by the core relaxation fractional exponential function U.N. Rabotnova integro-differential Boltzmann-Volterr ratio, harmonic deformation by the straining saturated incompressible liquid are investigated. Speed of wave propagation, absorption coefficient, mechanical loss tangent, logarithmic decrement, depending on fractional parameter γ, determining formulas received. The frequency logarithm and temperature graph dependences with the goal fractional parameter are constructed. Shows the dependences velocity and attenuation coefficient of the tangent of the phase angle of the logarithm of the temperature, and the dependence of the attenuation coefficient of the logarithm of the frequency. Dependencies the speed and the tangent of the phase angle of the frequency identical function of the logarithm of temperature.

  6. Characteristics of Viscoelastic Crustal Deformation Following a Megathrust Earthquake: Discrepancy Between the Apparent and Intrinsic Relaxation Time Constants

    Science.gov (United States)

    Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro

    2018-02-01

    The viscoelastic deformation of an elastic-viscoelastic composite system is significantly different from that of a simple viscoelastic medium. Here, we show that complicated transient deformation due to viscoelastic stress relaxation after a megathrust earthquake can occur even in a very simple situation, in which an elastic surface layer (lithosphere) is underlain by a viscoelastic substratum (asthenosphere) under gravity. Although the overall decay rate of the system is controlled by the intrinsic relaxation time constant of the asthenosphere, the apparent decay time constant at each observation point is significantly different from place to place and generally much longer than the intrinsic relaxation time constant of the asthenosphere. It is also not rare that the sense of displacement rate is reversed during the viscoelastic relaxation. If we do not bear these points in mind, we may draw false conclusions from observed deformation data. Such complicated transient behavior can be explained mathematically from the characteristics of viscoelastic solution: for an elastic-viscoelastic layered half-space, the viscoelastic solution is expressed as superposition of three decaying components with different relaxation time constants that depend on wavelength.

  7. Mathematical methods for elastic plates

    CERN Document Server

    Constanda, Christian

    2014-01-01

    Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff’s classical one.   The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hölder continuous and Hölder continuously differentiable) functions.   The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex ana...

  8. Hydrodynamic mobility of a sphere moving on the centerline of an elastic tube

    Science.gov (United States)

    Daddi-Moussa-Ider, Abdallah; Lisicki, Maciej; Gekle, Stephan

    2017-11-01

    Elastic channels are an important component of many soft matter systems, in which hydrodynamic interactions with confining membranes determine the behavior of particles in flow. In this work, we derive analytical expressions for Green's functions associated with a point-force (Stokeslet) directed parallel or perpendicular to the axis of an elastic cylindrical channel exhibiting resistance against shear and bending. We then compute the leading order self- and pair mobility functions of particles on the cylinder axis, finding that the mobilities are primarily determined by membrane shear and that bending does not play a significant role. In the quasi-steady limit of vanishing frequency, the particle self- and pair mobilities near a no-slip hard cylinder are recovered only if the membrane possesses a non-vanishing shear rigidity. We further compute the membrane deformation, finding that deformation is generally more pronounced in the axial (radial) directions, for the motion along (perpendicular to) the cylinder centerline, respectively. Our analytical calculations for Green's functions in an elastic cylinder can serve as a fundamental building block for future studies and are verified by fully resolved boundary integral simulations where very good agreement is obtained.

  9. Piezoelectric excitation of elastic waves in centrosymmetrical potassium tantalate crystal

    International Nuclear Information System (INIS)

    Smolenskij, G.A.; Lemanov, V.V.; Sotnikov, A.V.; Syrnikov, P.P.; Yushin, N.K.

    1981-01-01

    Experiment results on excitation of elastic oscillations in potassium tantalate crystals are considered. The experiment has been conducted by usual for supersonic measurements technique: an impulse of the variable electric field has been applied to one of plane-parallel sample end-faces, at the same end-face signals corresponding to elastic pulses propagating in the crystal have been detected. Basic radiopulses parameters: basic frequency 30 MHz, duration 1-2 μs, pulse recurrence frequency 500 Hz, power 10 W. The investigation carried out has shown that the application to the sample at T=80 K temperature of constant external electrical field parallel to direction of elastic wave propagation leads to hysteresis dependence of elastic waves amplitude on the external voltage value. With temperature increase the hysteresis loop is deformed. It has been found when investigating temperature dependence of elastic wave amplitude that in the absence of external constant electrical field in short-circuited by constant current samples the oxillation excitation effect disappears at T approximately equal to 200 K. An essential influence on the elastic wave amplitude value is exerted by illumination of the crystal surface by light with 360-630 nm wave length. At T 130 K bacaee of photovoltaic effect in illuminated samples [ru

  10. Viscoelastic deformation of lipid bilayer vesicles.

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah

    2015-10-07

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.

  11. A Brief Overview of a Scale Independent Deformation Theory and Application to Diagnosis of Deformational Status of Solid-State Materials

    International Nuclear Information System (INIS)

    Yoshida, Sanichiro

    2012-01-01

    A field theoretical approach to deformation and fracture of solid-state material is outlined, and its application to diagnosis of deformational status of metal specimens is discussed. Being based on a fundamental physical principle known as local symmetry, this approach is intrinsically scale independent, and capable of describing all stages of deformation on the same theoretical foundation. This capability enables us to derive criteria that can be used to diagnose transitions from the elastic to plastic regime, and the plastic to fracturing regime. For practical applications of these criteria, an optical interferometric technique known as electronic speckle-pattern interferometry is proved to be quite powerful; it is able to visualize the criteria as a whole image of the object on a real-time basis without numerical processing. It is demonstrated that this method is able to reveal loading hysteresis as well

  12. Modelling deformation and fracture in confectionery wafers

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John [Mechanical Engineering Department, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom and Nestec York Ltd., Nestlé Product Technology Centre, Haxby Road, PO Box 204, York YO91 1XY (United Kingdom)

    2015-01-22

    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.

  13. Deformation behavior of large, high-pressure vessel flanges

    International Nuclear Information System (INIS)

    Spaas, H.A.C.M.; Latzko, D.G.H.

    1975-01-01

    The analysis of the deformation behavior of large high-pressure vessel flanges poses a much more difficult problem than for low-pressure flanges due to their particular geometry. For a particularly narrow flange geometry (typical of PWR flanges) a finite-element analysis (MARC-IBM-program, eight-node, isoparametric ring elements) was used to predict the behavior of the flange rings. The nonlinear elastic problem resulting from the local closing and/or opening of the partial gap between the gasket faces was solved by an incremental technique using gap elements. The resulting deformation behavior of the flange system has been compared to that obtained from an analysis using the refined rigid ring concept for both bolt-tightening and hydro-testing conditions. The elasto-plastic analysis was solved by the same finite element program system as mentioned above. The incremental steps describing the nonlinear material behavior are allowed to be larger than those for the gap-closure mechanism. Besides a comparison with the former elastic analyses an interpretation will be given of the local plasticity effects, which result in a shift in location of the gasket reaction. Experimental data on local gasket face deformation was obtained by a specially developed laser beam apparatus, with the leak detection channel of the flange serving as a beam hole. Additionally strain gauges were used on flanges and bolts, in combination with special sensing pins for the determination of relative flange rotations. Results obtained so far indicate that for high-pressure flanges of the narrow design investigated here the deformation behavior is best described by an elasto-plastic finite element analysis

  14. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    Directory of Open Access Journals (Sweden)

    Ren Penghao

    2017-01-01

    Full Text Available After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation of the workpiece, a linear relationship between initial stress and deformation is found; Through simulative analysis of coupling direction-stress release, the superposing relationship between the deformation caused by coupling direction-stress and the deformation caused by single direction stress is found. The research results provide important theoretical support for the stress threshold setting and deformation controlling of the workpieces in the production practice.

  15. Hydraulic pressure pulses with elastic and plastic structural flexibility: test and analysis (LWBR Development Program)

    International Nuclear Information System (INIS)

    Schwirian, R.E.

    1978-03-01

    Pressure pulse tests were conducted with a flexible test section in a test vessel filled with room temperature water. The pressure pulses were generated with a drop hammer and piston pulse generator and were of a sufficient magnitude to cause plastic deformation of the test section. Because of the strong pressure relief effect of the deforming test section, pressure pulse magnitudes were below 265 psig in magnitude and had durations of 50 to 55 msecs. Calculations performed with the FLASH-35 bi-linear hysteresis model of structural deformation show good agreement with experiment. In particular, FLASH 35 adequately predicts the decrease in peak pressure and the increase in pulse duration due to elastic and plastic deformation of the test section. Predictions of flexible member motion are good, but are less satisfactory than the pressure pulse results due to uncertainties in the values of yield point and beyond yield stiffness used to model the various flexible members. Coupled with this is a strong sensitivity of the FLASH 35 predictions to the values of yield point and beyond yield stiffness chosen for the various flexible members. The test data versus calculation comparisons presented here provide preliminary qualification for FLASH 35 calculations of transient hydraulic pressures and pressure differentials in the presence of flexible structural members which deform both elastically and plastically

  16. Geometric methods in the elastic theory of membranes in liquid crystal phases

    CERN Document Server

    Ji Xing Liu; Yu Zhang Xie

    1999-01-01

    This book contains a comprehensive description of the mechanical equilibrium and deformation of membranes as a surface problem in differential geometry. Following the pioneering work by W Helfrich, the fluid membrane is seen as a nematic or smectic - A liquid crystal film and its elastic energy form is deduced exactly from the curvature elastic theory of the liquid crystals. With surface variation the minimization of the energy at fixed osmotical pressure and surface tension gives a completely new surface equation in geometry that involves potential interest in mathematics. The investigations

  17. Modular correction method of bending elastic modulus based on sliding behavior of contact point

    International Nuclear Information System (INIS)

    Ma, Zhichao; Zhao, Hongwei; Zhang, Qixun; Liu, Changyi

    2015-01-01

    During the three-point bending test, the sliding behavior of the contact point between the specimen and supports was observed, the sliding behavior was verified to affect the measurements of both deflection and span length, which directly affect the calculation of the bending elastic modulus. Based on the Hertz formula to calculate the elastic contact deformation and the theoretical calculation of the sliding behavior of the contact point, a theoretical model to precisely describe the deflection and span length as a function of bending load was established. Moreover, a modular correction method of bending elastic modulus was proposed, via the comparison between the corrected elastic modulus of three materials (H63 copper–zinc alloy, AZ31B magnesium alloy and 2026 aluminum alloy) and the standard modulus obtained from standard uniaxial tensile tests, the universal feasibility of the proposed correction method was verified. Also, the ratio of corrected to raw elastic modulus presented a monotonically decreasing tendency as the raw elastic modulus of materials increased. (technical note)

  18. Bending and tensile deformation of metallic nanowires

    International Nuclear Information System (INIS)

    McDowell, Matthew T; Leach, Austin M; Gall, Ken

    2008-01-01

    Using molecular statics simulations and the embedded atom method, a technique for bending silver nanowires and calculating Young's modulus via continuum mechanics has been developed. The measured Young's modulus values extracted from bending simulations were compared with modulus values calculated from uniaxial tension simulations for a range of nanowire sizes, orientations and geometries. Depending on axial orientation, the nanowires exhibit stiffening or softening under tension and bending as size decreases. Bending simulations typically result in a greater variation of Young's modulus values with nanowire size compared with tensile deformation, which indicates a loading-method-dependent size effect on elastic properties at sub-5 nm wire diameters. Since the axial stress is maximized at the lateral surfaces in bending, the loading-method-dependent size effect is postulated to be primarily a result of differences in nanowire surface and core elastic modulus. The divergence of Young's modulus from the bulk modulus in these simulations occurs at sizes below the range in which experiments have demonstrated a size scale effect on elastic properties of metallic nanowires. This difference indicates that other factors beyond native metallic surface properties play a role in experimentally observed nanowire elastic modulus size effects

  19. The thermal and mechanical deformation study of up-stream pumping mechanical seal

    International Nuclear Information System (INIS)

    Chen, H L; Xu, C; Zuo, M Z; Wu, Q B

    2015-01-01

    Taking the viscosity-temperature relationship of the fluid film into consideration, a 3-D numerical model was established by ANSYS software which can simulate the heat transfer between the upstream pumping mechanical seal stationary and rotational rings and the fluid film between them as well as simulate the thermal deformation, structure deformation and the coupling deformation of them. According to the calculation result, thermal deformation causes the seal face expansion and the maximum thermal deformation appears at the inside of the seal ring. Pressure results in a mechanical deformation, the maximum deformation occurs at the top of the spiral groove and the overall trend is inward the mating face, opposite to the thermal deformation. The coupling deformation indicate that the thermal deformation can be partly counteracted by pressure deformation. Using this model, the relationship between deformation and shaft speed and the sealing liquid pressure was studied. It's found that the shaft speed will both enhance the thermal and structure deformation and the fluid pressure will enhance the structure deformation but has little to do with the thermal deformation. By changing the sealing material, it's found that material with low thermal expansion coefficient and low elastic modulus will suffer less thermal-pressure deformation

  20. The thermal and mechanical deformation study of up-stream pumping mechanical seal

    Science.gov (United States)

    Chen, H. L.; Xu, C.; Zuo, M. Z.; Wu, Q. B.

    2015-01-01

    Taking the viscosity-temperature relationship of the fluid film into consideration, a 3-D numerical model was established by ANSYS software which can simulate the heat transfer between the upstream pumping mechanical seal stationary and rotational rings and the fluid film between them as well as simulate the thermal deformation, structure deformation and the coupling deformation of them. According to the calculation result, thermal deformation causes the seal face expansion and the maximum thermal deformation appears at the inside of the seal ring. Pressure results in a mechanical deformation, the maximum deformation occurs at the top of the spiral groove and the overall trend is inward the mating face, opposite to the thermal deformation. The coupling deformation indicate that the thermal deformation can be partly counteracted by pressure deformation. Using this model, the relationship between deformation and shaft speed and the sealing liquid pressure was studied. It's found that the shaft speed will both enhance the thermal and structure deformation and the fluid pressure will enhance the structure deformation but has little to do with the thermal deformation. By changing the sealing material, it's found that material with low thermal expansion coefficient and low elastic modulus will suffer less thermal-pressure deformation.

  1. 3D brain mapping using a deformable neuroanatomy

    International Nuclear Information System (INIS)

    Christensen, G.E.; Rabbitt, R.D.; Miller, M.I.

    1994-01-01

    This paper presents two different mathematical methods that can be used separately or in conjunction to accommodate shape variabilities between normal human neuroanatomies. Both methods use a digitized textbook to represent the complex structure of a typical normal neuroanatomy. Probabilistic transformations on the textbook coordinate system are defined to accommodate shape differences between the textbook and images of other normal neuroanatomies. The transformations are constrained to be consistent with the physical properties of deformable elastic solids in the first method and those of viscous fluids in the second. Results presented in this paper demonstrate how a single deformable textbook can be used to accommodate normal shape variability. (Author)

  2. 3D brain mapping using a deformable neuroanatomy

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, G.E.; Rabbitt, R.D.; Miller, M.I. (Washington Univ., St. Louis, MO (United States))

    1994-03-01

    This paper presents two different mathematical methods that can be used separately or in conjunction to accommodate shape variabilities between normal human neuroanatomies. Both methods use a digitized textbook to represent the complex structure of a typical normal neuroanatomy. Probabilistic transformations on the textbook coordinate system are defined to accommodate shape differences between the textbook and images of other normal neuroanatomies. The transformations are constrained to be consistent with the physical properties of deformable elastic solids in the first method and those of viscous fluids in the second. Results presented in this paper demonstrate how a single deformable textbook can be used to accommodate normal shape variability. (Author).

  3. Calculation model of non-linear dynamic deformation of composite multiphase rods

    Directory of Open Access Journals (Sweden)

    Mishchenko Andrey Viktorovich

    2014-05-01

    Full Text Available The method of formulating non-linear physical equations for multiphase rods is suggested in the article. Composite multiphase rods possess various structures, include shear, polar, radial and axial inhomogeneity. The Timoshenko’s hypothesis with the large rotation angles is used. The method is based on the approximation of longitudinal normal stress low by basic functions expansions regarding the linear viscosity low. The shear stresses are calculated with the equilibrium equation using the subsidiary function of the longitudinal shift force. The system of differential equations connecting the internal forces and temperature with abstract deformations are offered by the basic functions. The application of power functions with arbitrary index allows presenting the compact form equations. The functional coefficients in this system are the highest order rigidity characteristics. The whole multiphase cross-section rigidity characteristics are offered the sums of the rigidity characteristics of the same phases individually. The obtained system allows formulating the well-known particular cases. Among them: hard plasticity and linear elastic deformation, different module deformation and quadratic Gerstner’s low elastic deformation. The reform of differential equations system to the quasilinear is suggested. This system contains the secant variable rigidity characteristics depending on abstract deformations. This system includes the sum of the same uniform blocks of different order. The rods phases defined the various set of uniform blocks phase materials. The integration of dynamic, kinematic and physical equations taking into account initial and edge condition defines the full dynamical multiphase rods problem. The quasilinear physical equations allow getting the variable flexibility matrix of multiphase rod and rods system.

  4. Shape Recovery of Elastic Red Blood Cells from Shear Flow Induced Deformation in Three Dimensions

    Science.gov (United States)

    Peng, Yan; Gounley, John

    2015-11-01

    Red blood cells undergo substantial shape changes in vivo. Modeled as an elastic capsule, the shape recovery of a three dimensional biconcave capsule from shear flow is studied for different preferred elastic and bending configuration. The fluid-structure interaction is modeled using the multiple-relaxation time lattice Boltzmann (LBM) and immersed boundary (IBM) methods. Based on the studies of the limited shape memory observed in three dimensions, the shape recovery is caused by the preferred elastic configuration, at least when paired with a constant spontaneous curvature. For these capsules, the incompleteness of the shape recovery observed precludes any conjecture about whether a single or multiple phase(s) are necessary to describe the recovery process. Longer simulations and a more stable methodology will be necessary. Y. Peng acknowledges support from Old Dominion University Research Foundation Grant #503921 and National Science Foundation Grant DMS-1319078.

  5. Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Brandbyge, Mads; Jacobsen, Karsten Wedel

    1998-01-01

    We have simulated the mechanical deformation of atomic-scale metallic contacts under tensile strain using molecular dynamics and effective medium theory potentials. The evolution of the structure of the contacts and the underlying deformation mechanisms are described along with the calculated......, but vacancies can be permanently present. The transition states and energies for slip mechanisms have been determined using the nudged elastic band method, and we find a size-dependent crossover from a dislocation-mediated slip to a homogeneous slip when the contact diameter becomes less than a few nm. We show...

  6. Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials

    Directory of Open Access Journals (Sweden)

    S. Psakhie

    2013-04-01

    Full Text Available A general approach to realization of models of elasticity, plasticity and fracture of heterogeneous materials within the framework of particle-based numerical methods is proposed in the paper. It is based on building many-body forces of particle interaction, which provide response of particle ensemble correctly conforming to the response (including elastic-plastic behavior and fracture of simulated solids. Implementation of proposed approach within particle-based methods is demonstrated by the example of the movable cellular automaton (MCA method, which integrates the possibilities of particle-based discrete element method (DEM and cellular automaton methods. Emergent advantages of the developed approach to formulation of many-body interaction are discussed. Main of them are its applicability to various realizations of the concept of discrete elements and a possibility to realize various rheological models (including elastic-plastic or visco-elastic-plastic and models of fracture to study deformation and fracture of solid-phase materials and media. Capabilities of particle-based modeling of heterogeneous solids are demonstrated by the problem of simulation of deformation and fracture of particle-reinforced metal-ceramic composites.

  7. Topology preserving non-rigid image registration using time-varying elasticity model for MRI brain volumes.

    Science.gov (United States)

    Ahmad, Sahar; Khan, Muhammad Faisal

    2015-12-01

    In this paper, we present a new non-rigid image registration method that imposes a topology preservation constraint on the deformation. We propose to incorporate the time varying elasticity model into the deformable image matching procedure and constrain the Jacobian determinant of the transformation over the entire image domain. The motion of elastic bodies is governed by a hyperbolic partial differential equation, generally termed as elastodynamics wave equation, which we propose to use as a deformation model. We carried out clinical image registration experiments on 3D magnetic resonance brain scans from IBSR database. The results of the proposed registration approach in terms of Kappa index and relative overlap computed over the subcortical structures were compared against the existing topology preserving non-rigid image registration methods and non topology preserving variant of our proposed registration scheme. The Jacobian determinant maps obtained with our proposed registration method were qualitatively and quantitatively analyzed. The results demonstrated that the proposed scheme provides good registration accuracy with smooth transformations, thereby guaranteeing the preservation of topology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Nano-deformation behavior of silicon (100) film studied by depth sensing indentation and nanoscratch technique

    Science.gov (United States)

    Geetha, D.; Pratyank, R.; Kiran, P.

    2018-04-01

    Silicon being the most important material applied in microelectronic and photovoltaic technology, repeated investigation of the mechanical properties becomes essential. The nanoscale elastic-plastic deformation characteristics of Si (100) film were analyzed using nanoindentation and nanoscratch techniques. The hardness and elastic modulus values of the film obtained from nanoindentation tests were found to be consistent with the reported values. The load-displacement curves showed discontinuities and kinks which confirms the plastic behaviour of Si. The indentation induced plastic deformations were the consequences of the phase transformations. The critical shear stress, tensile strength and plastic zone size, of the Si film when subjected to nanoindentation were determined. The nanoscratch tests were performed to understand the tribological properties of the film. The SPM images of both the nanoindentation and nanoscratch profiles were useful in revealing the plastic character in terms of the piling up of matter in the vicinity of the dents. Conclusions were drawn in quantifying the plastic deformations and phase transformations.

