WorldWideScience

Sample records for einstein affine-metric formulation

  1. The Hamiltonian of Einstein affine-metric formulation of general relativity

    International Nuclear Information System (INIS)

    Kiriushcheva, N.; Kuzmin, S.V.

    2010-01-01

    It is shown that the Hamiltonian of the Einstein affine-metric (first-order) formulation of General Relativity (GR) leads to a constraint structure that allows the restoration of its unique gauge invariance, four-diffeomorphism, without the need of any field dependent redefinition of gauge parameters as in the case of the second-order formulation. In the second-order formulation of ADM gravity the need for such a redefinition is the result of the non-canonical change of variables (Xiv:0809.0097). For the first-order formulation, the necessity of such a redefinition ''to correspond to diffeomorphism invariance'' (reported by Ghalati, arXiv:0901.3344) is just an artifact of using the Henneaux-Teitelboim-Zanelli ansatz (Nucl. Phys. B 332:169, 1990), which is sensitive to the choice of linear combination of tertiary constraints. This ansatz cannot be used as an algorithm for finding a gauge invariance, which is a unique property of a physical system, and it should not be affected by different choices of linear combinations of non-primary first class constraints. The algorithm of Castellani (Ann. Phys. 143:357, 1982) is free from such a deficiency and it leads directly to four-diffeomorphism invariance for first, as well as for second-order Hamiltonian formulations of GR. The distinct role of primary first class constraints, the effect of considering different linear combinations of constraints, the canonical transformations of phase-space variables, and their interplay are discussed in some detail for Hamiltonians of the second- and first-order formulations of metric GR. The first-order formulation of Einstein-Cartan theory, which is the classical background of Loop Quantum Gravity, is also discussed. (orig.)

  2. Piecewise linear manifolds: Einstein metrics and Ricci flows

    International Nuclear Information System (INIS)

    Schrader, Robert

    2016-01-01

    This article provides an attempt to extend concepts from the theory of Riemannian manifolds to piecewise linear (p.l.) spaces. In particular we propose an analogue of the Ricci tensor, which we give the name of an Einstein vector field . On a given set of p.l. spaces we define and discuss (normalized) Einstein flows. p.l. Einstein metrics are defined and examples are provided. Criteria for flows to approach Einstein metrics are formulated. Second variations of the total scalar curvature at a specific Einstein space are calculated. (paper)

  3. A variational principle giving gravitational 'superpotentials', the affine connection, Riemann tensor, and Einstein field equations

    International Nuclear Information System (INIS)

    Stachel, J.

    1977-01-01

    A first-order Lagrangian is given, from which follow the definitions of the fully covariant form of the Riemann tensor Rsub(μνkappalambda) in terms of the affine connection and metric; the definition of the affine connection in terms of the metric; the Einstein field equations; and the definition of a set of gravitational 'superpotentials' closely connected with the Komar conservation laws (Phys. Rev.; 113:934 (1959)). Substitution of the definition of the affine connection into this Lagrangian results in a second-order Lagrangian, from which follow the definition of the fully covariant Riemann tensor in terms of the metric, the Einstein equations, and the definition of the gravitational 'superpotentials'. (author)

  4. Construction of Einstein-Sasaki metrics in D≥7

    International Nuclear Information System (INIS)

    Lue, H.; Pope, C. N.; Vazquez-Poritz, J. F.

    2007-01-01

    We construct explicit Einstein-Kaehler metrics in all even dimensions D=2n+4≥6, in terms of a 2n-dimensional Einstein-Kaehler base metric. These are cohomogeneity 2 metrics which have the new feature of including a NUT-type parameter, or gravomagnetic charge, in addition to..' in addition to mass and rotation parameters. Using a canonical construction, these metrics all yield Einstein-Sasaki metrics in dimensions D=2n+5≥7. As is commonly the case in this type of construction, for suitable choices of the free parameters the Einstein-Sasaki metrics can extend smoothly onto complete and nonsingular manifolds, even though the underlying Einstein-Kaehler metric has conical singularities. We discuss some explicit examples in the case of seven-dimensional Einstein-Sasaki spaces. These new spaces can provide supersymmetric backgrounds in M theory, which play a role in the AdS 4 /CFT 3 correspondence

  5. Sharp metric obstructions for quasi-Einstein metrics

    Science.gov (United States)

    Case, Jeffrey S.

    2013-02-01

    Using the tractor calculus to study smooth metric measure spaces, we adapt results of Gover and Nurowski to give sharp metric obstructions to the existence of quasi-Einstein metrics on suitably generic manifolds. We do this by introducing an analogue of the Weyl tractor W to the setting of smooth metric measure spaces. The obstructions we obtain can be realized as tensorial invariants which are polynomial in the Riemann curvature tensor and its divergence. By taking suitable limits of their tensorial forms, we then find obstructions to the existence of static potentials, generalizing to higher dimensions a result of Bartnik and Tod, and to the existence of potentials for gradient Ricci solitons.

  6. Left-invariant Einstein metrics on S3 ×S3

    Science.gov (United States)

    Belgun, Florin; Cortés, Vicente; Haupt, Alexander S.; Lindemann, David

    2018-06-01

    The classification of homogeneous compact Einstein manifolds in dimension six is an open problem. We consider the remaining open case, namely left-invariant Einstein metrics g on G = SU(2) × SU(2) =S3 ×S3. Einstein metrics are critical points of the total scalar curvature functional for fixed volume. The scalar curvature S of a left-invariant metric g is constant and can be expressed as a rational function in the parameters determining the metric. The critical points of S, subject to the volume constraint, are given by the zero locus of a system of polynomials in the parameters. In general, however, the determination of the zero locus is apparently out of reach. Instead, we consider the case where the isotropy group K of g in the group of motions is non-trivial. When K ≇Z2 we prove that the Einstein metrics on G are given by (up to homothety) either the standard metric or the nearly Kähler metric, based on representation-theoretic arguments and computer algebra. For the remaining case K ≅Z2 we present partial results.

  7. The metric-affine gravitational theory as the gauge theory of the affine group

    International Nuclear Information System (INIS)

    Lord, E.A.

    1978-01-01

    The metric-affine gravitational theory is shown to be the gauge theory of the affine group, or equivalently, the gauge theory of the group GL(4,R) of tetrad deformations in a space-time with a locally Minkowskian metric. The identities of the metric-affine theory, and the relationship between them and those of general relativity and Sciama-Kibble theory, are derived. (Auth.)

  8. The dynamics of metric-affine gravity

    International Nuclear Information System (INIS)

    Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano

    2011-01-01

    Highlights: → The role and the dynamics of the connection in metric-affine theories is explored. → The most general second order action does not lead to a dynamical connection. → Including higher order invariants excites new degrees of freedom in the connection. → f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy

  9. A note on Einstein-Sasaki metrics in D ≥ 7

    International Nuclear Information System (INIS)

    Chen, W; Lue, H; Pope, C N; Vazquez-Poritz, J F

    2005-01-01

    In this paper, we obtain new non-singular Einstein-Sasaki spaces in dimensions D ≥ 7. The local construction involves taking a circle bundle over a (D - 1)-dimensional Einstein-Kaehler metric that is itself constructed as a complex line bundle over a product of Einstein-Kaehler spaces. In general, the resulting Einstein-Sasaki spaces are singular, but if parameters in the local solutions satisfy appropriate rationality conditions, the metrics extend smoothly onto complete and non-singular compact manifolds. The seven-dimensional space, whose base is a complex line bundle over S 2 x S 2 , is discussed in detail since it has relevance in terms of the AdS/CFT correspondence

  10. Symmetries and exact solutions of the nondiagonal Einstein-Rosen metrics

    International Nuclear Information System (INIS)

    Goyal, N; Gupta, R K

    2012-01-01

    We seek exact solutions of the nondiagonal Einstein-Rosen metrics. The method of Lie symmetry of differential equations is utilized to obtain new exact solutions of Einstein vacuum equations obtained from the nondiagonal Einstein-Rosen metric. Four cases arise depending on the nature of the Lie symmetry generator. In all cases, we find reductions in terms of ordinary differential equations and exact solutions of the nonlinear system of partial differential equations (PDEs) are derived. For this purpose, first we check the Painlevé property and then corresponding to the nonlinear system of PDEs, symmetries and exact solutions are obtained.

  11. Hermitian-Einstein metrics on parabolic stable bundles

    International Nuclear Information System (INIS)

    Li Jiayu; Narasimhan, M.S.

    1995-12-01

    Let M-bar be a compact complex manifold of complex dimension two with a smooth Kaehler metric and D a smooth divisor on M-bar. If E is a rank 2 holomorphic vector bundle on M-bar with a stable parabolic structure along D, we prove the existence of a metric on E' = E module MbarD (compatible with the parabolic structure) which is Hermitian-Einstein with respect to the restriction of Kaehler metric of M-barD. A converse is also proved. (author). 24 refs

  12. Hermitian-Einstein metrics on holomorphic vector bundles over Hermitian manifolds

    International Nuclear Information System (INIS)

    Xi Zhang

    2004-07-01

    In this paper, we prove the long-time existence of the Hermitian-Einstein flow on a holomorphic vector bundle over a compact Hermitian (non-kaehler) manifold, and solve the Dirichlet problem for the Hermitian-Einstein equations. We also prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete noncompact Hermitian manifolds. (author)

  13. Einstein metrics and Brans-Dicke superfields

    International Nuclear Information System (INIS)

    Marques, S.

    1988-01-01

    It is obtained here a space conformal to the Einstein space-time, making the transition from an internal bosonic space, constructed with the Majorana constant spinors in the Majorana representation, to a bosonic ''superspace,'' through the use of Einstein vierbeins. These spaces are related to a Grassmann space constructed with the Majorana spinors referred to above, where the ''metric'' is a function of internal bosonic coordinates. The conformal function is a scale factor in the zone of gravitational radiation. A conformal function dependent on space-time coordinates can be constructed in that region when we introduce Majorana spinors which are functions of those coordinates. With this we obtain a scalar field of Brans-Dicke type. 11 refs

  14. Covariant Conformal Decomposition of Einstein Equations

    Science.gov (United States)

    Gourgoulhon, E.; Novak, J.

    It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-``metric'' (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this ``metric'', of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.

  15. The Explicit Construction of Einstein Finsler Metrics with Non-Constant Flag Curvature

    Directory of Open Access Journals (Sweden)

    Enli Guo

    2009-04-01

    Full Text Available By using the Hawking Taub-NUT metric, this note gives an explicit construction of a 3-parameter family of Einstein Finsler metrics of non-constant flag curvature in terms of navigation representation.

  16. Observable traces of non-metricity: New constraints on metric-affine gravity

    Science.gov (United States)

    Delhom-Latorre, Adrià; Olmo, Gonzalo J.; Ronco, Michele

    2018-05-01

    Relaxing the Riemannian condition to incorporate geometric quantities such as torsion and non-metricity may allow to explore new physics associated with defects in a hypothetical space-time microstructure. Here we show that non-metricity produces observable effects in quantum fields in the form of 4-fermion contact interactions, thereby allowing us to constrain the scale of non-metricity to be greater than 1 TeV by using results on Bahbah scattering. Our analysis is carried out in the framework of a wide class of theories of gravity in the metric-affine approach. The bound obtained represents an improvement of several orders of magnitude to previous experimental constraints.

  17. Einstein solvmanifolds and the pre-Einstein derivation

    OpenAIRE

    Nikolayevsky, Y.

    2008-01-01

    An Einstein nilradical is a nilpotent Lie algebra, which can be the nilradical of a metric Einstein solvable Lie algebra. The classification of Riemannian Einstein solvmanifolds (possibly, of all noncompact homogeneous Einstein spaces) can be reduced to determining, which nilpotent Lie algebras are Einstein nilradicals and to finding, for every Einstein nilradical, its Einstein metric solvable extension. For every nilpotent Lie algebra, we construct an (essentially unique) derivation, the pre...

  18. A note on Hermitian-Einstein metrics on parabolic stable bundles

    International Nuclear Information System (INIS)

    Li Jiayu; Narasimhan, M.S.

    2000-01-01

    Let M-bar be a compact complex manifold of complex dimension two with a smooth Kaehler metric and D a smooth divisor on M-bar. If E is a rank 2 holomorphic vector bundle on M-bar with a stable parabolic structure along D, we prove that there exists a Hermitian-Einstein metric on E' = E-vertical bar M-barbackslashD compatible with the parabolic structure, and whose curvature is square integrable. (author)

  19. Theory of a gauge gravitational field at localization of the Einstein group

    International Nuclear Information System (INIS)

    Tunyak, V.N.

    1985-01-01

    Theory of a gauge gravitational field when localizing a group of movements of the Einstein homogeneous static Universe (the R x SO Einstein group (4)) has been formulated. Proceeding from tetrade components of the Einstein Universe the relation between the Riemann metrics and gauge fields of the Einstein group has been established. Metric coherence with torsion transforming to the Kristoffel coherence of the Einstein Universe has been found when switching out gauge fields. It is shown that within the limit of infinite radius of the Einstein Universe curvature the given Einstein-invariant gauge theory transforms to the tetrade gravitation theory with localized triade rotations. Exact solutions in the form of nonsingular cosmological models have been obtained

  20. Einstein, the exponential metric, and a proposed gravitational Michelson-Morley experiment

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1979-01-01

    An early but potentially important remark of Einstein on the exponential nature of time-dilation is discussed. Using the same argument for the length-contraction, plus two alternative kinematical assumptions, the Schwarzschild and exponential metrics are derived. A gravitational Michelson-Morley experiment with one arm directed along the vertical is proposed to test the metrics. The experiment may be considered as a laboratory test of the Schwarzschild field and possibly a test of the black-hole interpretation of collapsed matter

  1. Einstein boundary conditions for the 3+1 Einstein equations

    International Nuclear Information System (INIS)

    Frittelli, Simonetta; Gomez, Roberto

    2003-01-01

    In the 3+1 framework of the Einstein equations for the case of a vanishing shift vector and arbitrary lapse, we calculate explicitly the four boundary equations arising from the vanishing of the projection of the Einstein tensor along the normal to the boundary surface of the initial-boundary value problem. Such conditions take the form of evolution equations along (as opposed to across) the boundary for certain components of the extrinsic curvature and for certain space derivatives of the three-metric. We argue that, in general, such boundary conditions do not follow necessarily from the evolution equations and the initial data, but need to be imposed on the boundary values of the fundamental variables. Using the Einstein-Christoffel formulation, which is strongly hyperbolic, we show how three of the boundary equations up to linear combinations should be used to prescribe the values of some incoming characteristic fields. Additionally, we show that the fourth one imposes conditions on some outgoing fields

  2. Weyl-Invariant Extension of the Metric-Affine Gravity

    International Nuclear Information System (INIS)

    Vazirian, R.; Tanhayi, M. R.; Motahar, Z. A.

    2015-01-01

    Metric-affine geometry provides a nontrivial extension of the general relativity where the metric and connection are treated as the two independent fundamental quantities in constructing the spacetime (with nonvanishing torsion and nonmetricity). In this paper, we study the generic form of action in this formalism and then construct the Weyl-invariant version of this theory. It is shown that, in Weitzenböck space, the obtained Weyl-invariant action can cover the conformally invariant teleparallel action. Finally, the related field equations are obtained in the general case.

  3. Metric-affine formalism of higher derivative scalar fields in cosmology

    International Nuclear Information System (INIS)

    Li, Mingzhe; Wang, Xiulian

    2012-01-01

    Higher derivative scalar field theories have received considerable attention for the potentially explanations of the initial state of the universe or the current cosmic acceleration which they might offer. They have also attracted many interests in the phenomenological studies of infrared modifications of gravity. These theories are mostly studied by the metric variational approach in which only the metric is the fundamental field to account for the gravitation. In this paper we study the higher derivative scalar fields with the metric-affine formalism where the affine connection is treated arbitrarily at the beginning. Because the higher derivative scalar fields couple to the connection directly in a covariant theory these two formalisms will lead to different results. These differences are suppressed by the powers of the Planck mass and are usually expected to have small effects. But in some cases they may cause non-negligible deviations. We show by a higher derivative dark energy model that the two formalisms lead to significantly different pictures of the future universe

  4. Exact solutions of Einstein and Einstein-Maxwell equations in higher-dimensional spacetime

    International Nuclear Information System (INIS)

    Xu Dianyan; Beijing Univ., BJ

    1988-01-01

    The D-dimensional Schwarzschild-de Sitter metric and Reissner-Nordstrom-de-Sitter metric are derived directly by solving the Einstein and Einstein-Maxwell equations. The D-dimensional Kerr metric is rederived by using the complex coordinate transformation method and the D-dimensional Kerr-de Sitter metric is also given. The conjecture about the D-dimensional metric of a rotating charged mass is given at the end of this paper. (author)

  5. Metrics with vanishing quantum corrections

    International Nuclear Information System (INIS)

    Coley, A A; Hervik, S; Gibbons, G W; Pope, C N

    2008-01-01

    We investigate solutions of the classical Einstein or supergravity equations that solve any set of quantum corrected Einstein equations in which the Einstein tensor plus a multiple of the metric is equated to a symmetric conserved tensor T μν (g αβ , ∂ τ g αβ , ∂ τ ∂ σ g αβ , ...,) constructed from sums of terms, the involving contractions of the metric and powers of arbitrary covariant derivatives of the curvature tensor. A classical solution, such as an Einstein metric, is called universal if, when evaluated on that Einstein metric, T μν is a multiple of the metric. A Ricci flat classical solution is called strongly universal if, when evaluated on that Ricci flat metric, T μν vanishes. It is well known that pp-waves in four spacetime dimensions are strongly universal. We focus attention on a natural generalization; Einstein metrics with holonomy Sim(n - 2) in which all scalar invariants are zero or constant. In four dimensions we demonstrate that the generalized Ghanam-Thompson metric is weakly universal and that the Goldberg-Kerr metric is strongly universal; indeed, we show that universality extends to all four-dimensional Sim(2) Einstein metrics. We also discuss generalizations to higher dimensions

  6. New Einstein-Sasaki and Einstein spaces from Kerr-de Sitter

    International Nuclear Information System (INIS)

    Cvetic, M.; Lue, H.; Pope, C.N.; Page, Don N.

