WorldWideScience

Sample records for ejection

  1. Proton ejection project for Saturne; Projet d'ejection des protons de saturne

    Energy Technology Data Exchange (ETDEWEB)

    Bronca, G; Gendreau, G

    1959-07-01

    The reasons for choosing the ejection system are given. The characteristics required for the ejected beam are followed by a description of the ejection process, in chronological order from the viewpoint of the protons: movement of the particles, taking into account the various elements which make up the system (internal magnet, external magnet, quadrupoles, ejection correction coils, thin and thick cables,...) and specification of these elements. Then follows an estimation of the delay in manufacture and the cost of the project. Finally, the characteristics of the magnets and quadrupoles are listed in an appendix. (author) [French] On donne d'abord les raisons du choix du systeme d'ejection, puis le principe. Apres les caracteristiques requises pour le faisceau ejecte, on decrit le processus d'ejection selon l'ordre chronologique vu par les protons: mouvement des particules compte tenu des divers elements composant le systeme (aimant interne, aimant externe, quadrupoles, enroulements correcteurs ejection, cibles mince et epaisse,. ..) et cahier de charge de ces elements. On estime, ensuite les delais de realisation et le cout du projet. Enfin, un resume des caracteristiques des aimants et quadrupoles est donne en appendice. (auteur)

  2. Ejection Tower Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Ejection Tower Facility's mission is to test and evaluate new ejection seat technology being researched and developed for future defense forces. The captive and...

  3. Proton ejection project for Saturne

    International Nuclear Information System (INIS)

    Bronca, G.; Gendreau, G.

    1959-01-01

    The reasons for choosing the ejection system are given. The characteristics required for the ejected beam are followed by a description of the ejection process, in chronological order from the viewpoint of the protons: movement of the particles, taking into account the various elements which make up the system (internal magnet, external magnet, quadrupoles, ejection correction coils, thin and thick cables,...) and specification of these elements. Then follows an estimation of the delay in manufacture and the cost of the project. Finally, the characteristics of the magnets and quadrupoles are listed in an appendix. (author) [fr

  4. Higher-speed coronal mass ejections and their geoeffectiveness

    Science.gov (United States)

    Singh, A. K.; Bhargawa, Asheesh; Tonk, Apeksha

    2018-06-01

    We have attempted to examine the ability of coronal mass ejections to cause geoeffectiveness. To that end, we have investigated total 571 cases of higher-speed (> 1000 km/s) coronal mass ejection events observed during the years 1996-2012. On the basis of angular width (W) of observance, events of coronal mass ejection were further classified as front-side or halo coronal mass ejections (W = 360°); back-side halo coronal mass ejections (W = 360°); partial halo (120°mass ejections were much faster and more geoeffective in comparison of partial halo and non-halo coronal mass ejections. We also inferred that the front-sided halo coronal mass ejections were 67.1% geoeffective while geoeffectiveness of partial halo coronal mass ejections and non-halo coronal mass ejections were found to be 44.2% and 56.6% respectively. During the same period of observation, 43% of back-sided CMEs showed geoeffectiveness. We have also investigated some events of coronal mass ejections having speed > 2500 km/s as a case study. We have concluded that mere speed of coronal mass ejection and their association with solar flares or solar activity were not mere criterion for producing geoeffectiveness but angular width of coronal mass ejections and their originating position also played a key role.

  5. Aircrew ejection experience: questionnaire responses from 20 survivors.

    Science.gov (United States)

    Taneja, Narinder; Pinto, Leslie J; Dogra, Manmohan

    2005-07-01

    Published studies on ejection have focused predominantly on the injuries sustained by aircrew and discussed their preventive measures from an aeromedical perspective. However, studies have not discussed aircrew experiences related to ejection or how they would like to advise other aircrew to successfully handle ejection as an event. Such information can assist in designing realistic indoctrination and training programs. This study was conducted to fill gaps in our understanding of aircrew perspectives of successful ejections. Aircrew reporting to the Institute of Aerospace Medicine (IAM), Indian Air Force, for post-ejection evaluation during the period of May 2003 to January 2005 completed a questionnaire that was designed for the study. A total of 20 aircrew completed this questionnaire. The mean age of the aircrew was 30.25 +/- 4.45 yr. Most of them had logged more than 500 flying hours. Some aircrew described their initial moments of ejection as "blacked out," "dazed, yet conscious," or as "a shock that gradually decreased." Practicing ejection drills on the ground, being prepared at all times, making a timely decision to eject, and assuming correct posture were identified as the most important factors for success. Descriptions of ejection as an event suggest intense emotional arousal could occur following ejection. This study provides first hand inputs into the psychological processes accompanying ejections. Such information could be very useful in understanding the critical factors that influence successful ejection.

  6. Control rod ejection analysis during a depressurization accident and the development of a rod-ejection-preventing device

    International Nuclear Information System (INIS)

    Mitake, S.; Itoh, K.; Fukushima, H.; Inoue, T.

    1982-01-01

    The control rods used for the experimental VHTR are suspended in the core by means of flexible steel cables and it is conceivable that an accidental rod ejection could occur due to a depressurization accident. The computer code AFLADE was developed in order to analyze the possibility of accidental rod ejection, and several studies were performed. The parametric study results showed that the adopted design condition for the VHTR core will not cause a rod ejection accident. In parallel with these accident analyses, a rod-ejection-preventing device was developed in preparation for a hypothetical accident, and its function was verified by the component tests

  7. Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write

    Science.gov (United States)

    Zheng, Jianyi; Zhang, Kai; Jiang, Jiaxin; Wang, Xiang; Li, Wenwang; Liu, Yifang; Liu, Juan; Zheng, Gaofeng

    2018-01-01

    By introducing image recognition and micro-current testing, jet behavior research was conducted, in which the real-time recognition of ejection mode was realized. To study the factors influencing ejection modes and the current variation trends under different modes, an Electrohydrodynamic Direct-Write (EDW) system with functions of current detection and ejection mode recognition was firstly built. Then a program was developed to recognize the jet modes. As the voltage applied to the metal tip increased, four jet ejection modes in EDW occurred: droplet ejection mode, Taylor cone ejection mode, retractive ejection mode and forked ejection mode. In this work, the corresponding relationship between the ejection modes and the effect on fiber deposition as well as current was studied. The real-time identification of ejection mode and detection of electrospinning current was realized. The results in this paper are contributed to enhancing the ejection stability, providing a good technical basis to produce continuous uniform nanofibers controllably.

  8. Ejection experience in Serbian air force, 1990-2010

    Directory of Open Access Journals (Sweden)

    Pavlović Miroslav

    2014-01-01

    Full Text Available Background/Aim. Ejection injuries are the problem for air forces. The present risk for injuries is still too high, approximately 30-50%. This study was an effort to determine factors responsible for and contributing to injuries in the Serbian Air Force (SAF in the last two decades. Methods. All ejection cases in the SAF between 1990 and 2010 were analyzed. The collected data were: aircraft type, ejection seat generation, pilots ´ age and experience, causes of ejection, aeronautical parameters, the condition of aircraft control and types of injuries. For ease of comparison the U.S. Air Force Safety Regulation was used to define of major injuries: hospitalization for 5 days or more, loss of consciousness for over 5 min, bone fracture, joint dislocation, injury to any internal organ, any third-degree burn, or second-degree burn over 5% of the body surface area. Results. There were 52 ejections (51 pilots and 1 mechanic on 44 airplanes. The ejected persons were from 22 to 46 years, average 32 years. Major injuries were present in 25.49% cases. Of all the ejected pilots 9.61% had fractures of thoracic spine, 11.53% fractures of legs, 3.48% fractures of arms. Of all major injuries, fractures of thoracic spine were 38.46%. None of the pilots had experienced ejection previously. Conclusion. Our results suggest to obligatory take preventive measures: magnetic resonance imaging (MRI scan must be included in the standard pilot selection procedure and procedure after ejection. Physical conditioning of pilots has to be improved. Training on ejection trainer has to be accomplished, too.

  9. Ultrasound - Aided ejection in micro injection molding

    Science.gov (United States)

    Masato, D.; Sorgato, M.; Lucchetta, G.

    2018-05-01

    In this work, an ultrasound-aided ejection system was designed and tested for different polymers (PS, COC and POM) and mold topographies. The proposed solution aims at reducing the ejection friction by decreasing the adhesion component of the frictional force, which is controlled by the contact area developed during the filling stage of the injection molding process. The experimental results indicate a positive effect of ultrasound vibration on the friction force values, with a maximum reduction of 16. Moreover, it is demonstrated that the ultrasound effect is strictly related to both polymer selection and mold roughness. The combined effect on the ejection force of mold surface roughness, melt viscosity during filling and polymer elastic modulus at ejection was modeled to the experimental data, in order to demonstrate that the effect of ultrasound vibration on the ejection friction reduction is due to the heating of the contact interface and the consequent reduction of the polymer elastic modulus.

  10. Space weather and coronal mass ejections

    CERN Document Server

    Howard, Tim

    2013-01-01

    Space weather has attracted a lot of attention in recent times. Severe space weather can disrupt spacecraft, and on Earth can be the cause of power outages and power station failure. It also presents a radiation hazard for airline passengers and astronauts. These ""magnetic storms"" are most commonly caused by coronal mass ejections, or CMES, which are large eruptions of plasma and magnetic field from the Sun that can reach speeds of several thousand km/s. In this SpringerBrief, Space Weather and Coronal Mass Ejections, author Timothy Howard briefly introduces the coronal mass ejection, its sc

  11. Mass ejections from the solar corona into interplanetary space

    International Nuclear Information System (INIS)

    Hildner, E.

    1977-01-01

    Mass ejections from the corona are common occurrances, as observations with the High Altitude Observatory's white light coronagraph aboard Skylab showed. During 227 days of operation in 1973 and 1974 at least 77 mass ejections were observed and as many more probably occurred unobserved. It is suggested that the frequency of ejections varies with the solar cycle and that ejections may contribute 10 percent or more of the total solar mass efflux to the interplanetary medium at solar maximum. Since ejections are confined to relatively low latitudes, their fractional mass flux contribution is greater near the ecliptic than far from it. From the behavior of ejecta, we can estimate the magnitude of the force driving them through the corona. It is also suggested that loop-shaped ejection - the largest fraction of ejections - are driven, primarily, by magnetic forces. By comparison, gas pressure forces are negligible, and forces due to wave pressure are completely inadequate. That magnetic forces are important is consistent with observation that ejections seem to come, primarily, from regions where the magnetic field is more intense and more complex than elsewhere. Indeed, ejections are associated with phenomena (flares and eruptive prominences) which occur over lines separating regions of opposite polarities. (Auth.)

  12. Supernova mass ejection and core hydrodynamics

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1978-01-01

    Simplifications that have emerged in the descriptions of stellar unstable collapse to a neutron star are discussed. The neutral current weak interaction leads to almost complete neutrino trapping in the collapse and to an electron fraction Y/sub e/ congruent to 0.35 in equilibrium with trapped electron neutrinos and ''iron'' nuclei. A soft equation of state (γ congruent to 1.30) leads to collapse, and bounce occurs on a hard core, γ = 2.5, at nuclear densities. Neutrino emission is predicted from a photosphere at r congruent to 2 x 10 7 cm and E/sub ν/ congruent to 10 MeV. The ejection of matter by an elastic core bounce and a subsequent escaping shock is marginal and may not be predicted for accurate values of the equation of state. A new concept of Rayleigh-Taylor driven core instabilities is invoked to predict an increased mass ejection either due to an increased flux and energy of neutrinos at second bounce time and, or, the rapid 0.1 to 0.4 second formation of a more energetically bound neutron star. The instability is caused by highly neutronized external matter from which neutrinos have escaped being supported by lighter matter of the lepton trapped core. An initial anisotropy of 10 -2 to 10 -3 should lead to adequately rapid (several milliseconds) overturn following several (2 to 4) bounces. Subsequent to the overturnwith or without a strong ejection shock, a weak ejection shock will allow an accretion shock to form on the ''cold'' neutron star core due to the reimplosion or rarefaction wave in the weakly ejected matter. The accretion shock forms at low enough mass accumulation rate, 1 / 2 M/sub solar/ sec -1 , such that a black body neutrino flux can escape from the shock front (kT congruent to 10 MeV, [E/sub ν/] congruent to 30 MeV). This strongly augments the weaker bounce ejection shock by heating the external matter in the mantle by electron neutrino scattering (congruent to 10 52 ergs) causing adequate mass ejection

  13. On the mass ejected by supernova explosions

    International Nuclear Information System (INIS)

    Bohigas, J.

    1984-01-01

    A simple model is developed in order to calculate the mass ejected by superonovae. We find that the 185, 1006, 1572 and 1604 AD events, all of them classified as either probable or possible type I supernovae, ejected between 0.1 and 0.4 solar masses with an expansion velocity of roughly 10,000 km s -1 . This range of masses suggests that a collapsed object is at the center of the remnants produced by these supernovae if the precursor was a white dwarf whose mass was closed to the Chandrasekhar limit. For the Crab we obtain an ejected mass of 0.45 Msub(sun) and point out that this value is not in contradiction with a proposal in which the moderate helium stars are good candidates for producing this kind of supernovae. Finally we obtain an ejected mass of 3.1 Msub(sun) for Cas A, indicating that a type II event produced this remnant. This ejected mass is closed to what would be expected for a progenitor like an OBN star. (author)

  14. Anti-ejection system for control rod drives

    International Nuclear Information System (INIS)

    Matthews, J.C.

    1977-01-01

    A linearly movable latch mechanism is provided to move into engagement with a deformable collet whenever an undesired ejection of a leadscrew is initiated from a nuclear reactor mounted control rod drive. Such an undesired ejection would occur in the event of a rupture in a housing of the control rod drive. The collet is deformed by the linear movement of the latch mechanism to wedge itself against the leadscrew and prevent the ejection of the leadscrew from the housing. The latch mechanism is made to be controllably engageable with the leadscrew and when thus engaged to allow the leadscrew to move in a control direction while moving with the leadscrew to engage and deform the collet when the leadscrew moves in an ejection direction. 13 claims, 2 figures

  15. Coronal Mass Ejections An Introduction

    CERN Document Server

    Howard, Timothy

    2011-01-01

    In times of growing technological sophistication and of our dependence on electronic technology, we are all affected by space weather. In its most extreme form, space weather can disrupt communications, damage and destroy spacecraft and power stations, and increase radiation exposure to astronauts and airline passengers. Major space weather events, called geomagnetic storms, are large disruptions in the Earth’s magnetic field brought about by the arrival of enormous magnetized plasma clouds from the Sun. Coronal mass ejections (CMEs) contain billions of tons of plasma and hurtle through space at speeds of several million miles per hour. Understanding coronal mass ejections and their impact on the Earth is of great interest to both the scientific and technological communities. This book provides an introduction to coronal mass ejections, including a history of their observation and scientific revelations, instruments and theory behind their detection and measurement, and the status quo of theories describing...

  16. Evidence linking coronal mass ejections with interplanetary magnetic clouds

    International Nuclear Information System (INIS)

    Wilson, R.M.; Hildner, E.

    1983-12-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking. Six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients

  17. Air pollution and heart failure: Relationship with the ejection fraction

    Science.gov (United States)

    Dominguez-Rodriguez, Alberto; Abreu-Afonso, Javier; Rodríguez, Sergio; Juarez-Prera, Ruben A; Arroyo-Ucar, Eduardo; Gonzalez, Yenny; Abreu-Gonzalez, Pedro; Avanzas, Pablo

    2013-01-01

    AIM: To study whether the concentrations of particulate matter in ambient air are associated with hospital admission due to heart failure in patients with heart failure with preserved ejection fraction and reduced ejection fraction. METHODS: We studied 353 consecutive patients admitted into a tertiary care hospital with a diagnosis of heart failure. Patients with ejection fraction of ≥ 45% were classified as having heart failure with preserved ejection fraction and those with an ejection fraction of < 45% were classified as having heart failure with reduced ejection fraction. We determined the average concentrations of different sizes of particulate matter (< 10, < 2.5, and < 1 μm) and the concentrations of gaseous pollutants (carbon monoxide, sulphur dioxide, nitrogen dioxide and ozone) from 1 d up to 7 d prior to admission. RESULTS: The heart failure with preserved ejection fraction population was exposed to higher nitrogen dioxide concentrations compared to the heart failure with reduced ejection fraction population (12.95 ± 8.22 μg/m3 vs 4.50 ± 2.34 μg/m3, P < 0.0001). Multivariate analysis showed that nitrogen dioxide was a significant predictor of heart failure with preserved ejection fraction (odds ratio ranging from (1.403, 95%CI: 1.003-2.007, P = 0.04) to (1.669, 95%CI: 1.043-2.671, P = 0.03). CONCLUSION: This study demonstrates that short-term nitrogen dioxide exposure is independently associated with admission in the heart failure with preserved ejection fraction population. PMID:23538391

  18. Polarized DNA Ejection from the Herpesvirus Capsid

    Science.gov (United States)

    Newcomb, William W.; Cockrell, Shelley K.; Homa, Fred L.; Brown, Jay C.

    2009-01-01

    Ejection of DNA from the capsid is an early step in infection by all herpesviruses. Ejection or DNA uncoating occurs after a parental capsid has entered the host cell cytoplasm, migrated to the nucleus and bound to a nuclear pore. DNA exits the capsid through the portal vertex and proceeds by way of the nuclear pore complex into the nucleoplasm where it is transcribed and replicated. Here we describe use of an in vitro uncoating system to determine which genome end exits first from the herpes simplex virus (HSV-1) capsid. Purified DNA-containing capsids were bound to a solid surface and warmed under conditions in which some, but not all, of the DNA was ejected. Restriction endonuclease digestion was then used to identify the genomic origin of the ejected DNA. The results support the view that the S segment end exits the capsid first. Preferential release at the S end demonstrates that herpesvirus DNA uncoating conforms to the paradigm in dsDNA bacteriophage where the last end packaged is the first to be ejected. Release of HSV-1 DNA beginning at the S end causes the first gene to enter the host cell nucleus to be α4, a transcription factor required for expression of early genes. PMID:19631662

  19. Coronal Mass Ejections

    CERN Document Server

    Kunow, H; Linker, J. A; Schwenn, R; Steiger, R

    2006-01-01

    It is well known that the Sun gravitationally controls the orbits of planets and minor bodies. Much less known, however, is the domain of plasma fields and charged particles in which the Sun governs a heliosphere out to a distance of about 15 billion kilometers. What forces activates the Sun to maintain this power? Coronal Mass Ejections (CMEs) and their descendants are the troops serving the Sun during high solar activity periods. This volume offers a comprehensive and integrated overview of our present knowledge and understanding of Coronal Mass Ejections (CMEs) and their descendants, Interplanetary CMEs (ICMEs). It results from a series of workshops held between 2000 and 2004. An international team of about sixty experimenters involved e.g. in the SOHO, ULYSSES, VOYAGER, PIONEER, HELIOS, WIND, IMP, and ACE missions, ground observers, and theoreticians worked jointly on interpreting the observations and developing new models for CME initiations, development, and interplanetary propagation. The book provides...

  20. Coronal mass ejections and coronal structures

    International Nuclear Information System (INIS)

    Hildner, E.; Bassi, J.; Bougeret, J.L.

    1986-01-01

    Research on coronal mass ejections (CMF) took a variety of forms, both observational and theoretical. On the observational side there were: case studies of individual events, in which it was attempted to provide the most complete descriptions possible, using correlative observations in diverse wavelengths; statistical studies of the properties of CMEs and their associated activity; observations which may tell us about the initiation of mass ejections; interplanetary observations of associated shocks and energetic particles; observations of CMEs traversing interplanetary space; and the beautiful synoptic charts which show to what degree mass ejections affect the background corona and how rapidly (if at all) the corona recovers its pre-disturbance form. These efforts are described in capsule form with an emphasis on presenting pictures, graphs, and tables so that the reader can form a personal appreciation of the work and its results

  1. Ultrasonographic ejection fraction of normal gallbladder

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hun; Kim, Seung Yup; Park, Yaung Hee; Kang, Ik Won; Yoon, Jong Sup [Hangang Sacred Heart Hospital, Halym College, Chuncheon (Korea, Republic of)

    1984-06-15

    Real-time ultrasonography is a simple, accurate, noninvasive and potentially valuable means of studying gallbladder size and emptying. The authors calculated ultrasonographically the ejection fraction of 80 cases of normally functioning gallbladder on oral cholecystography, from June 1983 to April 1984, at the department of radiology, Hangang Sacred Heart Hospital. The results were obtained as follows; 1. Ultrasonographic Ejection Fraction at 30 minutes after the fatty meal was 73.1{+-}16.85. 2. There was no significant difference in age and sex, statistically.

  2. Do centrioles generate a polar ejection force?

    Science.gov (United States)

    Wells, Jonathan

    2005-01-01

    A microtubule-dependent polar ejection force that pushes chromosomes away from spindle poles during prometaphase is observed in animal cells but not in the cells of higher plants. Elongating microtubules and kinesin-like motor molecules have been proposed as possible causes, but neither accounts for all the data. In the hypothesis proposed here a polar ejection force is generated by centrioles, which are found in animals but not in higher plants. Centrioles consist of nine microtubule triplets arranged like the blades of a tiny turbine. Instead of viewing centrioles through the spectacles of molecular reductionism and neo-Darwinism, this hypothesis assumes that they are holistically designed to be turbines. Orthogonally oriented centriolar turbines could generate oscillations in spindle microtubules that resemble the motion produced by a laboratory vortexer. The result would be a microtubule-mediated ejection force tending to move chromosomes away from the spindle axis and the poles. A rise in intracellular calcium at the onset of anaphase could regulate the polar ejection force by shutting down the centriolar turbines, but defective regulation could result in an excessive force that contributes to the chromosomal instability characteristic of most cancer cells.

  3. Magnetohydrodynamic simulations of the ejection of a magnetic flux rope

    Science.gov (United States)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2013-06-01

    Context. Coronal mass ejections (CME's) are one of the most violent phenomena found on the Sun. One model to explain their occurrence is the flux rope ejection model. In this model, magnetic flux ropes form slowly over time periods of days to weeks. They then lose equilibrium and are ejected from the solar corona over a few hours. The contrasting time scales of formation and ejection pose a serious problem for numerical simulations. Aims: We simulate the whole life span of a flux rope from slow formation to rapid ejection and investigate whether magnetic flux ropes formed from a continuous magnetic field distribution, during a quasi-static evolution, can erupt to produce a CME. Methods: To model the full life span of magnetic flux ropes we couple two models. The global non-linear force-free field (GNLFFF) evolution model is used to follow the quasi-static formation of a flux rope. The MHD code ARMVAC is used to simulate the production of a CME through the loss of equilibrium and ejection of this flux rope. Results: We show that the two distinct models may be successfully coupled and that the flux rope is ejected out of our simulation box, where the outer boundary is placed at 2.5 R⊙. The plasma expelled during the flux rope ejection travels outward at a speed of 100 km s-1, which is consistent with the observed speed of CMEs in the low corona. Conclusions: Our work shows that flux ropes formed in the GNLFFF can lead to the ejection of a mass loaded magnetic flux rope in full MHD simulations. Coupling the two distinct models opens up a new avenue of research to investigate phenomena where different phases of their evolution occur on drastically different time scales. Movies are available in electronic form at http://www.aanda.org

  4. Right Ventricular Ejection Fraction using ECG-Gated First Pass Cardioangiography

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Young Hee; Lee, Hae Giu; Lee, Sung Yong; Park, Suk Min; Chung, Soo Kyo; Yim, Jeong Ik; Bahk, Yong Whee; Shinn, Kyung Sub; Kim, Young Gyun; Kwon, Soon Seog [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1993-03-15

    Radionuclide cardioangiography has been widely applied and has played major roles in moninvasive assessment of cardiac function. Three techniques, first-pass gated first and gated equilibrium methods have commonly been used to evaluate right ventricular ejection fraction which usually abnormal in the patients with cardiopulmonary disease. It has been known that the gated first pass method is most accurate method among the three techniques in assessment of fight ventricular ejection fraction. The radionuclide right ventricular ejection fraction values were determined in 13 normal subjects and in 15 patients with chronic obstructive pulmonary disease by the gated first pass method and compared with those of the first pass method because there has been no published data of fight ejection fraction by the gated first pass method were compared with the defects from the pulmonary function test performed in the patients with chronic obstructive pulmomary disease. The results were as follows; 1) The values of fight ventricular ejection fraction by the gated first pass method were 50.1 +- 6.1% in normal subjects and 38.5 +- 8.5 in the patients with chronic obstructive pulmonary disease. There was statistically significant difference between the right ventricular ejection fraction of each of the two groups (p<0.05) 2) The right ventricular ejection fraction by the gated first pass method was not linearly correlated ith FEV{sub 1}, VC. DLCO. and FVC as well as P{sub a}O2 and P{sub a}CO2 of the patients with chronic obstructive pulmonary disease. We concluded that right ventricular ejection fraction by the gated first pass method using radionuclide cardioangiography may be useful in clinical assessment of the right ventricular function.

  5. Mass ejection in failed supernovae: variation with stellar progenitor

    Science.gov (United States)

    Fernández, Rodrigo; Quataert, Eliot; Kashiyama, Kazumi; Coughlin, Eric R.

    2018-05-01

    We study the ejection of mass during stellar core-collapse when the stalled shock does not revive and a black hole forms. Neutrino emission during the protoneutron star phase causes a decrease in the gravitational mass of the core, resulting in an outward going sound pulse that steepens into a shock as it travels out through the star. We explore the properties of this mass ejection mechanism over a range of stellar progenitors using spherically symmetric, time-dependent hydrodynamic simulations that treat neutrino mass-loss parametrically and follow the shock propagation over the entire star. We find that all types of stellar progenitor can eject mass through this mechanism. The ejected mass is a decreasing function of the surface gravity of the star, ranging from several M⊙ for red supergiants to ˜0.1 M⊙ for blue supergiants and ˜10-3 M⊙ for Wolf-Rayet stars. We find that the final shock energy at the surface is a decreasing function of the core-compactness, and is ≲ 1047-1048 erg in all cases. In progenitors with a sufficiently large envelope, high core-compactness, or a combination of both, the sound pulse fails to unbind mass. Successful mass ejection is accompanied by significant fallback accretion that can last from hours to years. We predict the properties of shock breakout and thermal plateau emission produced by the ejection of the outer envelope of blue supergiant and Wolf-Rayet progenitors in otherwise failed supernovae.

  6. Two-Stage Dynamics of In Vivo Bacteriophage Genome Ejection

    Science.gov (United States)

    Chen, Yi-Ju; Wu, David; Gelbart, William; Knobler, Charles M.; Phillips, Rob; Kegel, Willem K.

    2018-04-01

    Biopolymer translocation is a key step in viral infection processes. The transfer of information-encoding genomes allows viruses to reprogram the cell fate of their hosts. Constituting 96% of all known bacterial viruses [A. Fokine and M. G. Rossmann, Molecular architecture of tailed double-stranded DNA phages, Bacteriophage 4, e28281 (2014)], the tailed bacteriophages deliver their DNA into host cells via an "ejection" process, leaving their protein shells outside of the bacteria; a similar scenario occurs for mammalian viruses like herpes, where the DNA genome is ejected into the nucleus of host cells, while the viral capsid remains bound outside to a nuclear-pore complex. In light of previous experimental measurements of in vivo bacteriophage λ ejection, we analyze here the physical processes that give rise to the observed dynamics. We propose that, after an initial phase driven by self-repulsion of DNA in the capsid, the ejection is driven by anomalous diffusion of phage DNA in the crowded bacterial cytoplasm. We expect that this two-step mechanism is general for phages that operate by pressure-driven ejection, and we discuss predictions of our theory to be tested in future experiments.

  7. Characteristics and long-term prognosis of patients with heart failure and mid-range ejection fraction compared with reduced and preserved ejection fraction

    DEFF Research Database (Denmark)

    Lauritsen, Josephine; Gustafsson, Finn; Abdulla, Jawdat

    2018-01-01

    AIMS: This study aimed to assess by a meta-analysis the clinical characteristics, all-cause and cardiovascular mortality, and hospitalization of patients with heart failure (HF) with mid-range ejection fraction (HFmrEF) compared with HF with reduced ejection fraction (HFrEF) and HF with preserved...

  8. Ejection of Uranium Atoms from UO{sub 2} by Fission Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Goesta

    1964-02-15

    The numbers of uranium atoms ejected from the surface of sintered plates of UO{sub 2} by fission fragments have been measured over the fission density range 5x10{sup 15} to 7x10{sup 16} fissions/cm{sup 3}. The number of uranium atoms ejected per escaping fragment was about 9. The measurements were performed by irradiating the plates in vacuum and collecting a fraction of the uranium atoms ejected on catcher foils. The amount collected was determined by fission counting. Saturation of the amount collected, as reported by Rogers and Adam, was not observed. The numbers of uranium atoms ejected as knock-ons under the same experimental conditions have been calculated. The reasonably close agreement between the experimental and theoretical values indicates that, under the prevailing experimental conditions, mainly knock-ons are ejected. Other ejection mechanisms, e. g. evaporation of material in thermal spikes, are probably insignificant; this is in contrast to the usual interpretation of the ejection process. The mean range in UO{sub 2}, of fission products of mass number 140 was found to be 7.37 {+-} 0. 05 mg/cm{sup 2} by direct gamma spectrometric, determination of the fraction of {sup 140}La escaping from the surface of the plates.

  9. COMPOSITION OF CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zurbuchen, T. H.; Weberg, M.; Lepri, S. T. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI (United States); Von Steiger, R. [International Space Science Institute, Bern (Switzerland); Mewaldt, R. A. [California Institute of Technology, Pasadena, CA (United States); Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-07-20

    We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) < 10 eV, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q {sub Fe} > 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70% over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.

  10. Characterizing the original ejection velocity field of the Koronis family

    Science.gov (United States)

    Carruba, V.; Nesvorný, D.; Aljbaae, S.

    2016-06-01

    An asteroid family forms as a result of a collision between an impactor and a parent body. The fragments with ejection speeds higher than the escape velocity from the parent body can escape its gravitational pull. The cloud of escaping debris can be identified by the proximity of orbits in proper element, or frequency, domains. Obtaining estimates of the original ejection speed can provide valuable constraints on the physical processes occurring during collision, and used to calibrate impact simulations. Unfortunately, proper elements of asteroids families are modified by gravitational and non-gravitational effects, such as resonant dynamics, encounters with massive bodies, and the Yarkovsky effect, such that information on the original ejection speeds is often lost, especially for older, more evolved families. It has been recently suggested that the distribution in proper inclination of the Koronis family may have not been significantly perturbed by local dynamics, and that information on the component of the ejection velocity that is perpendicular to the orbital plane (vW), may still be available, at least in part. In this work we estimate the magnitude of the original ejection velocity speeds of Koronis members using the observed distribution in proper eccentricity and inclination, and accounting for the spread caused by dynamical effects. Our results show that (i) the spread in the original ejection speeds is, to within a 15% error, inversely proportional to the fragment size, and (ii) the minimum ejection velocity is of the order of 50 m/s, with larger values possible depending on the orbital configuration at the break-up.

  11. Speeds of coronal mass ejections: SMM observations from 1980 and 1984-1989

    Science.gov (United States)

    Hundhausen, A. J.; Burkepile, J. T.; St. Cyr, O. C.

    1994-01-01

    The speeds of 936 features in 673 coronal mass ejections have been determined from trajectories observed with the Solar Maximum Mission (SMM) coronagraph in 1980 and 1984 to 1989. The distribution of observed speeds has a range (from 5th to 95th percentile) of 35 to 911 km/s; the average and median speeds are 349 and 285 km/s. The speed distributions of some selected classes of mass ejections are significantly different. For example, the speeds of 331 'outer loops' range from 80 to 1042 km/s; the average and median speeds for this class of ejections are 445 and 372 km/s. The speed distributions from each year of SMM observations show significant changes, with the annual average speeds varying from 157 (1984) to 458 km/s (1985). These variations are not simply related to the solar activity cycle; the annual averages from years near the sunspot maxima and minimum are not significantly different. The widths, latitudes, and speeds of mass ejections determined from the SMM observations are only weakly correlated. In particular, mass ejection speeds vary only slightly with the heliographic latitudes of the ejection. High-latitude ejections, which occur well poleward of the active latitudes, have speeds similar to active latitude ejections.

  12. POWER LEVEL EFFECT IN A PWR ROD EJECTION ACCIDENT

    International Nuclear Information System (INIS)

    Diamond, D.J.; Bromley, B.P.; Aronson, A.L.

    2002-01-01

    The purpose of this study is to determine the effect of the initial power level during a rod ejection accident (REA) on the ejected rod worth and the resulting energy deposition in the fuel. The model used is for the hot zero power (HZP) conditions at the end of a typical fuel cycle for the Three Mile Island Unit 1 pressurized water reactor. PARCS , a transient, three-dimensional, two-group neutron nodal diffusion code, coupled with its own thermal-hydraulics model, is used to perform both steady-state and transient simulations. The worth of an ejected control rod is affected by both power level, and the positions of control banks. As the power level is increased, the worth of a single central control rod tends to drop due to thermal-hydraulic feedback and control bank removal, both of which flatten the radial neutron flux and power distributions. Although the peak fuel pellet enthalpy rise during an REA will be greater for a given ejected rod worth at elevated initial power levels, it is more likely the HZP condition will cause a greater net energy deposition because an ejected rod will have the highest worth at HZP. Thus, the HZP condition can be considered the most conservative in a safety evaluation

  13. The influence of occupant anthropometry and seat position on ejection risk in a rollover.

    Science.gov (United States)

    Atkinson, Theresa; Fras, Andrew; Telehowski, Paul

    2010-08-01

    During rollover crashes, ejection increases an occupant's risk of severe to fatal injury as compared to risks for those retained in the vehicle. The current study examined whether occupant anthropometry might influence ejection risk. Factors such as restraint use/disuse, seating position, vehicle type, and roll direction were also considered in the analysis. The current study examined occupant ejections in 10 years of National Automotive Sampling System (NASS) single-event rollovers of passenger vehicles and light trucks. Statistical analysis of unweighted and weighted ejection data was carried out. No statistically significant differences in ejection rates were found based on occupant height, age, or body mass index. Drivers were ejected significantly more frequently than other occupants: 62 percent of unrestrained drivers were ejected vs. 51 percent unrestrained right front occupants. Second row unrestrained occupants were ejected at rates similar to right front-seated occupants. There were no significant differences in ejection rates for near- vs. far-side occupants. These data suggest that assessment of ejection prevention systems using either a 50th or 5th percentile adult anthropomorphic test dummy (ATD) might provide a reasonable measure of system function for a broad range of occupants. They also support the development of ejection mitigation technologies that extend beyond the first row to protect occupants in rear seat positions. Future studies should consider potential interaction effects (i.e., occupant size and vehicle dimensions) and the influence of occupant size on ejection risk in non-single-event rollovers.

  14. Recurrent mass ejections observed in H-alpha and CIV

    International Nuclear Information System (INIS)

    Schmieder, B.; Simon, G.

    1984-01-01

    Time sequences of recurrent mass ejections have been observed during a coordinated SMY program (Sept. 1, 1980 - Sept. 23, 1980 - Oct. 2, 1980). Comparison of the temporal evolution of H-alpha and CIV brightnesses shows a weak phase lag between H-alpha and CIV maxima, in the case of homologous flares, with CIV brightness maxima preceding H-alpha maxima. The analysis of the variation of the ejection velocities is expected to lead to the determination of an energy balance. Such recurrent ejections could be due to periodic energy storage and periodic reorganization of magnetic field as envisaged to occur for flares, but at lower energy levels

  15. Performance of a fully automated program for measurement of left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Douglass, K.H.; Tibbits, P.; Kasecamp, W.; Han, S.T.; Koller, D.; Links, J.M.; Wagner, H.H. Jr.

    1982-01-01

    A fully automated program developed by us for measurement of left ventricular ejection fraction from equilibrium gated blood studies was evaluated in 130 additional patients. Both of 6-min (130 studies) and 2-min (142 studies in 31 patients) gated blood pool studies were acquired and processed. The program successfully generated ejection fractions in 86% of the studies. These automatically generated ejection fractions were compared with ejection fractions derived from manually drawn regions the interest. When studies were acquired for 6-min with the patient at rest, the correlation between automated and manual ejection fractions was 0.92. When studies were acquired for 2-min, both at rest and during bicycle exercise, the correlation was 0.81. In 25 studies from patients who also underwent contrast ventriculography, the program successfully generated regions of interest in 22 (88%). The correlation between the ejection fraction determined by contrast ventriculography and the automatically generated radionuclide ejection fraction was 0.79. (orig.)

  16. Chromospheric Plasma Ejections in a Light Bridge of a Sunspot

    Energy Technology Data Exchange (ETDEWEB)

    Song, Donguk; Chae, Jongchul; Yang, Heesu; Cho, Kyuhyoun; Kwak, Hannah [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Yurchyshyn, Vasyl [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314-9672 (United States); Lim, Eun-Kyung; Cho, Kyung-Suk, E-mail: dusong@astro.snu.ac.kr [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of)

    2017-02-01

    It is well-known that light bridges (LBs) inside a sunspot produce small-scale plasma ejections and transient brightenings in the chromosphere, but the nature and origin of such phenomena are still unclear. Utilizing the high-spatial and high-temporal resolution spectral data taken with the Fast Imaging Solar Spectrograph and the TiO 7057 Å broadband filter images installed at the 1.6 m New Solar Telescope of Big Bear Solar Observatory, we report arcsecond-scale chromospheric plasma ejections (1.″7) inside a LB. Interestingly, the ejections are found to be a manifestation of upwardly propagating shock waves as evidenced by the sawtooth patterns seen in the temporal-spectral plots of the Ca ii 8542 Å and H α intensities. We also found a fine-scale photospheric pattern (1″) diverging with a speed of about 2 km s{sup −1} two minutes before the plasma ejections, which seems to be a manifestation of magnetic flux emergence. As a response to the plasma ejections, the corona displayed small-scale transient brightenings. Based on our findings, we suggest that the shock waves can be excited by the local disturbance caused by magnetic reconnection between the emerging flux inside the LB and the adjacent umbral magnetic field. The disturbance generates slow-mode waves, which soon develop into shock waves, and manifest themselves as the arcsecond-scale plasma ejections. It also appears that the dissipation of mechanical energy in the shock waves can heat the local corona.

  17. Chromospheric Plasma Ejections in a Light Bridge of a Sunspot

    Science.gov (United States)

    Song, Donguk; Chae, Jongchul; Yurchyshyn, Vasyl; Lim, Eun-Kyung; Cho, Kyung-Suk; Yang, Heesu; Cho, Kyuhyoun; Kwak, Hannah

    2017-02-01

    It is well-known that light bridges (LBs) inside a sunspot produce small-scale plasma ejections and transient brightenings in the chromosphere, but the nature and origin of such phenomena are still unclear. Utilizing the high-spatial and high-temporal resolution spectral data taken with the Fast Imaging Solar Spectrograph and the TiO 7057 Å broadband filter images installed at the 1.6 m New Solar Telescope of Big Bear Solar Observatory, we report arcsecond-scale chromospheric plasma ejections (1.″7) inside a LB. Interestingly, the ejections are found to be a manifestation of upwardly propagating shock waves as evidenced by the sawtooth patterns seen in the temporal-spectral plots of the Ca II 8542 Å and Hα intensities. We also found a fine-scale photospheric pattern (1″) diverging with a speed of about 2 km s-1 two minutes before the plasma ejections, which seems to be a manifestation of magnetic flux emergence. As a response to the plasma ejections, the corona displayed small-scale transient brightenings. Based on our findings, we suggest that the shock waves can be excited by the local disturbance caused by magnetic reconnection between the emerging flux inside the LB and the adjacent umbral magnetic field. The disturbance generates slow-mode waves, which soon develop into shock waves, and manifest themselves as the arcsecond-scale plasma ejections. It also appears that the dissipation of mechanical energy in the shock waves can heat the local corona.

  18. Cobalt irradiation box ejection accident of ETRR-2

    International Nuclear Information System (INIS)

    El-Messiry, A.M.

    2000-01-01

    The new Egyptian test and research reactor number 2 ETRR-2, MTR type, is now under operational tests. It has a main central irradiation channel for the purpose of Co 60 isotope production with an intended rated capacity of 50000 Ci per year. The reactivity introduced in the reactor due to accidental ejection of the Co 60 irradiation box (CIB) should be discussed. This reactivity insertion accident (RIA) may be fast or slow with maximum reactivity worth 2.9428 $. The CIB may move with constant speed or variable acceleration according to its initial speed and the applied forces. This results in a linear, parabolic or sinusoidal motion, which in turn affects the reactivity insertion rate (RIR). The present work analyzes this type of perturbation during normal operating conditions: 22 MW full power and 1900 kg s -1 forced core cooling flow. The work serves as a part of the safety evaluation process applicable to similar MTR cores. The RIA code TRANSP20 is developed for this study. It simulates various types of RIR, fast or slow resulting from different CIB ejections. Scram signal due to power, period, inlet and outlet temperatures, or temperature difference is expected to activate the shutdown system. The work presents five case studies, two for fast ejection and three for slow. The transient behavior of the reactor during this is illustrated. The results show that the reactor can withstand slow ejection if the scram is available. However, for fast ejection the scram system does not prevent the clad temperature from exceeding safety limits. Recommendations to prevent or mitigate this accident are highlighted. (orig.)

  19. Beat-to-beat assessment of left ventricular ejection in atrial fibrillation

    International Nuclear Information System (INIS)

    Benjelloun, H.; Brochier, M.; Itti, R.; Philippe, L.; Lorgeron, J.M.

    1983-01-01

    Beat-to-beat left ventricular ejection was evaluated in a group of 20 patients with chronic atrial fibrillation using a computerized single probe detector. The reference group consisted of 10 patients with sinus rhythm. For each patient 30 successive cardiac cycles were analyzed and the relative variations of four parameters were assessed: R-R interval, diastolic and systolic time intervals, and ejection amplitude, corresponding to the left ventricular stroke volume. The mean variations were respectively 3.4%, 10.4%, 8.4%, and 11.8% in patients with sinus rhythm, and 21.9%, 37.9%, 10.6% and 30.5% in patients with artrial fibrillation. This demonstrates that changes in ejection are mainly related to the duration of the filling phase, with nearly constant systolic times. Correlations between R-R intervals and systolic ejection amplitudes were highly significant (P<0.001) in patients with atrial fibrillation in 85% of cases. This information complements the average ejection fraction obtained from multiple cycle superimposition. (orig.)

  20. Beat-to-beat assessment of left ventricular ejection in atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Benjelloun, H; Brochier, M; Itti, R; Philippe, L; Lorgeron, J M

    1983-05-01

    Beat-to-beat left ventricular ejection was evaluated in a group of 20 patients with chronic atrial fibrillation using a computerized single probe detector. The reference group consisted of 10 patients with sinus rhythm. For each patient 30 successive cardiac cycles were analyzed and the relative variations of four parameters were assessed: R-R interval, diastolic and systolic time intervals, and ejection amplitude, corresponding to the left ventricular stroke volume. The mean variations were respectively 3.4%, 10.4%, 8.4%, and 11.8% in patients with sinus rhythm, and 21.9%, 37.9%, 10.6% and 30.5% in patients with artrial fibrillation. This demonstrates that changes in ejection are mainly related to the duration of the filling phase, with nearly constant systolic times. Correlations between R-R intervals and systolic ejection amplitudes were highly significant (P<0.001) in patients with atrial fibrillation in 85% of cases. This information complements the average ejection fraction obtained from multiple cycle superimposition.

  1. Relationships between egg-recognition and egg-ejection in a grasp-ejector species.

    Directory of Open Access Journals (Sweden)

    Manuel Soler

    Full Text Available Brood parasitism frequently leads to a total loss of host fitness, which selects for the evolution of defensive traits in host species. Experimental studies have demonstrated that recognition and rejection of the parasite egg is the most common and efficient defence used by host species. Egg-recognition experiments have advanced our knowledge of the evolutionary and coevolutionary implications of egg recognition and rejection. However, our understanding of the proximate mechanisms underlying both processes remains poor. Egg rejection is a complex behavioural process consisting of three stages: egg recognition, the decision whether or not to reject the putative parasitic egg and the act of ejection itself. We have used the blackbird (Turdus merula as a model species to explore the relationship between egg recognition and the act of egg ejection. We have manipulated the two main characteristics of parasitic eggs affecting egg ejection in this grasp-ejector species: the degree of colour mimicry (mimetic and non-mimetic, which mainly affects the egg-recognition stage of the egg-rejection process and egg size (small, medium and large, which affects the decision to eject, while maintaining a control group of non-parasitized nests. The behaviour of the female when confronted with an experimental egg was filmed using a video camera. Our results show that egg touching is an indication of egg recognition and demonstrate that blackbirds recognized (i.e., touched non-mimetic experimental eggs significantly more than mimetic eggs. However, twenty per cent of the experimental eggs were touched but not subsequently ejected, which confirms that egg recognition does not necessarily mean egg ejection and that accepting parasitic eggs, at least sometimes, is the consequence of acceptance decisions. Regarding proximate mechanisms, our results show that the delay in egg ejection is not only due to recognition problems as usually suggested, given that experimental

  2. Ejection Regimes in Picosecond Laser-Induced Forward Transfer of Metals

    NARCIS (Netherlands)

    Pohl, Ralph; Visser, C.W.; Römer, Gerardus Richardus, Bernardus, Engelina; Lohse, Detlef; Sun, Chao; Huis in 't Veld, Bert

    2015-01-01

    Laser-induced forward transfer (LIFT) is a 3D direct-write method suitable for precision printing of various materials, including pure metals. To understand the ejection mechanism and thereby improve deposition, here we present visualizations of ejection events at high-spatial (submicrometer) and

  3. Simulating AIA observations of a flux rope ejection

    Science.gov (United States)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2014-08-01

    Context. Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. In particular, observations now show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. While this is the case, these observations are difficult to interpret in terms of basic physical mechanisms and quantities. To fully understand CMEs we need to compare equivalent quantities derived from both observations and theoretical models. This will aid in bridging the gap between observations and models. Aims: To this end, we aim to produce synthesised AIA observations from simulations of a flux rope ejection. To carry this out we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME. Methods: We perform a simulation where a flux rope is ejected from the solar corona. From the density and temperature of the plasma in the simulation we synthesise AIA observations. The emission is then integrated along the line of sight using the instrumental response function of AIA. Results: We sythesise observations of AIA in the channels at 304 Å, 171 Å, 335 Å, and 94 Å. The synthesised observations show a number of features similar to actual observations and in particular reproduce the general development of CMEs in the low corona as observed by AIA. In particular we reproduce an erupting and expanding arcade in the 304 Å and 171 Å channels with a high density core. Conclusions: The ejection of a flux rope reproduces many of the features found in the AIA observations. This work is therefore a step forward in bridging the gap between observations and models, and can lead to more direct interpretations of EUV observations in terms of flux rope

  4. Ejection fraction response to exercise in patients with chest pain and normal coronary arteriograms

    International Nuclear Information System (INIS)

    Gibbons, R.L.; Lee, K.L.; Cobb, F.; Jones, R.H.

    1981-01-01

    In this study we describe the ejection fraction response to upright exercise using first-pass radionuclide angiocardiography in a group of 60 patients with chest pain, normal coronary ateriograms and normal resting ventricular function. A wide range of resting function (heart rate and ejection fraction) and exercise function (heart rate, ejection fraction, peak work load and estimated peak oxygen uptake) were measured. The ejection fraction response to exercise demonstrated wide variation, ranging from a decrease of 23% to an increase of 24%. Six of 22 clinical and radionuclide angiocardiographic variables (resting ejection fraction, peak work load, age, sex, body surface area and the change in end-diastolic volume index with exercise) were significant univariate predictors of the ejection fraction response to exercise. Multivariable analysis identified resting ejection fraction, the change in end-diastolic volume index with exercise and either sex or peak work load as variables that provided significant independent predictive information. These observations indicate that the ejection fraction response to exercise is a complex response that is influenced by multiple physiologic variables. The wide variation in this population suggests that the ejection fraction response to exercise is not a reliable test for the diagnosis of coronary artery disease because of its low specificity

  5. Two-Stage Dynamics of In Vivo Bacteriophage Genome Ejection

    Directory of Open Access Journals (Sweden)

    Yi-Ju Chen

    2018-05-01

    Full Text Available Biopolymer translocation is a key step in viral infection processes. The transfer of information-encoding genomes allows viruses to reprogram the cell fate of their hosts. Constituting 96% of all known bacterial viruses [A. Fokine and M. G. Rossmann, Molecular architecture of tailed double-stranded DNA phages, Bacteriophage 4, e28281 (2014], the tailed bacteriophages deliver their DNA into host cells via an “ejection” process, leaving their protein shells outside of the bacteria; a similar scenario occurs for mammalian viruses like herpes, where the DNA genome is ejected into the nucleus of host cells, while the viral capsid remains bound outside to a nuclear-pore complex. In light of previous experimental measurements of in vivo bacteriophage λ ejection, we analyze here the physical processes that give rise to the observed dynamics. We propose that, after an initial phase driven by self-repulsion of DNA in the capsid, the ejection is driven by anomalous diffusion of phage DNA in the crowded bacterial cytoplasm. We expect that this two-step mechanism is general for phages that operate by pressure-driven ejection, and we discuss predictions of our theory to be tested in future experiments.

  6. Ejection of a rear facing, golf cart passenger.

    Science.gov (United States)

    Schau, Kyle; Masory, Oren

    2013-10-01

    The following report details the findings of a series of experiments and simulations performed on a commercially available, shuttle style golf cart during several maneuvers involving rapid accelerations of the vehicle. It is determined that the current set of passive restraints on these types of golf carts are not adequate in preventing ejection of a rear facing passenger during rapid accelerations in the forward and lateral directions. Experimental data and simulations show that a hip restraint must be a minimum of 13 in. above the seat in order to secure a rear facing passenger during sharp turns, compared to the current restraint height of 5 in. Furthermore, it is determined that a restraint directly in front of the rear facing passenger is necessary to prevent ejection. In addressing these issues, golf cart manufacturers could greatly reduce the likelihood of injury due to ejection of a rear facing, golf cart passenger. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Hyperdynamic left ventricular ejection fraction in the intensive care unit.

    Science.gov (United States)

    Paonessa, Joseph R; Brennan, Thomas; Pimentel, Marco; Steinhaus, Daniel; Feng, Mengling; Celi, Leo Anthony

    2015-08-07

    Limited information exists on the etiology, prevalence, and significance of hyperdynamic left ventricular ejection fraction (HDLVEF) in the intensive care unit (ICU). Our aim in the present study was to compare characteristics and outcomes of patients with HDLVEF with those of patients with normal left ventricular ejection fraction in the ICU using a large, public, deidentified critical care database. We conducted a longitudinal, single-center, retrospective cohort study of adult patients who underwent echocardiography during a medical or surgical ICU admission at the Beth Israel Deaconess Medical Center using the Multiparameter Intelligent Monitoring in Intensive Care II database. The final cohort had 2867 patients, of whom 324 had HDLVEF, defined as an ejection fraction >70%. Patients with an ejection fraction <55% were excluded. Compared with critically ill patients with normal left ventricular ejection fraction, the finding of HDLVEF in critically ill patients was associated with female sex, increased age, and the diagnoses of hypertension and cancer. Patients with HDLVEF had increased 28-day mortality compared with those with normal ejection fraction in multivariate logistic regression analysis adjusted for age, sex, Sequential Organ Failure Assessment score, Elixhauser score for comorbidities, vasopressor use, and mechanical ventilation use (odds ratio 1.38, 95% confidence interval 1.039-1.842, p =0.02). The presence of HDLVEF portended increased 28-day mortality, and may be helpful as a gravity marker for prognosis in patients admitted to the ICU. Further research is warranted to gain a better understanding of how these patients respond to common interventions in the ICU and to determine if pharmacologic modulation of HDLVEF improves outcomes.

  8. 3-D rod ejection analysis using a conservative methodology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Ho; Park, Jin Woo; Park, Guen Tae; Um, Kil Sup; Ryu, Seok Hee; Lee, Jae Il; Choi, Tong Soo [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    The point kinetics model which simplifies the core phenomena and physical specifications is used for the conventional rod ejection accident analysis. The point kinetics model is convenient to assume conservative core parameters but this simplification loses large amount of safety margin. The CHASER system couples the three-dimensional core neutron kinetics code ASTRA, the sub-channel analysis code THALES and the fuel performance analysis code FROST. The validation study for the CHASER system is addressed using the NEACRP three-dimensional PWR core transient benchmark problem. A series of conservative rod ejection analyses for the APR1400 type plant is performed for both hot full power (HFP) and hot zero power (HZP) conditions to determine the most limiting cases. The conservative rod ejection analysis methodology is designed to properly consider important phenomena and physical parameters.

  9. Evidence for direct geographic influences on linguistic sounds: the case of ejectives.

    Directory of Open Access Journals (Sweden)

    Caleb Everett

    Full Text Available We present evidence that the geographic context in which a language is spoken may directly impact its phonological form. We examined the geographic coordinates and elevations of 567 language locations represented in a worldwide phonetic database. Languages with phonemic ejective consonants were found to occur closer to inhabitable regions of high elevation, when contrasted to languages without this class of sounds. In addition, the mean and median elevations of the locations of languages with ejectives were found to be comparatively high. The patterns uncovered surface on all major world landmasses, and are not the result of the influence of particular language families. They reflect a significant and positive worldwide correlation between elevation and the likelihood that a language employs ejective phonemes. In addition to documenting this correlation in detail, we offer two plausible motivations for its existence. We suggest that ejective sounds might be facilitated at higher elevations due to the associated decrease in ambient air pressure, which reduces the physiological effort required for the compression of air in the pharyngeal cavity--a unique articulatory component of ejective sounds. In addition, we hypothesize that ejective sounds may help to mitigate rates of water vapor loss through exhaled air. These explications demonstrate how a reduction of ambient air density could promote the usage of ejective phonemes in a given language. Our results reveal the direct influence of a geographic factor on the basic sound inventories of human languages.

  10. Ejection dynamics of hydrogen molecular ions from methanol in intense laser fields

    International Nuclear Information System (INIS)

    Okino, T; Furukawa, Y; Liu, P; Ichikawa, T; Itakura, R; Hoshina, K; Yamanouchi, K; Nakano, H

    2006-01-01

    The ejection of hydrogen molecular ions from two-body Coulomb explosion processes of methanol (CH 3 OH, CD 3 OH and CH 3 OD) in an intense laser field (800 nm, 60 fs, 0.2 PW cm -2 ) is investigated by a coincidence momentum imaging method. From the coincidence momentum maps, the ejection processes of hydrogen molecular ions, CH 3 OH 2+ → H m + + CH (3-m) OH + (m = 2, 3), CD 3 OH 2+ → D m + + CH (3-m) OH + (m = 2, 3) and CH 3 OD 2+ → H m + + CH (3-m) OD + (m = 2, 3), are identified. Based on the results obtained with isotopically substituted methanol, the isotope effect on the ejection process of hydrogen molecular ions is discussed. Furthermore, the ejection of H/D exchanged hydrogen molecular ions (HD + , HD 2 + and H 2 D + ) is identified, and the timescales for the H/D exchanging processes are estimated from the extent of anisotropy in the ejection directions

  11. Regional ejection fraction: a quantitative radionuclide index of regional left ventricular performance

    International Nuclear Information System (INIS)

    Maddox, D.E.; Wynne, J.; Uren, R.; Parker, J.A.; Idoine, J.; Siegel, L.C.; Neill, J.M.; Cohn, P.F.; Holman, B.L.

    1979-01-01

    Left ventricular regional ejection fractions were derived from background-corrected, time-activity curves in 43 patients assessed by both gated equilibrium radionuclide angiocardiography and left ventricular contrast angiography. From a single, modified left anterior oblique projection, the regional change in background corrected counts was determined in each of three anatomic regions. The normal range for regional radionuclide ejection fraction was determined in 10 patients with normal contrast ventriculograms and without obstructive coronary artery disease at coronary arteriography. Regional ejection fraction was compared with percent segmental axis shortening and extent of akinetic segments in corresponding regions of the contrast ventriculogram. Radionuclide and roentgenographic methods were in agreement as to the presence or absence of abnormal wall motion in 83 of 99 left ventricular regions (84%) in 33 patients evaluated prospectively. Comparison of regional ejection fraction demonstrated significant differences between regions with roentgenographically determined normokinesis hypokinesis, and akinesis. We conclude that the left ventricular regional ejection fraction provides a reliable quantitative assessment of regional left ventricular performance

  12. Femtosecond pulse-width dependent trapping and directional ejection dynamics of dielectric nanoparticles

    KAUST Repository

    Chiang, Weiyi

    2013-09-19

    We demonstrate that laser pulse duration, which determines its impulsive peak power, is an effective parameter to control the number of optically trapped dielectric nanoparticles, their ejections along the directions perpendicular to polarization vector, and their migration distances from the trapping site. This ability to controllably confine and eject the nanoparticle is explained by pulse width-dependent optical forces exerted on nanoparticles in the trapping site and ratio between the repulsive and attractive forces. We also show that the directional ejections occur only when the number of nanoparticles confined in the trapping site exceeds a definite threshold. We interpret our data by considering the formation of transient assembly of the optically confined nanoparticles, partial ejection of the assembly, and subsequent filling of the trapping site. The understanding of optical trapping and directional ejections by ultrashort laser pulses paves the way to optically controlled manipulation and sorting of nanoparticles. © 2013 American Chemical Society.

  13. Classification of the ejection mechanisms of charged macromolecules from liquid droplets.

    Science.gov (United States)

    Consta, Styliani; Malevanets, Anatoly

    2013-01-28

    The relation between the charge state of a macromolecule and its ejection mechanism from droplets is one of the important questions in electrospray ionization methods. In this article, effects of solvent-solute interaction on the manifestation of the charge induced instability in a droplet are examined. We studied the instabilities in a prototype system of a droplet comprised of charged poly(ethylene glycol) and methanol, acetonitrile, and water solvents. We observed instances of three, previously only conjectured, [S. Consta, J. Phys. Chem. B 114, 5263 (2010)] mechanisms of macroion ejection. The mechanism of ejection of charged macroion in methanol is reminiscent of "pearl" model in polymer physics. In acetonitrile droplets, the instability manifests through formation of solvent spines around the solvated macroion. In water, we find that the macroion is ejected from the droplet through contiguous extrusion of a part of the chain. The difference in the morphology of the instabilities is attributed to the interplay between forces arising from the macroion solvation energy and the surface energy of the droplet interface. For the contiguous extrusion of a charged macromolecule from a droplet, we demonstrate that the proposed mechanism leads to ejection of the macromolecule from droplets with sizes well below the Rayleigh limit. The ejected macromolecule may hold charge significantly higher than that suggested by prevailing theories. The simulations reveal new mechanisms of macroion evaporation that differ from conventional charge residue model and ion evaporation mechanisms.

  14. Magazine Influence on Cartridge Case Ejection Patterns with Glock Pistols.

    Science.gov (United States)

    Kerkhoff, Wim; Alberink, Ivo; Mattijssen, Erwin J A T

    2018-01-01

    In this study, the cartridge case ejection patterns of six different Glock model pistols (one specimen per model) were compared under three conditions: firing with a loaded magazine, an empty magazine, and without magazine. The distances, covered by the ejected cartridge cases given these three conditions, were compared for each of the six models. A significant difference was found between the groups of data for each of the tested specimens. This indicates that it is important that, to reconstruct a shooting scene incident based on the ejection patterns of a pistol, test shots are fired with the same pistol type and under the correct magazine condition. © 2017 American Academy of Forensic Sciences.

  15. Reconstructing the Morphology of an Evolving Coronal Mass Ejection

    Science.gov (United States)

    2009-01-01

    694, 707 Wood, B. E., Howard, R. A ., Thernisien, A ., Plunkett, S. P., & Socker, D. G. 2009b, Sol. Phys., 259, 163 Wood, B. E., Karovska , M., Chen, J...Reconstructing the Morphology of an Evolving Coronal Mass Ejection B. E. Wood, R. A . Howard, D. G. Socker Naval Research Laboratory, Space Science...mission, we empirically reconstruct the time-dependent three-dimensional morphology of a coronal mass ejection (CME) from 2008 June 1, which exhibits

  16. A study on interaction of DNA molecules and carbon nanotubes for an effective ejection of the molecules

    International Nuclear Information System (INIS)

    Wu, N.; Wang, Q.

    2012-01-01

    The ejection of DNA molecules from carbon nanotubes is reported from interaction energy perspectives by molecular dynamics simulations. The critical ejection energy, which is to be applied to a DNA molecule for a successful ejection from a carbon nanotube, is investigated based on a study on the friction and binding energy between the DNA molecule and the tube. An effective ejection is realized by subjecting a kinetic energy on the DNA molecule that is larger than the solved critical ejection energy. In addition, the relationship between ejection energies and sizes of DNA molecules and carbon nanotubes is investigated. -- Highlights: ► Report the ejection of DNA molecules from CNTs from interaction energy perspectives. ► Develop a methodology for the critical energy of an effective ejection of a DNA molecule from a CNT. ► Present the relationship between critical ejection energies and sizes of DNA molecules and CNTs. ► Provide a general guidance on the ejection of encapsulated molecules from CNTs.

  17. Sizes and locations of coronal mass ejections - SMM observations from 1980 and 1984-1989

    Science.gov (United States)

    Hundhausen, A. J.

    1993-01-01

    A statistical description of the sizes and locations of 1209 mass ejections observed with the SMM coronagraph/polarimeter in 1980 and 1984-1989 is presented. The average width of the coronal mass ejections detected with this instrument was close to 40 deg in angle for the entire period of SMM observations. No evidence was found for a significant change in mass ejection widths as reported by Howard et al. (1986). There is clear evidence for changes in the latitude distribution of mass ejections over this epoch. Mass ejections occurred over a much wider range of latitudes at the times of high solar activity (1980 and 1989) than at times of low activity (1985-1986).

  18. Overall performance assessment for scramjet with boundary-layer ejection control based on thermodynamics

    International Nuclear Information System (INIS)

    He, Yubao; Cao, Ruifeng; Huang, Hongyan; Qin, Jiang; Yu, Daren

    2017-01-01

    To avoid the inlet unstart at high equivalence ratio and increase the performance of scramjet with ram-mode, a flow control method of boundary-layer ejection is implemented based on the potential thermodynamic process in a turbo-pump supply system of fuel vapor within a cooling channel. The effect of ejection on overall scramjet performance is studied by taking the integration of measures including numerical simulation and stream thrust analysis. Results indicate that the critical backpressure is significantly increased as the ejection total pressure increased, thereby increasing the compression capacity and efficiency, and decreasing the irreversible losses of shock wave and viscous dissipation. For the ejection total pressure of P_t_,_e_j_e = 2.40–4.00 × 10"6 Pa, the critical backpressure ratio is quantitatively increased by 1.18–11.8% along with the utilization of ejection mass flow rate of about 88.0–100% overall mass flow rate of methane fuel gas, and simultaneously the total pressure ratio, kinetic efficiency is also increased by 7.32–13.1%, and 1.63–2.96%, respectively, while the dimensionless entropy increase is decreased by 14.5–26.8%. On this basis, the specific thrust, specific impulse, and total efficiency is increased by 2.84–4.69%, 2.80–4.68%, and 2.87–4.70%, respectively, which re-emphasizes that the boundary-layer ejection is an available fluid control method. - Highlights: • Pressure ratio affects cycle efficiency based on Brayton cycle analysis. • Ejection control concept is defined based on potential thermodynamic process. • Ejection increases compression capacity, efficiency and engine overall performance.

  19. EJECTION AND CAPTURE DYNAMICS IN RESTRICTED THREE-BODY ENCOUNTERS

    International Nuclear Information System (INIS)

    Kobayashi, Shiho; Hainick, Yanir; Sari, Re'em; Rossi, Elena M.

    2012-01-01

    We study the tidal disruption of binaries by a massive point mass (e.g., the black hole at the Galactic center), and we discuss how the ejection and capture preference between unequal-mass binary members depends on which orbit they approach the massive object. We show that the restricted three-body approximation provides a simple and clear description of the dynamics. The orbit of a binary with mass m around a massive object M should be almost parabolic with an eccentricity of |1 – e| ∼ 1/3 1/3 times the binary rotation velocity, it would be abruptly disrupted, and the energy change at the encounter can be evaluated in a simple disruption model. We evaluate the probability distributions for the ejection and capture of circular binary members and for the final energies. In principle, for any hyperbolic (elliptic) orbit, the heavier member has more chance to be ejected (captured), because it carries a larger fraction of the orbital energy. However, if the orbital energy is close to zero, the difference between the two members becomes small, and there is practically no ejection and capture preferences. The preference becomes significant when the orbital energy is comparable to the typical energy change at the encounter. We discuss its implications to hypervelocity stars and irregular satellites around giant planets.

  20. A three-dimensional pin-wise analysis for CEA ejection accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Guen-Tae; Park, Min-Ho; Park, Jin-Woo; Um, Kil-Sup; Choi, Tong-Soo [KEPCO NF, Daejeon (Korea, Republic of)

    2016-10-15

    The ejection of a control element assembly (CEA) with high reactivity worth causes the sudden insertion of reactivity into the core. Immediately after the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the doppler effect becomes important and turns the reactivity balance and power down to lower levels. The 3-D CEA ejection analysis methodology has been developed using the multi-dimensional code coupling system, CHASER, which couples three dimensional core neutron kinetics code ASTRA, subchannel analysis code THALES, and fuel performance analysis code FROST using message passing interface (MPI). This paper presents the pin-by-pin level analysis result with the 3-D CEA ejection analysis methodology using the CHASER. The pin-by-pin level analysis consists of DNBR, enthalpy and Pellet/Clad Mechanical Interaction (PCMI) analysis. All the evaluations are simulated for APR1400 plant loaded with PLUS7 fuel. In this paper, the pin-by-pin analysis using the multidimensional core transient code, CHASER, is presented with respect to enthalpy, DNBR and PCMI for APR1400 plant loaded with PLUS7 fuel. For the pin-by-pin enthalpy and DNBR analysis, the quarter core for HFP case or 15 - 20 assemblies around the most severe assembly for part powers or HZP cases are selected. And PCMI calculation is performed for all the rods in the whole core during a conservative time period. The pin-by-pin analysis results show that the regulatory guidelines of CEA ejection accident are satisfied.

  1. Comparison of rod-ejection transient calculations in hexagonal-Z geometry

    International Nuclear Information System (INIS)

    Knight, M.P.; Brohan, P.; Finnemann, H.; Huesken, J.

    1995-01-01

    This paper proposes a set of 3-dimensional benchmark rod ejection problems for a VVER reactor, based on the well-known NEACRP PWR rod-ejection problems defined by Siemens/KWU. Predictions for these benchmarks derived using three hexagonal-z nodal transient codes, the PANTHER code of Nuclear Electric, the HEXTIME code of Siemens/KWU, and the DYN3D code of FZ-Rossendorf are presented and compared

  2. Round Robin computer simulation of ejection probability in sputtering

    International Nuclear Information System (INIS)

    Sigmund, P.; Hautala, M.; Yamamura, Y.; Hosaka, S.; Ishitani, T.; Shulga, V.I.; Harrison, D.E. Jr.; Chakarov, I.R.; Karpuzov, D.S.; Kawatoh, E.; Shimizu, R.; Valkealahti, S.; Nieminen, R.M.; Betz, G.; Husinsky, W.; Shapiro, M.H.; Vicanek, M.; Urbassek, H.M.

    1989-01-01

    We have studied the ejection of a copper atom through a planar copper surface as a function of recoil velocity and depth of origin. Results were obtained from six molecular dynamics codes, four binary collision lattice simulation codes, and eight Monte Carlo codes. Most results were found with a Born-Mayer interaction potential between the atoms with Gibson 2 parameters and a planar surface barrier, but variations on this standard were allowed for, as well as differences in the adopted cutoff radius for the interaction potential, electronic stopping, and target temperature. Large differences were found between the predictions of the various codes, but the cause of these differences could be determined in most cases. A fairly clear picture emerges from all three types of codes for the depth range and the angular range for ejection at energies relevant to sputter ejection, although a quantitative discussion would have to include an analysis of replacement collision events which has been left out here. (orig.)

  3. Synergistic effects in radiation-induced particle ejection from solid surfaces

    International Nuclear Information System (INIS)

    Itoh, Noriaki

    1990-01-01

    A description is given on radiation-induced particle ejection from solid surfaces, emphasizing synergistic effects arising from multi-species particle irradiation and from irradiation under complex environments. First, it is pointed out that synergisms can be treated by introducing the effects of material modification on radiation-induced particle ejection. As examples of the effects of surface modification on the sputtering induced by elastic encounters, sputtering of alloys and chemical sputtering of graphite are briefly discussed. Then the particle ejection induced by electronic encounters is explained emphasizing the difference in the behaviors from materials to materials. The possible synergistic effects of electronic and elastic encounters are also described. Lastly, we point out the importance of understanding the elementary processes of material-particle interaction and of developing computer codes describing material behaviors under irradiation. (author)

  4. Radiation dose distributions due to sudden ejection of cobalt device

    International Nuclear Information System (INIS)

    Abdelhady, Amr

    2016-01-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. - Highlights: • This study aims to calculate the dose rate profiles after cobalt device ejection from open-pool-type reactor core. • MicroShield code was used to evaluate the dose rates inside the reactor control room. • McSKY code was used to evaluate the dose rates outside the reactor building. • The calculated dose rates for workers are higher than the permissible limits after 18 s from device ejection.