  9. Stress-deformed state of cylindrical specimens during indirect tensile strength testing

    Directory of Open Access Journals (Sweden)

    Levan Japaridze

    2015-10-01

    Full Text Available In this study, the interaction between cylindrical specimen made of homogeneous, isotropic, and linearly elastic material and loading jaws of any curvature is considered in the Brazilian test. It is assumed that the specimen is diametrically compressed by elliptic normal contact stresses. The frictional contact stresses between the specimen and platens are neglected. The analytical solution starts from the contact problem of the loading jaws of any curvature and cylindrical specimen. The contact width, corresponding loading angle (2θ0, and elliptical stresses obtained through solution of the contact problems are used as boundary conditions for a cylindrical specimen. The problem of the theory of elasticity for a cylinder is solved using Muskhelishvili's method. In this method, the displacements and stresses are represented in terms of two analytical functions of a complex variable. In the main approaches, the nonlinear interaction between the loading bearing blocks and the specimen as well as the curvature of their surfaces and the elastic parameters of their materials are taken into account. Numerical examples are solved using MATLAB to demonstrate the influence of deformability, curvature of the specimen and platens on the distribution of the normal contact stresses as well as on the tensile and compressive stresses acting across the loaded diameter. Derived equations also allow calculating the modulus of elasticity, total deformation modulus and creep parameters of the specimen material based on the experimental data of radial contraction of the specimen.

  10. Room-Temperature Deformation and Martensitic Transformation of Two Co-Cr-Based Alloys

    Science.gov (United States)

    Cai, S.; Schaffer, J. E.; Huang, D.; Gao, J.; Ren, Y.

    2018-05-01

    Deformation of two Co-Cr alloys was studied by in situ synchrotron X-ray diffraction. Both alloys show stress-induced martensite transformation, which is affected by phase stabilities and transformation strains. Crystal structure of WC in Co-20Cr-15W-10Ni is identified. Compared with other phases present, it is elastically isotropic, exhibits high strength, and can elastically withstand strains exceeding 1 pct. Texture change during phase transformation is explained based on the crystal orientation relationship between γ- and ɛ-phases.

  11. Elastic source model of the North Mono eruption (1325-1368 A.D.) based on shoreline deformation

    Science.gov (United States)

    Shaffer, Wil; Bursik, Marcus; Renshaw, Carl

    2010-12-01

    Topographic data from the Shuttle Radar Topography Mission (SRTM) captures the permanent deformation of a prominent highstand of Mono Lake, California USA. Deformation of the Dechambeau Ranch highstand shoreline was measured using the elevation of the beach berm—shoreline bluff break-in-slope. Point source models and a boundary element dike model were used to approximate the source of deformation underneath the northern end of the Mono Craters. The point source model could not adequately explain the observed deformation. The dike model yielded the best results for a NW trending dike dipping 60° NE and inflated to widths greater than 60 m. The results suggest that the geometry of the source is more complex than a simple vertical dike and that the deformation is better explained with a dipping dike following a normal fault, or an elongated cryptodome.

  12. Instrumented anvil-on-rod impact experiments for validating constitutive strength model for simulating transient dynamic deformation response of metals

    International Nuclear Information System (INIS)

    Martin, M.; Shen, T.; Thadhani, N.N.

    2008-01-01

    Instrumented anvil-on-rod impact experiments were performed to access the applicability of this approach for validating a constitutive strength model for dynamic, transient-state deformation and elastic-plastic wave interactions in vanadium, 21-6-9 stainless steel, titanium, and Ti-6Al-4V. In addition to soft-catching the impacted rod-shaped samples, their transient deformation states were captured by high-speed imaging, and velocity interferometry was used to record the sample back (free) surface velocity and monitor elastic-plastic wave interactions. Simulations utilizing AUTODYN-2D hydrocode with Steinberg-Guinan constitutive equation were used to generate simulated free surface velocity traces and final/transient deformation profiles for comparisons with experiments. The simulations were observed to under-predict the radial strain for bcc vanadium and fcc steel, but over-predict the radial strain for hcp titanium and Ti-6Al-4V. The correlations illustrate the applicability of the instrumented anvil-on-rod impact test as a method for providing robust model validation based on the entire deformation event, and not just the final deformed state

  13. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    International Nuclear Information System (INIS)

    Lohmiller, Jochen; Spolenak, Ralph; Gruber, Patric A.

    2014-01-01

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility

  14. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lohmiller, Jochen [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany); Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Spolenak, Ralph [Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Gruber, Patric A., E-mail: patric.gruber@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2014-02-10

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility.

  15. Analysis of Residual Stress and Deformation of Rolling Strengthen Crankshaft Fillet

    Directory of Open Access Journals (Sweden)

    Han Shaojun

    2016-01-01

    Full Text Available Based on the analysis of crankshaft fillet rolling process, used ANSYS finite element analysis software to conduct the elastic-plastic mechanical simulation of crankshaft rolling process, and gained the variation law of the residual stress and plastic deformation in the radial path of the fillet under different rolling laps and rolling pressure. Established the relationship between the rolling pressure and the plastic deformation and residual stress of the fillet, and provided theoretical support for the evaluation and detection of the crankshaft rolling quality.

  16. Elastically stretchable thin film conductors on an elastomeric substrate

    Science.gov (United States)

    Jones Harris, Joyelle Elizabeth

    Imagine a large, flat screen television that can be rolled into a small cylinder after purchase in the store and then unrolled and mounted onto the wall of a home. The electronic devices within the television must be able to withstand large deformation and tensile strain. Consider a robot that is covered with an electronic skin that simulates human skin. The skin would enable the machine to lift an elderly person with care and sensitivity. The skin will endure repeated deformation with the highest tensile strains being experienced at the robot's joints. These applications and many others will benefit from stretchable electronic circuitry. While several different methods have been employed to create stretchable electronics, all methods use a common tool -- stretchable conductors. Therefore, the goal of this thesis work was to fabricate elastically stretchable conductors that can be used in stretchable electronics. We deposited Au thin films on an elastomeric substrate, and the resulting conductors remained electrically continuous when stretched by 30% and more. We developed photolithographic processes that can be used to pattern elastically stretchable conductors with a 10 mum resolution. We fabricated bi-level stretchable conductors that are separated by an elastomeric insulator and are electrically connected through via holes in the insulator. We applied our bi-level conductors to create a stretchable resistor-inductor-capacitor (RLC) circuit with a tunable resonant frequency. We also used stretchable conductors to measure action potentials in biological samples. This thesis describes the fabrication and application of our elastically stretchable conductors.

  17. Observations and models of Co- and Post-Seismic Deformation Due to the 2015 Mw 7.8 Gorkha (Nepal) Earthquake

    Science.gov (United States)

    Wang, K.; Fialko, Y. A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha (Nepal) earthquake occurred along the central Himalayan arc, a convergent boundary between India and Eurasian plates. We use space geodetic data to investigate co- and post-seismic deformation due to the Gorkha earthquake. Because the epicentral area of the earthquake is characterized by strong variations in surface relief and material properties, we developed finite element models that explicitly account for topography and 3-D elastic structure. Compared with slip models obtained using homogenous elastic half-space models, the model including elastic heterogeneity and topography exhibits greater (up to 10%) slip amplitude. GPS observations spanning more than 1 year following the earthquake show overall southward movement and uplift after the Gorkha earthquake, qualitatively similar to the coseismic deformation pattern. Kinematic inversions of GPS data, and forward modeling of stress-driven creep indicate that the observed post-seismic transient is consistent with afterslip on a down-dip extention of the seismic rupture. The Main Himalayan Thrust (MHT) has negligible creep updip of the 2015 rupture, reiterating a future seismic hazard. A poro-elastic rebound may contribute to the observed uplift southward motion, but the predicted surface displacements are small (on the order of 1 cm or less). We also tested a wide range of visco-elastic relaxation models, including 1-D and 3-D variations in the viscosity structure. All tested visco-elastic models predict the opposite signs of horizontal and vertical displacements compared to those observed. Available surface deformation data allow one to rule out a model of a low viscosity channel beneath Tibetan Plateau invoked to explain variations in surface relief at the plateau margins.

  18. [Research progress on real-time deformable models of soft tissues for surgery simulation].

    Science.gov (United States)

    Xu, Shaoping; Liu, Xiaoping; Zhang, Hua; Luo, Jie

    2010-04-01

    Biological tissues generally exhibit nonlinearity, anisotropy, quasi-incompressibility and viscoelasticity about material properties. Simulating the behaviour of elastic objects in real time is one of the current objectives of virtual surgery simulation which is still a challenge for researchers to accurately depict the behaviour of human tissues. In this paper, we present a classification of the different deformable models that have been developed. We present the advantages and disadvantages of each one. Finally, we make a comparison of deformable models and perform an evaluation of the state of the art and the future of deformable models.

  19. Elastic-plastic dynamic analysis of a reactor building

    International Nuclear Information System (INIS)

    Umemura, Hajime; Tanaka, Hiroshi.

    1976-01-01

    The basic characteristics of the dynamic response of a reactor building to severe earthquake ground motion are very important for the evaluation of the safety of nuclear plant systems. A computer program for elastic-plastic dynamic analysis of reactor buildings using lumped mass models is developed. The box and cylindrical walls of boiling water reactor buildings are treated as vertical beams. The nonlinear moment-rotation and shear force-shear deformation relationships of walls are based in part upon the experiments of prototype structures. The geometrical non-linearity of the soil rocking spring due to foundation separation is also considered. The nonlinear equation of motion is expressed in incremental form using tangent stiffness matrices, following the algorithm developed by E.L. Wilson et al. The damping matrix in the equation is formulated as the combination of the energy evaluation method and Penzien-Wilson's approach to accomodate the different characteristics of soil and building damping. The analysis examples and the comparison of elastic and elastic-plastic analysis results are presented. (auth.)

  20. An optical potential for the statically deformed actinide nuclei derived from a global spherical potential

    Science.gov (United States)

    Al-Rawashdeh, S. M.; Jaghoub, M. I.

    2018-04-01

    In this work we test the hypothesis that a properly deformed spherical optical potential, used within a channel-coupling scheme, provides a good description for the scattering data corresponding to neutron induced reactions on the heavy, statically deformed actinides and other lighter deformed nuclei. To accomplish our goal, we have deformed the Koning-Delaroche spherical global potential and then used it in a channel-coupling scheme. The ground-state is coupled to a sufficient number of inelastic rotational channels belonging to the ground-state band to ensure convergence. The predicted total cross sections, elastic and inelastic angular distributions are in good agreement with the experimental data. As a further test, we compare our results to those obtained by a global channel-coupled optical model whose parameters were obtained by fitting elastic and inelastic angular distributions in addition to total cross sections. Our results compare quite well with those obtained by the fitted, channel-coupled optical model. Below neutron incident energies of about 1MeV, our results show that scattering into the rotational excited states of the ground-state band plays a significant role in the scattering process and must be explicitly accounted for using a channel-coupling scheme.

  1. High Temperature Deformation Mechanism in Hierarchical and Single Precipitate Strengthened Ferritic Alloys by In Situ Neutron Diffraction Studies.

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Clausen, Bjørn; Zhang, Shu Yan; Gao, Yanfei; Liaw, Peter K

    2017-04-07

    The ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni 2 TiAl/NiAl or single-Ni 2 TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxation behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate.

  2. Axisymmetric thermoviscoelastoplastic state of branched laminar shells, taking account of transverse-shear and torsional deformation

    International Nuclear Information System (INIS)

    Galishin, A.Z.

    1995-01-01

    The nonaxisymmetric thermoelastic stress-strain state (SSS) of branched laminar orthotropic shells was considered; the axisymmetric thermoviscoelastic SSS of branched laminar orthotropic shells was considered; and the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells was considered, taking into account of the transverse-shear deformation. In the present work, in contrast, the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells is considered, taking account of transverse-shear and torsional deformation. Layers that are made from orthotropic materials and deform in the elastic region may be present

  3. Nanoscale mapping of the three-dimensional deformation field within commercial nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Maqbool, Muhammad Salman; Hoxley, David; Phillips, Nicholas W.; Coughlan, Hannah D.; Darmanin, Connie; Johnson, Brett C.; Harder, Ross; Clark, Jesse N.; Balaur, Eugeniu; Abbey, Brian

    2017-01-01

    The unique properties of nanodiamonds make them suitable for use in a wide range of applications, including as biomarkers for cellular tracking in vivo at the molecular level. The sustained fluorescence of nanodiamonds containing nitrogen-vacancy (N-V) centres is related to their internal structure and strain state. Theoretical studies predict that the location of the N-V centre and the nanodiamonds' residual elastic strain state have a major influence on their photoluminescence properties. However, to date there have been no direct measurements made of their spatially resolved deformation fields owing to the challenges that such measurements present. Here we apply the recently developed technique of Bragg coherent diffractive imaging (BCDI) to map the three-dimensional deformation field within a single nanodiamond of approximately 0.5 µm diameter. The results indicate that there are high levels of residual elastic strain present in the nanodiamond which could have a critical influence on its optical and electronic properties.

  4. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    International Nuclear Information System (INIS)

    Kim, Nohyu; Yang, Seung Yong

    2016-01-01

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method

  5. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-02-15

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

  6. Deformation behaviors of three-dimensional graphene honeycombs under out-of-plane compression: Atomistic simulations and predictive modeling

    Science.gov (United States)

    Meng, Fanchao; Chen, Cheng; Hu, Dianyin; Song, Jun

    2017-12-01

    Combining atomistic simulations and continuum modeling, a comprehensive study of the out-of-plane compressive deformation behaviors of equilateral three-dimensional (3D) graphene honeycombs was performed. It was demonstrated that under out-of-plane compression, the honeycomb exhibits two critical deformation events, i.e., elastic mechanical instability (including elastic buckling and structural transformation) and inelastic structural collapse. The above events were shown to be strongly dependent on the honeycomb cell size and affected by the local atomic bonding at the cell junction. By treating the 3D graphene honeycomb as a continuum cellular solid, and accounting for the structural heterogeneity and constraint at the junction, a set of analytical models were developed to accurately predict the threshold stresses corresponding to the onset of those deformation events. The present study elucidates key structure-property relationships of 3D graphene honeycombs under out-of-plane compression, and provides a comprehensive theoretical framework to predictively analyze their deformation responses, and more generally, offers critical new knowledge for the rational bottom-up design of 3D networks of two-dimensional nanomaterials.

  7. Environmental bias and elastic curves on surfaces

    International Nuclear Information System (INIS)

    Guven, Jemal; María Valencia, Dulce; Vázquez-Montejo, Pablo

    2014-01-01

    The behavior of an elastic curve bound to a surface will reflect the geometry of its environment. This may occur in an obvious way: the curve may deform freely along directions tangent to the surface, but not along the surface normal. However, even if the energy itself is symmetric in the curve's geodesic and normal curvatures, which control these modes, very distinct roles are played by the two. If the elastic curve binds preferentially on one side, or is itself assembled on the surface, not only would one expect the bending moduli associated with the two modes to differ, binding along specific directions, reflected in spontaneous values of these curvatures, may be favored. The shape equations describing the equilibrium states of a surface curve described by an elastic energy accommodating environmental factors will be identified by adapting the method of Lagrange multipliers to the Darboux frame associated with the curve. The forces transmitted to the surface along the surface normal will be determined. Features associated with a number of different energies, both of physical relevance and of mathematical interest, are described. The conservation laws associated with trajectories on surface geometries exhibiting continuous symmetries are also examined. (paper)

  8. Patterns through elastic instabilities, from thin sheets to twisted ribbons

    Science.gov (United States)

    Damman, Pascal

    Sheets embedded in a given shape by external forces store the exerted work in elastic deformations. For pure tensile forces, the work is stored as stretching energy. When the forces are compressive, several ways to store the exerted work, combining stretching and bending deformations can be explored. For large deflections, the ratio of bending, Eh3ζ2 /L4 and stretching, Ehζ4 /L4 energies, suggests that strain-free solutions should be favored for thin sheets, provided ζ2 >>h2 (where E , ζ , Land h are the elastic modulus, the deflection, a characteristic sheet size and its thickness). For uniaxially constrained sheets deriving from the Elastica, strain-free solutions are obvious, i.e., buckles, folds or wrinkles grow to absorb the stress of compression. In contrast, crumpled sheets exhibit ``origami-like'' solutions usually described as an assembly of flat polygonal facets delimitated by ridges focusing strains are observed. This type of solutions is particularly interesting since a faceted morphology is isometric to the undeformed sheet, except at those narrow ridges. In some cases however, the geometric constraints imposed by the external forces do not allow solutions with negligible strain in the deformed state. For instance, considering a circular sheet on a small drop, so thin that bending becomes negligible, i.e., Eh3 / γL2 geometry and a competition between various energy terms, involving stretching and bending modes.

  9. Non-Rigid Contour-Based Registration of Cell Nuclei in 2-D Live Cell Microscopy Images Using a Dynamic Elasticity Model.

    Science.gov (United States)

    Sorokin, Dmitry V; Peterlik, Igor; Tektonidis, Marco; Rohr, Karl; Matula, Pavel

    2018-01-01

    The analysis of the pure motion of subnuclear structures without influence of the cell nucleus motion and deformation is essential in live cell imaging. In this paper, we propose a 2-D contour-based image registration approach for compensation of nucleus motion and deformation in fluorescence microscopy time-lapse sequences. The proposed approach extends our previous approach, which uses a static elasticity model to register cell images. Compared with that scheme, the new approach employs a dynamic elasticity model for the forward simulation of nucleus motion and deformation based on the motion of its contours. The contour matching process is embedded as a constraint into the system of equations describing the elastic behavior of the nucleus. This results in better performance in terms of the registration accuracy. Our approach was successfully applied to real live cell microscopy image sequences of different types of cells including image data that was specifically designed and acquired for evaluation of cell image registration methods. An experimental comparison with the existing contour-based registration methods and an intensity-based registration method has been performed. We also studied the dependence of the results on the choice of method parameters.

  10. Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Plohr, Bradley J. [Los Alamos National Laboratory; Plohr, Jeeyeon N. [Los Alamos National Laboratory

    2012-07-25

    We examine the approximations made in using Hooke's law as a constitutive relation for an isotropic thermoelastic material subjected to large deformation by calculating the stress evolution equation from the free energy. For a general thermoelastic material, we employ the volume-preserving part of the deformation gradient to facilitate volumetric/shear strain decompositions of the free energy, its first derivatives (the Cauchy stress and entropy), and its second derivatives (the specific heat, Grueneisen tensor, and elasticity tensor). Specializing to isotropic materials, we calculate these constitutive quantities more explicitly. For deformations with limited shear strain, but possibly large changes in volume, we show that the differential equations for the stress components involve new terms in addition to the traditional Hooke's law terms. These new terms are of the same order in the shear strain as the objective derivative terms needed for frame indifference; unless the latter terms are negligible, the former cannot be neglected. We also demonstrate that accounting for the new terms requires that the deformation gradient be included as a field variable

  11. Analysis of elastic-plastic problems using edge-based smoothed finite element method

    International Nuclear Information System (INIS)

    Cui, X.Y.; Liu, G.R.; Li, G.Y.; Zhang, G.Y.; Sun, G.Y.

    2009-01-01

    In this paper, an edge-based smoothed finite element method (ES-FEM) is formulated for stress field determination of elastic-plastic problems using triangular meshes, in which smoothing domains associated with the edges of the triangles are used for smoothing operations to improve the accuracy and the convergence rate of the method. The smoothed Galerkin weak form is adopted to obtain the discretized system equations, and the numerical integration becomes a simple summation over the edge-based smoothing domains. The pseudo-elastic method is employed for the determination of stress field and Hencky's total deformation theory is used to define effective elastic material parameters, which are treated as field variables and considered as functions of the final state of stress fields. The effective elastic material parameters are then obtained in an iterative manner based on the strain controlled projection method from the uniaxial material curve. Some numerical examples are investigated and excellent results have been obtained demonstrating the effectivity of the present method.

  12. Deformation of depleted uranium - 0.78 Ti under shock compression to 11.0 GPa at room temperature

    International Nuclear Information System (INIS)

    Dandekar, D.P.; Martin, A.G.; Kelley, J.V.

    1980-01-01

    The present work on depleted uranium alloyed with 0.78% titanium by weight (i.e., U-0.8 Ti) describes the nature of deformation it undergoes when subjected to shock compression at room temperature. The principal results emerging out of the present work are: (1) The stress limits of elastic deformation are dependent on the thickness of U-0.8Ti. The stress limit decreases from over 3.0 GPa at the impact surface to 1.2 GPa at a depth of 9 mm in U-0.8 Ti; (2) The lower limit of the stress agrees with the static yield stress in U-0.8 Ti; (3) Above the elastic stress limit, the deformation of U-0.8 Ti proceeds in a manner of the ideal plastic solid; and (4) The pressure derivative of Lame's parameter of U-0.8 Ti is estimated to be 3.8

  13. Examining the validity of Stoney-equation for in-situ stress measurements in thin film electrodes using a large-deformation finite-element procedure

    Science.gov (United States)

    Wen, Jici; Wei, Yujie; Cheng, Yang-Tse

    2018-05-01

    During the lithiation and delithiation of a thin film electrode, stress in the electrode is deduced from the curvature change of the film using the Stoney equation. The accuracy of such a measurement is conditioned on the assumptions that (a) the mechanical properties of the electrode remain unchanged during lithiation and (b) small deformation holds. Here, we demonstrate that the change in elastic properties can influence the measurement of the stress in thin film electrodes. We consider the coupling between diffusion and deformation during lithiation and delithiation of thin film electrodes and implement the constitutive behavior in a finite-deformation finite element procedure. We demonstrate that both the variation in elastic properties in thin film electrodes and finite-deformation during lithiation and delithiation would challenge the applicability of the Stoney-equation for in-situ stress measurements of thin film electrodes.