    2009-01-01

    In this paper, which is an elaboration of our results in Phys. Rev. Lett. 95:071101, 2005 (hep-th/0504225), we construct new Einstein-Sasaki spaces L p,q,r 1 ,...,r n-1 in all odd dimensions D = 2n+1 ≥ 5. They arise by taking certain BPS limits of the Euclideanised Kerr-de Sitter metrics. This yields local Einstein-Sasaki metrics of cohomogeneity n, with toric U(1) n+1 principal orbits, and n real non-trivial parameters. By studying the structure of the degenerate orbits we show that for appropriate choices of the parameters, characterised by the (n+1) coprime integers (p,q,r 1 ,...,r n-1 ), the local metrics extend smoothly onto complete and non-singular compact Einstein-Sasaki manifolds L p,q,r 1 ,...,r n-1 . We also construct new complete and non-singular compact Einstein spaces Λ p,q,r 1 ,...,r n in D = 2n+1 that are not Sasakian, by choosing parameters appropriately in the Euclideanised Kerr-de Sitter metrics when no BPS limit is taken.

  7. On Certain Conceptual Anomalies in Einstein's Theory of Relativity

    Directory of Open Access Journals (Sweden)

    Crothers S. J.

    2008-01-01

    Full Text Available There are a number of conceptual anomalies occurring in the Standard exposition of Einstein's Theory of Relativity. These anomalies relate to issues in both mathematics and in physics and penetrate to the very heart of Einstein's theory. This paper reveals and amplifies a few such anomalies, including the fact that Einstein's field equations for the so-called static vacuum configuration, $R_{mu u} = 0$, violates his Principle of Equivalence, and is therefore erroneous. This has a direct bearing on the usual concept of conservation of energy for the gravitational field and the conventional formulation for localisation of energy using Einstein's pseudo-tensor. Misconceptions as to the relationship between Minkowski spacetime and Special Relativity are also discussed, along with their relationships to the pseudo-Riemannian metric manifold of Einstein's gravitational field, and their fundamental geometric structures pertaining to spherical symmetry.

  8. Affine group formulation of the Standard Model coupled to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China); Ita, Eyo, E-mail: ita@usna.edu [Department of Physics, US Naval Academy, Annapolis, MD (United States); Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China)

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  9. Taming the nonlinearity of the Einstein equation.

    Science.gov (United States)

    Harte, Abraham I

    2014-12-31

    Many of the technical complications associated with the general theory of relativity ultimately stem from the nonlinearity of Einstein's equation. It is shown here that an appropriate choice of dynamical variables may be used to eliminate all such nonlinearities beyond a particular order: Both Landau-Lifshitz and tetrad formulations of Einstein's equation are obtained that involve only finite products of the unknowns and their derivatives. Considerable additional simplifications arise in physically interesting cases where metrics become approximately Kerr or, e.g., plane waves, suggesting that the variables described here can be used to efficiently reformulate perturbation theory in a variety of contexts. In all cases, these variables are shown to have simple geometrical interpretations that directly relate the local causal structure associated with the metric of interest to the causal structure associated with a prescribed background. A new method to search for exact solutions is outlined as well.

  10. Excision technique in constrained formulations of Einstein equations: collapse scenario

    International Nuclear Information System (INIS)

    Cordero-Carrión, I; Vasset, N; Novak, J; Jaramillo, J L

    2015-01-01

    We present a new excision technique used in constrained formulations of Einstein equations to deal with black hole in numerical simulations. We show the applicability of this scheme in several scenarios. In particular, we present the dynamical evolution of the collapse of a neutron star to a black hole, using the CoCoNuT code and this excision technique. (paper)

  11. Metric in a static cylindrical elastic medium and in an empty rotating frame as solutions of Einstein's field equations

    International Nuclear Information System (INIS)

    Gron, O.

    1982-01-01

    Using the Weyl-type canonical coordinates, an integration of Einstein's field equations in the cylindrosymmetric case considered by Kursunoglu is reexamined. It is made clear that the resulting metric is not describing the spacetime in a rotating frame, but in a static cylindrical elastic medium. The conclusion of Kursunoglu that ''for an observer on a rotating disk there is no way of escape from a curved spacetime'' is therefore not valid. The metric in an empty rotating frame is found as a solution of Einstein's field equations, and is not orthogonal. It is shown that the corresponding orthogonal solution represents spacetime in an inertial frame expressed in cylindrical coordinates. Introducing a noncoordinate basis, the metric in a rotating frame is given the static form of Kursunoglu's solution. The essential role played by the nonvanishing structure coefficients in this case is made clear

  12. Generalized metric formulation of double field theory on group manifolds

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Bosque, Pascal du; Hassler, Falk; Lüst, Dieter

    2015-01-01

    We rewrite the recently derived cubic action of Double Field Theory on group manifolds http://dx.doi.org/10.1007/JHEP02(2015)001 in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar and a generalized Ricci tensor. Compared to the generalized metric formulation of DFT derived from tori, all these quantities receive additional contributions related to the non-trivial background. It is shown that the action is invariant under its generalized diffeomorphisms and 2D-diffeomorphisms. Imposing additional constraints relating the background and fluctuations around it, the precise relation between the proposed generalized metric formulation of DFT WZW and of original DFT from tori is clarified. Furthermore, we show how to relate DFT WZW of the WZW background with the flux formulation of original DFT.

  13. Generalized metric formulation of double field theory on group manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Bosque, Pascal du [Arnold-Sommerfeld-Center für Theoretische Physik,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Hassler, Falk [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Lüst, Dieter [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Arnold-Sommerfeld-Center für Theoretische Physik,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); CERN, PH-TH,1211 Geneva 23 (Switzerland)

    2015-08-13

    We rewrite the recently derived cubic action of Double Field Theory on group manifolds http://dx.doi.org/10.1007/JHEP02(2015)001 in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar and a generalized Ricci tensor. Compared to the generalized metric formulation of DFT derived from tori, all these quantities receive additional contributions related to the non-trivial background. It is shown that the action is invariant under its generalized diffeomorphisms and 2D-diffeomorphisms. Imposing additional constraints relating the background and fluctuations around it, the precise relation between the proposed generalized metric formulation of DFT{sub WZW} and of original DFT from tori is clarified. Furthermore, we show how to relate DFT{sub WZW} of the WZW background with the flux formulation of original DFT.

  14. Cosmological term in general relativity theory and localization of de Sitter and Einstein groups

    International Nuclear Information System (INIS)

    Tunyak, V.N.

    1984-01-01

    The theory of gauge gravitational field with the de Sitter group localization is formulated. proceeding from the de Sitter Universe tetrad components the relationship between Riemann metrics and de Sitter gauge field is established. It is shown that General relativity theory (GRT) with a cosmological term is the simplest variant of the de Sitter gauge gravitation theory passing in the limit of infinite curvature radius of the de Sitter Universe into the Poincare - invariant GRT without cosmological term. Similarly the theory of gauge gravitational field at localization of the dynamical group of the Einstein homogeneous static Universe (Einstein group RxSO(4)) is formulated

  15. Einstein-Gauss-Bonnet metrics: black holes, black strings and a staticity theorem

    International Nuclear Information System (INIS)

    Bogdanos, C.; Charmousis, C.; Gouteraux, B.; Zegers, R.

    2009-01-01

    We find the general solution of the 6-dimensional Einstein-Gauss-Bonnet equations in a large class of space and time-dependent warped geometries. Several distinct families of solutions are found, some of which include black string metrics, space and time-dependent solutions and black holes with exotic horizons. Among these, some are shown to verify a Birkhoff type staticity theorem, although here, the usual assumption of maximal symmetry on the horizon is relaxed, allowing exotic horizon geometries. We provide explicit examples of such static exotic black holes, including ones whose horizon geometry is that of a Bergman space. We find that the situation is very different from higher-dimensional general relativity, where Einstein spaces are admissible black hole horizons and the associated black hole potential is not even affected. In Einstein-Gauss-Bonnet theory, on the contrary, the non-trivial Weyl tensor of such exotic horizons is exposed to the bulk dynamics through the higher order Gauss-Bonnet term, severely constraining the allowed horizon geometries and adding a novel charge-like parameter to the black hole potential. The latter is related to the Euler characteristic of the four-dimensional horizon and provides, in some cases, additional black hole horizons.

  16. Constraint-preserving boundary treatment for a harmonic formulation of the Einstein equations

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Jennifer; Szilagyi, Bela; Pollney, Denis; Rezzolla, Luciano [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Golm (Germany)

    2008-09-07

    We present a set of well-posed constraint-preserving boundary conditions for a first-order in time, second-order in space, harmonic formulation of the Einstein equations. The boundary conditions are tested using robust stability, linear and nonlinear waves, and are found to be both less reflective and constraint preserving than standard Sommerfeld-type boundary conditions.

  17. Constraint-preserving boundary treatment for a harmonic formulation of the Einstein equations

    International Nuclear Information System (INIS)

    Seiler, Jennifer; Szilagyi, Bela; Pollney, Denis; Rezzolla, Luciano

    2008-01-01

    We present a set of well-posed constraint-preserving boundary conditions for a first-order in time, second-order in space, harmonic formulation of the Einstein equations. The boundary conditions are tested using robust stability, linear and nonlinear waves, and are found to be both less reflective and constraint preserving than standard Sommerfeld-type boundary conditions

  18. A one-to-one correspondence between the static Einstein-Maxwell and stationary Einstein-vacuum space-times

    International Nuclear Information System (INIS)

    Chandrasekhar, Subrahmanyan

    1989-01-01

    A one-to-one correspondence is established between the static solutions of the Einstein-Maxwell equations and the stationary solutions of the Einstein-vacuum equations, that enables one to directly write down a solution for the one from a known solution of the other, and conversely, by a simple transcription. The directness of the correspondence is achieved by writing the metric for static Einstein-Maxwell space-times in a coordinate system and a gauge adapted to the two-centre problem and the metric for stationary Einstein-vacuum space-times in a coordinate system and a gauge adapted to black holes with event horizons. (author)

  19. Unifying Einstein and Palatini gravities

    International Nuclear Information System (INIS)

    Amendola, Luca; Enqvist, Kari; Koivisto, Tomi

    2011-01-01

    We consider a novel class of f(R) gravity theories where the connection is related to the conformally scaled metric g μν =C(R)g μν with a scaling that depends on the scalar curvature R only. We call them C theories and show that the Einstein and Palatini gravities can be obtained as special limits. In addition, C theories include completely new physically distinct gravity theories even when f(R)=R. With nonlinear f(R), C theories interpolate and extrapolate the Einstein and Palatini cases and may avoid some of their conceptual and observational problems. We further show that C theories have a scalar-tensor formulation, which in some special cases reduces to simple Brans-Dicke-type gravity. If matter fields couple to the connection, the conservation laws in C theories are modified. The stability of perturbations about flat space is determined by a simple condition on the Lagrangian.

  20. The affine quantum gravity programme

    CERN Document Server

    Klauder, J R

    2002-01-01

    The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix left brace g-hat sub a sub b (x)right brace composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that sti...

  1. Diffeomorphism invariance in the Hamiltonian formulation of General Relativity

    International Nuclear Information System (INIS)

    Kiriushcheva, N.; Kuzmin, S.V.; Racknor, C.; Valluri, S.R.

    2008-01-01

    It is shown that when the Einstein-Hilbert Lagrangian is considered without any non-covariant modifications or change of variables, its Hamiltonian formulation leads to results consistent with principles of General Relativity. The first-class constraints of such a Hamiltonian formulation, with the metric tensor taken as a canonical variable, allow one to derive the generator of gauge transformations, which directly leads to diffeomorphism invariance. The given Hamiltonian formulation preserves general covariance of the transformations derivable from it. This characteristic should be used as the crucial consistency requirement that must be met by any Hamiltonian formulation of General Relativity

  2. Einstein’s gravity from a polynomial affine model

    Science.gov (United States)

    Castillo-Felisola, Oscar; Skirzewski, Aureliano

    2018-03-01

    We show that the effective field equations for a recently formulated polynomial affine model of gravity, in the sector of a torsion-free connection, accept general Einstein manifolds—with or without cosmological constant—as solutions. Moreover, the effective field equations are partially those obtained from a gravitational Yang–Mills theory known as Stephenson–Kilmister–Yang theory. Additionally, we find a generalization of a minimally coupled massless scalar field in General Relativity within a ‘minimally’ coupled scalar field in this affine model. Finally, we present a brief (perturbative) analysis of the propagators of the gravitational theory, and count the degrees of freedom. For completeness, we prove that a Birkhoff-like theorem is valid for the analyzed sector.

  3. Affine-projective field laws

    International Nuclear Information System (INIS)

    Murphy, G.L.

    1975-01-01

    The general topic of geometric unified field theories is discussed in the first section. Some reasons are given for pursuing such theories, and some criticisms are considered. The second section develops the fundamental equations of a purely affine theory which is invariant under projective transformations of the affine connection. This theory is a generalization of that of Schrodinger. Possible identifications for the space-time metric are considered in Sec. III. Sections IV and V deal with the limits of pure gravitation and electrodynamics. In the symmetric limit, Einstein's vacuum equations with cosmological term are recovered. The theory also contains a generalized electrodynamic set of equations which is very similar to the Born-Infeld set. In the weak-field approximation, a finite mass must be attributed to the photon. The problem of motion for charges is discussed here, and it is argued that criticisms of unified field theories because of a supposed inability to produce the Lorentz force law are probably not justified. Three more speculative sections deal with possible explanations of nuclear forces, the spin-torsion relation, and particle structure

  4. Freud's superpotential in general relativity and in Einstein-Cartan theory

    Science.gov (United States)

    Böhmer, Christian G.; Hehl, Friedrich W.

    2018-02-01

    The identification of a suitable gravitational energy in theories of gravity has a long history, and it is well known that a unique answer cannot be given. In the first part of this paper we present a streamlined version of the derivation of Freud's superpotential in general relativity. It is found if we once integrate the gravitational field equation by parts. This allows us to extend these results directly to the Einstein-Cartan theory. Interestingly, Freud's original expression, first stated in 1939, remains valid even when considering gravitational theories in Riemann-Cartan or, more generally, in metric-affine spacetimes.

  5. Exact solutions of Einstein and Einstein-scalar equations in 2+1 dimensions

    International Nuclear Information System (INIS)

    Virbhadra, K.S.

    1995-01-01

    A nonstatic and circularly symmetric exact solution of the Einstein equations (with a cosmological constant Λ and null fluid) in 2 + 1 dimensions is given. This is a nonstatic generalization of the uncharged spinless Bandos Teitelboim Zanelli (BTZ) metric. For Λ = 0, spacetime is though not flat, the Kretschmann invariant vanishes. The energy, momentum, and power output for this metric are obtained. Further a static and circularly symmetric exact solution of the Einstein-massless scalar equations is given, which has a curvature singularity at r=0 and the scalar field diverges at r=0 as well as at infinity. (author). 12 refs

  6. Correct Linearization of Einstein's Equations

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-06-01

    Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.

  7. Linear Einstein equations and Kerr-Schild maps

    International Nuclear Information System (INIS)

    Gergely, Laszlo A

    2002-01-01

    We prove that given a solution of the Einstein equations g ab for the matter field T ab , an autoparallel null vector field l a and a solution (l a l c , T ac ) of the linearized Einstein equation on the given background, the Kerr-Schild metric g ac + λl a l c (λ arbitrary constant) is an exact solution of the Einstein equation for the energy-momentum tensor T ac + λT ac + λ 2 l (a T c)b l b . The mixed form of the Einstein equation for Kerr-Schild metrics with autoparallel null congruence is also linear. Some more technical conditions hold when the null congruence is not autoparallel. These results generalize previous theorems for vacuum due to Xanthopoulos and for flat seed spacetime due to Guerses and Guersey

  8. Stationary axisymmetric four dimensional space-time endowed with Einstein metric

    International Nuclear Information System (INIS)

    Hasanuddin; Azwar, A.; Gunara, B. E.

    2015-01-01

    In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time

  9. Numerical bifurcation analysis of conformal formulations of the Einstein constraints

    International Nuclear Information System (INIS)

    Holst, M.; Kungurtsev, V.