  5. Septum magnet for ejection from the PS to the E-Hall

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    Pulsed septum magnet for ejection from PS straight sections 61/62 to the East-Hall. This septum magnet, for ss 61, had only 1 turn, for minimum thickness. It was followed by another septum in ss 62, with 2 turns, as there the ejected beam was already farther away from the circulating beam. Both septa were water-cooled.

  6. Measurement of effective left ventricular ejection fraction by radiocardiography associated with cardiac chamber scanning

    Energy Technology Data Exchange (ETDEWEB)

    de Vernejoul, P; Fauchet, M; Rimbert, J -N; Gambini, D; Agnely, J [Hopital Necker-Enfants-Malades, 75 - Paris (France)

    1976-03-01

    Left ventricular ejection fraction is usually measured by cineangiocardiography. When radiocardiography and cardiac chamber scanning are associated, it allows an effective left ventricular ejection fraction assessment. Ejection fractions calculated by both methods are the same in normal subjects. They are different in the case of left valvular heart disease with insufficiency. The whole regurgitation fraction can be calculated from this difference.

  7. Measurement of effective left ventricular ejection fraction by radiocardiography associated with cardiac chamber scanning

    International Nuclear Information System (INIS)

    Vernejoul, Pierre de; Fauchet, Michel; Rimbert, J.-N.; Gambini, Denis; Agnely, Jacqueline

    1976-01-01

    Left ventricular ejection fraction is usually measured by cineangiocardiography. When radiocardiography and cardiac chamber scanning are associated, it allows an effective left ventricular ejection fraction assessment. Ejection fractions calculated by both methods are the same in normal subjects. They are different in the case of left valvular heart disease with insufficiency. The whole regurgitation fraction can be calculated from this difference [fr

  8. Rollover Car Crashes with Ejection: A Deadly Combination—An Analysis of 719 Patients

    Directory of Open Access Journals (Sweden)

    Rifat Latifi

    2014-01-01

    Full Text Available Rollover car crashes (ROCs are serious public safety concerns worldwide. Objective. To determine the incidence and outcomes of ROCs with or without ejection of occupants in the State of Qatar. Methods. A retrospective study of all patients involved in ROCs admitted to Level I trauma center in Qatar (2011-2012. Patients were divided into Group I (ROC with ejection and Group II (ROC without ejection. Results. A total of 719 patients were evaluated (237 in Group I and 482 in Group II. The mean age in Group I was lower than in Group II (24.3±10.3 versus 29±12.2; P=0.001. Group I had higher injury severity score and sustained significantly more head, chest, and abdominal injuries in comparison to Group II. The mortality rate was higher in Group I (25% versus 7%; P=0.001. Group I patients required higher ICU admission rate (P=0.001. Patients in Group I had a 5-fold increased risk for age-adjusted mortality (OR 5.43; 95% CI 3.11–9.49, P=0.001. Conclusion. ROCs with ejection are associated with higher rate of morbidity and mortality compared to ROCs without ejection. As an increased number of young Qatari males sustain ROCs with ejection, these findings highlight the need for research-based injury prevention initiatives in the country.

  9. Experimental and Computational Analysis of Water-Droplet Formation and Ejection Process Using Hollow Microneedle

    Science.gov (United States)

    Kato, Norihisa; Oka, Ryotaro; Sakai, Takahiro; Shibata, Takayuki; Kawashima, Takahiro; Nagai, Moeto; Mineta, Takashi; Makino, Eiji

    2011-06-01

    In this paper, we present the possibility of liquid delivery using fabricated hollow silicon dioxide microneedles of approximately 2 µm in diameter. As a fundamental study, the water-droplet formation and ejection process was examined via dynamic observations during water ejection tests and computational fluid dynamics (CFD) analysis. The experimental results indicated that fluid flow in a microneedle follows the Hagen-Poiseuille law, i.e., the flow rate is approximately directly proportional to the fourth power of the inner diameter. Moreover, the ejection pressure and maximum droplet curvature obtained using the proposed microfluid ejection model were in good agreement with the experimental results. The resulting ejection pressure is equal to the theoretical pressure difference of a spherical droplet, which is determined using the Young-Laplace equation. The maximum curvature of a droplet formed at the tip of a microneedle can be estimated on the basis of the contact angle theory expressed by the Young equation.

  10. An Evaluation of a New Format for Presenting Ejection Information in a NATOPS Manual.

    Science.gov (United States)

    1979-11-01

    Assessment-the subject’s awareness of ejection system limits and knowledge of the specific principles and relationships involved in the ejection decision...percti & le pilot ejecting cannern tintiong onfigursesan at~ 71 knete arrtaeei.l From" th front cockpit. c. Normal aircraft pitc For conditions shown it...40) Arlington, VA 22209 700 Robbins Avenue * 1 CDR P.R. Chatelier Philadelphia, PA 19111 Office of the Undersecretary of Defense for Research

  11. Linear theory on temporal instability of megahertz faraday waves for monodisperse microdroplet ejection.

    Science.gov (United States)

    Tsai, Shirley C; Tsai, Chen S

    2013-08-01

    A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery.

  12. Neutrino diffusion and mass ejection in protoneutron stars

    International Nuclear Information System (INIS)

    Almeida, L. G.; Rodrigues, H.; Portes, D. Jr.; Duarte, S. B.

    2010-01-01

    We discuss the mass ejection mechanism induced by diffusion of neutrino during the early stage of the protoneutron star cooling. A dynamical calculation is employed in order to determine the amount of matter ejected and the remnant compact object mass. An equation of state considering hadronic and quark phases for the stellar dense matter was used to solve the whole time evolution of the system during the cooling phase. The initial neutrino population was obtained by considering beta equilibrium in the dense stellar matter with confined neutrinos, in the very early period of the deleptonic stage of the nascent pulsar. For specified initial configurations of the protoneutron star, we solve numerically the set of equations of motion together with neutrino diffusion through the dense stellar medium.

  13. The control system for the CERN proton synchrotron continuous transfer ejection

    International Nuclear Information System (INIS)

    Bloess, D.; Boucheron, J.; Flander, D.; Grier, D.; Krusche, A.; Ollenhauer, F.; Pearce, P.; Riege, H.; Schneider, G.C.

    1978-01-01

    This report describes the hardware and the software structure of a stand-alone control system for the continuous transfer ejection from the CERN Proton Synchrotron to the Super Proton Synchrotron. The process control system is built around a PDP 11/40 mini-computer interfaced to the ejection elements via CAMAC. It features automatic failure recovery and real-time process optimization. Performance, flexibility, and reliability of the system is evaluated. (Auth.)

  14. Quality of life is impaired similarly in heart failure patients with preserved and reduced ejection fraction

    NARCIS (Netherlands)

    Hoekstra, Tialda; Lesman-Leegte, Ivonne; van Veldhuisen, Dirk J.; Sanderman, Robbert; Jaarsma, Tiny

    Aims To compare quality of life (QoL) in heart failure (HF) patients with preserved ejection fraction (HF-PEF) and HF patients with reduced ejection fraction (HF-REF) in a well-defined HF population. Methods and results Patients with HF-PEF [left ventricular ejection fraction (LVEF) >= 40%] were

  15. Activity associated with coronal mass ejections at solar minimum - SMM observations from 1984-1986

    Science.gov (United States)

    St. Cyr, O. C.; Webb, D. F.

    1991-01-01

    Seventy-three coronal mass ejections (CMEs) observed by the coronagraph aboard SMM between 1984 and 1986 were examined in order to determine the distribution of various forms of solar activity that were spatially and temporally associated with mass ejections during solar minimum phase. For each coronal mass ejection a speed was measured, and the departure time of the transient from the lower corona estimated. Other forms of solar activity that appeared within 45 deg longitude and 30 deg latitude of the mass ejection and within +/-90 min of its extrapolated departure time were explored. The statistical results of the analysis of these 73 CMEs are presented, and it is found that slightly less than half of them were infrequently associated with other forms of solar activity. It is suggested that the distribution of the various forms of activity related to CMEs does not change at different phases of the solar cycle. For those CMEs with associations, it is found that eruptive prominences and soft X-rays were the most likely forms of activity to accompany the appearance of mass ejections.

  16. Gravitational wave generated by mass ejection in protoneutron star neutrino burst

    International Nuclear Information System (INIS)

    Almeida, L. G.; Rodrigues, H.; Portes, D. JR.; Duarte, S. B.

    2010-01-01

    In this work we discuss the mechanism of mass ejection in protoneutron stars induced by diffusion of neutrinos. A dynamical calculation is employed in order to determine the amount of matter ejected and the properties of the remnant compact object [1]. The equations of state of this supra-nuclear regime [2] is properly linked with others describing the different sub-nuclear regimes of density [3, 4, 5]. For specified initial configurations of the protoneutron star, we solve numerically the set of equations of motion together with a schematic treatment of the neutrino transport through the dense stellar medium. We investigate the gravitational waves production accompanying the mass ejection induced by the neutrino burst. It is estimated the gravitational wave intensity and the detection of such wave by the existing detector or near future project for this purpose is discussed.

  17. Evidence of elevated X-ray absorption before and during major flare ejections in GRS 1915+105

    Energy Technology Data Exchange (ETDEWEB)

    Punsly, Brian [1415 Granvia Altamira, Palos Verdes Estates, CA 90274 (United States); Rodriguez, Jérôme [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU SAp, F-91191 Gif-sur-Yvette (France); Trushkin, Sergei A., E-mail: brian.punsly1@verizon.net, E-mail: brian.punsly@comdev-usa.com [Special Astrophysical Observatory RAS, Nizhnij Arkhyz, 369167 (Russian Federation)

    2014-03-10

    We present time-resolved X-ray spectroscopy of the microquasar GRS 1915+105 with the MAXI observatory in order to study the accretion state just before and during the ejections associated with its major flares. Radio monitoring with the RATAN-600 radio telescope from 4.8-11.2 GHz has revealed two large, steep-spectrum major flares in the first eight months of 2013. Since the RATAN has received one measurement per day, we cannot determine the jet-forming time without more information. Fortunately, this is possible since a distinct X-ray light curve signature that occurs preceding and during major ejections has been determined in an earlier study. The X-ray luminosity spikes to very high levels in the hours before ejection, then becomes variable (with a nearly equal X-ray luminosity when averaged over the duration of the ejection) during a brief 3-8 hr ejection process. By comparing this X-ray behavior with MAXI light curves, we can estimate the beginning and end of the ejection episode of the strong 2013 flares to within ∼3 hr. Using this estimate in conjunction with time-resolved spectroscopy from the data in the MAXI archives allows us to deduce that the X-ray absorbing hydrogen column density increases significantly in the hours preceding the ejections and remains elevated during the ejections responsible for the major flares. This finding is consistent with an outflowing wind or enhanced accretion at high latitudes.

  18. Two codes used in analysis of rod ejection accident for Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhu Xinguan

    1987-12-01

    Two codes were developed to analyse rod ejection accident for Qinshan Nuclear Power Plant. One was based on point model with temperature reactivity feedback. In this code, the worth of ejected rod was obtained under'adiabatic' approximation. In the other code, the Nodal Green's Function Method was used to solve space-time dependent neutron diffusion equation. Using these codes, the transient core-power have been calculated for two rod ejection cases at beginning of core-life in Qinshan Nuclear Power Plant

  19. Left atrial ejection force predicts the outcome after catheter ablation for paroxysmal atrial fibrillation.

    Science.gov (United States)

    Kishima, Hideyuki; Mine, Takanao; Takahashi, Satoshi; Ashida, Kenki; Ishihara, Masaharu; Masuyama, Tohru

    2018-02-01

    Left atrium (LA) systolic dysfunction is observed in the early stages of atrial fibrillation (AF) prior to LA anatomical change. We investigated whether LA systolic dysfunction predicts recurrent AF after catheter ablation (CA) in patients with paroxysmal AF. We studied 106 patients who underwent CA for paroxysmal AF. LA systolic function was assessed with the LA emptying volume = Maximum LA volume (LAV max ) - Minimum LA volume (LAV min ), LA emptying fraction = [(LAV max - LAV min )/LAV max ] × 100, and LA ejection force calculated with Manning's method [LA ejection force = (0.5 × ρ × mitral valve area × A 2 )], where ρ is the blood density and A is the late-diastolic mitral inflow velocity. Recurrent AF was detected in 35/106 (33%) during 14.6 ± 9.1 months. Univariate analysis revealed reduced LA ejection force, decreased LA emptying fraction, larger LA diameter, and elevated brain natriuretic peptide as significant variables. On multivariate analysis, reduced LA ejection force and larger LA diameter were independently associated with recurrent AF. Moreover, patients with reduced LA ejection force and larger LA diameter had a higher risk of recurrent AF than preserved LA ejection force (log-rank P = 0.0004). Reduced LA ejection force and larger LA diameter were associated with poor outcome after CA for paroxysmal AF, and could be a new index to predict recurrent AF. © 2017 Wiley Periodicals, Inc.

  20. Pilot ejection, parachute, and helicopter crash injuries.

    Science.gov (United States)

    McBratney, Colleen M; Rush, Stephen; Kharod, Chetan U

    2014-01-01

    USAF Pararescuemen (PJs) respond to downed aircrew as a fundamental mission for personnel recovery (PR), one of the Air Force's core functions. In addition to responding to these in Military settings, the PJs from the 212 Rescue Squadron routinely respond to small plane crashes in remote regions of Alaska. While there is a paucity of information on the latter, there have been articles detailing injuries sustained from helicopter crashes and while ejecting or parachuting from fixed wing aircraft. The following represents a new chapter added to the Pararescue Medical Operations Handbook, Sixth Edition (2014, editors Matt Wolf, MD, and Stephen Rush, MD, in press). It was designed to be a quick reference for PJs and their Special Operations flight surgeons to help with understanding of mechanism of injury with regard to pilot ejection, parachute, and helicopter accident injuries. It outlines the nature of the injuries sustained in such mishaps and provides an epidemiologic framework from which to approach the problem. 2014.

  1. Interplanetary Coronal Mass Ejections detected by HAWC

    Science.gov (United States)

    Lara, Alejandro

    The High Altitude Water Cherenkov (HAWC) observatory is being constructed at the volcano Sierra Negra (4100 m a.s.l.) in Mexico. HAWC’s primary purpose is the study of both: galactic and extra-galactic sources of high energy gamma rays. HAWC will consist of 300 large water Cherenkov detectors (WCD), instrumented with 1200 photo-multipliers. The Data taking has already started while construction continues, with the completion projected for late 2014. The HAWC counting rate will be sensitive to cosmic rays with energies above the geomagnetic cutoff of the site (˜ 8 GV). In particular, HAWC will detect solar energetic particles known as Ground Level Enhancements (GLEs), and the effects of Coronal Mass Ejections on the galactic cosmic ray flux, known as Forbush Decreases. In this paper, we present a description of the instrument and its response to interplanetary coronal mass ejections, and other solar wind large scale structures, observed during the August-December 2013 period.

  2. Assessment of poststress left ventricular ejection fraction by gated SPECT: comparison with equilibrium radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Acampa, Wanda; Liuzzi, Raffaele; De Luca, Serena; Capasso, Enza; Luongo, Luca; Cuocolo, Alberto; Caprio, Maria Grazia; Nicolai, Emanuele; Petretta, Mario

    2010-01-01

    We compared left ventricular (LV) ejection fraction obtained by gated SPECT with that obtained by equilibrium radionuclide angiocardiography in a large cohort of patients. Within 1 week, 514 subjects with suspected or known coronary artery disease underwent same-day stress-rest 99m Tc-sestamibi gated SPECT and radionuclide angiocardiography. For both studies, data were acquired 30 min after completion of exercise and after 3 h rest. In the overall study population, a good correlation between ejection fraction measured by gated SPECT and by radionuclide angiocardiography was observed at rest (r=0.82, p<0.0001) and after stress (r=0.83, p<0.0001). In Bland-Altman analysis, the mean differences in ejection fraction (radionuclide angiocardiography minus gated SPECT) were -0.6% at rest and 1.7% after stress. In subjects with normal perfusion (n=362), a good correlation between ejection fraction measured by gated SPECT and by radionuclide angiocardiography was observed at rest (r=0.72, p<0.0001) and after stress (r=0.70, p<0.0001) and the mean differences in ejection fraction were -0.9% at rest and 1.4% after stress. Also in patients with abnormal perfusion (n=152), a good correlation between the two techniques was observed both at rest (r=0.89, p<0.0001) and after stress (r=0.90, p<0.0001) and the mean differences in ejection fraction were 0.1% at rest and 2.5% after stress. In a large study population, a good agreement was observed in the evaluation of LV ejection fraction between gated SPECT and radionuclide angiocardiography. However, in patients with perfusion abnormalities, a slight underestimation in poststress LV ejection fraction was observed using gated SPECT as compared to equilibrium radionuclide angiocardiography. (orig.)

  3. Some elements of understanding about the cluster ejection accident in the EPR

    International Nuclear Information System (INIS)

    Vignon, Dominique

    2010-01-01

    The author answers to a publication made by an association (Sortir du Nucleaire) which is provided in appendix (some parts of this text are highlighted) and denounced risks associated with a cluster ejection accident in an EPR in relationship with steering modes which, according to this association, would be essentially related to an objective of economic profitability. The author first recalls some elements regarding the control and neutron stopping of pressurized water reactors. Then, after having outlined some specific aspects of the EPR design, he addresses the cluster ejection accident: safety approach and its application to this type of accident. He recalls the conclusions of studies of cluster ejection performed by EDF and AREVA, comments the consequences for the EPR power

  4. ISAAC: A REXUS Student Experiment to Demonstrate an Ejection System with Predefined Direction

    Science.gov (United States)

    Balmer, G.; Berquand, A.; Company-Vallet, E.; Granberg, V.; Grigore, V.; Ivchenko, N.; Kevorkov, R.; Lundkvist, E.; Olentsenko, G.; Pacheco-Labrador, J.; Tibert, G.; Yuan, Y.

    2015-09-01

    ISAAC Infrared Spectroscopy to Analyse the middle Atmosphere Composition — was a student experiment launched from SSC's Esrange Space Centre, Sweden, on 29th May 2014, on board the sounding rocket REXUS 15 in the frame of the REXUS/BEXUS programme. The main focus of the experiment was to implement an ejection system for two large Free Falling Units (FFUs) (240 mm x 80 mm) to be ejected from a spinning rocket into a predefined direction. The system design relied on a spring-based ejection system. Sun and angular rate sensors were used to control and time the ejection. The flight data includes telemetry from the Rocket Mounted Unit (RMU), received and saved during flight, as well as video footage from the GoPro camera mounted inside the RMU and recovered after the flight. The FFUs' direction, speed and spin frequency as well as the rocket spin frequency were determined by analyzing the video footage. The FFU-Rocket-Sun angles were 64.3° and 104.3°, within the required margins of 90°+45°. The FFU speeds were 3.98 mIs and 3.74 mIs, lower than the expected 5± 1 mIs. The FFUs' spin frequencies were 1 .38 Hz and 1 .60 Hz, approximately half the rocket's spin frequency. The rocket spin rate slightly changed from 3. 163 Hz before the ejection to 3.1 17 Hz after the ejection of the two FFUs. The angular rate, sun sensor data and temperature on the inside of the rocket module skin were also recorded. The experiment design and results of the data analysis are presented in this paper.

  5. Activity associated with the solar origin of coronal mass ejections

    Science.gov (United States)

    Webb, D. F.; Hundhausen, A. J.

    1987-01-01

    Solar coronal mass ejections (CMEs) observed in 1980 with the HAO Coronagraph/Polarimeter on the Solar Maximum Mission (SMM) satellite are compared with other forms of solar activity that might be physically related to the ejections. The solar phenomena checked and the method of association used were intentionally patterned after those of Munro et al.'s (1979) analysis of mass ejections observed with the Skylab coronagraph to facilitate comparison of the two epochs. Comparison of the results reveals that the types and degree of CME associations are similar near solar activity minimum and at maximum. For both epochs, most CMEs with associations had associated eruptive prominences, and the proportions of association of all types of activity were similar. A high percentage of association between SMM CMEs and X-ray long duration events is also found, in agreement with Skylab results. It is concluded that most CMEs are the result of the destabilization and eruption of a prominence and its overlying coronal structure, or of a magnetic structure capable of supporting a prominence.

  6. A new method of determining the ejected mass of novae

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, W.M.

    1994-12-31

    A new method of determining the ejected mass of novae based on simple, reasonable assumptions is presented. This method assumes that the remnant mass on the white dwarf is the same as that from the previous nova outburst. The hydrogen, helium, and metal abundances of the accreted material from the secondary must also be known or assumed. The white dwarf`s mass has a small effect because the amount of hydrogen consumed during the thermonuclear runaway only depends weakly upon this mass. If the composition of the ejecta and the time of the remnant shell burnout are determined from observations, then the ejected and remnant masses can be deduced. At present only a sharp decrease in the X-rays observed by ROSAT has been attributed to this remnant burnout and only for two novae: GQ Mus and V1974 Cyg. The ejected and remnant masses for these two novae are calculated. If other indicators of nova remnant burnout, such as a rapid decrease in high-ionization lines, can be identified, then this method could be applied to additional novae.

  7. Coronal mass ejections, interplanetary shocks in relation with forbush decreases associated with intense geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Patel, Nand Kumar; Prajapati, Mateswari

    2014-01-01

    Coronal mass ejections (CMEs} are the most energetic solar events in which large amount of solar plasma materials are ejected from the sun into heliosphere, causing major disturbances in solar wind plasma, Interplanetary shocks, Forbush decrease(Fds) in cosmic ray intensity and geomagnetic storms. We have studied Forbush decreases associated with intense geomagnetic storms observed at Oulu super neutron monitor, during the period of May 1998-Dec 2006 with coronal mass ejections (CMEs), X-ray solar flares and interplanetary shocks. We have found that all the (100%) Forbush decreases associated with intense geomagnetic storms are associated with halo and partial halo coronal mass ejections (CMEs). The association rate between halo and partial halo coronal mass ejections are found 96.00%and 04.00% respectively. Most of the Forbush decreases associated with intense geomagnetic storms (96.29%) are associated with X-ray solar flares of different categories . The association rates for X-Class, M-Class, and C- Class X -ray solar flares are found 34.62%, 50.00% and 15.38% respectively .Further we have concluded that majority of the Forbush decrease associated with intense geomagnetic storms are related to interplanetary shocks (92.30 %) and the related shocks are forward shocks. We have found positive co-relation with co-relation co-efficient .7025 between magnitudes of Forbush decreases associated with intense geomagnetic storms and speed of associated coronal mass ejections. Positive co-relation with co-relation co-efficient 0.48 has also been found between magnitudes of intense geomagnetic storms and speed of associated coronal mass ejections.

  8. Droplet ejection and sliding on a flapping film

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2017-03-01

    Full Text Available Water recovery and subsequent reuse are required for human consumption as well as industrial, and agriculture applications. Moist air streams, such as cooling tower plumes and fog, represent opportunities for water harvesting. In this work, we investigate a flapping mechanism to increase droplet shedding on thin, hydrophobic films for two vibrational cases (e.g., ± 9 mm and 11 Hz; ± 2 mm and 100 Hz. Two main mechanisms removed water droplets from the flapping film: vibrational-induced coalescence/sliding and droplet ejection from the surface. Vibrations mobilized droplets on the flapping film, increasing the probability of coalescence with neighboring droplets leading to faster droplet growth. Droplet departure sizes of 1–2 mm were observed for flapping films, compared to 3–4 mm on stationary films, which solely relied on gravity for droplet removal. Additionally, flapping films exhibited lower percentage area coverage by water after a few seconds. The second removal mechanism, droplet ejection was analyzed with respect to surface wave formation and inertia. Smaller droplets (e.g., 1-mm diameter were ejected at a higher frequency which is associated with a higher acceleration. Kinetic energy of the water was the largest contributor to energy required to flap the film, and low energy inputs (i.e., 3.3 W/m2 were possible. Additionally, self-flapping films could enable novel water collection and condensation with minimal energy input.

  9. Coronal mass ejection kinematics deduced from white light (Solar Mass Ejection Imager) and radio (Wind/WAVES) observations

    Science.gov (United States)

    Reiner, M. J.; Jackson, B. V.; Webb, D. F.; Mizuno, D. R.; Kaiser, M. L.; Bougeret, J.-L.

    2005-09-01

    White-light and radio observations are combined to deduce the coronal and interplanetary kinematics of a fast coronal mass ejection (CME) that was ejected from the Sun at about 1700 UT on 2 November 2003. The CME, which was associated with an X8.3 solar flare from W56°, was observed by the Mauna Loa and Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronograph (LASCO) coronagraphs to 14 R⊙. The measured plane-of-sky speed of the LASCO CME was 2600 km s-1. To deduce the kinematics of this CME, we use the plane-of-sky white light observations from both the Solar Mass Ejection Imager (SMEI) all-sky camera on board the Coriolis spacecraft and the SOHO/LASCO coronagraph, as well as the frequency drift rate of the low-frequency radio data and the results of the radio direction-finding analysis from the WAVES experiment on the Wind spacecraft. In agreement with the in situ observations for this event, we find that both the white light and radio observations indicate that the CME must have decelerated significantly beginning near the Sun and continuing well into the interplanetary medium. More specifically, by requiring self-consistency of all the available remote and in situ data, together with a simple, but not unreasonable, assumption about the general characteristic of the CME deceleration, we were able to deduce the radial speed and distance time profiles for this CME as it propagated from the Sun to 1 AU. The technique presented here, which is applicable to mutual SMEI/WAVES CME events, is expected to provide a more complete description and better quantitative understanding of how CMEs propagate through interplanetary space, as well as how the radio emissions, generated by propagating CME/shocks, relate to the shock and CME. This understanding can potentially lead to more accurate predictions for the onset times of space weather events, such as those that were observed during this unique period of intense solar activity.

  10. Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere

    Science.gov (United States)

    Badruddin; Mustajab, F.; Derouich, M.

    2018-05-01

    A coronal mass ejections (CME) is the huge mass of plasma with embedded magnetic field ejected abruptly from the Sun. These CMEs propagate into interplanetary space with different speed. Some of them hit the Earth's magnetosphere and create many types of disturbances; one of them is the disturbance in the geomagnetic field. Individual geomagnetic disturbances differ not only in their magnitudes, but the nature of disturbance is also different. It is, therefore, desirable to understand these differences not only to understand the physics of geomagnetic disturbances but also to understand the properties of solar/interplanetary structures producing these disturbances of different magnitude and nature. In this work, we use the spacecraft measurements of CMEs with distinct magnetic properties propagating in the interplanetary space and generating disturbances of different levels and nature. We utilize their distinct plasma and field properties to search for the interplanetary parameter(s) playing important role in influencing the geomagnetic response of different coronal mass ejections.

  11. Anti-ejection device, which can be released, for control rods of nuclear reactor

    International Nuclear Information System (INIS)

    Belz, G.

    1983-01-01

    The present invention proposes an anti-ejection device which allows to withdraw the control rod out of a PWR reactor core if the locking systems of the rod translation are streck. This device prohibits the control rod ejection as long as an effort lower than a predetermined value is not applied on the control rod. This limit value is determined with regard of the efforts which may be applied on the control rod in case of an external accidental source. Nevertheless, if the anti-ejection mechanism remains stuck, it is however possible to withdraw the control rod out of the core applying on its control rod drives an effort higher than the limit value [fr

  12. On the hypothesis of hyperimpact-induced ejection of asteroid-size bodies from Earth-type planets.

    Science.gov (United States)

    Drobyshevski, E. M.

    During the last two decades a number of facts have brought to life a seemingly fantastic idea of ejection of large rocky fragments from planets into space, like for example SNC meteorites or many-km-size fragments of Vesta. The theoretical description of impact processes of this ejection lags behind. Considerable efforts have been spent to show the possibility of ejection of bodies several meters in size from large impact craters on Mars. In general, the possibility of impact self-destruction of inner planets may drastically alter traditional models of the origin of the Solar System. However, non-destructive gasdynamic ejection of large fragments from planets requires a mechanism for fast conversion of shock-wave energy into heat. The extrapolation of data from laboratory impact experiments (≡10 kJ) and nuclear explosions (<1 Mt TNT) in order to describe hyperimpact processes with 105 - 106 Mt TNT energies can hardly be justified, that is why these calculations give relatively small gas production and, consequently, small velocities of fragment ejection from impact craters. It is predicted that at such energies some instabilities may lead to formation of new dissipation channels, that would increase the part of the overheated gas fraction in the hyperimpact ejection products. This would eliminate numerous contradictions in the impact history of planets, asteroids, meteorites etc.

  13. Dynamics of post-flare ejections and magnetic loop geometry

    International Nuclear Information System (INIS)

    Mein, P.; Mein, N.

    1982-01-01

    Flare-associated mass ejections have been observed at the solar limb on June 29, 1980 in the Hα line, with the Multichannel Subtractive Double Pass spectrograph of the Meudon solar tower. Radial velocities were measured as a function of time in a two dimensional field, and kinematics investigated in one selected fine structure. A simple model of locally dipole-type magnetic field increasing with time can be fitted to the data. It can be checked from extrapolation that the model is consistent with an ejection starting roughly from the same point at the same time. Height of the loops (approx. equal to 135,000 km) is consistent with other determinations. Magnetic field is found to be increasing locally by a factor 1.14 within 10 min. (orig.)

  14. THE NATURE OF HYPERVELOCITY STARS AND THE TIME BETWEEN THEIR FORMATION AND EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Cohen, Judith G., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: jlc@astro.caltech.edu [Palomar Observatory, Mail Stop 249-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-07-20

    We obtain Keck HIRES spectroscopy of HVS5, one of the fastest unbound stars in the Milky Way halo. We show that HVS5 is a 3.62 {+-} 0.11 M{sub Sun} main-sequence B star at a distance of 50 {+-} 5 kpc. The difference between its age and its flight time from the Galactic center is 105 {+-} 18 (stat) {+-}30 (sys) Myr; flight times from locations elsewhere in the Galactic disk are similar. This 10{sup 8} yr 'arrival time' between formation and ejection is difficult to reconcile with any ejection scenario involving massive stars that live for only 10{sup 7} yr. For comparison, we derive arrival times of 10{sup 7} yr for two unbound runaway B stars, consistent with their disk origin where ejection results from a supernova in a binary system or dynamical interactions between massive stars in a dense star cluster. For HVS5, ejection during the first 10{sup 7} yr of its lifetime is ruled out at the 3{sigma} level. Together with the 10{sup 8} yr arrival times inferred for three other well-studied hypervelocity stars (HVSs), these results are consistent with a Galactic center origin for the HVSs. If the HVSs were indeed ejected by the central black hole, then the Galactic center was forming stars {approx_equal}200 Myr ago, and the progenitors of the HVSs took {approx_equal}100 Myr to enter the black hole's loss cone.

  15. THE NATURE OF HYPERVELOCITY STARS AND THE TIME BETWEEN THEIR FORMATION AND EJECTION

    International Nuclear Information System (INIS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.; Cohen, Judith G.

    2012-01-01

    We obtain Keck HIRES spectroscopy of HVS5, one of the fastest unbound stars in the Milky Way halo. We show that HVS5 is a 3.62 ± 0.11 M ☉ main-sequence B star at a distance of 50 ± 5 kpc. The difference between its age and its flight time from the Galactic center is 105 ± 18 (stat) ±30 (sys) Myr; flight times from locations elsewhere in the Galactic disk are similar. This 10 8 yr 'arrival time' between formation and ejection is difficult to reconcile with any ejection scenario involving massive stars that live for only 10 7 yr. For comparison, we derive arrival times of 10 7 yr for two unbound runaway B stars, consistent with their disk origin where ejection results from a supernova in a binary system or dynamical interactions between massive stars in a dense star cluster. For HVS5, ejection during the first 10 7 yr of its lifetime is ruled out at the 3σ level. Together with the 10 8 yr arrival times inferred for three other well-studied hypervelocity stars (HVSs), these results are consistent with a Galactic center origin for the HVSs. If the HVSs were indeed ejected by the central black hole, then the Galactic center was forming stars ≅200 Myr ago, and the progenitors of the HVSs took ≅100 Myr to enter the black hole's loss cone.

  16. Extracting and analyzing ejection fraction values from electronic echocardiography reports in a large health maintenance organization.

    Science.gov (United States)

    Xie, Fagen; Zheng, Chengyi; Yuh-Jer Shen, Albert; Chen, Wansu

    2017-12-01

    The left ventricular ejection fraction value is an important prognostic indicator of cardiovascular outcomes including morbidity and mortality and is often used clinically to indicate severity of heart disease. However, it is usually reported in free-text echocardiography reports. We developed and validated a computerized algorithm to extract ejection fraction values from echocardiography reports and applied the algorithm to a large volume of unstructured echocardiography reports between 1995 and 2011 in a large health maintenance organization. A total of 621,856 echocardiography reports with a description of ejection fraction values or systolic functions were identified, of which 70 percent contained numeric ejection fraction values and the rest (30%) were text descriptions explicitly indicating the systolic left ventricular function. The 12.1 percent (16.0% for male and 8.4% for female) of these extracted ejection fraction values are <45 percent. Validation conducted based on a random sample of 200 reports yielded 95.0 percent sensitivity and 96.9 percent positive predictive value.

  17. Heart failure with preserved ejection fraction in women : The dutch queen of hearts program

    NARCIS (Netherlands)

    den Ruijter, H.; Pasterkamp, G.; Rutten, F. H.; Lam, C. S P; Chi, C.; Tan, K. H.; van Zonneveld, A. J.; Spaanderman, M.; de Kleijn, D. P V

    2015-01-01

    Heart failure (HF) poses a heavy burden on patients, their families and society. The syndrome of HF comes in two types: with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF). The latter is on the increase and predominantly present in women, especially the older ones. There

  18. Ejection fraction improvement and reverse remodeling achieved with Sacubitril/Valsartan in heart failure with reduced ejection fraction patients.

    Science.gov (United States)

    Almufleh, Aws; Marbach, Jeffrey; Chih, Sharon; Stadnick, Ellamae; Davies, Ross; Liu, Peter; Mielniczuk, Lisa

    2017-01-01

    Sacubitril/Valsartan has been shown to improve mortality and reduce hospitalizations in patients with heart failure with reduced ejection fraction (HFrEF). The effect of Sacubitril/Valsartan on ejection fraction (EF) and reverse remodeling parameters have not been previously described. We performed a single-center, retrospective, cohort study of HFrEF patients (n=48) who were treated with Sacubitril/Valsartan for a median duration of 3 months (Interquartile range 2-6 months). Clinical and echocardiographic parameters were reviewed at three time points (pre-baseline which was median of 18 months before starting Sacubitril/Valsartan, baseline before treatment started, and post-Sacubitril/Valsartan). Paired sample t-test and one-way repeated measures ANOVA were used for normally distributed data, while Wilcoxon Signed Rank test for non-normally distributed data. Sacubitril/Valsartan use was associated with an average 5% (±1.2) increase in EF, from a mean baseline of 25.33% to 30.14% (pSacubitril/Valsartan was found to improve EF and multiple measures of reverse remodeling beyond the effects of concomitant optimal medical therapy. Though these results are encouraging, our small sample, observational study requires confirmation in larger cohorts with longer follow-up periods.

  19. A study of stresses in powder compacted components during and after ejection

    DEFF Research Database (Denmark)

    Redanz, Pia

    2001-01-01

    A finite strain finite element method is used to examine the residual stresses in a cup-shaped powder compact. Two rate-independent strain hardening porous material models are used: the combined material model (Fleck, N.A., Kuhn, L.T., McMeeking, R.M., 1992a. J. Mech. Phys. Solids 40 (5), 1139......-1162) and a material model which includes the dependency of inter-particle cohesive strength (Fleck, N.A., 1995. J. Mech. Phys. Solids 43, 1409-1431). The residual stress state in the unloaded cup is highly dependent on the compaction process and less dependent on the ejection route. The maximum principal stress...... plotted during ejection shows that higher stresses are found during the ejection process than those found in the completely unloaded specimen. The degree of inter-particle cohesive strength has hardly any effect on the porosity distributions in the compacts but it has a strong influence on the stress...

  20. Differing prognostic value of pulse pressure in patients with heart failure with reduced or preserved ejection fraction

    DEFF Research Database (Denmark)

    Jackson, Colette E; Castagno, Davide; Maggioni, Aldo P

    2015-01-01

    ) and 5008 with HF-PEF (828 deaths). Pulse pressure was analysed in quintiles in a multivariable model adjusted for the previously reported Meta-Analysis Global Group in Chronic Heart Failure prognostic variables. Heart failure and reduced ejection fraction patients in the lowest pulse pressure quintile had...... in patients with HF-PEF [ejection fraction (EF) ≥ 50%] and HF-REF. METHODS AND RESULTS: Data from 22 HF studies were examined. Preserved left ventricular ejection fraction (LVEF) was defined as LVEF ≥ 50%. All-cause mortality at 3 years was evaluated in 27 046 patients: 22 038 with HF-REF (4980 deaths......AIMS: Low pulse pressure is a marker of adverse outcome in patients with heart failure (HF) and reduced ejection fraction (HF-REF) but the prognostic value of pulse pressure in patients with HF and preserved ejection fraction (HF-PEF) is unknown. We examined the prognostic value of pulse pressure...

  1. Enhancement of weld failure and tube ejection model in PENTAP program

    International Nuclear Information System (INIS)

    Jung, Jaehoon; An, Sang Mo; Ha, Kwang Soon; Kim, Hwan Yeol

    2014-01-01

    The reactor vessel pressure, the debris mass, the debris temperature, and the component of material can have an effect on the penetration tube failure modes. Furthermore, these parameters are interrelated. There are some representative severe accident codes such as MELCOR, MAAP, and PENTAP program. MELCOR decides on a penetration tube failure by its failure temperature such as 1273K simply. MAAP considers all penetration failure modes and has the most advanced model for a penetration tube failure model. However, the validation work against the experimental data is very limited. PENTAP program which evaluates the possible penetration tube failure modes such as creep failure, weld failure, tube ejection, and a long term tube failure under given accident condition was developed by KAERI. The experiment for the tube ejection is being performed by KAERI. The temperature distribution and the ablation rate of both weld and lower vessel wall can be obtained through the experiment. This paper includes the updated calculation steps for the weld failure and the tube ejection modes of the PENTAP program to apply the experimental results. PENTAP program can evaluate the possible penetration tube failure modes. It still requires a large amount of efforts to increase the prediction of failure modes. Some calculation steps are necessary for applying the experimental and the numerical data in the PENTAP program. In this study, new calculation steps are added to PENTAP program to enhance the weld failure and tube ejection models using KAERI's experimental data which are the ablation rate and temperature distribution of weld and lower vessel wall

  2. The Prospect for Detecting Stellar Coronal Mass Ejections

    Science.gov (United States)

    Osten, Rachel A.; Crosley, Michael Kevin

    2018-06-01

    The astrophysical study of mass loss, both steady-state and transient, on the cool half of the HR diagram has implications bothfor the star itself and the conditions created around the star that can be hospitable or inimical to supporting life. Recent results from exoplanet studies show that planets around M dwarfs are exceedingly common, which together with the commonality of M dwarfs in our galaxy make this the dominant mode of star and planet configurations. The closeness of the exoplanets to the parent M star motivate a comprehensive understanding of habitability for these systems. Radio observations provide the most clear signature of accelerated particles and shocks in stars arising as the result of MHD processes in the stellar outer atmosphere. Stellar coronal mass ejections have not been conclusively detected, despite the ubiquity with which their radiative counterparts in an eruptive event (stellar flares) have. I will review some of the different observational methods which have been used and possibly could be used in the future in the stellar case, emphasizing some of the difficulties inherent in such attempts. I will provide a framework for interpreting potential transient stellar mass loss in light of the properties of flares known to occur on magnetically active stars. This uses a physically motivated way to connect the properties of flares and coronal mass ejections and provides a testable hypothesis for observing or constraining transient stellar mass loss. I will describe recent results using radio observations to detect stellar coronal mass ejections, and what those results imply about transient stellar mass loss. I will provide some motivation for what could be learned in this topic from space-based low frequency radio experiments.

  3. Right ventricular ejection fraction: an indicator of increased mortality in patients with congestive heart failure associated with coronary artery disease

    International Nuclear Information System (INIS)

    Polak, J.F.; Holman, B.L.; Wynne, J.; Colucci, W.S.

    1983-01-01

    The predictive value of radionuclide ventriculography was studied in 34 patients with depressed left ventricular ejection fraction (less than 40%) and clinically evident congestive heart failure secondary to atherosclerotic coronary artery disease. In addition to left ventricular ejection fraction, right ventricular ejection fraction and extent of left ventricular paradox were obtained in an attempt to identify a subgroup at increased risk of mortality during the ensuing months. The 16 patients who were alive after a 2 year follow-up period had a higher right ventricular ejection fraction and less extensive left ventricular dyskinesia. When a right ventricular ejection fraction of less than 35% was used as a discriminant, mortality was significantly greater among the 21 patients with a depressed right ventricular ejection fraction (71 versus 23%), a finding confirmed by a life table analysis. It appears that the multiple factors contributing to the reduction in right ventricular ejection fraction make it a useful index not only for assessing biventricular function, but also for predicting patient outcome

  4. Sensitivity studies for 3-D rod ejection analyses on axial power shape

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min-Ho; Park, Jin-Woo; Park, Guen-Tae; Ryu, Seok-Hee; Um, Kil-Sup; Lee, Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)

    2015-10-15

    The current safety analysis methodology using the point kinetics model combined with numerous conservative assumptions result in unrealistic prediction of the transient behavior wasting huge margin for safety analyses while the safety regulation criteria for the reactivity initiated accident are going strict. To deal with this, KNF is developing a 3-D rod ejection analysis methodology using the multi-dimensional code coupling system CHASER. The CHASER system couples three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST using message passing interface (MPI). A sensitivity study for 3-D rod ejection analysis on axial power shape (APS) is carried out to survey the tendency of safety parameters by power distributions and to build up a realistic safety analysis methodology while maintaining conservatism. The currently developing 3-D rod ejection analysis methodology using the multi-dimensional core transient analysis code system, CHASER was shown to reasonably reflect the conservative assumptions by tuning up kinetic parameters.

  5. Popping the cork: mechanisms of phage genome ejection

    NARCIS (Netherlands)

    Molineux, I.J.; Panja, D.

    2013-01-01

    Sixty years after Hershey and Chase showed that nucleic acid is the major component of phage particles that is ejected into cells, we still do not fully understand how the process occurs. Advances in electron microscopy have revealed the structure of the condensed DNA confined in a phage capsid, and

  6. The size distributions of fragments ejected at a given velocity from impact craters

    Science.gov (United States)

    O'Keefe, John D.; Ahrens, Thomas J.

    1987-01-01

    The mass distribution of fragments that are ejected at a given velocity for impact craters is modeled to allow extrapolation of laboratory, field, and numerical results to large scale planetary events. The model is semi-empirical in nature and is derived from: (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationship between maximum ejecta fragment size and crater diameter, (4) measurements and theory of maximum ejecta size versus ejecta velocity, and (5) an assumption on the functional form for the distribution of fragments ejected at a given velocity. This model implies that for planetary impacts into competent rock, the distribution of fragments ejected at a given velocity is broad, e.g., 68 percent of the mass of the ejecta at a given velocity contains fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. The broad distribution suggests that in impact processes, additional comminution of ejecta occurs after the upward initial shock has passed in the process of the ejecta velocity vector rotating from an initially downward orientation. This additional comminution produces the broader size distribution in impact ejecta as compared to that obtained in simple brittle failure experiments.

  7. Coronal mass ejections and disturbances in solar wind plasma parameters in relation with geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Singh, Puspraj; Singh, Preetam

    2014-01-01

    Coronal Mass Ejections (CMEs) are the drastic solar events in which huge amount of solar plasma materials are ejected into the heliosphere from the sun and are mainly responsible to generate large disturbances in solar wind plasma parameters and geomagnetic storms in geomagnetic field. We have studied geomagnetic storms, (Dst ≤-75 nT) observed during the period of 1997-2007 with Coronal Mass Ejections and disturbances in solar wind plasma parameters (solar wind temperature, velocity, density and interplanetary magnetic field) .We have inferred that most of the geomagnetic storms are associated with halo and partial halo Coronal Mass Ejections (CMEs).The association rate of halo and partial halo coronal mass ejections are found 72.37 % and 27.63 % respectively. Further we have concluded that geomagnetic storms are closely associated with the disturbances in solar wind plasma parameters. We have determined positive co-relation between magnitudes of geomagnetic storms and magnitude of jump in solar wind plasma temperature, jump in solar wind plasma density, jump in solar wind plasma velocity and jump in average interplanetary magnetic field with co-relation co-efficient 0 .35 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma temperature, 0.19 between magnitude of geomagnetic storms and magnitude of jump in solar wind density, 0.34 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma velocity, 0.66 between magnitude of geomagnetic storms and magnitude of jump in average interplanetary magnetic field respectively. We have concluded that geomagnetic storms are mainly caused by Coronal Mass Ejections and disturbances in solar wind plasma parameters that they generate.

  8. New Classification for Heart Failure with Mildly Reduced Ejection Fraction; Greater clarity or more confusion?

    Directory of Open Access Journals (Sweden)

    Sunil Nadar

    2017-03-01

    Full Text Available The latest European Society of Cardiology (ESC guidelines for the diagnosis and management of heart failure include a new patient group for those with heart failure with mildly reduced ejection fraction (HFmrEF. By defining this group of patients as a separate entity, the ESC hope to encourage more research focusing on patients with HFmrEF. Previously, patients with this condition were caught between two classifications—heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. Hopefully, the inclusion of new terminology will not increase confusion, but rather aid our understanding of heart failure, a complex clinical syndrome.

  9. Ejection fraction and outcomes in patients with atrial fibrillation and heart failure

    DEFF Research Database (Denmark)

    Banerjee, Amitava; Taillandier, Sophie; Olesen, Jonas Bjerring

    2012-01-01

    Heart failure (HF) increases the risk of stroke and thrombo-embolism (TE) in non-valvular atrial fibrillation (NVAF), and is incorporated in stroke risk stratification scores. We aimed to establish the role of ejection fraction (EF) in risk prediction in patients with NVAF and HF.......Heart failure (HF) increases the risk of stroke and thrombo-embolism (TE) in non-valvular atrial fibrillation (NVAF), and is incorporated in stroke risk stratification scores. We aimed to establish the role of ejection fraction (EF) in risk prediction in patients with NVAF and HF....

  10. Analysis of a control rod ejection transient in a mox-fuelled PWR

    International Nuclear Information System (INIS)

    Lenain, R.; Mathonniere, G.; Perrutel, J.P.; Schaeffer, H.; Stelletta, S.; Lam Hime, M.

    1988-09-01

    The decision to use mixed-oxide (MOX) fuel in PWR's involved re-investigation of a certain number of accidents and notably control rod ejection transients. It has thus been shown that this accident would be no more severe than in the case of all-uranium cores, since the positive effects on the ejected rod worth would counterbalance the negative effects on the delayed neutron fraction. A new approach to the kinetics aspect of the calculation method for this accident is also presented, involving a 3-D kinetic calculation with only a few axial meshes

  11. The relationship between the parameters (Heart rate, Ejection fraction and BMI) and the maximum enhancement time of ascending aorta

    International Nuclear Information System (INIS)

    Jang, Young Ill; June, Woon Kwan; Dong, Kyeong Rae

    2007-01-01

    In this study, Bolus Tracking method was used to investigate the parameters affecting the time when contrast media is reached at 100 HU (T 100 ) and studied the relationship between parameters and T 100 because the time which is reached at aorta through antecubital vein after injecting contrast media is different from person to person. Using 64 MDCT, Cadiac CT, the data were obtained from 100 patients (male: 50, female: 50, age distribution: 21⁓81, average age: 57.5) during July and September, 2007 by injecting the contrast media at 4 ml∙sec -1 through their antecubital vein except having difficulties in stopping their breath and having arrhythmia. Using Somatom Sensation Cardiac 64 Siemens, patients’ height and weight were measured to know their mean Heart rate and BMI. Ejection Fraction was measured using Argus Program at Wizard Workstation. Variances of each parameter were analyzed depending on T 100 ’s variation with multiple comparison and the correlation of Heart rate, Ejection Fraction and BMI were analyzed, as well. According to T 100 ’s variation caused by Heart rate, Ejection Fraction and BMI variations, the higher patients’ Heart Rate and Ejection Fraction were, the faster T 100 ’s variations caused by Heart Rate and Ejection Fraction were. The lower their Heart Rate and Ejection Fraction were, the slower T 100 ’s variations were, but T 100 ’s variations caused by BMI were not affected. In the correlation between T 100 and parameters, Heart Rate (p⁄0.01) and Ejection Fraction (p⁄0.05) were significant, but BMI was not significant (p¤0.05). In the Heart Rate, Ejection Fraction and BMI depending on Fast (17 sec and less), Medium (18⁓21 sec), Slow (22 sec and over) Heart Rate was significant at Fast and Slow and Ejection Fraction was significant Fast and Slow as well as Medium and Slow (p⁄0.05), but BMI was not statistically significant. Of the parameters (Heart Rate, Ejection Fraction and BMI) which would affect T 100 , Heart

  12. Comparative Influences of Fluid and Shell on Modeled Ejection Performance of a Piezoelectric Micro-Jet

    Directory of Open Access Journals (Sweden)

    Kai Li

    2017-01-01

    Full Text Available The piezoelectric micro-jet, which can achieve the drop-on-demand requirement, is based on ink-jet technology and small droplets can be ejected out by precise control. The droplets are driven out of the nozzle by the acoustic pressure waves which are generated by the piezoelectric vibrator. The propagation processes of the acoustic pressure waves are affected by the acoustic properties of the fluid and the shell material of the micro-jet, as well as the excitations and the structure sizes. The influences of the fluid density and acoustic velocity in the fluid on the nozzle pressure and support reaction force of the vibrator are analyzed in this paper. The effects of the shell material on the ejection performance are studied as well. In order to improve the ejection performance of the micro-jet, for ejecting a given fluid, the recommended methods of selecting the shell material and adjusting excitations are provided based on the results, and the influences of the factors on working frequencies are obtained as well.

  13. Gated cardiac imaging: manual calculations and observations of left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Hawkins, T.; Keavey, P.M.

    1984-01-01

    Using gamma camera imaging, the fixed region and moving region methods of calculating left ventricular ejection fraction were studied. Data were obtained from gated blood pool studies on 125 cardiac patients with myocardial infarcts of varying extent and location. Ejection fractions ranged from 10 to 76%. The left anterior oblique angulation for optimal visualisation of the ventricles showed considerable patient variation. The authors conclude that a fixed angulation cannot be recommended and that there is little to justify it. Where the septum is not seen distinctly during setting up, a larger rather than smaller angle is generally advised. (U.K.)

  14. Finite-element solutions of the AER-2 rod ejection benchmark by CRONOS

    International Nuclear Information System (INIS)

    Kolev, N.P.; Lenain, R.; Fedon-Magnaud, C.

    2001-01-01

    The finite-element option in CRONOS was used to analyse the AER-2 rod-ejection benchmark for WWER-440. The objective is to obtain spatially converged solutions by means of node subdivision and approximation refinement. This paper presents the first phase of analysis dealing with the initial and just-ejected states used for calculation of the initial reactivity. Fine-mesh and extrapolated to zero mesh size solutions were obtained and verified by comparison to MAG code solutions. These differences provide potential for large deviations in the transient results and deserve further attention in reactor safety analysis (Authors)

  15. Nest Sanitation as the Evolutionary Background for Egg Ejection Behaviour and the Role of Motivation for Object Removal

    OpenAIRE

    Pol??ek, Miroslav; Griggio, Matteo; Bart?kov?, Michaela; Hoi, Herbert

    2013-01-01

    Higher interclutch colour variation can evolve under the pressure of brood parasitism to increase the detection of parasitic eggs. Nest sanitation could be a prerequisite for the evolution of anti-parasite defence in terms of egg ejection. In this respect, we used nest sanitation behaviour as a tool to identify: i) motivation and its underlying function and, ii) which features provoke ejection behaviour. Therefore, we experimentally tested whether size, colour or shape may influence ejection ...

  16. Evaluation of left ventricular ejection fraction by first pass radionuclide cardioangiography

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, T; Imai, Y; Kagawa, M; Hayashi, M; Kozuka, T [National Cardiovascular Center, Suita, Osaka (Japan)

    1980-02-01

    The left ventricular ejection fraction can be assessed by recording the passage of peripherally administered radioactive bolus through the heart which is first pass method. In this study, the accuracy and validity of first pass method were examined in the patients with cardiac catheterization. After sup(99m)Tc-HSA as a bolus was injected intravenouslly, the time-activity curve was recorded with a scintillation camera and online minicomputer system. The ejection fraction was calculated by the average of three cardiac cycles which corresponded to the left ventricular volume changes during each cardiac cycles. The results correlated well with those obtained by biplane cineangiography in the twenty patients without arrythmias (r = 0.89) and moreover, this technique was applied to the fifteen patients with atrial fibrillation such as mitral valvular diseases, congestive cardiomyopathy, Good correlation of the ejection fraction (r = 0.84) was obtained. The findings, however, demonstrated that the time-activity curve must be generated from the region of interest which fits the left ventricular blood pool precisely and must be corrected for the contribution arizing from noncardiac background structures (two matrix method). In conclusion, this noninvasive method appears particularly useful for serial evaluation of the patients with cardiac dysfunctions and would be available for the routine examination of ventricular functions.

  17. Nuclear cardiac ejection fraction and cardiac index in abdominal aortic surgery

    International Nuclear Information System (INIS)

    Fiser, W.P.; Thompson, B.W.; Thompson, A.R.; Eason, C.; Read, R.C.

    1983-01-01

    Since atherosclerotic heart disease results in more than half of the perioperative deaths that follow abdominal aortic surgery, a prospective protocol was designed for preoperative evaluation and intraoperative hemodynamic monitoring. Twenty men who were prepared to undergo elective operation for aortoiliac occlusive disease (12 patients) and abdominal aortic aneurysm (eight patients) were evaluated with a cardiac scan and right heart catheterization. The night prior to operation, each patient received volume loading with crystalloid based upon ventricular performance curves. At the time of the operation, all patients were anesthetized with narcotics and nitrous oxide, and hemodynamic parameters were recorded throughout the operation. Aortic crossclamping resulted in a marked depression in CI in all patients. CI remained depressed after unclamping in the majority of patients. There were two perioperative deaths, both from myocardial infarction or failure. Both patients had ejection fractions less than 30% and initial CIs less than 2 L/M2, while the survivors' mean ejection fraction was 63% +/- 1 and their mean CI was 3.2 L/M2 +/- 0.6. The authors conclude that preoperative evaluation of ejection fraction can select those patients at a high risk of cardiac death from abdominal aortic operation. These patients should receive intensive preoperative monitoring with enhancement of ventricular performance

  18. Ejection of solvated ions from electrosprayed methanol/water nanodroplets studied by molecular dynamics simulations.

    Science.gov (United States)

    Ahadi, Elias; Konermann, Lars

    2011-06-22

    The ejection of solvated small ions from nanometer-sized droplets plays a central role during electrospray ionization (ESI). Molecular dynamics (MD) simulations can provide insights into the nanodroplet behavior. Earlier MD studies have largely focused on aqueous systems, whereas most practical ESI applications involve the use of organic cosolvents. We conduct simulations on mixed water/methanol droplets that carry excess NH(4)(+) ions. Methanol is found to compromise the H-bonding network, resulting in greatly increased rates of ion ejection and solvent evaporation. Considerable differences in the water and methanol escape rates cause time-dependent changes in droplet composition. Segregation occurs at low methanol concentration, such that layered droplets with a methanol-enriched periphery are formed. This phenomenon will enhance the partitioning of analyte molecules, with possible implications for their ESI efficiencies. Solvated ions are ejected from the tip of surface protrusions. Solvent bridging prior to ion secession is more extensive for methanol/water droplets than for purely aqueous systems. The ejection of solvated NH(4)(+) is visualized as diffusion-mediated escape from a metastable basin. The process involves thermally activated crossing of a ~30 kJ mol(-1) free energy barrier, in close agreement with the predictions of the classical ion evaporation model.

  19. Ispitivanje piropatrona i raketnog motora pilotskog sedišta / Testing pyrocartridges and the rocket motor of the ejection seat

    Directory of Open Access Journals (Sweden)

    Milorad Savković

    2008-04-01

    Full Text Available Raketni motor pilotskog sedišta ima složen geometrijski oblik, tako da njegov potisak deluje pod određenim uglom u odnosu na ravan simetrije pilotskog sedišta. Radi određivanja intenziteta i napadne linije potiska izvršen je veći broj eksperimenata. Meren je potisak raketnog motora na višekomponentnom opitnom stolu. Letno ispitivanje pilotskog sedišta obavljeno je pomoću lutke koja simulira masu pilota. Takođe, analizirano je letno ispitivanje pilotskog sedišta u početnom periodu katapultiranja za vreme rada raketnog motora. Obrađeni su i rezultati merenja ubrzanja, koji su korišćeni za određivanje karakteristika leta pilotskog sedišta. U radu je prikazan teorijski model kretanja sedišta. / Due to a complex geometrical shape of the rocket motor of the ejection seat, the rocket motor thrust occurs under certain angle in relation to the plane of symmetry of the ejection seat. A number of tests were carried out in order to determine thrust intensity and angle of attack. The rocket motor thrust was measured on the multicomponent test stand. The ejection seat whit a dummy simulating a mass of a pilot was tested during ejection. The paper presents an analysis of the ejection seat flight in the initial phase of ejection, during the rocket motor running. The results of the acceleration read-outs were processed and then used for the determination of the characteristics of the ejection seat flight. A theoretical model of the ejection seat flight is given in the paper.

  20. Effect of substrate thickness on ejection of phenylalanine molecules adsorbed on free-standing graphene bombarded by 10 keV C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Golunski, M. [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow (Poland); Verkhoturov, S.V.; Verkhoturov, D.S.; Schweikert, E.A. [Department of Chemistry, Texas A& M University, College Station, TX 77840 (United States); Postawa, Z., E-mail: zbigniew.postawa@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow (Poland)

    2017-02-15

    Highlights: • Substrate thickness has a prominent effect on the molecular ejection mechanism. • Collisions with projectile atoms leads to molecular ejection at thin substrates. • Interactions with deforming graphene sheet ejects molecules from thicker substrates. • Probability of fragmentation process decreases with the graphene substrate thickness. - Abstract: Molecular dynamics computer simulations have been employed to investigate the effect of substrate thickness on the ejection mechanism of phenylalanine molecules deposited on free-standing graphene. The system is bombarded from the graphene side by 10 keV C{sub 60} projectiles at normal incidence and the ejected particles are collected both in transmission and reflection directions. It has been found that the ejection mechanism depends on the substrate thickness. At thin substrates mostly organic fragments are ejected by direct collisions between projectile atoms and adsorbed molecules. At thicker substrates interaction between deforming topmost graphene sheet and adsorbed molecules becomes more important. As this process is gentle and directionally correlated, it leads predominantly to ejection of intact molecules. The implications of the results to a novel analytical approach in Secondary Ion Mass Spectrometry based on ultrathin free-standing graphene substrates and a transmission geometry are discussed.

  1. Lubricant influence on the ejection and roughness of in-die electro sinter forged Ti-discs

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin

    2018-01-01

    Electro Sinter Forging (ESF) is a new sintering process based on Joule heating by high electrical current flowing through compacted metal powder under mechanical pressure. The whole process takes about three seconds and is based on a closed-die setup, where the sample is sintered inside a die....... A near-net shape component is therefore manufactured. One of the challenges associated with this process is the ejection of the sample after sintering. Due to powder compaction and axial loading during sintering, a radial pressure is generated at the die/sample interface. Consequently, the ejection can...... of commercially pure titanium powder. The force was measured while ejecting the samples by using a speed-controlled press. The surface roughness parameter Sa was measured by using a laser confocal microscope....

  2. Radiation dose distributions due to sudden ejection of cobalt device.

    Science.gov (United States)

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Impact-driven ejection of micro metal droplets on-demand

    NARCIS (Netherlands)

    Luo, Jun; Qi, Lehua; Tao, Yuan; Ma, Qian; Visser, C.W.

    2016-01-01

    On-demand metal droplet deposition will be a cornerstone technology in 3D metal printing. However, suitable small nozzles are hardly available, limiting the resolution and surface finish of final products. Here, the ejection of record-small metal droplets with a diameter of only 0.55±0.07 times the

  4. Cross-stream ejection in the inter-wheel region of aircraft landing gears

    Science.gov (United States)

    McCarthy, Philip; Ekmekci, Alis

    2014-11-01

    The reduction of aircraft noise is an important challenge currently faced by aircraft manufacturers. During approach and landing, the landing gears contribute a significant proportion of the aircraft generated noise. It is therefore critical that the key noise sources be identified and understood in order for effective mitigation methods to be developed. For a simplified two-wheel nose landing gear, a strong cross stream flow ejection phenomena has been observed to occur in the inter-wheel region in presence of wheel wells. The location and orientation of these flow ejections causes highly unsteady, three dimensional flow between the wheels that may impinge on other landing gear components, thereby potentially acting as a significant noise generator. The effects of changing the inter-wheel geometry (inter-wheel spacing, the wheel well depth and main strut geometry) upon the cross-stream ejection behaviour has been experimentally investigated using both qualitative flow visualisation and quantitative PIV techniques. A summary of the key results will be presented for the three main geometrical parameters under examination and the application of these findings to real life landing gears will be discussed. Thanks to Messier-Bugatti-Dowty and NSERC for their support for this project.

  5. International Geographic Variation in Event Rates in Trials of Heart Failure With Preserved and Reduced Ejection Fraction

    DEFF Research Database (Denmark)

    Kristensen, Søren L; Køber, Lars; Jhund, Pardeep S

    2015-01-01

    BACKGROUND: International geographic differences in outcomes may exist for clinical trials of heart failure and reduced ejection fraction (HF-REF), but there are few data for those with preserved ejection fraction (HF-PEF). METHODS AND RESULTS: We analyzed outcomes by international geographic reg...

  6. Invasive hemodynamic characterization of heart failure with preserved ejection fraction

    DEFF Research Database (Denmark)

    Andersen, Mads Jønsson; Borlaug, Barry A

    2014-01-01

    Recent hemodynamic studies have advanced our understanding of heart failure with preserved ejection fraction (HFpEF). Despite improved pathophysiologic insight, clinical trials have failed to identify an effective treatment for HFpEF. Invasive hemodynamic assessment can diagnose or exclude HFp...

  7. 3-Dimensional Methodology for the Control Rod Ejection Accident Analysis Using UNICORNTM

    International Nuclear Information System (INIS)

    Jang, Chan-su; Um, Kil-sup; Ahn, Dawk-hwan; Kim, Yo-han; Sung, Chang-kyung; Song, Jae-seung

    2006-01-01

    The control rod ejection accident has been analyzed with STRIKIN-II code using the point kinetics model coupled with conservative factors to address the three dimensional aspects. This may result in a severe transient with very high fuel enthalpy deposition. KNFC, under the support of KEPRI and KAERI, is developing 3-dimensional methodology for the rod ejection accident analysis using UNICORNTM (Unified Code of RETRAN, TORC and MASTER). For this purpose, 3-dimensional MASTER-TORC codes, which have been combined with the dynamic-link library by KAERI, are used in the transient analysis of the core and RETRAN code is used to estimate the enthalpy deposition in the hot rod

  8. "Trampoline" ejection of organic molecules from graphene and graphite via keV cluster ions impacts.

    Science.gov (United States)

    Verkhoturov, Stanislav V; Gołuński, Mikołaj; Verkhoturov, Dmitriy S; Geng, Sheng; Postawa, Zbigniew; Schweikert, Emile A

    2018-04-14

    We present the data on ejection of molecules and emission of molecular ions caused by single impacts of 50 keV C 60 2+ on a molecular layer of deuterated phenylalanine (D8Phe) deposited on free standing, 2-layer graphene. The projectile impacts on the graphene side stimulate the abundant ejection of intact molecules and the emission of molecular ions in the transmission direction. To gain insight into the mechanism of ejection, Molecular Dynamic simulations were performed. It was found that the projectile penetrates the thin layer of graphene, partially depositing the projectile's kinetic energy, and molecules are ejected from the hot area around the hole that is made by the projectile. The yield, Y, of negative ions of deprotonated phenylalanine, (D8Phe-H) - , emitted in the transmission direction is 0.1 ions per projectile impact. To characterize the ejection and ionization of molecules, we have performed the experiments on emission of (D8Phe-H) - from the surface of bulk D8Phe (Y = 0.13) and from the single molecular layer of D8Phe deposited on bulk pyrolytic graphite (Y = 0.15). We show that, despite the similar yields of molecular ions, the scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. The projectile impact on the graphene-D8Phe sample stimulates the collective radial movement of analyte atoms, which compresses the D8Phe layer radially from the hole. At the same time, this compression bends and stretches the graphene membrane around the hole thus accumulating potential energy. The accumulated potential energy is transformed into the kinetic energy of correlated movement upward for membrane atoms, thus the membrane acts as a trampoline for the molecules. The ejected molecules are effectively ionized; the ionization probability is ∼30× higher compared to that obtained for the bulk D8Phe target. The proposed mechanism of ionization involves

  9. "Trampoline" ejection of organic molecules from graphene and graphite via keV cluster ions impacts

    Science.gov (United States)

    Verkhoturov, Stanislav V.; Gołuński, Mikołaj; Verkhoturov, Dmitriy S.; Geng, Sheng; Postawa, Zbigniew; Schweikert, Emile A.

    2018-04-01

    We present the data on ejection of molecules and emission of molecular ions caused by single impacts of 50 keV C602+ on a molecular layer of deuterated phenylalanine (D8Phe) deposited on free standing, 2-layer graphene. The projectile impacts on the graphene side stimulate the abundant ejection of intact molecules and the emission of molecular ions in the transmission direction. To gain insight into the mechanism of ejection, Molecular Dynamic simulations were performed. It was found that the projectile penetrates the thin layer of graphene, partially depositing the projectile's kinetic energy, and molecules are ejected from the hot area around the hole that is made by the projectile. The yield, Y, of negative ions of deprotonated phenylalanine, (D8Phe-H)-, emitted in the transmission direction is 0.1 ions per projectile impact. To characterize the ejection and ionization of molecules, we have performed the experiments on emission of (D8Phe-H)- from the surface of bulk D8Phe (Y = 0.13) and from the single molecular layer of D8Phe deposited on bulk pyrolytic graphite (Y = 0.15). We show that, despite the similar yields of molecular ions, the scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. The projectile impact on the graphene-D8Phe sample stimulates the collective radial movement of analyte atoms, which compresses the D8Phe layer radially from the hole. At the same time, this compression bends and stretches the graphene membrane around the hole thus accumulating potential energy. The accumulated potential energy is transformed into the kinetic energy of correlated movement upward for membrane atoms, thus the membrane acts as a trampoline for the molecules. The ejected molecules are effectively ionized; the ionization probability is ˜30× higher compared to that obtained for the bulk D8Phe target. The proposed mechanism of ionization involves tunneling of

  10. Ejection Performance of Coated Core Pins Intended for Application on High Pressure Die Casting Tools for Aluminium Alloys Processing

    Directory of Open Access Journals (Sweden)

    P. Terek

    2017-09-01

    Full Text Available In high pressure die casting (HPDC process of aluminium alloys cast alloy soldering severely damages tool surfaces. It hampers casting ejection, reduces the casting quality and decreases the overall production efficiency. Thin ceramic PVD (physical vapor deposition coatings applied on tool surfaces successfully reduce these effects. However, their performance is still not recognised for surfaces with various topographies. In this investigation, soldering tendency of Al-Si-Cu alloy toward EN X27CrMoV51 steel, plasma nitrided steel, CrN and TiAlN duplex PVD coatings is evaluated using ejection test. The coatings were prepared to a range of surface roughness and topographies. After the tests sample surfaces were analysed by different microscopy techniques and profilometry. It was found that the ejection performance is independent of the chemical composition of investigated materials. After the ejection, the cast alloy soldering layer was found on surfaces of all tested materials. This built-up layer formed by effects of mechanical soldering, without corrosion reactions. Coated samples displayed a pronounced dependence of ejection force on surface roughness and topography. By decreasing roughness, ejection force increased, which is a consequence of intensified adhesion effects. Presented findings are a novel information important for efficient application of PVD coatings intendent for protection of HPDC tools.

  11. Beat-to-beat evaluation of left ventricular ejection in cardiac arrhythmias

    International Nuclear Information System (INIS)

    Itti, R.; Philippe, L.; Lorgeron, J.M.