  14. Viscoelastic deformation of lipid bilayer vesicles†

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L.

    2015-01-01

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic. PMID:26268612

  15. Assessment of 3D hydrologic deformation using GRACE and GPS

    Science.gov (United States)

    Watson, C. S.; Tregoning, P.; Fleming, K.; Burgette, R. J.; Featherstone, W. E.; Awange, J.; Kuhn, M.; Ramillien, G.

    2009-12-01

    Hydrological processes cause variations in gravitational potential and surface deformations, both of which are detectable with ever increasing precision using space geodetic techniques. By comparing the elastic deformation computed from continental water load estimates derived from the Gravity Recovery and Climate Experiment (GRACE), with three-dimensional surface deformation derived from GPS observations, there is clear potential to better understand global to regional hydrological processes, in addition to acquiring further insight into the systematic error contributions affecting each space geodetic technique. In this study, we compare elastic deformation derived from water load estimates taken from the CNES, CSR, GFZ and JPL time variable GRACE fields. We compare these surface displacements with those derived at a global network of GPS sites that have been homogeneously reprocessed in the GAMIT/GLOBK suite. We extend our comparison to include a series of different GPS solutions, with each solution only subtly different based on the methodology used to down weight the height component in realizing site coordinates on the terrestrial reference frame. Each of the GPS solutions incorporate modeling of atmospheric loading and utilization of the VMF1 and a priori zenith hydrostatic delays derived via ray tracing through ECMWF meteorological fields. The agreement between GRACE and GPS derived deformations is not limited to the vertical component, with excellent agreement in the horizontal component across areas where large hydrologic signals occur over broad spatial scales (with correlation in horizontal components as high as 0.9). Agreement is also observed at smaller scales, including across Europe. These comparisons assist in understanding the magnitude of current error contributions within both space geodetic techniques. With the emergence of homogeneously reprocessed GPS time series spanning the GRACE mission, this technique offers one possible means of

  16. Elasticity in Elastics-An in-vitro study.

    Science.gov (United States)

    Kamisetty, Supradeep Kumar; Nimagadda, Chakrapani; Begam, Madhoom Ponnachi; Nalamotu, Raghuveer; Srivastav, Trilok; Gs, Shwetha

    2014-04-01

    Orthodontic tooth movement results from application of forces to teeth. Elastics in orthodontics have been used both intra-orally and extra- orally to a great effect. Their use, combined with good patient co-operation provides the clinician with the ability to correct both anteroposterior and vertical discrepancies. Force decay over a period of time is a major problem in the clinical usage of latex elastics and synthetic elastomers. This loss of force makes it difficult for the clinician to determine the actual force transmitted to the dentition. It's the intent of the clinician to maintain optimal force values over desired period of time. The majority of the orthodontic elastics on the market are latex elastics. Since the early 1990s, synthetic products have been offered in the market for latex-sensitive patients and are sold as nonlatex elastics. There is limited information on the risk that latex elastics may pose to patients. Some have estimated that 0.12-6% of the general population and 6.2% of dental professionals have hypersensitivity to latex protein. There are some reported cases of adverse reactions to latex in the orthodontic population but these are very limited to date. Although the risk is not yet clear, it would still be inadvisable to prescribe latex elastics to a patient with a known latex allergy. To compare the in-vitro performance of latex and non latex elastics. Samples of 0.25 inch, latex and non latex elastics (light, medium, heavy elastics) were obtained from three manufacturers (Forestadent, GAC, Glenroe) and a sample size of ten elastics per group was tested. The properties tested included cross sectional area, internal diameter, initial force generated by the elastics, breaking force and the force relaxation for the different types of elastics. Force relaxation testing involved stretching the elastics to three times marketed internal diameter (19.05 mm) and measuring force level at intervals over a period of 48 hours. The data were

  17. Capillary Deformations of Bendable Films

    KAUST Repository

    Schroll, R. D.

    2013-07-01

    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical theory for the contact of liquid drops on solids. Our calculations and experiments show that the liquid-solid-vapor contact angle is modified from the Young angle, even though the elastic bulk modulus (E) of the sheet is so large that the ratio between the surface tension γ and E is of molecular size. This finding indicates a new elastocapillary phenomenon that stems from the high bendability of very thin elastic sheets rather than from material softness. We also show that the size of the wrinkle pattern that emerges in the sheet is fully predictable, thus resolving a puzzle in modeling "drop-on-a-floating-sheet" experiments and enabling a quantitative, calibration-free use of this setup for the metrology of ultrathin films. © 2013 American Physical Society.

  18. Modeling Thermal Transport and Surface Deformation on Europa using Realistic Rheologies

    Science.gov (United States)

    Linneman, D.; Lavier, L.; Becker, T. W.; Soderlund, K. M.

    2017-12-01

    Most existing studies of Europa's icy shell model the ice as a Maxwell visco-elastic solid or viscous fluid. However, these approaches do not allow for modeling of localized deformation of the brittle part of the ice shell, which is important for understanding the satellite's evolution and unique geology. Here, we model the shell as a visco-elasto-plastic material, with a brittle Mohr-Coulomb elasto-plastic layer on top of a convective Maxwell viscoelastic layer, to investigate how thermal transport processes relate to the observed deformation and topography on Europa's surface. We use Fast Lagrangian Analysis of Continua (FLAC) code, which employs an explicit time-stepping algorithm to simulate deformation processes in Europa's icy shell. Heat transfer drives surface deformation within the icy shell through convection and tidal dissipation due to its elliptical orbit around Jupiter. We first analyze the visco-elastic behavior of a convecting ice layer and the parameters that govern this behavior. The regime of deformation depends on the magnitude of the stress (diffusion creep at low stresses, grain-size-sensitive creep at intermediate stresses, dislocation creep at high stresses), so we calculate effective viscosity each time step using the constitutive stress-strain equation and a combined flow law that accounts for all types of deformation. Tidal dissipation rate is calculated as a function of the temperature-dependent Maxwell relaxation time and the square of the second invariant of the strain rate averaged over each orbital period. After we initiate convection in the viscoelastic layer by instituting an initial temperature perturbation, we then add an elastoplastic layer on top of the convecting layer and analyze how the brittle ice reacts to stresses from below and any resulting topography. We also take into account shear heating along fractures in the brittle layer. We vary factors such as total shell thickness and minimum viscosity, as these parameters are

  19. The effect of tooling deformation on process control in multistage metal forming

    NARCIS (Netherlands)

    Havinga, Gosse Tjipke; van den Boogaard, Antonius H.; Chinesta, F; Cueto, E; Abisset-Chavanne, E.

    2016-01-01

    Forming of high-strength steels leads to high loads within the production process. In multistage metal forming, the loads in different process stages are transferred to the other stages through elastic deformation of the stamping press. This leads to interactions between process steps, affecting the

  20. Experimental investigation of stresses and deformations of the model of a pod-boiler-prestressed concrete pressure vessel. Pt. 1

    International Nuclear Information System (INIS)

    Stoever, R.

    1973-01-01

    Investigations of elastic models are suitable to obtain independent values for stress states and deformations of thickwalled pressure vessels to check computer programs for three-dimensional elastic calculations. An elastic model of epoxy resin was constructed with the geometry of the pod boiler pressure vessel of the Hartlepool nuclear power station. With this model strains and deformations were measured for internal pressure. The stress states in the neighbourhood of the large vertical openings for the boiler pods and the horizontal gas ducts and at the junction of cylinder and plates were of special interest. Therefore most of the gauges were concentrated in these regions. A considerable number of strain gauges were embedded in the wall. The construction of the model is described in part one and results of the measurements are presented and discussed in part two of this report. (orig.) [de

  1. Recent advances in understanding deformation and flow of granular matter

    Directory of Open Access Journals (Sweden)

    Mesarović Siniša Đ.

    2014-01-01

    Full Text Available By means of graph theory, we analyze the changes in topology of a granular assembly during deformation. The elementary mechanism of diffuse deformation consists of intermittent flips. We show that dilatancy is the direct result of: an increasing number of flips, and, elastic relaxation of particles upon flips. Both are dependent on particles' elastic potential energy prior to flip and after the flip. The latter is the result of non uniform distribution of interparticle forces in force chains. Next, we consider shear bands in granular materials. Formation of shear bands is accompanied by accompanied by massive rolling of particle. Since rolling is constrained by neighbors, a characteristic rolling correlation length appears. The transmission of rotations in a particular direction depends on the strength of the force chain branches in the direction of propagation and across. The maximum propagation distance is comparable to observed widths of shear bands. Finally, we turn to the question of vortex formation within shear bands and argue that vortex pattern minimizes the dissipation/resistance in granular fluid.

  2. A mechanical deformation model of metallic fuel pin under steady state conditions

    International Nuclear Information System (INIS)

    Lee, D. W.; Lee, B. W.; Kim, Y. I.; Han, D. H.

    2004-01-01

    As a mechanical deformation model of the MACSIS code predicts the cladding deformation due to the simple thin shell theory, it is impossible to predict the FCMI(Fuel-Cladding Mechanical Interaction). Therefore, a mechanical deformation model used the generalized plane strain is developed. The DEFORM is a mechanical deformation routine which is used to analyze the stresses and strains in the fuel and cladding of a metallic fuel pin of LMRs. The accuracy of the program is demonstrated by comparison of the DEFORM predictions with the result of another code calculations or experimental results in literature. The stress/strain distributions of elastic part under free thermal expansion condition are completely matched with the results of ANSYS code. The swelling and creep solutions are reasonably well agreed with the simulations of ALFUS and LIFE-M codes, respectively. The predicted cladding strains are under estimated than experimental data at the range of high burnup. Therefore, it is recommended that the fine tuning of the DEFORM based on various range of experimental data

  3. The elastic-plastic failure assessment diagram of surface cracked structure

    International Nuclear Information System (INIS)

    Ning, J.; Gao, Q.

    1987-01-01

    The simplified NLSM is able to calculate the EPFM parameters and failure assessment curve for the surface cracked structure correctly and conveniently. The elastic-plastic failure assessment curve of surface crack is relevant to crack geometry, loading form and material deformation behaviour. It is necessary to construct the EPFM failure assessment curve of the surface crack for the failure assessment of surface cracked structure. (orig./HP)

  4. Random three-dimensional jammed packings of elastic shells acting as force sensors

    Science.gov (United States)

    Jose, Jissy; van Blaaderen, Alfons; Imhof, Arnout

    2016-06-01

    In a jammed solid of granular particles, the applied stress is in-homogeneously distributed within the packing. A full experimental characterization requires measurement of all the interparticle forces, but so far such measurements are limited to a few systems in two and even fewer in three dimensions. Particles with the topology of (elastic) shells are good local force sensors as relatively large deformations of the shells result from relatively small forces. We recently introduced such fluorescent shells as a model granular system in which force distributions can be determined in three dimensions using confocal microscopy and quantitative image analysis. An interesting aspect about these shells that differentiates them from other soft deformable particles is their buckling behavior at higher compression. This leads to deformations that do not conserve the inner volume of the particle. Here we use this system to accurately measure the contact forces in a three-dimensional packing of shells subjected to a static anisotropic compression and to shear. At small deformations forces are linear, however, for a buckled contact, the restoring force is related to the amount of deformation by a square root law, as follows from the theory of elasticity of shells. Near the unjamming-jamming transition (point J ), we found the probability distribution of the interparticle forces P (f ) to decay nearly exponentially at large forces, with little evidence of long-range force chains in the packings. As the packing density is increased, the tail of the distribution was found to crossover to a Gaussian, in line with other experimental and simulation studies. Under a small shear strain, up to 0.216, applied at an extremely low shear rate, we observed a shear-induced anisotropy in both the pair correlation function and contact force network; however, no appreciable change was seen in the number of contacts per particle.

  5. Looking into Vulcanian eruption through new analogue experiments and associated deformation patterns

    Science.gov (United States)

    Manta, F.; Taisne, B.

    2017-12-01

    The dynamic of Vulcanian eruptions is one of the most fascinating subjects in volcanology. Its characteristic pattern of inflation-deflation cycles has been observed through geodetic data at several volcanoes. Deformation can occur minutes before an explosion suggesting a rapid escalation of events happening in the shallow conduit region. Several numerical and theoretical models have been proposed to explain the relation between the observed deformation pattern and properties of the system. While all of them have their own way to simplify the complexity of the natural system, no comprehensive studies were done to estimate the uncertainties associated with such simplifications. This is a challenging task since no direct observations about the characteristics of the natural system (e.g. bubbles length, conduit radius, viscosity, density...) can be made. Available models can be used to invert the deformation pattern in order to estimate values of the controlling parameters. While taking into account the uncertainties on the data, limitation of the models are usually neglected. In order to quantify the uncertainties associated with the numerical models, we have performed analogue experiments that simulate surface deformation related to conduit processes. We reproduced a degassing volcanic system embedded into an elastic medium that has analogue elastic properties compared to the earth crust. By applying inversion techniques on the measured deformation data and knowing the values of the controlling parameters, we are able to estimate the uncertainties of the model. Through the experimental approach, we also aim to shed light on the triggering mechanism behind Vulcanian eruptions that is still subject of debate. To this end, we explored different scenarios of pressurization: from bubbly flow regime to gas overpressure below a viscous plug. Results will help to clarify what is the dynamic of Vulcanian eruptions and quantify how the properties of the system affect the

  6. DEVELOPMENT OF THE LOAD MEASURING DEVICES TO DETERMINE THE RESIDUAL DEFORMATION OF THE ELASTIC SENSING ELEMENT

    Directory of Open Access Journals (Sweden)

    Ivan V. Antonets

    2018-01-01

    Full Text Available The main focus in the design of weighing and batching devices is to create a gravimetric technique, capable of providing not only mass measurement – weighing with the required accuracy and speed, but also automatic control of technological processes and their control and regulation. In this case, the opportunity of two-way communication with a computer when designing the load measuring devices is realized, allowing remote monitoring and solution of logical problems associated with the management process. Modern automatic weighing and batching devices are important parts of comprehensive automation in different branches of industry. Existing developments of electrical, electronic, computing and other branches of instrument engineering techniques allow to implement transformations of the measured quantity with a very high degree of accuracy. However, if the measured quantity in the weighing process is perceived by the elastic sensing element of low quality, then no matter how high the accuracy of further changes is; the characteristics of the elastic element will limit the accuracy of the instrument as a whole. Although the elastic elements are simple mechanical parts, and many types of elastic elements are known and are widely used for many decades, their performance often does not meet the requirements, and hampers the device creation of high accuracy classes. Growing requirements for primary transformer makes actual the problem solution of improving the quality of elastic sensing elements not only in the manufacture but in the design. This led to the appearance of projects aimed at the development of computational and experimental methods that have altered the methodology for the design of force measuring devices.

  7. Characterisation of polycrystal deformation by numerical modelling and neutron diffraction measurements

    International Nuclear Information System (INIS)

    Clausen, B.

    1997-09-01

    The deformation of polycrystals are modelled using three micron mechanic models; the Taylor model, the Sachs model and Hutchinson's self-consistent (SC) model. The predictions of the rigid plastic Taylor and Sachs models are compared with the predictions of the SC model. As expected, the results of the SC model is about half-way between the upper- and lower-bound models. The influence of the elastic anisotropy is investigated by comparing the SC predictions for aluminium, copper and a hypothetical material (Hybrid) with the elastic anisotropy of copper and the Young's modulus and hardening behaviour of aluminium. It is concluded that the effect of the elastic anisotropy is limited to the very early stages of plasticity, as the deformation pattern is almost identical for the three materials at higher strains. The predictions of the three models are evaluated by neutron diffraction measurements of elastic lattice strains in grain sub-sets within the polycrystal. The two rigid plastic models do not include any material parameters and therefore the predictions of the SC model is more accurate and more detailed than the predictions of the Taylor and Sachs models. The SC model is used to determine the most suitable reflection for technological applications of neutron diffraction, where focus is on the volume average stress state in engineering components. To be able to successfully to convert the measured elastic lattice strains for a specific reflection into overall volume average stresses, there must be a linear relation between the lattice strain of the reflection and the overall stress. According to the model predictions the 311-reflection is the most suitable reflection as it shows the smallest deviations from linearity and thereby also the smallest build-up of residual strains. The model predictions have pin pointed that the selection of the reflection is crucial for the validity of stresses calculated from the measured elastic lattice strains. (au) 14 tabs., 41

  8. Study of a Piezo-Thermo-Elastic Materials Console

    Directory of Open Access Journals (Sweden)

    hamza madjid berrabah

    2015-09-01

    Full Text Available In the first part of this work, analytical expressions were determined for the stresses through the thickness of a composite beam submitted to electrical excitation. In the second part of this study we are interested in the theory of elasticity, which is used to obtain exact solutions of piezo-thermo-elastic consoles gradually coupled evaluated under different loads. These solutions are used to identify the piezoelectric parameter and thermal coefficients of the materials. In addition, numerical results are obtained for the analysis of the loaded console by two different types of loading. In this study we show also that changing the linear thermal parameters of the material does not affect the distribution of the stress and the induction of the beam. However it affetcs the components of the deformation, electric field, the displacement and the electric potential of the console.

  9. Shape Changing Nonlocal Molecular Deformations in a Nematic Liquid Crystal

    International Nuclear Information System (INIS)

    Kavitha, L.; Venkatesh, M.; Gopi, D.

    2010-07-01

    The nature of nonlinear molecular deformations in a homeotropically aligned nematic liquid crystal (NLC) is presented. We start from the basic dynamical equation for the director axis of a NLC with elastic deformation mapped onto an integro-differential perturbed Nonlinear Schroedinger equation which includes the nonlocal term. By invoking the modified extended tangent hyperbolic function method aided with symbolic computation, we obtain a series of solitary wave solutions. Under the influence of the nonlocality induced by the reorientation nonlinearity due to fluctuations in the molecular orientation, the solitary wave exhibits shape changing property for different choices of parameters. This intriguing property, as a result of the relation between the coherence of the solitary deformation and the nonlocality, reveals a strong need for deeper understanding in the theory of self-localization in NLC systems. (author)

  10. Introducing the Jacobian-volume-histogram of deforming organs: application to parotid shrinkage evaluation

    International Nuclear Information System (INIS)

    Fiorino, Claudio; Maggiulli, Eleonora; Broggi, Sara; Cattaneo, Giovanni Mauro; Calandrino, Riccardo; Liberini, Simone; Faggiano, Elena; Rizzo, Giovanna; Dell'Oca, Italo; Di Muzio, Nadia

    2011-01-01

    The Jacobian of the deformation field of elastic registration between images taken during radiotherapy is a measure of inter-fraction local deformation. The histogram of the Jacobian values (Jac) within an organ was introduced (JVH-Jacobian-volume-histogram) and first applied in quantifying parotid shrinkage. MVCTs of 32 patients previously treated with helical tomotherapy for head-neck cancers were collected. Parotid deformation was evaluated through elastic registration between MVCTs taken at the first and last fractions. Jac was calculated for each voxel of all parotids, and integral JVHs were calculated for each parotid; the correlation between the JVH and the planning dose-volume histogram (DVH) was investigated. On average, 82% (±17%) of the voxels shrinks (Jac 50% (Jac < 0.5). The best correlation between the DVH and the JVH was found between V10 and V15, and Jac < 0.4-0.6 (p < 0.01). The best constraint predicting a higher number of largely compressing voxels (Jac0.5<7.5%, median value) was V15 ≥ 75% (OR: 7.6, p = 0.002). Jac and the JVH are promising tools for scoring/modelling toxicity and for evaluating organ/contour variations with potential applications in adaptive radiotherapy.

  11. Studying the effect of elastic-plastic strain and hydrogen sulphide on the magnetic behaviour of pipe steels as applied to their testing

    Directory of Open Access Journals (Sweden)

    Povolotskaya Anna

    2018-01-01

    Full Text Available The paper reports results of magnetic measurements made on samples of the 12GB pipe steel (strength group X42SS designed for producing pipes to be used in media with high hydrogen sulphide content, both in the initial state and after exposure to hydrogen sulphide, for 96, 192 and 384 hours under uniaxial elastic-plastic tension. At the stage of elastic deformation there is a unique correlation between the coercive force measured on a minor hysteresis loop in weak fields and tensile stress, which enables this parameter to be used for the evaluation of elastic stresses in pipes made of the 12 GB pipe steel under different conditions, including a hydrogen sulphide containing medium. The effect of the value of preliminary plastic strain, viewed as the initial stress-strain state, on the magnetic behaviour of X70 pipe steels under elastic tension and compression is studied. Plastic strain history affects the magnetic behaviour of the material during subsequent elastic deformation since plastic strain induces various residual stresses, and this necessitates taking into account the initial stress-strain state of products when developing magnetic techniques for the determination of their stress-strain parameters during operation.