    2011-01-01

    The Einstein constraint equations have been the subject of study for more than 50 years. The introduction of the conformal method in the 1970s as a parametrization of initial data for the Einstein equations led to increased interest in the development of a complete solution theory for the constraints, with the theory for constant mean curvature (CMC) spatial slices and closed manifolds completely developed by 1995. The first general non-CMC existence result was establish by Holst et al. in 2008, with extensions to rough data by Holst et al. in 2009, and to vacuum spacetimes by Maxwell in 2009. The non-CMC theory remains mostly open; moreover, recent work of Maxwell on specific symmetry models sheds light on fundamental nonuniqueness problems with the conformal method as a parametrization in non-CMC settings. In parallel with these mathematical developments, computational physicists have uncovered surprising behavior in numerical solutions to the extended conformal thin sandwich formulation of the Einstein constraints. In particular, numerical evidence suggests the existence of multiple solutions with a quadratic fold, and a recent analysis of a simplified model supports this conclusion. In this article, we examine this apparent bifurcation phenomena in a methodical way, using modern techniques in bifurcation theory and in numerical homotopy methods. We first review the evidence for the presence of bifurcation in the Hamiltonian constraint in the time-symmetric case. We give a brief introduction to the mathematical framework for analyzing bifurcation phenomena, and then develop the main ideas behind the construction of numerical homotopy, or path-following, methods in the analysis of bifurcation phenomena. We then apply the continuation software package AUTO to this problem, and verify the presence of the fold with homotopy-based numerical methods. We discuss these results and their physical significance, which lead to some interesting remaining questions to

  10. Einstein boundary conditions in relation to constraint propagation for the initial-boundary value problem of the Einstein equations

    International Nuclear Information System (INIS)

    Frittelli, Simonetta; Gomez, Roberto

    2004-01-01

    We show how the use of the normal projection of the Einstein tensor as a set of boundary conditions relates to the propagation of the constraints, for two representations of the Einstein equations with vanishing shift vector: the Arnowitt-Deser-Misner formulation, which is ill posed, and the Einstein-Christoffel formulation, which is symmetric hyperbolic. Essentially, the components of the normal projection of the Einstein tensor that act as nontrivial boundary conditions are linear combinations of the evolution equations with the constraints that are not preserved at the boundary, in both cases. In the process, the relationship of the normal projection of the Einstein tensor to the recently introduced 'constraint-preserving' boundary conditions becomes apparent

  11. arXiv Quantum corrections to quartic inflation with a non-minimal coupling: metric vs. Palatini

    CERN Document Server

    Markkanen, Tommi; Vaskonen, Ville; Veermäe, Hardi

    2018-03-16

    We study models of quartic inflation where the inflaton field is coupled non-minimally to gravity, ξ 2 R, and perform a study of quantum corrections in curved space-time at one-loop level. We specifically focus on comparing results between the metric and Palatini theories of gravity. Transformation from the Jordan to the Einstein frame gives different results for the two formulations and by using an effective field theory expansion we derive the appropriate β-functions and the renormalisation group improved effective potentials in curved space for both cases in the Einstein frame. In particular, we show that in both formalisms the Einstein frame depends on the order of perturbation theory but that the flatness of the potential is unaltered by quantum corrections.

  12. An Einstein-Goedel universe

    International Nuclear Information System (INIS)

    Vaidya, P.C.

    1978-01-01

    The metric for the standard static Einstein model of the universe can be expressed in coordinates for which a congruence of spacelike world lines of the model will be twisting. A method of 'shifting the twist' has been devised by which the twist on spacelike world lines is shifted onto the timelike world lines. The model universe then becomes Goedel's model. A combined Einstein-Goedel model containing a parameter epsilon is obtained. Switching epsilon from +1 to -1 will effect the shift of twist in the world lines and lead from the Einstein model to the Goedel model. (author)

  13. Balanced metrics for vector bundles and polarised manifolds

    DEFF Research Database (Denmark)

    Garcia Fernandez, Mario; Ross, Julius

    2012-01-01

    leads to a Hermitian-Einstein metric on E and a constant scalar curvature Kähler metric in c_1(L). For special values of α, limits of balanced metrics are solutions of a system of coupled equations relating a Hermitian-Einstein metric on E and a Kähler metric in c1(L). For this, we compute the top two......We consider a notion of balanced metrics for triples (X, L, E) which depend on a parameter α, where X is smooth complex manifold with an ample line bundle L and E is a holomorphic vector bundle over X. For generic choice of α, we prove that the limit of a convergent sequence of balanced metrics...

  14. Development of Einstein's general theory of relativity

    International Nuclear Information System (INIS)

    Datta, B.K.

    1980-01-01

    Starting from Poincare's Lorentz-invariant theory of gravity formulated in 1906, development of Einstein's general theory of relativity during 1906-1916 is discussed. Three stages in this development are recognised. In the first stage during 1907-1914, Einstein tried to extend the relativity principle of uniform motion to the frames in non-uniform motion. For this purpose, he introduced the principle of equivalence which made it possible to calculate the effect of homogeneous gravitational field on arbitrary physical processes. During the second stage comprising years 1912-1914 overlapping the first stage, Einstein and Grossmann were struggling to translate physical postulates into the language of the absolute differential calculus. In the period 1915-1916, Einstein formulated the field equations of general relativity. While discussing these developmental stages, theories of gravitation formulated by Abraham, Nordstroem and Mie are also discussed. (M.G.B.)

  15. The affine quantum gravity programme

    International Nuclear Information System (INIS)

    Klauder, John R

    2002-01-01

    The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix { g-hat ab (x)} composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that still retain some basic characteristics of gravity, specifically a partial second-class constraint operator structure. Although perturbatively nonrenormalizable, gravity may possibly be understood nonperturbatively from a hard-core perspective that has proved valuable for specialized models. Finally, developing a procedure to pass to the genuine physical Hilbert space involves several interconnected steps that require careful coordination

  16. Modified Einstein and Navier–Stokes Equations

    Science.gov (United States)

    Bulyzhenkov, I. É.

    2018-05-01

    The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.

  17. Modified Einstein and Navier-Stokes Equations

    Science.gov (United States)

    Bulyzhenkov, I. É.

    2018-05-01

    The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.

  18. Kerr metric in cosmological background

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, P C [Gujarat Univ., Ahmedabad (India). Dept. of Mathematics

    1977-06-01

    A metric satisfying Einstein's equation is given which in the vicinity of the source reduces to the well-known Kerr metric and which at large distances reduces to the Robertson-Walker metric of a nomogeneous cosmological model. The radius of the event horizon of the Kerr black hole in the cosmological background is found out.

  19. Affine connection form of Regge calculus

    Science.gov (United States)

    Khatsymovsky, V. M.

    2016-12-01

    Regge action is represented analogously to how the Palatini action for general relativity (GR) as some functional of the metric and a general connection as independent variables represents the Einstein-Hilbert action. The piecewise flat (or simplicial) spacetime of Regge calculus is equipped with some world coordinates and some piecewise affine metric which is completely defined by the set of edge lengths and the world coordinates of the vertices. The conjugate variables are the general nondegenerate matrices on the three-simplices which play the role of a general discrete connection. Our previous result on some representation of the Regge calculus action in terms of the local Euclidean (Minkowsky) frame vectors and orthogonal connection matrices as independent variables is somewhat modified for the considered case of the general linear group GL(4, R) of the connection matrices. As a result, we have some action invariant w.r.t. arbitrary change of coordinates of the vertices (and related GL(4, R) transformations in the four-simplices). Excluding GL(4, R) connection from this action via the equations of motion we have exactly the Regge action for the considered spacetime.

  20. The Einstein tensor characterizing some Riemann spaces

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1993-07-01

    A formal definition of the Einstein tensor is given. Mention is made of how this tensor plays a role of expressing certain conditions in a precise form. The cases of reducing the Einstein tensor to a zero tensor are studied on its merit. A lucid account of results, formulated as theorems, on Einstein symmetric and Einstein recurrent spaces is then presented. (author). 5 refs

  1. Matter Loops Corrected Modified Gravity in Palatini Formulation

    International Nuclear Information System (INIS)

    Meng Xinhe; Wang Peng

    2008-01-01

    Recently, corrections to the standard Einstein-Hilbert action were proposed to explain the current cosmic acceleration in stead of introducing dark energy. In the Palatini formulation of those modified gravity models, there is an important observation due to Arkani-Hamed: matter loops will give rise to a correction to the modified gravity action proportional to the Ricci scalar of the metric. In the presence of such a term, we show that the current forms of modified gravity models in Palatini formulation, specifically, the 1/R gravity and ln R gravity, will have phantoms. Then we study the possible instabilities due to the presence of phantom fields. We show that the strong instability in the metric formulation of 1/R gravity indicated by Dolgov and Kawasaki will not appear and the decay timescales for the phantom fields may be long enough for the theories to make sense as effective field theory. On the other hand, if we change the sign of the modification terms to eliminate the phantoms, some other inconsistencies will arise for the various versions of the modified gravity models. Finally, we comment on the universal property of the Palatini formulation of the matter loops corrected modified gravity models and its implications

  2. Fluids and vortex from constrained fluctuations around C-metric black holes

    Science.gov (United States)

    Hao, Xin; Wu, Bin; Zhao, Liu

    2017-08-01

    By foliating the four-dimensional C-metric black hole spacetime, we consider a kind of initial-value-like formulation of the vacuum Einstein's equation, the holographic initial data is a double consisting of the induced metric and the Brown-York energy momentum tensor on an arbitrary initial hypersurface. Then by perturbing the initial data that generates the background spacetime, it is shown that, in an appropriate limit, the fluctuation modes are governed by the continuity equation and the compressible Navier-Stokes equation which describe the momentum transport in non-relativistic viscous fluid on a flat Newtonian space. It turns out that the flat space fluid behaves as a pure vortex and the viscosity to entropy ratio is subjected to the black hole acceleration.

  3. Integrable deformations of affine Toda theories and duality

    International Nuclear Information System (INIS)

    Fateev, V.A.

    1996-01-01

    We introduce and study five series of one-parameter families of two-dimensional integrable quantum field theories. These theories have a Lagrangian description in terms of the massive Thirring model coupled with non-simply laced affine Toda theories. Perturbative calculations, analysis of the factorized scattering theory and the Bethe ansatz technique are used to show that these field theories possess the dual representation available for the perturbative analysis in the strong coupling limit. The dual theory can be formulated as the non-linear sigma model with Witten's Euclidean black hole metric (complex sinh-Gordon theory) coupled with non-simply laced affine Toda theories. Lie algebras associated with these ''dual'' Toda theories belong to the dual series of affine algebras but have a smaller rank. The exact relation between coupling constants in the dual theories is conjectured. (orig.)

  4. Einstein and the "Crucial" Experiment

    Science.gov (United States)

    Holton, Gerald

    1969-01-01

    Examines the widespread view that it was the crucial Michelson-Morley experiment that led Einstein to formulate the special relativity theory. From Einstein's writings, evidence is presented that no such direct genetic connection exists. The author suggests that the historian of science must resist the experimenticist's fallacy of imposing a…

  5. On solutions of Einstein and Einstein-Yang-Mills equations with (maximal) conformal subsymmetries

    International Nuclear Information System (INIS)

    Sinzinkayo, S.; Demaret, J.

    1985-01-01

    The maximal subgroups of the conformal group (which have in common as a subgroup the group of pure spatial rotations) are considered as isometry groups of conformally flat space-times. The corresponding cosmological solutions of Einstein's field equations are identified. For each of them, the possibility is investigated that it could be generated by an SU(2) Yang-Mills field built, via the Corrigan-Fairlie-'t Hooft-Wilczek ansatz, from a scalar field identical with the square root of the conformal factor defining the space-time metric tensor. In particular, the Einstein cosmological model can be generated in this manner, but in the framework of strong gravity only, a micro-Einstein universe being then viewed as a possible model for a hadron. (author)

  6. On the energy-momentum tensors for field theories in spaces with affine connection and metric

    International Nuclear Information System (INIS)

    Manoff, S.

    1991-01-01

    Generalized covariant Bianchi type identities are obtained and investigated for Lagrangian densities, depending on co- and contravariant tensor fields and their first and second covariant derivatives in spaces with affine connection and metric (L n -space). The notions of canonical, generalized canonical, symmetric and variational energy-momentum tensor are introduced and necessary and sufficient conditions for the existence of the symmetric energy-momentum tensor as a local conserved quantity are obtained. 19 refs.; 1 tab

  7. Einstein algebras and general relativity

    International Nuclear Information System (INIS)

    Heller, M.

    1992-01-01

    A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs

  8. Einstein-Rosen 'bridge' needs lightlike brane source

    International Nuclear Information System (INIS)

    Guendelman, Eduardo; Kaganovich, Alexander; Nissimov, Emil; Pacheva, Svetlana

    2009-01-01

    The Einstein-Rosen 'bridge' wormhole solution proposed in the classic paper (Einstein and Rosen (1935) ) does not satisfy the vacuum Einstein equations at the wormhole throat. We show that the fully consistent formulation of the original Einstein-Rosen 'bridge' requires solving Einstein equations of bulk D=4 gravity coupled to a lightlike brane with a well-defined world-volume action. The non-vanishing contribution of Einstein-Rosen 'bridge' solution to the right-hand side of Einstein equations at the throat matches precisely the surface stress-energy tensor of the lightlike brane which automatically occupies the throat ('horizon straddling') - a feature triggered by the world-volume lightlike brane dynamics.

  9. An axisymmetric evolution code for the Einstein equations on hyperboloidal slices

    International Nuclear Information System (INIS)

    Rinne, Oliver

    2010-01-01

    We present the first stable dynamical numerical evolutions of the Einstein equations in terms of a conformally rescaled metric on hyperboloidal hypersurfaces extending to future null infinity. Axisymmetry is imposed in order to reduce the computational cost. The formulation is based on an earlier axisymmetric evolution scheme, adapted to time slices of constant mean curvature. Ideas from a previous study by Moncrief and the author are applied in order to regularize the formally singular evolution equations at future null infinity. Long-term stable and convergent evolutions of Schwarzschild spacetime are obtained, including a gravitational perturbation. The Bondi news function is evaluated at future null infinity.

  10. Einstein: A Historical Perspective

    Science.gov (United States)

    Kormos-Buchwald, Diana

    2015-04-01

    In late 1915, Albert Einstein (1879-1955) completed as series of papers on a generalized theory of gravitation that were to constitute a major conceptual change in the history of modern physics and the crowning achievement of his scientific career. But this accomplishment came after a decade of intense intellectual struggle and was received with muted enthusiasm. Einstein's previously unpublished writings and massive correspondence, edited by the Einstein Papers Project, provide vivid insights into the historical, personal, and scientific context of the formulation, completion, and reception of GR during the first decades of the 20th century.

  11. Numerical relativity in spherical coordinates with the Einstein Toolkit

    Science.gov (United States)

    Mewes, Vassilios; Zlochower, Yosef; Campanelli, Manuela; Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.

    2018-04-01

    Numerical relativity codes that do not make assumptions on spatial symmetries most commonly adopt Cartesian coordinates. While these coordinates have many attractive features, spherical coordinates are much better suited to take advantage of approximate symmetries in a number of astrophysical objects, including single stars, black holes, and accretion disks. While the appearance of coordinate singularities often spoils numerical relativity simulations in spherical coordinates, especially in the absence of any symmetry assumptions, it has recently been demonstrated that these problems can be avoided if the coordinate singularities are handled analytically. This is possible with the help of a reference-metric version of the Baumgarte-Shapiro-Shibata-Nakamura formulation together with a proper rescaling of tensorial quantities. In this paper we report on an implementation of this formalism in the Einstein Toolkit. We adapt the Einstein Toolkit infrastructure, originally designed for Cartesian coordinates, to handle spherical coordinates, by providing appropriate boundary conditions at both inner and outer boundaries. We perform numerical simulations for a disturbed Kerr black hole, extract the gravitational wave signal, and demonstrate that the noise in these signals is orders of magnitude smaller when computed on spherical grids rather than Cartesian grids. With the public release of our new Einstein Toolkit thorns, our methods for numerical relativity in spherical coordinates will become available to the entire numerical relativity community.

  12. Four dimensional sigma model coupled to the metric tensor field

    International Nuclear Information System (INIS)

    Ghika, G.; Visinescu, M.

    1980-02-01

    We discuss the four dimensional nonlinear sigma model with an internal O(n) invariance coupled to the metric tensor field satisfying Einstein equations. We derive a bound on the coupling constant between the sigma field and the metric tensor using the theory of harmonic maps. A special attention is paid to Einstein spaces and some new explicit solutions of the model are constructed. (author)

  13. Scalar-metric and scalar-metric-torsion gravitational theories

    International Nuclear Information System (INIS)

    Aldersley, S.J.

    1977-01-01

    The techniques of dimensional analysis and of the theory of tensorial concomitants are employed to study field equations in gravitational theories which incorporate scalar fields of the Brans-Dicke type. Within the context of scalar-metric gravitational theories, a uniqueness theorem for the geometric (or gravitational) part of the field equations is proven and a Lagrangian is determined which is uniquely specified by dimensional analysis. Within the context of scalar-metric-torsion gravitational theories a uniqueness theorem for field Lagrangians is presented and the corresponding Euler-Lagrange equations are given. Finally, an example of a scalar-metric-torsion theory is presented which is similar in many respects to the Brans-Dicke theory and the Einstein-Cartan theory

  14. Contravariant gravity on Poisson manifolds and Einstein gravity

    International Nuclear Information System (INIS)

    Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi

    2017-01-01

    A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)

  15. On static black holes solutions in Einstein and Einstein-Gauss-Bonnet gravity with topology [Formula: see text].

    Science.gov (United States)

    Dadhich, Naresh; Pons, Josep M

    We study static black hole solutions in Einstein and Einstein-Gauss-Bonnet gravity with the topology of the product of two spheres, [Formula: see text], in higher dimensions. There is an unusual new feature of the Gauss-Bonnet black hole: the avoidance of a non-central naked singularity prescribes a mass range for the black hole in terms of [Formula: see text]. For an Einstein-Gauss-Bonnet black hole a limited window of negative values for [Formula: see text] is also permitted. This topology encompasses black strings, branes, and generalized Nariai metrics. We also give new solutions with the product of two spheres of constant curvature.