    1982-01-01

    Conventional multi-gated cardiac blood pool studies suffer from two kinds of superimpositions: the spatial overlapping of various heart chambers and the temporal superimposition of a large number of cardiac cycles. The first problem can be partially solved by first pass techniques or by emission tomography. For the second one, which is specially critical arrhythmias, the single probe device (''nuclear stethoscope'') represents an original solution. Patients with normal cardiac rythm and patients presenting various kinds of cardiac rythm alterations were examined using a commercial ''nuclear stethoscope''. Some characteristic results achieved in these cases, were presented. For blood pool labeling, 20 mCi of 99mTc albumin was injected. The single probe detector was then positioned over the left ventricular area. The beat-to-beat left ventricular activity curve was then recorded for several minutes on paper in the same time as the E.C.G. signal. In cases with irregular cardiac rythm, the multigated techniques yield an average value of left ventricular ejection. Due to the relatively constant duration of systole, the superimposition of cycles may be valid during contration: differences mainly appear during diastole. But, as it could be demonstrated using the ''nuclear stethoscope'', individual cycles can show a large variability of ejection and average ejection fraction is only a very partial aspect of the real cardiac function

  12. Controlled tungsten melting and droplet ejection studies in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Krieger, K; Lunt, T; Dux, R; Janzer, A; Müller, H W; Potzel, S; Pütterich, T; Yang, Z

    2011-01-01

    Tungsten rods of 1×1×3 mm 3 were exposed in single H-mode discharges at the outer divertor target plate of ASDEX Upgrade using the divertor manipulator system. Melting of the W rod at a pre-defined time was induced by moving the initially far away outer strike point close to the W-rod position. Visible light emissions of both the W pin and consecutively ejected W droplets were recorded by two fast cameras with crossed viewing cones. The time evolution of the local W source at the pin location was measured by spectroscopic observation of the WI line emission at 400.9 nm and compared to the subsequent increase of tungsten concentration in the confined plasma derived from tungsten vacuum UV line emission. Combining these measurements with the total amount of released tungsten due to the pin melt events and ejected droplets allowed us to derive an estimate of the screening factor for this type of tungsten source. The resulting values of the tungsten divertor retention in the range 10-20 agree with those found in previous studies using a W source of sublimated W(CO) 6 vapour at the same exposure location. Ejected droplets were found to be always accelerated in the general direction of the plasma flow, attributed to friction forces and to rocket forces. Furthermore, the vertically inclined target plates cause the droplets, which are repelled by the target plate surface potential due to their electric charge, to move upwards against gravity due to the centrifugal force component parallel to the target plate.

  13. Murine Models of Heart Failure With Preserved Ejection Fraction

    Directory of Open Access Journals (Sweden)

    Maria Valero-Muñoz, PhD

    2017-12-01

    Full Text Available Heart failure with preserved ejection fraction (HFpEF is characterized by signs and symptoms of heart failure in the presence of a normal left ventricular ejection fraction. Despite accounting for up to 50% of all clinical presentations of heart failure, the mechanisms implicated in HFpEF are poorly understood, thus precluding effective therapy. The pathophysiological heterogeneity in the HFpEF phenotype also contributes to this disease and likely to the absence of evidence-based therapies. Limited access to human samples and imperfect animal models that completely recapitulate the human HFpEF phenotype have impeded our understanding of the mechanistic underpinnings that exist in this disease. Aging and comorbidities such as atrial fibrillation, hypertension, diabetes and obesity, pulmonary hypertension, and renal dysfunction are highly associated with HFpEF, yet the relationship and contribution between them remains ill-defined. This review discusses some of the distinctive clinical features of HFpEF in association with these comorbidities and highlights the advantages and disadvantage of commonly used murine models used to study the HFpEF phenotype.

  14. Semi-automatic segmentation of gated blood pool emission tomographic images by watersheds: application to the determination of right and left ejection fractions

    International Nuclear Information System (INIS)

    Mariano-Goulart, D.; Collet, H.; Kotzki, P.-O.; Zanca, M.; Rossi, M.

    1998-01-01

    Tomographic multi-gated blood pool scintigraphy (TMUGA) is a widely available method which permits simultaneous assessment of right and left ventricular ejection fractions. However, the widespread clinical use of this technique is impeded by the lack of segmentation methods dedicated to an automatic analysis of ventricular activities. In this study we evaluated how a watershed algorithm succeeds in providing semi-automatic segmentation of ventricular activities in order to measure right and left ejection fractions by TMUGA. The left ejection fractions of 30 patients were evaluated both with TMUGA and with planar multi-gated blood pool scintigraphy (PMUGA). Likewise, the right ejection fractions of 25 patients were evaluated with first-pass scintigraphy (FP) and with TMUGA. The watershed algorithm was applied to the reconstructed slices in order to group together the voxels whose activity came from one specific cardiac cavity. First, the results of the watershed algorithm were compared with manual drawing around left and right ventricles. Left ejection fractions evaluated by TMUGA with the watershed procedure were not significantly different (p=0.30) from manual outlines whereas a small but significant difference was found for right ejection fractions (p=0.004). Then right and left ejection fractions evaluated by TMUGA (with the semi-automatic segmentation procedure) were compared with the results obtained by FP or PMUGA. Left ventricular ejection fractions evaluated by TMUGA showed an excellent correlation with those evaluated by PMUGA (r=0.93; SEE=5.93%; slope=0.99; intercept = 4.17%). The measurements of these ejection fractions were significantly higher with TMUGA than with PMUGA (P<0.01). The interoperator variability for the measurement of left ejection fractions by TMUGA was 4.6%. Right ventricular ejection fractions evaluated by TMUGA showed a good correlation with those evaluated by FP (r = 0.81; SEE = 6.68%; slope = 1.00; intercept = 0.85%) and were not

  15. Evaluation of the rod ejection accident in Westinghouse Pressurized Water Reactors using spatial kinetics methods

    International Nuclear Information System (INIS)

    Risher, D.H. Jr.

    1975-01-01

    The consequences of a rod ejection accident are investigated in relation to the latest, high power density Westinghouse reactors. Limiting criteria are presented, based on experimental evidence, and if not exceeded these criteria will ensure that there will be no interference with core cooling capability, and radiation releases, if any, will be within the guidelines of 10CFR100. A basis is presented for the conservative selection of plant parameters to be used in the analysis, such that the analysis is applicable to a wide range of past, present, and future reactors. The calculational method employs a one-dimensional spatial kinetics computer code and a transient fuel heat transfer computer code to determine the hot spot fuel temperature versus time following a rod ejection. Using these computer codes, the most limiting hot channel factor (which does not cause the fuel damage limit criteria to be exceeded) has been determined as a function of the ejected rod worth. By this means, the limit criteria have been translated into ejected rod worths and hot channel factors which can be used effectively by the nuclear designer and safety analyst. The calculational method is shown to be conservative, compared to the results of a three-dimensional spatial kinetics analysis

  16. A survivability model for ejection of green compacts in powder metallurgy technology

    Directory of Open Access Journals (Sweden)

    Payman Ahi

    2012-01-01

    Full Text Available Reliability and quality assurance have become major considerations in the design and manufacture of today’s parts and products. Survivability of green compact using powder metallurgy technology is considered as one of the major quality attributes in manufacturing systems today. During powder metallurgy (PM production, the compaction conditions and behavior of the metal powder dictate the stress and density distribution in the green compact prior to sintering. These parameters greatly influence the mechanical properties and overall strength of the final component. In order to improve these properties, higher compaction pressures are usually employed, which make unloading and ejection of green compacts more challenging, especially for the powder-compacted parts with relatively complicated shapes. This study looked at a mathematical survivability model concerning green compact characteristics in PM technology and the stress-strength failure model in reliability engineering. This model depicts the relationship between mechanical loads (stress during ejection, experimentally determined green strength and survivability of green compact. The resulting survivability is the probability that a green compact survives during and after ejection. This survivability model can be used as an efficient tool for selecting the appropriate parameters for the process planning stage in PM technology. A case study is presented here in order to demonstrate the application of the proposed survivability model.

  17. The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction

    DEFF Research Database (Denmark)

    Boesgaard, Søren

    2012-01-01

    A substantial proportion of patients with heart failure have preserved left ventricular ejection fraction (HF-PEF). Previous studies have reported mixed results whether survival is similar to those patients with heart failure and reduced EF (HF-REF).......A substantial proportion of patients with heart failure have preserved left ventricular ejection fraction (HF-PEF). Previous studies have reported mixed results whether survival is similar to those patients with heart failure and reduced EF (HF-REF)....

  18. Inter-observer variation in estimates by nuclear angiography of left ventricular ejection fraction and ejection rate

    International Nuclear Information System (INIS)

    Young, K.C.; Railton, R.

    1980-01-01

    The recent decline in the cost of computing has led to the introduction of data processing of gamma-camera images in many medical centres, allowing the development and widespread use of radionuclide techniques for assessing left ventricular performance. Methods such as ECG-gated blood-pool imaging have the advantage of being less invasive than contrast ventriculography and do not rely on geometrical assumptions about the shape of the ventricle. A study has been made of the inter-observer variation in estimates of ejection fraction and average and maximum systolic contraction rates using a micro-computer (VIP-450 Video Image Processor, Ohio-Nuclear Limited, Rugby) to analyse gated blood-pool images of the left ventricle. (author)

  19. Factors related to outcome in heart failure with a preserved (or normal) left ventricular ejection fraction.

    Science.gov (United States)

    Sanderson, John E

    2016-07-01

    Heart failure with a preserved ejection faction (HFpEF) is a growing and expensive cause of heart failure (HF) affecting particularly the elderly. It differs in substantial ways in addition to the normal left ventricular ejection fraction, from the more easily recognized form of heart failure with a reduced ejection fraction (HFrEF or 'systolic heart failure') and unlike HFrEF there have been little advances in treatment. In part, this relates to the complexity of the pathophysiology and identifying the correct targets. In HFpEF, there appears to be widespread stiffening of the vasculature and the myocardium affecting ventricular function (both systolic and diastolic), impeding ventricular suction, and thus early diastolic filling leading to breathlessness on exertion and later atrial failure and fibrillation. Left ventricular ejection fraction tends to gradually decline and some evolve into HFrEF. Most patients also have a mixture of several co-morbidities including hypertension, diabetes, obesity, poor renal function, lack of fitness, and often poor social conditions. Therefore, many factors may influence outcome in an individual patient. In this review, the epidemiology, possible causation, pathophysiology, the influence of co-morbidities and some of the many potential predictors of outcome will be considered.

  20. Overexpanding coronal mass ejections at high heliographic latitudes: Observations and simulations

    International Nuclear Information System (INIS)

    Gosling, J.T.; Riley, P.; McComas, D.J.; Pizzo, V.J.

    1998-01-01

    Ulysses observations reveal that most coronal mass ejections (CMEs) observed in the solar wind far from the Sun at high heliographic latitudes have large radial widths and are still expanding as they pass the spacecraft. CME radial widths ranging between 0.5 and 2.5 AU have been observed at heliocentric distances between 1.4 and 4.6 AU and at latitudes greater than 22 degree. A CME may expand simply because it is ejected from the Sun with a leading edge speed that is greater than its trailing edge speed. Rarefaction waves produced by relative motion between a CME and the surrounding wind also can cause a CME to expand. Finally, a CME may expand because it is ejected into the wind with an internal pressure that is greater than that of the surrounding wind. In the latter case, which we have called 'overexpansion', the expansion tends to drive compressive waves into the surrounding solar wind; these waves commonly steepen into shocks at large distances from the Sun. The relative importance of these various expansion processes differs from event to event depending upon initial conditions within the CME and the surrounding wind. Using Ulysses observations and a simple one-dimensional, gasdynamic code, we have explored how initial conditions affect the radial evolution of solar wind disturbances associated with overexpanding CMEs. We find good qualitative agreement between the results of our simulations and Ulysses observations of such disturbances. copyright 1998 American Geophysical Union

  1. Influence of edge conditions on material ejection from periodic grooves in laser shock-loaded tin

    Energy Technology Data Exchange (ETDEWEB)

    Rességuier, T. de; Roland, C. [Institut PPRIME, UPR 3346, CNRS, ENSMA, Université de Poitiers, 1 ave. Clément Ader, 86961 Futuroscope Cedex (France); Prudhomme, G.; Lescoute, E.; Mercier, P. [CEA, DAM, DIF, 91297 Arpajon (France); Loison, D. [Institut de Physique de Rennes, CNRS, Université de Rennes 1, 35042 Rennes (France)

    2016-05-14

    In a material subjected to high dynamic compression, the breakout of a shock wave at a rough free surface can lead to the ejection of high velocity debris. Anticipating the ballistic properties of such debris is a key safety issue in many applications involving shock loading, including pyrotechnics and inertial confinement fusion experiments. In this paper, we use laser driven shocks to investigate particle ejection from calibrated grooves of micrometric dimensions and approximately sinusoidal profile in tin samples, with various boundary conditions at the groove edges, including single groove and periodic patterns. Fast transverse shadowgraphy provides ejection velocities after shock breakout. They are found to depend not only on the groove depth and wavelength, as predicted theoretically and already observed in the past, but also, unexpectedly, on the edge conditions, with a jet tip velocity significantly lower in the case of a single groove than behind a periodic pattern.

  2. Investigating pyroclast ejection dynamics using shock-tube experiments: temperature, grain size and vent geometry effects.

    Science.gov (United States)

    Cigala, V.; Kueppers, U.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions eject large quantities of gas and particles into the atmosphere. The portion directly above the vent commonly shows characteristics of underexpanded jets. Understanding the factors that influence the initial pyroclast ejection dynamics is necessary in order to better assess the resulting near- and far-field hazards. Field observations are often insufficient for the characterization of volcanic explosions due to lack of safe access to such environments. Fortunately, their dynamics can be simulated in the laboratory where experiments are performed under controlled conditions. We ejected loose natural particles from a shock-tube while controlling temperature (25˚ and 500˚C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), sample-to-vent distance and vent geometry. For each explosion we quantified the velocity of individual particles, the jet spreading angle and the production of fines. Further, we varied the setup to allow for different sample-to-gas ratios and deployed four different vent geometries: 1) cylindrical, 2) funnel with a flaring of 30˚, 3) funnel with a flaring of 15˚ and 4) nozzle. The results showed maximum particle velocities up to 296 m/s, gas spreading angles varying from 21˚ to 37˚ and particle spreading angles from 3˚ to 40˚. Moreover we observed dynamically evolving ejection characteristics and variations in the production of fines during the course of individual experiments. Our experiments mechanistically mimic the process of pyroclast ejection. Thus the capability for constraining the effects of input parameters (fragmentation conditions) and conduit/vent geometry on ballistic pyroclastic plumes has been clearly established. These data obtained in the presence of well-documented conduit and vent conditions, should greatly enhance our ability to numerically model explosive ejecta in nature.

  3. Improved Rock Core Sample Break-off, Retention and Ejection System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort advances the design of an innovative core sampling and acquisition system with improved core break-off, retention and ejection features. The...

  4. Initiation and Propagation of Coronal Mass Ejections P. F. Chen

    Indian Academy of Sciences (India)

    Introduction. Coronal mass ejections (CMEs) have been observed for over 30 years. They keep being an intriguing research topic, not only because they are now realized to be the major driver for space weather disturbances, which are intimately connected to human activities, but also because they themselves are full of ...

  5. Improved Rock Core Sample Break-off, Retention and Ejection System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort advances the design of an innovative core sampling and acquisition system with improved core break-off, retention and ejection features. Phase 1...

  6. Identification of ultrasound-contrast-agent dilution systems for ejection fraction measurements

    NARCIS (Netherlands)

    Mischi, M.; Jansen, A.H.M.; Kalker, A.A.C.M.; Korsten, H.H.M.

    2005-01-01

    Left ventricular ejection fraction is an important cardiac-efficiency measure. Standard estimations are based on geometric analysis and modeling; they require time and experienced cardiologists. Alternative methods make use of indicator dilutions, but they are invasive due to the need for

  7. Analysis of Transportation Alternatives for Ejection Seat Training

    OpenAIRE

    Gambel, Ray; Lundy, David; Murphy, William; Southmost Consulting

    2011-01-01

    EMBA Project Report EXECUTIVE SUMMARY Student Military Aviators who complete primary flight training at Training Wing FOUR and select jets for their advanced training track will require Naval Aviation Survival Training Program (NASTP) Class 1 training until the T-6B replaces the T-34C as the primary flight training aircraft. This Class 1 training instructs students in ejection seat equipment and procedures for emergency egress of their new aircraft. Of the eight available Aviation Survi...

  8. Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon

    Science.gov (United States)

    Hermalyn, B.; Schultz, P. H.

    2011-12-01

    Hypervelocity impact events mobilize and redistribute fine-grained regolith dust across the surfaces of planetary bodies. The ejecta mass-velocity distribution controls the location and emplacement of these materials. The current flux of material falling on the moon is dominated by small bolides and should cause frequent impacts that eject dust at high speeds. For example, approximately 25 LCROSS-sized (~20-30m diameter) craters are statistically expected to be formed naturally on the moon during any given earth year. When scaled to lunar conditions, the high-speed component of ejecta from hypervelocity impacts can be lofted for significant periods of time (as evidenced by the LCROSS mission results, c.f., Schultz, et al., 2010, Colaprete, et al., 2010). Even at laboratory scales, ejecta can approach orbital velocities; the higher impact speeds and larger projectiles bombarding the lunar surface may permit a significant portion of material to be launched closer to escape velocity. When these ejecta return to the surface (or encounter local topography), they impact at hundreds of meters per second or faster, thereby "scouring" the surface with low mass oblique impacts. While these high-speed ejecta represent only a small fraction of the total ejected mass, the lofting and subsequent ballistic return of this dust has the highest mobilization potential and will be directly applicable to the upcoming LADEE mission. A suite of hypervelocity impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR). This study incorporates both canonical sand targets and air-fall pumice dust to simulate the mechanical properties of lunar regolith. The implementation of a Particle Tracking Velocimetry (PTV) technique permits non-intrusive measurement of the ejecta velocity distribution within the ejecta curtain by following the path of individual ejecta particles. The PTV system developed at the AVGR uses a series of high-speed cameras (ranging

  9. The relationship between mitral regurgitation and ejection fraction as predictors for the prognosis of patients with heart failure

    DEFF Research Database (Denmark)

    Thune, Jens Jakob; Torp-Pedersen, Christian; Hassager, Christian

    2011-01-01

    To study whether there is interaction between mitral regurgitation (MR) and left ventricular ejection fraction (LVEF) in the mortality risk of heart failure (HF) patients.......To study whether there is interaction between mitral regurgitation (MR) and left ventricular ejection fraction (LVEF) in the mortality risk of heart failure (HF) patients....

  10. Simulation of 'pathologic' changes in ICG waveforms resulting from superposition of the 'preejection' and ejection waves induced by left ventricular contraction

    Science.gov (United States)

    Ermishkin, V. V.; Kolesnikov, V. A.; Lukoshkova, E. V.; Sonina, R. S.

    2013-04-01

    The impedance cardiography (ICG) is widely used for beat-to-beat noninvasive evaluation of the left ventricular stroke volume and contractility. It implies the correct determination of the ejection start and end points and the amplitudes of certain peaks in the differentiated impedance cardiogram. An accurate identification of ejection onset by ICG is often problematic, especially in the cardiologic patients, due to peculiar waveforms. Using a simple theoretical model, we tested the hypothesis that two major processes are responsible for the formation of impedance systolic wave: (1) the changes in the heart geometry and surrounding vessels produced by ventricular contraction, which occur during the isovolumic phase and precede ejection, and (2) expansion of aorta and adjacent arteries during the ejection phase. The former process initiates the preejection wave WpE and the latter triggers the ejection wave WEj. The model predicts a potential mechanism of generating the abnormal shapes of dZ/dt due to the presence of preejection waves and explains the related errors in ICG time and amplitude parameters. An appropriate decomposition method is a promising way to avoid the masking effects of these waves and a further step to correct determination of the onset of ejection and the corresponding peak amplitudes from 'pathologically shaped' ICG signals.

  11. Survivability rate among pilots in case of ejection

    Directory of Open Access Journals (Sweden)

    Alexandru GHEORGHIU

    2015-06-01

    Full Text Available The current paper presents a statistical analysis of a recent research made by the author [1], showing the factors causing the accidents that happened in Romanian Air Force from 1952 to 2014. Also the decision of ejection is analyzed. The study contains 225 events: 110 catastrophes and 115 accidents. 280 fighter pilots and 235 aircraft were involved in this analysis. The below information is a personal one and does not reflect an official position of the Ministry of National Defence.

  12. Accretion-Ejection Instability in magnetized accretion disk around compact objects

    International Nuclear Information System (INIS)

    Varniere, Peggy

    2002-01-01

    The major problem in accretion physics come from the origin of angular momentum transfer in the disk. My PhD deal with a mechanism (the Accretion-Ejection Instability, AEI) able to explain and link together accretion in the inner region of the disk and ejection. This instability occurs in magnetized accretion disk near equipartition with gas pressure. We first study the impact of some relativistic effects on the instability, particularly on the m = 1 mode. And compared the results with the Quasi-Periodic Oscillation (QPO) observed in micro-quasars. In the second part we study analytically and numerically the Alfven wave emission mechanism which re-emit the angular momentum and energy taken from the inner region of the disk into the corona. The last part deals with MHD numerical simulation. First of all a 2D non-linear disk simulation which contribute to QPO modelization. The last chapter is about a beginning collaboration on 3D simulation in order to study the Alfven wave emission in the corona. (author) [fr

  13. Nest sanitation as the evolutionary background for egg ejection behaviour and the role of motivation for object removal.

    Science.gov (United States)

    Poláček, Miroslav; Griggio, Matteo; Bartíková, Michaela; Hoi, Herbert

    2013-01-01

    Higher interclutch colour variation can evolve under the pressure of brood parasitism to increase the detection of parasitic eggs. Nest sanitation could be a prerequisite for the evolution of anti-parasite defence in terms of egg ejection. In this respect, we used nest sanitation behaviour as a tool to identify: i) motivation and its underlying function and, ii) which features provoke ejection behaviour. Therefore, we experimentally tested whether size, colour or shape may influence ejection behaviour using artificial flat objects. We found a high interclutch variation in egg colouration and egg size in our tree sparrow (Passer montanus) population. Using colour and size we were in fact able to predict clutch affiliation for each egg. Our experiments further revealed the existence of direct anti-parasite behaviours and birds are able to recognise conspecific eggs, since only experimentally-deposited eggs have been removed. Moreover, experiments with different objects revealed that the motivation of tree sparrows to remove experimental objects from their nests was highest during egg laying for objects of varying size, most likely because of parasitism risk at this breeding stage. In contrary, motivation to remove white objects and objects with edges was higher during incubation stage as behavioural patterns connected to hatching started to emerge. The fact that rejection rate of our flat objects was higher than real egg ejection, suggests that egg ejection in tree sparrows and probably more general in small passerines, to be limited by elevated costs to eject eggs with their beaks. The presence of anti-parasite behaviour supports our suggestion that brood parasitism causes variation in egg features, as we have found that tree sparrows can recognise and reject conspecific eggs in their clutch. In conclusion, in tree sparrows it seems that nest sanitation plays a key role in the evolution of the removal of parasitic eggs.

  14. Nest sanitation as the evolutionary background for egg ejection behaviour and the role of motivation for object removal.

    Directory of Open Access Journals (Sweden)

    Miroslav Poláček

    Full Text Available Higher interclutch colour variation can evolve under the pressure of brood parasitism to increase the detection of parasitic eggs. Nest sanitation could be a prerequisite for the evolution of anti-parasite defence in terms of egg ejection. In this respect, we used nest sanitation behaviour as a tool to identify: i motivation and its underlying function and, ii which features provoke ejection behaviour. Therefore, we experimentally tested whether size, colour or shape may influence ejection behaviour using artificial flat objects. We found a high interclutch variation in egg colouration and egg size in our tree sparrow (Passer montanus population. Using colour and size we were in fact able to predict clutch affiliation for each egg. Our experiments further revealed the existence of direct anti-parasite behaviours and birds are able to recognise conspecific eggs, since only experimentally-deposited eggs have been removed. Moreover, experiments with different objects revealed that the motivation of tree sparrows to remove experimental objects from their nests was highest during egg laying for objects of varying size, most likely because of parasitism risk at this breeding stage. In contrary, motivation to remove white objects and objects with edges was higher during incubation stage as behavioural patterns connected to hatching started to emerge. The fact that rejection rate of our flat objects was higher than real egg ejection, suggests that egg ejection in tree sparrows and probably more general in small passerines, to be limited by elevated costs to eject eggs with their beaks. The presence of anti-parasite behaviour supports our suggestion that brood parasitism causes variation in egg features, as we have found that tree sparrows can recognise and reject conspecific eggs in their clutch. In conclusion, in tree sparrows it seems that nest sanitation plays a key role in the evolution of the removal of parasitic eggs.

  15. Simultaneous Observations of p-mode Light Walls and Magnetic Reconnection Ejections above Sunspot Light Bridges

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Xiaohong, E-mail: yijunhou@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-10-10

    Recent high-resolution observations from the Interface Region Imaging Spectrograph reveal bright wall-shaped structures in active regions (ARs), especially above sunspot light bridges. Their most prominent feature is the bright oscillating front in the 1400/1330 Å channel. These structures are named light walls and are often interpreted to be driven by p-mode waves. Above the light bridge of AR 12222 on 2014 December 06, we observed intermittent ejections superimposed on an oscillating light wall in the 1400 Å passband. At the base location of each ejection, the emission enhancement was detected in the Solar Dynamics Observatory 1600 Å channel. Thus, we suggest that in wall bases (light bridges), in addition to the leaked p-mode waves consistently driving the oscillating light wall, magnetic reconnection could happen intermittently at some locations and eject the heated plasma upward. Similarly, in the second event occurring in AR 12371 on 2015 June 16, a jet was simultaneously detected in addition to the light wall with a wave-shaped bright front above the light bridge. At the footpoint of this jet, lasting brightening was observed, implying magnetic reconnection at the base. We propose that in these events, two mechanisms, p-mode waves and magnetic reconnection, simultaneously play roles in the light bridge, and lead to the distinct kinetic features of the light walls and the ejection-like activities, respectively. To illustrate the two mechanisms and their resulting activities above light bridges, in this study we present a cartoon model.

  16. Multinucleon Ejection Model for Two Body Current Neutrino Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Sobczyk, Jan T.; /Fermilab

    2012-06-01

    A model is proposed to describe nucleons ejected from a nucleus as a result of two-body-current neutrino interactions. The model can be easily implemented in Monte Carlo neutrino event generators. Various possibilities to measure the two-body-current contribution are discussed. The model can help identify genuine charge current quasielastic events and allow for a better determination of the systematic error on neutrino energy reconstruction in neutrino oscillation experiments.

  17. Hydrocode modeling of the spallation process during hypervelocity impacts: Implications for the ejection of Martian meteorites

    Science.gov (United States)

    Kurosawa, Kosuke; Okamoto, Takaya; Genda, Hidenori

    2018-02-01

    Hypervelocity ejection of material by impact spallation is considered a plausible mechanism for material exchange between two planetary bodies. We have modeled the spallation process during vertical impacts over a range of impact velocities from 6 to 21 km/s using both grid- and particle-based hydrocode models. The Tillotson equations of state, which are able to treat the nonlinear dependence of density on pressure and thermal pressure in strongly shocked matter, were used to study the hydrodynamic-thermodynamic response after impacts. The effects of material strength and gravitational acceleration were not considered. A two-dimensional time-dependent pressure field within a 1.5-fold projectile radius from the impact point was investigated in cylindrical coordinates to address the generation of spalled material. A resolution test was also performed to reject ejected materials with peak pressures that were too low due to artificial viscosity. The relationship between ejection velocity veject and peak pressure Ppeak was also derived. Our approach shows that "late-stage acceleration" in an ejecta curtain occurs due to the compressible nature of the ejecta, resulting in an ejection velocity that can be higher than the ideal maximum of the resultant particle velocity after passage of a shock wave. We also calculate the ejecta mass that can escape from a planet like Mars (i.e., veject > 5 km/s) that matches the petrographic constraints from Martian meteorites, and which occurs when Ppeak = 30-50 GPa. Although the mass of such ejecta is limited to 0.1-1 wt% of the projectile mass in vertical impacts, this is sufficient for spallation to have been a plausible mechanism for the ejection of Martian meteorites. Finally, we propose that impact spallation is a plausible mechanism for the generation of tektites.

  18. Angular distribution of atoms ejected by laser ablation of different metals

    International Nuclear Information System (INIS)

    Konomi, I.; Motohiro, T.; Asaoka, T.

    2009-01-01

    Angular distributions of 13 different metals ejected by laser ablation using fourth harmonics (wavelength=266 nm) of neodymium doped yttrium aluminum garnet laser and a fluence close to near-threshold value (2.3 J/cm 2 ) have been investigated with a high angular resolution. The angular distribution which is characterized by the exponent n of cos n θ distribution showed very broad range of values between 3 and 24 for different metals. A simple relation that the exponent n is proportional to the square root of particle atomic weight as reported previously has not been observed. Instead, a general trend has been found that the metals with higher sublimation energy such as Ta and Zr show narrower angular distribution than those with lower sublimation energy such as Sn and In. While the sublimation energy of metals has a great influence on the angular distribution of ejected atoms, a simple consideration suggests that their thermal conductivity and specific heat have little effect on it.

  19. PWR control rod ejection analysis with the numerical nuclear reactor

    International Nuclear Information System (INIS)

    Hursin, M.; Kochunas, B.; Downar, T. J.

    2008-01-01

    During the past several years, a comprehensive high fidelity reactor LWR core modeling capability has been developed and is referred to as the Numerical Nuclear Reactor (NNR). The NNR achieves high fidelity by integrating whole core neutron transport solution and ultra fine mesh computational fluid dynamics/heat transfer solution. The work described in this paper is a preliminary demonstration of the ability of NNR to provide a detailed intra pin power distribution during a control rod ejection accident. The motivation of the work is to quantify the impact on the fuel performance calculation of a more physically accurate representation of the power distribution within the fuel rod during the transient. The paper addresses first, the validation of the transient capability of the neutronic module of the NNR code system, DeCART. For this purpose, a 'mini core' problem consisting of a 3x3 array of typical PWR fuel assemblies is considered. The initial state of the 'mini core' is hot zero power with a control rod partially inserted into the central assembly which is fresh fuel and is adjacent to once and twice burned fuel representative of a realistic PWR arrangement. The thermal hydraulic feedbacks are provided by a simplified fluids and heat conduction solver consistent for both PARCS and DeCART. The control rod is ejected from the central assembly and the transient calculation is performed with DeCART and compared with the results of the U.S. NRC core simulation code PARCS. Because the pin power reconstruction in PARCS is based on steady state intra assembly pin power distributions which do not account for thermal feedback during the transient and which do not take into account neutron leakage from neighboring assemblies during the transient, there are some small differences in the PARCS and DeCART pin power prediction. Intra pin power density information obtained with DeCART represents new information not available with previous generation of methods. The paper then

  20. Clinical Utility of Exercise Training in Heart Failure with Reduced and Preserved Ejection Fraction

    Science.gov (United States)

    Asrar Ul Haq, Muhammad; Goh, Cheng Yee; Levinger, Itamar; Wong, Chiew; Hare, David L

    2015-01-01

    Reduced exercise tolerance is an independent predictor of hospital readmission and mortality in patients with heart failure (HF). Exercise training for HF patients is well established as an adjunct therapy, and there is sufficient evidence to support the favorable role of exercise training programs for HF patients over and above the optimal medical therapy. Some of the documented benefits include improved functional capacity, quality of life (QoL), fatigue, and dyspnea. Major trials to assess exercise training in HF have, however, focused on heart failure with reduced ejection fraction (HFREF). At least half of the patients presenting with HF have heart failure with preserved ejection fraction (HFPEF) and experience similar symptoms of exercise intolerance, dyspnea, and early fatigue, and similar mortality risk and rehospitalization rates. The role of exercise training in the management of HFPEF remains less clear. This article provides a brief overview of pathophysiology of reduced exercise tolerance in HFREF and heart failure with preserved ejection fraction (HFPEF), and summarizes the evidence and mechanisms by which exercise training can improve symptoms and HF. Clinical and practical aspects of exercise training prescription are also discussed. PMID:25698883

  1. Heart Failure: The Dilemma of the 40-50% Ejection Fraction Range

    Directory of Open Access Journals (Sweden)

    Michael Henein

    2017-01-01

    Full Text Available The common pathophysiology contributing to fluid retention and dyspnoea in heart failure is a non-compliant and stiff myocardium with raised left ventricular end-diastolic pressure. With the rapid development of newer imaging technologies, particularly echocardiography, our understanding of the syndrome of heart failure has significantly changed. The most important imaging sign in the early eighties was reduced ejection fraction (HFrEF, with low values being used as an explanation for the development of signs and symptoms. In the early 2000s, similar Doppler echocardiographic signs became frequently recognised in patients with heart failure symptoms and signs who proved to have a relatively maintained ejection fraction (EF of >40%, hence the description of the syndrome of “diastolic heart failure”. This was later rephrased as heart failure with normal ejection fraction (HFnEF and more recently as heart failure with preserved ejection fraction (HFpEF. Since then, HFpEF has attracted the interest of many cardiologists and scientists worldwide, searching for specific features and treatment options for the syndrome. As for the features, two important findings have now been established, the first showed that LV systolic function mainly at the subendocardial level was abnormal in HFpEF, particularly manifesting during stress/exercise when the increase in heart rate was not associated with a commensurate increase in stroke volume and a second observation of a significant impairment of left atrial function (i.e. myocardial strain and emptying fraction associated with increased left atrial pressures and the potential development of atrial arrhythmia in HFpEF. Such atrial abnormalities have been shown to be commonly associated with cavity enlargement and poor compliance. The latter observation has similarly been reported in patients with reduced EF. Despite the above similarities in cardiac physiology between HFpEF and HFrEF, treatments of the two

  2. 3-Dimensional Methodology for the Control Rod Ejection Accident Analysis Using UNICORN{sup TM}

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Chan-su; Um, Kil-sup; Ahn, Dawk-hwan [Korea Nuclear Fuel Company, Taejon (Korea, Republic of); Kim, Yo-han; Sung, Chang-kyung [KEPRI, Taejon (Korea, Republic of); Song, Jae-seung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    The control rod ejection accident has been analyzed with STRIKIN-II code using the point kinetics model coupled with conservative factors to address the three dimensional aspects. This may result in a severe transient with very high fuel enthalpy deposition. KNFC, under the support of KEPRI and KAERI, is developing 3-dimensional methodology for the rod ejection accident analysis using UNICORNTM (Unified Code of RETRAN, TORC and MASTER). For this purpose, 3-dimensional MASTER-TORC codes, which have been combined with the dynamic-link library by KAERI, are used in the transient analysis of the core and RETRAN code is used to estimate the enthalpy deposition in the hot rod.

  3. Evaluation of training nurses to perform semi-automated three-dimensional left ventricular ejection fraction using a customised workstation-based training protocol.

    Science.gov (United States)

    Guppy-Coles, Kristyan B; Prasad, Sandhir B; Smith, Kym C; Hillier, Samuel; Lo, Ada; Atherton, John J

    2015-06-01

    We aimed to determine the feasibility of training cardiac nurses to evaluate left ventricular function utilising a semi-automated, workstation-based protocol on three dimensional echocardiography images. Assessment of left ventricular function by nurses is an attractive concept. Recent developments in three dimensional echocardiography coupled with border detection assistance have reduced inter- and intra-observer variability and analysis time. This could allow abbreviated training of nurses to assess cardiac function. A comparative, diagnostic accuracy study evaluating left ventricular ejection fraction assessment utilising a semi-automated, workstation-based protocol performed by echocardiography-naïve nurses on previously acquired three dimensional echocardiography images. Nine cardiac nurses underwent two brief lectures about cardiac anatomy, physiology and three dimensional left ventricular ejection fraction assessment, before a hands-on demonstration in 20 cases. We then selected 50 cases from our three dimensional echocardiography library based on optimal image quality with a broad range of left ventricular ejection fractions, which was quantified by two experienced sonographers and the average used as the comparator for the nurses. Nurses independently measured three dimensional left ventricular ejection fraction using the Auto lvq package with semi-automated border detection. The left ventricular ejection fraction range was 25-72% (70% with a left ventricular ejection fraction nurses showed excellent agreement with the sonographers. Minimal intra-observer variability was noted on both short-term (same day) and long-term (>2 weeks later) retest. It is feasible to train nurses to measure left ventricular ejection fraction utilising a semi-automated, workstation-based protocol on previously acquired three dimensional echocardiography images. Further study is needed to determine the feasibility of training nurses to acquire three dimensional echocardiography

  4. Femtosecond pulse-width dependent trapping and directional ejection dynamics of dielectric nanoparticles

    KAUST Repository

    Chiang, Weiyi; Usman, Anwar; Masuhara, Hiroshi

    2013-01-01

    the repulsive and attractive forces. We also show that the directional ejections occur only when the number of nanoparticles confined in the trapping site exceeds a definite threshold. We interpret our data by considering the formation of transient assembly

  5. Pre-ejection period by radial artery tonometry supplements echo doppler findings during biventricular pacemaker optimization

    Directory of Open Access Journals (Sweden)

    Qamruddin Salima

    2011-07-01

    Full Text Available Abstract Background Biventricular (Biv pacemaker echo optimization has been shown to improve cardiac output however is not routinely used due to its complexity. We investigated the role of a simple method involving computerized pre-ejection time (PEP assessment by radial artery tonometry in guiding Biv pacemaker optimization. Methods Blinded echo and radial artery tonometry were performed simultaneously in 37 patients, age 69.1 ± 12.8 years, left ventricular (LV ejection fraction (EF 33 ± 10%, during Biv pacemaker optimization. Effect of optimization on echo derived velocity time integral (VTI, ejection time (ET, myocardial performance index (MPI, radial artery tonometry derived PEP and echo-radial artery tonometry derived PEP/VTI and PEP/ET indices was evaluated. Results Significant improvement post optimization was achieved in LV ET (286.9 ± 37.3 to 299 ± 34.6 ms, p Conclusion An acute shortening of PEP by radial artery tonometry occurs post Biv pacemaker optimization and correlates with improvement in hemodynamics by echo Doppler and may provide a cost-efficient approach to assist with Biv pacemaker echo optimization.

  6. Evidence for highly processed material ejected from Abell 30

    International Nuclear Information System (INIS)

    Hazard, C.; Terlvich, R.; Ferland, G.; Sargent, W.L.W.

    1980-01-01

    The discovery of compact knots of highly processed material apparently ejected from the central star of the emission nebula Abell 30 is reported here. Spectra obtained from the compact nebulosities surrounding the central star, which indicate a remarkable enhancement of helium relative to hydrogen, are discussed. Preliminary model calculations to investigate the properties of hydrogen deficient nebulae and to study the abundances of some heavy elements have been applied to the results. (UK)

  7. Experimental Investigation of the Dispersion of Liquids by Ejection Atomizers

    Science.gov (United States)

    Arkhipov, V. A.; Bondarchuk, S. S.; Evsevleev, M. Ya.; Zharova, I. K.; Zhukov, A. S.; Zmanovskii, S. V.; Kozlov, E. A.; Konovalenko, A. I.; Trofimov, V. F.

    2013-11-01

    This paper presents the results of an experimental investigation of the dispersivity of liquid droplets in the spray cone of ejection atomizers. The calculational droplet size distribution function was measured by the method of low angles of the probe laser radiation scattering indicatrix on a pneumohydraulic bench under cold blow conditions. The efficiency of the proposed circuit designs of atomizers has been analyzed.

  8. A filter system for steam-gas mixture ejections from under a nuclear reactor containment following a severe accident

    International Nuclear Information System (INIS)

    Dulepov, Ju. N.; Sharygin, L. M.; Tretjakov, S. Ja.; Shtin, A.P.; Glushko, V. V.; Babenko, E. A.; Kurakov, Ju. A.

    1997-01-01

    In this paper newly built NPPs obligatory incorporate a containment having a filter system for removing radioactive materials ejections under severe accidents including nuclear fuel melting is described. The system prevents a containment failure and provides ejected radioactive materials decontamination to permissible levels. The physical-chemical and chemical characteristics of Termoxid-58 sorbent (TiO 5 based sorbent) are presented

  9. Internal Energy Loss of the Electrons Ejected in Neutrinoless Double Beta Decay

    International Nuclear Information System (INIS)

    Drukarev, E. G.; Amusia, M. Ya.; Chernysheva, L. V.

    2017-01-01

    The excitations of the electron shell in neutrinoless double beta decay shifts the limiting energy available for ejected electrons. We present the general equations for this shift and make computations for the decays of two nuclei—germanium and xenon. (author)

  10. Assessment of cardiac performance with quantitative radionuclide angiocardiography: sequential left ventricular ejection fraction, normalized left ventricular ejection rate, and regional wall motion

    International Nuclear Information System (INIS)

    Marshall, R.C.; Berger, H.J.; Costin, J.C.; Freedman, G.S.; Wolberg, J.; Cohen, L.S.; Gotischalk, A.; Zaret, B.L.

    1977-01-01

    Sequential quantitative first pass radionuclide angiocardiograms (RA) were used to measure left ventricular ejection fraction (LVEF) and left ventricular ejection rate (LVER), and to assess regional wall motion (RWM) in the anterior (ANT) and left anterior oblique (LAO) positions. Studies were obtained with a computerized multicrystal scintillation camera suitable for acquiring high count-rate data. Background was determined in a new fashion by selecting frames temporally from the left ventricular region of interest time-activity curve. A ''representative'' cardiac cycle was formed by summing together counts over three to six cardiac cycles. From this background corrected, high count-rate ''representative''cardiac cycle, LVEF, LVER, and RWM were determined. In 22 patients with normal sinus rhythm in the absence of significant valvular regurgitation, RA LVEF correlated well with that measured by contrast angiography (r = 0.95). LVER correlated well with LVEF measured at contrast angiography (r = 0.90) and allowed complete separation of those with normal (LVER = 3.4 +- 0.17 sec -1 ) and abnormal (LVER = 1.22 +- 0.11 sec -1 ) (P < 0.001) left ventricular performance. This separation was independent of background. Isoproterenol infusion in five normal subjects caused LVER to increase by 81 +- 17% while LVEF increased by 10 +- 2.0%. RWM was correctly defined in 21/22 patients and 89% of left ventricular segments with abnormal wall motion

  11. Epidemiology of heart failure with preserved ejection fraction

    DEFF Research Database (Denmark)

    Andersson, Charlotte; Vasan, Ramachandran S

    2014-01-01

    Heart failure with preserved ejection fraction (HFPEF) is a common condition, and the prevalence is projected to increase further. Studies differ in the reported incidence and mortality associated with this condition, although there is agreement that between a third and one-half of all patients...... with heart failure have HFPEF. Although several consensus statements and guidelines have been published, some recent randomized clinical trials have reported low mortality, raising doubts about whether all patients diagnosed with HFPEF have HFPEF or whether the condition is heterogeneous in its cause...

  12. Unsteady Plasma Ejections from Hollow Accretion Columns of Galactic Neutron Stars as a Trigger for Gamma-Ray Bursts

    Science.gov (United States)

    Gvaramadze, V. V.

    1995-09-01

    We propose a model of gamma-ray bursts (GRBs) based on close Galactic neutron stars with accretion disks. We outline a simple mechanism of unsteady plasma ejections during episodic accretion events. The relative kinetic energy of ejected blobs can be converted into gamma-rays by internal shocks. The beaming of gamma-ray emission can be responsible for the observed isotropic angular distribution of GRBs.

  13. A Basic Study on the Ejection of ICI Nozzle under Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jong Rae; Bae, Ji Hoon; Bang, Kwang Hyun [Korea Maritime and Ocean University, Busan (Korea, Republic of); Park, Jong Woong [Dongguk University, Gyeongju (Korea, Republic of)

    2016-05-15

    Nozzle injection should be blocked because it affect to the environment if its melting core exposes outside. The purpose of this study is to carry out the thermos mechanical analysis due to debris relocation under severe accidents and to predict the nozzle ejection calculated considering the contact between the nozzle and lower head, and the supports of pipe cables. As a result of analyzing process of severe accidents, there was melting reaction between nozzle and the lower head. In this situation, we might predict the non-uniform contact region of nozzle hole of lower head and nozzle outside, delaying ejection of nozzles. But after melting, the average remaining length of the nozzle was 120mm and the maximum vertical displacement of lower nozzle near the weld is 3.3mm so there would be no nozzle this model, because the cable supports restrains the vertical displacement of nozzle.

  14. Clinical utility of semi-automated estimation of ejection fraction at the point-of-care

    DEFF Research Database (Denmark)

    Frederiksen, Christian Alcaraz; Juhl-Olsen, Peter; Hermansen, Johan Fridolf

    2015-01-01

    ultrasonography of the heart at the bedside performed by a novice examiner. Three assessments of ejection fraction were made: 1) Expert eyeballing by a single specialist in cardiology and expert in echocardiography; 2) Manual planimetry by an experienced examiner; 3) AutoEF by a novice examiner with limited...... experience in echocardiography. RESULTS: Expert eyeballing of ejection fraction was performed in 100% of cases. Manual planimetry was possible in 89% of cases and AutoEF was possible in 83% of cases. The correlation between expert eyeballing and AutoEF was r=0.82, p ... and for AutoEF it was r=0.82, p eyeballing and manual planimetry it was r=0.80, p

  15. Association between Hypotension, Low Ejection Fraction and Cognitive Performance in Cardiac Patients

    Directory of Open Access Journals (Sweden)

    Rebecca F. Gottesman

    2010-01-01

    Full Text Available Background and Purpose: Impaired cardiac function can adversely affect the brain via decreased perfusion. The purpose of this study was to determine if cardiac ejection fraction (EF is associated with cognitive performance, and whether this is modified by low blood pressure.

  16. NEAR-SIMULTANEOUS OBSERVATIONS OF X-RAY PLASMA EJECTION, CORONAL MASS EJECTION, AND TYPE II RADIO BURST

    International Nuclear Information System (INIS)

    Kim, Yeon-Han; Bong, Su-Chan; Park, Y.-D.; Cho, K.-S.; Moon, Y.-J.

    2009-01-01

    We report the first simultaneous observation of X-ray plasma ejection (XPE), coronal mass ejection (CME), and type II solar radio burst on 1999 October 26. First, an XPE was observed from 21:12 UT to 21:24 UT in the Yohkoh SXT field of view (1.1 to 1.4 R sun ). The XPE was accelerated with a speed range from 190 to 410 km s -1 and its average speed is about 290 km s -1 . Second, the associated CME was observed by the Mauna Loa Mk4 coronameter (1.1-2.8 R sun ) from 21:16 UT. The CME front was clearly identified at 21:26 UT and propagated with a deceleration of about -110 m s -2 . Its average speed is about 360 km s -1 . At the type II burst start time (21:25 UT), the height of the CME front is around 1.7 R sun and its speed is about 470 km s -1 . Third, a type II solar radio burst was observed from 21:25 UT to 21:43 UT by the Culgoora solar radio spectrograph. The burst shows three emission patches during this observing period and the emission heights of the burst are estimated to be about 1.3 R sun (21:25 UT), 1.4 R sun (21:30 UT), and 1.8 R sun (21:40 UT). By comparing these three phenomena, we find that: (1) kinematically, while the XPE shows acceleration, the associated CME front shows deceleration; (2) there is an obvious height difference (0.3 R sun ) between the CME front and the XPE front around 21:24 UT and the formation height of the type II burst is close to the trajectory extrapolated from the XPE front; (3) both speeds of the XPE and the CME are comparable with each other around the starting time of the type II burst. Considering the formation height and the speed of the type II burst, we suggest that its first emission is due to the coronal shock generated by the XPE and the other two emissions are driven by the CME flank interacting with the high-density streamer.

  17. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.

    1988-04-01

    Discharge of the molten core debris from a pressurized reactor vessel has been recognized as an important accident scenario for pressurized water reactors. Recent high-pressure melt streaming experiments conducted at Sandia National Laboratories, designed to study cavity and containment events related to melt ejection, have resulted in two important observations: (1) Expansion and breakup of the ejected molten jet. (2) Significant aerosol generation during the ejection process. The expansion and breakup of the jet in the experiments are attributed to rapid evolution of the pressurizing gas (nitrogen or hydrogen) dissolved in the melt. It has been concluded that aerosol particles may be formed by condensation of melt vapor and mechanical breakup of the melt and generation. It was also shown that the above stated phenomena are likely to occur in reactor accidents. This report provides results from analytical and experimental investigations on the behavior of a gas supersaturated molten jet expelled from a pressurized vessel. Aero-hydrodynamic stability of liquid jets in gas, stream degassing of molten metals, and gas bubble nucleation in molten metals are relevant problems that are addressed in this work

  18. The Peculiar Behavior of Halo Coronal Mass Ejections in Solar Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Xie, H.; Akiyama, S.; Makela, P.; Yashiro, S.; Michalek, G.

    2015-01-01

    We report on the remarkable finding that the halo coronal mass ejections (CMEs) in cycle 24 are more abundant than in cycle 23, although the sunspot number in cycle 24 has dropped by approx. 40%. We also find that the distribution of halo-CME source locations is different in cycle 24: the longitude distribution of halos is much flatter with the number of halos originating at a central meridian distance greater than or equal to 60deg twice as large as that in cycle 23. On the other hand, the average speed and associated soft X-ray flare size are the same in both cycles, suggesting that the ambient medium into which the CMEs are ejected is significantly different. We suggest that both the higher abundance and larger central meridian longitudes of halo CMEs can be explained as a consequence of the diminished total pressure in the heliosphere in cycle 24. The reduced total pressure allows CMEs to expand more than usual making them appear as halos.

  19. Risk Related to Pre–Diabetes Mellitus and Diabetes Mellitus in Heart Failure With Reduced Ejection Fraction

    Science.gov (United States)

    Kristensen, Søren L.; Preiss, David; Jhund, Pardeep S.; Squire, Iain; Cardoso, José Silva; Merkely, Bela; Martinez, Felipe; Starling, Randall C.; Desai, Akshay S.; Lefkowitz, Martin P.; Rizkala, Adel R.; Rouleau, Jean L.; Shi, Victor C.; Solomon, Scott D.; Swedberg, Karl; Zile, Michael R.; Packer, Milton

    2016-01-01

    Background— The prevalence of pre–diabetes mellitus and its consequences in patients with heart failure and reduced ejection fraction are not known. We investigated these in the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial. Methods and Results— We examined clinical outcomes in 8399 patients with heart failure and reduced ejection fraction according to history of diabetes mellitus and glycemic status (baseline hemoglobin A1c [HbA1c]: 6.5%) and known diabetes mellitus compared with those with HbA1csacubitril/valsartan) compared with enalapril was consistent across the range of HbA1c in the trial. Conclusions— In patients with heart failure and reduced ejection fraction, dysglycemia is common and pre–diabetes mellitus is associated with a higher risk of adverse cardiovascular outcomes (compared with patients with no diabetes mellitus and HbA1c <6.0%). LCZ696 was beneficial compared with enalapril, irrespective of glycemic status. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT01035255. PMID:26754626

  20. Propagation of capillary waves and ejection of small droplets in rapid droplet spreading

    KAUST Repository

    Ding, Hang

    2012-03-12

    A new regime of droplet ejection following the slow deposition of drops onto a near-complete wetting solid substrate is identified in experiments and direct numerical simulations; a coalescence cascade subsequent to pinch-off is also observed for the first time. Results of numerical simulations indicate that the propagation of capillary waves that lead to pinch-off is closely related to the self-similar behaviour observed in the inviscid recoil of droplets, and that motions of the crests and troughs of capillary waves along the interface do not depend on the wettability and surface tension (or Ohnesorge number). The simulations also show that a self-similar theory for universal pinch-off can be used for the time evolution of the pinching neck. However, although good agreement is also found with the double-cone shape of the pinching neck for droplet ejection in drop deposition on a pool of the same liquid, substantial deviations are observed in such a comparison for droplet ejection in rapid drop spreading (including the newly identified regime). This deviation is shown to result from interference by the solid substrate, a rapid downwards acceleration of the top of the drop surface and the rapid spreading process. The experiments also confirm non-monotonic spreading behaviour observed previously only in numerical simulations, and suggest substantial inertial effects on the relation between an apparent contact angle and the dimensionless contact-line speed. © 2012 Cambridge University Press.

  1. Propagation of capillary waves and ejection of small droplets in rapid droplet spreading

    KAUST Repository

    Ding, Hang; Li, Erqiang; Zhang, F. H.; Sui, Yi; Spelt, Peter D M; Thoroddsen, Sigurdur T

    2012-01-01

    A new regime of droplet ejection following the slow deposition of drops onto a near-complete wetting solid substrate is identified in experiments and direct numerical simulations; a coalescence cascade subsequent to pinch-off is also observed for the first time. Results of numerical simulations indicate that the propagation of capillary waves that lead to pinch-off is closely related to the self-similar behaviour observed in the inviscid recoil of droplets, and that motions of the crests and troughs of capillary waves along the interface do not depend on the wettability and surface tension (or Ohnesorge number). The simulations also show that a self-similar theory for universal pinch-off can be used for the time evolution of the pinching neck. However, although good agreement is also found with the double-cone shape of the pinching neck for droplet ejection in drop deposition on a pool of the same liquid, substantial deviations are observed in such a comparison for droplet ejection in rapid drop spreading (including the newly identified regime). This deviation is shown to result from interference by the solid substrate, a rapid downwards acceleration of the top of the drop surface and the rapid spreading process. The experiments also confirm non-monotonic spreading behaviour observed previously only in numerical simulations, and suggest substantial inertial effects on the relation between an apparent contact angle and the dimensionless contact-line speed. © 2012 Cambridge University Press.

  2. ON THE VALIDITY OF THE 'HILL RADIUS CRITERION' FOR THE EJECTION OF PLANETS FROM STELLAR HABITABLE ZONES

    International Nuclear Information System (INIS)

    Cuntz, M.; Yeager, K. E.

    2009-01-01

    We challenge the customary assumption that the entering of an Earth-mass planet into the Hill radius (or multiples of the Hill radius) of a giant planet is a valid criterion for its ejection from the star-planet system. This assumption has widely been used in previous studies, especially those with an astrobiological focus. As intriguing examples, we explore the dynamics of the systems HD 20782 and HD 188015. Each system possesses a giant planet that remains in or crosses into the stellar habitable zone, thus effectively thwarting the possibility of habitable terrestrial planets. In the case of HD 188015, the orbit of the giant planet is almost circular, whereas in the case of HD 20782, it is extremely elliptical. Although it is found that Earth-mass planets are eventually ejected from the habitable zones of these systems, the 'Hill Radius Criterion' is identified as invalid for the prediction of when the ejection is actually occurring.

  3. Analysis of the NEACRP PWR rod ejection benchmark problems with DIF3D-K

    International Nuclear Information System (INIS)

    Kim, M.H.

    1994-01-01

    Analyses of the NEACRP PWR rod ejection transient benchmark problems with the DIF3D-K nodal kinetics code are presented. The DIF3D-K results are shown to be in generally good agreement with results obtained using other codes, in particular reference results previously generated with the PANTHER code. The sensitivity of the transient results to the DIF3D-K input parameters (such as time step size, radial and axial node sizes, and the mesh structure employed for fuel pin heat conduction calculation) are evaluated and discussed. In addition, the potential in reducing computational effort by application of the improved quasistatic scheme (IQS) to these rod ejection transients, which involve very significant flux shape changes and thermal-hydraulic feedback is evaluated

  4. High-Intensity Interval Training in Patients with Heart Failure with Reduced Ejection Fraction

    DEFF Research Database (Denmark)

    Ellingsen, Øyvind; Halle, Martin; Conraads, Viviane

    2017-01-01

    Background: Small studies have suggested that high-intensity interval training (HIIT) is superior to moderate continuous training (MCT) in reversing cardiac remodeling and increasing aerobic capacity in patients with heart failure with reduced ejection fraction. The present multicenter trial...... compared 12 weeks of supervised interventions of HIIT, MCT, or a recommendation of regular exercise (RRE). Methods: Two hundred sixty-one patients with left ventricular ejection fraction ≤35% and New York Heart Association class II to III were randomly assigned to HIIT at 90% to 95% of maximal heart rate...... ventricular end-diastolic diameter from baseline to 12 weeks. Results: Groups did not differ in age (median, 60 years), sex (19% women), ischemic pathogenesis (59%), or medication. Change in left ventricular end-diastolic diameter from baseline to 12 weeks was not different between HIIT and MCT (P=0.45); left...

  5. Radio ejection and broad forbidden emission lines in the Seyfert galaxy NGC 7674

    International Nuclear Information System (INIS)

    Unger, S.W.; Pedlar, A.; Axon, D.J.

    1988-01-01

    The Seyfert nucleus in NGC7674 (Mkn533) is remarkable for its broad asymmetric forbidden line profiles, which extend 2000 kms -1 blueward of the systemic velocity. The galaxy also has a compact nuclear radio source. We have obtained new high-resolution radio observations of NGC7674, using the European VLBI network and the VLA, and optical spectroscopic observations using the Isaac Newton Telescope. The radio maps reveal a triple radio source with a total angular extent of about 0.7 arcsec, and provide evidence that the radio emission is powered by collimated ejection. In the plane of the sky, the ejection axis appears roughly perpendicular to the galactic rotation axis. Although the dominant radio components are separated by 0.5 arcsec, the broad [OIII]λ5007 line emission is confined to within about 0.25 arcsec of the continuum nucleus. (author)

  6. Measurement of ejected electrons from collisions of He+ ions with He, Ne, and Ar at the intermediate energies

    International Nuclear Information System (INIS)

    Tokoro, Nobuhiro; Oda, Nobuo

    1985-01-01

    The doubly differential cross sections for electron production, differential in angle and energy of the electrons, for 5-25 keV He + impact on helium, neon and argon have been measured in the electron energy range of 2-200 eV at the ejection angles from 30 0 to 150 0 with respect to the incident ion beam. The characteristic features of continnum parts of ejected electron spectra are described for each collision system. (author)

  7. Effects of projection and background correction method upon calculation of right ventricular ejection fraction using first-pass radionuclide angiography

    International Nuclear Information System (INIS)

    Caplin, J.L.; Flatman, W.D.; Dymond, D.S.

    1985-01-01

    There is no consensus as to the best projection or correction method for first-pass radionuclide studies of the right ventricle. We assessed the effects of two commonly used projections, 30 degrees right anterior oblique and anterior-posterior, on the calculation of right ventricular ejection fraction. In addition two background correction methods, planar background correction to account for scatter, and right atrial correction to account for right atrio-ventricular overlap were assessed. Two first-pass radionuclide angiograms were performed in 19 subjects, one in each projection, using gold-195m (half-life 30.5 seconds), and each study was analysed using the two methods of correction. Right ventricular ejection fraction was highest using the right anterior oblique projection with right atrial correction 35.6 +/- 12.5% (mean +/- SD), and lowest when using the anterior posterior projection with planar background correction 26.2 +/- 11% (p less than 0.001). The study design allowed assessment of the effects of correction method and projection independently. Correction method appeared to have relatively little effect on right ventricular ejection fraction. Using right atrial correction correlation coefficient (r) between projections was 0.92, and for planar background correction r = 0.76, both p less than 0.001. However, right ventricular ejection fraction was far more dependent upon projection. When the anterior-posterior projection was used calculated right ventricular ejection fraction was much more dependent on correction method (r = 0.65, p = not significant), than using the right anterior oblique projection (r = 0.85, p less than 0.001)

  8. Accretion and ejection in resistive GR-MHD

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Qian

    2017-05-10

    In this thesis, the accretion and ejection processes from a black hole accretion system is investigated by means of resistive general relativistic magnetohydrodynamic simulations. As a supplement to the results from prior research with non-relativistic simulations, my results confirm that the winds and outflows originated from thin accretion disks can also be observed in general relativistic simulations. In the first part, the execution of the implementation of resistivity, namely magnetic diffusivity, into the existing non-resistive general relativistic magnetohydrodynamic code HARM is illustrated. The test simulations of the new code rHARM include the comparison with analytical solution of the diffusion equation and a classic shock tube test. rHARM shows reliable performances in these tests. In the second part, rHARM is applied to investigate the evolution of magnetized tori. The results show that the existence of resistivity leads to inefficient accretions of matter from tori onto black holes by weakening the magnetorotational instability inside the tori. An indication for a critical magnetic diffusivity in this simulation setup is found beyond which no magnetorotational instability develops in the linear regime. In the third part, as the main purpose of this PhD project, rHARM is used to perform simulations of magnetically diffusive thin accretion disks that are threaded by a large-scale poloidal magnetic field around non-rotating and rotating black holes. These long-term simulations last 3000 code time units, which are about 195 rotation periods at the disk inner boundary, correspondingly. Their computational domains extend from black hole horizon to 80 Schwarzschild radii. Outflows driven from the accretion disk are clearly seen. These outflows have the typical radial velocity of 0.1 speed of light. In my analyses, I argue that these outflows are driven by the magnetic pressure gradient from the toroidal magnetic field generated by the rotation of the disk

  9. Ground experimental investigations into an ejected spray cooling system for space closed-loop application

    Directory of Open Access Journals (Sweden)

    Zhang Hongsheng

    2016-06-01

    Full Text Available Spray cooling has proved its superior heat transfer performance in removing high heat flux for ground applications. However, the dissipation of vapor–liquid mixture from the heat surface and the closed-loop circulation of the coolant are two challenges in reduced or zero gravity space environments. In this paper, an ejected spray cooling system for space closed-loop application was proposed and the negative pressure in the ejected condenser chamber was applied to sucking the two-phase mixture from the spray chamber. Its ground experimental setup was built and experimental investigations on the smooth circle heat surface with a diameter of 5 mm were conducted with distilled water as the coolant spraying from a nozzle of 0.51 mm orifice diameter at the inlet temperatures of 69.2 °C and 78.2 °C under the conditions of heat flux ranging from 69.76 W/cm2 to 311.45 W/cm2, volume flow through the spray nozzle varying from 11.22 L/h to 15.76 L/h. Work performance of the spray nozzle and heat transfer performance of the spray cooling system were analyzed; results show that this ejected spray cooling system has a good heat transfer performance and provides valid foundation for space closed-loop application in the near future.

  10. The classification of ambiguity in polarimetric reconstruction of coronal mass ejection

    International Nuclear Information System (INIS)

    Dai, Xinghua; Wang, Huaning; Huang, Xin; Du, Zhanle; He, Han

    2014-01-01

    The Thomson scattering theory indicates that there exist explicit and implicit ambiguities in polarimetric analyses of coronal mass ejection (CME) observations. We suggest a classification for these ambiguities in CME reconstruction. Three samples, including double explicit, mixed, and double implicit ambiguity, are shown with the polarimetric analyses of STEREO CME observations. These samples demonstrate that this classification is helpful for improving polarimetric reconstruction.

  11. Measurement of left ventricular ejection fraction using gated 99mTc-sestamibi myocardial planar images: Comparison to contrast ventriculography

    International Nuclear Information System (INIS)

    Parker, D.A.; Lloret, R.L.; Barilla, F.; Douthat, L.; Gheorghiade, M.

    1991-01-01

    Using the new myocardial perfusion agent 99mTc-sestamibi and multigated acquisition on a nuclear medicine gamma camera, the left ventricular ejection fraction (LVEF) was derived in 13 patients with coronary artery disease (CAD). Cross-sectional activity profiles were used to measure the left ventricle from end-diastolic and end-systolic images. Several different geometric methods were then utilized to derive ejection fractions from the nuclear data. Comparison of the resultant ejection fractions to those obtained from contrast ventriculography showed significant correlation for all geometric methods (P less than 0.01, Sy X x = 6.2 to 9.6). The authors conclude that in patients with CAD one or more of these simple geometric methods can provide a useful estimate of the LVEF when performing 99mTc-sestamibi multigated myocardial perfusion imaging

  12. Real-Time Analysis of Global Waves Accompanying Coronal Mass Ejections

    Science.gov (United States)

    2016-06-30

    This allows the intensity variation of the pulse to be measured as a percentage increase in intensity relative to the background corona. To mitigate... intensity of the wave relative to the background chromosphere. Upon completion of the code, it was applied to a series of solar flares observed by both...wave-like features seen in H observations of the solar chromosphere. They are strongly associated with coronal mass ejections (CMEs) and can cover a

  13. Coronal mass ejections and large geomagnetic storms

    International Nuclear Information System (INIS)

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.

    1990-01-01

    Previous work indicates that coronal mass ejection (CME) events in the solar wind at 1 AU can be identified by the presence of a flux of counterstreaming solar wind halo electrons (above about 80 eV). Using this technique to identify CMEs in 1 AU plasma data, the authors find that most large geomagnetic storms during the interval surrounding the last solar maximum (Aug. 1978-Oct. 1982) were associated with Earth-passage of interplanetary disturbances in which the Earth encountered both a shock and the CME driving the shock. However, only about one CME in six encountered by Earth was effective in causing a large geomagnetic storm. Slow CMEs which did not interact strongly with the ambient solar wind ahead were particularly ineffective in a geomagnetic sense

  14. The First ALMA Observation of a Solar Plasmoid Ejection from an X-Ray Bright Point

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, Masumi [National Astronomical Observatory of Japan, Tokyo, 181-8588 (Japan); Hudson, Hugh S. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); White, Stephen M. [Space Vehicles Directorate, Air Force Research Laboratory, Kirtland AFB, NM 87117-5776 (United States); Bastian, Timothy S. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Iwai, Kazumasa, E-mail: masumi.shimojo@nao.ac.jp [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, 464-8601 (Japan)

    2017-05-20

    Eruptive phenomena such as plasmoid ejections or jets are important features of solar activity and have the potential to improve our understanding of the dynamics of the solar atmosphere. Such ejections are often thought to be signatures of the outflows expected in regions of fast magnetic reconnection. The 304 Å EUV line of helium, formed at around 10{sup 5} K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously at millimeter wavelengths with ALMA, at EUV wavelengths with SDO /AIA, and in soft X-rays with Hinode /XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV, and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal ∼10{sup 5} K plasma that is optically thin at 100 GHz, or a ∼10{sup 4} K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.

  15. Exercise testing in asymptomatic or minimally symptomatic aortic regurgitation: relationship of left ventricular ejection fraction to left ventricular filling pressure during exercise

    International Nuclear Information System (INIS)

    Boucher, C.A.; Wilson, R.A.; Kanarek, D.J.; Hutter, A.M. Jr.; Okada, R.D.; Liberthson, R.R.; Strauss, H.W.; Pohost, G.M.

    1983-01-01

    Exercise radionuclide angiography is being used to evaluate left ventricular function in patients with aortic regurgitation. Ejection fraction is the most common variable analyzed. To better understand the rest and exercise ejection fraction in this setting, 20 patients with asymptomatic or minimally symptomatic severe aortic regurgitation were studied. All underwent simultaneous supine exercise radionuclide angiography and pulmonary gas exchange measurement and underwent rest and exercise measurement of pulmonary artery wedge pressure (PAWP) during cardiac catheterization. Eight patients had a peak exercise PAWP less than 15 mm Hg (group 1) and 12 had a peak exercise PAWP greater than or equal to 15 mm Hg (group 2). Group 1 patients were younger and more were in New York Heart Association class I. The two groups had similar cardiothoracic ratios, changes in ejection fractions with exercise, and rest and exercise regurgitant indexes. Using multiple regression analysis, the best correlate of the exercise PAWP was peak oxygen uptake (r . -0.78, p less than 0.01). No other measurement added significantly to the regression. When peak oxygen uptake was excluded, rest and exercise ejection fraction also correlated significantly (r . -0.62 and r . -0.60, respectively, p less than 0.01). Patients with asymptomatic or minimally symptomatic severe aortic regurgitation have a wide spectrum of cardiac performance in terms of the PAWP during exercise. The absolute rest and exercise ejection fraction and the level of exercise achieved are noninvasive variables that correlate with exercise PAWP in aortic regurgitation, but the change in ejection fraction with exercise by itself is not

  16. Two massive stars possibly ejected from NGC 3603 via a three-body encounter

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Chené, A.-N.; Schnurr, O.

    2013-03-01

    We report the discovery of a bow-shock-producing star in the vicinity of the young massive star cluster NGC 3603 using archival data of the Spitzer Space Telescope. Follow-up optical spectroscopy of this star with Gemini-South led to its classification as O6 V. The orientation of the bow shock and the distance to the star (based on its spectral type) suggest that the star was expelled from the cluster, while the young age of the cluster (˜2 Myr) implies that the ejection was caused by a dynamical few-body encounter in the cluster's core. The relative position on the sky of the O6 V star and a recently discovered O2 If*/WN6 star (located on the opposite side of NGC 3603) allows us to propose that both objects were ejected from the cluster via the same dynamical event - a three-body encounter between a single (O6 V) star and a massive binary (now the O2 If*/WN6 star). If our proposal is correct, then one can `weigh' the O2 If*/WN6 star using the conservation of the linear momentum. Given a mass of the O6 V star of ≈30 M⊙, we found that at the moment of ejection the mass of the O2 If*/WN6 star was ≈175 M⊙. Moreover, the observed X-ray luminosity of the O2 If*/WN6 star (typical of a single star) suggests that the components of this originally binary system have merged (e.g., because of encounter hardening).