  12. Characterizing the deformation of reservoirs using interferometry, gravity, and seismic analyses

    Science.gov (United States)

    Schiek, Cara Gina

    In this dissertation, I characterize how reservoirs deform using surface and subsurface techniques. The surface technique I employ is radar interferometry, also known as InSAR (Interferometric Synthetic Aperture Radar). The subsurface analyses I explore include gravity modeling and seismic techniques consisting of determining earthquake locations from a small-temporary seismic network of six seismometers. These techniques were used in two different projects to determine how reservoirs deform in the subsurface and how this deformation relates to its remotely sensed surface deformation. The first project uses InSAR to determine land subsidence in the Mimbres basin near Deming, NM. The land subsidence measurements are visually compared to gravity models in order to determine the influence of near surface faults on the subsidence and the physical properties of the aquifers in these basins. Elastic storage coefficients were calculated for the Mimbres basin to aid in determining the stress regime of the aquifers. In the Mimbres basin, I determine that it is experiencing elastic deformation at differing compaction rates. The west side of the Mimbres basin is deforming faster, 17 mm/yr, while the east side of the basin is compacting at a rate of 11 mm/yr. The second project focuses on San Miguel volcano, El Salvador. Here, I integrate InSAR with earthquake locations using surface deformation forward modeling to investigate the explosive volcanism in this region. This investigation determined the areas around the volcano that are undergoing deformation, and that could lead to volcanic hazards such as slope failure from a fractured volcano interior. I use the earthquake epicenters with field data to define the subsurface geometry of the deformation source, which I forward model to produce synthetic interferograms. Residuals between the synthetic and observed interferograms demonstrate that the observed deformation is a direct result of the seismic activity along the San

  13. Numerical Analysis of Small Deformation of Flexible Helical Flagellum of Swimming Bacteria

    Science.gov (United States)

    Takano, Yasunari; Goto, Tomonobu

    Formulations are conducted to numerically analyze the effect of flexible flagellum of swimming bacteria. In the present model, a single-flagellate bacterium is assumed to consist of a rigid cell body of the prolate spheroidal shape and a flexible flagellum of the helical form. The resistive force theory is applied to estimate the force exerted on the flagellum. The torsional as well as the bending moments determine the curvature and the torsion of the deformed flagellum according to the Kirchhoff model for an elastic rod. The unit tangential vector along the deformed flagellum is calculated by applying evolution equations for space curves, and also a deformed shape of the flagellum is obtained.

  14. Research on the porous flow of the mechanism of viscous-elastic fluids displacing residual oil droplets in micro pores

    Science.gov (United States)

    Dong, Guanyu

    2018-03-01

    In order to analyze the microscopic stress field acting on residual oil droplets in micro pores, calculate its deformation, and explore the hydrodynamic mechanism of viscous-elastic fluids displacing oil droplets, the viscous-elastic fluid flow equations in micro pores are established by choosing the Upper Convected Maxwell constitutive equation; the numerical solutions of the flow field are obtained by volume control and Alternate Direction Implicit methods. From the above, the velocity field and microscopic stress field; the forces acting on residual oil droplets; the deformations of residual oil droplets by various viscous-elastic displacing fluids and at various Wiesenberg numbers are calculated and analyzed. The result demonstrated that both the normal stress and horizontal force acting on the residual oil droplets by viscous-elastic fluids are much larger compared to that of inelastic fluid; the distribution of normal stress changes abruptly; under the condition of the same pressure gradient in the system under investigation, the ratio of the horizontal forces acting on the residual oil droplets by different displacing fluids is about 1:8:20, which means that under the above conditions, the driving force on a oil droplet is 20 times higher for a viscous-elastic fluid compared to that of a Newtonian Fluid. The conclusions are supportive of the mechanism that viscous-elastic driving fluids can increase the Displacement Efficiency. This should be of help in designing new chemicals and selecting Enhanced Oil Recovery systems.

  15. Consequence of reduced necrotic bone elastic modulus in a Perthes' hip

    DEFF Research Database (Denmark)

    Salmingo, Remel A.; Skytte, Tina Lercke; Mikkelsen, Lars Pilgaard

    Introduction Perthes is a destructive hip joint disorder characterized as a malformation of the femoral head which affects young children. Several studies have shown the change of mechanical properties of the femoral head in Perthes’ disease. However, the consequence of the changes in bone...... mechanical properties in a Perthes’ hip is not well established. Due to the material differences, changes in bone mechanical properties might lead to localization of stress and deformation. Thus, the objective of this study was to investigate the effects of reduced elastic modulus of necrotic bone...... weight) was applied on the top of the femoral head. The distal part of the femur was fixed. The same Poisson’s ratio 0.3 was set for the femoral and necrotic bone. The elastic modulus (E) of femoral bone was 500 MPa. To investigate the effects of reduced elastic modulus, the necrotic bone E was reduced...

  16. Effective material parameter retrieval of anisotropic elastic metamaterials with inherent nonlocality

    Science.gov (United States)

    Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young

    2016-09-01

    In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.

  17. Elastic Stress Analysis of Rotating Functionally Graded Annular Disk of Variable Thickness Using Finite Difference Method

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Jalali

    2018-01-01

    Full Text Available Elastic stress analysis of rotating variable thickness annular disk made of functionally graded material (FGM is presented. Elasticity modulus, density, and thickness of the disk are assumed to vary radially according to a power-law function. Radial stress, circumferential stress, and radial deformation of the rotating FG annular disk of variable thickness with clamped-clamped (C-C, clamped-free (C-F, and free-free (F-F boundary conditions are obtained using the numerical finite difference method, and the effects of the graded index, thickness variation, and rotating speed on the stresses and deformation are evaluated. It is shown that using FG material could decrease the value of radial stress and increase the radial displacement in a rotating thin disk. It is also demonstrated that increasing the rotating speed can strongly increase the stress in the FG annular disk.

  18. Deformation of a Low-Cost Ti-6A1-4V Armor Alloy Under Shock Loading

    National Research Council Canada - National Science Library

    Spletzer, Stephen

    2001-01-01

    .... Examination of the particle velocity histories obtained from specimens of the alloy during 11 plate-on-plate impact/planar shock wave experiments indicates that the alloy deforms in an elastic-plastic manner...

  19. Split-Ring Springback Simulations with the Non-associated Flow Rule and Evolutionary Elastic-Plasticity Models

    Science.gov (United States)

    Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.

    2018-06-01

    Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.

  20. Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires

    Science.gov (United States)

    Zheng, Y. G.; Zhao, Y. T.; Ye, H. F.; Zhang, H. W.

    2014-08-01

    Based on atomistic simulations, the elastic moduli and vibration behaviors of fivefold twinned copper nanowires are investigated in this paper. Simulation results show that the elastic (i.e., Young’s and shear) moduli exhibit size dependence due to the surface effect. The effective Young’s modulus is found to decrease slightly whereas the effective shear modulus increases slightly with the increase in the wire radius. Both moduli tend to approach certain values at a larger radius and can be suitably described by core-shell composite structure models. Furthermore, we show by comparing simulation results and continuum predictions that, provided the effective Young’s and shear moduli are used, classic elastic theory can be applied to describe the small-amplitude vibration of fivefold twinned copper nanowires. Moreover, for the transverse vibration, the Timoshenko beam model is more suitable because shear deformation becomes apparent.

  1. Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires

    International Nuclear Information System (INIS)

    Zheng, Y G; Zhao, Y T; Ye, H F; Zhang, H W

    2014-01-01

    Based on atomistic simulations, the elastic moduli and vibration behaviors of fivefold twinned copper nanowires are investigated in this paper. Simulation results show that the elastic (i.e., Young’s and shear) moduli exhibit size dependence due to the surface effect. The effective Young’s modulus is found to decrease slightly whereas the effective shear modulus increases slightly with the increase in the wire radius. Both moduli tend to approach certain values at a larger radius and can be suitably described by core-shell composite structure models. Furthermore, we show by comparing simulation results and continuum predictions that, provided the effective Young’s and shear moduli are used, classic elastic theory can be applied to describe the small-amplitude vibration of fivefold twinned copper nanowires. Moreover, for the transverse vibration, the Timoshenko beam model is more suitable because shear deformation becomes apparent. (paper)

  2. Parametric dependence of a morphing wind turbine blade on material elasticity

    International Nuclear Information System (INIS)

    Puterbaugh, Martin; Beyene, Asfaw

    2011-01-01

    A few recent works have suggested a morphing blade for wind turbine energy conversion. The concept is derived from fin and wing motions that better adapt to varying load conditions. Previous research has provided the fluid mechanic justification of this new concept. This paper establishes a parametric relationship between an asymmetric wind turbine blade and constituent material modulus to predict the geometric response of the morphing blade for a given material characteristic. The airfoil's trailing edge deflection is associated to a prescribed fluid exit angle via the Moment Area (MA) method. Subsequently, a mathematical model is derived to predict material deformation with respect to imparted aerodynamic forces. Results show that an airfoil, much like a tapered beam, can be modeled as a non-prismatic cantilevered beam using this well established method. -- Research highlights: →A mathematical model relating morphing airfoil thickness and elastic modulus was established. →For non-prismatic beam under a uniform distributive load, the slope and deflection of the airfoil's trailing edge were related to the fluid exit angle. →The main driver of blade deformation was the angular drag force. The Moment Area method was used, verified by Finite Element method. →Displacement to the exit angle is predicated upon the elastic modulus value given that other parameters are constant. →Optimum power output is obtained in part load conditions when the blade deforms to the applicable exit angle.

  3. A nonlinear theory for elastic plates with application to characterizing paper properties

    Science.gov (United States)

    M. W. Johnson; Thomas J. Urbanik

    1984-03-01

    A theory of thin plates which is physically as well as kinematically nonlinear is, developed and used to characterize elastic material behavior for arbitrary stretching and bending deformations. It is developed from a few clearly defined assumptions and uses a unique treatment of strain energy. An effective strain concept is introduced to simplify the theory to a...

  4. Nuclear quadrupole-quadrupole interaction in the inelastic scattering of aligned deuterons from deformed nuclei

    International Nuclear Information System (INIS)

    Clement, H.; Frick, R.; Graw, G.; Schiemenz, P.; Seichert, N.

    1983-01-01

    The 2 1 + -excitation of deformed nuclei by tensor polarized deuterons provides an alignment of both nuclei and thus a means to study specifically the quadrupole-quadrupole interaction between both nuclei. The tensor analyzing power Asub(xz)(theta) has been measured for the elastic and inelastic scattering on 24 Mg and 28 Si. The coupled channel analysis including a deformed tensor potential reveals a clear signature of the quadrupole-quadrupole part of the nuclear projectile-target interaction. (orig.)

  5. The role of deformation microstructure in recovery and recrystallization of heavily strained metals

    DEFF Research Database (Denmark)

    Hansen, Niels

    2012-01-01

    Metals deformed to high and ultrahigh strains are characterized by a nanoscale microstructure, a large fraction of high angle boundaries and a high dislocation density. Another characteristic of such a microstructure is a large stored energy that combines elastic energy due to dislocations and bo...

  6. Rotation of an immersed cylinder sliding near a thin elastic coating

    Science.gov (United States)

    Rallabandi, Bhargav; Saintyves, Baudouin; Jules, Theo; Salez, Thomas; Schönecker, Clarissa; Mahadevan, L.; Stone, Howard A.

    2017-07-01

    It is known that an object translating parallel to a soft wall in a viscous fluid produces hydrodynamic stresses that deform the wall, which in turn results in a lift force on the object. Recent experiments with cylinders sliding under gravity near a soft incline, which confirmed theoretical arguments for the lift force, also reported an unexplained steady-state rotation of the cylinders [B. Saintyves et al., Proc. Natl. Acad. Sci. USA 113, 5847 (2016), 10.1073/pnas.1525462113]. Motivated by these observations, we show, in the lubrication limit, that an infinite cylinder that translates in a viscous fluid parallel to a soft wall at constant speed and separation distance must also rotate in order to remain free of torque. Using the Lorentz reciprocal theorem, we show analytically that for small deformations of the elastic layer, the angular velocity of the cylinder scales with the cube of the sliding speed. These predictions are confirmed numerically. We then apply the theory to the gravity-driven motion of a cylinder near a soft incline and find qualitative agreement with the experimental observations, namely, that a softer elastic layer results in a greater angular speed of the cylinder.

  7. Elastic Properties and Stability of Physisorbed Graphene

    Directory of Open Access Journals (Sweden)

    Philippe Lambin

    2014-05-01

    Full Text Available Graphene is an ultimate membrane that mixes both flexibility and mechanical strength, together with many other remarkable properties. A good knowledge of the elastic properties of graphene is prerequisite to any practical application of it in nanoscopic devices. Although this two-dimensional material is only one atom thick, continuous-medium elasticity can be applied as long as the deformations vary slowly on the atomic scale and provided suitable parameters are used. The present paper aims to be a critical review on this topic that does not assume a specific pre-knowledge of graphene physics. The basis for the paper is the classical Kirchhoff-Love plate theory. It demands a few parameters that can be addressed from many points of view and fitted to independent experimental data. The parameters can also be estimated by electronic structure calculations. Although coming from diverse backgrounds, most of the available data provide a rather coherent picture that gives a good degree of confidence in the classical description of graphene elasticity. The theory can than be used to estimate, e.g., the buckling limit of graphene bound to a substrate. It can also predict the size above which a scrolled graphene sheet will never spontaneously unroll in free space.

  8. Validation of an elastic registration technique to estimate anatomical lung modification in Non-Small-Cell Lung Cancer Tomotherapy

    International Nuclear Information System (INIS)

    Faggiano, Elena; Cattaneo, Giovanni M; Ciavarro, Cristina; Dell'Oca, Italo; Persano, Diego; Calandrino, Riccardo; Rizzo, Giovanna

    2011-01-01

    The study of lung parenchyma anatomical modification is useful to estimate dose discrepancies during the radiation treatment of Non-Small-Cell Lung Cancer (NSCLC) patients. We propose and validate a method, based on free-form deformation and mutual information, to elastically register planning kVCT with daily MVCT images, to estimate lung parenchyma modification during Tomotherapy. We analyzed 15 registrations between the planning kVCT and 3 MVCT images for each of the 5 NSCLC patients. Image registration accuracy was evaluated by visual inspection and, quantitatively, by Correlation Coefficients (CC) and Target Registration Errors (TRE). Finally, a lung volume correspondence analysis was performed to specifically evaluate registration accuracy in lungs. Results showed that elastic registration was always satisfactory, both qualitatively and quantitatively: TRE after elastic registration (average value of 3.6 mm) remained comparable and often smaller than voxel resolution. Lung volume variations were well estimated by elastic registration (average volume and centroid errors of 1.78% and 0.87 mm, respectively). Our results demonstrate that this method is able to estimate lung deformations in thorax MVCT, with an accuracy within 3.6 mm comparable or smaller than the voxel dimension of the kVCT and MVCT images. It could be used to estimate lung parenchyma dose variations in thoracic Tomotherapy

  9. Modeling plasticity by non-continuous deformation

    Science.gov (United States)

    Ben-Shmuel, Yaron; Altus, Eli

    2017-10-01

    Plasticity and failure theories are still subjects of intense research. Engineering constitutive models on the macroscale which are based on micro characteristics are very much in need. This study is motivated by the observation that continuum assumptions in plasticity in which neighbour material elements are inseparable at all-time are physically impossible, since local detachments, slips and neighbour switching must operate, i.e. non-continuous deformation. Material microstructure is modelled herein by a set of point elements (particles) interacting with their neighbours. Each particle can detach from and/or attach with its neighbours during deformation. Simulations on two- dimensional configurations subjected to uniaxial compression cycle are conducted. Stochastic heterogeneity is controlled by a single "disorder" parameter. It was found that (a) macro response resembles typical elasto-plastic behaviour; (b) plastic energy is proportional to the number of detachments; (c) residual plastic strain is proportional to the number of attachments, and (d) volume is preserved, which is consistent with macro plastic deformation. Rigid body displacements of local groups of elements are also observed. Higher disorder decreases the macro elastic moduli and increases plastic energy. Evolution of anisotropic effects is obtained with no additional parameters.

  10. Simulation of quasistatic deformations using discrete rod models

    OpenAIRE

    Linn, J.; Stephan, T.

    2008-01-01

    Recently we developed a discrete model of elastic rods with symmetric cross section suitable for a fast simulation of quasistatic deformations [33]. The model is based on Kirchhoff’s geometrically exact theory of rods. Unlike simple models of “mass & spring” type typically used in VR applications, our model provides a proper coupling of bending and torsion. The computational approach comprises a variational formulation combined with a finite difference discretization of the continuum model. A...

  11. Numerical simulation of shear and the Poynting effects by the finite element method: An application of the generalised empirical inequalities in non-linear elasticity

    KAUST Repository

    Angela Mihai, L.

    2013-03-01

    Finite element simulations of different shear deformations in non-linear elasticity are presented. We pay particular attention to the Poynting effects in hyperelastic materials, complementing recent theoretical findings by showing these effects manifested by specific models. As the finite element method computes uniform deformations exactly, for simple shear deformation and pure shear stress, the Poynting effect is represented exactly, while for the generalised shear and simple torsion, where the deformation is non-uniform, the solution is approximated efficiently and guaranteed computational bounds on the magnitude of the Poynting effect are obtained. The numerical results further indicate that, for a given elastic material, the same sign effect occurs under different shearing mechanisms, showing the genericity of the Poynting effect under a variety of shearing loads. In order to derive numerical models that exhibit either the positive or the negative Poynting effect, the so-called generalised empirical inequalities, which are less restrictive than the usual empirical inequalities involving material parameters, are assumed. © 2012 Elsevier Ltd.

  12. Non-localized deformation in Cu−Zr multi-layer amorphous films under tension

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, C. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, H. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Cao, Q.P.; Wang, X.D. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Hu, J.W. [Hangzhou Workers Amateur University, Hangzhou 310027 (China); Liaw, P.K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-09-05

    In metallic glasses (MGs), plastic deformation at room temperature is dominated by highly localized shear bands. Here we report the non-localized deformation under tension in Cu−Zr multi-layer MGs with a pure amorphous structure using large-scale atomistic simulations. It is demonstrated that amorphous samples with high layer numbers, composed of Cu{sub 64}Zr{sub 36} and Cu{sub 40}Zr{sub 60}, or Cu{sub 64}Zr{sub 36} and Cu{sub 50}Zr{sub 50}, present obviously non-localized deformation behavior. We reveal that the deformation behavior of the multi-layer-structured MG films is related but not determined by the deformation behavior of the composed individual layers. The criterion for the deformation mode change for MGs with a pure amorphous structure, in generally, was suggested, i.e., the competition between the elastic-energy density stored and the energy density needed for forming one mature shear band in MGs. Our results provide a promising strategy for designing tensile ductile MGs with a pure amorphous structure at room temperature. - Highlights: • Tensile deformation behaviors in multi-layer MG films. • Films with high layer numbers confirmed with a non-localized deformation behavior. • The deformation mode is reasonably controlled by whether U{sub p} larger than U{sub SB.}.

  13. Fusion and quasi-elastic processes near the Coulomb barrier

    International Nuclear Information System (INIS)

    Abriola, D.

    1987-01-01

    An overview of the fusion phenomenon below Coulomb barrier is presented. The current theoretical descriptions, emphasizing the relations with direct reactions are discussed. The definition and systematic behaviour of the fusion enhancement below the Coulomb barrier are also presented. The role of coupling to surface degrees of freedom, namely permanent deformations of nuclei, inelastic and transfer channels is shown. The importance of studies describing simultaneously quase-elastic processes and fusion are also shown. (M.C.K.) [pt

  14. Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation

    Science.gov (United States)

    Yun, Su-Jin

    In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.

  15. Thermal-mechanical deformation modelling of soft tissues for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Jazar, Reza; Subic, Aleksandar

    2014-01-01

    Modeling of thermal-induced mechanical behaviors of soft tissues is of great importance for thermal ablation. This paper presents a method by integrating the heating process with thermal-induced mechanical deformations of soft tissues for simulation and analysis of the thermal ablation process. This method combines bio-heat transfer theories, constitutive elastic material law under thermal loads as well as non-rigid motion dynamics to predict and analyze thermal-mechanical deformations of soft tissues. The 3D governing equations of thermal-mechanical soft tissue deformation are discretized by using the finite difference scheme and are subsequently solved by numerical algorithms. Experimental results show that the proposed method can effectively predict the thermal-induced mechanical behaviors of soft tissues, and can be used for the thermal ablation therapy to effectively control the delivered heat energy for cancer treatment.

  16. Elastic moduli of a Brownian colloidal glass former

    Science.gov (United States)

    Fritschi, S.; Fuchs, M.

    2018-01-01

    The static, dynamic and flow-dependent shear moduli of a binary mixture of Brownian hard disks are studied by an event-driven molecular dynamics simulation. Thereby, the emergence of rigidity close to the glass transition encoded in the static shear modulus G_∞ is accessed by three methods. Results from shear stress auto-correlation functions, elastic dispersion relations, and the elastic response to strain deformations upon the start-up of shear flow are compared. This enables one to sample the time-dependent shear modulus G(t) consistently over several decades in time. By that a very precise specification of the glass transition point and of G_∞ is feasible. Predictions by mode coupling theory of a finite shear modulus at the glass transition, of α-scaling in fluid states close to the transition, and of shear induced decay in yielding glass states are tested and broadly verified.

  17. Elastic stability of silicone ferrofluid internal tamponade (SFIT) in retinal detachment surgery

    Energy Technology Data Exchange (ETDEWEB)

    Voltairas, P.A. E-mail: pvolter@cs.uoi.gr; Fotiadis, D.I.; Massalas, C.V

    2001-07-01

    It has been argued that silicone ferrofluid internal tamponade (SFIT) can provide (360 deg.) tamponade of the retina in retinal detachment surgery. Provided that the produced SFIT is biocompatible, exact knowledge is needed of its elastic stability in the magnetic field produced by the semi-solid magnetic silicon band (MSB) used as a scleral buckle. We propose a quantitative, phenomenological model to estimate the critical magnetic field produced by the MSB that 'closes' retinal tears and results in the reattachment of the retina. The magnetic 'deformation' of SFIT is modeled in accordance with the deformation of a ferrofluid droplet in an external magnetic field.

  18. Elastic deformations of floaters for offshore wind turbines: Dynamic modelling and sectional load calculations

    DEFF Research Database (Denmark)

    Borg, Michael; Bredmose, Henrik; Hansen, Anders Melchior

    2017-01-01

    To achieve economically and technically viable floating support structures for large 10MW+ wind turbines, structural flexibility may increase to the extent that becomes relevant to incorporate along with the corresponding physical effects within aero-hydro-servo-elastic simulation tools. Previous...