  16. From Petrov-Einstein to Navier-Stokes

    Science.gov (United States)

    Lysov, Vyacheslav

    The fluid/gravity correspondence relates solutions of the incompressible Navier-Stokes equation to metrics which solve the Einstein equations. We propose propose two possible approaches to establish this correspondence: perturbative expansion for shear modes and large mean curvature expansion for algebraically special metrics. We show by explicit construction that for every solution of the incompressible Navier-Stokes equation in p+1 dimensions, there is an associated "dual" solution of the vacuum Einstein equations in p+2 dimensions. The dual geometry has an intrinsically flat time-like boundary segment whose extrinsic curvature is given by the stress tensor of the Navier-Stokes fluid. We consider a "near-horizon" limit in which hypersurface becomes highly accelerated. The near-horizon expansion in gravity is shown to be mathematically equivalent to the hydrodynamic expansion in fluid dynamics, and the Einstein equation reduces to the incompressible Navier-Stokes equation. It is shown that imposing a Petrov type I condition on the hypersurface geometry reduces the degrees of freedom in the extrinsic curvature to those of a fluid. Moreover, expanding around a limit in which the mean curvature of the embedding diverges, the leading-order Einstein constraint equations on hypersurface are shown to reduce to the non-linear incompressible Navier-Stokes equation for a fluid moving in hypersurface. We extend the fluid/gravity correspondence to include the magnetohydrodynamics/gravity correspondence, which translates solutions of the equations of magnetohydrodynamics (describing charged fluids) into geometries that satisfy the Einstein-Maxwell equations. We present an explicit example of this new correspondence in the context of flat Minkowski space. We show that a perturbative deformation of the Rindler wedge satisfies the Einstein-Maxwell equations provided that the parameters appearing in the expansion, which we interpret as fluid fields, satisfy the

  17. Radiating Kerr particle in Einstein universe

    International Nuclear Information System (INIS)

    Vaidya, P.C.; Patel, L.K.

    1989-01-01

    A generalized Kerr-NUT type metric is considered in connection with Einstein field equations corresponding to perfect fluid plus a pure radiation field. A general scheme for obtaining the exact solutions of these field equations is developed. Two physically meaningful particular cases are investigated in detail. One gives the field of a radiating Kerr particle embedded in the Einstein universe. The other solution may probably represent a deSitter-like universe pervaded by a pure radiation field. (author). 7 refs

  18. Conformal and covariant Z4 formulation of the Einstein equations: Strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes

    Science.gov (United States)

    Dumbser, Michael; Guercilena, Federico; Köppel, Sven; Rezzolla, Luciano; Zanotti, Olindo

    2018-04-01

    We present a strongly hyperbolic first-order formulation of the Einstein equations based on the conformal and covariant Z4 system (CCZ4) with constraint-violation damping, which we refer to as FO-CCZ4. As CCZ4, this formulation combines the advantages of a conformal and traceless formulation, with the suppression of constraint violations given by the damping terms, but being first order in time and space, it is particularly suited for a discontinuous Galerkin (DG) implementation. The strongly hyperbolic first-order formulation has been obtained by making careful use of first and second-order ordering constraints. A proof of strong hyperbolicity is given for a selected choice of standard gauges via an analytical computation of the entire eigenstructure of the FO-CCZ4 system. The resulting governing partial differential equations system is written in nonconservative form and requires the evolution of 58 unknowns. A key feature of our formulation is that the first-order CCZ4 system decouples into a set of pure ordinary differential equations and a reduced hyperbolic system of partial differential equations that contains only linearly degenerate fields. We implement FO-CCZ4 in a high-order path-conservative arbitrary-high-order-method-using-derivatives (ADER)-DG scheme with adaptive mesh refinement and local time-stepping, supplemented with a third-order ADER-WENO subcell finite-volume limiter in order to deal with singularities arising with black holes. We validate the correctness of the formulation through a series of standard tests in vacuum, performed in one, two and three spatial dimensions, and also present preliminary results on the evolution of binary black-hole systems. To the best of our knowledge, these are the first successful three-dimensional simulations of moving punctures carried out with high-order DG schemes using a first-order formulation of the Einstein equations.

  19. Kerr metric in the deSitter background

    International Nuclear Information System (INIS)

    Vaidya, P.C.

    1984-01-01

    In addition to the Kerr metric with cosmological constant Λ several other metrics are presented giving a Kerr-like solution of Einstein's equations in the background of deSitter universe. A new metric of what may be termed as rotating deSitter space-time devoid of matter but containing null fluid with twisting null rays, has been presented. This metric reduces to the standard deSitter metric when the twist in the rays vanishes. Kerr metric in this background is the immediate generalization of Schwarzschild's exterior metric with cosmological constant. (author)

  20. The large numbers hypothesis and the Einstein theory of gravitation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1979-01-01

    A study of the relations between large dimensionless numbers leads to the belief that G, expressed in atomic units, varies with the epoch while the Einstein theory requires G to be constant. These two requirements can be reconciled by supposing that the Einstein theory applies with a metric that differs from the atomic metric. The theory can be developed with conservation of mass by supposing that the continual increase in the mass of the observable universe arises from a continual slowing down of the velocity of recession of the galaxies. This leads to a model of the Universe that was first proposed by Einstein and de Sitter (the E.S. model). The observations of the microwave radiation fit in with this model. The static Schwarzchild metric has to be modified to fit in with the E.S. model for large r. The modification is worked out, and also the motion of planets with the new metric. It is found that there is a difference between ephemeris time and atomic time, and also that there should be an inward spiralling of the planets, referred to atomic units, superposed on the motion given by ordinary gravitational theory. These are effects that can be checked by observation, but there is no conclusive evidence up to the present. (author)

  1. Static Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Das, A.

    1979-01-01

    The static Einstein--Maxwell field equations are investigated in the presence of both electric and magnetic fields. The sources or bodies are assumed to be of finite size and to not affect the connectivity of the associated space. Furthermore, electromagnetic and metric fields are assumed to have reasonable differentiabilities. It is then proved that the electric and magnetic field vectors are constant multiples of one another. Moreover, the static Einstein--Maxwell equations reduce to the static magnetovac case. If, furthermore, the variational derivation of the Einstein--Maxwell equations is assumed, then both the total electric and magnetic charge of each body must vanish. As a physical consequence it is pointed out that if a suspended magnet be electrically charged then it must experience a purely general relativistic torque

  2. Covariant electrodynamics in linear media: Optical metric

    Science.gov (United States)

    Thompson, Robert T.

    2018-03-01

    While the postulate of covariance of Maxwell's equations for all inertial observers led Einstein to special relativity, it was the further demand of general covariance—form invariance under general coordinate transformations, including between accelerating frames—that led to general relativity. Several lines of inquiry over the past two decades, notably the development of metamaterial-based transformation optics, has spurred a greater interest in the role of geometry and space-time covariance for electrodynamics in ponderable media. I develop a generally covariant, coordinate-free framework for electrodynamics in general dielectric media residing in curved background space-times. In particular, I derive a relation for the spatial medium parameters measured by an arbitrary timelike observer. In terms of those medium parameters I derive an explicit expression for the pseudo-Finslerian optical metric of birefringent media and show how it reduces to a pseudo-Riemannian optical metric for nonbirefringent media. This formulation provides a basis for a unified approach to ray and congruence tracing through media in curved space-times that may smoothly vary among positively refracting, negatively refracting, and vacuum.

  3. A class of exact solutions to the Einstein field equations

    International Nuclear Information System (INIS)

    Goyal, Nisha; Gupta, R K

    2012-01-01

    The Einstein-Rosen metric is considered and a class of new exact solutions of the field equations for stationary axisymmetric Einstein-Maxwell fields is obtained. The Lie classical approach is applied to obtain exact solutions. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of Einstein-Maxwell equations. (paper)

  4. Curvature properties of four-dimensional Walker metrics

    International Nuclear Information System (INIS)

    Chaichi, M; Garcia-Rio, E; Matsushita, Y

    2005-01-01

    A Walker n-manifold is a semi-Riemannian manifold, which admits a field of parallel null r-planes, r ≤ n/2. In the present paper we study curvature properties of a Walker 4-manifold (M, g) which admits a field of parallel null 2-planes. The metric g is necessarily of neutral signature (+ + - -). Such a Walker 4-manifold is the lowest dimensional example not of Lorentz type. There are three functions of coordinates which define a Walker metric. Some recent work shows that a Walker 4-manifold of restricted type whose metric is characterized by two functions exhibits a large variety of symplectic structures, Hermitian structures, Kaehler structures, etc. For such a restricted Walker 4-manifold, we shall study mainly curvature properties, e.g., conditions for a Walker metric to be Einstein, Osserman, or locally conformally flat, etc. One of our main results is the exact solutions to the Einstein equations for a restricted Walker 4-manifold

  5. Content-Based High-Resolution Remote Sensing Image Retrieval via Unsupervised Feature Learning and Collaborative Affinity Metric Fusion

    Directory of Open Access Journals (Sweden)

    Yansheng Li

    2016-08-01

    Full Text Available With the urgent demand for automatic management of large numbers of high-resolution remote sensing images, content-based high-resolution remote sensing image retrieval (CB-HRRS-IR has attracted much research interest. Accordingly, this paper proposes a novel high-resolution remote sensing image retrieval approach via multiple feature representation and collaborative affinity metric fusion (IRMFRCAMF. In IRMFRCAMF, we design four unsupervised convolutional neural networks with different layers to generate four types of unsupervised features from the fine level to the coarse level. In addition to these four types of unsupervised features, we also implement four traditional feature descriptors, including local binary pattern (LBP, gray level co-occurrence (GLCM, maximal response 8 (MR8, and scale-invariant feature transform (SIFT. In order to fully incorporate the complementary information among multiple features of one image and the mutual information across auxiliary images in the image dataset, this paper advocates collaborative affinity metric fusion to measure the similarity between images. The performance evaluation of high-resolution remote sensing image retrieval is implemented on two public datasets, the UC Merced (UCM dataset and the Wuhan University (WH dataset. Large numbers of experiments show that our proposed IRMFRCAMF can significantly outperform the state-of-the-art approaches.

  6. Nonlinear metric perturbation enhancement of primordial gravitational waves.

    Science.gov (United States)

    Bastero-Gil, M; Macias-Pérez, J; Santos, D

    2010-08-20

    We present the evolution of the full set of Einstein equations during preheating after inflation. We study a generic supersymmetric model of hybrid inflation, integrating fields and metric fluctuations in a 3-dimensional lattice. We take initial conditions consistent with Einstein's constraint equations. The induced preheating of the metric fluctuations is not large enough to backreact onto the fields, but preheating of the scalar modes does affect the evolution of vector and tensor modes. In particular, they do enhance the induced stochastic background of gravitational waves during preheating, giving an energy density in general an order of magnitude larger than that obtained by evolving the tensor fluctuations in an homogeneous background metric. This enhancement can improve the expectations for detection by planned gravitational wave observatories.

  7. Internal Einstein spaces and symmetry breaking

    International Nuclear Information System (INIS)

    Coquereaux, R.

    1984-01-01

    We first define a generalised gauge invariant Yang-Mills Lagrangian: the Killing metric -Ksub(αβ) on the group is replaced by a more general metric hsub(αβ)(x); the field hsub(αβ)(x) -a scalar from the space time point of view- is then covariantly coupled to the gauge field Asub(μ)sup(α) and is also self-coupled via a natural scalar potential (no parameters). Non trivial saddle points of this scalar potential, correspond to non standard Einstein metrics on the group C. the associated shifts lead to an entirely computable mass spectrum for the gauge field

  8. Einstein, Kant, and Taoism

    OpenAIRE

    Kim, Y. S.

    2006-01-01

    It is said that Einstein's conceptual base for the theory of relativity was the philosophy formulated by Immanuel Kant. Then, is it possible to see how Kant played a role in Einstein's thinking without reading Kant's books? This question arises because it is not possible for physicists to read Kant's writings. Yes, it is possible if we use the method of physics. It is known also that Kant's mode of thinking was profoundly affected by the geography of Koenigsberg where he spent eighty years of...

  9. Einstein's equations of motion in the gravitational field of an oblate ...

    African Journals Online (AJOL)

    In an earlier paper we derived Einstein's geometrical gravitational field equations for the metric tensor due to an oblate spheroidal massive body. In this paper we derive the corresponding Einstein's equations of motion for a test particle of nonzero rest mass in the gravitational field exterior to a homogeneous oblate ...

  10. Effective equivalence of the Einstein-Cartan and Einstein theories of gravity

    International Nuclear Information System (INIS)

    Nester, J.M.

    1977-01-01

    I prove that, for any choice of minimally coupled source field Lagrangian for the Einstein-Cartan-Sciama-Kibble theory of gravity, there exists a related minimally coupled source field Lagrangian for the Einstein theory which produces the same field equations for the metric and source field. By using a standard first-order form for source Lagrangians, the converse is also demonstrated. This establishes a one-to-one correspondence between source Lagrangians for the two theories which clearly reveals their similarities and their differences. Because of this ''equivalence,'' one can view either theory, in terms of the other, as minimal coupling for a related Minkowski source Lagrangian or as nonminimal coupling for the same Minkowski source Lagrangian. Consequently the two theories are, in this sense, indistinguishable. Some other implications of this ''equivalence'' are discussed

  11. Formulating a coastal zone health metric for landuse impact management in urban coastal zones.

    Science.gov (United States)

    Anilkumar, P P; Varghese, Koshy; Ganesh, L S

    2010-11-01

    The need for ICZM arises often due to inadequate or inappropriate landuse planning practices and policies, especially in urban coastal zones which are more complex due to the larger number of components, their critical dimensions, attributes and interactions. A survey of literature shows that there is no holistic metric for assessing the impacts of landuse planning on the health of a coastal zone. Thus there is a need to define such a metric. The proposed metric, CHI (Coastal zone Health Indicator), developed on the basis of coastal system sustainability, attempts to gauge the health status of any coastal zone. It is formulated and modeled through an expert survey and pertains to the characteristic components of coastal zones, their critical dimensions, and relevant attributes. The proposed metric is applied to two urban coastal zones and validated. It can be used for more coast friendly and sustainable landuse planning/masterplan preparation and thereby for the better management of landuse impacts on coastal zones. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Gauge stability of 3+1 formulations of general relativity

    International Nuclear Information System (INIS)

    Khokhlov, A M; Novikov, I D

    2002-01-01

    We present a general approach to the analysis of gauge stability of 3+1 formulations of general relativity (GR). Evolution of coordinate perturbations and the corresponding perturbations of lapse and shift can be described by a system of eight quasi-linear partial differential equations. Stability with respect to gauge perturbations depends on the choice of gauge and a background metric, but it does not depend on a particular form of a 3+1 system if its constrained solutions are equivalent to those of the Einstein equations. Stability of a number of known gauges is investigated in the limit of short-wavelength perturbations. All fixed gauges except a synchronous gauge are found to be ill posed. A maximal slicing gauge and its parabolic extension are shown to be ill posed as well. A necessary condition is derived for well-posedness of metric-dependent algebraic gauges. Well-posed metric-dependent gauges are found, however, to be generally unstable. Both instability and ill-posedness are associated with the existence of growing modes of coordinate perturbations related to perturbations of physical accelerations of reference frames

  13. On some types of exact solutions of the Einstein equation. 2

    International Nuclear Information System (INIS)

    Obukhov, V.V.

    1978-01-01

    Several types of the Einstein spaces which can describe gravitational waves are investigated. When the solutions of the Einstein equations are found, additional conditions are imposed on the metrics under consideration. It is required: 1) that the spaces should admit the two-parametric Abelian group of motion; 2) that the wave coordinate system would be privileged; 3) that bicharacteristics of the Einstein equation would satisfy the harmonicity condition. The superposition of the enumerated conditions has made it possible to perform a complete integration of the Einstein equations. The solutions obtained are interpreted as the wave ones

  14. A Novel Vertex Affinity for Community Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  15. Test-particle motion in Einstein's unified field theory. I. General theory and application to neutral test particles

    International Nuclear Information System (INIS)

    Johnson, C.R.

    1985-01-01

    We develop a method for finding the exact equations of structure and motion of multipole test particles in Einstein's unified field theory: the theory of the nonsymmetric field. The method is also applicable to Einstein's gravitational theory. Particles are represented by singularities in the field. The method is covariant at each step of the analysis. We also apply the method and find both in Einstein's unified field theory and in Einstein's gravitational theory the equations of structure and motion of neutral pole-dipole test particles possessing no electromagnetic multipole moments. In the case of Einstein's gravitational theory the results are the well-known equations of structure and motion of a neutral pole-dipole test particle in a given background gravitational field. In the case of Einstein's unified field theory the results are the same, providing we identify a certain symmetric second-rank tensor field appearing in Einstein's theory with the metric and gravitational field. We therefore discover not only the equations of structure and motion of a neutral test particle in Einstein's unified field theory, but we also discover what field in Einstein's theory plays the role of metric and gravitational field

  16. Gödel metrics with chronology protection in Horndeski gravities

    Science.gov (United States)

    Geng, Wei-Jian; Li, Shou-Long; Lü, H.; Wei, Hao

    2018-05-01

    Gödel universe, one of the most interesting exact solutions predicted by General Relativity, describes a homogeneous rotating universe containing naked closed time-like curves (CTCs). It was shown that such CTCs are the consequence of the null energy condition in General Relativity. In this paper, we show that the Gödel-type metrics with chronology protection can emerge in Einstein-Horndeski gravity. We construct such exact solutions also in Einstein-Horndeski-Maxwell and Einstein-Horndeski-Proca theories.