  17. Combined Multipoint Remote and In Situ Observations of the Asymmetric Evolution of a Fast Solar Coronal Mass Ejection

    OpenAIRE

    Rollett, T.; Moestl, C.; Temmer, M.; Frahm, R. A.; Davies, J. A.; Veronig, A. M.; Vrsnak, B.; Amerstorfer, U. V.; Farrugia, C. J.; Zic, T.; Zhang, T. L.

    2014-01-01

    We present an analysis of the fast coronal mass ejection (CME) of 2012 March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the...

  18. Designing a Tool System for Lowering Friction during the Ejection of In-Die Sintered Micro Gears

    Directory of Open Access Journals (Sweden)

    Emanuele Cannella

    2017-07-01

    Full Text Available The continuous improvements in micro-forging technologies generally involve process, material, and tool design. The field assisted sintering technique (FAST is a process that makes possible the manufacture of near-net-shape components in a closed-die setup. However, the final part quality is affected by the influence of friction during the ejection phase, caused by radial expansion of the compacted and sintered powder. This paper presents the development of a pre-stressed tool system for the manufacture of micro gears made of aluminum. By using the hot isostatic pressing (HIP sintering process and different combinations of process parameters, the designed tool system was compared to a similar tool system designed without a pre-stressing strategy. The comparison between the two tool systems was based on the ejection force and part fidelity. The ejection force was measured during the tests, while the part fidelity was documented using an optical microscope and computed tomography in order to obtain a multi-scale characterization. The results showed that the use of pre-stress reduced the porosity in the gear by 40% and improved the dimensional fidelity by more than 75% compared to gears produced without pre-stress.

  19. Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria.

    Science.gov (United States)

    Brand, M D; Reynafarje, B; Lehninger, A L

    1976-01-01

    The number of protons ejected during electron transport per pair of electrons per energy-conserving site (the H+/site ratio) was measured in rat liver mitochondria by three different methods under conditions in which transmembrane movements of endogenous phosphate were minized or eliminated. (1) In the Ca2+ pulse method, between 3.5 and 4.0 molecules of 3-hydroxybutyrate and 1.75 to 2.0 Ca2+ ions were accumulated per 2 e- per site during Ca2+ induced electron transport in the presence of rotenone, when measured under conditions in which movements of endogenous phosphate were negligible. Since entry of 3-hydroxybutyrate requires its protonation to the free acid these data correspond to an H+/site ratio of 3.5-4.0 (2) In the oxygen pulse method addition of known amounts of oxygen to anaerobic mitochondria in the presence of substrate yielded H+/site ratios of 3.0 when phosphate transport was eliminated by addition of N-ethylmaleimide or by anaerobic washing to remove endogenous phosphate. In the absence of such measures the observed H+/site ratio was 2.0. (3) In the reductant pulse method measurement of the initial steady rates of H+ ejection and oxygen consumption by mitochondria in an aerobic medium after addition of substrate gave H+/site near 4.0 in the presence of N-ethylmaleimide; in the absence of the inhibitor the observed ratio was only 2.0. These and other experiments reported indicate that the values of 2.0 earlier obtained for the H+/site ratio by Mitchell and Moyle [Biochem J. (1967) 105, 1147-1162] and others were underestimates due to the unrecognized masking of H+ ejection by movements of endogenous phosphate. The results presented here show that the H+/site ratio of mitochondrial electron transport is at least 3.0 and may be as high as 4.0. PMID:1061146

  20. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction

    OpenAIRE

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-01-01

    Background Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Methods Older adults with HF and reduced ejection fraction (n = 25, age 75 ? 7 years) were compared to 25 healthy age- and gender-matched cont...

  1. Heart Failure with Preserved Ejection Fraction – Concept, Pathophysiology, Diagnosis and Challenges for Treatment

    Directory of Open Access Journals (Sweden)

    Lidija Veterovska Miljkovik

    2015-07-01

    Full Text Available Heart failure (HF with preserved left ventricular (LV ejection fraction (HFpEF occurs in 40 to 60% of the patients with HF, with a prognosis which is similar to HF with reduced ejection fraction (HFrEF. HFpEF pathophysiology is different from that of HFrEF, and has been characterized with diastolic dysfunction. Diastolic dysfunction has been defined with elevated left ventricular stiffness, prolonged iso-volumetric LV relaxation, slow LV filing and elevated LV end-diastolic pressure. Arterial hypertension occurs in majority cases with HFpEF worldwide. Patients are mostly older and obese. Diabetes mellitus and atrial fibrillation appear proportionally in a high frequency of patients with HFpEF. The HFpEF diagnosis is based on existence of symptoms and signs of heart failure, normal or approximately normal ejection and diagnosing of LV diastolic dysfunction by means of heart catheterization or Doppler echocardiography and/or elevated concentration of plasma natriuretic peptide. The present recommendations for HFpEF treatment include blood pressure control, heart chamber frequency control when atrial fibrillation exists, in some situations even coronary revascularization and an attempt for sinus rhythm reestablishment. Up to now, it is considered that no medication or a group of medications improve the survival of HFpEF patients. Due to these causes and the bad prognosis of the disorder, rigorous control is recommended of the previously mentioned precipitating factors for this disorder. This paper presents a universal review of the most important parameters which determine this disorder.

  2. ULYSSES OBSERVATIONS OF THE MAGNETIC CONNECTIVITY BETWEEN CORONAL, MASS EJECTIONS AND THE SUN

    Science.gov (United States)

    Riley, Pete; Goslin, J. T.; Crooker, . U.

    2004-01-01

    We have investigated the magnetic connectivity of coronal mass ejections (CMEs) to the Sun using Ulysses observations of suprathermal electrons at various distances between 1 and 5.2 AU. Drawing on ideas concerning the eruption and evolution of CMEs, we had anticipated that there might be a tendency for CMEs to contain progressively more open field lines, as reconnection back at the Sun either opened or completely disconnected previously closed field lines threading the CMEs. Our results, however, did not yield any discernible trend. By combining the potential contribution of CMEs to the heliospheric flux with the observed buildup of flux during the course of the solar cycle, we also derive a lower limit for the reconnection rate of CMEs that is sufficient to avoid the "flux catastrophe" paradox. This rate is well below our threshold of detectability. Subject headings: solar wind - Sun: activity - Sun: corona - Sun: coronal mass ejections (CMEs) - On-line material: color figure Sun: magnetic fields

  3. REDEFINING THE BOUNDARIES OF INTERPLANETARY CORONAL MASS EJECTIONS FROM OBSERVATIONS AT THE ECLIPTIC PLANE

    Energy Technology Data Exchange (ETDEWEB)

    Cid, C.; Palacios, J.; Saiz, E.; Guerrero, A. [Space Research Group—Space Weather, Departamento de Física y Matemáticas, Universidad de Alcalá, Alcalá de Henares (Spain)

    2016-09-01

    On 2015 January 6–7, an interplanetary coronal mass ejection (ICME) was observed at L1. This event, which can be associated with a weak and slow coronal mass ejection, allows us to discuss the differences between the boundaries of the magnetic cloud and the compositional boundaries. A fast stream from a solar coronal hole surrounding this ICME offers a unique opportunity to check the boundaries’ process definition and to explain differences between them. Using Wind and ACE data, we perform a complementary analysis involving compositional, magnetic, and kinematic observations providing relevant information regarding the evolution of the ICME as travelling away from the Sun. We propose erosion, at least at the front boundary of the ICME, as the main reason for the difference between the boundaries, and compositional signatures as the most precise diagnostic tool for the boundaries of ICMEs.

  4. Shock-related radio emission during coronal mass ejection lift-off?

    OpenAIRE

    Pohjolainen, S.

    2008-01-01

    Aims: We identify the source of fast-drifting decimetric-metric radio emission that is sometimes observed prior to the so-called flare continuum emission. Fast-drift structures and continuum bursts are also observed in association with coronal mass ejections (CMEs), not only flares. Methods: We analyse radio spectral features and images acquired at radio, H-alpha, EUV, and soft X-ray wavelengths, during an event close to the solar limb on 2 June 2003. Results: The fast-drifting decimetric-met...

  5. An efficient, selective collisional ejection mechanism for inner-shell population inversion in laser-driven plasmas

    Energy Technology Data Exchange (ETDEWEB)

    SCHROEDER,W. ANDREAS; NELSON,THOMAS R.; BORISOV,A.B.; LONGWORTH,J.W.; BOYER,K.; RHODES,C.K.

    2000-06-07

    A theoretical analysis of laser-driven collisional ejection of inner-shell electrons is presented to explain the previously observed anomalous kilovolt L-shell x-ray emission spectra from atomic Xe cluster targets excited by intense sub-picosecond 248nrn ultraviolet radiation. For incident ponderomotively-driven electrons photoionized by strong above threshold ionization, the collisional ejection mechanism is shown to be highly l-state and significantly n-state (i.e. radially) selective for time periods shorter than the collisional dephasing time of the photoionized electronic wavefunction. The resulting preference for the collisional ejection of 2p electrons by an ionized 4p state produces the measured anomalous Xe(L) emission which contains direct evidence for (i) the generation of Xe{sup 27+}(2p{sup 5}3d{sup 10}) and Xe{sup 28+}(2p{sup 5}3d{sup 9}) ions exhibiting inner-shell population inversion and (ii) a coherent correlated electron state collision responsible for the production of double 2p vacancies. For longer time periods, the selectivity of this coherent impact ionization mechanism is rapidly reduced by the combined effects of intrinsic quantum mechanical spreading and dephasing--in agreement with the experimentally observed and extremely strong {minus}{lambda}{sup {minus}6} pump-laser wavelength dependence of the efficiency of inner-shell (2p) vacancy production in Xe clusters excited in underdense plasmas.

  6. Impact of a systolic parameter, defined as the ratio of right brachial pre-ejection period to ejection time, on the relationship between brachial-ankle pulse wave velocity and left ventricular diastolic function.

    Science.gov (United States)

    Hsu, Po-Chao; Lin, Tsung-Hsien; Lee, Chee-Siong; Chu, Chun-Yuan; Su, Ho-Ming; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung

    2011-04-01

    Arterial stiffness is correlated with left ventricular (LV) diastolic function as well as susceptibility to LV systolic function. Therefore, if LV systolic function is not known, the relationship between arterial stiffness and LV diastolic function is difficult to determine. A total of 260 patients were included in the study. The brachial-ankle pulse wave velocity (baPWV) and the ratio of right brachial pre-ejection period to ejection time (rbPEP/rbET) were measured using an ABI-form device. Patients were classified into four groups. Groups 1, 2, 3 and 4 were patients with rbPEP/rbET and baPWV below the median, rbPEP/rbET above but baPWV below the median, rbPET/rbET below but baPWV above the median, and rbPET/rbET and baPWV above the median, respectively. The LV ejection fractions in groups 1 and 3 were higher than those in groups 2 and 4 (Pwave velocity to Ea that were comparable to those in groups 3 and 4. In conclusion, rbPEP/rbET had an impact on the relationship between baPWV and LV diastolic function. In patients with high rbPEP/rbET but low baPWV, low baPWV may not indicate good LV diastolic function but implies that cardiac dysfunction may precede vascular dysfunction in such patients. When interpreting the relationship between baPWV and LV diastolic function, the rbPEP/rbET value obtained from the same examination should be considered.

  7. Exercise physiology in heart failure and preserved ejection fraction.

    Science.gov (United States)

    Haykowsky, Mark J; Kitzman, Dalane W

    2014-07-01

    Recent advances in the pathophysiology of exercise intolerance in patients with heart failure with preserved ejection fraction (HFPEF) suggest that noncardiac peripheral factors contribute to the reduced peak V(o2) (peak exercise oxygen uptake) and to its improvement after endurance exercise training. A greater understanding of the peripheral skeletal muscle vascular adaptations that occur with physical conditioning may allow for tailored exercise rehabilitation programs. The identification of specific mechanisms that improve whole body and peripheral skeletal muscle oxygen uptake could establish potential therapeutic targets for medical therapies and a means to follow therapeutic response. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Comparative Examination of Plasmoid Ejection at Mercury, Earth, Jupiter, and Saturn

    Science.gov (United States)

    Slavin, James A.; Jackman, Caitriona M.; Vogt, Marissa F.

    2011-01-01

    The onset of magnetic reconnection in the near-tail of Earth, long known to herald the fast magnetospheric convection that leads to geomagnetic storms and substorms, is very closely associated with the formation and down-tail ejection of magnetic loops or flux ropes called plasmoids. Plasmoids form as a result of the fragmentation of preexisting cross-tail current sheet as a result of magnetic reconnection. Depending upon the number, location, and intensity of the individual reconnection X-lines and how they evolve, some of these loop-like or helical magnetic structures may also be carried sunward. At the inner edge of the tail they are expected to "re-reconnect' with the planetary magnetic field and dissipate. Plasmoid ejection has now been observed in the magnetotails of Mercury, Earth, Jupiter, and Saturn. These magnetic field and charged particle measurements have been taken by the MESSENGER, Voyager, Galileo, Cassini, and numerous Earth missions. Here we present a comparative examination of the structure and dynamics of plasmoids observed in the magnetotails of these 5 planets. The results are used to learn more about how these magnetic structures form and to assess similarities and differences in the nature of magnetotail reconnection at these planets.

  9. CORONAL MASS EJECTIONS AS A MECHANISM FOR PRODUCING IR VARIABILITY IN DEBRIS DISKS

    International Nuclear Information System (INIS)

    Osten, Rachel; Livio, Mario; Lubow, Steve; Pringle, J. E.; Soderblom, David; Valenti, Jeff

    2013-01-01

    Motivated by recent observations of short-timescale variations in the infrared emission of circumstellar disks, we propose that coronal mass ejections can remove dust grains on timescales as short as a few days. Continuous monitoring of stellar activity, coupled with infrared observations, can place meaningful constraints on the proposed mechanism.

  10. The Verification of Coupled Neutronics Thermal-Hydraulics Code NODAL3 in the PWR Rod Ejection Benchmark

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2014-01-01

    Full Text Available A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the few-group neutron diffusion equation in 3-dimensional geometry for typical PWR static and transient analyses. The spatial variables are treated by using a polynomial nodal method while for the neutron dynamic solver the adiabatic and improved quasistatic methods are adopted. In this paper we report the benchmark calculation results of the code against the OECD/NEA CRP PWR rod ejection cases. The objective of this work is to determine the accuracy of NODAL3 code in analysing the reactivity initiated accident due to the control rod ejection. The NEACRP PWR rod ejection cases are chosen since many organizations participated in the NEA project using various methods as well as approximations, so that, in addition to the reference solutions, the calculation results of NODAL3 code can also be compared to other codes’ results. The transient parameters to be verified are time of power peak, power peak, final power, final average Doppler temperature, maximum fuel temperature, and final coolant temperature. The results of NODAL3 code agree well with the PHANTHER reference solutions in 1993 and 1997 (revised. Comparison with other validated codes, DYN3D/R and ANCK, shows also a satisfactory agreement.

  11. Molecular dynamics simulation study of the influence of the lattice atom potential function upon atom ejection processes

    International Nuclear Information System (INIS)

    Harrison, D.E. Jr.; Webb, R.P.

    1982-01-01

    A molecular dynamics simulation has been used to investigate the sensitivity of atom ejection processes from a single-crystal target to changes in the atom-atom potential function. Four functions, three constructed from the Gibson potentials with Anderman's attractive well, and a fouth specifically developed for this investigation, were investigated in the Cu/Ar/sup +/ system over a range of ion energies from 1.0 to 10.0 kev with the KSE-B ion-atom potential. Well depths and widths also were varied. The calculations were done at normal incidence on the fcc (111) crystal orientation. Computed values were compared with experimental data where they exist. Sputtering yields, multimer yield ratios, layer yield ratios, and the ejected atom energy distribution vary systematically with the parameters of the atom-atom potential function. Calculations also were done with the modified Moliere function. Yields and other properties fall exactly into the positions predicted from the Born-Mayer function analysis. Simultaneous analysis of the ejected atom energy distribution and the ion energy dependence of the sputtering yield curve provides information about the parameters of both the wall and well portions of the atom-atom potential function

  12. Usefulness of the troponin-ejection fraction product to differentiate stress cardiomyopathy from ST-segment elevation myocardial infarction.

    Science.gov (United States)

    Nascimento, Francisco O; Yang, Solomon; Larrauri-Reyes, Maiteder; Pineda, Andres M; Cornielle, Vertilio; Santana, Orlando; Heimowitz, Todd B; Stone, Gregg W; Beohar, Nirat

    2014-02-01

    The presentation of stress cardiomyopathy (SC) with nonobstructive coronary artery disease mimics that of ST-segment elevation myocardial infarction (STEMI) due to coronary occlusion. No single parameter has been successful in differentiating the 2 entities. We thus sought to develop a noninvasive clinical tool to discriminate between these 2 conditions. We retrospectively reviewed 59 consecutive cases of SC at our institution from July 2005 through June 2011 and compared those with 60 consecutives cases of angiographically confirmed STEMI treated with primary percutaneous coronary intervention in the same period. All patients underwent acute echocardiography, and the peak troponin I level was determined. The troponin-ejection fraction product (TEFP) was derived by multiplying the peak troponin I level and the echocardiographically derived left ventricular ejection fraction. Comparing the SC and STEMI groups, the mean left ventricular ejection fraction at the time of presentation was 30 ± 9% versus 44 ± 11%, respectively (p statistic 0.91 ± 0.02, p <0.001). In conclusion, for patients not undergoing emergent angiography, the TEFP may be used with high accuracy to differentiate SC with nonobstructive coronary artery disease from true STEMI due to coronary occlusion. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Left atrial function in heart failure with impaired and preserved ejection fraction.

    Science.gov (United States)

    Fang, Fang; Lee, Alex Pui-Wai; Yu, Cheuk-Man

    2014-09-01

    Left atrial structural and functional changes in heart failure are relatively ignored parts of cardiac assessment. This review illustrates the pathophysiological and functional changes in left atrium in heart failure as well as their prognostic value. Heart failure can be divided into those with systolic dysfunction and heart failure with preserved ejection fraction (HFPEF). Left atrial enlargement and dysfunction commonly occur in systolic heart failure, in particular, in idiopathic dilated cardiomyopathy. Atrial enlargement and dysfunction also carry important prognostic value in systolic heart failure, independently of known parameters such as left ventricular ejection fraction. In HFPEF, there is evidence of left atrial enlargement, impaired atrial compliance, and reduction of atrial pump function. This occurs not only at rest but also during exercise, indicating significant impairment of atrial contractile reserve. Furthermore, atrial dyssynchrony is common in HFPEF. These factors further contribute to the development of new onset or progression of atrial arrhythmias, in particular, atrial fibrillation. Left atrial function is an integral part of cardiac function and its structural and functional changes in heart failure are common. As changes of left atrial structure and function have different clinical implications in systolic heart failure and HFPEF, routine assessment is warranted.

  14. Value of Age, Creatinine, and Ejection Fraction (ACEF Score) in Assessing Risk in Patients Undergoing Percutaneous Coronary Interventions in the 'All-Comers' LEADERS Trial

    NARCIS (Netherlands)

    Wykrzykowska, Joanna J.; Garg, Scot; Onuma, Yoshinobu; de Vries, Ton; Goedhart, Dick; Morel, Marie-Angele; van Es, Gerrit-Anne; Buszman, Pawel; Linke, Axel; Ischinger, Thomas; Klauss, Volker; Corti, Roberto; Eberli, Franz; Wijns, William; Morice, Marie-Claude; Di Mario, Carlo; van Geuns, Robert Jan; Juni, Peter; Windecker, Stephan; Serruys, Patrick W.

    2011-01-01

    Background-The age, creatinine, and ejection fraction (ACEF) score (age/left ventricular ejection fraction+1 if creatinine >2.0 mg/dL) has been established as an effective predictor of clinical outcomes in patients undergoing elective coronary artery bypass surgery; however, its utility in

  15. Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness

    International Nuclear Information System (INIS)

    Lindsay, G.M.; Russell, C.T.; Luhmann, J.G.

    1995-01-01

    Previous studies have indicated that the largest geomagnetic storms are caused by extraordinary increases in the solar wind velocity and/or southward interplanetary magnetic field (IMF) produced by coronal mass ejections (CMEs) and their associated interplanetary shocks. However, much more frequent small to moderate increases in solar wind velocity and compressions in the IMF can be caused by either coronal mass ejections or fast/slow stream interactions. This study examines the relative statistics of the magnitudes of disturbances associated with the passage of both interplanetary coronal mass ejections and stream interaction regions, using an exceptionally continuous interplanetary database from the Pioneer Venus Orbiter at 0.7 AU throughout most of solar cycle 21. It is found that both stream interaction and CMEs produce magnetic fields significantly larger than the nominal IMF. Increases in field magnitude that are up to 2 and 3 times higher than the ambient field are observed for stream interaction regions and CMEs, respectively. Both stream interactions and CMEs produce large positive and negative Β z components at 0.7 AU, but only CMEs produce Β z magnitudes greater than 35 nT. CMEs are often associated with sustained periods of positive or negative Β z whereas stream interaction regions are more often associated with fluctuating Β z . CMEs tend to produce larger solar wind electric fields than stream interactions. Yet stream interactions tend to produce larger dynamic pressures than CMEs. Dst predictions based on solar wind duskward electric field and dynamic pressure indicate that CMEs produce the largest geomagnetic disturbances while the low-speed portion of stream interaction regions are least geomagnetically effective. Both stream interaction regions and CMEs contribute to low and moderate levels of activity with relative importance determined by their solar-cycle-dependent occurrence rates

  16. Formation of hot intergalactic gas by gas ejection from a galaxy in an early explosive era

    International Nuclear Information System (INIS)

    Ikeuchi, Satoru

    1977-01-01

    Chemical evolution of a galaxy in an early explosive era is studied by means of one zone model. Calculating the thermal properties of interstellar gas and the overlapping factor of expanding supernova-remnant shells, the gas escape conditions from a galaxy are examined. From these, it is shown that the total mass of ejected gas from a galaxy amounts to 10 -- 40% of the initial mass of a galaxy. The ejected gas extends to the intergalactic space and the whole universe. The mass, the heavy-element abundance and other physical properties of thus formed intergalactic gas are investigated for various parameters of galactic evolution. Some other effects of gas release on the evolution of a galaxy and the evolution of the universe are discussed. (auth.)

  17. Comparison of equilibrium radionuclide and contrast angiographic measurements of left ventricular peak ejection and filling rates and their time intervals

    Energy Technology Data Exchange (ETDEWEB)

    Sugrue, D.D.; Dickie, S.; Newman, H.; Myers, M.J.; Lavender, J.P.; McKenna, W.J. (Royal Postgraduate Medical School, London (UK))

    1984-10-01

    A comparison has been made of the equilibrium radionuclide and contrast angiographic estimates of normalized peak rates of ejection (PER) and filling (PFR) and their time intervals in twenty-one patients with cardiac disorders. Contrast angiographic and radionuclide measurements of left ventricular ejection fraction (LVEF), PER and PFR correlated well but time intervals correlated poorly. Mean values for radionuclide LVEF, PER and PFR were significantly lower and radionuclide time intervals were significantly longer compared to contrast angiography measurements.

  18. Ejection of rocky and icy material from binary star systems: implications for the origin and composition of 1I/`Oumuamua

    Science.gov (United States)

    Jackson, Alan P.; Tamayo, Daniel; Hammond, Noah; Ali-Dib, Mohamad; Rein, Hanno

    2018-06-01

    In single-star systems like our own Solar system, comets dominate the mass budget of bodies ejected into interstellar space, since they form further away and are less tightly bound. However, 1I/`Oumuamua, the first interstellar object detected, appears asteroidal in its spectra and lack of detectable activity. We argue that the galactic budget of interstellar objects like 1I/`Oumuamua should be dominated by planetesimal material ejected during planet formation in circumbinary systems, rather than in single-star systems or widely separated binaries. We further show that in circumbinary systems, rocky bodies should be ejected in comparable numbers to icy ones. This suggests that a substantial fraction of interstellar objects discovered in future should display an active coma. We find that the rocky population, of which 1I/`Oumuamua seems to be a member, should be predominantly sourced from A-type and late B-star binaries.

  19. Homicide by Sch from a syringe-like dart ejected by a compound crossbow.

    Science.gov (United States)

    Guo, Wei; Luo, Guochang; Wang, Hao; Meng, Xiangzhi

    2015-02-01

    The compound crossbow can be used to eject syringe-like dart loaded with poisonous solution. Succinylcholine (Sch) is a short-acting neuromuscular blocker medically used to achieve complete relaxation of muscle for a good intubation condition. Without the help of an artificial respirator, intramuscular injection of a large dose of Sch can paralyze the respiratory muscle and result in the receiver's death. In this paper, we present the homicide case of a young male killed by Sch from a syringe-like dart ejected by a compound crossbow. The subcutaneous and muscular hemorrhages observed around the entry were more severe than that caused by a medical injection. Additionally, other autopsy results showed the external appearance of a pinhole, general asphyxia signs and pathological findings which were not characteristic. The discovery of a syringe-like dart at the scene is the critical clue and reason for analyzing for Sch, which is commonly used to load syringe-like dart to paralyze and steal dog in the countryside of China. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  20. Structural and Functional Phenotyping of the Failing Heart: Is the Left Ventricular Ejection Fraction Obsolete?

    Science.gov (United States)

    Bristow, Michael R; Kao, David P; Breathett, Khadijah K; Altman, Natasha L; Gorcsan, John; Gill, Edward A; Lowes, Brian D; Gilbert, Edward M; Quaife, Robert A; Mann, Douglas L

    2017-11-01

    Diagnosis, prognosis, treatment, and development of new therapies for diseases or syndromes depend on a reliable means of identifying phenotypes associated with distinct predictive probabilities for these various objectives. Left ventricular ejection fraction (LVEF) provides the current basis for combined functional and structural phenotyping in heart failure by classifying patients as those with heart failure with reduced ejection fraction (HFrEF) and those with heart failure with preserved ejection fraction (HFpEF). Recently the utility of LVEF as the major phenotypic determinant of heart failure has been challenged based on its load dependency and measurement variability. We review the history of the development and adoption of LVEF as a critical measurement of LV function and structure and demonstrate that, in chronic heart failure, load dependency is not an important practical issue, and we provide hemodynamic and molecular biomarker evidence that LVEF is superior or equal to more unwieldy methods of identifying phenotypes of ventricular remodeling. We conclude that, because it reliably measures both left ventricular function and structure, LVEF remains the best current method of assessing pathologic remodeling in heart failure in both individual clinical and multicenter group settings. Because of the present and future importance of left ventricular phenotyping in heart failure, LVEF should be measured by using the most accurate technology and methodologic refinements available, and improved characterization methods should continue to be sought. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Exquisite Nova Light Curves from the Solar Mass Ejection Imager (SMEI)

    OpenAIRE

    Hounsell, R.; Bode, M. F.; Hick, P. P.; Buffington, A.; Jackson, B. V.; Clover, J. M.; Shafter, A. W.; Darnley, M. J.; Mawson, N. R.; Steele, I. A.; Evans, A.; Eyres, S. P. S.; O'Brien, T. J.

    2010-01-01

    We present light curves of three classical novae (KT Eridani, V598 Puppis, V1280 Scorpii) and one recurrent nova (RS Ophiuchi) derived from data obtained by the Solar Mass Ejection Imager (SMEI) on board the Coriolis satellite. SMEI provides near complete sky-map coverage with precision visible-light photometry at 102-minute cadence. The light curves derived from these sky maps offer unprecedented temporal resolution around, and especially before, maximum light, a phase of the nova eruption n...

  2. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C

    Energy Technology Data Exchange (ETDEWEB)

    Margutti, Raffaella [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Kamble, A.; Milisavljevic, D.; Drout, M.; Chakraborti, S.; Kirshner, R.; Parrent, J. T.; Patnaude, D.; Soderberg, A. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Zapartas, E.; De Mink, S. E. [Anton Pannenkoek Institute for Astronomy, University of Amsterdam, 1090 GE Amsterdam (Netherlands); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States); Risaliti, G. [INAF-Arcetri Astrophysical Observatory, Largo E. Fermi 5, I-50125 Firenze (Italy); Zauderer, B. A. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bietenholz, M. [Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3 (Canada); Cantiello, M. [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Chomiuk, L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Fong, W. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Grefenstette, B. [Cahill Center for Astrophysics, 1216 E. California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); Guidorzi, C. [University of Ferrara, Department of Physics and Earth Sciences, via Saragat 1, I-44122 Ferrara (Italy); and others

    2017-02-01

    We present multi-wavelength observations of SN 2014C during the first 500 days. These observations represent the first solid detection of a young extragalactic stripped-envelope SN out to high-energy X-rays ∼40 keV. SN 2014C shows ordinary explosion parameters ( E {sub k} ∼ 1.8 × 10{sup 51} erg and M {sub ej} ∼ 1.7 M{sub ⊙}). However, over an ∼1 year timescale, SN 2014C evolved from an ordinary hydrogen-poor supernova into a strongly interacting, hydrogen-rich supernova, violating the traditional classification scheme of type-I versus type-II SNe. Signatures of the SN shock interaction with a dense medium are observed across the spectrum, from radio to hard X-rays, and revealed the presence of a massive shell of ∼1 M {sub ⊙} of hydrogen-rich material at ∼6 × 10{sup 16} cm. The shell was ejected by the progenitor star in the decades to centuries before collapse. This result challenges current theories of massive star evolution, as it requires a physical mechanism responsible for the ejection of the deepest hydrogen layer of H-poor SN progenitors synchronized with the onset of stellar collapse. Theoretical investigations point at binary interactions and/or instabilities during the last nuclear burning stages as potential triggers of the highly time-dependent mass loss. We constrain these scenarios utilizing the sample of 183 SNe Ib/c with public radio observations. Our analysis identifies SN 2014C-like signatures in ∼10% of SNe. This fraction is reasonably consistent with the expectation from the theory of recent envelope ejection due to binary evolution if the ejected material can survive in the close environment for 10{sup 3}–10{sup 4} years. Alternatively, nuclear burning instabilities extending to core C-burning might play a critical role.

  3. Benefits and Harms of Sacubitril in Adults With Heart Failure and Reduced Left Ventricular Ejection Fraction.

    Science.gov (United States)

    Aronow, Wilbert S; Shamliyan, Tatyana A

    2017-10-01

    The quality of evidence regarding patient-centered outcomes in adults with heart failure (HF) after sacubitril combined with valsartan has not been systematically appraised. We searched 4 databases in February 2017 and graded the quality of evidence according to the Grading of Recommendations Assessment, Development and Evaluation working group approach. We reviewed 1 meta-analysis and multiple publications of 2 randomized controlled trials (RCT) and 1 unpublished RCT. In adults with HF and reduced ejection fraction, low-quality evidence from 1 RCT of 8,432 patients suggests that sacubitril combined with valsartan reduces all-cause (number needed to treat [NNT] to prevent 1 event [NNTp] = 35) and cardiovascular mortality (NNTp = 32), hospitalization (NNTp = 11), emergency visits (NNTp = 69), and serious adverse effects, leading to treatment discontinuation (NNTp = 63) and improves quality of life when compared with enalapril. In adults with HF and preserved ejection fraction, very low-quality evidence from 1 RCT of 301 patients suggests that there are no differences in mortality, morbidity, or adverse effects between sacubitril combined with valsartan and valsartan alone. In conclusion, in adults with HF and reduced ejection fraction, to reduce cardiovascular mortality and hospitalizations and improve quality of life, clinicians may recommend sacubitril combined with valsartan over angiotensin-converting enzyme inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Clinical and Echocardiographic Characteristics and Cardiovascular Outcomes According to Diabetes Status in Patients With Heart Failure and Preserved Ejection Fraction

    DEFF Research Database (Denmark)

    Kristensen, Søren L; Mogensen, Ulrik M; Jhund, Pardeep S

    2017-01-01

    in Heart Failure With Preserved Ejection Fraction) according to history of diabetes mellitus. Cox regression models were used to estimate hazard ratios for cardiovascular outcomes adjusted for known predictors, including age, sex, natriuretic peptides, and comorbidity. Echocardiographic data were available...... versus 29 kg/m2), worse Minnesota Living With Heart Failure score (48 versus 40), higher median N-terminal pro-B-type natriuretic peptide concentration (403 versus 320 pg/mL; all Pdifference in left ventricular ejection fraction. Patients with diabetes...

  5. The great escape - II. Exoplanet ejection from dying multiple-star systems

    Science.gov (United States)

    Veras, Dimitri; Tout, Christopher A.

    2012-05-01

    Extrasolar planets and belts of debris orbiting post-main-sequence single stars may become unbound as the evolving star loses mass. In multiple-star systems, the presence or co-evolution of the additional stars can significantly complicate the prospects for orbital excitation and escape. Here, we investigate the dynamical consequences of multi-phasic, non-linear mass loss and establish a criterion for a system of any stellar multiplicity to retain a planet whose orbit surrounds all of the parent stars. For single stars which become white dwarfs, this criterion can be combined with the Chandrasekhar Limit to establish the maximum allowable mass-loss rate for planet retention. We then apply the criterion to circumbinary planets in evolving binary systems over the entire stellar mass phase space. Through about 105 stellar evolutionary track realizations, we characterize planetary ejection prospects as a function of binary separation, stellar mass and metallicity. This investigation reveals that planets residing at just a few tens of au from a central concentration of stars are susceptible to escape in a wide variety of multiple systems. Further, planets are significantly more susceptible to ejection from multiple-star systems than from single-star systems for a given system mass. For system masses greater than about 2 M⊙, multiple-star systems represent the greater source of free-floating planets.

  6. Effect of exercise on circulating atrial natriuretic peptide and left ventricular ejection fraction in healthy persons and patients with coronary artery disease

    International Nuclear Information System (INIS)

    Nakamura, Tetsuya; Ichikawa, Shuichi; Sakamaki, Tetsuo; Suzuki, Tadashi; Iizuka, Toshio; Yagi, Atsuko; Kurashina, Toshiaki; Kumakura, Hisao; Murata, Kazuhiko

    1988-01-01

    Radionuclide angiographic measurements of left ventricular ejection fraction were performed at rest and during exercise in 10 normal persons and 11 patients with coronary artery disease. Exercise was continued on a supine bicycle exercise table up to a symptom-limited maximum. Plasma levels of atrial natriuretic peptide (ANP) were also determined at rest and during exercise. Ejection fraction in the normal volunteers was 59±3% (mean±SEM) at rest and increased significantly (p<0.01) to 69±3% during exercise. Ejection fraction in the patients was 47±5% at rest and did not change significantly during exercise (51±7%). Plasma ANP in the normals rose significantly (p<0.01) from 62±16 pg/ml at rest to 454±94 pg/ml during exercise. Plasma ANP in the patients also rose significantly (p<0.01) from 231±102 pg/ml to 794±170 pg/ml. The response of plasma ANP to exercise was enhanced significantly (p<0.05) in the patients as compared with the normals in relation to ejection fraction by analysis of covariance. In both the normals and the patients, plasma ANP was inversely and significantly correlated with ejection fraction during exercise (r=0.46, p<0.05, n=21), however, not at rest. Because it has been reported that plasma ANP is correlated positively with pulmonary artery wedge pressure, the estimation of plasma ANP during an exercise stress test might be used for the evaluation of cardiac reserve in coronary artery disease. (author)

  7. Biomarker Profiles of Acute Heart Failure Patients With a Mid-Range Ejection Fraction.

    Science.gov (United States)

    Tromp, Jasper; Khan, Mohsin A F; Mentz, Robert J; O'Connor, Christopher M; Metra, Marco; Dittrich, Howard C; Ponikowski, Piotr; Teerlink, John R; Cotter, Gad; Davison, Beth; Cleland, John G F; Givertz, Michael M; Bloomfield, Daniel M; Van Veldhuisen, Dirk J; Hillege, Hans L; Voors, Adriaan A; van der Meer, Peter

    2017-07-01

    In this study, the authors used biomarker profiles to characterize differences between patients with acute heart failure with a midrange ejection fraction (HFmrEF) and compare them with patients with a reduced (heart failure with a reduced ejection fraction [HFrEF]) and preserved (heart failure with a preserved ejection fraction [HFpEF]) ejection fraction. Limited data are available on biomarker profiles in acute HFmrEF. A panel of 37 biomarkers from different pathophysiological domains (e.g., myocardial stretch, inflammation, angiogenesis, oxidative stress, hematopoiesis) were measured at admission and after 24 h in 843 acute heart failure patients from the PROTECT trial. HFpEF was defined as left ventricular ejection fraction (LVEF) of ≥50% (n = 108), HFrEF as LVEF of <40% (n = 607), and HFmrEF as LVEF of 40% to 49% (n = 128). Hemoglobin and brain natriuretic peptide levels (300 pg/ml [HFpEF]; 397 pg/ml [HFmrEF]; 521 pg/ml [HFrEF]; p trend  <0.001) showed an upward trend with decreasing LVEF. Network analysis showed that in HFrEF interactions between biomarkers were mostly related to cardiac stretch, whereas in HFpEF, biomarker interactions were mostly related to inflammation. In HFmrEF, biomarker interactions were both related to inflammation and cardiac stretch. In HFpEF and HFmrEF (but not in HFrEF), remodeling markers at admission and changes in levels of inflammatory markers across the first 24 h were predictive for all-cause mortality and rehospitalization at 60 days (p interaction  <0.05). Biomarker profiles in patients with acute HFrEF were mainly related to cardiac stretch and in HFpEF related to inflammation. Patients with HFmrEF showed an intermediate biomarker profile with biomarker interactions between both cardiac stretch and inflammation markers. (PROTECT-1: A Study of the Selective A1 Adenosine Receptor Antagonist KW-3902 for Patients Hospitalized With Acute HF and Volume Overload to Assess Treatment Effect on Congestion and Renal

  8. Computer simulations of material ejection during C{sub 60} and Ar{sub m} bombardment of octane and β-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Palka, G.; Kanski, M.; Maciazek, D. [Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Garrison, B.J. [Department of Chemistry, 104 Chemistry Building, Penn State University, University Park, PA 16802 (United States); Postawa, Z., E-mail: zbigniew.postawa@uj.edu.pl [Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland)

    2015-06-01

    Molecular dynamics (MD) computer simulations are used to investigate material ejection and fragment formation during keV C{sub 60} and Ar{sub m} (m = 60, 101, 205, 366, 872 and 2953) bombardment of organic solids composed from octane and β-carotene molecules at 0° and 45° impact angle. Both systems are found to sputter efficiently. For the octane system, material removal occurs predominantly by ejection of intact molecules, while fragment emission is a significant ejection channel for β-carotene. A difference in the molecular dimensions is proposed to explain this observation. It has been shown that the dependence of the sputtering yield Y on the primary kinetic energy E and the cluster size n can be expressed in a simplified form if represented in reduced units. A linear and nonlinear dependence of the Y/n on the E/n are identified and the position of the transition point from the linear to nonlinear regions depends on the size of the cluster projectile. The impact angle has a minor influence on the shape of the simplified representation.

  9. Left ventricular filling rate change as an earlier indicator than ejection fraction of chemotherapeutic cardiotoxicity in cancer paptents' nuclear medicine MUGA scans

    International Nuclear Information System (INIS)

    Miko, T.G.

    2004-01-01

    According to Wang Siegel has long suggested that an earlier indicator of damage to the hearts of cancer patients undergoing potentially cardiotoxic chemotherapy could be change in the left ventricular filling rate (LVFT) rather than dependence on the left ventricular ejection fraction (LVEF) as a measure for when to discontinue chemotherapy. Currently ejection fraction obtained by performing the nuclear medicine MUGA scan is the gold standard for determining further treatment of patients with these cardiotoxic agents. We are seeking to see if changes in filling rate (LVFR) are an earlier indicator of cardiotoxicity by performing a retrospective analysis of MUGA scans performed at our facility pre- and post-chemotherapy and performing a statistical analysis of changes in ejection fraction us filling rate in patients known to have cardiotoxic changes due to chemotherapy. (authors)

  10. Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vršnak, B.; Taktakishvili, A.

    2010-01-01

    Understanding space weather is not only important for satellite operations and human exploration of the solar system but also to phenomena here on Earth that may potentially disturb and disrupt electrical signals. Some of the most violent space weather effects are caused by coronal mass ejections...... (CMEs), but in order to predict the caused effects, we need to be able to model their propagation from their origin in the solar corona to the point of interest, e.g., Earth. Many such models exist, but to understand the models in detail we must understand the primary input parameters. Here we...... investigate the parameter space of the ENLILv2.5b model using the CME event of 25 July 2004. ENLIL is a time‐dependent 3‐D MHD model that can simulate the propagation of cone‐shaped interplanetary coronal mass ejections (ICMEs) through the solar system. Excepting the cone parameters (radius, position...

  11. PINEX-2: pinhole-TV imaging of fuel ejection from an internally vented capsule

    International Nuclear Information System (INIS)

    Berzins, G.J.; Lumpkin, A.H.

    1979-01-01

    The LASL pinhole-intensified TV system was used at the TREAT reactor to image an internally vented, fuel-ejection capsule designed and built by HEDL. Several improvements in the imaging system over PINEX-1 were incorporated. A sequence of 16-ms TV frames shows axial expansion, expulsion of fuel from the pin, and retention of clad integrity during the time of coverage

  12. Ejection of matrix-polymer clusters in matrix-assisted laser evaporation: Experimental observations

    International Nuclear Information System (INIS)

    Sellinger, Aaron T; Leveugle, Elodie; Gogick, Kristy; Peman, Guillaume; Zhigilei, Leonid V; Fitz-Gerald, James M

    2007-01-01

    The morphology of polymer films deposited with the matrix-assisted pulsed laser evaporation (MAPLE) technique is explored for various target compositions and laser fluences. Composite targets of 1 to 5 wt.% poly(methyl methacrylate), PMMA, dissolved in a volatile matrix material, toluene, were ablated using an excimer laser at fluences ranging from 0.045 J/cm 2 to 0.75 J/cm 2 . Films were deposited on Si substrates at room temperature in a dynamic 100 mTorr Ar atmosphere. Scanning electron microscopy (SEM) imaging revealed that the morphology of the deposited films varied significantly with both laser fluence and PMMA concentration. The morphologies of large deposited particles were similar to that of deflated ''balloons''. It is speculated that during ablation of the frozen target, clusters comprised of both polymer and solvent ranging from 100 nm to 10 μm in size are ejected and deposited onto the substrate. The solvent begins to evaporate from the clusters during flight from the target, but does not completely evaporate until deposited on the room temperature substrate. The dynamics of the toluene evaporation may lead to the formation of the deflated structures. This explanation is supported by the observation of stable polymer-matrix droplets ejected in molecular dynamics simulations of MAPLE

  13. RECONNECTION PROPERTIES OF LARGE-SCALE CURRENT SHEETS DURING CORONAL MASS EJECTION ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, B. J.; Kazachenko, M. D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Edmondson, J. K. [Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Guidoni, S. E. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-07-20

    We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch and Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to ∼100:1), Lundquist number (∼10{sup 3}), and reconnection rate (inflow-to-outflow ratios reaching ∼0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs’ formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions.

  14. Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE

    Science.gov (United States)

    Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.

    2018-03-01

    Forecasting the geomagnetic effects of solar storms, known as coronal mass ejections (CMEs), is currently severely limited by our inability to predict the magnetic field configuration in the CME magnetic core and by observational effects of a single spacecraft trajectory through its 3-D structure. CME magnetic flux ropes can lead to continuous forcing of the energy input to the Earth's magnetosphere by strong and steady southward-pointing magnetic fields. Here we demonstrate in a proof-of-concept way a new approach to predict the southward field Bz in a CME flux rope. It combines a novel semiempirical model of CME flux rope magnetic fields (Three-Dimensional Coronal ROpe Ejection) with solar observations and in situ magnetic field data from along the Sun-Earth line. These are provided here by the MESSENGER spacecraft for a CME event on 9-13 July 2013. Three-Dimensional Coronal ROpe Ejection is the first such model that contains the interplanetary propagation and evolution of a 3-D flux rope magnetic field, the observation by a synthetic spacecraft, and the prediction of an index of geomagnetic activity. A counterclockwise rotation of the left-handed erupting CME flux rope in the corona of 30° and a deflection angle of 20° is evident from comparison of solar and coronal observations. The calculated Dst matches reasonably the observed Dst minimum and its time evolution, but the results are highly sensitive to the CME axis orientation. We discuss assumptions and limitations of the method prototype and its potential for real time space weather forecasting and heliospheric data interpretation.

  15. A transcatheter intracardiac shunt device for heart failure with preserved ejection fraction (REDUCE LAP-HF)

    DEFF Research Database (Denmark)

    Hasenfuß, Gerd; Hayward, Chris; Burkhoff, Dan

    2016-01-01

    BACKGROUND: Heart failure with preserved ejection fraction (HFPEF) is a common, globally recognised, form of heart failure for which no treatment has yet been shown to improve symptoms or prognosis. The pathophysiology of HFPEF is complex but characterised by increased left atrial pressure, espec...

  16. High-entropy ejections from magnetized proto-neutron star winds: implications for heavy element nucleosynthesis

    Science.gov (United States)

    Thompson, Todd A.; ud-Doula, Asif

    2018-06-01

    Although initially thought to be promising for production of the r-process nuclei, standard models of neutrino-heated winds from proto-neutron stars (PNSs) do not reach the requisite neutron-to-seed ratio for production of the lanthanides and actinides. However, the abundance distribution created by the r-, rp-, or νp-processes in PNS winds depends sensitively on the entropy and dynamical expansion time-scale of the flow, which may be strongly affected by high magnetic fields. Here, we present results from magnetohydrodynamic simulations of non-rotating neutrino-heated PNS winds with strong dipole magnetic fields from 1014 to 1016 G, and assess their role in altering the conditions for nucleosynthesis. The strong field forms a closed zone and helmet streamer configuration at the equator, with episodic dynamical mass ejections in toroidal plasmoids. We find dramatically enhanced entropy in these regions and conditions favourable for third-peak r-process nucleosynthesis if the wind is neutron-rich. If instead the wind is proton-rich, the conditions will affect the abundances from the νp-process. We quantify the distribution of ejected matter in entropy and dynamical expansion time-scale, and the critical magnetic field strength required to affect the entropy. For B ≳1015 G, we find that ≳10-6 M⊙ and up to ˜10-5 M⊙ of high-entropy material is ejected per highly magnetized neutron star birth in the wind phase, providing a mechanism for prompt heavy element enrichment of the universe. Former binary companions identified within (magnetar-hosting) supernova remnants, the remnants themselves, and runaway stars may exhibit overabundances. We provide a comparison with a semi-analytic model of plasmoid eruption and discuss implications and extensions.

  17. Experiments on the injection, confinement, and ejection of electron clouds in a magnetic mirror

    International Nuclear Information System (INIS)

    Eckhouse, S.; Fisher, A.; Rostoker, N.

    1978-01-01

    A cloud of (5 to 10 keV) electrons is injected into a magnetic mirror field. The magnetic field rises in 40--120 μsec to a maximum of 10 kG. Two methods of injection were tried: In the first, the injector is located at the mirror midplane and electrons are injected perpendicular to the magnetic field lines. In the second scheme, the injector is located near the mirror maximum. Up to about 10 11 electrons were trapped in both schemes with a mean kinetic energy of 0.3 MeV. Measured confinement time is limited only by the magnetic field decay time. The compressed electron cloud executes electrostatic oscillations. The frequency of the oscillation is proportional to the number of electrons trapped, and it is independent of the value of the magnetic field and the initial electron energy. The electron cloud was ejected along the mirror axis and properties of the ejected electron cloud were measured by x-ray pulses from bremstrahlung of electrons on the vacuum system wall and by collecting electrons on a Faraday cup

  18. Coincident detection of electrons ejected at large angles and target recoil ions produced in multiply ionizing collisions for the 1-MeV/u Oq++Ar collision system

    International Nuclear Information System (INIS)

    Gaither III, C.C.; Breinig, M.; Berryman, J.W.; Hasson, B.F.; Richards, J.D.; Price, K.

    1993-01-01

    The angular distributions of energetic electrons ejected at angles between 45 degree and 135 degree with respect to the incident-beam direction have been measured in coincidence with the charge states of the target recoil ions produced in multiply ionizing collisions for the 1-MeV/u O q+ (q=4,7)+Ar collision systems. These measurements have been made for ∼179-, ∼345-, and ∼505-eV electrons. Additionally, the energy distributions of electrons ejected into specific angular regions have been measured. Ar LMM satellite Auger electrons appear as a peak in the energy spectrum of electrons ejected at all large angles. The center of this peak is found at an electron energy of ∼179 eV. Electrons with ∼179 eV energy, ejected at large angles, are preferentially produced in coincidence with recoil ions of charge state 4+. Electrons with ∼345 eV energy and ∼505 eV energy ejected at large angles are preferentially produced in coincidence with recoil ions of charge state 3+. The angular distributions for these electrons are strongly peaked in the forward direction; essentially no electrons are observed at angles larger than 90 degree. These results are consistent with the dominant production mechanism for energetic electrons ejected at large angles being a binary-encounter process. Differential cross sections have been calculated from these angular distributions. They are on the order of 10 -21 cm 2 /(eV sr)

  19. Equilibrium radionuclide assessment of left ventricular ejection and filling. Comparison of list mode-and multigated frame-mode measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sugrue, D.D.; McKenna, W.J.; Dickie, S.; Oakley, C.M.; Myers, M.J.; Lavender, J.P. (Royal Postgraduate Medical School, London (UK))

    1983-10-01

    The relationship as studied between radionuclide indices of left ventricular systolic and diastolic function acquired in conventional multigated frame-mode compared to list-mode in patients with sinus rhythm. The study showed that frame-mode and list-mode measurements of ejection and filling indices are not significantly different in these patients but that backward reformatting of data acquired in list-mode is necessary to measure the atrial contribution to LV stroke counts. It was concluded that valid measurements of left ventricular systolic ejection and diastolic filling can be made in patients in sinus rhythm using frame-mode acquisition with the exception of measurements of the contribution from atrial systole to stroke volume.

  20. The 2011 Outburst of Recurrent Nova T Pyx: X-Ray Observations Expose the White Dwarf Mass and Ejection Dynamics

    Science.gov (United States)

    Chomiuk, Laura; Nelson, Thomas; Mukai, Koji; Solokoski, J. L.; Rupen, Michael P.; Page, Kim L.; Osborne, Julian P.; Kuulkers, Erik; Mioduszewski, Amy J.; Roy, Nirupam; hide

    2014-01-01

    The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign.We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (approximately 45 electron volts) and implies that the white dwarf in T Pyx is significantly below the Chandrasekhar mass (approximately 1 M). The late turn-on time of the super-soft component yields a large nova ejecta mass (approximately greater than 10(exp -5) solar mass), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a approximately 1 kiloelectron volt thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.

  1. Development of an Inflatable Head/Neck Restraint System for Ejection Seats

    Science.gov (United States)

    1977-02-28

    crewman’s head . It has been observed that low pressures, about 2 psi (1.38 nt/cm2 ) to 4 psi (2.76 nt/cm2 ), create some "spring back" or trampoline ...neck ring Neck injury Head rotation 210 ABSTRACT (Continue on rev’erse side If necessary end identify by block number) 4A ringý-shaped inflatable head ...injuries due to violent forward head rotation at the time of ejection thrust and parachute opening shock. Inflation of the neck ring will,’ be conducted by a

  2. A SHORT-DURATION EVENT AS THE CAUSE OF DUST EJECTION FROM MAIN-BELT COMET P/2012 F5 (GIBBS)

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, F. [Instituto de Astrofisica de Andalucia, CSIC, Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Licandro, J.; Cabrera-Lavers, A., E-mail: fernando@iaa.es [Instituto de Astrofisica de Canarias, c/Via Lactea s/n, E-38200 La Laguna, Tenerife (Spain)

    2012-12-10

    We present observations and an interpretative model of the dust environment of the Main-Belt Comet P/2010 F5 (Gibbs). The narrow dust trails observed can be interpreted unequivocally as an impulsive event that took place around 2011 July 1 with an uncertainty of {+-}10 days, and a duration of less than a day, possibly of the order of a few hours. The best Monte Carlo dust model fits to the observed trail brightness imply ejection velocities in the range 8-10 cm s{sup -1} for particle sizes between 30 cm and 130 {mu}m. This weak dependence of velocity on size contrasts with that expected from ice sublimation and agrees with that found recently for (596) Scheila, a likely impacted asteroid. The particles seen in the trail are found to follow a power-law size distribution of index Almost-Equal-To -3.7. Assuming that the slowest particles were ejected at the escape velocity of the nucleus, its size is constrained to about 200-300 m in diameter. The total ejected dust mass is {approx}> 5 Multiplication-Sign 10{sup 8} kg, which represents approximately 4%-20% of the nucleus mass.

  3. Angular distribution of electrons ejected by charged particles. IV. Combined classical and quantum-mechanical treatment

    NARCIS (Netherlands)

    Boesten, L.G.J.; Bonsen, T.F.M.

    1975-01-01

    Angular distributions of electrons ejected from helium by 100 and 300 keV protons have been calculated by a method which is a comination of the classical three-body collision theory and the quantum-mechanical Born approximation. The results of this theory have been compared with the corresponding

  4. Mass Ejection from the Remnant of a Binary Neutron Star Merger: Viscous-radiation Hydrodynamics Study

    Science.gov (United States)

    Fujibayashi, Sho; Kiuchi, Kenta; Nishimura, Nobuya; Sekiguchi, Yuichiro; Shibata, Masaru

    2018-06-01

    We perform long-term general relativistic neutrino radiation hydrodynamics simulations (in axisymmetry) for a massive neutron star (MNS) surrounded by a torus, which is a canonical remnant formed after the binary neutron star merger. We take into account the effects of viscosity, which is likely to arise in the merger remnant due to magnetohydrodynamical turbulence. The viscous effect plays key roles for the mass ejection from the remnant in two phases of the evolution. In the first t ≲ 10 ms, a differential rotation state of the MNS is changed to a rigidly rotating state. A shock wave caused by the variation of its quasi-equilibrium state induces significant mass ejection of mass ∼(0.5–2.0) × {10}-2 {M}ȯ for the α-viscosity parameter of 0.01–0.04. For the longer-term evolution with ∼0.1–10 s, a significant fraction of the torus material is ejected. We find that the total mass of the viscosity-driven ejecta (≳ {10}-2 {M}ȯ ) could dominate over that of the dynamical ejecta (≲ {10}-2 {M}ȯ ). The electron fraction, Y e , of the ejecta is always high enough (Y e ≳ 0.25) that this post-merger ejecta is lanthanide-poor; hence, the opacity of the ejecta is likely to be ∼10–100 times lower than that of the dynamical ejecta. This indicates that the electromagnetic signal from the ejecta would be rapidly evolving, bright, and blue if it is observed from a small viewing angle (≲45°) for which the effect of the dynamical ejecta is minor.

  5. Right heart ejection fraction, ventricular volumes, and left to right cardiac shunt measurements with a conventional Anger camera in congenital heart disease

    International Nuclear Information System (INIS)

    Cook, S.A.; Go, R.T.; MacIntyre, W.J.; Moodie, D.S.; Houser, T.S.; Ceimo, J.; Underwood, D.; Yiannikas, J.

    1982-01-01

    The object of this investigation was to demonstrate that a conventional Anger camera can be used for measurement of right heart ejection fraction, ventricular volumes and left to right shunts in routine clinical determinations. The automatic selection of chamber and lung regions, the recirculation subtraction of recirculation, and the filtering of the right heart ejection fraction dilution curves are all done entirely without operator intervention. Thus, this entire evaluation has been incorporated into the routine procedures of patient care

  6. Effect of calf stimulation on milk ejection in reindeer (Rangifer tarandus

    Directory of Open Access Journals (Sweden)

    Hallvard Gjøstein

    2004-04-01

    Full Text Available The objective of this study was to establish methods for stimulating the milk ejection in reindeer kept for milking purpose. Calves were used to stimulate milk does’ let down. In experiment 1, five does were allowed olfactory, acoustic and visual contact with their calves during milking, whereas four does were milked in isolation. The treatment of the groups was alternated every day during the eight days experiment. Olfactory, acoustic and visual contact with the calf did not influence the doe’s milk yield. The milk yield varied significantly between individual females within treatment (P < 0.01. In experiment 2, the calves were allowed to suckle their mother for a short period (two seconds prior to milking being initiated. The same alternate design as in experiment 1 with groups consisting of three and two animals respectively was used, and the experiment lasted four days. The pre-suckling stimulation significantly increased the milk ejection measured as milk yield (P < 0.05, and the residual milk after the treatment was negectible. Moreover, the milk ejection varied between individual females within treatment (P < 0.05. We conclude that it is possible to achieve a complete milk removal by machine milking after the does have been pre-stimulated by suckling of calves. Olfactory, acoustic and visual contact with calves during milking failed to influence the milk ejection in this study. However, the results have to be interpreted with caution due to limited sample size.Abstract in Norwegian / Sammendrag: Formålet med dette forsøket var å prøve ut ulike metoder for å stimulere nedgivninga av melk hos rein. Kalvene ble tatt i bruk for å stimulere nedgivninga. I forsøk 1 hadde simla lyd-, lukt og synskontakt med kalven mens melkingen pågikk. Vi benyttet et ”switch back design” der fem simler hadde kontakt med kalven under melkingen og fire ble melket uten kontakt. Behandlingen ble byttet om annenhver dag i de åtte dagene fors

  7. Ion ejection from a permanent-magnet mini-helicon thruster

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Francis F. [Electrical Engineering Department, University of California, Los Angeles 90095-1594 (United States)

    2014-09-15

    A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant values by applying to the endplate of the discharge a small voltage relative to spacecraft ground.

  8. An ice-cream cone model for coronal mass ejections

    Science.gov (United States)

    Xue, X. H.; Wang, C. B.; Dou, X. K.

    2005-08-01

    In this study, we use an ice-cream cone model to analyze the geometrical and kinematical properties of the coronal mass ejections (CMEs). Assuming that in the early phase CMEs propagate with near-constant speed and angular width, some useful properties of CMEs, namely the radial speed (v), the angular width (α), and the location at the heliosphere, can be obtained considering the geometrical shapes of a CME as an ice-cream cone. This model is improved by (1) using an ice-cream cone to show the near real configuration of a CME, (2) determining the radial speed via fitting the projected speeds calculated from the height-time relation in different azimuthal angles, (3) not only applying to halo CMEs but also applying to nonhalo CMEs.

  9. A demonstration experiment of steam-driven, high-pressure melt ejection

    International Nuclear Information System (INIS)

    Allen, M.D.; Pitch, M.; Nichols, R.T.

    1990-08-01

    A steam blowdown test was performed at the Surtsey Direct Heating Test Facility to test the steam supply system and burst diaphragm arrangement that will be used in subsequent Surtsey Direct Containment Heating (DCH) experiments. Following successful completion of the steam blowdown test, the HIPS-10S (High-Pressure Melt Streaming) experiment was conducted to demonstrate that the technology to perform steam-driven, high-pressure melt ejection (HPME) experiments has been successfully developed. In addition, the HIPS-10S experiment was used to assess techniques and instrumentation design to create the proper timing of events in HPME experiments. This document discusses the results of this test

  10. Chemically triggered ejection of membrane tubules controlled by intermonolayer friction.

    Science.gov (United States)

    Fournier, J-B; Khalifat, N; Puff, N; Angelova, M I

    2009-01-09

    We report a chemically driven membrane shape instability that triggers the ejection of a tubule growing exponentially toward a chemical source. The instability is initiated by a dilation of the exposed monolayer, which is coupled to the membrane spontaneous curvature and slowed down by intermonolayer friction. Our experiments are performed by local delivery of a basic pH solution to a giant vesicle. Quantitative fits of the data give an intermonolayer friction coefficient b approximately 2x10;{9} J s/m;{4}. The exponential growth of the tubule may be explained by a Marangoni stress yielding a pulling force proportional to its length.

  11. Rapid estimation of left ventricular ejection fraction in acute myocardial infarction by echocardiographic wall motion analysis

    DEFF Research Database (Denmark)

    Berning, J; Rokkedal Nielsen, J; Launbjerg, J

    1992-01-01

    Echocardiographic estimates of left ventricular ejection fraction (ECHO-LVEF) in acute myocardial infarction (AMI) were obtained by a new approach, using visual analysis of left ventricular wall motion in a nine-segment model. The method was validated in 41 patients using radionuclide...

  12. Is cardiac resynchronization therapy an option in heart failure patients with preserved ejection fraction? Justification for the ongoing KaRen project.

    Science.gov (United States)

    Donal, Erwan; Lund, Lars; Linde, Cecilia; Daubert, Jean-Claude

    2010-01-01

    The relevance of electrical and mechanical dyssynchrony has been demonstrated in heart failure with reduced ejection fraction. Preserved ejection fraction is present in as many as 50% of patients with chronic heart failure. Recent small studies suggest that both electrical and mechanical left ventricular dyssynchrony are sometimes present in patients with heart failure and preserved ejection fraction (HFPEF). These data remain controversial and a robust validation of this hypothesis has to be achieved. In the present paper, we review in detail the concepts and try to justify the ongoing KaRen registry. This is a prospective, multicentre, international, observational study to characterize the prevalence of electrical or mechanical dyssynchrony in HFPEF and the resultant effect on prognosis. Patients are enrolled currently at the time of an acute congestive episode. The diagnosis of HFPEF is made according to clinical data, natriuretic peptides and echocardiography for the measurement of ejection fraction. Once stabilized, patients return for a hospital check-up. They undergo clinical and biological evaluation, electrocardiography and Doppler echocardiography. Thereafter, patients are followed every six months, for at least 18 months for mortality, and heart failure-related and non-cardiovascular hospitalizations. KaRen aims to characterize electrical and mechanical dyssynchrony and to assess its prognostic impact in HFPEF. The results may improve our understanding of HFPEF and generate answers to the question of whether or not dyssynchrony could be a target for cardiac resynchronization therapy in HFPEF. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  13. Abnormal responses of ejection fraction to exercise, in healthy subjects, caused by region-of-interest selection

    International Nuclear Information System (INIS)

    Sorenson, S.G.; Caldwell, J.; Ritchie, J.; Hamilton, G.

    1981-01-01

    We performed serial exercise equilibrium radionuclide angiography in eight normal subjects with each subject executing three tests: control, after nitroglycerin, and after propranolol. The left-ventricular ejection fraction (EF) was calculated by two methods: (a) fixed region-of-interest (FROI) using a single end-diastolic ROI, and (b) variable region-of-interest (VROI) where an end-diastolic and end-systolic region of interest were used. Abnormal maximal EF responses occurred in five of eight subjects during control using FROI but in zero of eight employing VROI (p < 0.05). After nitroglycerin, three of eight subjects had abnormal responses by FROI, but zero of eight were abnormal by VROI (p < 0.05). After propranolol, blunted EF responses occurred in three of seven by both methods. Falsely abnormal EF responses to exercise RNA may occur due to the method of region-of-interest selection in normal subjects with normal or high ejection fractions

  14. Determination of left and right ventricular ejection and filling by fast cine MR imaging in the breath-hold technique in healthy subjects

    International Nuclear Information System (INIS)

    Rominger, M.B.; Bachmann, G.F.; Geuer, M.; Puzik, M.; Rau, W.S.; Pabst, W.

    1999-01-01

    Purpose: Evaluation and comparison of localized and global left and right ventricular ejection and filling with fast cine MR imaging in the breath-hold technique. Materials and Methods: 10 healthy volunteers were examined with a 1.5 Tesla unit and phased-array-coil using a segmented FLASH-2D sequence in breath-hold technique. Peak ejection and peak filling rates [PER, PFR enddiastolic volume (EDV)/s], time to PER and PFR [TPER, TPFR ms] and time of endsystole [TSYS in % RR-intervall] of all slices (complete-slice-evaluation) were evaluated and compared to three left ventricular and one right ventricular slices (reduced three-slice-evaluation). Results: There were significant regional left ventricular differences of PER (p=0.002) and PFR (p=0.007), but not of TPER and TPFR. Ejection and filling indices of the left ventricular middle slice were closest to the overall evaluation of all sections. In the left-/right-side comparison the right ventricular PFR was higher than the left ventricular (5.1 and 4.2 EDV/s) and the right ventricular TPFR was earlier than the left (92.2 and 123.5 ms). Conclusions: With fast cine techniques, regional and global left and right ventricular ejection and filling indices can be evaluated in addition to the global heart volume indices. The three-slice-evaluation represents a comprehensive, clear and time-saving method for daily routine. (orig.) [de

  15. In-depth study of in-trap high-resolution mass separation by transversal ion ejection from a multi-reflection time-of-flight device.

    Science.gov (United States)

    Fischer, Paul; Knauer, Stefan; Marx, Gerrit; Schweikhard, Lutz

    2018-01-01

    The recently introduced method of ion separation by transversal ejection of unwanted species in electrostatic ion-beam traps and multi-reflection time-of-flight devices has been further studied in detail. As this separation is performed during the ion storage itself, there is no need for additional external devices such as ion gates or traps for either pre- or postselection of the ions of interest. The ejection of unwanted contaminant ions is performed by appropriate pulses of the potentials of deflector electrodes. These segmented ring electrodes are located off-center in the trap, i.e., between one of the two ion mirrors and the central drift tube, which also serves as a potential lift for capturing incoming ions and axially ejecting ions of interest after their selection. The various parameters affecting the selection effectivity and resolving power are illustrated with tin-cluster measurements, where isotopologue ion species provide mass differences down to a single atomic mass unit at ion masses of several hundred. Symmetric deflection voltages of only 10 V were found sufficient for the transversal ejection of ion species with as few as three deflection pulses. The duty cycle, i.e., the pulse duration with respect to the period of ion revolution, has been varied, resulting in resolving powers of up to several tens of thousands for this selection technique.

  16. Quantitative gated SPECT: the effect of reconstruction filter on calculated left ventricular ejection fractions and volumes

    International Nuclear Information System (INIS)

    Wright, Graham A.; McDade, Mark; Martin, William; Hutton, William

    2002-01-01

    Gated SPECT (GSPECT) offers the possibility of obtaining additional functional information from perfusion studies, including calculation of left ventricular ejection fraction (LVEF). The calculation of LVEF relies upon the identification of the endocardial surface, which will be affected by the spatial resolution and statistical noise in the reconstructed images. The aim of this study was to compare LVEFs and ventricular volumes calculated from GSPECT using six reconstruction filters. GSPECT and radionuclide ventriculography (RNVG) were performed on 40 patients; filtered back projection was used to reconstruct the datasets with each filter. LVEFs and volumes were calculated using the Cedars-Sinai QGS package. The correlation coefficient between RNVG and GSPECT ranged from 0.81 to 0.86 with higher correlations for smoother filters. The narrowest prediction interval was 11±2%. There was a trend towards higher LVEF values with smoother filters, the ramp filter yielding LVEFs 2.55±3.10% (p<0.001) lower than the Hann filter. There was an overall fall in ventricular volumes with smoother filters with a mean difference of 13.98±10.15 ml (p<0.001) in EDV between the Butterworth-0.5 and Butterworth-0.3 filters. In conclusion, smoother reconstruction filters lead to lower volumes and higher ejection fractions with the QGS algorithm, with the Butterworth-0.4 filter giving the highest correlation with LVEFs from RNVG. Even if the optimal filter is chosen the uncertainty in the measured ejection fractions is still too great to be clinically acceptable. (author)

  17. Impact of Ejection Fraction on the Clinical Response to Cardiac Resynchronization Therapy in Mild Heart Failure

    DEFF Research Database (Denmark)

    Linde, Cecilia; Daubert, Claude; Abraham, William T

    2013-01-01

    Current guidelines recommend cardiac resynchronization therapy (CRT) in mild heart failure (HF) patients with QRS prolongation and ejection fraction (EF) ≤30%. To assess the effect of CRT in less severe systolic dysfunction, outcomes in the REsynchronization reVErses Remodeling in Systolic left v...

  18. B-Type Natriuretic Peptide and Prognosis in Heart Failure Patients With Preserved and Reduced Ejection Fraction

    NARCIS (Netherlands)

    van Veldhuisen, Dirk J.; Linssen, Gerard C. M.; Jaarsma, Tiny; van Gilst, Wiek H.; Hoes, Arno W.; Tijssen, Jan G. P.; Paulus, Walter J.; Voors, Adriaan A.; Hillege, Hans L.