  19. Poster — Thur Eve — 77: Implanted Brachythearpy Seed Movement due to Transrectal Ultrasound Probe-Induced Prostate Deformation

    International Nuclear Information System (INIS)

    Liu, D; Usmani, N; Sloboda, R; Meyer, T; Husain, S; Angyalfi, S; Kay, I

    2014-01-01

    The study investigated the movement of implanted brachytherapy seeds upon transrectal US probe removal, providing insight into the underlying prostate deformation and an estimate of the impact on prostate dosimetry. Implanted seed distributions, one obtained with the prostate under probe compression and another with the probe removed, were reconstructed using C-arm fluoroscopy imaging. The prostate, delineated on ultrasound images, was registered to the fluoroscopy images using seeds and needle tracks identified on ultrasound. A deformation tensor and shearing model was developed to correlate probe-induced seed movement with position. Changes in prostate TG-43 dosimetry were calculated. The model was used to infer the underlying prostate deformation and to estimate the location of the prostate surface in the absence of probe compression. Seed movement patterns upon probe removal reflected elastic decompression, lateral shearing, and rectal bending. Elastic decompression was characterized by expansion in the anterior-posterior direction and contraction in the superior-inferior and lateral directions. Lateral shearing resulted in large anterior movement for extra-prostatic seeds in the lateral peripheral region. Whole prostate D90 increased up to 8 Gy, mainly due to the small but systematic seed movement associated with elastic decompression. For selected patients, lateral shearing movement increased prostate D90 by 4 Gy, due to increased dose coverage in the anterior-lateral region at the expense of the posterior-lateral region. The effect of shearing movement on whole prostate D90 was small compared to elastic decompression due to the subset of peripheral seeds involved, but is expected to have greater consequences for local dose coverage

  20. Elastic-plastic fracture mechanics of compact bone

    Science.gov (United States)

    Yan, Jiahau

    deformation was much greater than the energy spent in linear-elastic deformation. This could be because bone has at least four toughening mechanisms and a high volumetric percentage of organics (approximately 42% for bovine femur). The J integral is shown to better describe the fracture process of bovine femur and manatee rib.

  1. A nonaffine network model for elastomers undergoing finite deformations

    Science.gov (United States)

    Davidson, Jacob D.; Goulbourne, N. C.

    2013-08-01

    In this work, we construct a new physics-based model of rubber elasticity to capture the strain softening, strain hardening, and deformation-state dependent response of rubber materials undergoing finite deformations. This model is unique in its ability to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and can also be easily identified with the important characteristics of the macroscopic stress-stretch response. The microscopic picture consists of two components: a crosslinked network of Langevin chains and an entangled network with chains confined to a nonaffine tube. These represent, respectively, changes in entropy due to thermally averaged chain conformations and changes in entropy due to the magnitude of these conformational fluctuations. A simple analytical form for the strain energy density is obtained using Rubinstein and Panyukov's single-chain description of network behavior. The model only depends on three parameters that together define the initial modulus, extent of strain softening, and the onset of strain hardening. Fits to large stretch data for natural rubber, silicone rubber, VHB 4905 (polyacrylate rubber), and b186 rubber (a carbon black-filled rubber) are presented, and a comparison is made with other similar constitutive models of large-stretch rubber elasticity. We demonstrate that the proposed model provides a complete description of elastomers undergoing large deformations for different applied loading configurations. Moreover, since the strain energy is obtained using a clear set of physical assumptions, this model may be tested and used to interpret the results of computer simulation and experiments on polymers of known microscopic structure.

  2. Simplified method for elastic plastic analysis of material presenting bilinear kinematic hardening

    International Nuclear Information System (INIS)

    Roche, R.

    1983-12-01

    A simplified method for elastic plastic analysis is presented. Material behavior is assumed to be elastic plastic with bilinear kinematic hardening. The proposed method give a strain-stress field fullfilling material constitutive equations, equations of equilibrium and continuity conditions. This strain-stress is obtained through two linear computations. The first one is the conventional elastic analysis of the body submitted to the applied load. The second one use tangent matrix (tangent Young's modulus and Poisson's ratio) for the determination of an additional stress due to imposed initial strain. Such a method suits finite elements computer codes, the most useful result being plastic strains resulting from the applied loading (load control or deformation control). Obviously, there is not unique solution, for stress-strain field is not depending only of the applied load, but of the load history. Therefore, less pessimistic solutions can be got by one or two additional linear computations [fr

  3. Skeletal deformities in smallmouth bass, Micropterus dolomieui, from southern Appalachian reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Van den Avyle, M J; Garvick, S J; Blazer, V S; Hamilton, S J; Brumbaugh, W G

    1989-09-01

    Smallmouth bass (Micropterus dolomieui) populations in two of five reservoirs sampled in the southern Appalachian Mountains contained high percentages of individuals with lordosis, kyphosis, or scoliosis. Deformities of the vertebral column occurred in several year classes and varied with fish size; they were absent in small fish, present in 25-30% of the fish 241-300 mm long, and then decreased in occurrence with increased length. Because environmental contamination is often responsible for high occurrences of deformed fish, whole-body concentrations of contaminants, bone development characteristics, and blood plasma concentrations of calcium and phosphorus in normal and deformed fish were measured and compared the results with those for fish from reservoirs where no deformities were found. Vertebrae were significantly weaker and more elastic in deformed than in normal fish, but biochemical properties of vertebrae were similar among the groups tested. Concentrations of pesticides and metals were not elevated in deformed fish, and concentrations of calcium and phosphorus in blood plasma were similar in normal and deformed groups. Most environmental contaminants that have been shown to cause fish deformities could be discounted as causative agents on the basis of these results; however, the exact cause was not determined. Further attempts to diagnose the cause of the deformities were limited by the lack of background information on relationships among bone development processes, types of stresses that cause deformities, and types of bone tissue in fish.

  4. ANALYSIS OF DEFORMATION PROCESSES IN THE LITHOSPHERE FROM GEODETIC MEASUREMENTS BASED ON THE EXAMPLE OF THE SAN ANDREAS FAULT

    Directory of Open Access Journals (Sweden)

    Yury V. Gabsatarov

    2012-01-01

    Full Text Available Analysis of data from permanent GPS observation stations located in tectonically active regions provides for direct observation of deformation processes of the earth's surface which result from elastic interaction of the lithospheric plates and also occur when accumulated stresses are released by seismic events and postseismic processes.This article describes the methodology of applying the regression analysis of time series of data from GPS-stations for identification of individual components of the stations’ displacements caused by the influence of various deformation processes. Modelling of the stations’ displacements caused only by deformations of the marginal zone, wherein the lithospheric plates interact, allows us to study variations of the steady-state deformation in the marginal zone.he proposed methodology is applied to studies of variations of fields of cumulative surface displacements, surface displacement velocity and maximum shear strain velocity which are determined from the GPS data recorded prior to the Parkfield earthquake of 28 September 2004 (Mw=6.0.Combined analysis of the variations of the above-mentioned fields shows that measurable anomalies of the elastic deformation of the transform fault’s edge took place prior to the seismic event of 28 September 2004, and such anomalies were coincident in space and time with the focal area of the future seismic event.

  5. Actin filaments growing against an elastic membrane: Effect of membrane tension

    Science.gov (United States)

    Sadhu, Raj Kumar; Chatterjee, Sakuntala

    2018-03-01

    We study the force generation by a set of parallel actin filaments growing against an elastic membrane. The elastic membrane tries to stay flat and any deformation from this flat state, either caused by thermal fluctuations or due to protrusive polymerization force exerted by the filaments, costs energy. We study two lattice models to describe the membrane dynamics. In one case, the energy cost is assumed to be proportional to the absolute magnitude of the height gradient (gradient model) and in the other case it is proportional to the square of the height gradient (Gaussian model). For the gradient model we find that the membrane velocity is a nonmonotonic function of the elastic constant μ and reaches a peak at μ =μ* . For μ membrane energy keeps increasing with time. For the Gaussian model, the system always reaches a steady state and the membrane velocity decreases monotonically with the elastic constant ν for all nonzero values of ν . Multiple filaments give rise to protrusions at different regions of the membrane and the elasticity of the membrane induces an effective attraction between the two protrusions in the Gaussian model which causes the protrusions to merge and a single wide protrusion is present in the system. In both the models, the relative time scale between the membrane and filament dynamics plays an important role in deciding whether the shape of elasticity-velocity curve is concave or convex. Our numerical simulations agree reasonably well with our analytical calculations.

  6. Mechanically equivalent elastic-plastic deformations and the problem of plastic spin

    Directory of Open Access Journals (Sweden)

    Steigmann David J.

    2011-01-01

    Full Text Available The problem of plastic spin is phrased in terms of a notion of mechanical equivalence among local intermediate configurations of an elastic/ plastic crystalline solid. This idea is used to show that, without further qualification, the plastic spin may be suppressed at the constitutive level. However, the spin is closely tied to an underlying undistorted crystal lattice which, once specified, eliminates the freedom afforded by mechanical equivalence. As a practical matter a constitutive specification of plastic spin is therefore required. Suppression of plastic spin thus emerges as merely one such specification among many. Restrictions on these are derived in the case of rate-independent response.

  7. Plunging motions of an elastically suspended wing with an oscillating flap : An experimental and numerical assessment

    NARCIS (Netherlands)

    Sterenborg, J.J.H.M.

    2014-01-01

    For wind turbines there is need for accurate fluid-structure interaction predictions due to among others increasing wind turbine blade length and the design of load alleviation systems based on aero-elastic blade deformations, like bend-twist coupling. Currently, engineering models are widely used

  8. Elastic and Mechanical Properties of the MAX Phases

    Science.gov (United States)

    Barsoum, Michel W.; Radovic, Miladin

    2011-08-01

    The more than 60 ternary carbides and nitrides, with the general formula Mn+1AXn—where n = 1, 2, or 3; M is an early transition metal; A is an A-group element (a subset of groups 13-16); and X is C and/or N—represent a new class of layered solids, where Mn+1Xn layers are interleaved with pure A-group element layers. The growing interest in the Mn+1AXn phases lies in their unusual, and sometimes unique, set of properties that can be traced back to their layered nature and the fact that basal dislocations multiply and are mobile at room temperature. Because of their chemical and structural similarities, the MAX phases and their corresponding MX phases share many physical and chemical properties. In this paper we review our current understanding of the elastic and mechanical properties of bulk MAX phases where they differ significantly from their MX counterparts. Elastically the MAX phases are in general quite stiff and elastically isotropic. The MAX phases are relatively soft (2-8 GPa), are most readily machinable, and are damage tolerant. Some of them are also lightweight and resistant to thermal shock, oxidation, fatigue, and creep. In addition, they behave as nonlinear elastic solids, dissipating 25% of the mechanical energy during compressive cycling loading of up to 1 GPa at room temperature. At higher temperatures, they undergo a brittle-to-plastic transition, and their mechanical behavior is a strong function of deformation rate.

  9. Application of the Modified Vlasov Model to the Free Vibration Analysis of Thick Plates Resting on Elastic Foundations

    OpenAIRE

    Ozgan, Korhan; Daloglu, Ayse T.

    2009-01-01

    The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4) is used for plate bending analysis based on Mindlin plate theory which is effectively appli...

  10. Vertical motion and elastic light-scattering of a laser-levitated water droplet

    International Nuclear Information System (INIS)

    Chan, C. W.; Lee, W. K.

    2001-01-01

    We report the vertical motion and elastic scattered light of a single laser-levitated water microdroplet as it slowly evaporated. The vertical displacement as a function of time exhibited peaks of a variety of widths. Morphology-dependent resonances (MDRs) that induced the displacement peaks were identified. We found that the Stokes equation is adequate to describe the vertical motions driven by broad MDRs. For motions driven by relatively narrow MDRs, significant deviations from results predicted by the Stokes equation were found. The elastic scattered light intensity as a function of the size of the droplet showed sudden increases attributable to deformations of the droplet as its size parameter scanned through narrow MDRs. Copyright 2001 Optical Society of America

  11. FEM-based evaluation of deformable image registration for radiation therapy

    International Nuclear Information System (INIS)

    Zhong Hualiang; Peters, Terry; Siebers, Jeffrey V

    2007-01-01

    This paper presents a new concept to automatically detect the neighborhood in an image where deformable registration is mis-performing. Specifically, the displacement vector field (DVF) from a deformable image registration is substituted into a finite-element-based elastic framework to calculate unbalanced energy in each element. The value of the derived energy indicates the quality of the DVF in its neighborhood. The new voxel-based evaluation approach is compared with three other validation criteria: landmark measurement, a finite element approach and visual comparison, for deformable registrations performed with the optical-flow-based 'demons' algorithm as well as thin-plate spline interpolation. This analysis was performed on three pairs of prostate CT images. The results of the analysis show that the four criteria give mutually comparable quantitative assessments on the six registration instances. As an objective concept, the unbalanced energy presents no requirement on boundary constraints in its calculation, different from traditional mechanical modeling. This method is automatic, and at voxel level suitable to evaluate deformable registration in a clinical setting

  12. Mechanics and Partitioning of Deformation of the Northwestern Okhostk Plate, Northeast Russia

    Science.gov (United States)

    Hindle, D.; Mackey, K.; Fujita, K.

    2007-12-01

    The tectonic evolution and present day deformation of northeastern Russia remains one of the major challenges in plate tectonics. Arguments over the existence of at least a separate Okhotsk plate between North America and Eurasia appear to be resolved on the basis of the latest GPS studies combined with elastic modeling. The question of the mechanical behaviour of the Okhotsk plate, caught between the slowly, obliquely converging North American and Eurasian plates now becomes important. We present an analysis of geological lineaments, micro-seismicity, total seismic moment release and seismic deformation rate and GPS campaign data and global plate tectonic model data (REVEL) to estimate the likelihood of future seismicity and the relative amount of elastic and viscous deformation of the lithosphere of the northwestern Okhotsk plate. We find that it is likely that the Okhotsk plate is cracked into slivers, but that rates of relative motion of these slivers are close to indistinguishable from the behaviour of a single, rigid plate. The analysis also suggests the upper bound for large earthquakes in the region to be Mw 7-7.5 which we expect to occur only on the plate boundary fault itself. This fits geological evidence for a long term offset rate 5-10 times higher on the major plate boundary fault than other lineaments cutting the Okhotsk plate itself.

  13. Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction

    International Nuclear Information System (INIS)

    Wang, Zhuqing; Stoica, Alexandru D.; Ma, Dong; Beese, Allison M.

    2016-01-01

    In this work, diffraction and single-crystal elastic constants of Inconel 625 have been determined by means of in situ loading at room and elevated temperatures using time-of-flight neutron diffraction. Theoretical models proposed by Voigt, Reuss, and Kroner were used to determine single-crystal elastic constants from measured diffraction elastic constants, with the Kroner model having the best ability to capture experimental data. The magnitude of single-crystal elastic moduli, computed from single-crystal elastic constants, decreases and the single crystal anisotropy increases as temperature increases, indicating the importance of texture in affecting macroscopic stress at elevated temperatures. The experimental data reported here are of great importance in understanding additive manufacturing of metallic components as: diffraction elastic constants are required for computing residual stresses from residual lattice strains measured using neutron diffraction, which can be used to validate thermomechanical models of additive manufacturing, while single-crystal elastic constants can be used in crystal plasticity modeling, for example, to understand mechanical deformation behavior of additively manufactured components.

  14. Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhuqing [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Stoica, Alexandru D. [Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Ma, Dong, E-mail: dongma@ornl.gov [Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Beese, Allison M., E-mail: amb961@psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2016-09-30

    In this work, diffraction and single-crystal elastic constants of Inconel 625 have been determined by means of in situ loading at room and elevated temperatures using time-of-flight neutron diffraction. Theoretical models proposed by Voigt, Reuss, and Kroner were used to determine single-crystal elastic constants from measured diffraction elastic constants, with the Kroner model having the best ability to capture experimental data. The magnitude of single-crystal elastic moduli, computed from single-crystal elastic constants, decreases and the single crystal anisotropy increases as temperature increases, indicating the importance of texture in affecting macroscopic stress at elevated temperatures. The experimental data reported here are of great importance in understanding additive manufacturing of metallic components as: diffraction elastic constants are required for computing residual stresses from residual lattice strains measured using neutron diffraction, which can be used to validate thermomechanical models of additive manufacturing, while single-crystal elastic constants can be used in crystal plasticity modeling, for example, to understand mechanical deformation behavior of additively manufactured components.

  15. Free-vibration acoustic resonance of a nonlinear elastic bar

    Science.gov (United States)

    Tarumi, Ryuichi; Oshita, Yoshihito

    2011-02-01

    Free-vibration acoustic resonance of a one-dimensional nonlinear elastic bar was investigated by direct analysis in the calculus of variations. The Lagrangian density of the bar includes a cubic term of the deformation gradient, which is responsible for both geometric and constitutive nonlinearities. By expanding the deformation function into a complex Fourier series, we derived the action integral in an analytic form and evaluated its stationary conditions numerically with the Ritz method for the first three resonant vibration modes. This revealed that the bar shows the following prominent nonlinear features: (i) amplitude dependence of the resonance frequency; (ii) symmetry breaking in the vibration pattern; and (iii) excitation of the high-frequency mode around nodal-like points. Stability of the resonant vibrations was also addressed in terms of a convex condition on the strain energy density.

  16. On the evaluation of elastic follow-up of a high temperature discontinuous structure

    International Nuclear Information System (INIS)

    Lee, J. M.; Kim, J. B.; Lee, H. Y.; Lee, J. H.

    2003-01-01

    While high temperature structures of LMR experience inelastic deformation such as plasticity and creep due to high temperature operating temperature of 530∼550 .deg. C, geometric nonlinear structures may undergo elastic follow-up behavior due to the interaction between stiff region and weak region. Thus, careful consideration should be given to the design and analysis of high temperature geometric nonlinear structure. In this study, the elastic follow-up behavior of geometric nonlinear structure has been investigated and the current status of design method implemented in the ASME-NH, Japanese BDS, French RCC-MR, and UK R-5 codes to consider elastic follow-up behavior has been reviewed. It has been shown that the ratio of the stiff region and the weak region and the type of loading affect the elastic follow-up behavior greatly from the detailed inelastic analyses of two bar model and L-shaped structure subjected to various loading situation. The applicability and the conservatism of simplified analysis methods implemented among various design codes need to be studied further

  17. A thin two-phase foils deformed by an interfacial dislocation in anisotropic elasticity

    Directory of Open Access Journals (Sweden)

    Madani, Salah

    2005-04-01

    Full Text Available The purpose of this work is the numerical resolution, in the case of anisotropic elasticity, of the problem of a dislocation parallel and near to the two free surfaces of a thin bicrystal. This case is obtained while making the period of a network of misfit dislocations much greater than the thickness of the two foils. As a result, in the vicinity of the dislocation, the limiting bondary conditions will be close to that of Volterra translation dislocation. The elastic fields of displacement and stress are calculated for various orientations of the burgers vector. Before this calculation, we tested the precision of the results of the program by comparing the interfacial relative displacement obtained from this one to the results of the analytical expression describing this same displacement. The thin bicristal Al/Al2Cu, that made the object of several investigations, is treated like example. The results obtained are compared to those obtained in isotropic elasticity.

    Este trabajo aborda la resolución numérica en anisotropía elástica, del problema de una dislocación paralela cercana a las superficies libres de un bi-cristal delgado. Este problema se genera cuando el periodo de la red de dislocaciones desplazadas es mucho mayor que el espesor de la bi-lámina. Como resultados, en la vecindad de la dislocación, las condiciones de contorno estarán cercanas a la dislocación de traslación de Volterra. Los campos elásticos de desplazamiento y las tensiones se calcularon para distintas orientaciones del vector de burgers. Como paso previo a los cálculos, se comprobó la precisión de los resultados del programa comparando le desplazamiento relativo interracial obtenido con los resultados de la expresión analítica que describen dicho desplazamiento. Se emplearon como ejemplo bi-cristales de Al/Al2Cu, debido a su empleo en varias investigaciones. Los resultados fueron comparados con los obtenidos en elasticidad isótropa.

  18. Fringe instability in constrained soft elastic layers.

    Science.gov (United States)

    Lin, Shaoting; Cohen, Tal; Zhang, Teng; Yuk, Hyunwoo; Abeyaratne, Rohan; Zhao, Xuanhe

    2016-11-04

    Soft elastic layers with top and bottom surfaces adhered to rigid bodies are abundant in biological organisms and engineering applications. As the rigid bodies are pulled apart, the stressed layer can exhibit various modes of mechanical instabilities. In cases where the layer's thickness is much smaller than its length and width, the dominant modes that have been studied are the cavitation, interfacial and fingering instabilities. Here we report a new mode of instability which emerges if the thickness of the constrained elastic layer is comparable to or smaller than its width. In this case, the middle portion along the layer's thickness elongates nearly uniformly while the constrained fringe portions of the layer deform nonuniformly. When the applied stretch reaches a critical value, the exposed free surfaces of the fringe portions begin to undulate periodically without debonding from the rigid bodies, giving the fringe instability. We use experiments, theory and numerical simulations to quantitatively explain the fringe instability and derive scaling laws for its critical stress, critical strain and wavelength. We show that in a force controlled setting the elastic fingering instability is associated with a snap-through buckling that does not exist for the fringe instability. The discovery of the fringe instability will not only advance the understanding of mechanical instabilities in soft materials but also have implications for biological and engineered adhesives and joints.

  19. Grain-resolved elastic strains in deformed copper measured by three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Oddershede, Jette; Schmidt, Søren; Poulsen, Henning Friis

    2011-01-01

    This X-ray diffraction study reports the grain-resolved elastic strains in about 1000 randomly oriented grains embedded in a polycrystalline copper sample. Diffraction data were collected in situ in the undeformed state and at a plastic strain of 1.5% while the sample was under tensile load...