  17. EINSTEIN EQUATIONS FOR TETRAD FIELDS ECUACIONES DE EINSTEIN PARA CAMPOS TETRADOS

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available Every metric tensor can be expressed by the inner product of tetrad fields. We prove that Einstein's equations for these fields have the same form as the stress-energy tensor of electromagnetism if the total external current . Using the Evans' unified field theory, we show that the true unification of gravity and electromagnetism is with source-free Maxwell equations.Todo tensor métrico puede ser expresado por el producto interno de campos tetrados. Se prueba que las ecuaciones de Einstein para esos campos tienen la misma forma que el tensor electromagnético de momento-energía si la corriente externa total es igual a cero. Usando la teoría de campo unificado de Evans se muestra que la verdadera unificación de la gravedad y el electromagnetismo es con las ecuaciones de Maxwell sin fuentes.

  18. Einstein gravity with torsion induced by the scalar field

    Science.gov (United States)

    Özçelik, H. T.; Kaya, R.; Hortaçsu, M.

    2018-06-01

    We couple a conformal scalar field in (2+1) dimensions to Einstein gravity with torsion. The field equations are obtained by a variational principle. We could not solve the Einstein and Cartan equations analytically. These equations are solved numerically with 4th order Runge-Kutta method. From the numerical solution, we make an ansatz for the rotation parameter in the proposed metric, which gives an analytical solution for the scalar field for asymptotic regions.

  19. All ASD complex and real 4-dimensional Einstein spaces with Λ≠0 admitting a nonnull Killing vector

    Science.gov (United States)

    Chudecki, Adam

    2016-12-01

    Anti-self-dual (ASD) 4-dimensional complex Einstein spaces with nonzero cosmological constant Λ equipped with a nonnull Killing vector are considered. It is shown that any conformally nonflat metric of such spaces can be always brought to a special form and the Einstein field equations can be reduced to the Boyer-Finley-Plebański equation (Toda field equation). Some alternative forms of the metric are discussed. All possible real slices (neutral, Euclidean and Lorentzian) of ASD complex Einstein spaces with Λ≠0 admitting a nonnull Killing vector are found.

  20. Deduction of Einstein equation from homogeneity of Riemann spacetime

    Science.gov (United States)

    Ni, Jun

    2012-03-01

    The symmetry of spacetime translation leads to the energy-momentum conservation. However, the Lagrange depends on spacetime coordinates, which makes the symmetry of spacetime translation different with other symmetry invariant explicitly under symmetry transformation. We need an equation to guarantee the symmetry of spacetime translation. In this talk, I will show that the Einstein equation can be deduced purely from the general covariant principle and the homogeneity of spacetime in the frame of quantum field theory. The Einstein equation is shown to be the equation to guarantee the symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field, only electroweak-strong interactions appear with curved spacetime metric determined by the Einstein equation.. The general covariant principle and the homogeneity of spacetime are merged into one basic principle: Any Riemann spacetime metric guaranteeing the energy-momentum conservation are equivalent, which can be called as the conserved general covariant principle. [4pt] [1] Jun Ni, Chin. Phys. Lett. 28, 110401 (2011).

  1. Einstein and Jordan frames reconciled: A frame-invariant approach to scalar-tensor cosmology

    International Nuclear Information System (INIS)

    Catena, Riccardo; Pietroni, Massimo; Scarabello, Luca

    2007-01-01

    Scalar-tensor theories of gravity can be formulated in different frames, most notably, the Einstein and the Jordan one. While some debate still persists in the literature on the physical status of the different frames, a frame transformation in scalar-tensor theories amounts to a local redefinition of the metric, and then should not affect physical results. We analyze the issue in a cosmological context. In particular, we define all the relevant observables (redshift, distances, cross sections, ...) in terms of frame-independent quantities. Then, we give a frame-independent formulation of the Boltzmann equation, and outline its use in relevant examples such as particle freeze-out and the evolution of the cosmic microwave background photon distribution function. Finally, we derive the gravitational equations for the frame-independent quantities at first order in perturbation theory. From a practical point of view, the present approach allows the simultaneous implementation of the good aspects of the two frames in a clear and straightforward way

  2. Hamiltonian dynamics of spatially-homogeneous Vlasov-Einstein systems

    International Nuclear Information System (INIS)

    Okabe, Takahide; Morrison, P. J.; Friedrichsen, J. E. III; Shepley, L. C.

    2011-01-01

    We introduce a new matter action principle, with a wide range of applicability, for the Vlasov equation in terms of a conjugate pair of functions. Here we apply this action principle to the study of matter in Bianchi cosmological models in general relativity. The Bianchi models are spatially-homogeneous solutions to the Einstein field equations, classified by the three-dimensional Lie algebra that describes the symmetry group of the model. The Einstein equations for these models reduce to a set of coupled ordinary differential equations. The class A Bianchi models admit a Hamiltonian formulation in which the components of the metric tensor and their time derivatives yield the canonical coordinates. The evolution of anisotropy in the vacuum Bianchi models is determined by a potential due to the curvature of the model, according to its symmetry. For illustrative purposes, we examine the evolution of anisotropy in models with Vlasov matter. The Vlasov content is further simplified by the assumption of cold, counter-streaming matter, a kind of matter that is far from thermal equilibrium and is not describable by an ordinary fluid model nor other more simplistic matter models. Qualitative differences and similarities are found in the dynamics of certain vacuum class A Bianchi models and Bianchi type I models with cold, counter-streaming Vlasov-matter potentials analogous to the curvature potentials of corresponding vacuum models.

  3. Bargmann structures and Newton-Cartan theory

    International Nuclear Information System (INIS)

    Duval, C.; Burdet, G.; Kuenzle, H.P.; Perrin, M.

    1985-01-01

    It is shown that Newton-Cartan theory of gravitation can best be formulated on a five-dimensional extended space-time carrying a Lorentz metric together with a null parallel vector field. The corresponding geometry associated with the Bargmann group (nontrivially extended Galilei group) viewed as a subgroup of the affine de Sitter group AO(4,1) is thoroughly investigated. This new global formalism allows one to recast classical particle dynamics and the Schroedinger equation into a purely covariant form. The Newton-Cartan field equations are readily derived from Einstein's Lagrangian on the space-time extension

  4. Self-dual metrics with self-dual Killing vectors

    International Nuclear Information System (INIS)

    Tod, K.P.; Ward, R.S.

    1979-01-01

    Twistor methods are used to derive a class of solutions to Einstein's vacuum equations, with anti-self dual Weyl tensor. In particular, all metrics with a Killing vector whose derivative is anti-self-dual and which admit a real positive-definite section are exhibited and shown to coincide with the metrics of Hawking. (author)

  5. Pure connection formulation, twistors, and the chase for a twistor action for general relativity

    Science.gov (United States)

    Herfray, Yannick

    2017-11-01

    This paper establishes the relation between traditional results from the (Euclidean) twistor theory and chiral formulations of general relativity (GR), especially the pure connection formulation. Starting from an SU(2)-connection only, we show how to construct natural complex data on twistor space, mainly an almost Hermitian structure and a connection on some complex line bundle. Only when this almost Hermitian structure is integrable is the connection related to an anti-self-dual-Einstein metric and makes contact with the usual results. This leads to a new proof of the non-linear graviton theorem. Finally, we discuss what new strategies this "connection approach" to twistors suggests for constructing a twistor action for gravity. In Appendix A, we also review all known chiral Lagrangians for GR.

  6. A new characterization of half-flat solutions to Einstein's equation

    International Nuclear Information System (INIS)

    Ashtekar, A.; California Univ., Santa Barbara; Jacobson, T.; California Univ., Santa Barbara; Smolin, L.; Yale Univ., New Haven, CT

    1988-01-01

    A 3+1 formulation of complex Einstein's equation is first obtained on a real 4-manifold M, topologically Σ x R, where Σ is an arbitrary 3-manifold. The resulting constraint and evolution equations are then simplified by using variables that capture the (anti-) self dual part of the 4-dimensional Weyl curvature. As a result, to obtain a vacuum self-dual solution, one has just to solve one constraint and one ''evolution'' equation on a field of triads on Σ: Div V i a = 0 and V i a = ε ijk [V j , V k ] a , with i = 1, 2, 3, where Div denotes divergence with respect to a fixed, non-dynamical volume element. If the triad is real, the resulting self-dual metric is real and positive definite. This characterization of self-dual solutions in terms of triads appears to be particularly well suited for analysing the issues of exact integrability of the (anti-)-self-dual Einstein system. Finally, although the use of a 3+1 decomposition seems artificial from a strict mathematical viewpoint, as David C. Robinson has recently shown, the resulting triad description is closely related to the hyperkaehler geometry that (anti-)self-dual vacuum solutions naturally admit. (orig.)

  7. The Einstein action for algebras of matrix valued functions - Toy models

    International Nuclear Information System (INIS)

    Hajac, P.M.

    1995-10-01

    Two toy models are considered within the framework of noncommutative differential geometry. In the first one, the Einstein action of the Levi-Civita connection is computed for the algebra of matrix valued functions on a torus. It is shown that, assuming some constraints on the metric, this action splits into a classical-like, a quantum-like and a mixed term. In the second model, an analogue of the Palatini method of variation is applied to obtain critical points of the Einstein action functional for M 4 (R). It is pointed out that a solution to the Palatini variational problem is not necessarily a Levi-Civita connection. In this model, no additional assumptions regarding metrics are made. (author). 14 refs

  8. A New Solution for Einstein Field Equation in General Relativity

    Science.gov (United States)

    Mousavi, Sadegh

    2006-05-01

    There are different solutions for Einstein field equation in general relativity that they have been proposed by different people the most important solutions are Schwarzchild, Reissner Nordstrom, Kerr and Kerr Newmam. However, each one of these solutions limited to special case. I've found a new solution for Einstein field equation which is more complete than all previous ones and this solution contains the previous solutions as its special forms. In this talk I will present my new metric for Einstein field equation and the Christofel symbols and Richi and Rieman tensor components for the new metric that I have calculated them by GR TENSOR software. As a result I will determine the actual movement of black holes which is different From Kerr black hole's movement. Finally this new solution predicts, existence of a new and constant field in the nature (that nobody can found it up to now), so in this talk I will introduce this new field and even I will calculate the amount of this field. SADEGH MOUSAVI, Amirkabir University of Technology.

  9. A Kerr-NUT metric

    International Nuclear Information System (INIS)

    Vaidya, P.C.; Patel, L.K.; Bhatt, P.V.

    1976-01-01

    Using Galilean time and retarded distance as coordinates the usual Kerr metric is expressed in form similar to the Newman-Unti-Tamburino (NUT) metric. The combined Kerr-NUT metric is then investigated. In addition to the Kerr and NUT solutions of Einstein's equations, three other types of solutions are derived. These are (i) the radiating Kerr solution, (ii) the radiating NUT solution satisfying Rsub(ik) = sigmaxisub(i)xisub(k), xisub(i)xisup(i) = 0, and (iii) the associated Kerr solution satisfying Rsub(ik) = 0. Solution (i) is distinct from and simpler than the one reported earlier by Vaidya and Patel (Phys. Rev.; D7:3590 (1973)). Solutions (ii) and (iii) gave line elements which have the axis of symmetry as a singular line. (author)

  10. Einstein's Gravity and Dark Energy/Matter

    CERN Document Server

    Sarfatti, J

    2003-01-01

    Should Einstein's general relativity be quantized in the usual way even though it is not renormalizable the way the spin 1/2 lepto-quark - spin 1 gauge force boson local field theories are? Condensed matter theorists using P.W. Anderson's "More is different" approach, consistent with Andrei Sakharov's idea of "metric elasticity" with gravity emergent out of quantum electrodynamic zero point vacuum fluctuations, is the approach I take in this paper. The QED vacuum in globally-flat Minkowski space-time is unstable due to exchange of virtual photons between virtual electrons and positron "holes" near the -mc2 Fermi surface well inside the 2mc2 energy gap. This results in a non-perturbative emergence of both Einstein's gravity and a unified dark energy/dark matter w = -1 exotic vacuum zero point fluctuation field controlled by the local macro-quantum vacuum coherent field. The latter is a Bose-Einstein condensate of virtual off-mass-shell bound electron-positron pairs. The dark matter exotic vacuum phase with pos...

  11. The solutions of affine and conformal affine Toda field theory

    International Nuclear Information System (INIS)

    Papadopoulos, G.; Spence, B.

    1994-02-01

    We give new formulations of the solutions of the field equations of the affine Toda and conformal affine Toda theories on a cylinder and two-dimensional Minkowski space-time. These solutions are parameterised in terms of initial data and the resulting covariant phase spaces are diffeomorphic to the Hamiltonian ones. We derive the fundamental Poisson brackets of the parameters of the solutions and give the general static solutions for the affine theory. (authors). 10 refs

  12. Conformal gravity, the Einstein equations and spaces of complex null geodesics

    Energy Technology Data Exchange (ETDEWEB)

    Baston, R.J.; Mason, L.J.

    1987-07-01

    The aim of the paper is to give a twistorial characterisation of the field equations of conformal gravity and of Einstein spacetimes. Strong evidence is provided for a particularly concise characterisation of these equations in terms of 'formal neighbourhoods'of the space of complex null geodesics. Second-order perturbations of the metric of complexified Minkowski space are considered. These correspond to certain infinitesimal deformations of its space of complex null geodesics, PN. PN has a natural codimension one embedding into a larger space. It is shown that deformations extend automatically to the fourth-order embedding (that is, the fourth formal neighbourhood). They extend to the fifth formal neighbourhood if and only if the corresponding perturbation in the metric has vanishing Bach tensor. Finally, deformations which extend to the sixth formal neighbourhood correspond to perturbations in the metric that are conformally related to ones satisfying the Einstein equations. The authors present arguments which suggest that the results will also hold when spacetime is fully curved.

  13. Conformal gravity, the Einstein equations and spaces of complex null geodesics

    International Nuclear Information System (INIS)

    Baston, R.J.; Mason, L.J.

    1987-01-01

    The aim of the paper is to give a twistorial characterisation of the field equations of conformal gravity and of Einstein spacetimes. Strong evidence is provided for a particularly concise characterisation of these equations in terms of 'formal neighbourhoods'of the space of complex null geodesics. Second-order perturbations of the metric of complexified Minkowski space are considered. These correspond to certain infinitesimal deformations of its space of complex null geodesics, PN. PN has a natural codimension one embedding into a larger space. It is shown that deformations extend automatically to the fourth-order embedding (that is, the fourth formal neighbourhood). They extend to the fifth formal neighbourhood if and only if the corresponding perturbation in the metric has vanishing Bach tensor. Finally, deformations which extend to the sixth formal neighbourhood correspond to perturbations in the metric that are conformally related to ones satisfying the Einstein equations. The authors present arguments which suggest that the results will also hold when spacetime is fully curved. (author)

  14. On gravitational wave energy in Einstein gravitational theory

    International Nuclear Information System (INIS)

    Folomeshkin, V.N.; Vlasov, A.A.

    1978-01-01

    By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory

  15. Einstein-Cartan Gravity with Torsion Field Serving as an Origin for the Cosmological Constant or Dark Energy Density

    Science.gov (United States)

    Ivanov, A. N.; Wellenzohn, M.

    2016-09-01

    We analyse the Einstein-Cartan gravity in its standard form { R }=R+{{ K }}2, where { R } {and} R are the Ricci scalar curvatures in the Einstein-Cartan and Einstein gravity, respectively, and {{ K }}2 is the quadratic contribution of torsion in terms of the contorsion tensor { K }. We treat torsion as an external (or background) field and show that its contribution to the Einstein equations can be interpreted in terms of the torsion energy-momentum tensor, local conservation of which in a curved spacetime with an arbitrary metric or an arbitrary gravitational field demands a proportionality of the torsion energy-momentum tensor to a metric tensor, a covariant derivative of which vanishes owing to the metricity condition. This allows us to claim that torsion can serve as an origin for the vacuum energy density, given by the cosmological constant or dark energy density in the universe. This is a model-independent result that may explain the small value of the cosmological constant, which is a long-standing problem in cosmology. We show that the obtained result is valid also in the Poincaré gauge gravitational theory of Kibble, where the Einstein-Hilbert action can be represented in the same form: { R }=R+{{ K }}2.

  16. The Einstein action for algebras of matrix valued functions - Toy models

    Energy Technology Data Exchange (ETDEWEB)

    Hajac, P M

    1995-10-01

    Two toy models are considered within the framework of noncommutative differential geometry. In the first one, the Einstein action of the Levi-Civita connection is computed for the algebra of matrix valued functions on a torus. It is shown that, assuming some constraints on the metric, this action splits into a classical-like, a quantum-like and a mixed term. In the second model, an analogue of the Palatini method of variation is applied to obtain critical points of the Einstein action functional for M{sub 4}(R). It is pointed out that a solution to the Palatini variational problem is not necessarily a Levi-Civita connection. In this model, no additional assumptions regarding metrics are made. (author). 14 refs.

  17. Principle of space existence and De Sitter metric

    International Nuclear Information System (INIS)

    Mal'tsev, V.K.