    2013-01-01

    Objectives This study sought to determine the prognostic value of B-type natriuretic peptide (BNP) in patients with heart failure with preserved ejection fraction (HFPEF), in comparison to data in HF patients with reduced left ventricular (LV) EF ( Background Management of patients with HFPEF is

  19. ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B. IV, E-mail: mkocher@umich.edu [Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-01-10

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE /SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C{sup 6+}/C{sup 5+} and O{sup 7+}/O{sup 6+} depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  20. Thermodynamic analysis of a novel exhaust heat-driven non-adiabatic ejection-absorption refrigeration cycle using R290/oil mixture

    International Nuclear Information System (INIS)

    Li, Keqiao; Cai, Dehua; Liu, Yue; Jiang, Jingkai; Sun, Wei; He, Guogeng

    2017-01-01

    Graphical abstract: A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle using R290/refrigeration oil has been thermodynamically analyzed. Influences of the ejector and the non-adiabatic absorber applications on the system performance and other system operation parameters have been investigated. The simulation results will be of great help to the miniaturization and practical application of the air-cooled absorption refrigeration system. - Highlights: • A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle is proposed. • Influences of the ejector and the air-cooled non-adiabatic absorber applications on the system performance are investigated. • Variations of system performance and other system operation parameters are investigated. • R290/refrigeration oil mixture used as working pairs is analyzed. - Abstract: This paper thermodynamically analyzes a novel air-cooled non-adiabatic ejection-absorption refrigeration cycle with R290/oil mixture driven by exhaust heat. An ejector located at the upstream of the non-adiabatic absorber is employed to improve the cycle performance. Variations of COP, circulation ratio and component heat load of the system as a function of generating temperature, pressure ratio, absorption temperature, condensing temperature and evaporating temperature have been investigated in this work. The simulation results show that, compared with the conventional absorption refrigeration cycle, this non-adiabatic ejection-absorption refrigeration cycle has higher absorption efficiency, better performance, wider working condition range and lower total heat load and its COP can reach as high as 0.5297. The implementation of the ejector and the non-adiabatic absorber helps to realize the miniaturization and wider application of the absorption refrigeration system. In addition, R290/oil mixture is a kind of highly potential working pairs for absorption refrigeration.

  1. ECG-gated blood pool tomography in the determination of left ventricular volume, ejection fraction, and wall motion

    International Nuclear Information System (INIS)

    Underwood, S.R.; Ell, P.J.; Jarritt, P.H.; Emanuel, R.W.; Swanton, R.H.

    1984-01-01

    ECG-gated blood pool tomography promises to provide a ''gold standard'' for noninvasive measurement of left ventricular volume, ejection fraction, and wall motion. This study compares these measurements with those from planar radionuclide imaging and contrast ventriculography. End diastolic and end systolic blood pool images were acquired tomographically using an IGE400A rotating gamma camera and Star computer, and slices were reconstructed orthogonal to the long axis of the heart. Left ventricular volume was determined by summing the areas of the slices, and wall motion was determined by comparison of end diastolic and end systolic contours. In phantom experiments this provided an accurate measurement of volume (r=0.98). In 32 subjects who were either normal or who had coronary artery disease left ventricular volume (r=0.83) and ejection fraction (r=0.89) correlated well with those using a counts based planar technique. In 16 of 18 subjects who underwent right anterior oblique X-ray contrast ventriculography, tomographic wall motion agreed for anterior, apical, and inferior walls, but abnormal septal motion which was not apparent by contrast ventriculography, was seen in 12 subjects tomographically. All 12 had disease of the left anterior descending coronary artery and might have been expected to have abnormal septal motion. ECG-gated blood pool tomography can thus determine left ventricular volume and ejection fraction accurately, and provides a global description of wall motion in a way that is not possible from any single planar image

  2. Ergospirometry and Echocardiography in Early Stage of Heart Failure with Preserved Ejection Fraction and in Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Eduardo Lima Garcia

    2015-01-01

    Full Text Available Abstract Background: Heart failure with preserved ejection fraction is a syndrome characterized by changes in diastolic function; it is more prevalent among the elderly, women, and individuals with systemic hypertension (SH and diabetes mellitus. However, in its early stages, there are no signs of congestion and it is identified in tests by adverse remodeling, decreased exercise capacity and diastolic dysfunction. Objective: To compare doppler, echocardiographic (Echo, and cardiopulmonary exercise test (CPET variables - ergospirometry variables - between two population samples: one of individuals in the early stage of this syndrome, and the other of healthy individuals. Methods: Twenty eight outpatients diagnosed with heart failure according to Framingham’s criteria, ejection fraction > 50% and diastolic dysfunction according to the european society of cardiology (ESC, and 24 healthy individuals underwent Echo and CPET. Results: The group of patients showed indexed atrial volume and left ventricular mass as well as E/E’ and ILAV/A´ ratios significantly higher, in addition to a significant reduction in peak oxygen consumption and increased VE/VCO2 slope, even having similar left ventricular sizes in comparison to those of the sample of healthy individuals. Conclusion: There are significant differences between the structural and functional variables analyzed by Echo and CPET when comparing two population samples: one of patients in the early stage of heart failure with ejection fraction greater than or equal to 50% and another of healthy individuals.

  3. Effects of temperature and velocity of droplet ejection process of simulated nanojets onto a moving plate's surface

    International Nuclear Information System (INIS)

    Fang, T.-H.; Chang, W.-J.; Lin, S.-L.

    2006-01-01

    This paper uses molecular dynamics simulation based on the Lennard-Jones potential to study the effects that temperature and velocity have on, the nanojet droplet ejection process, when the droplet is ejected at an angle onto a moving plate's surface. According to the analysis, it was found that the width of the spreading droplet increased as the temperature and the time were increased. Also found was an energy wave phenomenon. The contact angle of the droplet deposited on the plate decreased as the temperature was increased. Furthermore, the layer phenomena became apparent when the atoms were deposited on a moving plate. Thinner film layers were obtained as the velocity of the moving plate was increased. The contact angle on the left side of the droplet was larger than that on the right side when the plate was moving from right to left

  4. Closer clutch inspection—quicker egg ejection: timing of host responses toward parasitic eggs

    Czech Academy of Sciences Publication Activity Database

    Požgayová, Milica; Procházka, Petr; Polačiková, Lenka; Honza, Marcel

    2011-01-01

    Roč. 22, č. 1 (2011), s. 46-51 ISSN 1045-2249 R&D Projects: GA AV ČR IAA600930605; GA AV ČR IAA600930903; GA ČR(CZ) GD524/05/H536; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60930519 Keywords : Acrocephalus arundinaceus * brood parasitism * egg discrimination * egg ejection time * great reed warbler * nest inspection Subject RIV: EG - Zoology Impact factor: 3.083, year: 2011

  5. Bounding analysis of containment of high pressure melt ejection in advanced light water reactors

    International Nuclear Information System (INIS)

    Additon, S.L.; Fontana, M.H.; Carter, J.C.

    1990-01-01

    This paper reports on the loadings on containment due to direct containment heating (DCH) as a result of high pressure melt ejection (HPME) in advanced light water reactors (ALWR) which were estimated using conservative, bounding analyses. The purpose of the analyses was to scope the magnitude of the possible loadings and to indicate the performance needed from potential mitigation methods, such as a cavity configuration that limits energy transfer to the upper containment volume. Analyses were performed for three cases which examined the effect of availability of high pressure reactor coolant system water at the time of reactor vessel melt through and the effect of preflooding of the reactor cavity. The amount of core ejected from the vessel was varied from 100% to 0% for all cases. Results indicate that all amounts of core debris dispersal could be accommodated by the containment for the case where the reactor cavity was preflooded. For the worst case, all the energy from in-vessel hydrogen generation and combustion plus that from 45% of the entire molten core would be required to equilibrate with the containment upper volume in order to reach containment failure pressure

  6. Calculation of cardiac pressures using left ventricular ejection fraction (LVEF) derived from radionuclide angiography

    International Nuclear Information System (INIS)

    Hommer, E.

    1981-01-01

    An attempt has been made to develop formulas to determine cardiac pressures in an undisturbed flow in patients without valvular or shunt diseases. These are based entirely on the results of left ventricular ejection fraction rates, permitting pressure analysis of several compartments at the same tine. According to BORER et al. they also enable determination of left ventricular 'Functional Reserve' after bycycle exercise as well as left ventricular 'Relaxation Reserve'. They support the views of NYHA in determining the grades of cardiac insufficiency proving the system- and low-pressure participation. A single formula for pulmonary flow can determine the pulmonary arterial pressure. The left ventricular enddiastolic pressure can also be exclusively calculated by values of left ventricular functions, thus both formulas may be used in disorders of the mitral valves. The possibility to calculate pressures of all the compartments of the heart from left ventricular ejection rate shows, that in undisturbed flow global heart function depends on left ventricular function. Therefore the mutual dependence of these formulas presents an intercompartimental pressure regulation of the heart through pulmonary flow and pulmonary vascular pressure, which leaves an aspect of autonomous cardiac regulation open to discussion. (orig.) [de

  7. Hydrodynamic ejection of bipolar flows from objects undergoing disk accretion: T Tauri stars, massive pre-main-sequence objects, and cataclysmic variables

    International Nuclear Information System (INIS)

    Torbett, M.V.

    1984-01-01

    A general mechanism is presented for generating pressure-driven winds that are intrinsically bipolar from objects undergoing disk accretion. The energy librated in a boundary layer shock as the disk matter impacts the central object is shown to be sufficient to eject a fraction βapprox.10 -2 to 10 -3 of the accreted mass. These winds are driven by a mechanism that accelerates the flow perpendicular to the plane of the disk and can therefore account for the bipolar geometry of the mass loss observed near young stars. The mass loss contained in these winds is comparable to that inferred for young stars. Thus, disk accretion-driven winds may constitute the T Tauri phase of stellar evolution. This mechanism is generally applicable, and thus massive pre-main-sequence objects as well as cataclysmic variables at times of enhanced accretion are predicted to eject bipolar outflows as well. Unmagnetized accreting neutron stas are also expected to eject bipolar flows. Since this mechanism requires stellar surfaces, however, it will not operate in disk accretion onto black holes

  8. Systems and Methods for Ejection of Ions from an Ion Trap

    Science.gov (United States)

    Cooks, Robert Graham (Inventor); Snyder, Dalton (Inventor)

    2018-01-01

    The invention generally relates to systems and methods for ejection of ions from an ion trap. In certain embodiments, systems and methods of the invention sum two different frequency signals into a single summed signal that is applied to an ion trap. In other embodiments, an amplitude of a single frequency signal is modulated as the single frequency signal is being applied to the ion trap. In other embodiments, a first alternating current (AC) signal is applied to an ion trap that varies as a function of time, while a constant radio frequency (RF) signal is applied to the ion trap.

  9. System modeling and identification in indicator dilution method for assessment of ejection fraction and pulmonary blood volume

    NARCIS (Netherlands)

    Bharath, H.N.; Prabhu, K.M.M.; Korsten, H.H.M.; Mischi, M.

    2012-01-01

    Clinically relevant cardiovascular parameters, such as pulmonary blood volume (PBV) and ejection fraction (EF), can be assessed through indicator dilution techniques. Among these techniques, which are typically invasive due to the need for central catheterization, contrast ultrasonography provides a

  10. Mid-range Ejection Fraction Does Not Permit Risk Stratification Among Patients Hospitalized for Heart Failure.

    Science.gov (United States)

    Gómez-Otero, Inés; Ferrero-Gregori, Andreu; Varela Román, Alfonso; Seijas Amigo, José; Pascual-Figal, Domingo A; Delgado Jiménez, Juan; Álvarez-García, Jesús; Fernández-Avilés, Francisco; Worner Diz, Fernando; Alonso-Pulpón, Luis; Cinca, Juan; Gónzalez-Juanatey, José Ramón

    2017-05-01

    European Society of Cardiology heart failure guidelines include a new patient category with mid-range (40%-49%) left ventricular ejection fraction (HFmrEF). HFmrEF patient characteristics and prognosis are poorly defined. The aim of this study was to analyze the HFmrEF category in a cohort of hospitalized heart failure patients (REDINSCOR II Registry). A prospective observational study was conducted with 1420 patients classified according to ejection fraction as follows: HFrEF, < 40%; HFmrEF, 40%-49%; and HFpEF, ≥ 50%. Baseline patient characteristics were examined, and outcome measures were mortality and readmission for heart failure at 1-, 6-, and 12-month follow-up. Propensity score matching was used to compare the HFmrEF group with the other ejection fraction groups. Among the study participants, 583 (41%) had HFrEF, 227 (16%) HFmrEF, and 610 (43%) HFpEF. HFmrEF patients had a clinical profile similar to that of HFpEF patients in terms of age, blood pressure, and atrial fibrillation prevalence, but shared with HFrEF patients a higher proportion of male participants and ischemic etiology, and use of class I drugs targeting HFrEF. All other features were intermediate, and comorbidities were similar among the 3 groups. There were no significant differences in all-cause mortality, cause of death, or heart failure readmission. The similar outcomes were confirmed in the propensity score matched cohorts. The HFmrEF patient group has characteristics between the HFrEF and HFpEF groups, with more similarities to the HFpEF group. No between-group differences were observed in total mortality, cause of death, or heart failure readmission. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  11. Solar origins of coronal mass ejections

    Science.gov (United States)

    Kahler, Stephen

    1987-01-01

    The large scale properties of coronal mass ejections (CMEs), such as morphology, leading edge speed, and angular width and position, have been cataloged for many events observed with coronagraphs on the Skylab, P-78, and SMM spacecraft. While considerable study has been devoted to the characteristics of the SMEs, their solar origins are still only poorly understood. Recent observational work has involved statistical associations of CMEs with flares and filament eruptions, and some evidence exists that the flare and eruptive-filament associated CMEs define two classes of events, with the former being generally more energetic. Nevertheless, it is found that eruptive-filament CMEs can at times be very energetic, giving rise to interplanetary shocks and energetic particle events. The size of the impulsive phase in a flare-associated CME seems to play no significant role in the size or speed of the CME, but the angular sizes of CMEs may correlate with the scale sizes of the 1-8 angstrom x-ray flares. At the present time, He 10830 angstrom observations should be useful in studying the late development of double-ribbon flares and transient coronal holes to yield insights into the CME aftermath. The recently available white-light synoptic maps may also prove fruitful in defining the coronal conditions giving rise to CMEs.

  12. EIT Observations of Coronal Mass Ejections

    Science.gov (United States)

    Gurman, J. B.; Fisher, Richard B. (Technical Monitor)

    2000-01-01

    Before the Solar and Heliospheric Observatory (SOHO), we had only the sketchiest of clues as to the nature and topology of coronal mass ejections (CMEs) below 1.1 - 1.2 solar radii. Occasionally, dimmings (or 'transient coronal holes') were observed in time series of soft X-ray images, but they were far less frequent than CME's. Simply by imaging the Sun frequently and continually at temperatures of 0.9 - 2.5 MK we have stumbled upon a zoo of CME phenomena in this previously obscured volume of the corona: (1) waves, (2) dimmings, and (3) a great variety of ejecta. In the three and a half years since our first observations of coronal waves associated with CME's, combined Large Angle Spectroscopic Coronagraph (LASCO) and extreme ultra-violet imaging telescope (EIT) synoptic observations have become a standard prediction tool for space weather forecasters, but our progress in actually understanding the CME phenomenon in the low corona has been somewhat slower. I will summarize the observations of waves, hot (> 0.9 MK) and cool ejecta, and some of the interpretations advanced to date. I will try to identify those phenomena, analysis of which could most benefit from the spectroscopic information available from ultraviolet coronograph spectrometer (UVCS) observations.

  13. The effects of stress on left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Kiess, M.C.; Dimsdale, J.E.; Moore, R.H.; Liu, P.; Newell, J.; Barlai-Kovach, M.; Boucher, C.A.; Strauss, H.W.; Massachusetts General Hospital, Boston; Massachusetts General Hospital, Boston

    1988-01-01

    The left ventricular ejection fraction (EF) was studied in 17 healthy volunteers with a new ambulatory left ventricular function monitor. Heart rate, EF, and blood pressure measurements were made during rest, a psychiatric stress interview, cold exposure, exercise, and eating. An increase in EF was seen during emotional stress (from 0.45±0.09 to 0.51±0.13, P<0.001). This increase was comparable to that observed during exercise (0.52±0.14) and eating (0.52±0.10, P<0.001). In contrast, cold exposure caused a decrease in EF (0.43±0.13, P<0.05). These observations demonstrate the powerful hemodynamic consequences of common behaviors as well as the utility and feasability of studying such behavioral factors in ambulatory subjects. (orig.)

  14. Fast, controlled stepping drive for D2 filament ejection

    International Nuclear Information System (INIS)

    Amenda, W.; Lang, R.S.

    1985-01-01

    Centrifugal pellet injectors are required to refuel plasma machines. The pellet feed into the centrifuge should, if possible, be direct to keep the exit angle divergence small. The D 2 filaments used are first stored in a cryostat and then rapidly transported to the intake region of the centrifuge. An intermittent drive for fast, controlled ejection of D 2 filaments is described here. Mean filament speed of up to 0.6 m/s per step (1.2 mm) are achieved for the centrifugal pellet injector which refuels the ASDEX tokamak at Garching. The timing of the (81) step shifts can be synchronized with the rotor motion. The drive allows rates of up to 50 pellets per second. The drive method also seems to be suitable for direct feeding of other known centrifugal pellet injectors

  15. Large density amplification measured on jets ejected from a magnetized plasma gun

    OpenAIRE

    Yun, Gunsu S.; You, Setthivoine; Bellan, Paul M.

    2007-01-01

    Observation of a large density amplification in the collimating plasma jet ejected from a coplanar coaxial plasma gun is reported. The jet velocity is ~30 km s^-1 and the electron density increases from ~10^20 to 10^(22–23) m^-3. In previous spheromak experiments, electron density of the order 10^(19–21) m^-3 had been measured in the flux conserver region, but no density measurement had been reported for the source gun region. The coplanar geometry of our electrodes permits direct observation...

  16. Measurement of right and left ventricular ejection fraction in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Brynjolf, I.; Qvist, J.; Mygind, T.; Jordening, H.; Dorph, S.; Munck, O.

    1983-08-01

    Three techniques for measurement of right (RVEF) and two techniques for left (LVEF) ventricular ejection fraction were evaluated in five dogs. RVEF was measured with a first-pass radionuclide technique using erythrocytes labelled in vitro with Technetium-99m methylene disphosphonate (MDP) and compared with RVEF measured with a thermodilution technique. Thermodilution-determined RVEF was compared with RVEF values measured with cine angiocardiography. LVEF was measured with a radionuclide ECG-gated equilibrium technique and compared with cine angiocardiography. Measurements were performed before and during a continuous infusion of dopamine. There was an excellent correlation between RVEF measured with the first-pass and the thermodilution technique. LVEF measured with the ECG-gated equilibrium technique correlated well with cine angiocardiography.

  17. Quantification of the relative contribution of the different right ventricular wall motion components to right ventricular ejection fraction: the ReVISION method.

    Science.gov (United States)

    Lakatos, Bálint; Tősér, Zoltán; Tokodi, Márton; Doronina, Alexandra; Kosztin, Annamária; Muraru, Denisa; Badano, Luigi P; Kovács, Attila; Merkely, Béla

    2017-03-27

    Three major mechanisms contribute to right ventricular (RV) pump function: (i) shortening of the longitudinal axis with traction of the tricuspid annulus towards the apex; (ii) inward movement of the RV free wall; (iii) bulging of the interventricular septum into the RV and stretching the free wall over the septum. The relative contribution of the aforementioned mechanisms to RV pump function may change in different pathological conditions.Our aim was to develop a custom method to separately assess the extent of longitudinal, radial and anteroposterior displacement of the RV walls and to quantify their relative contribution to global RV ejection fraction using 3D data sets obtained by echocardiography.Accordingly, we decomposed the movement of the exported RV beutel wall in a vertex based manner. The volumes of the beutels accounting for the RV wall motion in only one direction (either longitudinal, radial, or anteroposterior) were calculated at each time frame using the signed tetrahedron method. Then, the relative contribution of the RV wall motion along the three different directions to global RV ejection fraction was calculated either as the ratio of the given direction's ejection fraction to global ejection fraction and as the frame-by-frame RV volume change (∆V/∆t) along the three motion directions.The ReVISION (Right VentrIcular Separate wall motIon quantificatiON) method may contribute to a better understanding of the pathophysiology of RV mechanical adaptations to different loading conditions and diseases.

  18. Designing a Tool System for Lowering Friction during the Ejection of In-Die Sintered Micro Gears

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Emil Krabbe; Stolfi, Alessandro

    2017-01-01

    is affected by the influence of friction during the ejection phase, caused by radial expansion of the compacted and sintered powder. This paper presents the development of a pre-stressed tool system for the manufacture of micro gears made of aluminum. By using the hot isostatic pressing (HIP) sintering...

  19. Factors influencing the variations of ejection fraction during exercise in chronic aortic regurgitation

    International Nuclear Information System (INIS)

    Bassand, J.P.; Faivre, R.; Berthout, P.; Maurat, J.P.; Cardot, J.C.; Verdenet, J.; Bidet, R.

    1987-01-01

    The influence of left ventricular volume variations and regurgitant fraction variations upon left ventricular ejection fraction during exercise was examined using equilibrium radionuclide angiography in patients suffering from aortic regurgitation. Ejection fraction (EF), regurgitant fraction (RF), end diastolic volume (EDV) and end systolic volume (ESV) variations from rest to peak exercise were determined in 44 patients suffering from chronic aortic regurgitation (AR) and in 8 healthy volunteers (C). In C, EF increased (+0.10±0.03, P<0.01) and ESV decreased significantly (-23%±12%, P<0.01), RF and EDV did not vary significantly. In AR patients, EF, EDV and ESV did not vary significantly because of important scattering of individual values. Changes in EF and ESV were inversely correlated (r=-0.79, P<0.01) and RF decreased significantly (-0.12±0.10, P<0.01). Volumes and EF changes during exercise occurred in three different ways. In a 1st subgroup of 7 patients, EF increased (+0.09±0.03, P<0.05) in conjunction with a reduction of ESV (-24%±12%, P<0.05) without a significant change in EDV. In a 2nd group of 22 patients, EF decreased (-0.04±0.07, P<0.01) in association with an increase in ESV (+17%±16%, P<0.01) and no changes in EDV. In a 3rd subgroup of 15 patients, EF decreased (-0.02±0.06, P<0.01) despite a reduction in ESV (-7%±6%, P<0.01) because of a dramatic EDV decrease (-10%±6%, P<0.05). In this subgroup, changes in EF were inversely correlated with changes in ESV (r=-0.55, P<0.01) and positively related to EDV variations (r=0.42, P=0.02). EDV changes were weakly, but significantly, correlated to RF decrease (r=0.39, P<0.05). We conclude that changes in left ventricular ejection fraction during exercise in patients with chronic aortic regurgitation are significantly related in some patients to changes in ventricular loading conditions as well as contractile state. (orig./MG)

  20. Physics of accretion and ejection processes: a multi-wavelengths study of galactic X-ray binaries

    International Nuclear Information System (INIS)

    Prat, Lionel

    2010-01-01

    This manuscript is dedicated to the study of the accretion and ejection processes in X-ray Binaries, using radio and X-ray observations as well as numerical simulations. The links and interplay between the accretion disc, the corona and the compact jet. In an introductory part, I first describe the main observational and theoretical properties of the X-ray binaries. I especially emphasize the aspects required to understand the work reported in this manuscript. I also describe the main X-ray and radio observatories used during this work. Then, the first part of this manuscript is dedicated to the accretion processes in X-ray Binaries. I use high energy observations to study one High Mass X-ray Binary (IGR J19140+0951) and two Low-Mass X-ray Binaries (XTE J1818-245 and H1743-322). In the case of IGR Jl9140+0951, observations show that the luminosity generated by the accretion processes can deeply alter the stellar wind. In the case of the two Low Mass X-ray Binaries, I estimate several important parameters of the Systems using the behavior of their accretion discs. The second part is dedicated to the interplay between the accretion disc and the other components of the Systems, namely the corona and the compact jet. Using simultaneous X-ray and radio observations, I show that the corona undergo a strong evolution prior to a discrete ejection of matter, in the case of several binary Systems. In the case of GRS 1915+105, evolution of the corona and detection of a discrete ejection appear within a few seconds, while for other sources it takes a few hours. I study also the link between the accretion disc and the compact jet using a correlation between radio and X-ray flux: depending on the System, the link between the accretion energy brought by the accretion disc and the luminosity of the jet is different, indicating that different physical processes are at work. Finally, the third part is dedicated to numerical simulations of the accretion disc, in the case where an

  1. Transient calculation performance of the MASTER code for control rod ejection problem

    International Nuclear Information System (INIS)

    Cho, B. O.; Joo, H. G.; Yoo, Y. J.; Park, S. Y.; Zee, S. Q.

    1999-01-01

    The accuracy and the effectiveness of the solution methods of the MASTER code for reactor transient problems were analyzed with a set of NEACRP PWR control rod ejection benchmark problems. A series of sensitivity study for the effects on the solution by the neutronic solution methods and the neutronic and thermal-hydraulic model parameters were thus investigated. The MASTER results were then compared with the reference PANTHER results. This indicates that the MASTER solution is sufficiently accurate and the computing time is fast enough for nuclear design application

  2. Transient calculation performance of the MASTER code for control rod ejection problem

    Energy Technology Data Exchange (ETDEWEB)

    Cho, B. O.; Joo, H. G.; Yoo, Y. J.; Park, S. Y.; Zee, S. Q. [KAERI, Taejon (Korea, Republic of)

    1999-10-01

    The accuracy and the effectiveness of the solution methods of the MASTER code for reactor transient problems were analyzed with a set of NEACRP PWR control rod ejection benchmark problems. A series of sensitivity study for the effects on the solution by the neutronic solution methods and the neutronic and thermal-hydraulic model parameters were thus investigated. The MASTER results were then compared with the reference PANTHER results. This indicates that the MASTER solution is sufficiently accurate and the computing time is fast enough for nuclear design application.

  3. Toward Understanding the Early Stags of an Impulsively Accelerated Coronal Mass Ejection

    Science.gov (United States)

    2010-08-09

    B. E., & Howard, R. A . 2009, ApJ, 702, 901 Wood, B. E., Karovska , M., Chen, J., Brueckner, G. E., Cook, J. W., & Howard, R. A . 1999, ApJ, 512, 484...ar X iv :1 00 8. 11 71 v1 [ as tr o- ph .S R ] 6 A ug 2 01 0 Astronomy & Astrophysics manuscript no. bubble c© ESO 2010 August 9, 2010 Toward...understanding the early stages of an impulsively accelerated coronal mass ejection SECCHI observations S. Patsourakos1, A . Vourlidas2, and B. Kliem3,4

  4. Awake craniotomy in a patient with ejection fraction of 10%: considerations of cerebrovascular and cardiovascular physiology.

    Science.gov (United States)

    Meng, Lingzhong; Weston, Stephen D; Chang, Edward F; Gelb, Adrian W

    2015-05-01

    A 37-year-old man with nonischemic 4-chamber dilated cardiomyopathy and low-output cardiac failure (estimated ejection fraction of 10%) underwent awake craniotomy for a low-grade oligodendroglioma resection under monitored anesthesia care. The cerebrovascular and cardiovascular physiologic challenges and our management of this patient are discussed. Published by Elsevier Inc.

  5. Assessment of vasodilator therapy in patients with severe congestive heart failure: limitations of measurements of left ventricular ejection fraction and volumes

    International Nuclear Information System (INIS)

    Firth, B.G.; Dehmer, G.J.; Markham, R.V. Jr.; Willerson, J.T.; Hillis, L.D.

    1982-01-01

    Although noninvasive techniques are often used to assess the effect of vasodilator therapy in patients with congestive heart failure, it is unknown whether changes in noninvasively determined left ventricular ejection fraction, volume, or dimension reliably reflect alterations in intracardiac pressure and flow. Accordingly, we compared the acute effect of sodium nitroprusside on left ventricular volume and ejection fraction (determined scintigraphically) with its effect on intracardiac pressure and forward cardiac index (determined by thermodilution) in 12 patients with severe, chronic congestive heart failure and a markedly dilated left ventricle. Nitroprusside (infused at 1.3 +/- 1.1 [mean +/- standard deviation] microgram/kg/min) caused a decrease in mean systemic arterial, mean pulmonary arterial, and mean pulmonary capillary wedge pressure as well as a concomitant increase in forward cardiac index. Simultaneously, left ventricular end-diastolic and end-systolic volume indexes decreased, but the scintigraphically determined cardiac index did not change significantly. Left ventricular ejection fraction averaged 0.19 +/- 0.05 before nitroprusside administration and increased by less than 0.05 units in response to nitroprusside in 11 of 12 patients. The only significant correlation between scintigraphically and invasively determined variables was that between the percent change in end-diastolic volume index and the percent change in pulmonary capillary wedge pressure (r . 0.68, p . 0.01). Although nitroprusside produced changes in scintigraphically determined left ventricular ejection fraction, end-systolic volume index, and cardiac index, these alterations bore no predictable relation to changes in intracardiac pressure, forward cardiac index, or vascular resistance. Furthermore, nitroprusside produced a considerably greater percent change in the invasively measured variables than in the scintigraphically determined ones

  6. The hemodynamic effects of spinal block with low dose of bupivacaine and sufentanil in patients with low myocardial ejection fraction.

    Directory of Open Access Journals (Sweden)

    Mehdi Sanatkar

    2013-07-01

    Full Text Available The aim of this study was to assess the effect of spinal block with low dose of bupivacaine and sufentanil on patients with low cardiac output who underwent lower limb surgery. Fifteen patients who had ejection fraction less than 40% (group 1 were compared with 65 cases with ejection fraction more than 40% (group 2 in our study. Our subjects underwent spinal block with 7.5 mg hyperbaric bupivacaine 0.5% and 5 µg sufentanil. We recorded early events such as hypotension, bradycardia, vasopressor need and ST segment change in our cases. The average mean arterial pressure decreased 13% (110 mmHg to 95.7 mmHg in group 1 and 20% (160 mmHg to 128 mmHg in group 2 (P<0.001. Hypotension due to spinal anesthesia was observed in none of our subjects in both groups and none of our cases need to vasopressor support. All patients remained alert, and no ST segment changes were observed in two groups. In our study none of subjects complained of pain intraoperatively. The subjects were without complaints during the spinal anesthetic in both groups. Spinal block with low dose local anesthetic and sufentanil was a safe and effective method for lower limb surgery in patients with low ejection fraction.

  7. Development of a DNBR evaluation method for the CEA ejection accident in SMART core

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hyun; Yoo, Y. J.; In, W. K.; Chang, M. H. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    A methodology applicable to the analysis of the CEA ejection accident in SMART is developed for the evaluation of the fraction of fuel failure caused by DNB. The transient behavior of the core thermal-hydraulic conditions is calculated by the subchannel analysis code MATRA. The minimum DNBR during the accident is calculated by KRB-1 CHF correlation considering the 1/8 symmetry of hot assembly. The variation of hot assembly power during the accident is simulated by the LTC(Limiting transient Curve) which is determined from the analysis of power distribution data resulting from the three-dimensional core dynamics calculations. The initial condition of the accident is determined by considering LOC(Limiting Conditions for Operation) of SMART core. Two different methodologies for the evaluation of DNB failure rate are established; a deterministic method based on the DNB envelope, and a probabilistic method based on the DNB probability of each fuel rod. The methodology developed in this study is applied to the analysis of CEA ejection accident in the preliminary design core of SMART. As the result, the fractions of DNB fuel failure by the deterministic method and the probabilistic method are calculated as 38.7% and 7.8%, respectively. 16 refs., 16 figs., 5 tabs. (Author)

  8. Evidence for the direct ejection of clusters from non-metallic solids during laser vaporization

    International Nuclear Information System (INIS)

    Bloomfield, L.A.; Yang, Y.A.; Xia, P.; Junkin, A.L.

    1991-01-01

    This paper reports on the formation of molecular scale particles or clusters of alkali halides and semiconductors during laser vaporization of solids. By measuring the abundances of cluster ions produced in several different source configurations, the authors have determined that clusters are ejected directly from the source sample and do not need to grow from atomic or molecular vapor. Using samples of mixed alkali halide powders, the authors have found that unalloyed clusters are easily produced in a source that prevents growth from occurring after the clusters leave the sample surface. However, melting the sample or encouraging growth after vaporization lead to the production of alloyed cluster species. The sizes of the ejected clusters are initially random, but the population spectrum quickly becomes structured as hot, unstable-sized clusters decay into smaller particles. In carbon, large clusters with odd number of atoms decay almost immediately. The hot even clusters also decay, but much more slowly. The longest lived clusters are the magic C 50 and C 60 fullerenes. The mass spectrum of large carbon clusters evolves in time from structureless, to only the even clusters, to primarily C 50 and C 60 . If cluster growth is encouraged, the odd clusters reappear and the population spectrum again becomes relatively structureless

  9. Fitting and Reconstruction of Thirteen Simple Coronal Mass Ejections

    Science.gov (United States)

    Al-Haddad, Nada; Nieves-Chinchilla, Teresa; Savani, Neel P.; Lugaz, Noé; Roussev, Ilia I.

    2018-05-01

    Coronal mass ejections (CMEs) are the main drivers of geomagnetic disturbances, but the effects of their interaction with Earth's magnetic field depend on their magnetic configuration and orientation. Fitting and reconstruction techniques have been developed to determine important geometrical and physical CME properties, such as the orientation of the CME axis, the CME size, and its magnetic flux. In many instances, there is disagreement between different methods but also between fitting from in situ measurements and reconstruction based on remote imaging. This could be due to the geometrical or physical assumptions of the models, but also to the fact that the magnetic field inside CMEs is only measured at one point in space as the CME passes over a spacecraft. In this article we compare three methods that are based on different assumptions for measurements by the Wind spacecraft for 13 CMEs from 1997 to 2015. These CMEs are selected from the interplanetary coronal mass ejections catalog on https://wind.nasa.gov/ICMEindex.php https://wind.nasa.gov/ICMEindex.php" TargetType="URL"/> because of their simplicity in terms of: 1) slow expansion speed throughout the CME and 2) weak asymmetry in the magnetic field profile. This makes these 13 events ideal candidates for comparing codes that do not include expansion or distortion. We find that for these simple events, the codes are in relatively good agreement in terms of the CME axis orientation for six of the 13 events. Using the Grad-Shafranov technique, we can determine the shape of the cross-section, which is assumed to be circular for the other two models, a force-free fitting and a circular-cylindrical non force-free fitting. Five of the events are found to have a clear circular cross-section, even when this is not a precondition of the reconstruction. We make an initial attempt at evaluating the adequacy of the different assumptions for these simple CMEs. The conclusion of this work strongly suggests that attempts

  10. Heart rate index: an indicator of left ventricular ejection fraction. Comparison of left ventricular ejection fraction and variables assessed by exercise test in patients studied early after acute myocardial infarction

    DEFF Research Database (Denmark)

    Haedersdal, C; Pedersen, F H; Svendsen, Jesper Hastrup

    1992-01-01

    The present study compares the variables assessed by standard exercise test with the left ventricular ejection fraction (LVEF) measured by multigated radionuclide angiocardiography (MUGA) in 77 patients early after myocardial infarction. The exercise test and MUGA were performed within two weeks...... at rest, 4) rise in systolic blood pressure, 5) rate pressure product at rest, 6) rise in rate pressure product, 7) ratio (rHR) between maximal rate pressure product and rate pressure product at rest, 8) total exercise time. The heart rate was corrected for effects caused by age (heart index (HR...

  11. Ejected control rod and rods drop measurements during Mochovce startup physical tests

    International Nuclear Information System (INIS)

    Minarcin, Miroslav; Elko, Marek

    1998-01-01

    Paper deals with measurements of asymmetric reactivity insertion into the reactor core that were carried out during physical startup tests of Mochovce Unit 1 in June 1998. Control rods worth measurements with one and two rods s tucked in upper limit and worth measurement of one control rod from group 6 'ejected' from the reactor core are discussed. During the experiments neutron flux was measured by four ionisation chambers (three of them were placed symmetrically around the reactor core). Results of measurements and influence of asymmetric reactivity influence on ionisation chambers response are presented in the paper. (Authors)

  12. Global ejection fraction and phase analysis assessed by radionuclide angiography during exercise and after isoproterenol infusion

    International Nuclear Information System (INIS)

    Righetti, A.; Ratib, O.; Merier, G.; Widmann, T.; Donath, A.

    1983-01-01

    Radionuclide angiography obtained during and following Isoproterenol infusion is a new approach for detecting latent myocardial ischemia. It is very sensitive and could be considered as an alternative to conventional exercice radionuclide angiography. The data presented show that phase analysis assessment of regional systolic wall motion is a better indicator than global ejection fraction for quantifying left ventricular dysfunction

  13. CORONAL MASS EJECTION INDUCED OUTFLOWS OBSERVED WITH HINODE/EIS

    International Nuclear Information System (INIS)

    Jin, M.; Ding, M. D.; Chen, P. F.; Fang, C.; Imada, S.

    2009-01-01

    We investigate the outflows associated with two halo coronal mass ejections (CMEs) that occurred on 2006 December 13 and 14 in NOAA 10930, using the Hinode/EIS observations. Each CME was accompanied by an EIT wave and coronal dimmings. Dopplergrams in the dimming regions are obtained from the spectra of seven EIS lines. The results show that strong outflows are visible in the dimming regions during the CME eruption at different heights from the lower transition region to the corona. It is found that the velocity is positively correlated with the photospheric magnetic field, as well as the magnitude of the dimming. We estimate the mass loss based on height-dependent EUV dimmings and find it to be smaller than the CME mass derived from white-light observations. The mass difference is attributed partly to the uncertain atmospheric model, and partly to the transition region outflows, which refill the coronal dimmings.

  14. Evaluation of right ventricular ejection fraction by first-pass radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Uehara, Toshiisa; Nishimura, Tsunehiko; Naito, Hiroaki; Hayashida, Kohei; Kozuka, Takahiro

    1981-01-01

    Left ventricular ejection fraction (LVEF) obtained by radionuclide angiocardiography is a convenient and good parameter of the left ventricular function. Right ventricular ejection fraction (RVEF) also seems to be a good parameter of the right ventricular function. RVEF calculated from volumetry with contrast right ventriculography is not necessarily correct because of the complex figure of the right ventricle. On the other hand, the method of calculation of RVEF with radionuclide angiocardiography has the advantage of being able to ignore the complexity of figure of RV, because RI counts extracted from the time-activity curve represent changes in ventricular volume. In this study, we developped an original method to calculate RVEF with first pass method. After setting of region of interest (ROI) of RV, background and ROI for correction of motion of tricuspid valve, we calculated RVEF with these time-activity curves, Since we found that too rapid infusion of RI made the time-activity curve of RV too steep, and too slow infusion of RI made the background of lung field too high, the appropriate infusion rate was required to get correct value of RVEF. In addition, the time-activity curve often became steep or flat in dependence of the speed of venous return and cardiac output of patients. In order to avoid the effect of infusion speed, the time-activity curve was fitted to linear curves and the value of RVEF was corrected. The validity of these methods was confirmed in our study. As the result, RVEF obtained with our methods appeared to have good correlation with that obtained from volumetry of contrast right ventriculography (r = 0.77) and to be very useful in clinical estimation of right ventricular function. (author)

  15. Drug treatment effects on outcomes in heart failure with preserved ejection fraction: a systematic review and meta-analysis

    Science.gov (United States)

    Zheng, Sean Lee; Chan, Fiona T; Nabeebaccus, Adam A; Shah, Ajay M; McDonagh, Theresa; Okonko, Darlington O; Ayis, Salma

    2018-01-01

    Background Clinical drug trials in patients with heart failure and preserved ejection fraction have failed to demonstrate improvements in mortality. Methods We systematically searched Medline, Embase and the Cochrane Central Register of Controlled Trials for randomised controlled trials (RCT) assessing pharmacological treatments in patients with heart failure with left ventricular (LV) ejection fraction≥40% from January 1996 to May 2016. The primary efficacy outcome was all-cause mortality. Secondary outcomes were cardiovascular mortality, heart failure hospitalisation, exercise capacity (6-min walk distance, exercise duration, VO2 max), quality of life and biomarkers (B-type natriuretic peptide, N-terminal pro-B-type natriuretic peptide). Random-effects models were used to estimate pooled relative risks (RR) for the binary outcomes, and weighted mean differences for continuous outcomes, with 95% CI. Results We included data from 25 RCTs comprising data for 18101 patients. All-cause mortality was reduced with beta-blocker therapy compared with placebo (RR: 0.78, 95%CI 0.65 to 0.94, p=0.008). There was no effect seen with ACE inhibitors, aldosterone receptor blockers, mineralocorticoid receptor antagonists and other drug classes, compared with placebo. Similar results were observed for cardiovascular mortality. No single drug class reduced heart failure hospitalisation compared with placebo. Conclusion The efficacy of treatments in patients with heart failure and an LV ejection fraction≥40% differ depending on the type of therapy, with beta-blockers demonstrating reductions in all-cause and cardiovascular mortality. Further trials are warranted to confirm treatment effects of beta-blockers in this patient group. PMID:28780577

  16. Analysis Of Control Rod Ejection Of APR1400 By RELAP5

    International Nuclear Information System (INIS)

    Le Thi Thu; Hoang Minh Giang; Vo Thi Huong; Le Dai Dien

    2011-01-01

    This paper presents the analysis of Reactivity Induced Accident caused by ejection of a Control Element Assembly (CEA) from APR 1400 reactor vessel within 0.05 second. The initial condition were assumed as following: power level at 102%, delayed neutron fraction β = 412 pcm and CEA worth = 110 pcm. The analysis was simulated by RELAP5 code through two step: calculation of steady state and calculation of transient with initial condition mentioned as above. Some output results were presented with explanation: sequence of events corresponding to the time of the accident, the system behavior as power, reactivity feedback from fuel temperature changes (Doppler) as well as temperature, pressure, DNBR within 6 second of the accident. (author)

  17. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction.

    Science.gov (United States)

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-07-01

    Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF.

  18. Left ventricular markers of global dyssynchrony predict limited exercise capacity in heart failure, but not in patients with preserved ejection fraction

    Directory of Open Access Journals (Sweden)

    Bajraktari Gani

    2012-09-01

    Full Text Available Abstract Background The aim of this study was to prospectively examine echocardiographic parameters that correlate and predict functional capacity assessed by 6 min walk test (6-MWT in patients with heart failure (HF, irrespective of ejection fraction (EF. Methods In 147 HF patients (mean age 61 ± 11 years, 50.3% male, a 6-MWT and an echo-Doppler study were performed in the same day. Global LV dyssynchrony was indirectly assessed by total isovolumic time - t-IVT [in s/min; calculated as: 60 – (total ejection time + total filling time], and Tei index (t-IVT/ejection time. Patients were divided into two groups based on the 6-MWT distance (Group I: ≤300 m and Group II: >300 m, and also in two groups according to EF (Group A: LVEF ≥ 45% and Group B: LVEF  Results In the cohort of patients as a whole, the 6-MWT correlated with t-IVT (r = −0.49, p  Conclusion In patients with HF, the limited exercise capacity, assessed by 6-MWT, is related mostly to severity of global LV dyssynchrony, more than EF or raised filling pressures. The lack of exercise predictors in HFpEF reflects its multifactorial pathophysiology.

  19. Feasibility study on the rod ejection accident analysis with RETRAN-MASTER code system

    International Nuclear Information System (INIS)

    Kim, Y. H.; Lee, C. S.

    2003-01-01

    KEPRI has been developed the in-house methodology for non-LOCA safety analyses based on the codes and methodologies of vendors and EPRI. Using the methodology, the rod ejection accident, which is classified into the generic accident analysis category of reactivity insertion accident in primary system, has been analyzed with RETRAN-MASTER code system. And the feasibility of the coupled code system has been verified by the review of the results. Furthermore, to assess the important parameters to the accident, the sensitivity analyses have been carried out over some parameters

  20. An analysis of interplanetary solar radio emissions associated with a coronal mass ejection

    Czech Academy of Sciences Publication Activity Database

    Krupař, Vratislav; Eastwood, J. P.; Krupařová, Oksana; Santolík, Ondřej; Souček, Jan; Magdalenic, J.; Vourlidas, A.; Maksimovic, M.; Bonnin, X.; Bothmer, V.; Mrotzek, N.; Pluta, A.; Barnes, D.; Davies, J. A.; Oliveros, J.C.M.; Bale, S. D.

    2016-01-01

    Roč. 823, č. 1 (2016) ISSN 2041-8205 R&D Projects: GA ČR GJ16-16050Y; GA ČR(CZ) GAP209/12/2394; GA MŠk(CZ) LH15304 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : solar -terrestrial relations * coronal mass ejections (CMEs) * radio radiation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.522, year: 2016 http://iopscience.iop.org/article/10.3847/2041-8205/823/1/L5/meta

  1. Energy and exergy analyses of a bi-evaporator compression/ejection refrigeration cycle

    International Nuclear Information System (INIS)

    Geng, Lihong; Liu, Huadong; Wei, Xinli; Hou, Zhonglan; Wang, Zhenzhen

    2016-01-01

    Highlights: • A bi-evaporator compression/ejection refrigeration cycle was studied experimentally. • Experiments were operated at the same external conditions and cooling capacities. • COP improvement was 16.94–30.59% higher than that of the conventional system. • The exergy efficiency of the R134a cycle was improved by 7.57–28.29%. - Abstract: Aiming to reduce the throttling loss in the vapor compression refrigeration cycle, a bi-evaporator compression/ejection refrigeration cycle (BCERC) using an ejector as the expansion device was experimentally investigated with R134a refrigerant. The effects of the compressor frequency and the operating conditions on the coefficient of performance (COP) and the amount of exergy destruction of each component were studied. The results were compared with that of the conventional vapor compression refrigeration cycle under the same external operating conditions and cooling capacities. Results showed that the refrigeration cycle with an ejector as the expansion device exhibited lower irreversibility for each component and total system in comparison with the conventional vapor compression refrigeration cycle. The COP and the exergy efficiency of the BCERC were higher than that of the conventional system. The COP and exergy efficiency improvements became more significant as the condenser water temperature increased, the evaporator water temperature decreased and the compressor frequency increased. In the BCERC with a constant frequency compressor, the COP and the exergy efficiency could be improved by 16.94–30.59%, 7.57–28.29%, respectively. The COP and the exergy efficiency of the BCERC with a variable frequency compressor could increase by around 32.64% and 23.32%, respectively.

  2. Determination of left ventricular ejection fraction by radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Hoeilund-Carlsen, P.F.; Rasmussen, S.; Hesse, B.; Dige-Petersen, H.; Folke, K.; Godtfredsen, J.; Jensen, G.; Fabricius, J.

    1982-01-01

    Radionuclide angiocardiography is a non-invasive gamma camera investigation for evaluation and quantification of heart performance. We investigated the reliability of the method in measuring left ventricular ejection fraction (EF). The accuracy was determined by measuring EF in 29 patients by both radionuclide angiocardiography and conventional single-plane cineventriculography. The two methods correlated well: r=0.92; y=0.86x+0.07. The precision of the method was evaluated as follows: The coefficient of variance was 6% for duplicate determinations performed on the same day (n=27) and 5% for determinations with 1-3 days interval (n=21). The interobserver variation expressed by the coefficient of variance was maximally 6% with the radionuclide method (n=29, three observers). The intraobserver variation was 4% compared to 9% with cineventriculography (P<0.01). Radionuclide angiocardiography is a reliable way of measuring EF. As the method is non-invasive, it is well suited for sequential determinations of EF in the same patient. (authors)

  3. On interplanetary coronal mass ejection identification at 1 AU

    International Nuclear Information System (INIS)

    Mulligan, T.; Russell, C.T.; Gosling, J.T.

    1999-01-01

    Coronal mass ejections are believed to be produced in the corona from closed magnetic regions not previously participating in the solar wind expansion. At 1 AU their interplanetary counterparts (ICMEs) generally have a number of distinct plasma and field signatures that distinguish them from the ambient solar wind. These include heat flux dropouts, bi-directional streaming, enhanced alpha particle events, times of depressed proton temperatures, intervals of distorted or enhanced magnetic field, and times of large magnetic field rotations characteristic of magnetic clouds. The first three of these signatures are phenomena that occur at some point within the ICME, but do not necessarily persist throughout the entire ICME. The large scale magnetic field rotations, distortions and enhancements, and the proton temperature depressions tend to mark more accurately the beginning and end of the ICME proper. We examine herein the reliability with which each of these markers identifies ICMEs utilizing ISEE-3 data from 1978 - 1980. copyright 1999 American Institute of Physics

  4. INTERCOMPARISON OF RESULTS FOR A PWR ROD EJECTION ACCIDENT

    Energy Technology Data Exchange (ETDEWEB)

    DIAMOND,D.J.; ARONSON,A.; JO,J.; AVVAKUMOV,A.; MALOFEEV,V.; SIDOROV,V.; FERRARESI,P.; GOUIN,C.; ANIEL,S.; ROYER,M.E.

    1999-10-01

    This study is part of an overall program to understand the uncertainty in best-estimate calculations of the local fuel enthalpy during the rod ejection accident. Local fuel enthalpy is used as the acceptance criterion for this design-basis event and can also be used to estimate fuel damage for the purpose of determining radiological consequences. The study used results from neutron kinetics models in PARCS, BARS, and CRONOS2, codes developed in the US, the Russian Federation, and France, respectively. Since BARS uses a heterogeneous representation of the fuel assembly as opposed to the homogeneous representations in PARCS and CRONOS, the effect of the intercomparison was primarily to compare different intra-assembly models. Quantitative comparisons for core power, reactivity, assembly fuel enthalpy and pin power were carried out. In general the agreement between methods was very good providing additional confidence in the codes and providing a starting point for a quantitative assessment of the uncertainty in calculated fuel enthalpy using best-estimate methods.

  5. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    Science.gov (United States)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  6. Bi-temporal 3D active appearance models with applications to unsupervised ejection fraction estimation

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Pedersen, Dorthe

    2005-01-01

    in four-dimensional MRI. The theoretical foundation of our work is the generative two-dimensional Active Appearance Models by Cootes et al., here extended to bi-temporal, three-dimensional models. Further issues treated include correction of respiratory induced slice displacements, systole detection......, and a texture model pruning strategy. Cross-validation carried out on clinical-quality scans of twelve volunteers indicates that ejection fraction and cardiac blood pool volumes can be estimated automatically and rapidly with accuracy on par with typical inter-observer variability....

  7. The reverse remodeling response to sacubitril/valsartan therapy in heart failure with reduced ejection fraction.

    Science.gov (United States)

    Martens, Pieter; Beliën, Hanne; Dupont, Matthias; Vandervoort, Pieter; Mullens, Wilfried

    2018-05-17

    Major classes of medical therapy for heart failure with reduced ejection fraction (HFrEF) induce reverse remodeling. The revere remodeling response to sacubitril/valsartan remains unstudied. We performed a single-center, prospective assessor-blinded study to determine the reverse remodeling response of sacubitril/valsartan therapy in HFrEF patients with a class I indication (New York heart Association [NYHA]-class II-IV, Left ventricular ejection fraction [LVEF] sacubitril/valsartan were optimized to individual tolerance. Echocardiographic images were assessed offline by 2 investigators blinded to both the clinical data and timing of echocardiograms. One-hundred-twenty-five HFrEF patients (66 ± 10 years) were prospectively included. The amount of RAS-blocker before and after switch to sacubitril/valsartan was similar(P = .290), indicating individual optimal dosing of sacubitril/valsartan. Over a median(IQR) follow-up of 118(77-160) days after initiation of sacubitril/valsartan, LVEF improved (29.6 ± 6% vs 34.8 ± 6%; P sacubitril/valsartan leading to more reverse remodeling. Switching therapy in eligible HFrEF patients from a RAS-blocker to sacubitril/valsartan induces beneficial reverse remodeling of both metrics of systolic as diastolic function. © 2018 John Wiley & Sons Ltd.

  8. Validation of Westinghouse integrated code POLCA-T against OECD NEACRP-L-335 rod ejection benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Panayotov, Dobromir [Westinghouse Electric Sweden AB, Vaesteraas, SE-721 63 (Sweden)

    2008-07-01

    This paper describes the work performed and results obtained in the validation of the POLCA-T code against NEACRP PWR Rod Ejection Transients Benchmark. Presented work is a part of the POLCA-T licensing Assessment Data Base for BWR Control Rod Drop Accident (CRDA) Application. The validation against a PWR Rod Ejection Accidents (REA) Benchmark is relevant for the validation of the code for BWR CRDA, as the analyses of both transients require identical phenomena to be modelled. All six benchmark cases have been analyzed in the presented work. Initial state steady-state calculations including boron search, control rod worth, and final state power search have been performed by POLCA7 code. Initial state boron adjustment and steady-state CR worth as well as the transient analyses were performed by POLCA-T code. Benchmark results including 3D transient power distributions are compared with reference PANTHER solutions and published results of other codes. Given the similarity of the kinetics modelling for a BWR CRDA and a PWR REA and the fact that POLCA-T accurately predicts the local transient power and thus, the resulting fuel enthalpy, it is concluded that POLCA-T is a state-of-art tool also for BWR CRDA analysis. (author)

  9. Validation of Westinghouse integrated code POLCA-T against OECD NEACRP-L-335 rod ejection benchmark

    International Nuclear Information System (INIS)

    Panayotov, Dobromir

    2008-01-01

    This paper describes the work performed and results obtained in the validation of the POLCA-T code against NEACRP PWR Rod Ejection Transients Benchmark. Presented work is a part of the POLCA-T licensing Assessment Data Base for BWR Control Rod Drop Accident (CRDA) Application. The validation against a PWR Rod Ejection Accidents (REA) Benchmark is relevant for the validation of the code for BWR CRDA, as the analyses of both transients require identical phenomena to be modelled. All six benchmark cases have been analyzed in the presented work. Initial state steady-state calculations including boron search, control rod worth, and final state power search have been performed by POLCA7 code. Initial state boron adjustment and steady-state CR worth as well as the transient analyses were performed by POLCA-T code. Benchmark results including 3D transient power distributions are compared with reference PANTHER solutions and published results of other codes. Given the similarity of the kinetics modelling for a BWR CRDA and a PWR REA and the fact that POLCA-T accurately predicts the local transient power and thus, the resulting fuel enthalpy, it is concluded that POLCA-T is a state-of-art tool also for BWR CRDA analysis. (author)

  10. Usefulness of acoustic quantification method in left ventricular volume and ejection fraction. Compared with ventriculography and scintigraphy

    International Nuclear Information System (INIS)

    Shibata, Takahiro; Honda, Youichi; Kashiwagi, Hidehiko

    1996-01-01

    Acoustic quantification method (AQ: on-line automated boundary detection system) has proved to have a good correlation with left ventriculography (LVG) and scintigraphy (SG) in patients with normal left ventricular (LV) function. The aim of this study is to determine whether AQ is also useful in patients with abnormal LV function. We examined 54 patients with LV asynergy. End-diastolic volumes with AQ, LVG and SG were 77, 135, 118 ml. A good correlation was found between AQ and LVG and SG (LVG; r=0.81, SG; r=0.68). End-systolic volumes with AQ, LVG and SG were 38, 64 and 57 ml. Left ventricular volumes obtained from AQ had a good correlation with LVG and SG, but were underestimated. LV ejection fraction obtained from AQ had good correlation with those with LVG and SG (LVG; r=0.84. SG; r=0.77). On-line AQ appears to be a useful noninvasive method for evaluation of the left ventricular ejection fraction, but care must be exercised when estimations of left ventricular volumes are made. (author)

  11. Attempting to train a digital human model to reproduce human subject reach capabilities in an ejection seat aircraft

    NARCIS (Netherlands)

    Zehner, G.F.; Hudson, J.A.; Oudenhuijzen, A.

    2006-01-01

    From 1997 through 2002, the Air Force Research Lab and TNO Defence, Security and Safety (Business Unit Human Factors) were involved in a series of tests to quantify the accuracy of five Human Modeling Systems (HMSs) in determining accommodation limits of ejection seat aircraft. The results of these

  12. Drug treatment effects on outcomes in heart failure with preserved ejection fraction: a systematic review and meta-analysis.

    Science.gov (United States)

    Zheng, Sean Lee; Chan, Fiona T; Nabeebaccus, Adam A; Shah, Ajay M; McDonagh, Theresa; Okonko, Darlington O; Ayis, Salma

    2018-03-01

    Clinical drug trials in patients with heart failure and preserved ejection fraction have failed to demonstrate improvements in mortality. We systematically searched Medline, Embase and the Cochrane Central Register of Controlled Trials for randomised controlled trials (RCT) assessing pharmacological treatments in patients with heart failure with left ventricular (LV) ejection fraction≥40% from January 1996 to May 2016. The primary efficacy outcome was all-cause mortality. Secondary outcomes were cardiovascular mortality, heart failure hospitalisation, exercise capacity (6-min walk distance, exercise duration, VO 2 max), quality of life and biomarkers (B-type natriuretic peptide, N-terminal pro-B-type natriuretic peptide). Random-effects models were used to estimate pooled relative risks (RR) for the binary outcomes, and weighted mean differences for continuous outcomes, with 95% CI. We included data from 25 RCTs comprising data for 18101 patients. All-cause mortality was reduced with beta-blocker therapy compared with placebo (RR: 0.78, 95%CI 0.65 to 0.94, p=0.008). There was no effect seen with ACE inhibitors, aldosterone receptor blockers, mineralocorticoid receptor antagonists and other drug classes, compared with placebo. Similar results were observed for cardiovascular mortality. No single drug class reduced heart failure hospitalisation compared with placebo. The efficacy of treatments in patients with heart failure and an LV ejection fraction≥40% differ depending on the type of therapy, with beta-blockers demonstrating reductions in all-cause and cardiovascular mortality. Further trials are warranted to confirm treatment effects of beta-blockers in this patient group. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Ejected electron energy distribution in the ionization of atomic hydrogen by C6+ impact

    International Nuclear Information System (INIS)

    Dey, Ritu; Roy, A.C.

    2006-01-01

    We report doubly differential cross section (DDCS) for C 6+ impact ionization of atomic hydrogen at the incident energy of 2.5 MeV/amu. The calculation is based on the eikonal approximation (EA) method. A comparison is made of the present DDCS with the results of other theoretical methods and experiment. It is found that the multiple scattering effect has a significant influence on the energy distributions of the ejected electrons. The cross sections predicted by the present EA also show reasonably good agreement with experiment

  14. Connecting the failure of K-theory inside and above vegetation canopies and ejection-sweep cycles by a large eddy simulation

    International Nuclear Information System (INIS)

    Banerjee, Tirtha; De Roo, Frederik; Mauder, Matthias

    2017-01-01

    Parameterizations of biosphere-atmosphere interaction processes in climate models and other hydrological applications require characterization of turbulent transport of momentum and scalars between vegetation canopies and the atmosphere, which is often modeled using a turbulent analogy to molecular diffusion processes. However, simple flux-gradient approaches (K-theory) fail for canopy turbulence. One cause is turbulent transport by large coherent eddies at the canopy scale, which can be linked to sweep-ejection events, and bear signatures of non-local organized eddy motions. K-theory, that parameterizes the turbulent flux or stress proportional to the local concentration or velocity gradient, fails to account for these non-local organized motions. The connection to sweep-ejection cycles and the local turbulent flux can be traced back to the turbulence triple moment (C ′ W ′ W ′ )-bar. In this work, we use large-eddy simulation to investigate the diagnostic connection between the failure of K-theory and sweep-ejection motions. Analyzed schemes are quadrant analysis (QA) and a complete and incomplete cumulant expansion (CEM and ICEM) method. The latter approaches introduce a turbulence timescale in the modeling. Furthermore, we find that the momentum flux needs a different formulation for the turbulence timescale than the sensible heat flux. In conclusion, accounting for buoyancy in stratified conditions is also deemed to be important in addition to accounting for non-local events to predict the correct momentum or scalar fluxes.

  15. Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the eliophysics System Observatory

    Czech Academy of Sciences Publication Activity Database

    Möstl, C.; Isavnin, A.; Boakes, P. D.; Kilpua, E. K. J.; Davies, J. A.; Harrison, R. A.; Barnes, D.; Krupař, Vratislav; Eastwood, J.; Good, S. W.; Forsyth, R. J.; Bothmer, V.; Reiss, M. A.; Amerstorfer, T.; Winslow, R. M.; Anderson, B.J.; Philpott, L. C.; Rodriguez, L.; Rouillard, A. P.; Gallagher, P.; Nieves-Chinchilla, T.; Zhang, T. L.

    2017-01-01

    Roč. 15, č. 7 (2017), s. 955-970 ISSN 1539-4956 R&D Projects: GA ČR(CZ) GJ17-06818Y Institutional support: RVO:68378289 Keywords : space weather * coronal mass ejections * STEREO * heliospheric imagers * Heliophysics System Observatory * heliophysics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) http://onlinelibrary.wiley.com/doi/10.1002/2017SW001614/full

  16. CMR reference values for left ventricular volumes, mass, and ejection fraction using computer-aided analysis : The Framingham Heart Study

    NARCIS (Netherlands)

    Chuang, Michael L.; Gona, Philimon; Hautvast, Gilion L.T.F.; Salton, Carol J.; Breeuwer, Marcel; O'Donnell, Christopher J.; Manning, Warren J.

    Purpose To determine sex-specific reference values for left ventricular (LV) volumes, mass, and ejection fraction (EF) in healthy adults using computer-aided analysis and to examine the effect of age on LV parameters. Materials and Methods We examined data from 1494 members of the Framingham Heart

  17. Production and ejection of solid hydrogen-isotope pellet (single pellet)

    International Nuclear Information System (INIS)

    Kasai, Satoshi; Hasegawa, Koichi; Miura, Yukitoshi; Ishibori, Ikuo

    1986-03-01

    The pneumatic gun type pellet injector (single pellet) has been constructed, which is basic type used at ORNL. The pellet in the carrier is 1.65 mm in diameter and 1.65 mm in length, and another is 1 mmD x 1 mmL. Hydrogen pellet velocity of about 900 m/s was observed at propellant gas (He) pressure of 14 kg/cm 2 . In the injection experiment into a plasma, typical velocity is 714 ∼ 833 m/s. These values are 80 ∼ 95 % of velocity calculated from the ideal gun model. The ejected pellet size is 71 ∼ 90 % of the hole size in the carrier disk (1.65 mmD x 1.65 mmL) and 46 ∼ 56 % (1 mmD x 1 mmL). The spread in the pellet trajectories is about 26 mm in diameter at a plasma center. (author)

  18. The mechanism of DNA ejection in the Bacillus anthracis spore-binding phage 8a revealed by cryo-electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xiaofeng [Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030 (United States); Walter, Michael H. [Department of Biology, University of Northern Iowa, Cedar Falls, IA 50614 (United States); Paredes, Angel [Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030 (United States); Morais, Marc C., E-mail: mcmorais@utmb.edu [Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555 (United States); Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States); Liu, Jun, E-mail: Jun.Liu.1@uth.tmc.edu [Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030 (United States)

    2011-12-20

    The structure of the Bacillus anthracis spore-binding phage 8a was determined by cryo-electron tomography. The phage capsid forms a T = 16 icosahedron attached to a contractile tail via a head-tail connector protein. The tail consists of a six-start helical sheath surrounding a central tail tube, and a structurally novel baseplate at the distal end of the tail that recognizes and attaches to host cells. The parameters of the icosahedral capsid lattice and the helical tail sheath suggest protein folds for the capsid and tail-sheath proteins, respectively, and indicate evolutionary relationships to other dsDNA viruses. Analysis of 2518 intact phage particles show four distinct conformations that likely correspond to four sequential states of the DNA ejection process during infection. Comparison of the four observed conformations suggests a mechanism for DNA ejection, including the molecular basis underlying coordination of tail sheath contraction and genome release from the capsid.

  19. Modeling Coronal Mass Ejections with the Multi-Scale Fluid-Kinetic Simulation Suite

    International Nuclear Information System (INIS)

    Pogorelov, N. V.; Borovikov, S. N.; Wu, S. T.; Yalim, M. S.; Kryukov, I. A.; Colella, P. C.; Van Straalen, B.

    2017-01-01

    The solar eruptions and interacting solar wind streams are key drivers of geomagnetic storms and various related space weather disturbances that may have hazardous effects on the space-borne and ground-based technological systems as well as on human health. Coronal mass ejections (CMEs) and their interplanetary counterparts, interplanetary CMEs (ICMEs), belong to the strongest disturbances and therefore are of great importance for the space weather predictions. In this paper we show a few examples of how adaptive mesh refinement makes it possible to resolve the complex CME structure and its evolution in time while a CME propagates from the inner boundary to Earth. Simulations are performed with the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). (paper)

  20. Sildenafil and diastolic dysfunction after acute myocardial infarction in patients with preserved ejection fraction

    DEFF Research Database (Denmark)

    Andersen, Mads J; Ersbøll, Mads; Axelsson, Anna

    2013-01-01

    with diastolic dysfunction after myocardial infarction. METHODS AND RESULTS: Seventy patients with diastolic dysfunction and near normal left ventricular ejection fraction on echocardiography were randomly assigned sildenafil 40 mg thrice daily or matching placebo for 9 weeks. Before randomization and after 9......, and systemic vascular resistance index (resting, P=0.0002; peak exercise, P=0.007) and diastolic blood pressure (resting, P=0.005; peak exercise, P=0.02) were lower in the sildenafil group. Resting left ventricular end-diastolic volume index increased (P=0.001) within the sildenafil group but was unchanged...

  1. Ejection of iron-bearing giant-impact fragments and the dynamical and geochemical influence of the fragment re-accretion

    Science.gov (United States)

    Genda, Hidenori; Iizuka, Tsuyoshi; Sasaki, Takanori; Ueno, Yuichiro; Ikoma, Masahiro

    2017-07-01

    The Earth was born in violence. Many giant collisions of protoplanets are thought to have occurred during the terrestrial planet formation. Here we investigated the giant impact stage by using a hybrid code that consistently deals with the orbital evolution of protoplanets around the Sun and the details of processes during giant impacts between two protoplanets. A significant amount of materials (up to several tens of percent of the total mass of the protoplanets) is ejected by giant impacts. We call these ejected fragments the giant-impact fragments (GIFs). In some of the erosive hit-and-run and high-velocity collisions, metallic iron is also ejected, which comes from the colliding protoplanets' cores. From ten numerical simulations for the giant impact stage, we found that the mass fraction of metallic iron in GIFs ranges from ∼1 wt% to ∼25 wt%. We also discussed the effects of the GIFs on the dynamical and geochemical characteristics of formed terrestrial planets. We found that the GIFs have the potential to solve the following dynamical and geochemical conflicts: (1) The Earth, currently in a near circular orbit, is likely to have had a highly eccentric orbit during the giant impact stage. The GIFs are large enough in total mass to lower the eccentricity of the Earth to its current value via their dynamical friction. (2) The concentrations of highly siderophile elements (HSEs) in the Earth's mantle are greater than what was predicted experimentally. Re-accretion of the iron-bearing GIFs onto the Earth can contribute to the excess of HSEs. In addition, Iron-bearing GIFs provide significant reducing agent that could transform primitive CO2-H2O atmosphere and ocean into more reducing H2-bearing atmosphere. Thus, GIFs are important for the origin of Earth's life and its early evolution.

  2. Comparison of two radionuclide ejection-fraction techniques with contrast angiography in ischemic heart disease and valvular heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, I.M.; Abdel-Dayem, H.M.; Mohammed, M.M.J.; Simo, M.; Yousef, A.M.; Badruddosa, M.; Mahmood, A.R.; Sayed, M.E.

    1986-04-01

    First-pass radionuclide angiography (FPRA) in the 30/sup 0/ right anterior oblique and equilibrium gated radionuclide angiography (EGNA) in the 45/sup 0/ left anterior oblique were used for quantitative measurements of left ventricular ejection fraction (LVEF). Equipment used was a 400T gamma-camera interfaced with a Simis III Informatek computer. The results were compared with contrast angiography (CA). The aim of this study was to determine the sensitivity of both radionuclide techniques. The present data are based on 65 patients in whom CA and EGNA were performed. In 47 patients both FPRA and EGNA were performed. Results suggested that in ischemic heart disease (IHD) and valvular heart disease (VHD) the EGNA technique is well correlated with CA (r=0.9 and 0.73, respectively). FPRA correlated well only with CA in IHD (r=0.86), but not in VHD (r=0.18). This study indicates that both FPRA and EGNA are sensitive, noninvasive techniques for measuring ejection fraction in IHD, while in VHD, EGNA is more sensitive technique than FPRA.

  3. Changing the treatment of heart failure with reduced ejection fraction: clinical use of sacubitril-valsartan combination

    Science.gov (United States)

    Kaplinsky, Edgardo

    2016-01-01

    Despite significant therapeutic advances, patients with chronic heart failure (HF) remain at high risk of morbidity and mortality. Sacubitril valsartan (previously known as LCZ696) is a new oral agent approved for the treatment of symptomatic chronic heart failure in adults with reduced ejection fraction. It is described as the first in class angiotensin receptor neprilysin inhibitor (ARNI) since it incorporates the neprilysin inhibitor, sacubitril and the angiotensin II receptor antagonist, valsartan. Neprilysin is an endopeptidase that breaks down several vasoactive peptides including natriuretic peptides (NPs), bradykinin, endothelin and angiotensin II (Ang-II). Therefore, a natural consequence of its inhibition is an increase of plasmatic levels of both, NPs and Ang-II (with opposite biological actions). So, a combined inhibition of these both systems (Sacubitril / valsartan) may enhance the benefits of NPs effects in HF (natriuresis, diuresis, etc) while Ang-II receptor is inhibited (reducing vasoconstriction and aldosterone release). In a large clinical trial (PARADIGM-HF with 8442 patients), this new agent was found to significantly reduce cardiovascular and all cause mortality as well as hospitalizations due to HF (compared to enalapril). This manuscript reviews clinical evidence for sacubitril valsartan, dosing and cautions, future directions and its considered place in the therapy of HF with reduced ejection fraction. PMID:28133468

  4. Characterization of plasma jet ejected from a parallel-plate rail gun for simulating edge localized mode

    International Nuclear Information System (INIS)

    Chung, K.S.; Chung, Kyoung-Jae; Jung, B.K.; Hwang, Y.S.