  20. First-principles study on the phase transition, elastic properties and electronic structure of Pt3Al alloys under high pressure

    International Nuclear Information System (INIS)

    Liu, Yanjun; Huang, Huawei; Pan, Yong; Zhao, Guanghui; Liang, Zheng

    2014-01-01

    Highlights: • The phase transition of Pt 3 Al alloys occurs at 60 GPa. • The elastic modulus of Pt 3 Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt 3 Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt 3 Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E F decrease. The cubic Pt 3 Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure

  1. 3D Tensorial Elastodynamics for Isotropic Media on Vertically Deformed Meshes

    Science.gov (United States)

    Shragge, J. C.

    2017-12-01

    Solutions of the 3D elastodynamic wave equation are sometimes required in industrial and academic applications of elastic reverse-time migration (E-RTM) and full waveform inversion (E-FWI) that involve vertically deformed meshes. Examples include incorporating irregular free-surface topography and handling internal boundaries (e.g., water bottom) directly into the computational meshes. In 3D E-RTM and E-FWI applications, the number of forward modeling simulations can number in the tens of thousands (per iteration), which necessitates the development of stable, accurate and efficient 3D elastodynamics solvers. For topographic scenarios, most finite-difference solution approaches use a change-of-variable strategy that has a number of associated computational challenges, including difficulties in handling of the free-surface boundary condition. In this study, I follow a tensorial approach and use a generalized family of analytic transforms to develop a set of analytic equations for 3D elastodynamics that directly incorporates vertical grid deformations. Importantly, this analytic approach allows for the specification of an analytic free-surface boundary condition appropriate for vertically deformed meshes. These equations are both straightforward and efficient to solve using a velocity-stress formulation with finite-difference (MFD) operators implemented on a fully staggered grid. Moreover, I demonstrate that the use of mimetic finite difference (MFD) methods allows stable, accurate, and efficient numerical solutions to be simulated for typical topographic scenarios. Examples demonstrate that high-quality elastic wavefields can be generated for topographic surfaces exhibiting significant topographic relief.

  2. Large Deformation Dynamic Bending of Composite Beams

    Science.gov (United States)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  3. Texture and Elastic Anisotropy of Mantle Olivine

    Science.gov (United States)

    Nikitin, A. N.; Ivankina, T. I.; Bourilitchev, D. E.; Klima, K.; Locajicek, T.; Pros, Z.

    Eight olivine rock samples from different European regions were collected for neu- tron texture analyses and for P-wave velocity measurements by means of ultrasonic sounding at various confining pressures. The orientation distribution functions (ODFs) of olivine were determined and pole figures of the main crystallographic planes were calculated. The spatial P-wave velocity distributions were determined at confining pressures from 0.1 to 400 MPa and modelled from the olivine textures. In dependence upon the type of rock (xenolith or dunite) different behavior of both the P-wave veloc- ity distributions and the anisotropy coefficients with various confining pressures was observed. In order to explain the interdependence of elastic anisotropy and hydrostatic pressure, a model for polycrystalline olivine rocks was suggested, which considers the influence of the crystallographic and the mechanical textures on the elastic behaviour of the polycrystal. Since the olivine texture depends upon the active slip systems and the deformation temperature, neutron texture analyses enable us to estimate depth and thermodynamical conditions during texture formation.

  4. A 3D Orthotropic Elastic Continuum Damage Material Model

    Energy Technology Data Exchange (ETDEWEB)

    English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brown, Arthur A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-08-01

    A three dimensional orthotropic elastic constitutive model with continuum damage is implemented for polymer matrix composite lamina. Damage evolves based on a quadratic homogeneous function of thermodynamic forces in the orthotropic planes. A small strain formulation is used to assess damage. In order to account for large deformations, a Kirchhoff material formulation is implemented and coded for numerical simulation in Sandia’s Sierra Finite Element code suite. The theoretical formulation is described in detail. An example of material parameter determination is given and an example is presented.

  5. An elastic-plastic contact model for line contact structures

    Science.gov (United States)

    Zhu, Haibin; Zhao, Yingtao; He, Zhifeng; Zhang, Ruinan; Ma, Shaopeng

    2018-06-01

    Although numerical simulation tools are now very powerful, the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications. For the line contact structures widely used in the engineering field, few analytical models are available for predicting the mechanical behaviour when the structures deform plastically, as the classic Hertz's theory would be invalid. Thus, the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism. A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained. The proposed model was verified through an actual line contact test and a corresponding numerical simulation. The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.

  6. The deformation of the front of a 3D interface crack propagating quasistatically in a medium with random fracture properties

    Science.gov (United States)

    Pindra, Nadjime; Lazarus, Véronique; Leblond, Jean-Baptiste

    One studies the evolution in time of the deformation of the front of a semi-infinite 3D interface crack propagating quasistatically in an infinite heterogeneous elastic body. The fracture properties are assumed to be lower on the interface than in the materials so that crack propagation is channelled along the interface, and to vary randomly within the crack plane. The work is based on earlier formulae which provide the first-order change of the stress intensity factors along the front of a semi-infinite interface crack arising from some small but otherwise arbitrary in-plane perturbation of this front. The main object of study is the long-time behavior of various statistical measures of the deformation of the crack front. Special attention is paid to the influences of the mismatch of elastic properties, the type of propagation law (fatigue or brittle fracture) and the stable or unstable character of 2D crack propagation (depending on the loading) upon the development of this deformation.

  7. Consideration on the dynamic behavior and the structural design of large scale floating structure. 2nd Report. Stability of elastic structure and design of elastic response; Choogata futai no kozo kyodo oyobi kozo sekkei ni kansuru kosatsu. 2. Dansei henkei wo koryoshita fukugensei oyobi kozo oto no sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.; Yoshida, K. [The University of Tokyo, Tokyo (Japan)

    1996-12-31

    A policy of improving a very large floating body was planned based on its dynamic characteristics, and a proposal was made thereon. Furthermore, discussions were given on stability that considers effect of elastic deformation required when a structure is mounted on a floating body. With respect to a structural design of a very large floating body in which elastic response is governing, and upon modeling the very large floating body into an aeolotropic plate on an elastic supporting floor, it was shown that the existing range of natural vibration speed in the elastic response is in higher range than the natural vibration speed of heave. It was also indicated that the peak height of response to waves in resonance is inversely proportional to wave frequency, and furthermore, degree of flowing in of vibration energy during the resonance is determined by an inner product of spatial vibration patterns of wave force and the excited mode shape. A proposal was made on a floating body improved of excessive response in the floating body edges by changing the characteristics of the floating body edges. In addition, discussions were given on stability that considers elastic deformation of a floating body that becomes necessary when a structure, such as a building, is built on a very large floating body. 9 refs., 9 figs., 3 tabs.

  8. Consideration on the dynamic behavior and the structural design of large scale floating structure. 2nd Report. Stability of elastic structure and design of elastic response; Choogata futai no kozo kyodo oyobi kozo sekkei ni kansuru kosatsu. 2. Dansei henkei wo koryoshita fukugensei oyobi kozo oto no sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H; Yoshida, K [The University of Tokyo, Tokyo (Japan)

    1997-12-31

    A policy of improving a very large floating body was planned based on its dynamic characteristics, and a proposal was made thereon. Furthermore, discussions were given on stability that considers effect of elastic deformation required when a structure is mounted on a floating body. With respect to a structural design of a very large floating body in which elastic response is governing, and upon modeling the very large floating body into an aeolotropic plate on an elastic supporting floor, it was shown that the existing range of natural vibration speed in the elastic response is in higher range than the natural vibration speed of heave. It was also indicated that the peak height of response to waves in resonance is inversely proportional to wave frequency, and furthermore, degree of flowing in of vibration energy during the resonance is determined by an inner product of spatial vibration patterns of wave force and the excited mode shape. A proposal was made on a floating body improved of excessive response in the floating body edges by changing the characteristics of the floating body edges. In addition, discussions were given on stability that considers elastic deformation of a floating body that becomes necessary when a structure, such as a building, is built on a very large floating body. 9 refs., 9 figs., 3 tabs.

  9. A deformable magnetizable worm in a magnetic field-A prototype of a mobile crawling robot

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Klaus [Faculty of Mechanical Engineering, Technische Universitaet Ilmenau, PF 10 05 65, 98684 (Germany)]. E-mail: klaus.zimmermann@tu-ilmenau.de; Naletova, Vera A. [Department of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Institute of Mechanics, Lomonosov Moscow State University, 1, Michurinsky Pr., Moscow 119192 (Russian Federation); Zeidis, Igor [Faculty of Mechanical Engineering, Technische Universitaet Ilmenau, PF 10 05 65, 98684 (Germany); Turkov, Vladimir A. [Institute of Mechanics, Lomonosov Moscow State University, 1, Michurinsky Pr., Moscow 119192 (Russian Federation); Kolev, Emil [Faculty of Mechanical Engineering, Technische Universitaet Ilmenau, PF 10 05 65, 98684 (Germany); Lukashevich, Mikhail V. [Institute of Mechanics, Lomonosov Moscow State University, 1, Michurinsky Pr., Moscow 119192 (Russian Federation); Stepanov, Gennadij V. [State Research Institute of Chemistry and Technology of Organoelement Compounds, 38, Shosse Entuziastov, Moscow 111123 (Russian Federation)

    2007-04-15

    The paper deals with the deformation and worm-like motion of a magnetizable elastic body in an alternate magnetic field from an experimental and a theoretically point of view. Theoretically (analytically and numerically) calculated results of the body velocity are compared with the experimental data.

  10. Acoustic examinations of elastic and inelastic properties of high-pressure polyethylene with different radiation prehistory

    International Nuclear Information System (INIS)

    Kardashev, B.K.; Nikanorov, S.P.; Kravchenko, V.S.; Malinov, V.I.; Punin, V.T.

    2007-01-01

    The influence of vibrational deformation amplitude on the dynamic elasticity modulus and internal friction of high-pressure polyethylene samples with different histories is studied. Acoustic measurements are made by a resonance method using the longitudinal vibrations of a composite piezoelectric vibrator at a frequency of ∼ 100 kHz. It is found that the microplasticity remains almost unaffected upon irradiation and aging, while the elasticity modulus and breaking elongation per unit length considerably depend on the history and are clearly correlated with each other. The observed effects are explained by the fact that atom-atom interaction and defects inside polymer macromolecules substantially influence the elastic modulus and breaking strength, while the inelastic microplastic strain is most likely associated with molecule-molecule interaction, which is insignificantly affected by irradiation [ru

  11. Development of computer-aided design system of elastic sensitive elements of automatic metering devices

    Science.gov (United States)

    Kalinkina, M. E.; Kozlov, A. S.; Labkovskaia, R. I.; Pirozhnikova, O. I.; Tkalich, V. L.; Shmakov, N. A.

    2018-05-01

    The object of research is the element base of devices of control and automation systems, including in its composition annular elastic sensitive elements, methods of their modeling, calculation algorithms and software complexes for automation of their design processes. The article is devoted to the development of the computer-aided design system of elastic sensitive elements used in weight- and force-measuring automation devices. Based on the mathematical modeling of deformation processes in a solid, as well as the results of static and dynamic analysis, the calculation of elastic elements is given using the capabilities of modern software systems based on numerical simulation. In the course of the simulation, the model was a divided hexagonal grid of finite elements with a maximum size not exceeding 2.5 mm. The results of modal and dynamic analysis are presented in this article.

  12. An analytical solution for the elastic response to surface loads imposed on a layered, transversely isotropic and self-gravitating Earth

    OpenAIRE

    Pan, E.; Chen, J.Y.; Bevis, M.; Bordoni, Andrea; Barletta, Valentina Roberta; Tabrizi, A. Molavi

    2015-01-01

    We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in ...

  13. Dynamic Deformation of ETNA Volcano Observed by GPS and SAR Interferometry

    Science.gov (United States)

    Lundgren, P.; Rosen, P.; Webb, F.; Tesauro, M.; Lanari, R.; Sansosi, E.; Puglisi, G.; Bonforte, A.; Coltelli, M.

    1999-01-01

    Synthetic aperture radar (SAR) interferometry and GPS have shown that during the quiescent period from 1993-1995 Mt. Etna volcano, Italy, inflated. Since the initiation of eruptive activity since late 1995 the deformation has been more contentious. We will explore the detailed deformation during the period from 1995-1996 spanning the late stages of inflation and the beginning of eruptive activity. We use SAR interferometry and GPS data to measure the volcano deformation. We invert the observed deformation for both simple point source. le crack elastic sources or if warranted for a spheroidal pressure So In particular, we will examine the evolution of the inflation and the transition to a lesser deflation observed at the end of 1995. We use ERS-1/2 SAR data from both ascending and descending passes to allow for dense temporal 'sampling of the deformation and to allow us to critically assess atmospheric noise. Preliminary results from interferometry suggest that the inflation rate accelerated prior to resumption of activity in 1995, while GPS data suggest a more steady inflation with some fluctuation following the start of activity. This study will compare and contrast the interferometric SAR and GPS results and will address the strengths and weaknesses of each technique towards volcano deformation studies.

  14. Design and Vibration Suppression Control of a Modular Elastic Joint

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2018-06-01

    Full Text Available In this paper, a novel mechatronic design philosophy is introduced to develop a compact modular rotary elastic joint for a humanoid manipulator. The designed elastic joint is mainly composed of a brushless direct current (DC motor, harmonic reducer, customized torsional spring, and fail-safe brake. The customized spring considerably reduces the volume of the elastic joint and facilitates the construction of a humanoid manipulator which employs this joint. The large central hole along the joint axis brings convenience for cabling and the fail-safe brake can guarantee safety when the power is off. In order to reduce the computational burden on the central controller and simplify system maintenance, an expandable electrical system, which has a double-layer control structure, is introduced. Furthermore, a robust position controller for the elastic joint is proposed and interpreted in detail. Vibration of the elastic joint is suppressed by means of resonance ratio control (RRC. In this method, the ratio between the resonant and anti-resonant frequency can be arbitrarily designated according to the feedback of the nominal spring torsion. Instead of using an expensive torque sensor, the spring torque can be obtained by calculating the product of spring stiffness and deformation, due to the high linearity of the customized spring. In addition, to improve the system robustness, a motor-side disturbance observer (DOb and an arm-side DOb are employed to estimate and compensate for external disturbances and system uncertainties, such as model variation, friction, and unknown external load. Validity of the DOb-based RRC is demonstrated in the simulation results. Experimental results show the performance of the modular elastic joint and the viability of the proposed controller further.

  15. Identification of exponent from load-deformation relation for soft materials from impact tests

    Science.gov (United States)

    Ciornei, F. C.; Alaci, S.; Romanu, I. C.; Ciornei, M. C.; Sopon, G.

    2018-01-01

    When two bodies are brought into contact, the magnitude of occurring reaction forces increase together with the amplitude of deformations. The load-deformation dependency of two contacting bodies is described by a function having the form F = Cxα . An accurate illustration of this relationship assumes finding the precise coefficient C and exponent α. This representation proved to be very useful in hardness tests, in dynamic systems modelling or in considerations upon the elastic-plastic ratio concerning a Hertzian contact. The classical method for identification of the exponent consists in finding it from quasi-static tests. The drawback of the method is the fact that the accurate estimation of the exponent supposes precise identification of the instant of contact initiation. To overcome this aspect, the following observation is exploited: during an impact process, the dissipated energy is converted into heat released by internal friction in the materials and energy for plastic deformations. The paper is based on the remark that for soft materials the hysteresis curves obtained for a static case are similar to the ones obtained for medium velocities. Furthermore, utilizing the fact that for the restitution phase the load-deformation dependency is elastic, a method for finding the α exponent for compression phase is proposed. The maximum depth of the plastic deformations obtained for a series of collisions, by launching, from different heights, a steel ball in free falling on an immobile prism made of soft material, is evaluated by laser profilometry method. The condition that the area of the hysteresis loop equals the variation of kinetical energy of the ball is imposed and two tests are required for finding the exponent. Five collisions from different launching heights of the ball were taken into account. For all the possible impact-pair cases, the values of the exponent were found and close values were obtained.

  16. Corneal biomechanical properties from air-puff corneal deformation imaging

    Science.gov (United States)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  17. Effective elastic modulus of isolated gecko setal arrays.

    Science.gov (United States)

    Autumn, K; Majidi, C; Groff, R E; Dittmore, A; Fearing, R

    2006-09-01

    Conventional pressure sensitive adhesives (PSAs) are fabricated from soft viscoelastic materials that satisfy Dahlquist's criterion for tack with a Young's modulus (E) of 100 kPa or less at room temperature and 1 Hz. In contrast, the adhesive on the toes of geckos is made of beta-keratin, a stiff material with E at least four orders of magnitude greater than the upper limit of Dahlquist's criterion. Therefore, one would not expect a beta-keratin structure to function as a PSA by deforming readily to make intimate molecular contact with a variety of surface profiles. However, since the gecko adhesive is a microstructure in the form of an array of millions of high aspect ratio shafts (setae), the effective elastic modulus (E(eff)) is much lower than E of bulk beta-keratin. In the first test of the E(eff) of a gecko setal adhesive, we measured the forces resulting from deformation of isolated arrays of tokay gecko (Gekko gecko) setae during vertical compression, and during tangential compression at angles of +45 degrees and -45 degrees . We tested the hypothesis that E(eff) of gecko setae falls within Dahlquist's criterion for tack, and evaluated the validity of a model of setae as cantilever beams. Highly linear forces of deformation under all compression conditions support the cantilever model. E(eff) of setal arrays during vertical and +45 degrees compression (along the natural path of drag of the setae) were 83+/-4.0 kPa and 86+/-4.4 kPa (means +/- s.e.m.), respectively. Consistent with the predictions of the cantilever model, setae became significantly stiffer when compressed against the natural path of drag: E(eff) during -45 degrees compression was 110+/-4.7 kPa. Unlike synthetic PSAs, setal arrays act as Hookean elastic solids; setal arrays function as a bed of springs with a directional stiffness, assisting alignment of the adhesive spatular tips with the contact surface during shear loading.

  18. Effect of Initial Backfill Temperature on the Deformation Behavior of Early Age Cemented Paste Backfill That Contains Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Aixiang Wu

    2016-01-01

    Full Text Available Enhancing the knowledge on the deformation behavior of cemented paste backfill (CPB in terms of stress-strain relations and modulus of elasticity is significant for economic and safety reasons. In this paper, the effect of the initial backfill temperature on the CPB’s stress-strain behavior and modulus of elasticity is investigated. Results show that the stress-strain relationship and the modulus of elasticity behavior of CPB are significantly affected by the curing time and initial temperature of CPB. Additionally, the relationship between the modulus of elasticity and unconfined compressive strength (UCS and the degree of hydration was evaluated and discussed. The increase of UCS and hydration degree leads to an increase in the modulus of elasticity, which is not significantly affected by the initial temperature.

  19. Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations

    International Nuclear Information System (INIS)

    Civalek, Omer; Acar, Mustafa Hilmi

    2007-01-01

    The method of discrete singular convolution (DSC) is used for the bending analysis of Mindlin plates on two-parameter elastic foundations for the first time. Two different realizations of singular kernels, such as the regularized Shannon's delta (RSD) kernel and Lagrange delta sequence (LDS) kernel, are selected as singular convolution to illustrate the present algorithm. The methodology and procedures are presented and bending problems of thick plates on elastic foundations are studied for different boundary conditions. The influence of foundation parameters and shear deformation on the stress resultants and deflections of the plate have been investigated. Numerical studies are performed and the DSC results are compared well with other analytical solutions and some numerical results

  20. Process of diffractive scattering and disintegration of complex particles by nonspherical deformed nuclei

    International Nuclear Information System (INIS)

    Evlanov, M.V.

    1989-01-01

    The differential and integral cross sections of diffractive elastic and inelastic scattering and of the disintegration of complex particles by axial and nonaxial deformed nuclei are investigated depending on the shape, deformability and diffuseness of nuclear boundary as well as on the structure of the incident particles and of the rescattering processes. It is shown that the complicated coincidence experiments and experimnts on inelastic scattering with excitation of the target nucleus collective states are satisfactorily described taking simultaneously into account all factors mentioned above and the final-state interaction between the disintegration products of the incident particle

  1. Nonrigid registration with tissue-dependent filtering of the deformation field

    International Nuclear Information System (INIS)

    Staring, Marius; Klein, Stefan; Pluim, Josien P W

    2007-01-01

    In present-day medical practice it is often necessary to nonrigidly align image data. Current registration algorithms do not generally take the characteristics of tissue into account. Consequently, rigid tissue, such as bone, can be deformed elastically, growth of tumours may be concealed, and contrast-enhanced structures may be reduced in volume. We propose a method to locally adapt the deformation field at structures that must be kept rigid, using a tissue-dependent filtering technique. This adaptive filtering of the deformation field results in locally linear transformations without scaling or shearing. The degree of filtering is related to tissue stiffness: more filtering is applied at stiff tissue locations, less at parts of the image containing nonrigid tissue. The tissue-dependent filter is incorporated in a commonly used registration algorithm, using mutual information as a similarity measure and cubic B-splines to model the deformation field. The new registration algorithm is compared with this popular method. Evaluation of the proposed tissue-dependent filtering is performed on 3D computed tomography (CT) data of the thorax and on 2D digital subtraction angiography (DSA) images. The results show that tissue-dependent filtering of the deformation field leads to improved registration results: tumour volumes and vessel widths are preserved rather than affected

  2. Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy

    Science.gov (United States)

    Al-Mayah, Adil; Moseley, Joanne; Velec, Mike; Brock, Kristy

    2011-08-01

    Both accuracy and efficiency are critical for the implementation of biomechanical model-based deformable registration in clinical practice. The focus of this investigation is to evaluate the potential of improving the efficiency of the deformable image registration of the human lungs without loss of accuracy. Three-dimensional finite element models have been developed using image data of 14 lung cancer patients. Each model consists of two lungs, tumor and external body. Sliding of the lungs inside the chest cavity is modeled using a frictionless surface-based contact model. The effect of the type of element, finite deformation and elasticity on the accuracy and computing time is investigated. Linear and quadrilateral tetrahedral elements are used with linear and nonlinear geometric analysis. Two types of material properties are applied namely: elastic and hyperelastic. The accuracy of each of the four models is examined using a number of anatomical landmarks representing the vessels bifurcation points distributed across the lungs. The registration error is not significantly affected by the element type or linearity of analysis, with an average vector error of around 2.8 mm. The displacement differences between linear and nonlinear analysis methods are calculated for all lungs nodes and a maximum value of 3.6 mm is found in one of the nodes near the entrance of the bronchial tree into the lungs. The 95 percentile of displacement difference ranges between 0.4 and 0.8 mm. However, the time required for the analysis is reduced from 95 min in the quadratic elements nonlinear geometry model to 3.4 min in the linear element linear geometry model. Therefore using linear tetrahedral elements with linear elastic materials and linear geometry is preferable for modeling the breathing motion of lungs for image-guided radiotherapy applications.