    1990-01-01

    The selection principle for the solutions of the Einstein equations suggested in a series of papers implies the existence of space (g ik ≠ 0) only in the presence of matter (T ik ≠0). This selection principle (principle of space existence, in the Markov terminology) implies, in the general case, the absence of the cosmological solution with the De Sitter metric. On the other hand, the De Sitter metric is necessary for describing both inflation and deflation periods of the Universe. It is shown that the De Sitter metric is also allowed by the selection principle under discussion if the metric experiences the evolution into the Friedmann metric

  18. Hermitian relativity, chromodynamics and confinement

    International Nuclear Information System (INIS)

    Treder, H.J.

    1983-01-01

    The extension of the Riemann metrics of General Relativity to the complex domain (substitution of the symmetry conditions for the fundamental tensor, the affinity and the Ricci curvature by the conditions of hermicity) leads to a 'Generalized Theory of Gravity' (Einstein) describing the Newton-Einstein gravodynamics combined with the chromodynamics of quarks. The interaction of gravodynamics and chromodynamics implied by the Einstein-Schroedinger field equations of the hermitian relativity theory enforces the 'confinement'. The 'confinement' prevents the gravitational potential from divergence which would result in the lack of a Riemann space-time metric

  19. Realization of Robertson-Walker spacetimes as affine hypersurfaces

    International Nuclear Information System (INIS)

    Chen Bangyen

    2007-01-01

    Due to the growing interest in embeddings of spacetimes in higher dimensional spaces, we consider a special type of embedding. We prove that Robertson-Walker spacetimes can be embedded as centroaffine hypersurfaces and graph hypersurfaces in some affine spaces in such a way that the induced relative metrics are exactly the Lorentzian metrics on the Robertson-Walker spacetimes. Such realizations allow us to view Robertson-Walker spacetimes and their submanifolds as affine submanifolds in a natural way. Consequently, our realizations make it possible to apply the tools of affine differential geometry to study Robertson-Walker spacetimes and their submanifolds

  20. The Finsler spacetime framework. Backgrounds for physics beyond metric geometry

    International Nuclear Information System (INIS)

    Pfeifer, Christian

    2013-11-01

    The fundamental structure on which physics is described is the geometric spacetime background provided by a four dimensional manifold equipped with a Lorentzian metric. Most importantly the spacetime manifold does not only provide the stage for physical field theories but its geometry encodes causality, observers and their measurements and gravity simultaneously. This threefold role of the Lorentzian metric geometry of spacetime is one of the key insides of general relativity. During this thesis we extend the background geometry for physics from the metric framework of general relativity to our Finsler spacetime framework and ensure that the threefold role of the geometry of spacetime in physics is not changed. The geometry of Finsler spacetimes is determined by a function on the tangent bundle and includes metric geometry. In contrast to the standard formulation of Finsler geometry our Finsler spacetime framework overcomes the differentiability and existence problems of the geometric objects in earlier attempts to use Finsler geometry as an extension of Lorentzian metric geometry. The development of our nonmetric geometric framework which encodes causality is one central achievement of this thesis. On the basis of our well-defined Finsler spacetime geometry we are able to derive dynamics for the non-metric Finslerian geometry of spacetime from an action principle, obtained from the Einstein-Hilbert action, for the first time. We can complete the dynamics to a non-metric description of gravity by coupling matter fields, also formulated via an action principle, to the geometry of our Finsler spacetimes. We prove that the combined dynamics of the fields and the geometry are consistent with general relativity. Furthermore we demonstrate how to define observers and their measurements solely through the non-metric spacetime geometry. Physical consequence derived on the basis of our Finsler spacetime are: a possible solution to the fly-by anomaly in the solar system; the

  1. The Finsler spacetime framework. Backgrounds for physics beyond metric geometry

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Christian

    2013-11-15

    The fundamental structure on which physics is described is the geometric spacetime background provided by a four dimensional manifold equipped with a Lorentzian metric. Most importantly the spacetime manifold does not only provide the stage for physical field theories but its geometry encodes causality, observers and their measurements and gravity simultaneously. This threefold role of the Lorentzian metric geometry of spacetime is one of the key insides of general relativity. During this thesis we extend the background geometry for physics from the metric framework of general relativity to our Finsler spacetime framework and ensure that the threefold role of the geometry of spacetime in physics is not changed. The geometry of Finsler spacetimes is determined by a function on the tangent bundle and includes metric geometry. In contrast to the standard formulation of Finsler geometry our Finsler spacetime framework overcomes the differentiability and existence problems of the geometric objects in earlier attempts to use Finsler geometry as an extension of Lorentzian metric geometry. The development of our nonmetric geometric framework which encodes causality is one central achievement of this thesis. On the basis of our well-defined Finsler spacetime geometry we are able to derive dynamics for the non-metric Finslerian geometry of spacetime from an action principle, obtained from the Einstein-Hilbert action, for the first time. We can complete the dynamics to a non-metric description of gravity by coupling matter fields, also formulated via an action principle, to the geometry of our Finsler spacetimes. We prove that the combined dynamics of the fields and the geometry are consistent with general relativity. Furthermore we demonstrate how to define observers and their measurements solely through the non-metric spacetime geometry. Physical consequence derived on the basis of our Finsler spacetime are: a possible solution to the fly-by anomaly in the solar system; the

  2. Superenergy tensors in the Einstein-Cartan theory of gravitation

    International Nuclear Information System (INIS)

    Garecki, J.

    1981-01-01

    In this paper we study systematically a generalization of the notion of ''superenergy tensors'' which has been introduced previously in the framework of the General Theory of Relativity on the Einstein-Cartan Theory of Gravitation. It is shown, by means of expansion in the normal coordinate system that the generalization is analytically simple only for the Einstein formulation of conservation laws. (author)

  3. On an uncorrelated jet model with Bose-Einstein statistics

    International Nuclear Information System (INIS)

    Bilic, N.; Dadic, I.; Martinis, M.

    1978-01-01

    Starting from the density of states of an ideal Bose-Einstein gas, an uncorrelated jet model with Bose-Einstein statistics has been formulated. The transition to continuum is based on the Touschek invariant measure. It has been shown that in this model average multiplicity increases logarithmically with total energy, while the inclusive distribution shows ln s violation of scaling. (author)

  4. The decomposition of deformation: New metrics to enhance shape analysis in medical imaging.

    Science.gov (United States)

    Varano, Valerio; Piras, Paolo; Gabriele, Stefano; Teresi, Luciano; Nardinocchi, Paola; Dryden, Ian L; Torromeo, Concetta; Puddu, Paolo E

    2018-05-01

    In landmarks-based Shape Analysis size is measured, in most cases, with Centroid Size. Changes in shape are decomposed in affine and non affine components. Furthermore the non affine component can be in turn decomposed in a series of local deformations (partial warps). If the extent of deformation between two shapes is small, the difference between Centroid Size and m-Volume increment is barely appreciable. In medical imaging applied to soft tissues bodies can undergo very large deformations, involving large changes in size. The cardiac example, analyzed in the present paper, shows changes in m-Volume that can reach the 60%. We show here that standard Geometric Morphometrics tools (landmarks, Thin Plate Spline, and related decomposition of the deformation) can be generalized to better describe the very large deformations of biological tissues, without losing a synthetic description. In particular, the classical decomposition of the space tangent to the shape space in affine and non affine components is enriched to include also the change in size, in order to give a complete description of the tangent space to the size-and-shape space. The proposed generalization is formulated by means of a new Riemannian metric describing the change in size as change in m-Volume rather than change in Centroid Size. This leads to a redefinition of some aspects of the Kendall's size-and-shape space without losing Kendall's original formulation. This new formulation is discussed by means of simulated examples using 2D and 3D platonic shapes as well as a real example from clinical 3D echocardiographic data. We demonstrate that our decomposition based approaches discriminate very effectively healthy subjects from patients affected by Hypertrophic Cardiomyopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Hirota's solitons in the affine and the conformal affine Toda models

    International Nuclear Information System (INIS)

    Aratyn, H.; Constantinidis, C.P.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.

    1993-01-01

    We use Hirota's method formulated as a recursive scheme to construct a complete set of soliton solutions for the affine Toda field theory based on an arbitrary Lie algebra. Our solutions include a new class of solitons connected with two different types of degeneracies encountered in Hirota's perturbation approach. We also derive an universal mass formula for all Hirota's solutions to the affine Toda model valid for all underlying Lie groups. Embedding of the affine Toda model in the conformal affine Toda model plays a crucial role in this analysis. (orig.)

  6. Higher order Bose-Einstein correlations in identical particle production

    International Nuclear Information System (INIS)

    Biyajima, M.

    1990-01-01

    A diagram technique to calculate the higher order Bose-Einstein correlations is formulated. This technique is applied to derive explicit expressions for the n-pion correlation functions for n = 2, 3, 4, and 5, and numerical predictions are given. In a comparison with the AFS and NA23 data on two-pion and three-pion Bose-Einstein correlations good agreement is obtained. 21 refs., 5 figs. (Authors)

  7. Cosmology of hybrid metric-Palatini f(X)-gravity

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; Harko, Tiberiu; Koivisto, Tomi S.; Lobo, Francisco S.N.; Olmo, Gonzalo J.

    2013-01-01

    A new class of modified theories of gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed à la Palatini was proposed recently. The dynamically equivalent scalar-tensor representation of the model was also formulated, and it was shown that even if the scalar field is very light, the theory passes the Solar System observational constraints. Therefore the model predicts the existence of a long-range scalar field, modifying the cosmological and galactic dynamics. An explicit model that passes the local tests and leads to cosmic acceleration was also obtained. In the present work, it is shown that the theory can be also formulated in terms of the quantity X≡κ 2 T+R, where T and R are the traces of the stress-energy and Ricci tensors, respectively. The variable X represents the deviation with respect to the field equation trace of general relativity. The cosmological applications of this hybrid metric-Palatini gravitational theory are also explored, and cosmological solutions coming from the scalar-tensor representation of f(X)-gravity are presented. Criteria to obtain cosmic acceleration are discussed and the field equations are analyzed as a dynamical system. Several classes of dynamical cosmological solutions, depending on the functional form of the effective scalar field potential, describing both accelerating and decelerating Universes are explicitly obtained. Furthermore, the cosmological perturbation equations are derived and applied to uncover the nature of the propagating scalar degree of freedom and the signatures these models predict in the large-scale structure

  8. Fundamentals of affinity cell separations.

    Science.gov (United States)

    Zhang, Ye; Lyons, Veronica; Pappas, Dimitri

    2018-03-01

    Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Kerr-Newman metric in deSitter background

    International Nuclear Information System (INIS)

    Patel, L.K.; Koppar, S.S.; Bhatt, P.V.

    1987-01-01

    In addition to the Kerr-Newman metric with cosmological constant several other metrics are presented giving Kerr-Newman type solutions of Einstein-Maxwell field equations in the background of deSitter universe. The electromagnetic field in all the solutions is assumed to be source-free. A new metric of what may be termed as an electrovac rotating deSitter space-time- a space-time devoid of matter but containing source-free electromagnetic field and a null fluid with twisting rays-has been presented. In the absence of the electromagnetic field, these solutions reduce to those discussed by Vaidya (1984). 8 refs. (author)

  10. Towards N = 2 SUSY homogeneous quantum cosmology; Einstein-Yang-Mills systems

    International Nuclear Information System (INIS)

    Donets, E.E.; Tentyukov, M.N.; Tsulaya, M.M.

    1998-01-01

    The application of N = 2 supersymmetric Quantum Mechanics for the quantization of homogeneous systems coupled with gravity is discussed. Starting with the superfield formulation of N = 2 SUSY sigma-model, Hermitian self-adjoint expressions for quantum Hamiltonians and Lagrangians for any signature of a sigma-model metric are obtained. This approach is then applied to coupled SU (2) Einstein-Yang-Mills (EYM) systems in axially-symmetric Bianchi - I,II,VIII, IX, Kantowski-Sachs and closed Friedmann-Robertson-Walker cosmological models. It is shown that all these models admit the embedding into N = 2 SUSY sigma-model with the explicit expressions for superpotentials, being direct sums of gravitational and Yang-Mills (YM) parts. In addition, YM parts of superpotentials exactly coincide with the corresponding Chern-Simons terms. The spontaneous SUSY breaking, caused by YM instantons in EYM systems is discussed in a number of examples

  11. Extremal Kähler metrics and Bach-Merkulov equations

    Science.gov (United States)

    Koca, Caner

    2013-08-01

    In this paper, we study a coupled system of equations on oriented compact 4-manifolds which we call the Bach-Merkulov equations. These equations can be thought of as the conformally invariant version of the classical Einstein-Maxwell equations. Inspired by the work of C. LeBrun on Einstein-Maxwell equations on compact Kähler surfaces, we give a variational characterization of solutions to Bach-Merkulov equations as critical points of the Weyl functional. We also show that extremal Kähler metrics are solutions to these equations, although, contrary to the Einstein-Maxwell analogue, they are not necessarily minimizers of the Weyl functional. We illustrate this phenomenon by studying the Calabi action on Hirzebruch surfaces.

  12. Sasaki-Einstein Manifolds and Volume Minimisation

    CERN Document Server

    Martelli, D; Yau, S T; Martelli, Dario; Sparks, James; Yau, Shing-Tung

    2006-01-01

    We study a variational problem whose critical point determines the Reeb vector field for a Sasaki-Einstein manifold. This extends our previous work on Sasakian geometry by lifting the condition that the manifolds are toric. We show that the Einstein-Hilbert action, restricted to a space of Sasakian metrics on a link L in a Calabi-Yau cone M, is the volume functional, which in fact is a function on the space of Reeb vector fields. We relate this function both to the Duistermaat-Heckman formula and also to a limit of a certain equivariant index on M that counts holomorphic functions. Both formulae may be evaluated by localisation. This leads to a general formula for the volume function in terms of topological fixed point data. As a result we prove that the volume of any Sasaki-Einstein manifold, relative to that of the round sphere, is always an algebraic number. In complex dimension n=3 these results provide, via AdS/CFT, the geometric counterpart of a-maximisation in four dimensional superconformal field theo...

  13. Generalization of Vaidya's radiation metric

    Energy Technology Data Exchange (ETDEWEB)

    Gleiser, R J; Kozameh, C N [Universidad Nacional de Cordoba (Argentina). Instituto de Matematica, Astronomia y Fisica

    1981-11-01

    In this paper it is shown that if Vaidya's radiation metric is considered from the point of view of kinetic theory in general relativity, the corresponding phase space distribution function can be generalized in a particular way. The new family of spherically symmetric radiation metrics obtained contains Vaidya's as a limiting situation. The Einstein field equations are solved in a ''comoving'' coordinate system. Two arbitrary functions of a single variable are introduced in the process of solving these equations. Particular examples considered are a stationary solution, a nonvacuum solution depending on a single parameter, and several limiting situations.

  14. Static Solutions of Einstein's Equations with Cylindrical Symmetry

    Science.gov (United States)

    Trendafilova, C. S.; Fulling, S. A.

    2011-01-01

    In analogy with the standard derivation of the Schwarzschild solution, we find all static, cylindrically symmetric solutions of the Einstein field equations for vacuum. These include not only the well-known cone solution, which is locally flat, but others in which the metric coefficients are powers of the radial coordinate and the spacetime is…

  15. The correlation between the connection and the metric as the ultraviolet finiteness condition

    International Nuclear Information System (INIS)

    Belokurov, V.V.

    1990-07-01

    Calculation of the ultraviolet counterterms of the bosonic affine-metric non-linear two-dimensional sigma-model are undertaken in order to illustrate a new type of the correlation between the metric and the connection. The peculiarity of the background field method and the normal coordinate expansion for affine-metric manifolds is discussed. (author). 18 refs, 9 figs

  16. Harmonic spinors on a family of Einstein manifolds

    Science.gov (United States)

    Franchetti, Guido

    2018-06-01

    The purpose of this paper is to study harmonic spinors defined on a 1-parameter family of Einstein manifolds which includes Taub–NUT, Eguchi–Hanson and with the Fubini–Study metric as particular cases. We discuss the existence of and explicitly solve for spinors harmonic with respect to the Dirac operator twisted by a geometrically preferred connection. The metrics examined are defined, for generic values of the parameter, on a non-compact manifold with the topology of and extend to as edge-cone metrics. As a consequence, the subtle boundary conditions of the Atiyah–Patodi–Singer index theorem need to be carefully considered in order to show agreement between the index of the twisted Dirac operator and the result obtained by counting the explicit solutions.

  17. Ghost-Free Massive $f(R)$ Theories Modelled as Effective Einstein Spaces and Cosmic Acceleration

    CERN Document Server

    Vacaru, Sergiu I

    2014-01-01

    We study how massive ghost-free gravity $f(R)$-modified theories, MGFTs, can be encoded into generic off-diagonal Einstein spaces. Using "auxiliary" connections completely defined by the metric fields and adapted to nonholonomic frames with associated to nonlinear connection structure, we decouple and integrate in certain general forms the field equations in MGFT. Imposing additional nonholonomic constraints, we can generate Levi--Civita, LC, configurations and mimic MGFT effects via off-diagonal interactions of effective Einstein and/or Einstein-Cartan gravity with nonholonomically induced torsion. The cosmological evolution of ghost-free off--diagonal Einstein spaces is investigated. Certain compatibility of MGFT cosmology to small off-diagonal deformations of $\\Lambda $CDM models is established. %

  18. On coordinates and coordinate transformation in Einstein's theory of gravitation

    International Nuclear Information System (INIS)

    Chou Peiyuan

    1983-01-01

    This investigation is a further exposition of the significance of coordinates and their transformation in Einstein's theory of gravitation. The author considers the static axisymmetric field as an example, starts with its metric in the cylindrical coordinates, transforms this metric and the field equations into the Weyl-Levi-Civita system of coordinates, and supplements them with the harmonic condition. Both of the field equations and the harmonic condition are then transformed back to the original Cartesian system. Solutions for the static fields of an infinite plane with uniform surface density and an infinite rod with uniform linear density of matter, and of a body with spherical symmetry, are obtained again to show the necessity of the harmonic condition in their solutions. The fact that under the harmonic condition the solutions of the field equations for these problems contain their corresponding Newtonian potentials as approximations, is a strong support to the argument that the harmonic condition should be a physical supplement to Einstein's theory of gravitation. (Auth.)