    2013-01-01

    Highlights: • A small plasma gun is constructed to study edge localized mode. • A plasma jet ejected from the gun is characterized with a quadruple Langmuir probe. • The device and diagnostics are suitable for research about the control of plasma jet. -- Abstract: A small plasma gun with parallel-plate configuration is fabricated to generate a bunch of plasma which is similar to ELM (edge localized mode) plasma, by taking advantages of its simplicity and cost-effectiveness. Prior to explore how to control the ELM-like plasma so as to relieve heat load on the divertor target, characteristics of a plasma jet ejected from the plasma gun are investigated using a quadruple Langmuir probe which is appropriate for measuring rapidly varying plasma parameters such as electron density, temperature, and ion velocity at the same time. The plasma density and ion velocity measured at 112 mm away from the exit are 3 × 10 19 m −3 and 11 km/s, respectively, which seem to be suitable for investigating next step research on the control of ELM-like plasma using various methods such as electromagnetic waves and high-voltage pulses. Also, the quadruple Langmuir probe is proven to be adequate for use in such experiments

  5. Moving Liquids with Sound: The Physics of Acoustic Droplet Ejection for Robust Laboratory Automation in Life Sciences.

    Science.gov (United States)

    Hadimioglu, Babur; Stearns, Richard; Ellson, Richard

    2016-02-01

    Liquid handling instruments for life science applications based on droplet formation with focused acoustic energy or acoustic droplet ejection (ADE) were introduced commercially more than a decade ago. While the idea of "moving liquids with sound" was known in the 20th century, the development of precise methods for acoustic dispensing to aliquot life science materials in the laboratory began in earnest in the 21st century with the adaptation of the controlled "drop on demand" acoustic transfer of droplets from high-density microplates for high-throughput screening (HTS) applications. Robust ADE implementations for life science applications achieve excellent accuracy and precision by using acoustics first to sense the liquid characteristics relevant for its transfer, and then to actuate transfer of the liquid with customized application of sound energy to the given well and well fluid in the microplate. This article provides an overview of the physics behind ADE and its central role in both acoustical and rheological aspects of robust implementation of ADE in the life science laboratory and its broad range of ejectable materials. © 2015 Society for Laboratory Automation and Screening.

  6. THE RELATION BETWEEN EIT WAVES AND CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Chen, P. F.

    2009-01-01

    More and more evidence indicates that 'EIT waves' are strongly related to coronal mass ejections (CMEs). However, it is still not clear how the two phenomena are related to each other. We investigate a CME event on 1997 September 9, which was well observed by both the EUV Imaging Telescope (EIT) and the high-cadence Mark-III K-Coronameter at Mauna Loa Solar Observatory, and compare the spatial relation between the 'EIT wave' fronts and the CME leading loops. It is found that 'EIT wave' fronts are cospatial with the CME leading loops, and the expanding EUV dimmings are cospatial with the CME cavity. It is also found that the CME stopped near the boundary of a coronal hole, a feature common to observations of 'EIT waves'. It is suggested that 'EIT waves'/dimmings are the EUV counterparts of the CME leading loop/cavity, based on which we propose that, as in the case of 'EIT waves', CME leading loops are apparently moving density enhancements that are generated by successive stretching (or opening-up) of magnetic loops.

  7. A search for the origins of a possible coronal mass ejection in the low corona

    Science.gov (United States)

    Neupert, Werner M.

    1988-01-01

    Evidence for coronal and chromospheric precursors of a hypothesized coronal mass ejection is sought in OSO-7 observations of a filament eruption and the subsequent flare. Large-scale changes in the corona above the active region were clearly present for at least several minutes before the flare, culminating in the activation and eruption of two widely separated filaments; the eruption of one of the preexisting filaments initiated magnetic reconnections and energy releases in the low corona, generating the observed chromospheric flare.

  8. Estimation of global and regional ejection fraction of the left ventricle using a fully digitalised technique

    International Nuclear Information System (INIS)

    Tuengerthal, S.; Reifart, N.; Standke, R.; Lang, J.; Kollath, J.; Riemann, H.E.; Frankfurt Univ.; Frankfurt Univ.

    1984-01-01

    Subtraction angiocardiography (DSAK) with a fully digitalised system (DR 960) provides a well defined demonstration of the left ventricle after peripheral venous contrast injection. Cardiac volume and ejection fractions were calculated by a dedicated software programme and the findings correlated with cine ventriculography (CA) (r=0.91), biplane echo cardiography (2 DE) (r=0.77) and radionucleid ventriculography (RNV) (r=0.85); the method can be used even with reduced cardiac output (EF [de

  9. Effects of gender, ejection fraction and weight on cardiac force development in patients undergoing cardiac surgery--an experimental examination.

    Science.gov (United States)

    Bening, Constanze; Weiler, Helge; Vahl, Christian-Friedrich

    2013-11-18

    It has long been recognized that differences exist between men and women in the impact of risc factors, symptoms, development and outcome of special diseases like the cardiovascular disease. Gender determines the cardiac baseline parameters like the number of cardiac myocyte, size and demand and may suggest differences in myofilament function among genders, which might be pronounced under pathological conditions. Does gender impact and maybe impair the contractile apparatus? Are the differences more prominent when other factors like weight, age, ejection fraction are added?Therefore we performed a study on 36 patients (21 male, 15 female) undergoing aortic valve replacement (AVR) or aortocoronary bypass operation (CABG) to examine the influence of gender, ejection fraction, surgical procedure and body mass index (BMI) on cardiac force development. Tissue was obtained from the right auricle and was stored in a special solution to prevent any stretching of the fibers. We used the skinned muscle fiber model and single muscle stripes, which were mounted on the "muscle machine" and exposed to a gradual increase of calcium concentration calculated by an attached computer program. 1.) In general female fibers show more force than male fibers: 3.9 mN vs. 2.0 mN (p = 0.03) 2.) Female fibers undergoing AVR achieved more force than those undergoing CABG operation: 5.7 mN vs. 2.8 mN (p = 0.02) as well as male fibers with AVR showed more force values compared to those undergoing CABG: 2.0 mN vs. 0.5 mN (p = 0.01). 3.) Male and female fibers of patients with EF > 55% developed significantly more force than from those with less ejection fraction than 30%: p = 0.002 for the male fibers (1.6 vs. 2.8 mN) and p = 0.04 for the female fibers (5.7 vs. 2.8 mN). 4.) Patients with a BMI between 18 till 25 develop significant more force than those with a BMI > 30: Females 5.1 vs. 2.6 mN; p 0.03, Males 3.8 vs. 0.8 mN; p 0.04). Our data suggest that female patients undergoing AVR or CABG

  10. Automatic determination of the regional ejection fraction of the left ventricle (gated bloodpool)

    International Nuclear Information System (INIS)

    Feser, J.A.

    1982-01-01

    The left ventricular volume curve and the ejection fraction are calculated according to the ''sliding region of interest'' method in which the ventricle contour is redetermined for every single picture of the various phases of the heart beat. The original set of data, consisting of 32 pictures in 64 x 64 matrix resolution, is processed by a three-dimensional filtering process in space (x,y) and time (t). The ventricle contour is determined by convolution of the filtered images with a 7-point Laplacian operator in 4 independent directions. The atrial and ventricular phase histograms are then calculated on the basis of this contour. (WU) [de

  11. Cost-effectiveness Analysis of Sacubitril/Valsartan vs Enalapril in Patients With Heart Failure and Reduced Ejection Fraction.

    Science.gov (United States)

    Gaziano, Thomas A; Fonarow, Gregg C; Claggett, Brian; Chan, Wing W; Deschaseaux-Voinet, Celine; Turner, Stuart J; Rouleau, Jean L; Zile, Michael R; McMurray, John J V; Solomon, Scott D

    2016-09-01

    The angiotensin receptor neprilysin inhibitor sacubitril/valsartan was associated with a reduction in cardiovascular mortality, all-cause mortality, and hospitalizations compared with enalapril. Sacubitril/valsartan has been approved for use in heart failure (HF) with reduced ejection fraction in the United States and cost has been suggested as 1 factor that will influence the use of this agent. To estimate the cost-effectiveness of sacubitril/valsartan vs enalapril in the United States. Data from US adults (mean [SD] age, 63.8 [11.5] years) with HF with reduced ejection fraction and characteristics similar to those in the PARADIGM-HF trial were used as inputs for a 2-state Markov model simulated HF. Risks of all-cause mortality and hospitalization from HF or other reasons were estimated with a 30-year time horizon. Quality of life was based on trial EQ-5D scores. Hospital costs combined Medicare and private insurance reimbursement rates; medication costs included the wholesale acquisition cost for sacubitril/valsartan and enalapril. A discount rate of 3% was used. Sensitivity analyses were performed on key inputs including: hospital costs, mortality benefit, hazard ratio for hospitalization reduction, drug costs, and quality-of-life estimates. Hospitalizations, quality-adjusted life-years (QALYs), costs, and incremental costs per QALY gained. The 2-state Markov model of US adult patients (mean age, 63.8 years) calculated that there would be 220 fewer hospital admissions per 1000 patients with HF treated with sacubitril/valsartan vs enalapril over 30 years. The incremental costs and QALYs gained with sacubitril/valsartan treatment were estimated at $35 512 and 0.78, respectively, compared with enalapril, equating to an incremental cost-effectiveness ratio (ICER) of $45 017 per QALY for the base-case. Sensitivity analyses demonstrated ICERs ranging from $35 357 to $75 301 per QALY. For eligible patients with HF with reduced ejection fraction, the Markov

  12. Noninvasive Assessment of Preload Reserve Enhances Risk Stratification of Patients With Heart Failure With Reduced Ejection Fraction.

    Science.gov (United States)

    Matsumoto, Kensuke; Onishi, Akira; Yamada, Hirotsugu; Kusunose, Kenya; Suto, Makiko; Hatani, Yutaka; Matsuzoe, Hiroki; Tatsumi, Kazuhiro; Tanaka, Hidekazu; Hirata, Ken-Ichi

    2018-05-01

    The leg-positive pressure maneuver can safely and noninvasively apply preload stress without increase in total body fluid volume. The purpose of this study was to determine whether preload stress could be useful for risk stratification of patients with heart failure with reduced ejection fraction. For this study, 120 consecutive patients with heart failure with reduced ejection fraction were prospectively recruited. The stroke work index was estimated as product of stroke volume index and mean blood pressure, and the E/e' ratio was calculated to estimate ventricular filling pressure. The echocardiographic parameters were obtained both at rest and during leg-positive pressure stress. During the median follow-up period of 20 months, 30 patients developed adverse cardiovascular events. During preload stress, stroke work index increased significantly (from 3280±1371 to 3857±1581 mm Hg·mL/m 2 ; P <0.001) along with minimal changes in ventricular filling pressure (E/e', from 16±10 to 17±9; P <0.05) in patients without cardiovascular events. However, patients with cardiovascular events showed impairment of Frank-Starling mechanism (stroke work index, from 2863±969 to 2903±1084 mm Hg·mL/m 2 ; P =0.70) and a serious increase in E/e' ratio (from 19±11 to 25±14; P <0.001). Both the patients without contractile reserve and those without diastolic reserve exhibited worse event-free survival than the others ( P <0.001). In a Cox proportional-hazards analysis, the changes in stroke work index (hazard ratio: 0.44 per 500 mm Hg·mL/m 2 increase; P =0.001) and in E/e' (hazard ratio: 2.58 per 5-U increase; P <0.001) were predictors of cardiovascular events. Contractile reserve and diastolic reserve during leg-positive pressure stress are important determinants of cardiovascular outcomes for patients with heart failure with reduced ejection fraction. © 2018 American Heart Association, Inc.

  13. Resting and exercise haemodynamics in relation to six-minute walk test in patients with heart failure and preserved ejection fraction

    DEFF Research Database (Denmark)

    Wolsk, Emil; Kaye, David; Borlaug, Barry A

    2018-01-01

    AIMS: Patients with heart failure and preserved ejection fraction (HFpEF) are characterized by functional impairment and an abnormal haemodynamic response to exercise. The six-minute walk test (6MWT) serves as a standardized test for functional capacity quantification in heart failure patients, a...

  14. Faraday instability-based micro droplet ejection for inhalation drug delivery

    Science.gov (United States)

    Tsai, C.S.; Mao, R.W.; Lin, S.K.; Zhu, Y.; Tsai, S.C.

    2014-01-01

    We report here the technology and the underlying science of a new device for inhalation (pulmonary) drug delivery which is capable of fulfilling needs unmet by current commercial devices. The core of the new device is a centimeter-size clog-free silicon-based ultrasonic nozzle with multiple Fourier horns in resonance at megahertz (MHz) frequency. The dramatic resonance effect among the multiple horns and high growth rate of the MHz Faraday waves excited on a medicinal liquid layer together facilitate ejection of monodisperse droplets of desirable size range (2–5 µm) at low electrical drive power (<1.0 W). The small nozzle requiring low drive power has enabled realization of a pocket-size (8.6 × 5.6 × 1.5 cm3) ultrasonic nebulizer. A variety of common pulmonary drugs have been nebulized using the pocket-size unit with desirable aerosol sizes and output rate. These results clearly provide proof-of-principle for the new device and confirm its potential for commercialization. PMID:25045720

  15. Delayed Repolarization Underlies Ventricular Arrhythmias in Rats With Heart Failure and Preserved Ejection Fraction.

    Science.gov (United States)

    Cho, Jae Hyung; Zhang, Rui; Kilfoil, Peter J; Gallet, Romain; de Couto, Geoffrey; Bresee, Catherine; Goldhaber, Joshua I; Marbán, Eduardo; Cingolani, Eugenio

    2017-11-21

    Heart failure with preserved ejection fraction (HFpEF) represents approximately half of heart failure, and its incidence continues to increase. The leading cause of mortality in HFpEF is sudden death, but little is known about the underlying mechanisms. Dahl salt-sensitive rats were fed a high-salt diet (8% NaCl) from 7 weeks of age to induce HFpEF (n=38). Rats fed a normal-salt diet (0.3% NaCl) served as controls (n=13). Echocardiograms were performed to assess systolic and diastolic function from 14 weeks of age. HFpEF-verified and control rats underwent programmed electrical stimulation. Corrected QT interval was measured by surface ECG. The mechanisms of ventricular arrhythmias (VA) were probed by optical mapping, whole-cell patch clamp to measure action potential duration and ionic currents, and quantitative polymerase chain reaction and Western blotting to investigate changes in ion channel expression. After 7 weeks of a high-salt diet, 31 of 38 rats showed diastolic dysfunction and preserved ejection fraction along with signs of heart failure and hence were diagnosed with HFpEF. Programmed electric stimulation demonstrated increased susceptibility to VA in HFpEF rats ( P hearts demonstrated prolonged action potentials ( P hearts. Susceptibility to VA was markedly increased in rats with HFpEF. Underlying abnormalities include QT prolongation, delayed repolarization from downregulation of potassium currents, and multiple reentry circuits during VA. Our findings are consistent with the hypothesis that potassium current downregulation leads to abnormal repolarization in HFpEF, which in turn predisposes to VA and sudden cardiac death. © 2017 American Heart Association, Inc.

  16. The reproducibility and variability of sequential left ventricular ejection fraction measurements by the nuclear stethoscope

    International Nuclear Information System (INIS)

    Kurata, Chinori; Hayashi, Hideharu; Kobayashi, Akira; Yamazaki, Noboru

    1986-01-01

    We evaluated the reproducibility and variability of sequential left ventricular ejection fraction (LVEF) measurements by the nuclear stethoscope in 72 patients. The group as a whole demonstrated excellent reproducibility (r = 0.96). However, repeat LVEF measurements by the nuclear stethoscope at 5-minute interval showed around 9 % absolute difference, at 95 % confidence levels, from one measurement to the next. The finding indicates that a change in LVEF greater than 9 % is necessary for determining an acute effect of an intervention in individual cases. (author)

  17. Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion

    International Nuclear Information System (INIS)

    Zheng Zhiyuan; Gao Hua; Fan Zhenjun; Xing Jie

    2014-01-01

    The angular distribution and pressure force of droplets ejected from liquid water and glycerol ablated by nanosecond laser pulses are investigated under different viscosities in laser plasma propulsion. It is shown that with increasing viscosity, the distribution angles present a decrease tendency for two liquids, and the angular distribution of glycerol is smaller than that of water. A smaller distribution leads to a higher pressure force generation. The results indicate that ablation can be controlled by varying the viscosity of liquid propellant in laser plasma propulsion

  18. How Interplanetary Scintillation Data Can Improve Modeling of Coronal Mass Ejection Propagation

    Science.gov (United States)

    Taktakishvili, A.; Mays, M. L.; Manoharan, P. K.; Rastaetter, L.; Kuznetsova, M. M.

    2017-12-01

    Coronal mass ejections (CMEs) can have a significant impact on the Earth's magnetosphere-ionosphere system and cause widespread anomalies for satellites from geosynchronous to low-Earth orbit and produce effects such as geomagnetically induced currents. At the NASA/GSFC Community Coordinated Modeling Center we have been using ensemble modeling of CMEs since 2012. In this presnetation we demonstrate that using of interplanetary scintillation (IPS) observations from the Ooty Radio Telescope facility in India can help to track CME propagaion and improve ensemble forecasting of CMEs. The observations of the solar wind density and velocity using IPS from hundreds of distant sources in ensemble modeling of CMEs can be a game-changing improvement of the current state of the art in CME forecasting.

  19. On the physics of electron ejection from laser-irradiated overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Thévenet, M.; Vincenti, H.; Faure, J. [Laboratoire d' Optique Appliquée, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-06-15

    Using 1D and 2D PIC simulations, we describe and model the backward ejection of electron bunches when a laser pulse reflects off an overdense plasma with a short density gradient on its front side. The dependence on the laser intensity and gradient scale length is studied. It is found that during each laser period, the incident laser pulse generates a large charge-separation field, or plasma capacitor, which accelerates an attosecond bunch of electrons toward vacuum. This process is maximized for short gradient scale lengths and collapses when the gradient scale length is comparable to the laser wavelength. We develop a model that reproduces the electron dynamics and the dependence on laser intensity and gradient scale length. This process is shown to be strongly linked with high harmonic generation via the Relativistic Oscillating Mirror mechanism.

  20. FRiED: A NOVEL THREE-DIMENSIONAL MODEL OF CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Isavnin, A.

    2016-01-01

    We present a novel three-dimensional (3D) model of coronal mass ejections (CMEs) that unifies all key evolutionary aspects of CMEs and encapsulates their 3D magnetic field configuration. This fully analytic model is capable of reproducing the global geometrical shape of a CME with all major deformations taken into account, i.e., deflection, rotation, expansion, “pancaking,” front flattening, and rotational skew. Encapsulation of 3D magnetic structure allows the model to reproduce in-situ measurements of magnetic field for trajectories of spacecraft-CME encounters of any degree of complexity. As such, the model can be used single-handedly for the consistent analysis of both remote and in-situ observations of CMEs at any heliocentric distance. We demonstrate the latter by successfully applying the model for the analysis of two CMEs.

  1. Active Longitude and Coronal Mass Ejection Occurrences

    International Nuclear Information System (INIS)

    Gyenge, N.; Kiss, T. S.; Erdélyi, R.; Singh, T.; Srivastava, A. K.

    2017-01-01

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  2. Active Longitude and Coronal Mass Ejection Occurrences

    Energy Technology Data Exchange (ETDEWEB)

    Gyenge, N.; Kiss, T. S.; Erdélyi, R. [Solar Physics and Space Plasmas Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom); Singh, T.; Srivastava, A. K., E-mail: n.g.gyenge@sheffield.ac.uk [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi (India)

    2017-03-20

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  3. Active Longitude and Coronal Mass Ejection Occurrences

    Science.gov (United States)

    Gyenge, N.; Singh, T.; Kiss, T. S.; Srivastava, A. K.; Erdélyi, R.

    2017-03-01

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  4. Measurement and comparison of left ventricular ejection fraction utilizing first transit and gated scintiangiography

    International Nuclear Information System (INIS)

    Fletcher, J.W.; Herbig, F.K.; Daly, J.L.; Walter, K.E.

    1975-01-01

    Paired serial radionuclide scans were used for determinations of left ventricular ejection fraction (LVEF) in open chest dogs with constant cardiac output and varying ventricular rates following the left atrial injection of 99m-Tc human serum albumin. Values of LVEF obtained by first transit (high frequency) data analysis and ECG-gated scintiphotography were obtained over a wide range of ventricular rate and stroke volume. The results of this study show no significant difference in LVEF as determined by both of these methods of data acquisition and analysis and demonstrate the feasibility of rapid serial determination of LVEF by radioisotope techniques

  5. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E ∼ 20 MeV SEP events with CME source regions within 20° of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  6. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S. W. [Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Avenue, Kirtland AFB, NM 87117 (United States); Akiyama, S. [Institute for Astrophyics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Gopalswamy, N., E-mail: AFRL.RVB.PA@kirtland.af.mil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-08-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E {approx} 20 MeV SEP events with CME source regions within 20 Degree-Sign of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  7. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    Science.gov (United States)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  8. Examination of control rod ejection in WWER-440 type reactors at different circumstances using the code DYN3D

    International Nuclear Information System (INIS)

    Petoefi, G.; Aszodi, A.

    2001-01-01

    For nuclear reactors it is very important to examine the reactivity initiated transients caused by the ejection of a control rod. The event is found to be dependent on different thermal and neutronic parameters. In this paper the emphasis is laid on the effect of the power level at which the transient began and on the effect of the heat transfer coefficient measured in the gap between the fuel and the cladding. The most significant transients can be established by the ejection of the most effective control rod. So the first step is to determine the position of this rod. It was done by steady state calculations A calculation was carried out with all the rods inserted to the half level of the core, criticality was reached by adjusting the power level. Seven other calculations were made for each control rod at withdrawn position while the other six rods were inserted to the half plane of the core. From the results the most effective control rod could be determined.(authors)

  9. A comparison of two radionuclide ejection-fraction techniques with contrast angiography in ischemic heart disease and valvular heart disease

    International Nuclear Information System (INIS)

    Hassan, I.M.; Abdel-Dayem, H.M.; Mohammed, M.M.J.; Simo, M.; Yousef, A.M.; Badruddosa, M.; Mahmood, A.R.; Sayed, M.E.

    1986-01-01

    First-pass radionuclide angiography (FPRA) in the 30 0 right anterior oblique and equilibrium gated radionuclide angiography (EGNA) in the 45 0 left anterior oblique were used for quantitative measurements of left ventricular ejection fraction (LVEF). Equipment used was a 400T gamma-camera interfaced with a Simis III Informatek computer. The results were compared with contrast angiography (CA). The aim of this study was to determine the sensitivity of both radionuclide techniques. The present data are based on 65 patients in whom CA and EGNA were performed. In 47 patients both FPRA and EGNA were performed. Results suggested that in ischemic heart disease (IHD) and valvular heart disease (VHD) the EGNA technique is well correlated with CA (r=0.9 and 0.73, respectively). FPRA correlated well only with CA in IHD (r=0.86), but not in VHD (r=0.18). This study indicates that both FPRA and EGNA are sensitive, noninvasive techniques for measuring ejection fraction in IHD, while in VHD, EGNA is more sensitive technique than FPRA. (orig.)

  10. Determination of differences in the left ventricular ejection fraction (LVEF) by radionuclides and echocardiography pre and post treatment with anthracycline in pediatric patients with oncology diagnostic of the La Raza Medical Center

    International Nuclear Information System (INIS)

    Veras R, H.

    2003-01-01

    The objective of this work was to correlate the left ventricular ejection fraction determine by radionuclide angiocardiography and echocardiography in pediatric patients under anthracycline treatment. Material and methods: 41 patients were studied with range age from 3 to 14 years, with oncology diagnostic that were treated with anthracycline. Radionuclide angiocardiography and echocardiography were performed before an after anthracycline administration to determine the changes in the Ieft ventricular ejection fraction. Results: Anthracycline treatment caused no changes in the electrocardiography, echocardiogram and radionuclide angiocardiography. Conclusions: In our study anthracycline treatment caused no changes in the electrocardiography, echocardiography and both radionuclide angiocardiography techniques, first-pass and equilibrium. A high correlation was obtaining when left ventricular ejection fraction is compared between radionuclide angiocardiography and echocardiogram. (Author)

  11. Branching ratio and angular distribution of ejected electrons from Eu 4f76p1/2 n d auto-ionizing states

    International Nuclear Information System (INIS)

    Wu Xiao-Rui; Shen Li; Zhang Kai; Dai Chang-Jian; Yang Yu-Na

    2016-01-01

    The branching ratios of ions and the angular distributions of electrons ejected from the Eu 4f 7 6p 1/2 n d auto-ionizing states are investigated with the velocity-map-imaging technique. To populate the above auto-ionizing states, the relevant bound Rydberg states have to be detected first. Two new bound Rydberg states are identified in the region between 41150 cm −1 and 44580 cm −1 , from which auto-ionization spectra of the Eu 4f 7 6p 1/2 n d states are observed with isolated core excitation method. With all preparations above, the branching ratios from the above auto-ionizing states to different final ionic states and the angular distributions of electrons ejected from these processes are measured systematically. Energy dependence of branching ratios and anisotropy parameters within the auto-ionization spectra are carefully analyzed, followed by a qualitative interpretation. (paper)

  12. Binaries discovered by the SPY survey VI. Discovery of a low mass companion to the hot subluminous planetary nebula central star EGB5-a recently ejected common envelope?

    OpenAIRE

    Geier, S.; Napiwotzki, R.; Heber, U.; Nelemans, G.A.

    2011-01-01

    Hot subdwarf B stars (sdBs) in close binary systems are assumed to be formed via common envelope ejection. According to theoretical models, the amount of energy and angular momentum deposited in the common envelope scales with the mass of the companion. That low mass companions near or below the core hydrogen-burning limit are able to trigger the ejection of this envelope is well known. The currently known systems have very short periods $\\simeq0.1-0.3\\,{\\rm d}$. Here we report the discovery ...

  13. Analysis of high burnup fuel behavior under control rod ejection accident in Korea standard nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Chan Bok; Lee, Chung Chan; Kim, Oh Hwan; Kim, Jong Jin

    1996-07-01

    Test results of high burnup fuel behavior under RIA(reactivity insertion accident) indicated that fuel might fail at the fuel enthalpy lower than that in the current fuel failure criteria was derived by the conservative assumptions and analysis of fuel failure mechanisms, and applied to the analysis of control rod ejection accident in the 1,000 MWe Korea standard PWR. Except that three dimensional core analysis was performed instead of conventional zero dimensional analysis, all the other conservative assumptions were kept. Analysis results showed that less than on percent of the fuel rods in the core has failed which was much less than the conventional fuel failure fraction, 9.8 %, even though a newly derived fuel failure criteria -Fuel failure occurs at the power level lower than that in the current fuel failure criteria. - was applied, since transient fuel rod power level was significantly decreased by analyzing the transient fuel rod power level was significantly decreased by analyzing the transient core three dimensionally. Therefore, it can be said that results of the radiological consequence analysis for the control rod ejection accident in the FSAR where fuel failure fraction was assumed 9.8 % is still bounding. 18 tabs., 48 figs., 39 refs. (Author)

  14. Angular distribution of ejected electrons from 20 keV He+ impact on He

    International Nuclear Information System (INIS)

    Tokoro, N.; Takenouchi, S.; Urakawa, J.; Oda, N.

    1982-01-01

    The angular distributions of ejected electrons in the energy range 5-70 eV have been measured at angles from 30 to 150 0 for 20 keV He + impact on He. The angular dependence of excitation cross sections of autoionisation states 2s 2 1 S and 2p 2 1 D+2s2p 1 P are in good agreement with previous data measured by Bordenave-Montesquieu et al (Phys. Rev.; A25:245 (1982)). The continuous parts of the electron spectra show symmetrical angular distributions around 90 0 in the laboratory frame for low-energy electrons (< approximately equal to 30 eV). These angular distributions are discussed in connection with the molecular autoionisation mechanism. (author)

  15. Simultaneous EUV and radio observations of bidirectional plasmoids ejection during magnetic reconnection

    Science.gov (United States)

    Kumar, Pankaj; Cho, Kyung-Suk

    2013-09-01

    We present a multiwavelength study of the X-class flare, which occurred in active region (AR) NOAA 11339 on 3 November 2011. The extreme ultraviolet (EUV) images recorded by SDO/AIA show the activation of a remote filament (located north of the AR) with footpoint brightenings about 50 min prior to the flare's occurrence. The kinked filament rises up slowly, and after reaching a projected height of ~49 Mm, it bends and falls freely near the AR, where the X-class flare was triggered. Dynamic radio spectrum from the Green Bank Solar Radio Burst Spectrometer (GBSRBS) shows simultaneous detection of both positive and negative drifting pulsating structures (DPSs) in the decimetric radio frequencies (500-1200 MHz) during the impulsive phase of the flare. The global negative DPSs in solar flares are generally interpreted as a signature of electron acceleration related to the upward-moving plasmoids in the solar corona. The EUV images from AIA 94 Å reveal the ejection of multiple plasmoids, which move simultaneously upward and downward in the corona during the magnetic reconnection. The estimated speeds of the upward- and downward-moving plasmoids are ~152-362 and ~83-254 km s-1, respectively. These observations strongly support the recent numerical simulations of the formation and interaction of multiple plasmoids due to tearing of the current-sheet structure. On the basis of our analysis, we suggest that the simultaneous detection of both the negative and positive DPSs is most likely generated by the interaction or coalescence of the multiple plasmoids moving upward and downward along the current-sheet structure during the magnetic reconnection process. Moreover, the differential emission measure (DEM) analysis of the active region reveals a hot flux-rope structure (visible in AIA 131 and 94 Å) prior to the flare initiation and ejection of the multitemperature plasmoids during the flare impulsive phase. Movie is available in electronic form at http://www.aanda.org

  16. Regarding the detectability and measurement of coronal mass ejections

    Directory of Open Access Journals (Sweden)

    Howard Timothy A.

    2015-01-01

    Full Text Available In this review I discuss the problems associated with the detection and measurement of coronal mass ejections (CMEs. CMEs are important phenomena both scientifically, as they play a crucial role in the evolution of the solar corona, and technologically, as their impact with the Earth leads to severe space weather activity in the form of magnetic storms. I focus on the observation of CMEs using visible white light imagers (coronagraphs and heliospheric imagers, as they may be regarded as the binding agents between different datasets and different models that are used to reconstruct them. Our ability to accurately measure CMEs observed by these imagers is hampered by many factors, from instrumental to geometrical to physical. Following a brief review of the history of CME observation and measurement, I explore the impediments to our ability to measure them and describe possible means for which we may be able to mitigate those impediments. I conclude with a discussion of the claim that we have reached the limit of the information that we can extract from the current generation of white light imagers, and discuss possible ways forward regarding future instrument capabilities.

  17. Predictors and progression of aortic stenosis in patients with preserved left ventricular ejection fraction

    DEFF Research Database (Denmark)

    Ersbøll, Mads; Schulte, Phillip J; Al Enezi, Fawaz

    2015-01-01

    We aimed to characterize the hemodynamic progression of aortic stenosis (AS) in a contemporary unselected cohort of patients with preserved left ventricular ejection fraction. Current guidelines recommend echocardiographic surveillance of hemodynamic progression. However, limited data exist...... reported, a significant proportion of patients with mild and moderate AS progressed to higher grades within the currently recommended time windows for echocardiographic follow-up....... on the expected rate of progression and whether clinical variables are associated with accelerated progression in contemporarily managed patients with AS. We conducted a retrospective analysis of patients presenting with AS and explored the trajectory of AS mean gradient over time using generalized estimating...

  18. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607–8471 (Japan)

    2017-03-10

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  19. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    International Nuclear Information System (INIS)

    Takahashi, Takuya; Shibata, Kazunari

    2017-01-01

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  20. Coronal Mass Ejections: Models and Their Observational Basis

    Directory of Open Access Journals (Sweden)

    P. F. Chen

    2011-04-01

    Full Text Available Coronal mass ejections (CMEs are the largest-scale eruptive phenomenon in the solar system, expanding from active region-sized nonpotential magnetic structure to a much larger size. The bulk of plasma with a mass of ∼10^11 – 10^13 kg is hauled up all the way out to the interplanetary space with a typical velocity of several hundred or even more than 1000 km s^-1, with a chance to impact our Earth, resulting in hazardous space weather conditions. They involve many other much smaller-sized solar eruptive phenomena, such as X-ray sigmoids, filament/prominence eruptions, solar flares, plasma heating and radiation, particle acceleration, EIT waves, EUV dimmings, Moreton waves, solar radio bursts, and so on. It is believed that, by shedding the accumulating magnetic energy and helicity, they complete the last link in the chain of the cycling of the solar magnetic field. In this review, I try to explicate our understanding on each stage of the fantastic phenomenon, including their pre-eruption structure, their triggering mechanisms and the precursors indicating the initiation process, their acceleration and propagation. Particular attention is paid to clarify some hot debates, e.g., whether magnetic reconnection is necessary for the eruption, whether there are two types of CMEs, how the CME frontal loop is formed, and whether halo CMEs are special.

  1. Comparison of left and right ventricular ejection and filling parameters by fast cine MR imaging in breath-hold technique: clinical study of 42 patients with cardiomyopathy and coronary heart disease

    International Nuclear Information System (INIS)

    Rominger, M.B.; Bachmann, G.F.; Geuer, M.; Puzik, M.; Rau, W.S.; Ricken, W.W.

    1999-01-01

    Purpose: Quantification of left and right ventricular filling and ejection of localized and diffuse heart diseases with fast cine MR imaging in breath-hold technique. Methods: 42 patients (14 idiopathic dilated cardiomyopathies (DCM), 13 hypertrophic cardiomyopathies (HCM) and 15 coronary artery diseases (CAD)) and 10 healthy volunteers were examined. Time-volume-curves of three left ventricular and one right ventricular slices were evaluated and peak ejection and filling rates (PER, PFR end-diastolic volume (EDV)/s) time to PER and PFR (TPER, TPFR ms) and time of end-systole (TSYS in % RR-intervall) were calculated. Results: There were significant regional and left-/right-sided differences of the filling and ejection of both ventricles within and between the different groups. In DCM the left ventricular PFR was reduced (DCM 3.1 EDV/s; volunteers 4.9 EDV/s) and Z-SYS prolonged (DCM 50.1%; volunteers 35.4%). In CAD there were localized decreased filling rates in comparison to the normal volunteer group (left ventricle: basal: 2.9 and 6.3 EDV/s, apical: 4.4 and 6.3 EDV/s; right ventricle: 3.6 and 5.7 EDV/s). HCM typically showed an isovolumetric lengthening of the endsystole. Conclusions: Cardiac MR imaging in breath-hold technique is suitable for measuring contraction and relaxation disturbances of localized and diffuse heart diseases by means of ejection and filling volume indices. (orig.) [de

  2. Control assembly ejection accident analysis for WWER-440 (Armenian NPP)

    International Nuclear Information System (INIS)

    Bznuni, S.; Malakyan, Ts.; Amirjanyan, A.; Ghasabyan, L.

    2007-01-01

    Control Assembly ejection in WWER-440 initiated by the loss of integrity of the Control Assemblies drive housing has been analyzed. This event causes a very rapid reactivity insertion to the core and small break LOCA which potentially could lead to rapid power increase and redistribution of heat release in the core resulting in a fuel, cladding and coolant temperature rise; primary pressure increase, radiological consequences due to loss of primary coolant and potential loss of cladding integrity and fuel disintegration (if applicable). Methodology of the analysis is based on conservative assumptions as well as on deterministic approach for selection of functioning logic of systems and equipment's to maximize reactor core power and minimize power decreasing reactivity feedback. Computational analyses were performed by 3D kinetics PARCS-RELAP coupled code. WWER-440 fuel cross-section libraries, diffusion coefficients and kinetics parameters were calculated by HELOS code. In this paper analysis of accident for Hot Full Power was presented. Results of analysis show that ANPP WWER-440 reactor design meets acceptance criteria prescribed for RIA type design based accidents (Authors)

  3. Ejection of Coulomb Crystals from a Linear Paul Ion Trap for Ion-Molecule Reaction Studies.

    Science.gov (United States)

    Meyer, K A E; Pollum, L L; Petralia, L S; Tauschinsky, A; Rennick, C J; Softley, T P; Heazlewood, B R

    2015-12-17

    Coulomb crystals are being increasingly employed as a highly localized source of cold ions for the study of ion-molecule chemical reactions. To extend the scope of reactions that can be studied in Coulomb crystals-from simple reactions involving laser-cooled atomic ions, to more complex systems where molecular reactants give rise to multiple product channels-sensitive product detection methodologies are required. The use of a digital ion trap (DIT) and a new damped cosine trap (DCT) are described, which facilitate the ejection of Coulomb-crystallized ions onto an external detector for the recording of time-of-flight (TOF) mass spectra. This enables the examination of reaction dynamics and kinetics between Coulomb-crystallized ions and neutral molecules: ionic products are typically cotrapped, thus ejecting the crystal onto an external detector reveals the masses, identities, and quantities of all ionic species at a selected point in the reaction. Two reaction systems are examined: the reaction of Ca(+) with deuterated isotopologues of water, and the charge exchange between cotrapped Xe(+) with deuterated isotopologues of ammonia. These reactions are examples of two distinct types of experiment, the first involving direct reaction of the laser-cooled ions, and the second involving reaction of sympathetically-cooled heavy ions to form a mixture of light product ions. Extensive simulations are conducted to interpret experimental results and calculate optimal operating parameters, facilitating a comparison between the DIT and DCT approaches. The simulations also demonstrate a correlation between crystal shape and image shape on the detector, suggesting a possible means for determining crystal geometry for nonfluorescing ions.

  4. Non-invasive measurement of stroke volume and left ventricular ejection fraction. Radionuclide cardiography compared with left ventricular cardioangiography

    DEFF Research Database (Denmark)

    Kelbaek, H; Svendsen, J H; Aldershvile, J

    1988-01-01

    The stroke volume (SV) was determined by first passage radionuclide cardiography and the left ventricular ejection fraction (LVEF) by multigated radionuclide cardiography in 20 patients with ischemic heart disease. The results were evaluated against those obtained by the invasive dye dilution or ...... are reliable. The discrepancy between the non-invasive and invasive LVEF values raises the question, whether LVEF is overestimated by cardioangiography or underestimated by radionuclide cardiography....

  5. THREE-DIMENSIONAL RECONSTRUCTIONS AND MASS DETERMINATION OF THE 2008 JUNE 2 LASCO CORONAL MASS EJECTION USING STELab INTERPLANETARY SCINTILLATION OBSERVATIONS

    International Nuclear Information System (INIS)

    Bisi, M. M.; Jackson, B. V.; Hick, P. P.; Buffington, A.; Clover, J. M.; Tokumaru, M.; Fujiki, K.

    2010-01-01

    We examine and reconstruct the interplanetary coronal mass ejection (ICME) first seen in space-based coronagraph white-light difference images on 2008 June 1 and 2. We use observations of interplanetary scintillation (IPS) taken with the Solar-Terrestrial Environment Laboratory (STELab), Japan, in our three-dimensional (3D) tomographic reconstruction of density and velocity. The coronal mass ejection (CME) was first observed by the LASCO C3 instrument at around 04:17 UT on 2008 June 2. Its motion subsequently moved across the C3 field of view with a plane-of-the-sky velocity of 192 km s -1 . The 3D reconstructed ICME is consistent with the trajectory and extent of the CME measurements taken from the CDAW CME catalog. However, excess mass estimates vary by an order of magnitude from Solar and Heliospheric Observatory and Solar Terrestrial Relations Observatory coronagraphs to our 3D IPS reconstructions of the inner heliosphere. We discuss the discrepancies and give possible explanations for these differences as well as give an outline for future studies.

  6. Color matters--material ejection and ion yields in UV-MALDI mass spectrometry as a function of laser wavelength and laser fluence.

    Science.gov (United States)

    Soltwisch, Jens; Jaskolla, Thorsten W; Dreisewerd, Klaus

    2013-10-01

    The success of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) as a widely employed analytical tool in the biomolecular sciences builds strongly on an effective laser-material interaction that is resulting in a soft co-desorption and ionization of matrix and imbedded biomolecules. To obtain a maximized ion yield for the analyte(s) of interest, in general both wavelength and fluence need to be tuned to match the specific optical absorption profile of the used matrix. However, commonly only lasers with fixed emission wavelengths of either 337 or 355 nm are used for MALDI-MS. Here, we employed a wavelength-tunable dye laser and recorded both the neutral material ejection and the MS ion data in a wide wavelength and fluence range between 280 and 377.5 nm. α-Cyano-4-hydroxycinnamic acid (HCCA), 4-chloro-α-cyanocinnamic acid (ClCCA), α-cyano-2,4-difluorocinnamic acid (DiFCCA), and 2,5-dihydroxybenzoic acid (DHB) were investigated as matrices, and several peptides as analytes. Recording of the material ejection was achieved by adopting a photoacoustic approach. Relative ion yields were derived by division of photoacoustic and ion signals. In this way, distinct wavelength/fluence regions can be identified for which maximum ion yields were obtained. For the tested matrices, optimal results were achieved for wavelengths corresponding to areas of high optical absorption of the respective matrix and at fluences about a factor of 2-3 above the matrix- and wavelength-dependent ion detection threshold fluences. The material ejection as probed by the photoacoustic method is excellently fitted by the quasithermal model, while a sigmoidal function allows for an empirical description of the ion signal-fluence relationship.

  7. Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations.

    Science.gov (United States)

    Zhang, Xinyu; Garimella, Sandilya V B; Prost, Spencer A; Webb, Ian K; Chen, Tsung-Chi; Tang, Keqi; Tolmachev, Aleksey V; Norheim, Randolph V; Baker, Erin S; Anderson, Gordon A; Ibrahim, Yehia M; Smith, Richard D

    2015-06-16

    A new Structures for Lossless Ion Manipulations (SLIM) module, having electrode arrays patterned on a pair of parallel printed circuit boards (PCB), was constructed and utilized to investigate capabilities for ion trapping at a pressure of 4 Torr. Positive ions were confined by application of RF voltages to a series of inner rung electrodes with alternating phase on adjacent electrodes, in conjunction with positive DC potentials on surrounding guard electrodes on each PCB. An axial DC field was also introduced by stepwise varying the DC potentials applied to the inner rung electrodes to control the ion transport and accumulation inside the ion trapping region. We show that ions can be trapped and accumulated with up to 100% efficiency, stored for at least 5 h with no significant losses, and then could be rapidly ejected from the SLIM trap. The present results provide a foundation for the development of much more complex SLIM devices that facilitate extended ion manipulations.

  8. Fusion surface material melting, ablation, and ejection under high heat loading

    International Nuclear Information System (INIS)

    Holliday, M.R.; Doster, J.M.; Gilligan, J.G.

    1986-01-01

    Limiters, divertor plates, and sections of the first wall are exposed to intense heat loads during normal operation and plasma disruptions. This results in severe thermal stresses as well as erosion of the surface material. Large surface areas of compact high-field tokamaks are expected to be exposed to these high heat loads. The need for a fast and accurate computational model describing the heat transfer and phase change process has arisen as a part of the larger model of the plasma-edge region. The authors report on a solution scheme that has been developed that minimizes computational time for this time-dependent, one-dimensional, moving boundary problem. This research makes use of the heat balance integral technique, which is at least an order of magnitude faster than previous finite difference techniques. In addition, we report on the effect of molten material ejection (by external forces) on the total surface erosion rate

  9. Response of left ventricular ejection fraction to recovery from general anesthesia: measurement by gated radionuclide angiography

    International Nuclear Information System (INIS)

    Coriat, P.; Mundler, O.; Bousseau, D.; Fauchet, M.; Rous, A.C.; Echter, E.; Viars, P.

    1986-01-01

    To test the hypothesis that, after anesthesia for noncardiac surgical procedures, the increased cardiac work during recovery induces wall motion and ejection fraction (EF) abnormalities in patients with mild angina pectoris, gated radionuclide angiography was performed in patients undergoing simple cholecystectomy under narcotic-relaxant general anesthesia. The ejection fraction was determined during anesthesia at the end of surgery, and then determined 3 min and 3 hr after extubation. A new angiography was performed 24 hr later, and a myocardial scintigraphy (Thallium 201) was performed during infusion of the coronary vasodilator, dipyridamole. In the first part of the investigation, eight patients without coronary artery disease (CAD) (group 1) and 20 patients with mild angina (group 2) were studied. In the second part of the study, seven patients (group 3) with mild angina pectoris received an intravenous infusion of 0.4 microgram X kg-1 X min-1 of nitroglycerin started before surgery and gradually decreased 4 hr after extubation. In group 1, EF remained unchanged at recovery. In contrast in group 2, EF responded abnormally to recovery: EF decreased from 55% during anesthesia to 45% 3 min after extubation (P less than 0.001). Patients in group 3, who received intravenous nitroglycerin, showed no change of EF at recovery. This study demonstrates that recovery from general anesthesia causes abnormalities in left ventricular function in patients suffering from CAD. These abnormalities are prevented by prophylactic intravenous nitroglycerin

  10. THE HEIGHT EVOLUTION OF THE ''TRUE'' CORONAL MASS EJECTION MASS DERIVED FROM STEREO COR1 AND COR2 OBSERVATIONS

    International Nuclear Information System (INIS)

    Bein, B. M.; Temmer, M.; Veronig, A. M.; Utz, D.; Vourlidas, A.

    2013-01-01

    Using combined STEREO-A and STEREO-B EUVI, COR1, and COR2 data, we derive deprojected coronal mass ejection (CME) kinematics and CME ''true'' mass evolutions for a sample of 25 events that occurred during 2007 December to 2011 April. We develop a fitting function to describe the CME mass evolution with height. The function considers both the effect of the coronagraph occulter, at the beginning of the CME evolution, and an actual mass increase. The latter becomes important at about 10-15 R ☉ and is assumed to mostly contribute up to 20 R ☉ . The mass increase ranges from 2% to 6% per R ☉ and is positively correlated to the total CME mass. Due to the combination of COR1 and COR2 mass measurements, we are able to estimate the ''true'' mass value for very low coronal heights ( ☉ ). Based on the deprojected CME kinematics and initial ejected masses, we derive the kinetic energies and propelling forces acting on the CME in the low corona ( ☉ ). The derived CME kinetic energies range between 1.0-66 × 10 23 J, and the forces range between 2.2-510 × 10 14 N.

  11. Origin of coronal mass ejection and magnetic cloud: Thermal or magnetic driven?

    Science.gov (United States)

    Zhang, Gong-Liang; Wang, Chi; He, Shuang-Hua

    1995-01-01

    A fundamental problem in Solar-Terrestrial Physics is the origin of the solar transient plasma output, which includes the coronal mass ejection and its interplanetary manifestation, e.g. the magnetic cloud. The traditional blast wave model resulted from solar thermal pressure impulse has faced with challenge during recent years. In the MHD numerical simulation study of CME, the authors find that the basic feature of the asymmetrical event on 18 August 1980 can be reproduced neither by a thermal pressure nor by a speed increment. Also, the thermal pressure model fails in simulating the interplanetary structure with low thermal pressure and strong magnetic field strength, representative of a typical magnetic cloud. Instead, the numerical simulation results are in favor of the magnetic field expansion as the likely mechanism for both the asymmetrical CME event and magnetic cloud.

  12. Varying effects of recommended treatments for heart failure with reduced ejection fraction

    DEFF Research Database (Denmark)

    Thomsen, Marius Mark; Lewinter, Christian; Køber, Lars

    2016-01-01

    The aim of this paper is to evaluate the treatment effects of recommended drugs and devices on key clinical outcomes for patients with heart failure with reduced ejection fraction (HFREF). Randomized controlled trials (RCTs) listed in the 2012 HF guideline from the European Society of Cardiology...... as well as the 2013 HF guideline from the American College of Cardiology Foundation and American Heart Association were evaluated for use in the meta-analysis. RCTs written in English evaluating recommended drugs and devices for the treatment of patients with HFREF were included. Meta-analyses, based...... on the outcomes of all-cause mortality and hospitalization because of HF, were performed with relative risk ratio as the effect size. In the identified 47 RCTs, patients were on average 63 years old and 22% were female. Drugs targeting the renin-angiotensin-aldosterone system, beta-blockers, cardiac...

  13. H2 EJECTION FROM POLYCYCLIC AROMATIC HYDROCARBONS: INFRARED MULTIPHOTON DISSOCIATION STUDY OF PROTONATED ACENAPHTHENE AND 9,10-DIHYDROPHENANTHRENE

    International Nuclear Information System (INIS)

    Szczepanski, Jan; Vala, Martin T.; Oomens, Jos; Steill, Jeffrey D.

    2011-01-01

    The infrared multiple-photon dissociation (IRMPD) spectra of protonated acenaphthene ([ACN+H] + ) and 9,10-dihydrophenanthrene ([DHP+H] + ) have been recorded using an infrared free electron laser after the compounds were protonated by electrospray ionization and trapped in a Fourier transform ion cyclotron mass spectrometer. In both compounds, the loss of two mass units is predominant. Density functional calculations (B3LYP/6-311++G(d,p)) of the infrared spectra of all possible protonated isomers of each species showed that the observed IRMPD spectra are best fit to the isomer with the largest proton affinity and lowest relative electronic energy. Potential energy surfaces of the most stable isomers of [ACN+H] + and [DHP+H] + have been calculated for H and H 2 loss. The lowest energy barriers are for loss of H 2 , with predicted energies 4.28 and 4.15 eV, respectively. After H 2 ejection, the adjacent aliphatic hydrogens migrate to the bare ejection site and stabilize the remaining fragment. Single H loss may occur from [ACN+H] + but the energy required is higher. No single H loss is predicted from [DHP+H] + , only H migration around the carbon skeleton. The vibrational bands in the parent closed-shell protonated polycyclic aromatic hydrocarbons are compared to bands observed from the interstellar medium.

  14. Risk factors for readmission to hospital in adult patients with heart failure and reduced ejection fraction

    DEFF Research Database (Denmark)

    Schjødt, Inge; Larsen, Palle; Johnsen, Søren Paaske

    2017-01-01

    REVIEW QUESTION/OBJECTIVE:: The objective of this systematic review is to identify and synthesize the best available evidence on risk factors associated with hospital readmission at different time points within the first year after heart failure (HF) hospitalization in patients suffering from HF...... with reduced ejection fraction (EF).More specifically, the question is: what are the risk factors for the prediction of hospital readmission within seven, 15, 30, 60, 90, 180 and 365 days of discharge in hospitalized patients with HF with reduced EF aged 18 years or older?...

  15. Pre-chemotherapy values for left and right ventricular volumes and ejection fraction by gated tomographic radionuclide angiography using a cadmium-zinc-telluride detector gamma camera

    DEFF Research Database (Denmark)

    Haarmark, Christian; Haase, Christine; Jensen, Maria Maj

    2016-01-01

    age and both left and right ventricular volumes in women (r = -0.4, P right end systolic ventricular volume in men (r = -0.3, P = .001). CONCLUSION: A set of reference values for cardiac evaluation prior to chemotherapy in cancer patients without other known cardiopulmonary......BACKGROUND: Estimation of left ventricular ejection fraction (LVEF) using equilibrium radionuclide angiography is an established method for assessment of left ventricular function. The purpose of this study was to establish normative data on left and right ventricular volumes and ejection fraction......, using cadmium-zinc-telluride SPECT camera. METHODS AND RESULTS: From routine assessments of left ventricular function in 1172 patients, we included 463 subjects (194 men and 269 women) without diabetes, previous potentially cardiotoxic chemotherapy, known cardiovascular or pulmonary disease. The lower...

  16. 13N-Ammonia pet-derived ventricular synchrony correlates with myocardial perfusion reserve better than left ventricular ejection fraction : A study in infarcted patients

    NARCIS (Netherlands)

    Juarez-Orozco, Luis Eduardo; Slart, Riemer; Tio, Rene A.; Inarra-Talboy, Fernando; Monroy, Andrea; Ayala-German, AnaGabriela; Dierckx, Rudi A.; Rosas, Erick Alexanderson

    2016-01-01

    Background: PET myocardial perfusion allows myocardial perfusion reserve (MPR) quantification as well as left ventricular ejection fraction (LVEF) and synchrony estimation through phase analysis. There is a relationship between MPR and LVEF and both have proven prognostic value in coronary artery

  17. Effect of Vericiguat, a Soluble Guanylate Cyclase Stimulator, on Natriuretic Peptide Levels in Patients With Worsening Chronic Heart Failure and Reduced Ejection Fraction

    DEFF Research Database (Denmark)

    Gheorghiade, Mihai; Greene, Stephen J; Butler, Javed

    2015-01-01

    IMPORTANCE: Worsening chronic heart failure (HF) is a major public health problem. OBJECTIVE: To determine the optimal dose and tolerability of vericiguat, a soluble guanylate cyclase stimulator, in patients with worsening chronic HF and reduced left ventricular ejection fraction (LVEF). DESIGN, ...

  18. Two-dimensional global longitudinal strain is superior to left ventricular ejection fraction in prediction of outcome in patients with left-sided infective endocarditis

    DEFF Research Database (Denmark)

    Lauridsen, Trine Kiilerich; Alhede, Christina; Crowley, Anna Lisa

    2018-01-01

    BACKGROUND: Impaired cardiac function is the main predictor of poor outcome in infective endocarditis (IE). Global longitudinal strain (GLS) derived from two-dimensional strain echocardiography has proven superior in prediction of long-term outcome as compared to left ventricular ejection fraction...

  19. Cost-Effectiveness of Sacubitril-Valsartan in Patients With Heart Failure With Reduced Ejection Fraction.

    Science.gov (United States)

    Sandhu, Alexander T; Ollendorf, Daniel A; Chapman, Richard H; Pearson, Steven D; Heidenreich, Paul A

    2016-11-15

    Sacubitril-valsartan therapy reduces cardiovascular mortality compared with enalapril therapy in patients with heart failure with reduced ejection fraction. To evaluate the cost-effectiveness of sacubitril-valsartan versus angiotensin-converting enzyme inhibitor therapy in patients with chronic heart failure. Markov decision model. Clinical trials, observational analyses, reimbursement data from the Centers for Medicare & Medicaid Services, drug pricing databases, and Centers for Disease Control and Prevention life tables. Patients at an average age of 64 years, New York Heart Association (NYHA) class II to IV heart failure, and left ventricular ejection fraction of 0.40 or less. Lifetime. Societal. Treatment with sacubitril-valsartan or lisinopril. Life-years, quality-adjusted life-years (QALYs), costs, heart failure hospitalizations, and incremental cost-effectiveness ratios. The sacubitril-valsartan group experienced 0.08 fewer heart failure hospitalization, 0.69 additional life-year, 0.62 additional QALY, and $29 203 in incremental costs, equating to a cost per QALY gained of $47 053. The cost per QALY gained was $44 531 in patients with NYHA class II heart failure and $58 194 in those with class III or IV heart failure. Sacubitril-valsartan treatment was most sensitive to the duration of improved outcomes, with a cost per QALY gained of $120 623 if the duration was limited to the length of the trial (median, 27 months). No variations in other parameters caused the cost to exceed $100 000 per QALY gained. The benefit of sacubitril-valsartan is based on a single clinical trial. Treatment with sacubitril-valsartan provides reasonable value in reducing cardiovascular mortality and morbidity in patients with NYHA class II to IV heart failure. U.S. Department of Veterans Affairs and Institute for Clinical and Economic Review.

  20. A numerical study of two interacting coronal mass ejections

    Directory of Open Access Journals (Sweden)

    J. M. Schmidt

    2004-06-01

    Full Text Available The interaction in the solar wind between two coronal mass ejections (CMEs is investigated using numerical simulations. We show that the nature of the interaction depends on whether the CME magnetic structures interact, but in all cases the result is an equilisation of the speed of the two CMEs. In the absence of magnetic interaction, the forward shock of the faster trailing CME interacts with the slow leading CME, and accelerates it. When the two CMEs have magnetic fields with the same sense of rotation, magnetic reconnection occurs between the two CMEs, leading to the formation of a single magnetic structure: in the most extreme cases, one CME "eats" the other. When the senses of rotation are opposite, reconnection does not occur, but the CMEs collide in a highly non-elastic manner, again forming a single structure. The possibility of enhanced particle acceleration in such processes is assessed. The presence of strong magnetic reconnection provides excellent opportunities for the acceleration of thermal particles, which then form a seed population for further acceleration at the CME shocks. The presence of a large population of seed particles will thus lead to an overall increase in energetic particle fluxes, as suggested by some observations.

  1. High-Intensity Interval Training in Patients With Heart Failure With Reduced Ejection Fraction.

    Science.gov (United States)

    Ellingsen, Øyvind; Halle, Martin; Conraads, Viviane; Støylen, Asbjørn; Dalen, Håvard; Delagardelle, Charles; Larsen, Alf-Inge; Hole, Torstein; Mezzani, Alessandro; Van Craenenbroeck, Emeline M; Videm, Vibeke; Beckers, Paul; Christle, Jeffrey W; Winzer, Ephraim; Mangner, Norman; Woitek, Felix; Höllriegel, Robert; Pressler, Axel; Monk-Hansen, Tea; Snoer, Martin; Feiereisen, Patrick; Valborgland, Torstein; Kjekshus, John; Hambrecht, Rainer; Gielen, Stephan; Karlsen, Trine; Prescott, Eva; Linke, Axel

    2017-02-28

    Small studies have suggested that high-intensity interval training (HIIT) is superior to moderate continuous training (MCT) in reversing cardiac remodeling and increasing aerobic capacity in patients with heart failure with reduced ejection fraction. The present multicenter trial compared 12 weeks of supervised interventions of HIIT, MCT, or a recommendation of regular exercise (RRE). Two hundred sixty-one patients with left ventricular ejection fraction ≤35% and New York Heart Association class II to III were randomly assigned to HIIT at 90% to 95% of maximal heart rate, MCT at 60% to 70% of maximal heart rate, or RRE. Thereafter, patients were encouraged to continue exercising on their own. Clinical assessments were performed at baseline, after the intervention, and at follow-up after 52 weeks. Primary end point was a between-group comparison of change in left ventricular end-diastolic diameter from baseline to 12 weeks. Groups did not differ in age (median, 60 years), sex (19% women), ischemic pathogenesis (59%), or medication. Change in left ventricular end-diastolic diameter from baseline to 12 weeks was not different between HIIT and MCT ( P =0.45); left ventricular end-diastolic diameter changes compared with RRE were -2.8 mm (-5.2 to -0.4 mm; P =0.02) in HIIT and -1.2 mm (-3.6 to 1.2 mm; P =0.34) in MCT. There was also no difference between HIIT and MCT in peak oxygen uptake ( P =0.70), but both were superior to RRE. However, none of these changes was maintained at follow-up after 52 weeks. Serious adverse events were not statistically different during supervised intervention or at follow-up at 52 weeks (HIIT, 39%; MCT, 25%; RRE, 34%; P =0.16). Training records showed that 51% of patients exercised below prescribed target during supervised HIIT and 80% above target in MCT. HIIT was not superior to MCT in changing left ventricular remodeling or aerobic capacity, and its feasibility remains unresolved in patients with heart failure. URL: http

  2. Modeling the Impact Ejected Dust Contribution to the Lunar Exosphere: Results from Experiments and Ground Truth from LADEE

    Science.gov (United States)

    Hermalyn, B.; Colaprete, A.

    2013-12-01

    A considerable body of evidence indicates the presence of lofted regolith dust above the lunar surface. These observations range from multiple in-situ and orbital horizon glow detections to direct measurement of dust motion on the surface, as by the Apollo 17 Lunar Ejecta and Meteorites (LEAM) experiment. Despite this evidence, the specific mechanisms responsible for the lofting of regolith are still actively debated. These include impact ejection, electrostatic lofting, effects of high energy radiation, UV/X- rays, and interplay with solar wind plasma. These processes are highly relevant to one of the two main scientific objectives of the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (due to launch September, 2013): to directly measure the lunar exospheric dust environment and its spatial and temporal variability towards the goal of better understanding the dust flux. Of all the proposed mechanisms taking place on the lunar surface, the only unequivocal ongoing process is impact cratering. Hypervelocity impact events, which mobilize and redistribute regolith across planetary surfaces, are arguably the most pervasive geologic process on rocky bodies. While many studies of dust lofting state that the impact flux rate is orders of magnitude too low to account for the lunar horizon glow phenomenon and discount its contribution, it is imperative to re-examine these assumptions in light of new data on impact ejecta, particularly from the contributions from mesoscale (impactor size on the order of grain size) and macroscale (impactor > grain size) cratering. This is in large part due to a previous lack of data, for while past studies have established a canonical ejecta model for main-stage ejection of sand targets from vertical impacts, only recent studies have been able to begin quantitatively probing the intricacies of the ejection process outside this main-stage, vertical regime. In particular, it is the high-speed early-time ejecta that will reach

  3. Right and left ventricular ejection fraction at rest and during exercise assessed with radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Dahlstroem, J.A.

    1982-01-01

    Right (RVEF) and left ventricular ejection fraction (LVEF) assessed with radionuclide angiocardiography were compared to simultaneously obtained catheterization results at rest and during exercise in patients with pulmonary hypertension and ischemic heart disease. Blood pool imaging was performed with red blood cells (RBC) labelled with 99 Tcsup(m) in vivo as this method gave more stable 99 Tcsup(m) levels in blood compared to 99 Tcsup(m)-labelled human serum albumin and because it was more convenient than labelling RBC in vitro. RVEF measured with first pass (FP) technique and equilibrium (EQ) technique correlated well at rest, r = 0.86, and during exercise, r = 0.91. The FP technique had the best reproducibility and reference values at rest were 49+-5 per cent increasing with exercise. When 99 Tcsup(m) and 133 Xe were compared to assess RVEF with FP technique, the correlation was good, r = 0.88. LVEF assessed with EQ technique and a fixed end-diastolic region of interest was very reproducible at rest and during exercise; reference values at rest were 56+-8 per cent increasing with exercise. In 10 patients with pulmonary hypertension significant negative correlations were found between RVEF assessed with FP technique and pressures in pulmonary artery and right atrium. Abnormal RVEF was found in all patients with right ventricular disfunction. In 22 patients with recent myocardial infarction measurements of LVEF detected left ventricular disfunction better than did measurement of pulmonary artery diastolic pressure. During effort angina in another 10 patients all had abnormal LVEF and abnormal hemodynamics. By combining ejection fraction and stroke volume, ventricular volumes were calculated at rest and during exercise. (author)

  4. AN IMPROVEMENT ON MASS CALCULATIONS OF SOLAR CORONAL MASS EJECTIONS VIA POLARIMETRIC RECONSTRUCTION

    International Nuclear Information System (INIS)

    Dai, Xinghua; Wang, Huaning; Huang, Xin; Du, Zhanle; He, Han

    2015-01-01

    The mass of a coronal mass ejection (CME) is calculated from the measured brightness and assumed geometry of Thomson scattering. The simplest geometry for mass calculations is to assume that all of the electrons are in the plane of the sky (POS). With additional information like source region or multiviewpoint observations, the mass can be calculated more precisely under the assumption that the entire CME is in a plane defined by its trajectory. Polarization measurements provide information on the average angle of the CME electrons along the line of sight of each CCD pixel from the POS, and this can further improve the mass calculations as discussed here. A CME event initiating on 2012 July 23 at 2:20 UT observed by the Solar Terrestrial Relations Observatory is employed to validate our method

  5. Parametric study of a reactivity accident in a pressurized water reactor: control rod cluster ejection

    International Nuclear Information System (INIS)

    Chesnel, A.

    1985-01-01

    This research thesis concerns a class 4 accident in a PWR: the ejection of a control rod cluster from the reactor core. It aims at defining, for such an accident, the envelope values which relate the reactivity to the hot spot factor within the frame of a mode A control. The report describes the physical phenomena and their modelling during the considered transient. It presents a simple mathematical solution of the accident which shows that the main neutron parameters are the released reactivity, the delayed neutron fraction, the Doppler coefficient, and the hot spot factor. It reports a temperature sensitivity study, and discusses three-dimensional calculations of irradiation distributions

  6. DATA-CONSTRAINED CORONAL MASS EJECTIONS IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M. [Lockheed Martin Solar and Astrophysics Lab, Palo Alto, CA 94304 (United States); Manchester, W. B.; Van der Holst, B.; Sokolov, I.; Tóth, G.; Gombosi, T. I. [Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Mullinix, R. E.; Taktakishvili, A.; Chulaki, A., E-mail: jinmeng@lmsal.com, E-mail: chipm@umich.edu, E-mail: richard.e.mullinix@nasa.gov, E-mail: Aleksandre.Taktakishvili-1@nasa.gov [Community Coordinated Modeling Center, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-10

    We present a first-principles-based coronal mass ejection (CME) model suitable for both scientific and operational purposes by combining a global magnetohydrodynamics (MHD) solar wind model with a flux-rope-driven CME model. Realistic CME events are simulated self-consistently with high fidelity and forecasting capability by constraining initial flux rope parameters with observational data from GONG, SOHO /LASCO, and STEREO /COR. We automate this process so that minimum manual intervention is required in specifying the CME initial state. With the newly developed data-driven Eruptive Event Generator using Gibson–Low configuration, we present a method to derive Gibson–Low flux rope parameters through a handful of observational quantities so that the modeled CMEs can propagate with the desired CME speeds near the Sun. A test result with CMEs launched with different Carrington rotation magnetograms is shown. Our study shows a promising result for using the first-principles-based MHD global model as a forecasting tool, which is capable of predicting the CME direction of propagation, arrival time, and ICME magnetic field at 1 au (see the companion paper by Jin et al. 2016a).

  7. Computer-based assessment of right ventricular regional ejection fraction in patients with repaired Tetralogy of Fallot

    Science.gov (United States)

    Teo, S.-K.; Wong, S. T.; Tan, M. L.; Su, Y.; Zhong, L.; Tan, Ru-San

    2015-03-01

    After surgical repair for Tetralogy of Fallot (TOF), most patients experience long-term complications as the right ventricle (RV) undergoes progressive remodeling that eventually affect heart functions. Thus, post-repair surgery is required to prevent further deterioration of RV functions that may result in malignant ventricular arrhythmias and mortality. The timing of such post-repair surgery therefore depends crucially on the quantitative assessment of the RV functions. Current clinical indices for such functional assessment measure global properties such as RV volumes and ejection fraction. However, these indices are less than ideal as regional variations and anomalies are obscured. Therefore, we sought to (i) develop a quantitative method to assess RV regional function using regional ejection fraction (REF) based on a 13-segment model, and (ii) evaluate the effectiveness of REF in discriminating 6 repaired TOF patients and 6 normal control based on cardiac magnetic resonance (CMR) imaging. We observed that the REF for the individual segments in the patient group is significantly lower compared to the control group (P < 0.05 using a 2-tail student t-test). In addition, we also observed that the aggregated REF at the basal, mid-cavity and apical regions for the patient group is significantly lower compared to the control group (P < 0.001 using a 2-tail student t-test). The results suggest that REF could potentially be used as a quantitative index for assessing RV regional functions. The computational time per data set is approximately 60 seconds, which demonstrates our method's clinical potential as a real-time cardiac assessment tool.

  8. Noninvasive prediction of left ventricular end-diastolic pressure in patients with coronary artery disease and preserved ejection fraction.

    Science.gov (United States)

    Abd-El-Aziz, Tarek A

    2012-01-01

    The aim of this study was to compare 3 different available methods for estimating left ventricular end-diastolic pressure (LVEDP) noninvasively in patients with coronary artery disease and preserved left ventricular ejection fraction (EF). We used 3 equations for noninvasive estimation of LVEDP: The equation of Mulvagh et al., LVEDP(1) = 46 - 0.22 (IVRT) - 0.10 (AFF) - 0.03 (DT) - (2 ÷ E/A) + 0.05 MAR; the equation of Stork et al., LVEDP(2) = 1.06 + 15.15 × Ai/Ei; and the equation of Abd-El-Aziz, LVEDP(3) = [0.54 (MABP) × (1 - EF)] - 2.23. ( A, A-wave velocity; AFF, atrial filling fraction; Ai, time velocity integral of A wave; DT, deceleration time; E, E-wave velocity; Ei, time velocity integral of E wave; IVRT, isovolumic relaxation time; MABP, mean arterial blood pressure; MAR, time from termination of mitral flow to the electrocardiographic R wave; Ti, time velocity integral of total wave.) LVEDP measured by catheterization was correlated with LVEDP(1) (r = 0.52, P Aziz, LVEDP = [0.54 MABP × (1 - EF)] - 2.23, appears to be the most accurate, reliable, and easily applied method for estimating LVEDP noninvasively in patients with preserved left ventricular ejection fraction and an LVEDP < 20 mm Hg. Copyright © 2012 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  9. Coronal mass ejections and solar radio bursts

    International Nuclear Information System (INIS)

    Kundu, M.R.