  3. Design of an Orthodontic Torque Simulator for Measurement of Bracket Deformation

    Science.gov (United States)

    Melenka, G. W.; Nobes, D. S.; Major, P. W.; Carey, J. P.

    2013-12-01

    The design and testing of an orthodontic torque simulator that reproduces the effect of archwire rotation on orthodontic brackets is described. This unique device is capable of simultaneously measuring the deformation and loads applied to an orthodontic bracket due to archwire rotation. Archwire rotation is used by orthodontists to correct the inclination of teeth within the mouth. This orthodontic torque simulator will provide knowledge of the deformation and loads applied to orthodontic bracket that will aide clinicians by describing the effect of archwire rotation on brackets. This will also impact that design on new archwirebracket systems by providing an assessment of performance. Deformation of the orthodontic bracket tie wings is measured using a digital image correlation process to measure elastic and plastic deformation. The magnitude of force and moments applied to the bracket though the archwire is also measured using a six-axis load cell. Initial tests have been performed on two orthodontic brackets of varying geometry to demonstrate the measurement capability of the orthodontic torque simulator. The demonstration experiment shows that a Damon Q bracket had a final plastic deformation after a single loading of 0.022 mm while the Speed bracket deformed 0.071 mm. This indicates that the Speed bracket plastically deforms 3.2 times more than the Damon Q bracket for similar magnitude of applied moment. The demonstration experiment demonstrates that bracket geometry affect the deformation of orthodontic brackets and this difference can be detected using the orthodontic torque simulator.

  4. Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.

    Energy Technology Data Exchange (ETDEWEB)

    Preston, Leiph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti) by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.

  5. Hamilton-Ostrogradsky principle in the theory of nonlinear elasticity with the combined approach

    International Nuclear Information System (INIS)

    Sporykhin, A.N.

    1995-01-01

    The assignment of a portion of the edge conditions in the deformed state and a portion of them in the initial state so that the initial and deformed states of the body are unknowns is a characteristic feature of the statement of a number of technological problems. Haber and Haber and Abel have performed studies in this direction, where constitutive relationships have been constructed within the framework of a linearly elastic material. Use of the displacements of individual particles as variable parameters in these relationships has required additional conditions that do not follow from the formulated problem. Use of familiar variational principles described in Euler coordinates is rendered difficult by the complexity of edge-condition formulation in the special case when the initial state is unknown. The latter is governed by the fact that variational principles are derived from the initial formulations open-quotes in Lagrangian coordinates,close quotes by recalculating the operation functional. Using Lagrange's principle, Novikov and Sporykhin constructed constitutive equations in the general case of a nonlinearly elastic body with edge conditions assigned in different configurations. An analogous problem is solved in this paper using the Hamilton-Ostrogradsky principle

  6. Deformation associated with continental normal faults

    Science.gov (United States)

    Resor, Phillip G.

    Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master

  7. Peristaltic pumping in an elastic tube: feeding the hungry python

    Science.gov (United States)

    Takagi, Daisuke; Balmforth, Neil

    2010-11-01

    Biological ducts convey contents like food in the digestive system by peristaltic action, propagating waves of muscular contraction and relaxation. The motion is investigated theoretically by considering a radial force of sinusoidal or Gaussian form moving steadily down a fluid-filled axisymmetric tube. Effects of the prescribed force on the resultant fluid flow and elastic deformation of the tube wall are presented. The flow can induce a rigid object suspended in the fluid to propel in different ways, as demonstrated in numerous examples.

  8. Measurement of installation deformation of the acetabulum during prosthetic replacement of a hip joint using digital image correlation

    Science.gov (United States)

    Lei, Dong; Bai, Pengxiang; Zhu, Feipeng

    2018-01-01

    Nowadays, acetabulum prosthesis replacement is widely used in clinical medicine. However, there is no efficient way to evaluate the implantation effect of the prosthesis. Based on a modern photomechanics technique called digital image correlation (DIC), the evaluation method of the installation effect of the acetabulum was established during a prosthetic replacement of a hip joint. The DIC method determines strain field by comparing the speckle images between the undeformed sample and the deformed counterpart. Three groups of experiments were carried out to verify the feasibility of the DIC method on the acetabulum installation deformation test. Experimental results indicate that the installation deformation of acetabulum generally includes elastic deformation (corresponding to the principal strain of about 1.2%) and plastic deformation. When the installation angle is ideal, the plastic deformation can be effectively reduced, which could prolong the service life of acetabulum prostheses.

  9. Testing plastic deformations of materials in the introductory undergraduate mechanics laboratory

    International Nuclear Information System (INIS)

    Romo-Kröger, C M

    2012-01-01

    Normally, a mechanics laboratory at the undergraduate level includes an experiment to verify compliance with Hooke's law in materials, such as a steel spring and an elastic rubber band. Stress-strain curves are found for these elements. Compression in elastic bands is practically impossible to achieve due to flaccidity. A typical experiment for the complete loading-unloading cycle is to subject a tubular object to torsion. This paper suggests simple experiments for studying properties concerning elasticity and plasticity in elements of common use, subjected to stretching or compression, and also torsion reinforcing. The experiments use plastic binders, rubber bands and metal springs under a moderate load. This paper discusses an experiment with an original device to measure torsion deformations as a function of applied torques, which permitted construction of the hysteresis cycle for a rubber hose and various tubes. Another experiment was designed to define the temporal recovery of a plastic spring with initial stretching. A simple mathematical model was developed to explain this phenomenon. (paper)

  10. Computing the effect of plastic deformation of piping on pressure transient propagation

    International Nuclear Information System (INIS)

    Youngdahl, C.K.; Kot, C.A.

    1977-01-01

    The computer program PTA-1 performs pressure-transient analysis of large piping networks using the one-dimensional method of characteristics applied to a fluid-hammer formulation. The effect of elastic-plastic deformation of piping on pulse propagation is included in the computation. Each pipe is modeled as a series of rings, neglecting axial effects, bending moments, and inertia. The fluid wave speed is a function of pipe deformation and, consequently, of position and time. Comparison with existing experimental data indicate that this simple fluid-structure interaction model gives suprisingly accurate results for both pressure histories in the fluid and strain histories in the piping

  11. Effect of different stages of tensile deformation on micromagnetic parameters in high-strength, low-alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, S.; Moorthy, V.; Kalyanasundaram, P.; Jayakumar, T.; Raj, B. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    1999-08-01

    The influence of tensile deformation on the magnetic Barkhausen emissions (MBE) and hysteresis loop has been studied in a high-strength, low-alloy steel (HSLA) and its weldment. The magnetic measurements were made both in loaded and unloaded conditions for different stress levels. The root-mean-square (RMS) voltage of the MBE has been used for analysis. This study shows that the preyield and postyield deformation can be identified from the change in the MBE profile. The initial elastic deformation showed a linear increase in the MBE level in the loaded condition, and the MBE level remained constant in the unloaded condition. The microplastic yielding, well below the macroyield stress, significantly reduces the MBE, indicating the operation of grain-boundary dislocation sources below the macroyield stress. This is indicated by the slow increase in the MBE level in the loaded condition and the decrease in the MBE level in the unloaded condition. The macroyielding resulted in a significant increase in the MBE level in the loaded condition and, more clearly, in the unloaded condition. The increase in the MBE level during macroyielding has been attributed to the grain rotation phenomenon, in order to maintain the boundary integrity between adjacent grains, which would preferentially align the magnetic domains along the stress direction. This study shows that MBE during tensile deformation can be classified into four stages: (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding, and (4) progressive plastic deformation. A multimagnetic parameter approach, combining the hysteresis loop and MBE, has been suggested to evaluate the residual stresses.

  12. Pore-Scale Investigation of Micron-Size Polyacrylamide Elastic Microspheres (MPEMs) Transport and Retention in Saturated Porous Media

    KAUST Repository

    Yao, Chuanjin

    2014-05-06

    Knowledge of micrometer-size polyacrylamide elastic microsphere (MPEM) transport and retention mechanisms in porous media is essential for the application of MPEMs as a smart sweep improvement and profile modification agent in improving oil recovery. A transparent micromodel packed with translucent quartz sand was constructed and used to investigate the pore-scale transport, surface deposition-release, and plugging deposition-remigration mechanisms of MPEMs in porous media. The results indicate that the combination of colloidal and hydrodynamic forces controls the deposition and release of MPEMs on pore-surfaces; the reduction of fluid salinity and the increase of Darcy velocity are beneficial to the MPEM release from pore-surfaces; the hydrodynamic forces also influence the remigration of MPEMs in pore-throats. MPEMs can plug pore-throats through the mechanisms of capture-plugging, superposition-plugging, and bridge-plugging, which produces resistance to water flow; the interception with MPEM particulate filters occurring in the interior of porous media can enhance the plugging effect of MPEMs; while the interception with MPEM particulate filters occurring at the surface of low-permeability layer can prevent the low-permeability layer from being damaged by MPEMs. MPEMs can remigrate in pore-throats depending on their elasticity through four steps of capture-plugging, elastic deformation, steady migration, and deformation recovery. © 2014 American Chemical Society.

  13. Modeling the behaviour of shape memory materials under large deformations

    Science.gov (United States)

    Rogovoy, A. A.; Stolbova, O. S.

    2017-06-01

    In this study, the models describing the behavior of shape memory alloys, ferromagnetic materials and polymers have been constructed, using a formalized approach to develop the constitutive equations for complex media under large deformations. The kinematic and constitutive equations, satisfying the principles of thermodynamics and objectivity, have been derived. The application of the Galerkin procedure to the systems of equations of solid mechanics allowed us to obtain the Lagrange variational equation and variational formulation of the magnetostatics problems. These relations have been tested in the context of the problems of finite deformation in shape memory alloys and ferromagnetic materials during forward and reverse martensitic transformations and in shape memory polymers during forward and reverse relaxation transitions from a highly elastic to a glassy state.

  14. Sliding behaviors of elastic cylindrical tanks under seismic loading

    International Nuclear Information System (INIS)

    Kobayashi, N.

    1993-01-01

    There is a paper that reports on the occurrence of sliding in several oil tanks on Alaskan earthquake of 1964. This incident appears to be in need of further investigation for the following reasons: First, in usual seismic designing of cylindrical tanks ('tanks'), sliding is considered to occur when the lateral inertial force exceeds the static friction force. When the tank in question can be taken as a rigid body, this rule is known to hold true. If the tank is capable of undergoing a considerable amount of elastic deformation, however, its applicability has not been proved. Second, although several studies have been done on the critical conditions for static sliding the present author is unaware of like ones made on the dynamic sliding, except for the pioneering work of Sogabe, in which they have empirically indicated possibility of sliding to occur under the force of sloshing. Third, this author has shown earlier on that tanks, if not anchored properly, will start rocking, inducing uplifting of the base plate, even at a relatively small seismic acceleration of 10 gal or so. The present study has been conducted with these observations for the background. Namely, based on a notion that elastic deformation given rise to by rocking oscillation should be incorporated as an important factor in any set of critical conditions for the onset of sliding, a series of shaking table experiments were performed for rigid steel block to represent the rigid tanks ('rigid model') and a model tank having a same sort of plate thickness-to-diameter ratio as industrial tanks to represent the elastic cylindrical tanks ('elastic model'). Following observations have been obtained for the critical condition of the onset of sliding: (1) sliding of rigid tanks will occur when the lateral force given rise to by oscillation exceeds the static, or the Coulombic, friction force. (2) if vertical oscillation is imposed on the lateral oscillation, the lateral force needed to induce sliding of a

  15. Microcracking and Healing in Semibrittle Salt-Rock: Elastic and Plastic Behavior

    Science.gov (United States)

    Ding, J.; Chester, F. M.; Chester, J. S.; Shen, X.; Arson, C. F.

    2017-12-01

    Microcracking and healing during semibrittle deformation are important processes that affect physical properties such as elastic moduli and permeability. We study these processes through triaxial compression tests involving cyclic differential loading and isostatic-holds on synthetic salt-rock at room temperature and low confining pressure (Pc, 1 to 4 MPa). The salt samples are produced by uniaxial pressing of granular (300 µm dia.) halite to 75 MPa at 150˚C for 10^3 s, to create low-porosity ( 5%) aggregates of nearly equant, work-hardened grains. Alternating large- and small-load cycles are performed to track the evolution of plastic and elastic properties, respecitively, with progressive strain to 8% axial shortening. 24-hour holds are carried out at about 4% axial shortening followed by renewed cyclic loading to investigate healing. During large load cycles samples yield and exhibit distributed flow with dilatancy and small work hardening. Young's Modulus (YM) decreases and then tends to stabilize, while Poisson's Ratio (PR) increases at a reducing rate, with progressive strain. Microstructures at sequential stages show that opening-mode grain-boundary cracking, grain-boundary sliding, and some intracrystalline plasticity are the dominant deformation processes. Opening and shear occur preferentially on boundaries that are parallel and inclined to the shortening axis, respectively, leading to progressive redistribution of porosity. Opening-mode grain-boundary cracks increase in number and aperature with strain, and are linked by sliding grain-boundaries to form en echelon arrays. After a 24-hour hold, samples show yielding and flow behavior consistent with that prior to the hold, whereas YM and PR are reset to the same values documented at zero strain and subsequently evolve with additional strain similar to that documented at smaller strains prior to the hold. Open grain-boundary cracks are not closed or healed during the hold. Observations suggest that

  16. Elastic unloading of a disk after plastic deformation by a circular heat source

    International Nuclear Information System (INIS)

    Gamer, U.; Mack, W.

    1987-01-01

    Subject of the investigation is the transient stress distribution in an elastic-plastic disk acted upon by a circular heat source. The disk serves as a mechanical model of the rotating anode of an X-ray-tube. The calculation is based on Tresca's yield criterion and the flow rule associatd to it. During heating, a plastic region spreads around the source, which is absorbed by an unloaded zone after the removal of the source. (orig.) [de

  17. Modeling of 3D Aluminum Polycrystals during Large Deformations

    International Nuclear Information System (INIS)

    Maniatty, Antoinette M.; Littlewood, David J.; Lu Jing; Pyle, Devin

    2007-01-01

    An approach for generating, meshing, and modeling 3D polycrystals, with a focus on aluminum alloys, subjected to large deformation processes is presented. A Potts type model is used to generate statistically representative grain structures with periodicity to allow scale-linking. The grain structures are compared to experimentally observed grain structures to validate that they are representative. A procedure for generating a geometric model from the voxel data is developed allowing for adaptive meshing of the generated grain structure. Material behavior is governed by an appropriate crystal, elasto-viscoplastic constitutive model. The elastic-viscoplastic model is implemented in a three-dimensional, finite deformation, mixed, finite element program. In order to handle the large-scale problems of interest, a parallel implementation is utilized. A multiscale procedure is used to link larger scale models of deformation processes to the polycrystal model, where periodic boundary conditions on the fluctuation field are enforced. Finite-element models, of 3D polycrystal grain structures will be presented along with observations made from these simulations

  18. Static response of deformable microchannels: a comparative modelling study

    Science.gov (United States)

    Shidhore, Tanmay C.; Christov, Ivan C.

    2018-02-01

    We present a comparative modelling study of fluid-structure interactions in microchannels. Through a mathematical analysis based on plate theory and the lubrication approximation for low-Reynolds-number flow, we derive models for the flow rate-pressure drop relation for long shallow microchannels with both thin and thick deformable top walls. These relations are tested against full three-dimensional two-way-coupled fluid-structure interaction simulations. Three types of microchannels, representing different elasticity regimes and having been experimentally characterized previously, are chosen as benchmarks for our theory and simulations. Good agreement is found in most cases for the predicted, simulated and measured flow rate-pressure drop relationships. The numerical simulations performed allow us to also carefully examine the deformation profile of the top wall of the microchannel in any cross section, showing good agreement with the theory. Specifically, the prediction that span-wise displacement in a long shallow microchannel decouples from the flow-wise deformation is confirmed, and the predicted scaling of the maximum displacement with the hydrodynamic pressure and the various material and geometric parameters is validated.

  19. Deformation-Induced Precession of a Robot Moving on Curved Space

    Science.gov (United States)

    Li, Shengkai; Aydin, Yasemin; Lofaro, Olivia; Rieser, Jennifer; Goldman, Daniel

    Previous studies have demonstrated that passive particles rolling on a deformed surface can mimic aspects of general relativity [Ford et al, AJP, 2015]. However, these systems are dissipative. To explore steady-state dynamics, we study the movement of a self-propelled robot car on a large deformable elastic membrane: a spandex sheet stretched over a metal frame with a diameter of 2.5 m. Two wheels in the rear of the car are differentially-driven by a DC motor, and a caster in the front helps maintain directional stability; in the absence of curvature the car drives straight. A linear actuator attached below the membrane allows for controlled deformation at the center of the membrane. We find that closed elliptic orbits occur when the membrane is highly depressed ( 10 cm). However, when the center is only slightly indented, the elliptical orbits precess at a rate depending on the orbit shape and the depression. Remarkably, this dynamic is well described by the Schwarzschild metric solution, typically used to describe the effects of gravity on bodies orbiting a massive object. Experiments with multiple cars reveal complex interactions that are mediated through car-induced deformations of the membrane.

  20. Campaigned GPS on Present-Day Crustal Deformation in Northernmost Longitudinal Valley Preliminary Results, Hualien Taiwan

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chen

    2014-01-01

    Full Text Available The Longitudinal Valley in Eastern Taiwan sits at the collision suture between the Eurasian and Philippine Sea plates. Based on repeated GPS campaigned measurements from 25 stations six times in 2007 - 2009, we characterize the surface deformation in the northernmost Longitudinal Valley where the Coastal Range of the Philippine Sea plate turns northward diving under the Eurasian plate producing two major active faults: the Milun fault and the Longitudinal Valley fault. We reconstructed a GPS velocity field and conducted strain analyses and elastic block modeling. Our results suggest a rapid clockwise rotation of 33° Myr-1 and an eastward tectonic escape in the small Hualien City block (HUAL area of ~10 × 10 km, which is apparently detached from the regional rotating RYUK block defined by previous studies. We interpret it as being initiated locally by the northwest indentation of the Coastal Range, which pushed the HUAL block to move upward and eastward. According to our strain analyses, the HUAL block shows a significant internal elastic strain inside the Milun Tableland, the hanging wall of the Milun fault. No significant deformation was observed across the surface trace of the fault, indicating that the Milun fault is now probably locked in the near surface. The deformation in the footwall of the fault was accommodated by pure-shear strain with a major NNW-compression and a minor ENE-extension. The deformation in the hanging wall is characterized by simple-shear strain with ENE-extension in its northern part and little deformation in the southern part, separated by a little known NW-trending active fault zone (Dongmingyi fault, which needs further investigation.

  1. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study

    DEFF Research Database (Denmark)

    Holst, Karen; Liebgott, Hervé; Wilhjelm, Jens E.

    2013-01-01

    Shock absorption is the most important function of the human heel pad. However, changes in heel pad elasticity, as seen in e.g. long-distance runners, diabetes patients, and victims of Falanga torture are affecting this function, often in a painful manner. Assessment of heel pad elasticity...... is usually based on one or a few strain measurements obtained by an external load-deformation system. The aim of this study was to develop a technique for quantitative measurements of heel pad elastic modulus based on several internal strain measures from within the heel pad by use of ultrasound images. Nine...... heel phantoms were manufactured featuring a combination of three heel pad stiffnesses and three heel pad thicknesses to model the normal human variation. Each phantom was tested in an indentation system comprising a 7MHz linear array ultrasound transducer, working as the indentor, and a connected load...

  2. The elasticity anisotropy in the basal atomic planes of Mg(OH)2 and Ca(OH)2 associated with auxetic elastic properties of the hydrogen sub-lattice

    International Nuclear Information System (INIS)

    Harutyunyan, Valeri S.; Abrahamyan, Aren A.; Aivazyan, Ashot P.