  19. Spherically Symmetric Solutions of the Einstein-Bach Equations and a Consistent Spin-2 Field Theory

    International Nuclear Information System (INIS)

    Janda, A.

    2006-01-01

    We briefly present a relationship between General Relativity coupled to certain spin-0 and spin-2 field theories and higher derivatives metric theories of gravity. In a special case, described by the Einstein-Bach equations, the spin-0 field drops out from the theory and we obtain a consistent spin-two field theory interacting gravitationally, which overcomes a well known inconsistency of the theory for a linear spin-two field coupled to the Einstein's gravity. Then we discuss basic properties of static spherically symmetric solutions of the Einstein-Bach equations. (author)

  20. Structure of the Einstein tensor for class-1 embedded space time

    Energy Technology Data Exchange (ETDEWEB)

    Krause, J [Universidad Central de Venezuela, Caracas

    1976-04-11

    Continuing previous work, some features of the flat embedding theory of class-1 curved space-time are further discussed. In the two-metric formalism provided by the embedding approach the Gauss tensor obtains as the flat-covariant gradient of a fundamental vector potential. The Einstein tensor is then examined in terms of the Gauss tensor. It is proved that the Einstein tensor is divergence free in flat space-time, i.e. a true Lorentz-covariant conservation law for the Einstein tensor is shown to hold. The form of the Einstein tensor in flat space-time also appears as a canonical energy-momentum tensor of the vector potential. The corresponding Lagrangian density, however, does not provide us with a set of field equations for the fundamental vector potential; indeed, the Euler-Lagrange ''equations'' collapse to a useless identity, while the Lagrangian density has the form of a flat divergence.

  1. Stochastic quantization of Einstein gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1986-01-01

    We determine a one-parameter family of covariant Langevin equations for the metric tensor of general relativity corresponding to DeWitt's one-parameter family of supermetrics. The stochastic source term in these equations can be expressed in terms of a Gaussian white noise upon the introduction of a stochastic tetrad field. The only physically acceptable resolution of a mathematical ambiguity in the ansatz for the source term is the adoption of Ito's calculus. By taking the formal equilibrium limit of the stochastic metric a one-parameter family of covariant path-integral measures for general relativity is obtained. There is a unique parameter value, distinguished by any one of the following three properties: (i) the metric is harmonic with respect to the supermetric, (ii) the path-integral measure is that of DeWitt, (iii) the supermetric governs the linearized Einstein dynamics. Moreover the Feynman propagator corresponding to this parameter is causal. Finally we show that a consistent stochastic perturbation theory gives rise to a new type of diagram containing ''stochastic vertices.''

  2. The utility of affine variables and affine coherent states

    International Nuclear Information System (INIS)

    Klauder, John R

    2012-01-01

    Affine coherent states are generated by affine kinematical variables much like canonical coherent states are generated by canonical kinematical variables. Although all classical and quantum formalisms normally entail canonical variables, it is shown that affine variables can serve equally well for many classical and quantum studies. This general purpose analysis provides tools to discuss two major applications: (1) the completely successful quantization of a nonrenormalizable scalar quantum field theory by affine techniques, in complete contrast to canonical techniques which only offer triviality; and (2) a formulation of the kinematical portion of quantum gravity that favors affine kinematical variables over canonical kinematical variables, and which generates a framework in which a favorable analysis of the constrained dynamical issues can take place. All this is possible because of the close connection between the affine and the canonical stories, while the few distinctions can be used to advantage when appropriate. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (review)

  3. (Ln-bar, g)-spaces. General relativity over V4-bar - spaces

    International Nuclear Information System (INIS)

    Manoff, S.; Kolarov, A.; Dimitrov, B.

    1998-01-01

    The results from the considerations of differentiable manifolds with contravariant and covariant affine connections and metrics are specialized for the case of (L n bar, g)-spaces with metric transport (∇ ξ g = 0 for all ξ is T (M), g ij;k = 0 and f j i = e φ · g j i (the s.c. (pseudo)Riemannian spaces with contravariant and covariant symmetric affine connections). Einstein's theory of gravitation is considered in (pseudo)Riemannian spaces with different (not only by sign) contravariant and covariant affine connections ((V n bar)-spaces, n = 4). The Euler-Lagrange equations and the corresponding energy-momentum tensors (EMT-s) are obtained and compared with the Einstein equations and the EMT-s in V 4 -spaces. The geodesic and autoparallel equations in V 4 bar -spaces are found as different equations in contrast to the case of V 4 -spaces

  4. Generalized spheroidal spacetimes in 5-D Einstein-Maxwell-Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hansraj, Sudan [University of KwaZulu Natal, Astrophysics and Cosmology Research Unit, Durban (South Africa)

    2017-08-15

    The field equations for static EGBM gravity are obtained and transformed to an equivalent form through a coordinate redefinition. A form for one of the metric potentials that generalizes the spheroidal ansatz of Vaidya-Tikekar superdense stars and additionally prescribing the electric field intensity yields viable solutions. Some special cases of the general solution are considered and analogous classes in the Einstein framework are studied. In particular the Finch-Skea ansatz is examined in detail and found to satisfy the elementary physical requirements. These include positivity of pressure and density, the existence of a pressure free hypersurface marking the boundary, continuity with the exterior metric, a subluminal sound speed as well as the energy conditions. Moreover, the solution possesses no coordinate singularities. It is found that the impact of the Gauss-Bonnet term is to correct undesirable features in the pressure profile and sound speed index when compared to the equivalent Einstein gravity model. Furthermore graphical analyses suggest that higher densities are achievable for the same radial values when compared to the 5-dimensional Einstein case. The case of a constant gravitational potential, isothermal distribution as well as an incompressible fluid are studied. All exact solutions derived exhibit an equation of state explicitly. (orig.)

  5. A Hamiltonian structure for the linearized Einstein vacuum field equations

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1991-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained (Author)

  6. First integrals of geodesics in the Einstein-Schwarzschild space

    International Nuclear Information System (INIS)

    Meshkov, A.G.; Dordzhiev, P.B.

    1984-01-01

    Linear and quadratic velocity integrals of geodesics in the Einstein-Schwarzschild space are calculated. The Schwarzschild geodesics equations have only four independent linear integrals. Quadratic integrals are polynomials from linear ones with constant coefficients. Total separation of variables in the Hamilton-Jacobi equation with Schwarzschild metric is possible only in two coordinate systems: ''spherical'' and ''conic'' systems

  7. Energy functionals for Calabi-Yau metrics

    International Nuclear Information System (INIS)

    Headrick, M; Nassar, A

    2013-01-01

    We identify a set of ''energy'' functionals on the space of metrics in a given Kähler class on a Calabi-Yau manifold, which are bounded below and minimized uniquely on the Ricci-flat metric in that class. Using these functionals, we recast the problem of numerically solving the Einstein equation as an optimization problem. We apply this strategy, using the ''algebraic'' metrics (metrics for which the Kähler potential is given in terms of a polynomial in the projective coordinates), to the Fermat quartic and to a one-parameter family of quintics that includes the Fermat and conifold quintics. We show that this method yields approximations to the Ricci-flat metric that are exponentially accurate in the degree of the polynomial (except at the conifold point, where the convergence is polynomial), and therefore orders of magnitude more accurate than the balanced metrics, previously studied as approximations to the Ricci-flat metric. The method is relatively fast and easy to implement. On the theoretical side, we also show that the functionals can be used to give a heuristic proof of Yau's theorem

  8. Einstein's Cosmos (German Title: Einsteins Kosmos)

    Science.gov (United States)

    Duerbeck, Hilmar W.; Dick, Wolfgang R.

    The different contributions of the present volume illuminate the interaction between Einstein and his colleagues when the foundations of modern cosmology were laid: First, the relativistic effects in the solar system, the gravitational redshift in the solar spectrum, and Einstein's relations with Freundlich and Eddington. Second, the cosmological models of Einstein, de Sitter, Friedmann, and Lemaître, which were discussed controversely till the end of the 1920s. Other scientists have also widened or critically questioned Einstein's insight and knowledge: Schwarzschild, Selety, Silberstein, and Mandl, whose life and work is discussed in separate articles. In those days, politics more than ever in history had influenced the lifes of scientists. Therefore, some comments on the ``political cosmos'' that has influenced decisively Einstein's life are also given. A special role in popularizing Einstein's world view was played by Archenhold Observatory in Berlin. A list of Einstein memorial places and a bibliographic list conclude the present book. All papers are written in German, and have English abstracts.

  9. Translational invariance of the Einstein-Cartan action in any dimension

    Science.gov (United States)

    Kiriushcheva, N.; Kuzmin, S. V.

    2010-11-01

    We demonstrate that from the first order formulation of the Einstein- Cartan action it is possible to derive the basic differential identity that leads to translational invariance of the action in the tangent space. The transformations of fields is written explicitly for both the first and second order formulations and the group properties of transformations are studied. This, combined with the preliminary results from the Hamiltonian formulation (Kiriushcheva and Kuzmin in arXiv:0907.1553 [gr-qc]), allows us to conclude that without any modification, the Einstein-Cartan action in any dimension higher than two possesses not only rotational invariance but also a form of translational invariance in the tangent space. We argue that not only a complete Hamiltonian analysis can unambiguously give an answer to the question of what a gauge symmetry is, but also the pure Lagrangian methods allow us to find the same gauge symmetry from the basic differential identities.

  10. Homothetic and conformal motions in spacelike slices of solutions of Einstein's equations

    International Nuclear Information System (INIS)

    Berger, B.K.

    1976-01-01

    Components of Killing's equation are used to obtain constraints satisfied in a spacelike hypersurface by the intrinsic metric and extrinsic curvature in the presence of a spacetime conformal motion for a solution of Einstein's equations. If the conformal motion is either a homothetic motion or a motion, it is shown that these Killing constraints are preserved by the Einstein evolution equations. It is then shown that the generator of the homothetic motion (homothetic Killing vector) can be constructed if the Killing constraints are satisfied by a set of initial data. It is shown that a homothetic motion in the intrinsic metric is a spacetime homothetic motion if the extrinsic curvature is transformed correctly under the spatial homothetic motion. Further restrictions on a proper conformal motion due to the fact that it is not identically a curvature collineation are obtained. Restrictions on the matter--stress--energy tensor are discussed. Examples are presented

  11. The outlooks of Helmholtz, Plank and Einstein on the unified physical theory

    International Nuclear Information System (INIS)

    Treder, G.Yu.

    1982-01-01

    The outlooks of Helmholtz, Planck and Einstein on the unified physical theory are exposed. Planck formulated the Einstein relativistic mechanics in the canonical form stemming from the suggested by Helmholtz approach that the principle of action is the unified formal principle of physics. Einstein and his companious proceeded from machroscopic fields in the attempts to prove the unified geometric field theory. The sense of Planck length as ''the smallest length in physics'' is determined, on the one hand, by the Heizenberg uncerntainty principle for the measurement process, and on the other hand by the universal proportionality between inertia and gravity. It results from geometrical nature and gravitational potential, i. e. from Einstein interpretation of the equivalence principle

  12. Hybrid metric-Palatini stars

    Science.gov (United States)

    Danilǎ, Bogdan; Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K.

    2017-02-01

    We consider the internal structure and the physical properties of specific classes of neutron, quark and Bose-Einstein condensate stars in the recently proposed hybrid metric-Palatini gravity theory, which is a combination of the metric and Palatini f (R ) formalisms. It turns out that the theory is very successful in accounting for the observed phenomenology, since it unifies local constraints at the Solar System level and the late-time cosmic acceleration, even if the scalar field is very light. In this paper, we derive the equilibrium equations for a spherically symmetric configuration (mass continuity and Tolman-Oppenheimer-Volkoff) in the framework of the scalar-tensor representation of the hybrid metric-Palatini theory, and we investigate their solutions numerically for different equations of state of neutron and quark matter, by adopting for the scalar field potential a Higgs-type form. It turns out that the scalar-tensor definition of the potential can be represented as an Clairaut differential equation, and provides an explicit form for f (R ) given by f (R )˜R +Λeff, where Λeff is an effective cosmological constant. Furthermore, stellar models, described by the stiff fluid, radiation-like, bag model and the Bose-Einstein condensate equations of state are explicitly constructed in both general relativity and hybrid metric-Palatini gravity, thus allowing an in-depth comparison between the predictions of these two gravitational theories. As a general result it turns out that for all the considered equations of state, hybrid gravity stars are more massive than their general relativistic counterparts. Furthermore, two classes of stellar models corresponding to two particular choices of the functional form of the scalar field (constant value, and logarithmic form, respectively) are also investigated. Interestingly enough, in the case of a constant scalar field the equation of state of the matter takes the form of the bag model equation of state describing

  13. Static solutions with nontrivial boundaries for the Einstein-Gauss-Bonnet theory in vacuum

    International Nuclear Information System (INIS)

    Dotti, Gustavo; Oliva, Julio; Troncoso, Ricardo

    2010-01-01

    The classification of a certain class of static solutions for the Einstein-Gauss-Bonnet theory in vacuum is performed in d≥5 dimensions. The class of metrics under consideration is such that the spacelike section is a warped product of the real line and an arbitrary base manifold. It is shown that for a generic value of the Gauss-Bonnet coupling, the base manifold must be necessarily Einstein, with an additional restriction on its Weyl tensor for d>5. The boundary admits a wider class of geometries only in the special case when the Gauss-Bonnet coupling is such that the theory admits a unique maximally symmetric solution. The additional freedom in the boundary metric enlarges the class of allowed geometries in the bulk, which are classified within three main branches, containing new black holes and wormholes in vacuum.

  14. On the stability of Einstein static universe at background level in massive bigravity

    Directory of Open Access Journals (Sweden)

    M. Mousavi

    2017-06-01

    Full Text Available We study the static cosmological solutions and their stability at background level in the framework of massive bigravity theory with Friedmann–Robertson–Walker (FRW metrics. By the modification proposed in the cosmological equations subject to a perfect fluid we obtain new solutions interpreted as the Einstein static universe. It turns out that the non-vanishing size of initial scale factor of Einstein static universe depends on the non-vanishing three-dimensional spatial curvature of FRW metrics and also the graviton's mass. By dynamical system approach and numerical analysis, we find that the extracted solutions for closed and open universes can be stable for some viable ranges of equation of state parameter, viable values of fraction of two scale factors, and viable values of graviton's mass obeying the hierarchy m<

  15. Stability of the graviton Bose–Einstein condensate in the brane-world

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, Roberto, E-mail: casadio@bo.infn.it [Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna, viale B. Pichat 6, 40127 Bologna (Italy); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [CMCC, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil)

    2016-12-10

    We consider a solution of the effective four-dimensional Einstein equations, obtained from the general relativistic Schwarzschild metric through the principle of Minimal Geometric Deformation (MGD). Since the brane tension can, in general, introduce new singularities on a relativistic Eötvös brane model in the MGD framework, we require the absence of observed singularities, in order to constrain the brane tension. We then study the corresponding Bose–Einstein condensate (BEC) gravitational system and determine the critical stability region of BEC MGD stellar configurations. Finally, the critical stellar densities are shown to be related with critical points of the information entropy.

  16. Heuristic extension of the Schwarzschild metric

    International Nuclear Information System (INIS)

    Espinosa, J.M.

    1982-01-01

    The Schwarzschild solution of Einstein's equations of gravitation has several singularities. It is known that the singularity at r = 2Gm/c 2 is only apparent, a result of the coordinates in which the solution was found. Paradoxical results occuring near the singularity show the system of coordinates is incomplete. We introduce a simple, two-dimensional metric with an apparent singularity that makes it incomplete. By a straightforward, heuristic procedure we extend and complete this simple metric. We then use the same procedure to give a heuristic derivation of the Kruskal system of coordinates, which is known to extend the Schwarzschild manifold past its apparent singularity and produce a complete manifold

  17. Universal Themes of Bose-Einstein Condensation

    Science.gov (United States)

    Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.

    2017-04-01

    condensation of photons and grand-canonical condensate fluctuations J. Klaers and M. Weitz; 20. Laser operation and Bose-Einstein condensation: analogies and differences A. Chiocchetta, A. Gambassi and I. Carusotto; 21. Vortices in resonant polariton condensates in semiconductor microcavities D. N. Krizhanovskii, K. Guda, M. Sich, M. S. Skolnick, L. Dominici and D. Sanvitto; 22. Optical control of polariton condensates G. Christmann, P. G. Savvidis and J. J. Baumberg; 23. Disorder, synchronization and phase-locking in non-equilibrium Bose-Einstein condensates P. R. Eastham and B. Rosenow; 24. Collective topological excitations in 1D polariton quantum fluids H. Terças, D. D. Solnyshkov and G. Malpuech; 25. Microscopic theory of Bose-Einstein condensation of magnons at room temperature H. Salman, N. G. Berloff and S. O. Demokritov; 26. Spintronics and magnon Bose-Einstein condensation R. A. Duine, A. Brataas, S. A. Bender and Y. Tserkovnyak; 27. Spin-superfluidity and spin-current mediated non-local transport H. Chen and A. H. MacDonald; 28. Bose-Einstein condensation in quantum magnets C. Kollath, T. Giamarchi and C. Rüegg; Part V. Condensates in Astrophysics and Cosmology: Editorial notes; 29. Bose-Einstein condensates in neutron stars C. J. Pethick, T. Schäfer and A. Schwenk; 30. A simulated cosmological metric: the superfluid 3He condensate G. R. Pickett; 31. Cosmic axion Bose-Einstein condensation N. Banik and P. Sikivie; 32. Graviton BECs: a new approach to quantum gravity G. Dvali and C. Gomez; Universal Bose-Einstein condensation workshop; Index.