    1990-01-01

    The properties of coronal mass ejection (CME) events and their radio signatures are discussed. These signatures are mostly in the form of type II and type IV burst emissions. Although type II bursts are temporally associated with CMEs, it is shown that there is no spatial relationship between them. Type II's associated with CMEs have in most cases a different origin, and they are not piston-driven by CMEs. Moving type IV and type II bursts can be associated with slow CMEs with speeds as low as 200 km/s, contrary to the earlier belief that only CMEs with speeds >400 km/s are associated with radio bursts. A specific event has been discussed in which the CME and type IV burst has nearly the same speed and direction, but the type II burst location was behind the CME and its motion was transverse. The speed and motion of the type II burst strongly suggest that the type II shock was decoupled from the CME and was probably due to a flare behind the limb. Therefore only the type IV source could be directly associated with the slow CME. The electrons responsble for the type IV emission could be produced in the flare or in the type II and then become trapped in a plasmoid associated with the CME. The reconnected loop could then move outwards as in the usual palsmoid model. Alternatively, the type IV emission could be interpreted as due to electrons produced by acceleration in wave turbulence driven by currents in the shock front driven by the CME. The lower-hybrid model Lampe and Papadopoulos (1982), which operates at both fast and slow mode shocks, could be applied to this situation. (author). 31 refs., 12 figs

  10. Angular distribution of ejected electrons from 20 keV He/sup +/ impact on He

    Energy Technology Data Exchange (ETDEWEB)

    Tokoro, N.; Takenouchi, S.; Urakawa, J.; Oda, N. (Tokyo Inst. of Tech. (Japan). Research Lab. of Nuclear Reactor)

    1982-10-28

    The angular distributions of ejected electrons in the energy range 5-70 eV have been measured at angles from 30 to 150/sup 0/ for 20 keV He/sup +/ impact on He. The angular dependence of excitation cross sections of autoionisation states 2s/sup 2/ /sup 1/S and 2p/sup 2/ /sup 1/D+2s2p /sup 1/P are in good agreement with previous data measured by Bordenave-Montesquieu et al (Phys. Rev.; A25:245 (1982)). The continuous parts of the electron spectra show symmetrical angular distributions around 90/sup 0/ in the laboratory frame for low-energy electrons (

  11. Extracellular matrix remodeling in patients with ischemic chronic heart failure with preserved ejection fraction

    Directory of Open Access Journals (Sweden)

    V. D. Syvolap

    2015-04-01

    Full Text Available Aim. To identify features, relationships between parameters of the extracellular matrix and renal function in 110 patients with ischemic chronic heart failure the activity of collagen metabolism markers (MMP-9, TIMP-1, PICP, cystatin C, structural and functional parameters of the heart were studied using ELISA, echocardiography. Results. It was established that imbalance in the system MMP/TIMP in ischemic heart failure with preserved left ventricular ejection fraction leads to disruption of the extracellular matrix structural functional sufficiency, increases functional failure and is associated with impaired renal function. Conclusion. Correlation analysis showed significant relationships between MMP/TIMP and GFR, cystatin C, indicating that the significant role of extracellular matrix imbalance in the development of renal dysfunction in patients with ischemic chronic heart failure.

  12. Variations of the Electron Fluxes in the Terrestrial Radiation Belts Due To the Impact of Corotating Interaction Regions and Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Benacquista, R.; Boscher, D.; Rochel, S.; Maget, V.

    2018-02-01

    In this paper, we study the variations of the radiation belts electron fluxes induced by the interaction of two types of solar wind structures with the Earth magnetosphere: the corotating interaction regions and the interplanetary coronal mass ejections. We use a statistical method based on the comparison of the preevent and postevent fluxes. Applied to the National Oceanic and Atmospheric Administration-Polar Operational Environmental Satellites data, this gives us the opportunity to extend previous studies focused on relativistic electrons at geosynchronous orbit. We enlighten how corotating interaction regions and Interplanetary Coronal Mass Ejections can impact differently the electron belts depending on the energy and the L shell. In addition, we provide a new insight concerning these variations by considering their amplitude. Finally, we show strong relations between the intensity of the magnetic storms related to the events and the variation of the flux. These relations concern both the capacity of the events to increase the flux and the deepness of these increases.

  13. Noncardiac Comorbidities in Heart Failure With Reduced Versus Preserved Ejection Fraction

    Science.gov (United States)

    Mentz, Robert J.; Kelly, Jacob P.; von Lueder, Thomas G.; Voors, Adriaan A.; Lam, Carolyn S. P.; Cowie, Martin R.; Kjeldsen, Keld; Jankowska, Ewa A.; Atar, Dan; Butler, Javed; Fiuzat, Mona; Zannad, Faiez; Pitt, Bertram; O’Connor, Christopher M.

    2014-01-01

    Heart failure patients are classified by ejection fraction (EF) into distinct groups: heart failure with preserved EF (HFpEF) or heart failure with reduced EF (HFrEF). Although patients with heart failure commonly have multiple comorbidities that complicate management and may adversely affect outcomes, their role in the HFpEF and HFrEF groups is not well-characterized. This review summarizes the role of noncardiac comorbidities in patients with HFpEF versus HFrEF, emphasizing prevalence, underlying pathophysiologic mechanisms, and outcomes. Pulmonary disease, diabetes mellitus, anemia, and obesity tend to be more prevalent in HFpEF patients, but renal disease and sleep-disordered breathing burdens are similar. These comorbidities similarly increase morbidity and mortality risk in HFpEF and HFrEF patients. Common pathophysiologic mechanisms include systemic and endomyocardial inflammation with fibrosis. We also discuss implications for clinical care and future HF clinical trial design. The basis for this review was discussions between scientists, clinical trialists, and regulatory representatives at the 10th Global CardioVascular Clinical Trialists Forum. PMID:25456761

  14. Global Energetics in Solar Flares and Coronal Mass Ejections

    Science.gov (United States)

    Aschwanden, Markus J.

    2017-08-01

    We present a statistical study of the energetics of coronal mass ejections (CME) and compare it with the magnetic, thermal, and nonthermal energy dissipated in flares. The physical parameters of CME speeds, mass, and kinetic energies are determined with two different independent methods, i.e., the traditional white-light scattering method using LASCO/SOHO data, and the EUV dimming method using AIA/SDO data. We analyze all 860 GOES M- and X-class flare events observed during the first 7 years (2010-2016) of the SDO mission. The new ingredients of our CME modeling includes: (1) CME geometry in terms of a self-similar adiabatic expansion, (2) DEM analysis of CME mass over entire coronal temperature range, (3) deceleration of CME due to gravity force which controls the kinetic and potentail CME energy as a function of time, (4) the critical speed that controls eruptive and confined CMEs, (5) the relationship between the center-of-mass motion during EUV dimming and the leading edge motion observed in white-light coronagraphs. Novel results are: (1) Physical parameters obtained from both the EUV dimming and white-light method can be reconciled; (2) the equi-partition of CME kinetic and thermal flare energy; (3) the Rosner-Tucker-Vaiana scaling law. We find that the two methods in EUV and white-light wavelengths are highly complementary and yield more complete models than each method alone.

  15. Measurement of left ventricular ejection fraction in pediatric patients using the nuclear stethoscope

    International Nuclear Information System (INIS)

    Spicer, R.L.; Rabinovitch, M.; Rosenthal, A.; Pitt, B.

    1984-01-01

    Left ventricular (LV) ejection fraction (EF) was measured in 25 patients, aged 2 weeks to 20 years (mean 8.6 years), using a portable nonimaging scintillation stethoscope. Technically satisfactory studies were obtained in 23 patients. LVEF was validated by cineangiography in 19 patients and by standard gated blood pool scintigraphy in 4. EF measured by the nuclear stethoscope correlated well with values obtained by cineangiography or scintigraphy over a wide range of EF values (18 to 79%). In children younger than 5 years (n . 11), the correlation was less satisfactory than in those older than 5 years. Although modifications in the instrument and further clinical trials with the stethoscope are needed before the device becomes clinically useful to pediatric cardiologists, our data indicate that the nuclear stethoscope can provide reliable assessment of LVEF in pediatric patients

  16. Clinical significance of right ventricular ejection fraction in cases with atrial septal defect

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Seiki; Nishimura, Tsunehiko; Hayashida, Kouhei; Uehara, Toshiisa

    1989-04-01

    Right ventricular ejection fraction (RVEF) assessed by cardiac radionuclide angiography has been applied to evaluate ventricular function such as ischemic, valvular and congenital heart disease. Using this modality, previous reports also suggest that there is good correlation between RVEF and mean pulmonary arterial pressure (mPA) from catheterization findings in mitral valvular disease and chronic obstructive lung disease. In this study, cardiac RI angiography were performed on 33 adult patients with atrial septal defect (ASD). RVEF is not so good correlation (r=-0.42) with mPA, but in cases within pulmonary to systemic ratio (Qp/Qs) less than 2.0 limits, there is good correlation between RVEF and mPA (n=9, r=-0.71). As a conclusion, in ASD, both afterload assessed by mPA and preload assessed by Qp/Qs decrease RVEF. (author).

  17. AN ANALYSIS OF INTERPLANETARY SOLAR RADIO EMISSIONS ASSOCIATED WITH A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Krupar, V.; Eastwood, J. P. [The Blackett Laboratory, Imperial College London, London (United Kingdom); Kruparova, O.; Santolik, O.; Soucek, J., E-mail: v.krupar@imperial.ac.uk, E-mail: jonathan.eastwood@imperial.ac.uk, E-mail: ok@ufa.cas.cz, E-mail: os@ufa.cas.cz, E-mail: soucek@ufa.cas.cz [Institute of Atmospheric Physics CAS, Prague (Czech Republic); and others

    2016-05-20

    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth directed. Here, we report a rare instance with comprehensive in situ and remote sensing observations of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white-light CME reconstruction. We find that the radio emission arises from the flanks of the CME and are most likely associated with the CME-driven shock. Our work demonstrates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications.

  18. Detection of Coronal Mass Ejections Using Multiple Features and Space-Time Continuity

    Science.gov (United States)

    Zhang, Ling; Yin, Jian-qin; Lin, Jia-ben; Feng, Zhi-quan; Zhou, Jin

    2017-07-01

    Coronal Mass Ejections (CMEs) release tremendous amounts of energy in the solar system, which has an impact on satellites, power facilities and wireless transmission. To effectively detect a CME in Large Angle Spectrometric Coronagraph (LASCO) C2 images, we propose a novel algorithm to locate the suspected CME regions, using the Extreme Learning Machine (ELM) method and taking into account the features of the grayscale and the texture. Furthermore, space-time continuity is used in the detection algorithm to exclude the false CME regions. The algorithm includes three steps: i) define the feature vector which contains textural and grayscale features of a running difference image; ii) design the detection algorithm based on the ELM method according to the feature vector; iii) improve the detection accuracy rate by using the decision rule of the space-time continuum. Experimental results show the efficiency and the superiority of the proposed algorithm in the detection of CMEs compared with other traditional methods. In addition, our algorithm is insensitive to most noise.

  19. On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data

    Directory of Open Access Journals (Sweden)

    M. Mierla

    2010-01-01

    Full Text Available Coronal Mass ejections (CMEs are enormous eruptions of magnetized plasma expelled from the Sun into the interplanetary space, over the course of hours to days. They can create major disturbances in the interplanetary medium and trigger severe magnetic storms when they collide with the Earth's magnetosphere. It is important to know their real speed, propagation direction and 3-D configuration in order to accurately predict their arrival time at the Earth. Using data from the SECCHI coronagraphs onboard the STEREO mission, which was launched in October 2006, we can infer the propagation direction and the 3-D structure of such events. In this review, we first describe different techniques that were used to model the 3-D configuration of CMEs in the coronagraph field of view (up to 15 R⊙. Then, we apply these techniques to different CMEs observed by various coronagraphs. A comparison of results obtained from the application of different reconstruction algorithms is presented and discussed.

  20. Predicting Coronal Mass Ejections Using Machine Learning Methods

    Science.gov (United States)

    Bobra, M. G.; Ilonidis, S.

    2016-04-01

    Of all the activity observed on the Sun, two of the most energetic events are flares and coronal mass ejections (CMEs). Usually, solar active regions that produce large flares will also produce a CME, but this is not always true. Despite advances in numerical modeling, it is still unclear which circumstances will produce a CME. Therefore, it is worthwhile to empirically determine which features distinguish flares associated with CMEs from flares that are not. At this time, no extensive study has used physically meaningful features of active regions to distinguish between these two populations. As such, we attempt to do so by using features derived from (1) photospheric vector magnetic field data taken by the Solar Dynamics Observatory’s Helioseismic and Magnetic Imager instrument and (2) X-ray flux data from the Geostationary Operational Environmental Satellite’s X-ray Flux instrument. We build a catalog of active regions that either produced both a flare and a CME (the positive class) or simply a flare (the negative class). We then use machine-learning algorithms to (1) determine which features distinguish these two populations, and (2) forecast whether an active region that produces an M- or X-class flare will also produce a CME. We compute the True Skill Statistic, a forecast verification metric, and find that it is a relatively high value of ∼0.8 ± 0.2. We conclude that a combination of six parameters, which are all intensive in nature, will capture most of the relevant information contained in the photospheric magnetic field.

  1. PREDICTING CORONAL MASS EJECTIONS USING MACHINE LEARNING METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Bobra, M. G.; Ilonidis, S. [W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2016-04-20

    Of all the activity observed on the Sun, two of the most energetic events are flares and coronal mass ejections (CMEs). Usually, solar active regions that produce large flares will also produce a CME, but this is not always true. Despite advances in numerical modeling, it is still unclear which circumstances will produce a CME. Therefore, it is worthwhile to empirically determine which features distinguish flares associated with CMEs from flares that are not. At this time, no extensive study has used physically meaningful features of active regions to distinguish between these two populations. As such, we attempt to do so by using features derived from (1) photospheric vector magnetic field data taken by the Solar Dynamics Observatory ’s Helioseismic and Magnetic Imager instrument and (2) X-ray flux data from the Geostationary Operational Environmental Satellite’s X-ray Flux instrument. We build a catalog of active regions that either produced both a flare and a CME (the positive class) or simply a flare (the negative class). We then use machine-learning algorithms to (1) determine which features distinguish these two populations, and (2) forecast whether an active region that produces an M- or X-class flare will also produce a CME. We compute the True Skill Statistic, a forecast verification metric, and find that it is a relatively high value of ∼0.8 ± 0.2. We conclude that a combination of six parameters, which are all intensive in nature, will capture most of the relevant information contained in the photospheric magnetic field.

  2. Parametric studies on containment thermal hydraulic loads during high pressure melt ejection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Silde, A.; Lindholm, I. [VTT Energy, Espoo (Finland)

    1997-12-01

    The containment thermal hydraulic loads during high pressure melt ejection in a Nordic BWR are studied parametrically with the CONTAIN and the MELCOR codes. The work is part of the Nordic RAK-2 project. The containment analyses were divided into two categories according to composition of the discharged debris: metallic and oxidic debris cases. In the base case with highly metallic debris, all sources from the reactor coolant system to the containment were based on the MELCOR/BH calculation. In the base case with the oxidic debris, the source data was specified assuming that {approx} 15% of the whole core material inventory and 34,000 kg of saturated water was discharged from the reactor pressure vessel (RPV) during 30 seconds. In this case, the debris consisted mostly of oxides. The highest predicted containment pressure peaks were about 8.5 bar. In the scenarios with highly metallic debris source, very high gas temperature of about 1900 K was predicted in the pedestal, and about 1400 K in the upper drywell. The calculations with metallic debris were sensititive to model parameters, like the particle size and the parameters, which control the chemical reaction kinetics. In the scenarios with oxidic debris source, the predicted pressure peaks were comparable to the cases with the metallic debris source. The maximum gas temperatures (about 450-500 K) in the containment were, however, significantly lower than in the respective metallic debris case. The temperatures were also insensitive to parametric variations. In addition, one analysis was performed with the MELCOR code for benchmarking of the MELCOR capabilities against the more detailed CONTAIN code. The calculations showed that leak tightness of the containment penetrations could be jeopardized due to high temperature loads, if a high pressure melt ejection occurred during a severe accident. Another consequence would be an early containment venting. (au). 28 refs.

  3. Features of solar wind streams on June 21-28, 2015 as a result of interactions between coronal mass ejections and recurrent streams from coronal holes

    Science.gov (United States)

    Shugay, Yu. S.; Slemzin, V. A.; Rod'kin, D. G.

    2017-11-01

    Coronal sources and parameters of solar wind streams during a strong and prolonged geomagnetic disturbance in June 2015 have been considered. Correspondence between coronal sources and solar wind streams at 1 AU has been determined using an analysis of solar images, catalogs of flares and coronal mass ejections, solar wind parameters including the ionic composition. The sources of disturbances in the considered period were a sequence of five coronal mass ejections that propagated along the recurrent solar wind streams from coronal holes. The observed differences from typical in magnetic and kinetic parameters of solar wind streams have been associated with the interactions of different types of solar wind. The ionic composition has proved to be a good additional marker for highlighting components in a mixture of solar wind streams, which can be associated with different coronal sources.

  4. Ejecting intact large molecular structures by C{sub 60} ion impact upon bio-organic solids; Ejection de tres grandes structures moleculaires intactes par impact de C{sub 60} sur des solides bioorganiques

    Energy Technology Data Exchange (ETDEWEB)

    Brunelle, A.; Della Negra, S.; Deprun, C.; Depauw, J.; Jacquet, D.; Le Beyec, Y.; Pautrat, N. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Haakansson, P. [Division of Ion Physics, Angstrom Laboratory, Uppsala Univ. Uppsala (Sweden)

    1999-11-01

    C{sub 60} molecules accelerated to MeV energies (20 MeV) have been used to induce the desorption-ionization of large bio-molecules from solid samples. In the case of the trypsin molecules, the secondary molecular ion emission yield is about two orders of magnitude larger than with MeV atomic ions. This is a consequence of the very high energy density deposited in solids by 20 MeV C{sub 60} projectiles that gives rise to a large amount of matter ejected after each impact. Although time-of-flight mass spectra can be recorded within a few seconds, it is more the mechanistic aspects in comparison with other particle induced desorption methods, which are the objective of these first results with energetic fullerenes. (authors) 1 fig.

  5. Thirty Years of Evidence on the Efficacy of Drug Treatments for Chronic Heart Failure With Reduced Ejection Fraction: A Network Meta-Analysis.

    Science.gov (United States)

    Burnett, Heather; Earley, Amy; Voors, Adriaan A; Senni, Michele; McMurray, John J V; Deschaseaux, Celine; Cope, Shannon

    2017-01-01

    Treatments that reduce mortality and morbidity in patients with heart failure with reduced ejection fraction, including angiotensin-converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), β-blockers (BB), mineralocorticoid receptor antagonists (MRA), and angiotensin receptor-neprilysin inhibitors (ARNI), have not been studied in a head-to-head fashion. This network meta-analysis aimed to compare the efficacy of these drugs and their combinations regarding all-cause mortality in patients with heart failure with reduced ejection fraction. A systematic literature review identified 57 randomized controlled trials published between 1987 and 2015, which were compared in terms of study and patient characteristics, baseline risk, outcome definitions, and the observed treatment effects. Despite differences identified in terms of study duration, New York Heart Association class, ejection fraction, and use of background digoxin, a network meta-analysis was considered feasible and all trials were analyzed simultaneously. The random-effects network meta-analysis suggested that the combination of ACEI+BB+MRA was associated with a 56% reduction in mortality versus placebo (hazard ratio 0.44, 95% credible interval 0.26-0.66); ARNI+BB+MRA was associated with the greatest reduction in all-cause mortality versus placebo (hazard ratio 0.37, 95% credible interval 0.19-0.65). A sensitivity analysis that did not account for background therapy suggested that ARNI monotherapy is more efficacious than ACEI or ARB monotherapy. The network meta-analysis showed that treatment with ACEI, ARB, BB, MRA, and ARNI and their combinations were better than the treatment with placebo in reducing all-cause mortality, with the exception of ARB monotherapy and ARB plus ACEI. The combination of ARNI+BB+MRA resulted in the greatest mortality reduction. © 2017 The Authors.

  6. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Temmer, Manuela; Rollett, Tanja; Moestl, Christian; Veronig, Astrid M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Vrsnak, Bojan [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb (Croatia); Odstrcil, Dusan [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO (United States)

    2011-12-20

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R{sub Sun }, to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  7. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Temmer, Manuela; Rollett, Tanja; Möstl, Christian; Veronig, Astrid M.; Vršnak, Bojan; Odstrčil, Dusan

    2011-01-01

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R ☉ , to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  8. Signatures of collective electron dynamics in the angular distributions of electrons ejected during ultrashort laser pulse interactions with C+

    International Nuclear Information System (INIS)

    Lysaght, M A; Hutchinson, S; Van der Hart, H W

    2009-01-01

    We use the time-dependent R-matrix approach to investigate an ultrashort pump-probe scheme to observe collective electron dynamics in C + driven by the repulsion of two equivalent p electrons. By studying the two-dimensional momentum distributions of the ejected electron as a function of the time-delay between an ultrashort pump pulse and an ionizing ultrashort probe pulse it is possible to track the collective dynamics inside the C + ion in the time domain.

  9. Hot prominence detected in the core of a coronal mass ejection II. Analysis of the C III line detected by SOHO/UVCS

    Czech Academy of Sciences Publication Activity Database

    Jejčič, S.; Susino, R.; Heinzel, Petr; Dzifčáková, Elena; Bemporad, A.; Anzer, U.

    2017-01-01

    Roč. 607, November (2017), A80/1-A80/10 E-ISSN 1432-0746 R&D Projects: GA ČR(CZ) GA16-18495S Institutional support: RVO:67985815 Keywords : line formation * radiative transfer * coronal mass ejections Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016

  10. Two-dimensional speckle-tracking strain echocardiography in long-term heart transplant patients: a study comparing deformation parameters and ejection fraction derived from echocardiography and multislice computed tomography.

    Science.gov (United States)

    Syeda, Bonni; Höfer, Peter; Pichler, Philipp; Vertesich, Markus; Bergler-Klein, Jutta; Roedler, Susanne; Mahr, Stephane; Goliasch, Georg; Zuckermann, Andreas; Binder, Thomas

    2011-07-01

    Longitudinal strain determined by speckle tracking is a sensitive parameter to detect systolic left ventricular dysfunction. In this study, we assessed regional and global longitudinal strain values in long-term heart transplants and compared deformation indices with ejection fraction as determined by transthoracic echocardiography (TTE) and multislice computed tomographic coronary angiography (MSCTA). TTE and MSCTA were prospectively performed in 31 transplant patients (10.6 years post-transplantation) and in 42 control subjects. Grey-scale apical views were recorded for speckle tracking (EchoPAC 7.0, GE) of the 16 segments of the left ventricle. The presence of coronary artery disease (CAD) was assessed by MSCTA. Strain analysis was performed in 1168 segments [496 in transplant patients (42.5%), 672 in control subjects (57.7%)]. Global longitudinal peak systolic strain was significantly lower in the transplant recipients than in the healthy population (-13.9 ± 4.2 vs. -17.4 ± 5.8%, PSimpsons method) was 60.7 ± 10.1%/60.2 ± 6.7% in transplant recipients vs. 64.7 ± 6.4%/63.0 ± 6.2% in the healthy population, P=ns. Even though 'healthy' heart transplants without CAD exhibit normal ejection fraction, deformation indices are reduced in this population when compared with control subjects. Our findings suggests that strain analysis is more sensitive than assessment of ejection fraction for the detection of abnormalities of systolic function.

  11. Atrial fibrillation in heart failure with preserved ejection fraction: Insights into mechanisms and therapeutics.

    Science.gov (United States)

    Patel, Ravi B; Vaduganathan, Muthiah; Shah, Sanjiv J; Butler, Javed

    2017-08-01

    Atrial fibrillation (AF) and heart failure (HF) often coexist, and the outcomes of patients who have both AF and HF are considerably worse than those with either condition in isolation. Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical entity and accounts for approximately one-half of current HF. At least one-third of patients with HFpEF are burdened by comorbid AF. The current understanding of the relationship between AF and HFpEF is limited, but the clinical implications are potentially important. In this review, we explore 1) the pathogenesis that drives AF and HFpEF to coexist; 2) pharmacologic therapies that may attenuate the impact of AF in HFpEF; and 3) future directions in the management of this complex syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Coronal mass ejections and their sheath regions in interplanetary space

    Science.gov (United States)

    Kilpua, Emilia; Koskinen, Hannu E. J.; Pulkkinen, Tuija I.

    2017-11-01

    Interplanetary coronal mass ejections (ICMEs) are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  13. FLARE-GENERATED TYPE II BURST WITHOUT ASSOCIATED CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Magdalenic, J.; Marque, C.; Zhukov, A. N. [Solar-Terrestrial Center of Excellence, SIDC, Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels (Belgium); Vrsnak, B. [Hvar Observatory, Faculty of Geodesy, Kaciceva 26, HR-10000 Zagreb (Croatia); Veronig, A., E-mail: Jasmina.Magdalenic@oma.be [IGAM/Kanzelhoehe Observatory, Institut of Physics, Universitaet Graz, Universitaetsplatz 5, A-8010 Graz (Austria)

    2012-02-20

    We present a study of the solar coronal shock wave on 2005 November 14 associated with the GOES M3.9 flare that occurred close to the east limb (S06 Degree-Sign E60 Degree-Sign ). The shock signature, a type II radio burst, had an unusually high starting frequency of about 800 MHz, indicating that the shock was formed at a rather low height. The position of the radio source, the direction of the shock wave propagation, and the coronal electron density were estimated using Nancay Radioheliograph observations and the dynamic spectrum of the Green Bank Solar Radio Burst Spectrometer. The soft X-ray, H{alpha}, and Reuven Ramaty High Energy Solar Spectroscopic Imager observations show that the flare was compact, very impulsive, and of a rather high density and temperature, indicating a strong and impulsive increase of pressure in a small flare loop. The close association of the shock wave initiation with the impulsive energy release suggests that the impulsive increase of the pressure in the flare was the source of the shock wave. This is supported by the fact that, contrary to the majority of events studied previously, no coronal mass ejection was detected in association with the shock wave, although the corresponding flare occurred close to the limb.

  14. Electron ejection from solids induced by fast highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Schiwietz, G. [Hahn-Meitner-Inst. GmbH, Berlin (Germany). Abt. FD; Xiao, G. [Hahn-Meitner-Inst. GmbH, Berlin (Germany). Abt. FD

    1996-02-01

    Total electron-ejection yields and Auger-electron spectra for highly-charged ions interacting with different foil targets have been investigated in this work. New experimental and theoretical data for normal incident 5 MeV/u heavy ions on graphite and polypropylene foils are presented and discussed. These two materials have been selected as model systems representing conductors and insulator targets. Our measured projectile nuclear-charge dependence of the total electron yield from carbon foils clearly deviates from results of some transport models that predict a proportionality with respect to the electronic stopping power of the projectiles. Possible reasons for this deviation are discussed. We have also extended our measurements on cascade-induced C-KLL Auger-electron production. The corresponding results for 5 MeV/u S ions on carbon were obtained with a new method and agree fairly well with previous data. Furthermore, we have performed an experimental and theoretical investigation on the nuclear-track potential in insulators. Comparison of experimental data with theoretical results for N{sup 7+}, Ne{sup 9+}, Ar{sup 16+} and Ni{sup 23+} ions allow for an estimate of the electron/hole pair recombination time at the center of the track in polypropylene. (orig.).

  15. Coronal mass ejections and their sheath regions in interplanetary space

    Directory of Open Access Journals (Sweden)

    Emilia Kilpua

    2017-11-01

    Full Text Available Abstract Interplanetary coronal mass ejections (ICMEs are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  16. Incremental first pass technique to measure left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Kocak, R.; Gulliford, P.; Hoggard, C.; Critchley, M.

    1980-01-01

    An incremental first pass technique was devised to assess the acute effects of any drug on left ventricular ejection fraction (LVEF) with or without a physiological stress. In particular, the effects of the vasodilater isosorbide dinitrate on LVEF before and after exercise were studied in 11 patients who had suffered cardiac failure. This was achieved by recording the passage of sup(99m)Tc pertechnetate through the heart at each stage of the study using a gamma camera computer system. Consistent values for four consecutive first pass values without exercise or drug in normal subjects illustrated the reproducibility of the technique. There was no significant difference between LVEF values obtained at rest and exercise before or after oral isosorbide dinitrate with the exception of one patient with gross mitral regurgitation. The advantages of the incremental first pass technique are that the patient need not be in sinus rhythm, the effects of physiological intervention may be studied and tests may also be repeated at various intervals during long term follow-up of patients. A disadvantage of the method is the limitation in the number of sequential measurements which can be carried out due to the amount of radioactivity injected. (U.K.)

  17. Rationale and design of the Karolinska-Rennes (KaRen) prospective study of dyssynchrony in heart failure with preserved ejection fraction.

    Science.gov (United States)

    Donal, Erwan; Lund, Lars H; Linde, Cecilia; Edner, Magnus; Lafitte, Stéphane; Persson, Hans; Bauer, Fabrice; Ohrvik, John; Ennezat, Pierre-Vladimir; Hage, Camilla; Löfman, Ida; Juilliere, Yves; Logeart, Damien; Derumeaux, Geneviève; Gueret, Pascal; Daubert, Jean-Claude

    2009-02-01

    Heart failure with preserved ejection fraction (HFPEF) is common but not well understood. Electrical dyssynchrony in systolic heart failure is harmful. Little is known about the prevalence and the prognostic impact of dyssynchrony in HFPEF. We have designed a prospective, multicenter, international, observational study to characterize HFPEF and to determine whether electrical or mechanical dyssynchrony affects prognosis. Patients presenting with acute heart failure (HF) will be screened so as to identify 400 patients with HFPEF. Inclusion criteria will be: acute presentation with Framingham criteria for HF, left ventricular ejection fraction>or=45%, brain natriuretic peptide (BNP)>100 pg/mL or NT-proBNP>300 pg/mL. Once stabilized, 4-8 weeks after the index presentation, patients will return and undergo questionnaires, serology, ECG, and Doppler echocardiography. Thereafter, patients will be followed for mortality and HF hospitalization every 6 months for at least 18 months. Sub-studies will focus on echocardiographic changes from the acute presentation to the stable condition and on exercise echocardiography, cardiopulmonary exercise testing, and serological markers. KaRen aims to characterize electrical and mechanical dyssynchrony and to assess its prognostic impact in HFPEF. The results might improve our understanding of HFPEF and generate answers to the question whether dyssynchrony could be a target for therapy in HFPEF.

  18. Calculation of left ventricular volumes and ejection fraction from dynamic cardiac-gated 15O-water PET/CT: 5D-PET

    OpenAIRE

    Jonny Nordström; Tanja Kero; Hendrik Johannes Harms; Charles Widström; Frank A. Flachskampf; Jens Sörensen; Mark Lubberink

    2017-01-01

    BACKGROUND: Quantitative measurement of myocardial blood flow (MBF) is of increasing interest in the clinical assessment of patients with suspected coronary artery disease (CAD). (15)O-water positron emission tomography (PET) is considered the gold standard for non-invasive MBF measurements. However, calculation of left ventricular (LV) volumes and ejection fraction (EF) is not possible from standard (15)O-water uptake images. The purpose of the present work was to investigate the possibility...

  19. Factor analysis of radionuclide ejection fraction response during exercise in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Yamamuro, Masashi

    1986-01-01

    In 204 patients with ischemic heart disease and 25 normal subjects who underwent exercise radionuclide ventriculography (RNV), multivariate analyses and other statistical methods were employed to study factors affecting changes in left ventricular ejection fraction (ΔEF). Twenty one variables were obtained from clinical diagnosis, cardiac catheterization, and RNV. Multivariate analyses showed that coronary score for the severity of coronary artery lesions was the most significant factor, followed by exercise duration, resting heart rate, the number of diseased vessels, and exercise heart rate. Statistically significant decrease in ΔEF was associated with regional wall motion abnormality, ECG changes, and chest pain. Lesions in the left main trunk and the proximal area of left anterior descending artery were greatly involved in the decrease of ΔEF. (Namekawa, K.)

  20. Precision Medicine for Heart Failure with Preserved Ejection Fraction: An Overview.

    Science.gov (United States)

    Shah, Sanjiv J

    2017-06-01

    There are few proven therapies for heart failure with preserved ejection fraction (HFpEF). The lack of therapies, along with increased recognition of the disorder and its underlying pathophysiology, has led to the acknowledgement that HFpEF is heterogeneous and is not likely to respond to a one-size-fits-all approach. Thus, HFpEF is a prime candidate to benefit from a precision medicine approach. For this reason, we have assembled a compendium of papers on the topic of precision medicine in HFpEF in the Journal of Cardiovascular Translational Research. These papers cover a variety of topics relevant to precision medicine in HFpEF, including automated identification of HFpEF patients; machine learning, novel molecular approaches, genomics, and deep phenotyping of HFpEF; and clinical trial designs that can be used to advance precision medicine in HFpEF. In this introductory article, we provide an overview of precision medicine in HFpEF with the hope that the work described here and in the other papers in this special theme issue will stimulate investigators and clinicians to advance a more targeted approach to HFpEF classification and treatment.

  1. Cardiac I123-MIBG Correlates Better than Ejection Fraction with Symptoms Severity in Systolic Heart Failure

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Sandra M.; Moscavitch, Samuel D.; Carestiato, Larissa R. [Programa de Pós-Graduação em Ciências Cardiovasculares, Hospital Universitário Antonio Pedro, Universidade Federal Fluminense, Rio de Janeiro, RJ (Brazil); Felix, Renata M. [Departamento de Medicina Nuclear, Hospital Pró-Cardíaco, Rio de Janeiro, RJ (Brazil); Rodrigues, Ronaldo C.; Messias, Leandro R. [Programa de Pós-Graduação em Ciências Cardiovasculares, Hospital Universitário Antonio Pedro, Universidade Federal Fluminense, Rio de Janeiro, RJ (Brazil); Azevedo, Jader C. [Programa de Pós-Graduação em Ciências Cardiovasculares, Hospital Universitário Antonio Pedro, Universidade Federal Fluminense, Rio de Janeiro, RJ (Brazil); Departamento de Medicina Nuclear, Hospital Pró-Cardíaco, Rio de Janeiro, RJ (Brazil); Nóbrega, Antonio Cláudio L.; Mesquita, Evandro Tinoco [Programa de Pós-Graduação em Ciências Cardiovasculares, Hospital Universitário Antonio Pedro, Universidade Federal Fluminense, Rio de Janeiro, RJ (Brazil); Mesquita, Claudio Tinoco, E-mail: ctinocom@cardiol.br [Programa de Pós-Graduação em Ciências Cardiovasculares, Hospital Universitário Antonio Pedro, Universidade Federal Fluminense, Rio de Janeiro, RJ (Brazil); Departamento de Medicina Nuclear, Hospital Pró-Cardíaco, Rio de Janeiro, RJ (Brazil)

    2013-07-15

    The association of autonomic activation, left ventricular ejection fraction (LVEF) and heart failure functional class is poorly understood. Our aim was to correlate symptom severity with cardiac sympathetic activity, through iodine-123-metaiodobenzylguanidine ({sup 123}I-MIBG) scintigraphy and with LVEF in systolic heart failure (HF) patients without previous beta-blocker treatment. Thirty-one patients with systolic HF, class I to IV of the New York Heart Association (NYHA), without previous beta-blocker treatment, were enrolled and submitted to {sup 123}I-MIBG scintigraphy and to radionuclide ventriculography for LVEF determination. The early and delayed heart/mediastinum (H/M) ratio and the washout rate (WR) were performed. According with symptom severity, patients were divided into group A, 13 patients in NYHA class I/II, and group B, 18 patients in NYHA class III/IV. Compared with group B patients, group A had a significantly higher LVEF (25% ± 12% in group B vs. 32% ± 7% in group A, p = 0.04). Group B early and delayed H/M ratios were lower than group A ratios (early H/M 1.49 ± 0.15 vs. 1.64 ± 0.14, p = 0.02; delayed H/M 1.39 ± 0.13 vs. 1.58 ± 0.16, p = 0.001, respectively). WR was significantly higher in group B (36% ± 17% vs. 30% ± 12%, p= 0.04). The variable that showed the best correlation with NYHA class was the delayed H/M ratio (r= -0.585; p=0.001), adjusted for age and sex. This study showed that cardiac {sup 123}I-MIBG correlates better than ejection fraction with symptom severity in systolic heart failure patients without previous beta-blocker treatment.

  2. Systolic Strain Abnormalities to Predict Hospital Readmission in Patients With Heart Failure and Normal Ejection Fraction

    Science.gov (United States)

    Borer, Steven M.; Kokkirala, Aravind; O'Sullivan, David M.; Silverman, David I.

    2011-01-01

    Background Despite intensive investigation, the pathogenesis of heart failure with normal ejection fraction (HFNEF) remains unclear. We hypothesized that subtle abnormalities of systolic function might play a role, and that abnormal systolic strain and strain rate would provide a marker for adverse outcomes. Methods Patients of new CHF and left ventricular ejection fraction > 50% were included. Exclusion criteria were recent myocardial infarction, severe valvular heart disease, severe left ventricular hypertrophy (septum >1.8 cm), or a technically insufficient echocardiogram. Average peak systolic strain and strain rate were measured using an off-line grey scale imaging technique. Systolic strain and strain rate for readmitted patients were compared with those who remained readmission-free. Results One hundred consecutive patients with a 1st admission for HFNEF from January 1, 2004 through December 31, 2007, inclusive, were analyzed. Fifty two patients were readmitted with a primary diagnosis of heart failure. Systolic strain and strain rates were reduced in both study groups compared to controls. However, systolic strain did not differ significantly between the two groups (-11.7% for those readmitted compared with -12.9% for those free from readmission, P = 0.198) and systolic strain rates also were similar (-1.05 s-1 versus -1.09 s-1, P = 0.545). E/e’ was significantly higher in readmitted patients compared with those who remained free from readmission (14.5 versus 11.0, P = 0.013). E/e’ (OR 1.189, 95% CI 1.026-1.378; P = 0.021) was found to be an independent predictor for HFNEF readmission. Conclusions Among patients with new onset HFNEF, SS and SR rates are reduced compared with patients free of HFNEF, but do not predict hospital readmission. Elevated E/e’ is a predictor of readmission in these patients. PMID:28352395

  3. Sacubitril/Valsartan: A Review in Chronic Heart Failure with Reduced Ejection Fraction.

    Science.gov (United States)

    McCormack, Paul L

    2016-03-01

    Sacubitril/valsartan (Entresto™; LCZ696) is an orally administered supramolecular sodium salt complex of the neprilysin inhibitor prodrug sacubitril and the angiotensin receptor blocker (ARB) valsartan, which was recently approved in the US and the EU for the treatment of chronic heart failure (NYHA class II-IV) with reduced ejection fraction (HFrEF). In the large, randomized, double-blind, PARADIGM-HF trial, sacubitril/valsartan reduced the incidence of death from cardiovascular causes or first hospitalization for worsening heart failure (composite primary endpoint) significantly more than the angiotensin converting enzyme (ACE) inhibitor enalapril. Sacubitril/valsartan was also superior to enalapril in reducing death from any cause and in limiting the progression of heart failure. Sacubitril/valsartan was generally well tolerated, with no increase in life-threatening adverse events. Symptomatic hypotension was significantly more common with sacubitril/valsartan than with enalapril; the incidence of angio-oedema was low. Therefore, sacubitril/valsartan is a more effective replacement for an ACE inhibitor or an ARB in the treatment of HFrEF, and is likely to influence the basic approach to treatment.

  4. On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data

    Directory of Open Access Journals (Sweden)

    M. Mierla

    2010-01-01

    Full Text Available Coronal Mass ejections (CMEs are enormous eruptions of magnetized plasma expelled from the Sun into the interplanetary space, over the course of hours to days. They can create major disturbances in the interplanetary medium and trigger severe magnetic storms when they collide with the Earth's magnetosphere. It is important to know their real speed, propagation direction and 3-D configuration in order to accurately predict their arrival time at the Earth. Using data from the SECCHI coronagraphs onboard the STEREO mission, which was launched in October 2006, we can infer the propagation direction and the 3-D structure of such events. In this review, we first describe different techniques that were used to model the 3-D configuration of CMEs in the coronagraph field of view (up to 15 R⊙. Then, we apply these techniques to different CMEs observed by various coronagraphs. A comparison of results obtained from the application of different reconstruction algorithms is presented and discussed.

  5. PLASMA HEATING INSIDE INTERPLANETARY CORONAL MASS EJECTIONS BY ALFVÉNIC FLUCTUATIONS DISSIPATION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Wang, Chi; Zhang, Lingqian [State Key Laboratory of Space Weather, National Space Science Center, CAS, Beijing, 100190 (China); He, Jiansen [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China); Richardson, John D.; Belcher, John W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA (United States); Tu, Cui, E-mail: hli@spaceweather.ac.cn [Laboratory of Near Space Environment, National Space Science Center, CAS, Beijing, 100190 (China)

    2016-11-10

    Nonlinear cascade of low-frequency Alfvénic fluctuations (AFs) is regarded as one of the candidate energy sources that heat plasma during the non-adiabatic expansion of interplanetary coronal mass ejections (ICMEs). However, AFs inside ICMEs were seldom reported in the literature. In this study, we investigate AFs inside ICMEs using observations from Voyager 2 between 1 and 6 au. It has been found that AFs with a high degree of Alfvénicity frequently occurred inside ICMEs for almost all of the identified ICMEs (30 out of 33 ICMEs) and for 12.6% of the ICME time interval. As ICMEs expand and move outward, the percentage of AF duration decays linearly in general. The occurrence rate of AFs inside ICMEs is much less than that in ambient solar wind, especially within 4.75 au. AFs inside ICMEs are more frequently presented in the center and at the boundaries of ICMEs. In addition, the proton temperature inside ICME has a similar “W”-shaped distribution. These findings suggest significant contribution of AFs on local plasma heating inside ICMEs.

  6. Energy of Force-Free Magnetic Fields in Relation to Coronal Mass Ejections

    International Nuclear Information System (INIS)

    Choe, G.S.; Cheng, C.Z.

    2002-01-01

    In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed configuration bulges out and eventually opens up. However, a spontaneous transition between these field configurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state, which may not be taken for granted. In this study, we have constructed force-free fields containing tangential discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also discussed

  7. Fabrication and Application of Mono-sized Spherical Micro Particles by Pulsated Orifice Ejection Method

    Directory of Open Access Journals (Sweden)

    DONG Wei

    2018-02-01

    Full Text Available A novel technology called pulsated orifice ejection method(POEM and used for preparing mono-sized and high-precision spherical micro particles was introduced in this article. The working principle of the technique was illustrated and it was in two modes:low-melting point diaphragm mode and high-melting point rod mode, depending on the different melting points of materials. The particles prepared by POEM have the advantages of mono-sized, uniform and controllable particle size, high sphericity, and consistent thermal history. By introducing the application of particles prepared by this method, showing the huge application prospects of this technology in electronic packaging, bioengineering, micro-fabrication, rapid solidification analysis of metal droplets, additive manufacturing and so on.With the development of POEM, this technology is predicted to have wider prospects due to its unique characteristics.

  8. ERNE observations of energetic particles associated with Earth-directed coronal mass ejections in April and May, 1997

    Directory of Open Access Journals (Sweden)

    A. Anttila

    2000-11-01

    Full Text Available Two Earth-directed coronal mass ejections (CMEs, which were most effective in energetic (~1–50 MeV particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES, we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE, which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.Key words: Interplanetary physics (interplanetary shocks – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  9. Role of Myocardial Collagen in Severe Aortic Stenosis With Preserved Ejection Fraction and Symptoms of Heart Failure.

    Science.gov (United States)

    Echegaray, Kattalin; Andreu, Ion; Lazkano, Ane; Villanueva, Iñaki; Sáenz, Alberto; Elizalde, María Reyes; Echeverría, Tomás; López, Begoña; Garro, Asier; González, Arantxa; Zubillaga, Elena; Solla, Itziar; Sanz, Iñaki; González, Jesús; Elósegui-Artola, Alberto; Roca-Cusachs, Pere; Díez, Javier; Ravassa, Susana; Querejeta, Ramón

    2017-10-01

    We investigated the anatomical localization, biomechanical properties, and molecular phenotype of myocardial collagen tissue in 40 patients with severe aortic stenosis with preserved ejection fraction and symptoms of heart failure. Two transmural biopsies were taken from the left ventricular free wall. Mysial and nonmysial regions of the collagen network were analyzed. Myocardial collagen volume fraction (CVF) was measured by picrosirius red staining. Young's elastic modulus (YEM) was measured by atomic force microscopy in decellularized slices to assess stiffness. Collagen types I and III were measured as C I VF and C III VF, respectively, by confocal microscopy in areas with YEM evaluation. Compared with controls, patients exhibited increased mysial and nonmysial CVF and nonmysial:mysial CVF ratio (P < .05). In patients, nonmysial CVF (r = 0.330; P = .046) and the nonmysial:mysial CVF ratio (r = 0.419; P = .012) were directly correlated with the ratio of maximal early transmitral flow velocity in diastole to early mitral annulus velocity in diastole. Both the C I VF:C III VF ratio and YEM were increased (P ≤ .001) in nonmysial regions compared with mysial regions in patients, with a direct correlation (r = 0.895; P < .001) between them. These findings suggest that, in patients with severe aortic stenosis with preserved ejection fraction and symptoms of heart failure, diastolic dysfunction is associated with increased nonmysial deposition of collagen, predominantly type I, resulting in increased extracellular matrix stiffness. Therefore, the characteristics of collagen tissue may contribute to diastolic dysfunction in these patients. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  10. ERNE observations of energetic particles associated with Earth-directed coronal mass ejections in April and May, 1997

    Directory of Open Access Journals (Sweden)

    A. Anttila

    Full Text Available Two Earth-directed coronal mass ejections (CMEs, which were most effective in energetic (~1–50 MeV particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES, we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE, which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.

    Key words: Interplanetary physics (interplanetary shocks – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  11. MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Kusano, K.; Bamba, Y.; Yamamoto, T. T.; Iida, Y.; Toriumi, S.; Asai, A.

    2012-01-01

    Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

  12. COMBINED MULTIPOINT REMOTE AND IN SITU OBSERVATIONS OF THE ASYMMETRIC EVOLUTION OF A FAST SOLAR CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Rollett, T.; Möstl, C.; Temmer, M.; Veronig, A. M.; Amerstorfer, U. V. [IGAM-Kanzelhöhe Observatory, Institute of Physics, University of Graz, A-8010 Graz (Austria); Frahm, R. A. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Davies, J. A. [RAL Space, Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX (United Kingdom); Vršnak, B.; Žic, T. [Hvar Observatory, Faculty of Geodesy, University of Zagreb, 1000 Zagreb (Croatia); Farrugia, C. J. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Zhang, T. L., E-mail: tanja.rollett@gmx.at [Space Research Institute, Austrian Academy of Sciences, A-8042 Graz (Austria)

    2014-07-20

    We present an analysis of the fast coronal mass ejection (CME) of 2012  March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind, and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the novel constrained self-similar expansion method. In addition, we used a drag-based model to investigate the influence of the ambient solar wind on the CME's propagation. We found that two preceding CMEs heading in different directions disturbed the overall shape of the CME and influenced its propagation behavior. While the Venus-directed segment underwent a gradual deceleration (from ∼2700 km s{sup –1} at 15 R {sub ☉} to ∼1500 km s{sup –1} at 154 R {sub ☉}), the Earth-directed part showed an abrupt retardation below 35 R {sub ☉} (from ∼1700 to ∼900 km s{sup –1}). After that, it was propagating with a quasi-constant speed in the wake of a preceding event. Our results highlight the importance of studies concerning the unequal evolution of CMEs. Forecasting can only be improved if conditions in the solar wind are properly taken into account and if attention is also paid to large events preceding the one being studied.

  13. Energy distributions of neutral species ejected from well-characterized surfaces measured by means of multiphoton resonance ionization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, D.; Ishigami, R.; Dhole, S.D.; Morita, K. E-mail: k-morita@mail.nucl.nagoya-u.ac.jp

    2000-04-01

    The energy distributions of neutral atoms ejected from the polycrystalline Cu target, the Si(1 1 1)-7x7 surface, and the Si(1 1 1)-''5 x 5''-Cu surface by 5 keV Ar{sup +} ion bombardment have been measured with very high efficiency by means of the multi-photon resonance ionization spectroscopy, in order to obtain the surface binding energies. The energy distributions for Cu from polycrystalline Cu target, Si from the Si(1 1 1)-7x7 surface, and Cu from the Si(1 1 1)-''5 x 5''-Cu surface have been found to have a peak at energies of around 3.0, 5.0 and 1.5 eV, and the function shapes of high energy tails to be proportional to E{sup -1.9}, E{sup -1.2} and E{sup -1.3}, respectively. Based on the linear collision cascade theory, the surface binding energies are determined to be 5.7, 6.0 and 2.0 eV, and the power factor m in the power law approximation to the Thomas-Fermi potential are determined to be 0.1, 0.4 and 0.3 for Cu from the Cu polycrystalline, Si from the Si(1 1 1)-7x7 surface, and Cu from the Si(1 1 1)-''5 x 5''-Cu surface, respectively. In conclusion, the results indicate that the energy distributions of ejected particles are well characterized by the linear collision cascade theory developed by Sigmund.

  14. New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes

    Science.gov (United States)

    Senni, Michele; Paulus, Walter J.; Gavazzi, Antonello; Fraser, Alan G.; Díez, Javier; Solomon, Scott D.; Smiseth, Otto A.; Guazzi, Marco; Lam, Carolyn S. P.; Maggioni, Aldo P.; Tschöpe, Carsten; Metra, Marco; Hummel, Scott L.; Edelmann, Frank; Ambrosio, Giuseppe; Stewart Coats, Andrew J.; Filippatos, Gerasimos S.; Gheorghiade, Mihai; Anker, Stefan D.; Levy, Daniel; Pfeffer, Marc A.; Stough, Wendy Gattis; Pieske, Burkert M.

    2014-01-01

    The management of heart failure with reduced ejection fraction (HF-REF) has improved significantly over the last two decades. In contrast, little or no progress has been made in identifying evidence-based, effective treatments for heart failure with preserved ejection fraction (HF-PEF). Despite the high prevalence, mortality, and cost of HF-PEF, large phase III international clinical trials investigating interventions to improve outcomes in HF-PEF have yielded disappointing results. Therefore, treatment of HF-PEF remains largely empiric, and almost no acknowledged standards exist. There is no single explanation for the negative results of past HF-PEF trials. Potential contributors include an incomplete understanding of HF-PEF pathophysiology, the heterogeneity of the patient population, inadequate diagnostic criteria, recruitment of patients without true heart failure or at early stages of the syndrome, poor matching of therapeutic mechanisms and primary pathophysiological processes, suboptimal study designs, or inadequate statistical power. Many novel agents are in various stages of research and development for potential use in patients with HF-PEF. To maximize the likelihood of identifying effective therapeutics for HF-PEF, lessons learned from the past decade of research should be applied to the design, conduct, and interpretation of future trials. This paper represents a synthesis of a workshop held in Bergamo, Italy, and it examines new and emerging therapies in the context of specific, targeted HF-PEF phenotypes where positive clinical benefit may be detected in clinical trials. Specific considerations related to patient and endpoint selection for future clinical trials design are also discussed. PMID:25104786

  15. Force Reconstruction from Ejection Tests of Stores from Aircraft Used for Model Predictions and Missing/Bad Gages

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Michael; Cap, Jerome S.; Starr, Michael J.; Urbina, Angel; Brink, Adam Ray

    2015-12-01

    One of the more severe environments for a store on an aircraft is during the ejection of the store. During this environment it is not possible to instrument all component responses, and it is also likely that some instruments may fail during the environment testing. This work provides a method for developing these responses from failed gages and uninstrumented locations. First, the forces observed by the store during the environment are reconstructed. A simple sampling method is used to reconstruct these forces given various parameters. Then, these forces are applied to a model to generate the component responses. Validation is performed on this methodology.

  16. Early Adoption of Sacubitril/Valsartan for Patients With Heart Failure With Reduced Ejection Fraction: Insights From Get With the Guidelines-Heart Failure (GWTG-HF).

    Science.gov (United States)

    Luo, Nancy; Fonarow, Gregg C; Lippmann, Steven J; Mi, Xiaojuan; Heidenreich, Paul A; Yancy, Clyde W; Greiner, Melissa A; Hammill, Bradley G; Hardy, N Chantelle; Turner, Stuart J; Laskey, Warren K; Curtis, Lesley H; Hernandez, Adrian F; Mentz, Robert J; O'Brien, Emily C

    2017-04-01

    The aim of this study was to assess the prevalence and variation in angiotensin receptor/neprilysin inhibitor (ARNI) prescription among a real-world population with heart failure with reduced ejection fraction (HFrEF). The U.S. Food and Drug Administration approved sacubitril/valsartan for patients with HFrEF in July 2015. Little is known about the early patterns of use of this novel therapy. The study included patients discharged alive from hospitals in Get With the Guidelines-Heart Failure (GWTG-HF), a registry of hospitalized patients with heart failure, between July 2015 and June 2016 who had documentation of whether ARNIs were prescribed at discharge. Patient and hospital characteristics were compared among patients with HFrEF (ejection fraction ≤40%) with and without ARNI prescription at discharge, excluding those with documented contraindications to ARNIs. To evaluate hospital variation, hospitals with at least 10 eligible hospitalizations during the study period were assessed. Of 21,078 patients hospitalized with HFrEF during the study period, 495 (2.3%) were prescribed ARNIs at discharge. Patients prescribed ARNIs were younger (median age 65 years vs. 70 years; p < 0.001), had lower ejection fractions (median 23% vs. 25%; p < 0.001), and had higher use of aldosterone antagonists (45% vs. 31%; p < 0.001) at discharge. At the 241 participating hospitals with 10 or more eligible admissions, 125 (52%) reported no discharge prescriptions of ARNIs. Approximately 2.3% of patients hospitalized for HFrEF in a national registry were prescribed ARNI therapy in the first 12 months following Food and Drug Administration approval. Further study is needed to identify and overcome barriers to implementing new evidence into practice, such as ARNI use among eligible patients with HFrEF. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. FORECASTING A CORONAL MASS EJECTION'S ALTERED TRAJECTORY: ForeCAT

    International Nuclear Information System (INIS)

    Kay, C.; Opher, M.; Evans, R. M.

    2013-01-01

    To predict whether a coronal mass ejection (CME) will impact Earth, the effects of the background on the CME's trajectory must be taken into account. We develop a model, ForeCAT (Forecasting a CME's Altered Trajectory), of CME deflection due to magnetic forces. ForeCAT includes CME expansion, a three-part propagation model, and the effects of drag on the CME's deflection. Given the background solar wind conditions, the launch site of the CME, and the properties of the CME (mass, final propagation speed, initial radius, and initial magnetic strength), ForeCAT predicts the deflection of the CME. Two different magnetic backgrounds are considered: a scaled background based on type II radio burst profiles and a potential field source surface (PFSS) background. For a scaled background where the CME is launched from an active region located between a coronal hole and streamer region, the strong magnetic gradients cause a deflection of 8.°1 in latitude and 26.°4 in longitude for a 10 15 g CME propagating out to 1 AU. Using the PFSS background, which captures the variation of the streamer belt (SB) position with height, leads to a deflection of 1.°6 in latitude and 4.°1 in longitude for the control case. Varying the CME's input parameters within observed ranges leads to the majority of CMEs reaching the SB within the first few solar radii. For these specific backgrounds, the SB acts like a potential well that forces the CME into an equilibrium angular position

  18. Visually estimated ejection fraction by two dimensional and triplane echocardiography is closely correlated with quantitative ejection fraction by real-time three dimensional echocardiography.

    Science.gov (United States)

    Shahgaldi, Kambiz; Gudmundsson, Petri; Manouras, Aristomenis; Brodin, Lars-Ake; Winter, Reidar

    2009-08-25

    Visual assessment of left ventricular ejection fraction (LVEF) is often used in clinical routine despite general recommendations to use quantitative biplane Simpsons (BPS) measurements. Even thou quantitative methods are well validated and from many reasons preferable, the feasibility of visual assessment (eyeballing) is superior. There is to date only sparse data comparing visual EF assessment in comparison to quantitative methods available. The aim of this study was to compare visual EF assessment by two-dimensional echocardiography (2DE) and triplane echocardiography (TPE) using quantitative real-time three-dimensional echocardiography (RT3DE) as the reference method. Thirty patients were enrolled in the study. Eyeballing EF was assessed using apical 4-and 2 chamber views and TP mode by two experienced readers blinded to all clinical data. The measurements were compared to quantitative RT3DE. There were an excellent correlation between eyeballing EF by 2D and TP vs 3DE (r = 0.91 and 0.95 respectively) without any significant bias (-0.5 +/- 3.7% and -0.2 +/- 2.9% respectively). Intraobserver variability was 3.8% for eyeballing 2DE, 3.2% for eyeballing TP and 2.3% for quantitative 3D-EF. Interobserver variability was 7.5% for eyeballing 2D and 8.4% for eyeballing TP. Visual estimation of LVEF both using 2D and TP by an experienced reader correlates well with quantitative EF determined by RT3DE. There is an apparent trend towards a smaller variability using TP in comparison to 2D, this was however not statistically significant.

  19. The Eruption of a Small-scale Emerging Flux Rope as the Driver of an M-class Flare and of a Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.; Yang, L. H.; Kong, D. F. [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming 650216, Yunnan (China); Jiang, C. W. [Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen, 5180055 (China); Priest, E. R. [Mathematics Institute, University of St Andrews, St Andrews, KY16 9SS (United Kingdom); Cao, W. D. [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States); Ji, H. S., E-mail: yanxl@ynao.ac.cn [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, Jiangsu (China)

    2017-08-10

    Solar flares and coronal mass ejections are the most powerful explosions in the Sun. They are major sources of potentially destructive space weather conditions. However, the possible causes of their initiation remain controversial. Using high-resolution data observed by the New Solar Telescope of Big Bear Solar Observatory, supplemented by Solar Dynamics Observatory observations, we present unusual observations of a small-scale emerging flux rope near a large sunspot, whose eruption produced an M-class flare and a coronal mass ejection. The presence of the small-scale flux rope was indicated by static nonlinear force-free field extrapolation as well as data-driven magnetohydrodynamics modeling of the dynamic evolution of the coronal three-dimensional magnetic field. During the emergence of the flux rope, rotation of satellite sunspots at the footpoints of the flux rope was observed. Meanwhile, the Lorentz force, magnetic energy, vertical current, and transverse fields were increasing during this phase. The free energy from the magnetic flux emergence and twisting magnetic fields is sufficient to power the M-class flare. These observations present, for the first time, the complete process, from the emergence of the small-scale flux rope, to the production of solar eruptions.

  20. Analysis of Nonlinear Dispersion of a Pollutant Ejected by an External Source into a Channel Flow

    Directory of Open Access Journals (Sweden)

    T. Chinyoka

    2010-01-01

    Full Text Available This paper focuses on the transient analysis of nonlinear dispersion of a pollutant ejected by an external source into a laminar flow of an incompressible fluid in a channel. The influence of density variation with pollutant concentration is approximated according to the Boussinesq approximation, and the nonlinear governing equations of momentum and pollutant concentration are obtained. The problem is solved numerically using a semi-implicit finite difference method. Solutions are presented in graphical form and given in terms of fluid velocity, pollutant concentration, skin friction, and wall mass transfer rate for various parametric values. The model can be a useful tool for understanding the polluting situations of an improper discharge incident and evaluating the effects of decontaminating measures for the water body.

  1. Successive Homologous Coronal Mass Ejections Driven by Shearing and Converging Motions in Solar Active Region NOAA 12371

    International Nuclear Information System (INIS)

    Vemareddy, P.

    2017-01-01

    We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (−0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.

  2. PHYSICAL CONDITIONS OF CORONAL PLASMA AT THE TRANSIT OF A SHOCK DRIVEN BY A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Susino, R.; Bemporad, A.; Mancuso, S., E-mail: susino@oato.inaf.it [INAF–Turin Astrophysical Observatory, via Osservatorio 20, I-10025 Pino Torinese (Italy)

    2015-10-20

    We report here on the determination of plasma physical parameters across a shock driven by a coronal mass ejection using white light (WL) coronagraphic images and radio dynamic spectra (RDS). The event analyzed here is the spectacular eruption that occurred on 2011 June 7, a fast CME followed by the ejection of columns of chromospheric plasma, part of them falling back to the solar surface, associated with a M2.5 flare and a type-II radio burst. Images acquired by the Solar and Heliospheric Observatory/LASCO coronagraphs (C2 and C3) were employed to track the CME-driven shock in the corona between 2–12 R{sub ⊙} in an angular interval of about 110°. In this interval we derived two-dimensional (2D) maps of electron density, shock velocity, and shock compression ratio, and we measured the shock inclination angle with respect to the radial direction. Under plausible assumptions, these quantities were used to infer 2D maps of shock Mach number M{sub A} and strength of coronal magnetic fields at the shock's heights. We found that in the early phases (2–4 R{sub ⊙}) the whole shock surface is super-Alfvénic, while later on (i.e., higher up) it becomes super-Alfvénic only at the nose. This is in agreement with the location for the source of the observed type-II burst, as inferred from RDS combined with the shock kinematic and coronal densities derived from WL. For the first time, a coronal shock is used to derive a 2D map of the coronal magnetic field strength over intervals of 10 R{sub ⊙} altitude and ∼110° latitude.

  3. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the sun to 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Möstl, C.; Veronig, A. M.; Rollett, T.; Temmer, M.; Peinhart, V. [Kanzelhöhe Observatory-IGAM, Institute of Physics, University of Graz (Austria); Amla, K.; Hall, J. R.; Liewer, P. C.; De Jong, E. M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Colaninno, R. C. [Space Sciences Division, Naval Research Laboratory, Washington, DC (United States); Davies, J. A.; Harrison, R. A. [RAL Space, Harwell Oxford, Didcot (United Kingdom); Lugaz, N.; Farrugia, C. J.; Galvin, A. B. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Liu, Y. D. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA (United States); Vršnak, B., E-mail: christian.moestl@uni-graz.at [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kačićeva 26, HR-10000, Zagreb (Croatia)

    2014-06-01

    Forecasting the in situ properties of coronal mass ejections (CMEs) from remote images is expected to strongly enhance predictions of space weather and is of general interest for studying the interaction of CMEs with planetary environments. We study the feasibility of using a single heliospheric imager (HI) instrument, imaging the solar wind density from the Sun to 1 AU, for connecting remote images to in situ observations of CMEs. We compare the predictions of speed and arrival time for 22 CMEs (in 2008-2012) to the corresponding interplanetary coronal mass ejection (ICME) parameters at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). The list consists of front- and backsided, slow and fast CMEs (up to 2700 km s{sup –1}). We track the CMEs to 34.9 ± 7.1 deg elongation from the Sun with J maps constructed using the SATPLOT tool, resulting in prediction lead times of –26.4 ± 15.3 hr. The geometrical models we use assume different CME front shapes (fixed-Φ, harmonic mean, self-similar expansion) and constant CME speed and direction. We find no significant superiority in the predictive capability of any of the three methods. The absolute difference between predicted and observed ICME arrival times is 8.1 ± 6.3 hr (rms value of 10.9 hr). Speeds are consistent to within 284 ± 288 km s{sup –1}. Empirical corrections to the predictions enhance their performance for the arrival times to 6.1 ± 5.0 hr (rms value of 7.9 hr), and for the speeds to 53 ± 50 km s{sup –1}. These results are important for Solar Orbiter and a space weather mission positioned away from the Sun-Earth line.

  4. Successive Homologous Coronal Mass Ejections Driven by Shearing and Converging Motions in Solar Active Region NOAA 12371

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P., E-mail: vemareddy@iiap.res.in [Indian Institute of Astrophysics, II Block, Koramangala, Bengalure-560034 (India)

    2017-08-10

    We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (−0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.

  5. Rationale, Design, and Methodology of the APOLLON trial: A comPrehensive, ObservationaL registry of heart faiLure with midrange and preserved ejectiON fraction.

    Science.gov (United States)

    Özlek, Bülent; Özlek, Eda; Çelik, Oğuzhan; Çil, Cem; Doğan, Volkan; Tekinalp, Mehmet; Zencirkıran Ağuş, Hicaz; Kahraman, Serkan; Ösken, Altuğ; Rencüzoğulları, İbrahim; Tanık, Veysel Ozan; Bekar, Lütfü; Çakır, Mustafa Ozan; Kaya, Bedri Caner; Tibilli, Hakan; Çelik, Yunus; Başaran, Özcan; Mert, Kadir Uğur; Sevinç, Samet; Demirci, Erkan; Dondurmacı, Engin; Biteker, Murat

    2018-05-01

    Although almost half of chronic heart failure (HF) patients have mid-range (HFmrEF) and preserved left-ventricular ejection fraction (HFpEF), no studies have been carried out with these patients in our country. This study aims to determine the demographic characteristics and current status of the clinical background of HFmrEF and HFpEF patients in a multicenter trial. A comPrehensive, ObservationaL registry of heart faiLure with mid range and preserved ejectiON fraction (APOLLON) trial will be an observational, multicenter, and noninterventional study conducted in Turkey. The study population will include 1065 patients from 12 sites in Turkey. All data will be collected at one point in time and the current clinical practice will be evaluated (ClinicalTrials.gov number NCT03026114). We will enroll all consecutive patients admitted to the cardiology clinics who were at least 18 years of age and had New York Heart Association class II, III, or IV HF, elevated brain natriuretic peptide levels within the last 30 days, and an left ventricular ejection fraction (LVEF) of at least 40%. Patients fulfilling the exclusion criteria will not be included in the study. Patients will be stratified into two categories according to LVEF: mid-range EF (HFmrEF, LVEF 40%-49%) and preserved EF (HFpEF, LVEF ≥50%). Regional quota sampling will be performed to ensure that the sample was representative of the Turkish population. Demographic, lifestyle, medical, and therapeutic data will be collected by this specific survey. The APOLLON trial will be the largest and most comprehensive study in Turkey evaluating HF patients with a LVEF ≥40% and will also be the first study to specifically analyze the recently designated HFmrEF category.

  6. Spironolactone in patients with heart failure and preserved ejection fraction.

    Science.gov (United States)

    Sánchez-Sánchez, C; Mendoza-Ruiz de Zuazu, H F; Formiga, F; Manzano, L; Ceresuela, L M; Carrera-Izquierdo, M; González Franco, Á; Epelde-Gonzalo, F; Cerqueiro-González, J M; Montero-Pérez-Barquero, M

    2015-01-01

    Aldosterone inhibitors have been shown to be beneficial for patients with systolic heart failure. However, the evidence from patients with heart failure and preserved ejection fraction (HFPEF) is limited. We evaluated the role of spironolactone in the prognosis of a cohort of patients with HFPEF. We analyzed the outcomes of patients hospitalized for HFPEF in 52 departments of internal medicine of the Spanish RICA registry according to those who did and did not take spironolactone. We recorded the posthospital mortality rate and readmissions at 1 year and performed a multivariate survival analysis. We included 1212 patients with HFPEF, with a mean age of 79 years (standard deviation, 7.9), (64.1% women), the majority of whom had hypertensive heart disease (50.7%). The patients treated with spironolactone, compared with those who were not treated with this diuretic, had a more advanced functional class, a higher number of readmissions (44.3 vs. 29.1%; p<0.001) and a higher rate in the combined variable of readmissions/mortality (39.0 vs. 29.0%; p=0.001). In the multivariate analysis, the administration of spironolactone was associated with an increase in readmissions (RR, 1.4; 95% CI, 1.16-1.78; p=0.001). For patients with HFPEF, the administration of spironolactone was associated with an increase in all-cause readmission, perhaps due to the higher rate of hyperpotassemia. Copyright © 2015. Published by Elsevier España, S.L.U.

  7. Acute heart failure with mid-range left ventricular ejection fraction: clinical profile, in-hospital management, and short-term outcome.

    Science.gov (United States)

    Farmakis, Dimitrios; Simitsis, Panagiotis; Bistola, Vasiliki; Triposkiadis, Filippos; Ikonomidis, Ignatios; Katsanos, Spyridon; Bakosis, George; Hatziagelaki, Erifili; Lekakis, John; Mebazaa, Alexandre; Parissis, John

    2017-05-01

    Heart failure with mid-range left ventricular ejection fraction (HFmrEF) is a poorly characterized population as it has been studied either in the context of HF with reduced (HFrEF) or preserved (HFpEF) left ventricular ejection fraction (LVEF) depending on applied LVEF cutoffs. We sought to investigate the clinical profile, in-hospital management, and short-term outcome of HFmrEF patients in comparison with those with HFrEF or HFpEF in a large acute HF cohort. The Acute Heart Failure Global Registry of Standard Treatment (ALARM-HF) included 4953 patients hospitalized for HF in nine countries in Europe, Latin America, and Australia. Baseline characteristics, clinical presentation, in-hospital therapies, and short-term mortality (all-cause in-hospital or 30-day mortality, whichever first) were compared among HFrEF (LVEF chronic renal disease (p = 0.003), more hospitalizations for acute coronary syndrome (p < 0.001), or infection (p = 0.003), and were more frequently treated with intravenous vasodilators compared to HFrEF or HFpEF. Adjusted short-term mortality in HFmrEF was lower than HFrEF [hazard ratio (HR) = 0.635 (0.419, 0.963), p = 0.033] but similar to HFpEF [HR = 1.026 (0.605, 1.741), p = 0.923]. Hospitalized HFmrEF patients represent a demographically and clinically diverse group with many intermediate features compared to HFrEF and HFpEF and carry a lower risk of short-term mortality than HFrEF but a similar risk with HFpEF.