    2013-01-01

    Graphical abstract: To the out-of-plane strain ε x induced in the (0 0 0 1) atomic planes of Mg(OH) 2 , the contributions of constituent octahedral layers ε x (1) and interlayers ε x (2) are of opposite sign. Highlights: ► Elasticity anisotropy of rare earth metal hydroxides is theoretically analyzed. ► Elastic anisotropy within (0 0 0 1) atomic planes is studied from energy consideration. ► The out-of-plane Poisson’s ratios of octahedral layers and interlayers are of opposite sign. ► Auxeticity of the hydrogen sublattice (interlayers) results from weak interlayer bonding. ► The obtained expression for the in-plane Young’s modulus results in useful conclusions. - Abstract: Within the framework of the Hook’s generalized law and using the experimental data for characteristic crystallographic parameters and stiffness constants available from literature, the individual elastic properties of constituent octahedral layers and interlayers of the (0 0 0 1) atomic planes in the Mg(OH) 2 and Ca(OH) 2 crystal lattices are theoretically quantified from intermolecular interaction energy. It is shown that, under uniaxial type of deformation applied along the (0 0 0 1) basal planes, in the “load-deformation response” the octahedral layers and interlayers exhibit the positive and negative Poisson’s ratio, respectively. Manifestation of such a type strong elastic anisotropy in the basal atomic planes and auxetic elastic behavior of the hydrogen sub-lattice (interlayers) upon applied uniaxial load result from a large difference in the strength of bonding within octahedral layers and interlayers. The intermolecular binding energy is contributed both by “hydroxyl–hydroxyl” and “metal atom–hydroxyl” dispersion interactions, whereas the Young’s modulus in the direction parallel to a (0 0 0 1) plane is practically contributed only by the former interaction. For this Young’s modulus, an approximate analytical expression is derived, which is

  3. Systematic feasibility analysis of a quantitative elasticity estimation for breast anatomy using supine/prone patient postures.

    Science.gov (United States)

    Hasse, Katelyn; Neylon, John; Sheng, Ke; Santhanam, Anand P

    2016-03-01

    Breast elastography is a critical tool for improving the targeted radiotherapy treatment of breast tumors. Current breast radiotherapy imaging protocols only involve prone and supine CT scans. There is a lack of knowledge on the quantitative accuracy with which breast elasticity can be systematically measured using only prone and supine CT datasets. The purpose of this paper is to describe a quantitative elasticity estimation technique for breast anatomy using only these supine/prone patient postures. Using biomechanical, high-resolution breast geometry obtained from CT scans, a systematic assessment was performed in order to determine the feasibility of this methodology for clinically relevant elasticity distributions. A model-guided inverse analysis approach is presented in this paper. A graphics processing unit (GPU)-based linear elastic biomechanical model was employed as a forward model for the inverse analysis with the breast geometry in a prone position. The elasticity estimation was performed using a gradient-based iterative optimization scheme and a fast-simulated annealing (FSA) algorithm. Numerical studies were conducted to systematically analyze the feasibility of elasticity estimation. For simulating gravity-induced breast deformation, the breast geometry was anchored at its base, resembling the chest-wall/breast tissue interface. Ground-truth elasticity distributions were assigned to the model, representing tumor presence within breast tissue. Model geometry resolution was varied to estimate its influence on convergence of the system. A priori information was approximated and utilized to record the effect on time and accuracy of convergence. The role of the FSA process was also recorded. A novel error metric that combined elasticity and displacement error was used to quantify the systematic feasibility study. For the authors' purposes, convergence was set to be obtained when each voxel of tissue was within 1 mm of ground-truth deformation. The authors

  4. Elasticity of frictionless particles near jamming.

    Science.gov (United States)

    Karimi, Kamran; Maloney, Craig E

    2015-08-01

    We study the linear elastic response of harmonic disk packings near jamming via three types of probes: (i) point forcing, (ii) constrained homogeneous deformation of subregions of large systems, and (iii) unconstrained deformation of the full system subject to periodic boundary conditions. For the point forcing, our results indicate that the transverse component of the response is governed by a lengthscale ξT, which scales with the confining pressure, p, as ξT∼p-0.25, while the longitudinal component is governed by ξL, which scales as ξL∼p-0.4. The former scaling is precisely the transverse lengthscale, which has been invoked to explain the structure of normal modes near the density of states anomaly in sphere packings, while the latter is much closer to the rigidity length, l*∼p-0.5, which has been invoked to describe the jamming scenario. For the case of constrained homogeneous deformation, we find that μ(R), the value of the shear modulus measured in boxes of size R, gives a value much higher than the continuum result for small boxes and recedes to its continuum limit only for boxes bigger than a characteristic length, which scales like p-0.5, precisely the same way as l*. Finally, for the case of unconstrained homogeneous deformation, we find displacement fields with power spectra, which are consistent with independent, uncorrelated Eshelby transformations. The transverse sector is amazingly invariant with respect to p and very similar to what is seen in Lennard-Jones glasses. The longitudinal piece, however, is sensitive to p. It develops a plateau at long wavelength, the start of which occurs at a length that grows in the p→0 limit. Strikingly, the same behavior is observed both for applied shear and dilation.

  5. Applicability of a particularly simple model to nonlinear elasticity of slide-ring gels with movable cross-links as revealed by unequal biaxial deformation.

    Science.gov (United States)

    Kondo, Yuuki; Urayama, Kenji; Kidowaki, Masatoshi; Mayumi, Koichi; Takigawa, Toshikazu; Ito, Kohzo

    2014-10-07

    The strain energy density function (F) of the polyrotaxane-based slide-ring (SR) gels with movable cross-links along the network strands is characterized by unequal biaxial stretching which can achieve various types of deformation. The SR gels as prepared without any post-preparation complication exhibit considerably smaller values of the ratio of the stresses (σy/σx) in the stretched (x) and constrained (y) directions in planar extension than classical chemical gels with heterogeneous and nearly homogeneous network structures do. This feature of the SR gels leads to the peculiar characteristic that the strain energy density function (F) has no explicit cross term of strains in different directions, which is in contrast to F with explicit strain cross terms for most chemical gels and elastomers. The biaxial stress-strain data of the SR gels are successfully described by F of the Gent model with only two parameters (small-strain shear modulus and a parameter representing ultimate elongation), which introduces the finite extensibility effect into the neo-Hookean model with no explicit cross term of strain. The biaxial data of the deswollen SR gels examined in previous study, which underwent a considerable reduction in volume from the preparation state, are also well described by the Gent model, which is in contrast to the case of the classical chemical gels that the stress-strain relations before and after large deswelling are not described by a common type of F due to a significant degree of collapse of the network strands in the deswollen state. These intriguing features of nonlinear elasticity of the SR gels originate from a novel function of the slidable cross-links that can maximize the arrangement entropy of cross-linked and non-cross-linked cyclic molecules in the deformed networks.

  6. Hydrogen-Induced Plastic Deformation in ZnO

    Science.gov (United States)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  7. Nuclear elasticity applied to giant resonances of fast rotating nuclei

    International Nuclear Information System (INIS)

    Jang, S.; Bouyssy, A.

    1987-06-01

    Isoscalar giant resonances in fast rotating nuclei are investigated within the framework of nuclear elasticity by solving the equation of motion of elastic nuclear medium in a rotating frame of reference. Both Coriolis and centrifugal forces are taken into account. The nuclear rotation removes completely the azimuthal degeneracy of the giant resonance energies. Realistic large values of the angular velocity, which are still small as compared to the giant resonance frequencies, are briefly reviewed in relation to allowed high angular momenta. It is shown that for the A=150 region, the Coriolis force is dominating for small values (< ∼ 0.05) of the ratio of angular velocity to resonance frequency, whereas the centrifugal force plays a prominent part in the shift of the split resonance energies for larger values of the ratio. Typical examples of the resonance energies and their fragmentation due to both rotation and deformation are given

  8. THE CHANGE IN DEFORMATION CHARACTERISTICS OF CONCRETE MONOLITHIC HIGH-RISE BUILDINGS

    Directory of Open Access Journals (Sweden)

    V. V. Punahin

    2009-03-01

    Full Text Available In the article results of studies of deformation features of concrete on actuate cement for monolithic high-altitude buildings are presented. It is shown that in construction of the high-altitude monolithic buildings in a summer period of a year one should take into account the character of changing the concrete elasticity and plasticity in time, which differs from the same indices for the concrete of normal hardening.

  9. Spatiotemporal patterns formed by deformed adhesive in peeling

    International Nuclear Information System (INIS)

    Yamazaki, Yoshihiro; Toda, Akihiko

    2007-01-01

    Dynamical properties of peeling an adhesive tape are investigated experimentally as an analogy of sliding friction. An adhesive tape is peeled by pulling an elastic spring connected to the tape. Controlling its spring constant k and pulling speed V, peel force is measured and spatiotemporal patterns formed on the peeled tape by deformed adhesive are observed. It is found that there exist two kinds of adhesive state in peeling front. The emergence of multiple states is caused by the stability of a characteristic structure (tunnel structure) formed by deformed adhesive. Tunnel structures are distributed spatiotemporally on adhesive tape after peeling. Based on the spatiotemporal distribution, a morphology-dynamical phase diagram is constructed on k-V space and is divided into the four regions: (A) uniform pattern with tunnel structure, (B) uniform pattern without tunnel structure, (C) striped pattern with oscillatory peeling, and (D) spatiotemporally coexistent pattern

  10. Elastic Versus Rigid Image Registration in Magnetic Resonance Imaging-transrectal Ultrasound Fusion Prostate Biopsy: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Venderink, Wulphert; de Rooij, Maarten; Sedelaar, J P Michiel; Huisman, Henkjan J; Fütterer, Jurgen J

    2016-07-29

    The main difference between the available magnetic resonance imaging-transrectal ultrasound (MRI-TRUS) fusion platforms for prostate biopsy is the method of image registration being either rigid or elastic. As elastic registration compensates for possible deformation caused by the introduction of an ultrasound probe for example, it is expected that it would perform better than rigid registration. The aim of this meta-analysis is to compare rigid with elastic registration by calculating the detection odds ratio (OR) for both subgroups. The detection OR is defined as the ratio of the odds of detecting clinically significant prostate cancer (csPCa) by MRI-TRUS fusion biopsy compared with systematic TRUS biopsy. Secondary objectives were the OR for any PCa and the OR after pooling both registration techniques. The electronic databases PubMed, Embase, and Cochrane were systematically searched for relevant studies according to the Preferred Reporting Items for Systematic Review and Meta-analysis Statement. Studies comparing MRI-TRUS fusion and systematic TRUS-guided biopsies in the same patient were included. The quality assessment of included studies was performed using the Quality Assessment of Diagnostic Accuracy Studies version 2. Eleven papers describing elastic and 10 describing rigid registration were included. Meta-analysis showed an OR of csPCa for elastic and rigid registration of 1.45 (95% confidence interval [CI]: 1.21-1.73, pimaging-transrectal ultrasound fusion systems which vary in their method of compensating for prostate deformation. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  11. Modeling and Simulation of Grasping of Deformable Objects

    DEFF Research Database (Denmark)

    Fugl, Andreas Rune

    Automated robot solutions have for decades been increasing productivity around the world. They are attractive for being fast, accurate and able to work in dangerous and repetitive environments. In traditional applications the grasped object is kinematically attached to the Tool Center Point....... The purpose of this thesis is to address the modeling and simulation of deformable objects, as applied to robotic grasping and manipulation. The main contributions of this work are: An evaluation of 3D linear elasticity used for robot grasping as implemented by a Finite Difference Method supporting regular...

  12. Structural changes in elastically stressed crystallites under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zolnikov, K.P., E-mail: kost@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, 2/4, pr. Akademicheskii, Tomsk (Russian Federation); Tomsk State University, 36 Lenin Ave., Tomsk (Russian Federation); Korchuganov, A.V. [Institute of Strength Physics and Materials Science SB RAS, 2/4, pr. Akademicheskii, Tomsk (Russian Federation); Kryzhevich, D.S. [Institute of Strength Physics and Materials Science SB RAS, 2/4, pr. Akademicheskii, Tomsk (Russian Federation); Tomsk State University, 36 Lenin Ave., Tomsk (Russian Federation); Chernov, V.M. [Tomsk State University, 36 Lenin Ave., Tomsk (Russian Federation); A.A. Bochvar High-Technology Scientific Research Institute for Inorganic Materials, 5a Rogova St., Moscow (Russian Federation); Psakhie, S.G. [Institute of Strength Physics and Materials Science SB RAS, 2/4, pr. Akademicheskii, Tomsk (Russian Federation); Tomsk Polytechnic University, 30 Lenin Ave., Tomsk (Russian Federation); Skolkovo Institute of Science and Technology, 100 Novaya St., Skolkovo (Russian Federation)

    2015-06-01

    The response of elastically stressed iron and vanadium crystallites to atomic displacement cascades was investigated by molecular dynamics simulation. Interatomic interaction in vanadium was described by a many-body potential calculated in the Finnis–Sinclair approximation of the embedded atom method. Interatomic interaction in iron was described by a many-body potential constructed in the approximation of valence-electron gas. The crystallite temperature in the calculations was varied from 100 to 600 K. The elastically stressed state in the crystallites was formed through uniaxial tension by 4–8% such that their volume remained unchanged. The energy of a primary knock-on atom was varied from 0.5 to 50 keV. It is shown that the lower the temperature and the higher the strain degree of an initial crystallite, the lower the threshold primary knock-on atom energy for plastic deformation generation in the crystallite. The structural rearrangements induced in the crystallites by an atomic displacement cascade are similar to those induced by mechanical loading. It is found that the rearrangements are realized through twinning.

  13. Structural changes in elastically stressed crystallites under irradiation

    International Nuclear Information System (INIS)

    Zolnikov, K.P.; Korchuganov, A.V.; Kryzhevich, D.S.; Chernov, V.M.; Psakhie, S.G.

    2015-01-01

    The response of elastically stressed iron and vanadium crystallites to atomic displacement cascades was investigated by molecular dynamics simulation. Interatomic interaction in vanadium was described by a many-body potential calculated in the Finnis–Sinclair approximation of the embedded atom method. Interatomic interaction in iron was described by a many-body potential constructed in the approximation of valence-electron gas. The crystallite temperature in the calculations was varied from 100 to 600 K. The elastically stressed state in the crystallites was formed through uniaxial tension by 4–8% such that their volume remained unchanged. The energy of a primary knock-on atom was varied from 0.5 to 50 keV. It is shown that the lower the temperature and the higher the strain degree of an initial crystallite, the lower the threshold primary knock-on atom energy for plastic deformation generation in the crystallite. The structural rearrangements induced in the crystallites by an atomic displacement cascade are similar to those induced by mechanical loading. It is found that the rearrangements are realized through twinning

  14. Study on orthorhombic parameters for 3D elastic full waveform inversion

    KAUST Repository

    Oh, Juwon

    2015-08-21

    For a better understanding of the influence of the parameterizations on the multi-parameter full waveform inversion (FWI) for 3D elastic orthorhombic media, we analyze the virtual sources for each cij parameter. Because the virtual sources for cij parameters can be regarded as bases of the virtual sources for other parameterizations, the insights developed here explains many of the scattering phenomena of the different parameters. The resulting radiation patterns provide insights on which parameter set is the best in the multi-parameter FWI for 3D elastic orthorhombic media. In this study, we analyze the virtual source for each cij parameter as a linear combination of several moment tensors. After that, we analyze the strain fields deformed by incident waves as momenta of the virtual source and their influences on sensitivity kernels of each cij parameter.

  15. Study on orthorhombic parameters for 3D elastic full waveform inversion

    KAUST Repository

    Oh, Juwon; Alkhalifah, Tariq Ali

    2015-01-01

    For a better understanding of the influence of the parameterizations on the multi-parameter full waveform inversion (FWI) for 3D elastic orthorhombic media, we analyze the virtual sources for each cij parameter. Because the virtual sources for cij parameters can be regarded as bases of the virtual sources for other parameterizations, the insights developed here explains many of the scattering phenomena of the different parameters. The resulting radiation patterns provide insights on which parameter set is the best in the multi-parameter FWI for 3D elastic orthorhombic media. In this study, we analyze the virtual source for each cij parameter as a linear combination of several moment tensors. After that, we analyze the strain fields deformed by incident waves as momenta of the virtual source and their influences on sensitivity kernels of each cij parameter.

  16. Extension of an anisotropic creep model to general high temperature deformation of a single crystal superalloy

    International Nuclear Information System (INIS)

    Pan, L.M.; Ghosh, R.N.; McLean, M.

    1993-01-01

    A physics based model has been developed that accounts for the principal features of anisotropic creep deformation of single crystal superalloys. The present paper extends this model to simulate other types of high temperature deformation under strain controlled test conditions, such as stress relaxation and tension tests at constant strain rate in single crystals subject to axial loading along an arbitrary crystal direction. The approach is applied to the SRR99 single crystal superalloy where a model parameter database is available, determined via analysis of a database of constant stress creep curves. A software package has been generated to simulate the deformation behaviour under complex stress-strain conditions taking into account anisotropic elasticity. (orig.)

  17. A virtual surgical training system that simulates cutting of soft tissue using a modified pre-computed elastic model.

    Science.gov (United States)

    Toe, Kyaw Kyar; Huang, Weimin; Yang, Tao; Duan, Yuping; Zhou, Jiayin; Su, Yi; Teo, Soo-Kng; Kumar, Selvaraj Senthil; Lim, Calvin Chi-Wan; Chui, Chee Kong; Chang, Stephen

    2015-08-01

    This work presents a surgical training system that incorporates cutting operation of soft tissue simulated based on a modified pre-computed linear elastic model in the Simulation Open Framework Architecture (SOFA) environment. A precomputed linear elastic model used for the simulation of soft tissue deformation involves computing the compliance matrix a priori based on the topological information of the mesh. While this process may require a few minutes to several hours, based on the number of vertices in the mesh, it needs only to be computed once and allows real-time computation of the subsequent soft tissue deformation. However, as the compliance matrix is based on the initial topology of the mesh, it does not allow any topological changes during simulation, such as cutting or tearing of the mesh. This work proposes a way to modify the pre-computed data by correcting the topological connectivity in the compliance matrix, without re-computing the compliance matrix which is computationally expensive.

  18. An InSAR-based survey of volcanic deformation in the central Andes

    Science.gov (United States)

    Pritchard, M. E.; Simons, M.

    2004-02-01

    We extend an earlier interferometric synthetic aperture radar (InSAR) survey covering about 900 remote volcanos of the central Andes (14°-27°S) between the years 1992 and 2002. Our survey reveals broad (10s of km), roughly axisymmetric deformation at 4 volcanic centers: two stratovolcanoes are inflating (Uturuncu, Bolivia, and Hualca Hualca, Peru); another source of inflation on the border between Chile and Argentina is not obviously associated with a volcanic edifice (here called Lazufre); and a caldera (Cerro Blanco, also called Robledo) in northwest Argentina is subsiding. We explore the range of source depths and volumes allowed by our observations, using spherical, ellipsoidal and crack-like source geometries. We further examine the effects of local topography upon the deformation field and invert for a spherical point-source in both elastic half-space and layered-space crustal models. We use a global search algorithm, with gradient search methods used to further constrain best-fitting models. Inferred source depths are model-dependent, with differences in the assumed source geometry generating a larger range of accepted depths than variations in elastic structure. Source depths relative to sea level are: 8-18 km at Hualca Hualca; 12-25 km for Uturuncu; 5-13 km for Lazufre, and 5-10 km at Cerro Blanco. Deformation at all four volcanoes seems to be time-dependent, and only Uturuncu and Cerro Blanco were deforming during the entire time period of observation. Inflation at Hualca Hualca stopped in 1997, perhaps related to a large eruption of nearby Sabancaya volcano in May 1997, although there is no obvious relation between the rate of deformation and the eruptions of Sabancaya. We do not observe any deformation associated with eruptions of Lascar, Chile, at 16 other volcanoes that had recent small eruptions or fumarolic activity, or associated with a short-lived thermal anomaly at Chiliques volcano. We posit a hydrothermal system at Cerro Blanco to explain the

  19. Numerical model for the deformation of nucleated cells by optical stretchers

    KAUST Repository

    Sraj, Ihab

    2015-07-01

    In this paper, we seek to numerically study the deformation of nucleated cells by single diode-laser bar optical stretchers. We employ a recently developed computational model, the dynamic ray-tracing method, to determine the force distribution induced by optical stretchers on a cell encapsulating a nucleus of different optical properties. These optical forces are shape dependent and can deform real non-rigid objects; thus resulting in dynamically changing distributions with cell and nucleus deformation. A Chinese hamster ovary (CHO) cell is a common biological cell that is of interest to the biomedical community because of its use in recombinant protein therapeutics and is an example of a nucleated cell. To this end, we model CHO cells as two concentric three-dimensional elastic capsules immersed in a fluid where the hydrodynamic forces are calculated using the immersed boundary method. We vary the inner capsule size to simulate different nucleus sizes. Our results show that the presence of a nucleus has a major effect on the force distribution on the cell surface and consequently on its net deformation. Scattering and gradient forces are reported for different nucleus sizes and the effect of nucleus size on the cell deformation is discussed quantitatively. © 2015 IOP Publishing Ltd.

  20. Scratch deformation behavior of thermoplastic materials with significant differences in ductility

    International Nuclear Information System (INIS)

    Hadal, R.S.; Misra, R.D.K.

    2005-01-01

    A comparative study of the scratch deformation behavior of neat ethylene-propylene copolymers and polypropylene with significant differences in ductility is made by combining morphological examination by electron microscopy and scratch deformation parameters by atomic force microscopy. Also, the deformation behavior during scratch tests is examined for their respective long and short chain polymers. The ability of polymeric materials to resist scratch deformation under identical scratch test conditions follows the sequence (from maximum resistance to minimum resistance): short chain polypropylene > long chain polypropylene > short chain ethylene-propylene > long chain ethylene-propylene. The scratch tracks in ethylene-propylene copolymers were characterized by a consecutive parabolic pattern containing voids, while polypropylenes exhibited zig-zag periodic scratch tracks. The greater plastic flow in ethylene-propylene copolymers is encouraged by the high ductility of the copolymer and the ability to nucleate microvoids. The quasi-static periodic scratch tracks are a consequence of sequential accumulation and release of tangential force and represents the stick-slip process. The susceptibility to scratch deformation is discussed in terms of modulus, elastic recovery, scratch hardness, and entanglement density of polymeric materials. A higher effective entanglement density and percentage crystallinity of short chain polymers is helpful in enhancing scratch resistance as compared to their respective long chain polymers