  8. Modeling Coronal Mass Ejections with EUHFORIA: A Parameter Study of the Gibson-Low Flux Rope Model using Multi-Viewpoint Observations

    Science.gov (United States)

    Verbeke, C.; Asvestari, E.; Scolini, C.; Pomoell, J.; Poedts, S.; Kilpua, E.

    2017-12-01

    Coronal Mass Ejections (CMEs) are one of the big influencers on the coronal and interplanetary dynamics. Understanding their origin and evolution from the Sun to the Earth is crucial in order to determine the impact on our Earth and society. One of the key parameters that determine the geo-effectiveness of the coronal mass ejection is its internal magnetic configuration. We present a detailed parameter study of the Gibson-Low flux rope model. We focus on changes in the input parameters and how these changes affect the characteristics of the CME at Earth. Recently, the Gibson-Low flux rope model has been implemented into the inner heliosphere model EUHFORIA, a magnetohydrodynamics forecasting model of large-scale dynamics from 0.1 AU up to 2 AU. Coronagraph observations can be used to constrain the kinematics and morphology of the flux rope. One of the key parameters, the magnetic field, is difficult to determine directly from observations. In this work, we approach the problem by conducting a parameter study in which flux ropes with varying magnetic configurations are simulated. We then use the obtained dataset to look for signatures in imaging observations and in-situ observations in order to find an empirical way of constraining the parameters related to the magnetic field of the flux rope. In particular, we focus on events observed by at least two spacecraft (STEREO + L1) in order to discuss the merits of using observations from multiple viewpoints in constraining the parameters.

  9. Energy of Force-Free Magnetic Fields in Relation to Coronal Mass Ejections; TOPICAL

    International Nuclear Information System (INIS)

    G.S. Choe; C.Z. Cheng

    2002-01-01

    In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed configuration bulges out and eventually opens up. However, a spontaneous transition between these field configurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state, which may not be taken for granted. In this study, we have constructed force-free fields containing tangential discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also discussed

  10. Is Flux Rope a Necessary Condition for the Progenitor of Coronal Mass Ejections?

    Science.gov (United States)

    Ouyang, Y.; Yang, K.; Chen, P. F.

    2015-12-01

    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or if it is formed during eruption via magnetic reconnection. The controversy has continued because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one on 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a necessary condition for the pre-CME structure.

  11. Gallbladder ejection fraction using 99mTc-DISIDA scan in diabetic autonomic neuropathy

    International Nuclear Information System (INIS)

    Kim, Seong Jang; Kim, In Ju; Kim, Yong Ki; An, Jun Hyup; Yoo, Seok Dong

    2000-01-01

    We performed this study to evaluate the changes of gallbladder ejection fraction (GBEF) in diabetic patients with or without autonomic neuropathy. This study included 37 diabetic patients (25 women, 12 men, mean age 51 years) and 24 normal controls (10 women, 14 men, mean age 38 years). After intravenous injection of 185 MBq of 99m T c -DISIDA, serial anterior abdominal images were acquired before and after fatty meal. Regions of interest were applied on gallbladder and right hepatic lobe on 60 and 90 minute images to calculate GBEF. GBEF was significantly reduced in diabetes with autonomic neuropathy (43±12.3%) and without autonomic neuropathy (57.5±13.2%) compared with normal controls (68±11.6%, p 0.05). When 50.2% of GBEF was used as the criteria for diabetic autonomic neuropathy, the sensitivity and specificity were 80%, 76.5%, respectively. The area under receiver operating characteristic curve was 0.846. GBEF of diabetic patients with autonomic neuropathy was significantly reduced than that of diabetic patients without autonomic neuropathy.=20

  12. [Interest of tricuspid annular displacement (TAD) in evaluation of right ventricular ejection fraction].

    Science.gov (United States)

    Hugues, T; Ducreux, D; Bertora, D; Berthier, F; Lemoigne, F; Padovani, B; Gibelin, P

    2010-04-01

    The ultrasound assessment of RV structure and function is often sub-optimal. The range of excursions of the mitral or tricuspid annulus measured in millimetre by 2D or TM-mode in centimetre per second by DTI-mode echocardiography has been shown to reflect the systolic function of both ventricles. We studied a new technique based on a tissue tracking algorithm that is ultrasound beam angle independent for automated detection of tricuspid annular displacement (TAD) (QLAB, Philips Medical Imaging). Twenty-six patients (pts) referred for magnetic resonance imaging (MRI) and 44 control subjects underwent a complete transthoracic echocardiography. MRI of the right ventricular ejection fraction (RVEF) was correlated by linear regression with TAD. Sixteen pts (61.5%) exhibited right ventricular systolic dysfunction (MRI RVEFTAD (R(2)=0,65; pTAD TAD values exceeding this cut-off point (mean: 16.9+/-1.64mm; range: 13.3 to 24.8mm). Negative correlation was found between TAD and age (R(2)=0,36; pTAD with MRI RVEF. TAD is a simple, rapid, and non-invasive tool for right ventricular systolic function assessment.

  13. Prognostic importance of left ventricular mechanical dyssynchrony in heart failure with preserved ejection fraction

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Shah, Sanjiv J; Anand, Inder

    2017-01-01

    AIMS: Left ventricular mechanical dyssynchrony has been described in heart failure with preserved ejection fraction (HFpEF), but its prognostic significance is not known. METHODS AND RESULTS: Of 3445 patients with HFpEF enrolled in the Treatment of Preserved Cardiac Function Heart Failure...... models assessed the association of dyssynchrony with the composite outcome of cardiovascular death or heart failure hospitalization. Mean age was 70 ± 10 years, LVEF was 60 ± 8%, and QRS duration was 101 ± 27 ms. Worse dyssynchrony, reflected in SD T2P LS, was associated with wider QRS, prior myocardial...... with the composite outcome in unadjusted analysis [hazard ratio (HR) 1.04, 95% confidence interval (CI) 1.01-1.07; P = 0.021, per 10 ms increase], but not after adjusting for clinical characteristics, or after further adjustment for LVEF, AF, NYHA class, stroke, heart rate, creatinine, haematocrit, and QRS duration...

  14. Visually estimated ejection fraction by two dimensional and triplane echocardiography is closely correlated with quantitative ejection fraction by real-time three dimensional echocardiography

    Directory of Open Access Journals (Sweden)

    Manouras Aristomenis

    2009-08-01

    Full Text Available Abstract Background Visual assessment of left ventricular ejection fraction (LVEF is often used in clinical routine despite general recommendations to use quantitative biplane Simpsons (BPS measurements. Even thou quantitative methods are well validated and from many reasons preferable, the feasibility of visual assessment (eyeballing is superior. There is to date only sparse data comparing visual EF assessment in comparison to quantitative methods available. The aim of this study was to compare visual EF assessment by two-dimensional echocardiography (2DE and triplane echocardiography (TPE using quantitative real-time three-dimensional echocardiography (RT3DE as the reference method. Methods Thirty patients were enrolled in the study. Eyeballing EF was assessed using apical 4-and 2 chamber views and TP mode by two experienced readers blinded to all clinical data. The measurements were compared to quantitative RT3DE. Results There were an excellent correlation between eyeballing EF by 2D and TP vs 3DE (r = 0.91 and 0.95 respectively without any significant bias (-0.5 ± 3.7% and -0.2 ± 2.9% respectively. Intraobserver variability was 3.8% for eyeballing 2DE, 3.2% for eyeballing TP and 2.3% for quantitative 3D-EF. Interobserver variability was 7.5% for eyeballing 2D and 8.4% for eyeballing TP. Conclusion Visual estimation of LVEF both using 2D and TP by an experienced reader correlates well with quantitative EF determined by RT3DE. There is an apparent trend towards a smaller variability using TP in comparison to 2D, this was however not statistically significant.

  15. Urinary Proteomics Pilot Study for Biomarker Discovery and Diagnosis in Heart Failure with Reduced Ejection Fraction

    DEFF Research Database (Denmark)

    Rossing, Kasper; Bosselmann, Helle Skovmand; Gustafsson, Finn

    2016-01-01

    and Results Urine samples were analyzed by on-line capillary electrophoresis coupled to electrospray ionization micro time-of-flight mass spectrometry (CE-MS) to generate individual urinary proteome profiles. In an initial biomarker discovery cohort, analysis of urinary proteome profiles from 33 HFr......Background Biomarker discovery and new insights into the pathophysiology of heart failure with reduced ejection fraction (HFrEF) may emerge from recent advances in high-throughput urinary proteomics. This could lead to improved diagnosis, risk stratification and management of HFrEF. Methods.......6%) in individuals with diastolic left ventricular dysfunction (N = 176). The HFrEF-related peptide biomarkers mainly included fragments of fibrillar type I and III collagen but also, e.g., of fibrinogen beta and alpha-1-antitrypsin. Conclusion CE-MS based urine proteome analysis served as a sensitive tool...

  16. Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies.

    Science.gov (United States)

    Sharma, Kavita; Kass, David A

    2014-06-20

    The clinical syndrome comprising heart failure (HF) symptoms but with a left ventricular ejection fraction (EF) that is not diminished, eg, HF with preserved EF, is increasingly the predominant form of HF in the developed world, and soon to reach epidemic proportions. It remains among the most challenging of clinical syndromes for the practicing clinician and scientist alike, with a multitude of proposed mechanisms involving the heart and other organs and complex interplay with common comorbidities. Importantly, its morbidity and mortality are on par with HF with reduced EF, and as the list of failed treatments continues to grow, HF with preserved EF clearly represents a major unmet medical need. The field is greatly in need of a more unified approach to its definition and view of the syndrome that engages integrative and reserve pathophysiology beyond that related to the heart alone. We need to reflect on prior treatment failures and the message this is providing, and redirect our approaches likely with a paradigm shift in how the disease is viewed. Success will require interactions between clinicians, translational researchers, and basic physiologists. Here, we review recent translational and clinical research into HF with preserved EF and give perspectives on its evolving demographics and epidemiology, the role of multiorgan deficiencies, potential mechanisms that involve the heart and other organs, clinical trials, and future directions. © 2014 American Heart Association, Inc.

  17. QUANTITATIVE MEASUREMENTS OF CORONAL MASS EJECTION-DRIVEN SHOCKS FROM LASCO OBSERVATIONS

    International Nuclear Information System (INIS)

    Ontiveros, Veronica; Vourlidas, Angelos

    2009-01-01

    In this paper, we demonstrate that coronal mass ejection (CME)-driven shocks can be detected in white light coronagraph images and in which properties such as the density compression ratio and shock direction can be measured. Also, their propagation direction can be deduced via simple modeling. We focused on CMEs during the ascending phase of solar cycle 23 when the large-scale morphology of the corona was simple. We selected events which were good candidates to drive a shock due to their high speeds (V > 1500 km s -1 ). The final list includes 15 CMEs. For each event, we calibrated the LASCO data, constructed excess mass images, and searched for indications of faint and relatively sharp fronts ahead of the bright CME front. We found such signatures in 86% (13/15) of the events and measured the upstream/downstream densities to estimate the shock strength. Our values are in agreement with theoretical expectations and show good correlations with the CME kinetic energy and momentum. Finally, we used a simple forward modeling technique to estimate the three-dimensional shape and orientation of the white light shock features. We found excellent agreement with the observed density profiles and the locations of the CME source regions. Our results strongly suggest that the observed brightness enhancements result from density enhancements due to a bow-shock structure driven by the CME.

  18. Statistical Study of Interplanetary Coronal Mass Ejections with Strong Magnetic Fields

    Science.gov (United States)

    Murphy, Matthew E.

    Coronal Mass Ejections (CMEs) with strong magnetic fields (B ) are typically associated with significant Solar Energetic Particle (SEP) events, high solar wind speed and solar flare events. Successful prediction of the arrival time of a CME at Earth is required to maximize the time available for satellite, infrastructure, and space travel programs to take protective action against the coming flux of high-energy particles. It is known that the magnetic field strength of a CME is linked to the strength of a geomagnetic storm on Earth. Unfortunately, the correlations between strong magnetic field CMEs from the entire sun (especially from the far side or non-Earth facing side of the sun) to SEP and flare events, solar source regions and other relevant solar variables are not well known. New correlation studies using an artificial intelligence engine (Eureqa) were performed to study CME events with magnetic field strength readings over 30 nanoteslas (nT) from January 2010 to October 17, 2014. This thesis presents the results of this study, validates Eureqa to obtain previously published results, and presents previously unknown functional relationships between solar source magnetic field data, CME initial speed and the CME magnetic field. These new results enable the development of more accurate CME magnetic field predictions and should help scientists develop better forecasts thereby helping to prevent damage to humanity's space and Earth assets.

  19. Outcomes of de novo and acute decompensated heart failure patients according to ejection fraction.

    Science.gov (United States)

    Choi, Ki Hong; Lee, Ga Yeon; Choi, Jin-Oh; Jeon, Eun-Seok; Lee, Hae-Young; Cho, Hyun-Jai; Lee, Sang Eun; Kim, Min-Seok; Kim, Jae-Joong; Hwang, Kyung-Kuk; Chae, Shung Chull; Baek, Sang Hong; Kang, Seok-Min; Choi, Dong-Ju; Yoo, Byung-Su; Kim, Kye Hun; Park, Hyun-Young; Cho, Myeong-Chan; Oh, Byung-Hee

    2018-03-01

    There are conflicting results among previous studies regarding the prognosis of heart failure with preserved ejection fraction (HFpEF) compared with heart failure with reduced ejection fraction (HFrEF). This study aimed to compare the outcomes of patients with de novo acute heart failure (AHF) or acute decompensated HF (ADHF) according to HFpEF (EF≥50%), or HFrEF (EF<40%) and to define the prognosis of patients with HF with mid-range EF (HFmrEF, 40≤EF<50%). Between March 2011 and February 2014, 5625 consecutive patients with AHF were recruited from 10 university hospitals. A total of 5414 (96.2%) patients with EF data were enrolled, which consisted of 2867 (53.0%) patients with de novo and 2547 (47.0%) with ADHF. Each of the enrolled group was stratified by EF. In de novo, all-cause death rates were not significantly different between HFpEF and HFrEF (HFpEF vs HFrEF, 206/744 (27.7%) vs 438/1631 (26.9%), HR adj 1.15, 95% CI 0.96 to 1.38, p=0.14). However, among patients with ADHF, HFrEF had a significantly higher mortality rate compared with HFpEF (HFpEF vs HFrEF, 245/613 (40.0%) vs 694/1551 (44.7%), HR adj 1.25, 95% CI 1.06 to 1.47, p=0.007). Also, in ADHF, HFmrEF was associated with a significantly lower mortality rate within 1 year compared with HFrEF (HFmrEF vs HFrEF, 88/383 (23.0%) vs 430/1551 (27.7%), HR adj 1.31, 95% CI 1.03 to 1.65, p=0.03), but a significantly higher mortality rate after 1 year compared with HFpEF (HFmrEF vs HFpEF, 83/295 (28.1%) vs 101/469 (21.5%), HR adj 0.70, 95% CI 0.52 to 0.96, p=0.02). HFpEF may indicate a better prognosis compared with HFrEF in ADHF, but not in de novo AHF. For patients with ADHF, the prognosis associated with HFmrEF was similar to that of HFpEF within the first year following hospitalisation and similar to HFrEF 1  year after hospitalisation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted

  20. Clinical validation of fully automated computation of ejection fraction from gated equilibrium blood-pool scintigrams

    International Nuclear Information System (INIS)

    Reiber, J.H.C.; Lie, S.P.; Simoons, M.L.; Hoek, C.; Gerbrands, J.J.; Wijns, W.; Bakker, W.H.; Kooij, P.P.M.

    1983-01-01

    A fully automated procedure for the computation of left-ventricular ejection fraction (EF) from cardiac-gated Tc-99m blood-pool (GBP) scintigrams with fixed, dual, and variable ROI methods is described. By comparison with EF data from contrast ventriculography in 68 patients, the dual-ROI method (separate end-diastolic and end-systolic contours) was found to be the method of choice; processing time was 2 min. Success score of dual-ROI procedure was 92% as assessed from 100 GBP studies. Overall reproducibility of data acquisition and analysis was determined in 12 patients. Mean value and standard deviation of differences between repeat studies (average time interval 27 min) were 0.8% and 4.3% EF units, respectively, (r=0.98). The authors conclude that left-ventricular EF can be computed automatically from GBP scintigrams with minimal operator-interaction and good reproducibility; EFs are similar to those from contrast ventriculography

  1. Copeptin in patients with heart failure and preserved ejection fraction: a report from the prospective KaRen-study.

    Science.gov (United States)

    Hage, Camilla; Lund, Lars H; Donal, Erwan; Daubert, Jean-Claude; Linde, Cecilia; Mellbin, Linda

    2015-01-01

    Underlying mechanisms of heart failure (HF) with preserved ejection fraction (HFPEF) remain unknown. We explored copeptin, a biomarker of the arginine vasopressin system, hypothesising that copeptin in HFPEF is elevated, associated with diastolic dysfunction and N-terminal pro-brain natriuretic peptide (NT-proBNP) and predictive of HF hospitalisation and mortality. In a prospective observational substudy of the The Karolinska Rennes (KaRen) 86 patients with symptoms of acute HF and ejection fraction (EF) ≥45% were enrolled. After 4-8 weeks, blood sampling and echocardiography was performed. Plasma-copeptin was analysed in 86 patients and 62 healthy controls. Patients were followed in median 579 days (quartile 1; quartile 3 (Q1;Q3) 276;1178) regarding the composite end point all-cause mortality or HF hospitalisation. The patients with HFPEF had higher copeptin levels, median 13.56 pmol/L (Q1;Q3 8.56;20.55) than controls 5.98 pmol/L (4.15;9.42; p<0.001). Diastolic dysfunction, assessable in 75/86 patients, was present in 45 and absent in 30 patients. Copeptin did not differ regarding diastolic dysfunction and did not correlate with cardiac function but with NT-proBNP (r=0.223; p value=0.040). In univariate Cox regression analysis log copeptin predicted the composite end point (HR 1.56 (95% CI 1.03 to 2.38; p value=0.037)) but not after adjusting for NT-proBNP (HR 1.39 (95% CI 0.91 to 2.12; p value=0.125)). In the present patients with HFPEF, copeptin is elevated, correlates with NT-proBNP but not markers of diastolic dysfunction, and has prognostic implications, however blunted after adjustment for NT-proBNP. The HFPEF pathophysiology may be better reflected by markers of neurohormonal activation than by diastolic dysfunction. ClinicalTrials.gov NCT00774709.

  2. Reproducibility of gallbladder ejection fraction measured by fatty meal cholescintigraphy

    International Nuclear Information System (INIS)

    Al-Muqbel, Kusai M.; Hani, M. N. Hani; Elheis, M. A.; Al-Omari, M. H.

    2010-01-01

    There are conflicting data in the literature regarding the reproducibility of the gallbladder ejection fraction (GBEF) measured by fatty meal cholescintigraphy (CS). We aimed to test the reproducibility of GBEF measured by fatty meal CS. Thirty-five subjects (25 healthy volunteers and 10 patients with chronic abdominal pain) underwent fatty meal CS twice in order to measure GBEF1 and GBEF2. The healthy volunteers underwent a repeat scan within 1-13 months from the first scan. The patients underwent a repeat scan within 1-4 years from the first scan and were not found to have chronic acalculous cholecystitis (CAC). Our standard fatty meal was composed of a 60-g Snickers chocolate bar and 200 ml full-fat yogurt. The mean ± SD values for GBEF1 and GBEF2 were 52±17% and 52±16%, respectively. There was a direct linear correlation between the values of GBEF1 and GBEF2 for the subjects, with a correlation coefficient of 0.509 (p=0.002). Subgroup data analysis of the volunteer group showed that there was significant linear correlation between volunteer values of GBEF1 and GBEF2, with a correlation coefficient of 0.473 (p=0.017). Subgroup data analysis of the non-CAC patient group showed no significant correlation between patient values of GBEF1 and GBEF2, likely due to limited sample size. This study showed that fatty meal CS is a reliable test in gallbladder motility evaluation and that GBEF measured by fatty meal CS is reproducible

  3. Reproducibility of gallbladder ejection fraction measured by fatty meal cholescintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Muqbel, Kusai M.; Hani, M. N. Hani; Elheis, M. A.; Al-Omari, M. H. [School of Medicine, Jordan University of Science and Technology, Irbid (Jordan)

    2010-12-15

    There are conflicting data in the literature regarding the reproducibility of the gallbladder ejection fraction (GBEF) measured by fatty meal cholescintigraphy (CS). We aimed to test the reproducibility of GBEF measured by fatty meal CS. Thirty-five subjects (25 healthy volunteers and 10 patients with chronic abdominal pain) underwent fatty meal CS twice in order to measure GBEF1 and GBEF2. The healthy volunteers underwent a repeat scan within 1-13 months from the first scan. The patients underwent a repeat scan within 1-4 years from the first scan and were not found to have chronic acalculous cholecystitis (CAC). Our standard fatty meal was composed of a 60-g Snickers chocolate bar and 200 ml full-fat yogurt. The mean {+-} SD values for GBEF1 and GBEF2 were 52{+-}17% and 52{+-}16%, respectively. There was a direct linear correlation between the values of GBEF1 and GBEF2 for the subjects, with a correlation coefficient of 0.509 (p=0.002). Subgroup data analysis of the volunteer group showed that there was significant linear correlation between volunteer values of GBEF1 and GBEF2, with a correlation coefficient of 0.473 (p=0.017). Subgroup data analysis of the non-CAC patient group showed no significant correlation between patient values of GBEF1 and GBEF2, likely due to limited sample size. This study showed that fatty meal CS is a reliable test in gallbladder motility evaluation and that GBEF measured by fatty meal CS is reproducible

  4. Coronal Mass Ejection Data Clustering and Visualization of Decision Trees

    Science.gov (United States)

    Ma, Ruizhe; Angryk, Rafal A.; Riley, Pete; Filali Boubrahimi, Soukaina

    2018-05-01

    Coronal mass ejections (CMEs) can be categorized as either “magnetic clouds” (MCs) or non-MCs. Features such as a large magnetic field, low plasma-beta, and low proton temperature suggest that a CME event is also an MC event; however, so far there is neither a definitive method nor an automatic process to distinguish the two. Human labeling is time-consuming, and results can fluctuate owing to the imprecise definition of such events. In this study, we approach the problem of MC and non-MC distinction from a time series data analysis perspective and show how clustering can shed some light on this problem. Although many algorithms exist for traditional data clustering in the Euclidean space, they are not well suited for time series data. Problems such as inadequate distance measure, inaccurate cluster center description, and lack of intuitive cluster representations need to be addressed for effective time series clustering. Our data analysis in this work is twofold: clustering and visualization. For clustering we compared the results from the popular hierarchical agglomerative clustering technique to a distance density clustering heuristic we developed previously for time series data clustering. In both cases, dynamic time warping will be used for similarity measure. For classification as well as visualization, we use decision trees to aggregate single-dimensional clustering results to form a multidimensional time series decision tree, with averaged time series to present each decision. In this study, we achieved modest accuracy and, more importantly, an intuitive interpretation of how different parameters contribute to an MC event.

  5. GLOBAL ENERGETICS OF SOLAR FLARES. IV. CORONAL MASS EJECTION ENERGETICS

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.

    2016-01-01

    This study entails the fourth part of a global flare energetics project, in which the mass m cme , kinetic energy E kin , and the gravitational potential energy E grav of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The model derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R ⊙ , while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.

  6. Cardiosphere-Derived Cells Reverse Heart Failure With Preserved Ejection Fraction in Rats by Decreasing Fibrosis and Inflammation

    Directory of Open Access Journals (Sweden)

    Romain Gallet, MD

    2016-01-01

    Full Text Available The pathogenesis of heart failure with a preserved ejection fraction (HFpEF is unclear. Myocardial fibrosis, inflammation, and cardiac hypertrophy have been suggested to contribute to the pathogenesis of HFpEF. Cardiosphere-derived cells (CDCs are heart-derived cell products with antifibrotic and anti-inflammatory properties. This study tested whether rat CDCs were sufficient to decrease manifestations of HFpEF in hypertensive rats. Starting at 7 weeks of age, Dahl salt-sensitive rats were fed a high-salt diet for 6 to 7 weeks and randomized to receive intracoronary CDCs or placebo. Dahl rats fed normal chow served as controls. High-salt rats developed hypertension, left ventricular (LV hypertrophy, and diastolic dysfunction, without impairment of ejection fraction. Four weeks after treatment, diastolic dysfunction resolved in CDC-treated rats but not in placebo. The improved LV relaxation was associated with lower LV end-diastolic pressure, decreased lung congestion, and enhanced survival in CDC-treated rats. Histology and echocardiography revealed no decrease in cardiac hypertrophy after CDC treatment, consistent with the finding of sustained, equally-elevated blood pressure in CDC- and placebo-treated rats. Nevertheless, CDC treatment decreased LV fibrosis and inflammatory infiltrates. Serum inflammatory cytokines were likewise decreased after CDC treatment. Whole-transcriptome analysis revealed that CDCs reversed changes in numerous transcripts associated with HFpEF, including many involved in inflammation and/or fibrosis. These studies suggest that CDCs normalized LV relaxation and LV diastolic pressure while improving survival in a rat model of HFpEF. The benefits of CDCs occurred despite persistent hypertension and cardiac hypertrophy. By selectively reversing inflammation and fibrosis, CDCs may be beneficial in the treatment of HFpEF.

  7. A comparison of coronal mass ejections identified by manual and automatic methods

    Directory of Open Access Journals (Sweden)

    S. Yashiro

    2008-10-01

    Full Text Available Coronal mass ejections (CMEs are related to many phenomena (e.g. flares, solar energetic particles, geomagnetic storms, thus compiling of event catalogs is important for a global understanding these phenomena. CMEs have been identified manually for a long time, but in the SOHO era, automatic identification methods are being developed. In order to clarify the advantage and disadvantage of the manual and automatic CME catalogs, we examined the distributions of CME properties listed in the CDAW (manual and CACTus (automatic catalogs. Both catalogs have a good agreement on the wide CMEs (width>120° in their properties, while there is a significant discrepancy on the narrow CMEs (width≤30°: CACTus has a larger number of narrow CMEs than CDAW. We carried out an event-by-event examination of a sample of events and found that the CDAW catalog have missed many narrow CMEs during the solar maximum. Another significant discrepancy was found on the fast CMEs (speed>1000 km/s: the majority of the fast CDAW CMEs are wide and originate from low latitudes, while the fast CACTus CMEs are narrow and originate from all latitudes. Event-by-event examination of a sample of events suggests that CACTus has a problem on the detection of the fast CMEs.

  8. IS FLUX ROPE A NECESSARY CONDITION FOR THE PROGENITOR OF CORONAL MASS EJECTIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Y.; Yang, K.; Chen, P. F., E-mail: chenpf@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2015-12-10

    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or if it is formed during eruption via magnetic reconnection. The controversy has continued because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one on 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a necessary condition for the pre-CME structure.

  9. IS FLUX ROPE A NECESSARY CONDITION FOR THE PROGENITOR OF CORONAL MASS EJECTIONS?

    International Nuclear Information System (INIS)

    Ouyang, Y.; Yang, K.; Chen, P. F.

    2015-01-01

    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or if it is formed during eruption via magnetic reconnection. The controversy has continued because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one on 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a necessary condition for the pre-CME structure

  10. Analysis of an Interplanetary Coronal Mass Ejection by a Spacecraft Radio Signal: A Case Study

    Science.gov (United States)

    Molera Calvés, G.; Kallio, E.; Cimo, G.; Quick, J.; Duev, D. A.; Bocanegra Bahamón, T.; Nickola, M.; Kharinov, M. A.; Mikhailov, A. G.

    2017-11-01

    Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere.

  11. System Response Analysis of Rod Ejection Accident for APR1400 Using KNAP Hot Spot Model

    International Nuclear Information System (INIS)

    Kim, Yo-Han; Ha, Sang-Jun; Jun, Hwang-Yong

    2006-01-01

    Korea Electric Power Research Institute (KEPRI) has been developed the non-loss-of-coolant accident (non- LOCA) analysis methodology, called as the Korea Non- LOCA Analysis Package (KNAP), for the typical Optimized Power Reactor 1000 (OPR1000) plants. Considering current licensing methodology conducted by ABB-CE, however, the KNAP could be applied to Advanced Power Reactor 1400 (APR1400) also. In spite of some difference in design concepts of two plant types, there is a close resemblance between their nuclear steam supply systems (NSSS). So, in this study, the rod ejection accident (REA) event was analyzed using KNAP hot spot model (HSM) for APR1400 to estimate the feasibility of the application and the results were compared with those given in APR1400 Standard Safety Analysis Report (SSAR), which were calculated using the CESEC-III and STRIKIN-II code of ABB-CE. Through the study, it was concluded that the KNAP could be applicable to APR1400 on the view point of REA

  12. Bright points and ejections observed on the sun by the KORONAS-FOTON instrument TESIS

    Science.gov (United States)

    Ulyanov, A. S.; Bogachev, S. A.; Kuzin, S. V.

    2010-10-01

    Five-second observations of the solar corona carried out in the FeIX 171 Å line by the KORONAS-FOTON instrument TESIS are used to study the dynamics of small-scale coronal structures emitting in and around coronal bright points. The small-scale structures of the lower corona display complex dynamics similar to those of magnetic loops located at higher levels of the solar corona. Numerous detected oscillating structures with sizes below 10 000 km display oscillation periods from 50 to 350 s. The period distributions of these structures are different for P 150 s, which implies that different oscillation modes are excited at different periods. The small-scale structures generate numerous flare-like events with energies 1024-1026 erg (nanoflares) and with a spatial density of one event per arcsecond or more observed over an area of 4 × 1011 km2. Nanoflares are not associated with coronal bright points, and almost uniformly cover the solar disk in the observation region. The ejections of solar material from the coronal bright points demonstrate velocities of 80-110 km/s.

  13. Device therapy in heart failure with reduced ejection fraction-cardiac resynchronization therapy and more.

    Science.gov (United States)

    Duncker, D; Veltmann, C

    2018-05-09

    In patients with heart failure with reduced ejection fraction (HFrEF), optimal medical treatment includes beta-blockers, ACE inhibitors/angiotensinreceptor-neprilysin inhibitors (ARNI), mineralocorticoid receptor antagonists, and ivabradine when indicated. In device therapy of HFrEF, implantable cardioverter-defibrillators and cardiac resynchronization therapy (CRT) have been established for many years. CRT is the therapy of choice (class I indication) in symptomatic patients with HFrEF and a broad QRS complex with a left bundle branch block (LBBB) morphology. However, the vast majority of heart failure patients show a narrow QRS complex or a non-LBBB morphology. These patients are not candidates for CRT and alternative electrical therapies such as baroreflex activation therapy (BAT) and cardiac contractility modulation (CCM) may be considered. BAT modulates vegetative dysregulation in heart failure. CCM improves contractility, functional capacity, and symptoms. Although a broad data set is available for BAT and CCM, mortality data are still lacking for both methods. This article provides an overview of the device-based therapeutic options for patients with HFrEF.

  14. SOLAR RADIO TYPE-I NOISE STORM MODULATED BY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Iwai, K.; Tsuchiya, F.; Morioka, A.; Misawa, H.; Miyoshi, Y.; Masuda, S.; Shimojo, M.; Shiota, D.; Inoue, S.

    2012-01-01

    The first coordinated observations of an active region using ground-based radio telescopes and the Solar Terrestrial Relations Observatory (STEREO) satellites from different heliocentric longitudes were performed to study solar radio type-I noise storms. A type-I noise storm was observed between 100 and 300 MHz during a period from 2010 February 6 to 7. During this period the two STEREO satellites were located approximately 65° (ahead) and –70° (behind) from the Sun-Earth line, which is well suited to observe the earthward propagating coronal mass ejections (CMEs). The radio flux of the type-I noise storm was enhanced after the preceding CME and began to decrease before the subsequent CME. This time variation of the type-I noise storm was directly related to the change of the particle acceleration processes around its source region. Potential-field source-surface extrapolation from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) magnetograms suggested that there was a multipolar magnetic system around the active region from which the CMEs occurred around the magnetic neutral line of the system. From our observational results, we suggest that the type-I noise storm was activated at a side-lobe reconnection region that was formed after eruption of the preceding CME. This magnetic structure was deformed by a loop expansion that led to the subsequent CME, which then suppressed the radio burst emission.

  15. Observations of the Coronal Mass Ejection with a Complex Acceleration Profile

    Science.gov (United States)

    Reva, A. A.; Kirichenko, A. S.; Ulyanov, A. S.; Kuzin, S. V.

    2017-12-01

    We study the coronal mass ejection (CME) with a complex acceleration profile. The event occurred on 2009 April 23. It had an impulsive acceleration phase, an impulsive deceleration phase, and a second impulsive acceleration phase. During its evolution, the CME showed signatures of different acceleration mechanisms: kink instability, prominence drainage, flare reconnection, and a CME–CME collision. The special feature of the observations is the usage of the TESIS EUV telescope. The instrument could image the solar corona in the Fe 171 Å line up to a distance of 2 {R}ȯ from the center of the Sun. This allows us to trace the CME up to the LASCO/C2 field of view without losing the CME from sight. The onset of the CME was caused by kink instability. The mass drainage occurred after the kink instability. The mass drainage played only an auxiliary role: it decreased the CME mass, which helped to accelerate the CME. The first impulsive acceleration phase was caused by the flare reconnection. We observed the two-ribbon flare and an increase of the soft X-ray flux during the first impulsive acceleration phase. The impulsive deceleration and the second impulsive acceleration phases were caused by the CME–CME collision. The studied event shows that CMEs are complex phenomena that cannot be explained with only one acceleration mechanism. We should seek a combination of different mechanisms that accelerate CMEs at different stages of their evolution.

  16. Impact of early, late, and no ST-segment resolution measured by continuous ST Holter monitoring on left ventricular ejection fraction and infarct size as determined by cardiovascular magnetic resonance imaging

    NARCIS (Netherlands)

    Haeck, Joost D. E.; Verouden, Niels J. W.; Kuijt, Wichert J.; Koch, Karel T.; Majidi, Mohamed; Hirsch, Alexander; Tijssen, Jan G. P.; Krucoff, Mitchell W.; de Winter, Robbert J.

    2011-01-01

    Background: The goal of this study is to determine the predictive value of ST-segment resolution (STR) early after percutaneous coronary intervention (PCI), late STR, and no STR for left ventricular ejection fraction (LVEF) and infarct size (IS) by cardiovascular magnetic resonance (CMR) at

  17. The non-linear ion trap. Part 5. Nature of non-linear resonances and resonant ion ejection

    Science.gov (United States)

    Franzen, J.

    1994-01-01

    The superposition of higher order multipole fields on the basic quadrupole field in ion traps generates a non-harmonic oscillator system for the ions. Fourier analyses of simulated secular oscillations in non-linear ion traps, therefore, not only reveal the sideband frequencies, well-known from the Mathieu theory, but additionally a commonwealth of multipole-specific overtones (or higher harmonics), and corresponding sidebands of overtones. Non-linear resonances occur when the overtone frequencies match sideband frequencies. It can be shown that in each of the resonance conditions, not just one overtone matches one sideband, instead, groups of overtones match groups of sidebands. The generation of overtones is studied by Fourier analysis of computed ion oscillations in the direction of thez axis. Even multipoles (octopole, dodecapole, etc.) generate only odd orders of higher harmonics (3, 5, etc.) of the secular frequency, explainable by the symmetry with regard to the planez = 0. In contrast, odd multipoles (hexapole, decapole, etc.) generate all orders of higher harmonics. For all multipoles, the lowest higher harmonics are found to be strongest. With multipoles of higher orders, the strength of the overtones decreases weaker with the order of the harmonics. Forz direction resonances in stationary trapping fields, the function governing the amplitude growth is investigated by computer simulations. The ejection in thez direction, as a function of timet, follows, at least in good approximation, the equation wheren is the order of multipole, andC is a constant. This equation is strictly valid for the electrically applied dipole field (n = 1), matching the secular frequency or one of its sidebands, resulting in a linear increase of the amplitude. It is valid also for the basic quadrupole field (n = 2) outside the stability area, giving an exponential increase. It is at least approximately valid for the non-linear resonances by weak superpositions of all higher odd

  18. Effect of Levosimendan on Low Cardiac Output Syndrome in Patients With Low Ejection Fraction Undergoing Coronary Artery Bypass Grafting With Cardiopulmonary Bypass

    Science.gov (United States)

    Caruba, Thibaut; Grosjean, Sandrine; Amour, Julien; Ouattara, Alexandre; Villacorta, Judith; Miguet, Bertrand; Guinet, Patrick; Lévy, François; Squara, Pierre; Aït Hamou, Nora; Carillon, Aude; Boyer, Julie; Boughenou, Marie-Fazia; Rosier, Sebastien; Robin, Emmanuel; Radutoiu, Mihail; Durand, Michel; Guidon, Catherine; Desebbe, Olivier; Charles-Nelson, Anaïs; Menasché, Philippe; Rozec, Bertrand; Girard, Claude; Fellahi, Jean-Luc; Pirracchio, Romain; Chatellier, Gilles

    2017-01-01

    Importance Low cardiac output syndrome after cardiac surgery is associated with high morbidity and mortality in patients with impaired left ventricular function. Objective To assess the ability of preoperative levosimendan to prevent postoperative low cardiac output syndrome. Design, Setting, and Participants Randomized, double-blind, placebo-controlled trial conducted in 13 French cardiac surgical centers. Patients with a left ventricular ejection fraction less than or equal to 40% and scheduled for isolated or combined coronary artery bypass grafting with cardiopulmonary bypass were enrolled from June 2013 until May 2015 and followed during 6 months (last follow-up, November 30, 2015). Interventions Patients were assigned to a 24-hour infusion of levosimendan 0.1 µg/kg/min (n = 167) or placebo (n = 168) initiated after anesthetic induction. Main Outcomes and Measures Composite end point reflecting low cardiac output syndrome with need for a catecholamine infusion 48 hours after study drug initiation, need for a left ventricular mechanical assist device or failure to wean from it at 96 hours after study drug initiation when the device was inserted preoperatively, or need for renal replacement therapy at any time postoperatively. It was hypothesized that levosimendan would reduce the incidence of this composite end point by 15% in comparison with placebo. Results Among 336 randomized patients (mean age, 68 years; 16% women), 333 completed the trial. The primary end point occurred in 87 patients (52%) in the levosimendan group and 101 patients (61%) in the placebo group (absolute risk difference taking into account center effect, −7% [95% CI, −17% to 3%]; P = .15). Predefined subgroup analyses found no interaction with ejection fraction less than 30%, type of surgery, and preoperative use of β-blockers, intra-aortic balloon pump, or catecholamines. The prevalence of hypotension (57% vs 48%), atrial fibrillation (50% vs 40%), and other adverse

  19. Evaluation of Right Ventricular Function with Radionuclide Cardiac Angiography - Right Ventricular Ejection Fraction in Chronic Obstructive Lung Disease

    International Nuclear Information System (INIS)

    Sohn, In; Shin, Sung Hae; Chung, June Key; Lee, Myung Chul; Cho, Bo Youn; Lee, Young Woo; Han, Yong Cheol; Koh, Chang Soon

    1982-01-01

    To evaluate the usefulness of radionuclide cardiac angiography in the assessment of the right ventricular function, we measured right ventricular ejection fraction (RVEF) using single pass method. In 12 normal persons, RVEF averaged 52.7±5.9% (mean±S.D.). In 25 patients with chronic obstructive lung disease, RVEF was 37.2±10.6% and significantly lower than that of normal person (p<0.01). All 10 patients with right ventricular failure had abnormal RVEF, which was significantly lower than that of 14 persons without right ventricular failure (27.6±5.7%, 43.9±8.5%, respectively, p<0.01). It concluded that RVEF measured by single pass radionuclide cardiac angiography was a useful, noninvasive method to assess right ventricular function.

  20. Reduced systolic performance by tissue Doppler in patients with preserved and abnormal ejection fraction: new insights in chronic heart failure.

    Science.gov (United States)

    García, Edgar H; Perna, Eduardo R; Farías, Eduardo F; Obregón, Ricardo O; Macin, Stella M; Parras, Jorge I; Agüero, Marcelo A; Moratorio, Diego A; Pitzus, Ariel E; Tassano, Eduardo A; Rodriguez, Leonardo

    2006-04-04

    Tissue Doppler imaging (TDI) is useful in the evaluation of systolic and diastolic function. It allows assessment of ventricular dynamics in its longitudinal axis. We sought to investigate the difference in systolic and diastolic longitudinal function in patients with chronic heart failure (CHF) with normal and reduced ejection fraction. One hundred ten outpatients with CHF and 68 controls were included. Ejection fraction (EF) was obtained and longitudinal systolic (S) and diastolic (E' and A') wall velocities were recorded from basal septum. Group A (controls) were normal and CHF patients were classified by EF in Group B1: > 45% and B2: < or = 45%. In A, B1 and B2 the mean S peak was 7.74; 5.45 and 4.89 cm/s (p<0.001); the mean E' peak was 8.56; 5.72 and 6.1 cm/s (p<0.001); and the mean A' peak was 10.2; 7.3 and 5.3 cm/s (p<0.001). Also, isovolumic contraction and relaxation time were different among control and CHF groups, (both p<0.001). The most useful parameters for identifying diastolic CHF were IVRT and S peak, with area under ROC curves of 0.93 and 0.89. The cut-off of 115 ms for IVRT and 5.8 cm/s for S peak showed a sensitivity of 94 and 97%, with a specificity of 82 and 73%, respectively. These findings suggest that impairment of left ventricular systolic function is present even in those with diastolic heart failure, and that abnormalities may have an important role to identifying the condition.

  1. Improvement of the thermal and mechanical flow characteristics in the exhaust system of piston engine through the use of ejection effect

    Science.gov (United States)

    Plotnikov, L. V.; Zhilkin, B. P.; Brodov, Yu M.

    2017-11-01

    The results of experimental research of gas dynamics and heat transfer in the exhaust process in piston internal combustion engines are presented. Studies were conducted on full-scale models of piston engine in the conditions of unsteady gas-dynamic (pulsating flows). Dependences of the instantaneous flow speed and the local heat transfer coefficient from the crankshaft rotation angle in the exhaust pipe are presented in the article. Also, the flow characteristics of the exhaust gases through the exhaust systems of various configurations are analyzed. It is shown that installation of the ejector in the exhaust system lead to a stabilization of the flow and allows to improve cleaning of the cylinder from exhaust gases and to optimize the thermal state of the exhaust pipes. Experimental studies were complemented by numerical simulation of the working process of the DM-21 diesel engine (production of “Ural diesel-motor plant”). The object of modeling was the eight-cylinder diesel with turbocharger. The simulation was performed taking into account the processes nonstationarity in the intake and exhaust pipes for the various configurations of exhaust systems (with and without ejector). Numerical simulation of the working process of diesel was performed in ACTUS software (ABB Turbo Systems). The simulation results confirmed the stabilization of the flow due to the use of the ejection effect in the exhaust system of a diesel engine. The use of ejection in the exhaust system of the DM-21 diesel leads to improvement of cleaning cylinders up to 10 %, reduces the specific fuel consumption on average by 1 %.

  2. THE VERY UNUSUAL INTERPLANETARY CORONAL MASS EJECTION OF 2012 JULY 23: A BLAST WAVE MEDIATED BY SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Russell, C. T. [University of California, Los Angeles, CA 90095-1567 (United States); Mewaldt, R. A.; Cohen, C. M. S.; Leske, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Luhmann, J. G. [University of California, Berkeley, CA 94720 (United States); Mason, G. M. [Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Von Rosenvinge, T. T. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gomez-Herrero, R. [University of Alcala, E-28871 Alcala de Henares (Spain); Klassen, A. [Kiel University, D-24118 Kiel (Germany); Galvin, A. B.; Simunac, K. D. C., E-mail: ctrussell@igpp.ucla.edu [University of New Hampshire, Durham, NH 03824 (United States)

    2013-06-10

    The giant, superfast, interplanetary coronal mass ejection, detected by STEREO A on 2012 July 23, well away from Earth, appears to have reached 1 AU with an unusual set of leading bow waves resembling in some ways a subsonic interaction, possibly due to the high pressures present in the very energetic particles produced in this event. Eventually, a front of record high-speed flow reached STEREO. The unusual behavior of this event is illustrated using the magnetic field, plasma, and energetic ion observations obtained by STEREO. Had the Earth been at the location of STEREO, the large southward-oriented magnetic field component in the event, combined with its high speed, would have produced a record storm.

  3. Aortic insufficiency and hydralazine: behaviour of left ventricular ejection fraction and of stroke index ratio at rest and during exercise

    International Nuclear Information System (INIS)

    Sole, C.; Florenzano, F.; Morales, B.; Neubauer, S.; Escobar, E.; Mollerach, F.; Mollerach, A.; Avella, O.

    1982-01-01

    The gated blood pool ventriculography in patients undergoing in vivo red blood cells labelling with 99mTc-pertechnetate, was evaluated critically as a form of quantifying aortic valvular regurgitation (AVR) and was applicated in severe aortic insufficiency (AI) to determine the effects of Hydralazine at rest and during exercise on the ventricular function parameters thus obtained. The beneficious effects of Hydralazine on left ventricular performance in patients with AI, have already been reported. The results confirm this too, but using a non-invasive method. These beneficious effects of Hydralazine in patients with AI were proved to be a consequence of significant increase in left ventricular ejection fraction (LVEF)

  4. On the spectrum emitted by excited particles ejected from the surface of a calcium target by a beam of Ar+ ions

    International Nuclear Information System (INIS)

    Kiyan, T.S.; Gritsyna, V.V.; Fogel, Ya.M.

    1976-01-01

    The spectrum of the luminous aureole near the calcium target radiated by excited particles ejected from its surface by a beam of Ar + (energy 30 keV, current density 200 μA/cm 2 ) was investigated. This spectrum contains lines of the singlet and triplet systems of the one-and-two-electron excited states of the calcium atom and some bands of CaO and O + 2 molecules. The width of a conductivity band of CaO was measured. Some information on oxidation processes on calcium in a residual gas and rarefied nitrogen atmosphere was obtained. (Auth.)

  5. The incept of ejection from a fresh Taylor cone and subsequent evolution

    Science.gov (United States)

    Lopez-Herrera, Jose M.; Ganan-Calvo, Alfonso

    2017-11-01

    Within a certain range of applied voltages, a pendant drop suddenly subject to an intense electric field develops a cusp from which a fast liquid ligament issues. The incept of this process has common roots with other related phenomena like the Worthington jets, the jet issued after surface bubble bursting or the impact of a drop on a liquid pool. This is experimentally and numerically demonstrated. However, given the electrohydrodynamic nature of the driver in the formation of a Taylor cone, a number of electrokinetic processes take place in the rapid tapering flow, whose characteristic times should be carefully compared to the ones of the flow. As a result, universal scaling laws for the size and charge of the top drop have been obtained. Subsequently, sustaining the applied electric field, the ejection continues and the issuing liquid ligament releases a train of droplets of varying size and charge. Under appropriate conditions and if the liquid suctioned by the electric field is replenished, the system reaches a (quasi)steady state asymptotically. The degree of compliance of the size and charge of those subsequent droplets with previously proposed scaling laws of steady Taylor cone-jets has been studied. Computational code Gerris and an extended electrokinetic module is used. This work was supported by the Ministerio de Economia y Competitividad, Plan Estatal 2013-2016 Retos, project DPI2016-78887-C3-1-R.

  6. Tensor Factorization for Precision Medicine in Heart Failure with Preserved Ejection Fraction.

    Science.gov (United States)

    Luo, Yuan; Ahmad, Faraz S; Shah, Sanjiv J

    2017-06-01

    Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical syndrome that may benefit from improved subtyping in order to better characterize its pathophysiology and to develop novel targeted therapies. The United States Precision Medicine Initiative comes amid the rapid growth in quantity and modality of clinical data for HFpEF patients ranging from deep phenotypic to trans-omic data. Tensor factorization, a form of machine learning, allows for the integration of multiple data modalities to derive clinically relevant HFpEF subtypes that may have significant differences in underlying pathophysiology and differential response to therapies. Tensor factorization also allows for better interpretability by supporting dimensionality reduction and identifying latent groups of data for meaningful summarization of both features and disease outcomes. In this narrative review, we analyze the modest literature on the application of tensor factorization to related biomedical fields including genotyping and phenotyping. Based on the cited work including work of our own, we suggest multiple tensor factorization formulations capable of integrating the deep phenotypic and trans-omic modalities of data for HFpEF, or accounting for interactions between genetic variants at different omic hierarchies. We encourage extensive experimental studies to tackle challenges in applying tensor factorization for precision medicine in HFpEF, including effectively incorporating existing medical knowledge, properly accounting for uncertainty, and efficiently enforcing sparsity for better interpretability.

  7. Control rod ejection accident analysis for a PWR with thorium fuel loading

    Energy Technology Data Exchange (ETDEWEB)

    Da Cruz, D.F. [Nuclear Research and Consultancy Group NRG, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands)

    2010-07-01

    This paper presents the results of 3-D transient analysis of a pressurized water reactor (PWR) core loaded with 100% Th-Pu MOX fuel assemblies. The aim of this study is to evaluate the safety impact of applying a full loading of this innovative fuel in PWRs of the current generation. A reactivity insertion accident scenario has been simulated using the reactor core analysis code PANTHER, used in conjunction with the lattice code WIMS. A single control rod assembly, with the highest reactivity worth, has been considered to be ejected from the core within 100 milliseconds, which may occur due to failure of the casing of the control rod driver mechanism. Analysis at both hot full power and hot zero power reactor states have been taken into account. The results were compared with those obtained for a representative PWR fuelled with UO{sub 2} fuel assemblies. In general the results obtained for both cores were comparable, with some differences associated mainly to the harder neutron spectrum observed for the Th-Pu MOX core, and to some specific core design features. The study has been performed as part of the LWR-DEPUTY project of the EURATOM 6. Framework Programme, where several aspects of novel fuels are being investigated for deep burning of plutonium in existing nuclear power plants. (authors)

  8. A Ribbon-like Structure in the Ejective Organelle of the Green Microalga Pyramimonas parkeae (Prasinophyceae) Consists of Core Histones and Polymers Containing N-acetyl-glucosamine.

    Science.gov (United States)

    Yamagishi, Takahiro; Kurihara, Akira; Kawai, Hiroshi

    2015-11-01

    The green microalga, Pyramimonas parkeae (Prasinophyceae) has an ejective organelle containing a coiled ribbon structure resembling the ejectisome in Cryptophyta. This structure is discharged from the cell by a stimulus and extends to form a tube-like structure, but the molecular components of the structure have not been identified. Tricine-SDS-PAGE analysis indicated that the ribbon-like structure of P. parkeae contains some proteins and low molecular acidic polymers. Edman degradation, LC/MS/MS analyses and immunological studies demonstrated that their proteins are core histones (H3, H2A, H2B and H4). In addition, monosaccharide composition analysis of the ribbon-like structures and degradation by lysozyme strongly indicated that the ribbon-like structure consist of β (1-4) linked polymers containing N-acetyl-glucosamine. Purified polymers and recombinant histones formed glob-like or filamentous structures. Therefore we conclude that the ribbon-like structure of P. parkeae mainly consists of a complex of core histones (H3, H2A, H2B and H4) and polymers containing N-acetyl-glucosamine, and suggest to name the ejective organelle in P. parkeae the "histrosome" to distinguish it from the ejectisome in Cryptophyta. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Dementia-related adverse events in PARADIGM-HF and other trials in heart failure with reduced ejection fraction

    DEFF Research Database (Denmark)

    Cannon, Jane A.; Shen, Li; Jhund, Pardeep S.

    2017-01-01

    Aims: Inhibition of neprilysin, an enzyme degrading natriuretic and other vasoactive peptides, is beneficial in heart failure with reduced ejection fraction (HFrEF), as shown in PARADIGM-HF which compared the angiotensin receptor–neprilysin inhibitor (ARNI) sacubitril/valsartan with enalapril....... As neprilysin is also one of many enzymes clearing amyloid-β peptides from the brain, there is a theoretical concern about the long-term effects of sacubitril/valsartan on cognition. Therefore, we have examined dementia-related adverse effects (AEs) in PARADIGM-HF and placed these findings in the context...... of other recently conducted HFrEF trials. Methods and results: In PARADIGM-HF, patients with symptomatic HFrEF were randomized to sacubitril/valsartan 97/103 mg b.i.d. or enalapril 10 mg b.i.d. in a 1:1 ratio. We systematically searched AE reports, coded using the Medical Dictionary for Regulatory...

  10. Evolution of coronal mass ejections and their heliospheric imprints

    International Nuclear Information System (INIS)

    Rollett, T.

    2014-01-01

    Coronal mass ejections (CMEs) are the most powerful eruptions on the Sun and can reach speeds up to more than 3000 km/s. CMEs are the most important drivers of space weather and can cause geomagnetic storms when interacting with the Earth magnetosphere.The evolution and propagation of CMEs in interplanetary space is still not well understood. Interactions with the solar wind as well as other CMEs make accurate forecasting of arrival times difficult. The Constrained Harmonic Mean (CHM) method combines remote sensing white light data of STEREO/HI with in situ data and offers the possibility to derive kinematical profiles for any segment along the CME front to study its evolution in interplanetary space. We studied the influence of the ambient solar wind flow on the propagation behavior for three CME events. The kinematics revealed by the CHM method were compared to the simulated background solar wind. We found that CMEs are highly dependent on speed variations of the ambient medium. The CHM method was tested by analyzing a simulated CME as observed by STEREO/HI. After applying the CHM method, the resulting CME kinematics were compared to the real kinematics of the simulated CME. We found that the CHM method works best for small separation angles between the spacecraft. A case study of a fast CME that has been remotely observed by both STEREO/HI and in situ measured by four spacecraft at different heliocentric distances is also presented. Using this high number of in situ detections and the two side views we derived different speed profiles for the two different segments of the same CME causing a deformation of the overall structure of the CME. The studies presented show the effects of different influences of the ambient solar wind on the CME evolution. Interaction of CMEs with the solar wind or other CMEs lead to disturbances of the speed as well as the shape of CMEs, affecting their arrival time and their geoeffectivity. (author) [de

  11. Value of exercise echocardiography in heart failure with preserved ejection fraction: a substudy from the KaRen study.

    Science.gov (United States)

    Donal, Erwan; Lund, Lars H; Oger, Emmanuel; Reynaud, Amélie; Schnell, Frédéric; Persson, Hans; Drouet, Elodie; Linde, Cecilia; Daubert, Claude

    2016-01-01

    KaRen is a multicentre study designed to characterize and follow patients with heart failure and preserved ejection fraction (HFpEF). In a subgroup of patients with clinical signs of congestion but left ventricular ejection fraction (LVEF) >45%, we sought to describe and analyse the potential prognostic value of echocardiographic parameters recorded not only at rest but also during a submaximal exercise stress echocardiography. Exercise-induced changes in echo parameters might improve our ability to characterize HFpEF patients. Patients were prospectively recruited in a single tertiary centre following an acute HF episode with NT-pro-BNP >300 pg/mL (BNP > 100 pg/mL) and LVEF > 45% and reassessed by exercise echo-Doppler after 4-8 weeks of dedicated treatment. Image acquisitions were standardized, and analysis made at end of follow-up blinded to patients' clinical status and outcome. In total, 60 patients having standardized echocardiographic acquisitions were included in the analysis. Twenty-six patients (43%) died or were hospitalized for HF (primary outcome). The mean ± SD workload was 45 ± 14 watts (W). Mean ± SD resting LVEF and LV global longitudinal strain was 57.6 ± 9.5% and -14.5 ± 4.2%, respectively. Mean ± SD resting E/e' was 11.3 ± 4.7 and 13.1 ± 5.3 in those patients who did not and those who did experience the primary outcome, respectively (P = 0.03). Tricuspid regurgitation (TR) peak velocity during exercise were 3.3 ± 0.5 and 3.7 ± 0.5 m/s (P = 0.01). Exercise TR was independently associated with HF-hospitalization or death after adjustment on baseline clinical and biological characteristics. Exercise echocardiography may contribute to identify HFpEF patients and especially high-risk ones. Our study suggested a prognostic value of TR recorded during an exercise. That was demonstrated independently of the value of resting E/e'. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions

  12. Measurement of the ejection fraction of the left ventricle with the isotope stethoscope

    Energy Technology Data Exchange (ETDEWEB)

    Marving, J.; Hoeilund-Carlsen, P.F.; Jensen, G. (Koebenhavns Amts Sygehus, Glostrup (Denmark))

    1982-01-01

    Non-invasive measurements of left ventricular ejection fraction was performed in 21 patients by two observers with the Nuclear Stethoscope, a new, mobile, non-imaging single probe equipment. sup 99mTc was used for erythrocyte-labelling. Measurements were carried out in two different ways: beat-to-beat mode (i.e. for individual beats or a few beats at a time) and by ventricular function mode (i.e. for a composite beat, registered over a preselected period of time). There was good correlation between the two Nuclear Stethoscope modes (r=0.97) and between these and a simultaneous measurement made by gammacamera (r=0.90 and r=0.88). Despite uncertainties in the determination of correct background-level and centering over the left ventricle, there was no difference between the accuracy of the results of the two observers, compared with gammacamera measurements. The Nuclear Stethoscope is considerably cheaper than a gammacamera with computer-system, it is simple to operate, and can easily be used at the bedside, even in severely ill patients. A special feature is its capability of measuring sudden alterations in heart contractility on a beat-to-beat basis. Clinically it can be employed for both diagnostic purposes and for the monitoring of spontaneous courses and the effect of therapeutic interventions.

  13. Measurement of the ejection fraction of the left ventricle with the isotope stethoscope

    International Nuclear Information System (INIS)

    Marving, J.; Hoeilund-Carlsen, P.F.; Jensen, G.

    1982-01-01

    Non-invasive measurements of left ventricular ejection fraction was performed in 21 patients by two observers with the Nuclear Stethoscope, a new, mobile, non-imaging single probe equipment. sup 99mTc was used for erythrocyte-labelling. Measurements were carried out in two different ways: beat-to-beat mode (i.e. for individual beats or a few beats at a time) and by ventricular function mode (i.e. for a composite beat, registered over a preselected period of time). There was good correlation between the two Nuclear Stethoscope modes (r=0.97) and between these and a simultaneous measurement made by gammacamera (r=0.90 and r=0.88). Despite uncertainties in the determination of correct background-level and centering over the left ventricle, there was no difference between the accuracy of the results of the two observers, compared with gammacamera measurements. The Nuclear Stethoscope is considerably cheaper than a gammacamera with computer-system, it is simple to operate, and can easily be used at the bedside, even in severely ill patients. A special feature is its capability of measuring sudden alterations in heart contractility on a beat-to-beat basis. Clinically it can be employed for both diagnostic purposes and for the monitoring of spontaneous courses and the effect of therapeutic interventions. (authors)

  14. MEASURING THE MAGNETIC FIELD OF CORONAL MASS EJECTIONS NEAR THE SUN USING PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T. A. [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Stovall, K.; Dowell, J.; Taylor, G. B. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM (United States); White, S. M., E-mail: howard@boulder.swri.edu [Air Force Research Laboratory, Space Vehicles Directorate, Albuquerque, NM (United States)

    2016-11-10

    The utility of Faraday rotation to measure the magnetic field of the solar corona and large-scale transients within is a small, yet growing field in solar physics. This is largely because it has been recognized as a potentially valuable frontier in space weather studies, because the ability to measure the intrinsic magnetic field within coronal mass ejections (CMEs) when they are close to the Sun is of great interest for understanding a key element of space weather. Such measurements have been attempted over the last few decades using radio signals from artificial sources (i.e., spacecraft on the far side of the Sun), but studies involving natural radio sources are scarce in the literature. We report on a preliminary study involving an attempt to detect the Faraday rotation of a CME that passed in front of a pulsar (PSR B0950+08) in 2015 August. We combine radio measurements with those from a broadband visible light coronagraph, to estimate the upper limit of the magnetic field of the CME when it was in the corona. We find agreement between different approaches for obtaining its density, and values that are consistent with those predicted from prior studies of CME density close to the Sun.

  15. STEREO Observations of Interplanetary Coronal Mass Ejections in 2007–2016

    Science.gov (United States)

    Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Galvin, A. B.

    2018-03-01

    We have conducted a survey of 341 interplanetary coronal mass ejections (ICMEs) using STEREO A/B data, analyzing their properties while extending a Level 3 product through 2016. Among the 192 ICMEs with distinguishable sheath region and magnetic obstacle, the magnetic field maxima in the two regions are comparable, and the dynamic pressure peaks mostly in the sheath. The north/south direction of the magnetic field does not present any clear relationship between the sheath region and the magnetic obstacle. About 71% of ICMEs are expanding at 1 au, and their expansion speed varies roughly linearly with their maximum speed except for ICMEs faster than 700 km s‑1. The total pressure generally peaks near the middle of the well-defined magnetic cloud (MC) passage, while it often declines along with the non-MC ICME passage, consistent with our previous interpretation concerning the effects of sampling geometry on what is observed. The hourly average iron charge state reaches above 12+ ∼31% of the time for MCs, ∼16% of the time for non-MC ICMEs, and ∼1% of the time for non-ICME solar wind. In four ICMEs abrupt deviations of the magnetic field from the nominal field rotations occur in the magnetic obstacles, coincident with a brief drop or increase in field strength—features could be related to the interaction with dust. In comparison with the similar phases of solar cycle 23, the STEREO ICMEs in this cycle occur less often and are generally weaker and slower, although their field and pressure compressions weaken less than the background solar wind.

  16. [Sacubitril/valsartan, a new and effective treatment for heart failure with reduced ejection fraction].

    Science.gov (United States)

    Senni, Michele; Trimarco, Bruno; Emdin, Michele; De Biase, Luciano

    2017-01-01

    Despite significant therapeutic advances, patients with chronic heart failure and reduced ejection fraction (HFrEF) remain at high risk for heart failure progression and death. The PARADIGM-HF study, the largest outcome trial in HFrEF, has shown improved cardiovascular outcomes with sacubitril/valsartan (Entresto®, Novartis), previously known as LCZ696, compared with angiotensin-converting enzyme (ACE) inhibitor therapy, possibly leading us to a new era for heart failure treatment. Sacubitril/valsartan represents a first-in-class drug acting through inhibition of angiotensin receptor and neprilysin, thus modulating the renin-angiotensin-aldosterone system and vasoactive substances such as natriuretic peptides. This approach can be considered a "paradigm shift" from neurohumoral inhibition to neurohumoral modulation. Based on the PARADIGM-HF results, the European Society of Cardiology and the American Heart Association/American College of Cardiology guidelines proposed a substitution of ACE-inhibitor/angiotensin receptor blocker therapy rather than an "add-on" strategy in HFrEF. Sacubitril/valsartan can be considered a milestone in cardiovascular therapy, like aspirin, statins, beta-blockers. Of course there are many questions that arise spontaneously from this trial, three recognized experts can help us to answer them.

  17. Left ventricular ejection fraction determined by gated Tl-201 perfusion SPECT and quantitative software

    International Nuclear Information System (INIS)

    Hyun, In Young; Kim, Sung Eun; Seo, Jeong Kee; Hong, Eui Soo; Kwan, Jun; Park, Keum Soo; Lee, Woo Hyung

    2000-01-01

    We compared estimates of ejection fraction (EF) determined by gated Tl-201 perfusion SPECT (g-Tl-SPECT) with those by gated blood pool (GBP) scan. Eighteen subjects underwent g-Tl-SPECT and GBP scan. After reconstruction of g-Tl-SPECT, we measured EF with Cedars software. The comparison of the EF with g-Tl-SPECT and GBP scan was assessed by correlation analysis and Bland Altman plot. The estimates of EF were significantly different (p<0.05) with g-Tl-SPECT (40%±14%) and GBP scan (43%±14%). There was an excellent correlation of EF between g-Tl-SPECT and GBP scan (r=3D0.94, p<0.001). The mean difference of EF between GBP scan and g-Tl-SPECT was +3.2%. Ninety-five percent limits of agreement were ±9.8%. EF between g-Tl-SPECT and GBP scan were in poor agreement. The estimates of EF by g-Tl-SPECT was well correlated with those by GBP scan. However, EF of g-Tl-SPECT doesn't agree with EF of GBP scan. EF of g-Tl-SPECT can't be used interchangeably with EF of GBP scan.=20

  18. About the Las Acacias, Trelew and Vassouras Magnetic Observatories Monitoring the South Atlantic Magnetic Anomaly Region Response to an Interplanetary Coronal Mass Ejection

    Science.gov (United States)

    Gianibelli, J. C.; Quaglino, N. M.

    2007-05-01

    The South Atlantic Magnetic Anomaly (SAMA) Region presents evolutive characteristics very important as were observed by a variety of satelital sensors. Important Magnetic Observatories with digital record monitor the effects of the Sun-Earth interaction, such as San Juan de Puerto Rico (SJG), Kourou (KOU), Vassouras (VSS), Las Acacias (LAS), Trelew (TRW), Vernadsky (AIA), Hermanus (HER) and Huancayo (HUA). In the present work we present the features registered during the geomagnetic storm in January 21, 2005, produced by a geoeffective Coronal Mass Ejection (CME) whose Interplanetary Coronal Mass Ejection (ICME) was detected by the instrumental onboard the Advanced Composition Explorer (ACE) Sonde. We analize how the Magnetic Total Intensity records at VSS, TRW and LAS Observatories shows the effect of the entering particles to ionospherical dephts producing a field enhancement following the first Interplanetary Shock (IP) arrival of the ICME. This process manifest in the digital record as an increment over the magnetospheric Ring Current field effect and superinpossed effects over the Antarctic Auroral Electrojet. The analysis and comparison of the records demonstrate that the Ring Current effects are important in SJG and KOU but not in VSS, LAS and TRW observatories, concluding that SAMA region shows a enhancement of the ionospherical currents oposed to those generated at magnetospheric heighs. Moreover in TRW, 5 hours after the ICME shock arrival, shows the effect of the Antarctic Auroral Electrojet counteracting to fields generated by the Ring Current.

  19. The First ALMA Observation of a Solar Plasmoid Ejection from an X-Ray Bright Point

    Science.gov (United States)

    Shimojo, M.; Hudson, H. S.; White, S. M.; Bastian, T.; Iwai, K.

    2017-12-01

    Eruptive phenomena are important features of energy releases events, such solar flares, and have the potential to improve our understanding of the dynamics of the solar atmosphere. The 304 A EUV line of helium, formed at around 10^5 K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously with ALMA, SDO/AIA, and Hinode/XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV, and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal ˜10^5 K plasma that is optically thin at 100 GHz, or a ˜10^4 K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.

  20. Adaptive servo-ventilation to treat central sleep apnea in heart failure with reduced ejection fraction: the Bad Oeynhausen prospective ASV registry.

    Science.gov (United States)

    Oldenburg, Olaf; Wellmann, Birgit; Bitter, Thomas; Fox, Henrik; Buchholz, Anika; Freiwald, Eric; Horstkotte, Dieter; Wegscheider, Karl

    2018-04-13

    Central sleep apnea (CSA) is highly prevalent in heart failure patients with reduced left ventricular ejection fraction (HF-REF). The Bad Oeynhausen Adaptive Servo-ventilation (ASV) registry (NCT01657188) was designed to investigate whether treatment of CSA with ASV improved survival in HF-REF patients; the effects of ASV on symptoms and cardiopulmonary performance were also investigated. From January 2004 to October 2013, the registry prospectively enrolled HF-REF patients [NYHA class ≥ II, left ventricular ejection fraction (LVEF) ≤ 45%] with moderate to severe predominant CSA [apnea-hypopnea index (AHI) ≥ 15/h]. ASV-treated patients were followed up at 3, 6, 12 and 24 months, including natriuretic peptide concentrations, blood gas analyses, echocardiography, 6-min walk distance (6MWD), and cardiopulmonary exercise (CPX) testing. 550 patients were included [age 67.7 ± 10 years, 90% male, 52% in NYHA class ≥ III, LVEF 29.9 ± 8%, AHI 35.4 ± 13.6/h, and time with nocturnal oxygen saturation concentration, and nocturnal hypoxemia were significant predictors of mortality. Patient reported NYHA functional class improved in the ASV group, but LVEF, CPX, 6MWD, natriuretic peptides and blood gases remained unchanged. Long-term ASV treatment of predominant CSA in HF-REF patients included in our registry had no statistically significant effect on survival. ASV improved HF symptoms, but had no significant effects on exercise capacity, LVEF, natriuretic peptide concentrations or blood gases during follow-up as compared to control patients.