  18. Einstein-Rosen 'bridge' revisited and lightlike thin-shell wormholes

    International Nuclear Information System (INIS)

    Guendelman, E.; Nissimov, E.; Pacheva, S.; Stoilov, M.

    2017-01-01

    We study in some detail the properties of the mathematically correct formulation of the classical Einstein-Rosen 'bridge' as proposed in the original 1935 paper, which was shown in a series of previous papers of ours to represent the simplest example of a static spherically symmetric traversable lightlike thin-shell wormhole. Thus, the original Einstein-Rosen 'bridge' is not equivalent to the concept of the dynamical and non-traversable Schwarzschild wormhole, also called 'Einstein-Rosen bridge' in modern textbooks on general relativity. The original Einstein-Rosen 'bridge' requires the presence of a special kind of 'exotic' matter source located on its throat which was shown to be the simplest member of the previously introduced by us class of lightlike membranes. We introduce and exploit the Kruskal-Penrose description of the original Einstein-Rosen 'bridge'. In particular, we explicitly construct closed timelike geodesics on the pertinent Kruskal-Penrose manifold.

  19. Metric preheating and limitations of linearized gravity

    International Nuclear Information System (INIS)

    Bassett, Bruce A.; Tamburini, Fabrizio; Kaiser, David I.; Maartens, Roy

    1999-01-01

    During the preheating era after inflation, resonant amplification of quantum field fluctuations takes place. Recently it has become clear that this must be accompanied by resonant amplification of scalar metric fluctuations, since the two are united by Einstein's equations. Furthermore, this 'metric preheating' enhances particle production, and leads to gravitational rescattering effects even at linear order. In multi-field models with strong preheating (q>>1), metric perturbations are driven non-linear, with the strongest amplification typically on super-Hubble scales (k→0). This amplification is causal, being due to the super-Hubble coherence of the inflaton condensate, and is accompanied by resonant growth of entropy perturbations. The amplification invalidates the use of the linearized Einstein field equations, irrespective of the amount of fine-tuning of the initial conditions. This has serious implications on all scales - from large-angle cosmic microwave background (CMB) anisotropies to primordial black holes. We investigate the (q,k) parameter space in a two-field model, and introduce the time to non-linearity, t nl , as the timescale for the breakdown of the linearized Einstein equations. t nl is a robust indicator of resonance behavior, showing the fine structure in q and k that one expects from a quasi-Floquet system, and we argue that t nl is a suitable generalization of the static Floquet index in an expanding universe. Backreaction effects are expected to shut down the linear resonances, but cannot remove the existing amplification, which threatens the viability of strong preheating when confronted with the CMB. Mode-mode coupling and turbulence tend to re-establish scale invariance, but this process is limited by causality and for small k the primordial scale invariance of the spectrum may be destroyed. We discuss ways to escape the above conclusions, including secondary phases of inflation and preheating solely to fermions. The exclusion principle

  20. Inflation with non-minimal coupling. Metric vs. Palatini formulations

    International Nuclear Information System (INIS)

    Bauer, F.; Demir, D.A.; Izmir Institute of Technology

    2008-03-01

    We analyze non-minimally coupled scalar field theories in metric (second-order) and Palatini (first-order) formalisms in a comparative fashion. After contrasting them in a general setup, we specialize to inflation and find that the two formalisms differ in their predictions for various cosmological parameters. The main reason is that dependencies on the non-minimal coupling parameter are different in the two formalisms. For successful inflation, the Palatini approach prefers a much larger value for the non-minimal coupling parameter than the Metric approach. Unlike the Metric formalism, in Palatini, the inflaton stays well below the Planck scale whereby providing a natural inflationary epoch. (orig.)

  1. Einstein-Weyl spaces and dispersionless Kadomtsev-Petviashvili equation from Painleve I and II

    International Nuclear Information System (INIS)

    Dunajski, Maciej; Tod, Paul

    2002-01-01

    We present two constructions of new solutions to the dispersionless KP (dKP) equation arising from the first two Painleve transcendents. The first construction is a hodograph transformation based on Einstein-Weyl geometry, the generalized Nahm's equation and the isomonodromy problem. The second construction, motivated by the first, is a direct characterization of solutions to dKP which are constant on a central quadric. We show how the solutions to the dKP equations can be used to construct some three-dimensional Einstein-Weyl structures, and four-dimensional anti-self-dual null-Kaehler metrics

  2. Einstein today; Einstein aujourd'hui

    Energy Technology Data Exchange (ETDEWEB)

    Aspect, A.; Grangier, Ph. [Centre National de la Recherche Scientifique (CNRS), Lab. Charles Fabry de l' Institut d' Optique a Orsay, 91 - Orsay (France); Bouchet, F.R. [Institut d' Astrophysique de Paris, CNRS, 75 - Paris (France); Brunet, E.; Derrida, B. [Universite Pierre et Marie Curie, Ecole Normale Superieure, 75 - Paris (France); Cohen-Tannoudji, C. [Academie des Sciences, 75 - Paris (France); Dalibard, J.; Laloe, F. [Laboratoire Kastler Brossel. UMR 8552 (ENS, UPMC, CNRS), 75 - Paris (France); Damour, Th. [Institut des Hautes Etudes Scientifiques, 91 - Bures sur Yvette (France); Darrigol, O. [Centre National de la Recherche Scientifique (CNRS), Groupe Histoire des Sciences Rehseis, 75 - Paris (France); Pocholle, J.P. [Thales Research et Technology France, 91 - Palaiseau (France)

    2005-07-01

    The most important contributions of Einstein involve 5 fields of physics : the existence of quanta (light quanta, stimulated radiation emission and Bose-Einstein condensation), relativity, fluctuations (Brownian motion and thermodynamical fluctuations), the basis of quantum physics and cosmology (cosmological constant and the expansion of the universe). Diverse and renowned physicists have appreciated the development of modern physics from Einstein's ideas to the knowledge of today. This book is a collective book that gathers their work under 7 chapters: 1) 1905, a new beginning; 2) from the Einstein, Podolsky and Rosen's article to quantum information (cryptography and quantum computers); 3) the Bose-Einstein condensation in gases; 4) from stimulated emission to the today's lasers; 5) Brownian motion and the fluctuation-dissipation theory; 6) general relativity; and 7) cosmology. (A.C.)

  3. Wormholes in Einstein-Born-Infeld Gravity

    Directory of Open Access Journals (Sweden)

    Kim Jin Young

    2018-01-01

    Full Text Available We introduce a new approach to construct wormholes without introducing exotic matters in Einstein-Born-Infeld gravity with a cosmological constant. Contary to the conventional approach, the throat is located at the place where the solutions can be joined smoothly. The metric and its derivatives are continuous so that the exotic matters are not needed there. The exoticity of the energy-momentum tensor is not essential to sustain the wormhole. We also present a method to check the stability of wormholes in the new approach.

  4. Neutrino fields in Einstein-Cartan theory

    International Nuclear Information System (INIS)

    Griffiths, J.B.

    1981-01-01

    The spin-coefficient formalism presented elsewhere is here applied to classical neutrino fields in Einstein-Cartan theory. It is shown that the neutrino current vector is tangent to an expansion-free null geodesic congruence with constant and equal twist and shear, which vanish if and only if the congruence is a repeated principal null congruence of the gravitational field. The geodesics are both extremals and autoparallels. All exact solutions for the case of pure radiation fields are obtained, and it is shown that the only possible ghost solutions have a plane wave metric. (author)

  5. Goedel-type metrics in various dimensions

    International Nuclear Information System (INIS)

    Guerses, Metin; Karasu, Atalay; Sarioglu, Oezguer

    2005-01-01

    Goedel-type metrics are introduced and used in producing charged dust solutions in various dimensions. The key ingredient is a (D - 1)-dimensional Riemannian geometry which is then employed in constructing solutions to the Einstein-Maxwell field equations with a dust distribution in D dimensions. The only essential field equation in the procedure turns out to be the source-free Maxwell's equation in the relevant background. Similarly the geodesics of this type of metric are described by the Lorentz force equation for a charged particle in the lower dimensional geometry. It is explicitly shown with several examples that Goedel-type metrics can be used in obtaining exact solutions to various supergravity theories and in constructing spacetimes that contain both closed timelike and closed null curves and that contain neither of these. Among the solutions that can be established using non-flat backgrounds, such as the Tangherlini metrics in (D - 1)-dimensions, there exists a class which can be interpreted as describing black-hole-type objects in a Goedel-like universe

  6. Interior metric and ray-tracing map in the firework black-to-white hole transition

    OpenAIRE

    Rovelli, Carlo; Martin-Dussaud, Pierre

    2018-01-01

    The possibility that a black hole could tunnel into to white hole has recently received attention. Here we present a metric that improves the "firework" metric: it describes the entire process and solves the Einstein's equations everywhere except on a small transition surface that corresponds to the quantum tunneling. We compute the corresponding ray-tracing map from past infinity to future infinity explicitly.

  7. Thermodynamic fluctuations within the Gibbs and Einstein approaches

    International Nuclear Information System (INIS)

    Rudoi, Yurii G; Sukhanov, Alexander D

    2000-01-01

    A comparative analysis of the descriptions of fluctuations in statistical mechanics (the Gibbs approach) and in statistical thermodynamics (the Einstein approach) is given. On this basis solutions are obtained for the Gibbs and Einstein problems that arise in pressure fluctuation calculations for a spatially limited equilibrium (or slightly nonequilibrium) macroscopic system. A modern formulation of the Gibbs approach which allows one to calculate equilibrium pressure fluctuations without making any additional assumptions is presented; to this end the generalized Bogolyubov - Zubarev and Hellmann - Feynman theorems are proved for the classical and quantum descriptions of a macrosystem. A statistical version of the Einstein approach is developed which shows a fundamental difference in pressure fluctuation results obtained within the context of two approaches. Both the 'genetic' relation between the Gibbs and Einstein approaches and the conceptual distinction between their physical grounds are demonstrated. To illustrate the results, which are valid for any thermodynamic system, an ideal nondegenerate gas of microparticles is considered, both classically and quantum mechanically. Based on the results obtained, the correspondence between the micro- and macroscopic descriptions is considered and the prospects of statistical thermodynamics are discussed. (reviews of topical problems)

  8. The Foundations of Einstein's Theory of Gravitation

    Science.gov (United States)

    Freundlich, Erwin; Brose, Translated by Henry L.; Einstein, Preface by Albert; Turner, Introduction by H. H.

    2011-06-01

    Introduction; 1. The special theory of relativity as a stepping-stone to the general theory of relativity; 2. Two fundamental postulates in the mathematical formulation of physical laws; 3. Concerning the fulfilment of the two postulates; 4. The difficulties in the principles of classical mechanics; 5. Einstein's theory of gravitation; 6. The verification of the new theory by actual experience; Appendix; Index.

  9. Einstein and Austria

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    This text was written by Engelbert Broda in 1979 and is about Albert Einstein and his relation to Austria. This text is split in different sections which are amongst others: Einstein und Mach; Einstein und Boltzmann; Positivism, Atoms and Relativity; Einstein as an Austrian professor; Einstein’s visits to Austria; Einstein and Viennese friends; Einstein and Friedrich Adler; Einstein and the Austrian mentality; (nowak)

  10. Einstein and Hilbert: The creation of general relativity

    International Nuclear Information System (INIS)

    Todorov, I.T.

    1992-12-01

    It took eight years after Einstein announced the basic physical ideas behind the relativistic gravity theory before the proper mathematical formulation of general-relativity was mastered. The efforts of the greatest physicist and of the greatest mathematician of the time was involved and reached a breathtaking concentration during the last month of the work. (author)

  11. Applications of Affine and Weyl geometry

    CERN Document Server

    García-Río, Eduardo; Nikcevic, Stana

    2013-01-01

    Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannia

  12. Generalized Friedmann-Robertson-Walker metric and redundancy in the generalized Einstein equations

    International Nuclear Information System (INIS)

    Kao, W.F.; Pen, U.

    1991-01-01

    A nontrivial redundancy relation, due to the differential structure of the gravitational Bianchi identity as well as the symmetry of the Friedmann-Robertson-Walker metric, in the gravitational field equation is clarified. A generalized Friedmann-Robertson-Walker metric is introduced in order to properly define a one-dimensional reduced problem which offers an alternative approach to obtain the gravitational field equations on Friedmann-Robertson-Walker spaces

  13. Geometric properties of static Einstein-Maxwell dilaton horizons with a Liouville potential

    International Nuclear Information System (INIS)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2011-01-01

    We study nondegenerate and degenerate (extremal) Killing horizons of arbitrary geometry and topology within the Einstein-Maxwell-dilaton model with a Liouville potential (the EMdL model) in d-dimensional (d≥4) static space-times. Using Israel's description of a static space-time, we construct the EMdL equations and the space-time curvature invariants: the Ricci scalar, the square of the Ricci tensor, and the Kretschmann scalar. Assuming that space-time metric functions and the model fields are real analytic functions in the vicinity of a space-time horizon, we study the behavior of the space-time metric and the fields near the horizon and derive relations between the space-time curvature invariants calculated on the horizon and geometric invariants of the horizon surface. The derived relations generalize similar relations known for horizons of static four- and five-dimensional vacuum and four-dimensional electrovacuum space-times. Our analysis shows that all the extremal horizon surfaces are Einstein spaces. We present the necessary conditions for the existence of static extremal horizons within the EMdL model.

  14. Newton's second law, radiation reaction and type II Einstein-Maxwell fields

    International Nuclear Information System (INIS)

    Newman, Ezra T

    2011-01-01

    Considering perturbations of the Reissner-Nordstroem metric while keeping the perturbations in the class of type II Einstein-Maxwell metrics, we perform a spherical harmonic expansion of all the variables up to the quadrupole term. This leads to rather surprising results. Referring to the source of the metric as a type II particle (analogous to referring to a Schwarzschild-Reissner-Nordstroem or Kerr-Newman particle), we see immediately that the Bondi momentum of the particle takes the classical form of mass times velocity plus an electromagnetic radiation reaction term, while the Bondi mass loss equation becomes the classical gravitational and electromagnetic (electric and magnetic) dipole and quadrupole radiation. The Bondi momentum loss equation turns into Newton's second law of motion containing the Abraham-Lorentz-Dirac radiation reaction force plus a momentum recoil (rocket) force, while the reality condition on the Bondi mass aspect yields the conservation of angular momentum. Two things must be pointed out: (1) these results, (equations of motion, etc) take place, not in the spacetime of the type II metric but in an auxiliary space referred to as H-space, whose physical meaning is rather obscure and (2) this analysis of the type II field equations is a very special case of a similar analysis of the general asymptotically flat Einstein-Maxwell equations. Although the final results are similar (though not the same), the analysis uses different equations (specifically, the type II field equations) and is vastly simpler than the general case. Without a great deal of the technical structures needed in the general case, one can see rather easily where the basic results reside in the type II field equations. (paper)

  15. Symmetries of the stationary Einstein--Maxwell equations. VI. Transformations which generate asymptotically flat spacetimes with arbitrary multipole moments

    International Nuclear Information System (INIS)

    Hoenselaers, C.; Kinnersley, W.; Xanthopoulos, B.C.

    1979-01-01

    A new series of transformations is presented for generating stationary axially symmetric asymptotically flat vacuum solutions of Einstein's equations. The application requires only algebraic manipulations to be performed. Several examples are given of new stationary axisymmetric solutions obtained in this way. It is conjectured that the transformations, applied to the genral Weyl metric, can be used to generate systematically all stationary metrics with axial symmetry

  16. On the hyperbolicity of Einstein's and other gauge field equations

    International Nuclear Information System (INIS)

    Friedrich, H.

    1985-01-01

    It is shown that Einstein's vacuum field equations (respectively the conformal vacuum field equations) in a frame formalism imply a symmetric hyperbolic system of ''reduce'' propagation equations for any choice of coordinate system and frame field (and conformal factor). Certain freely specifiable ''gauge source'' functions occurring in the reduced equations reflect the choice of gauge. Together with the initial data they determine the gauge uniquely. Their choice does not affect the isometry class (conformal class) of a solution of an initial value problem. By the same method symmetric hyperbolic propagation equations are obtained from other gauge field equations, irrespective of the gauge. Using the concept of source functions one finds that Einstein's field equation, considered as second order equations for the metric coefficients, are of wave equation type in any coordinate system. (orig.)

  17. Metrics of a 'mole hole' against the Lobachevsky space background

    International Nuclear Information System (INIS)

    Tentyukov, M.N.

    1994-01-01

    'Classical' mole hole are the Euclidean metrics consisting of two large space regions connected by a throat. They are the instanton solutions of the Einstein equations. It is shown that for existence of mole holes in the general relativity theory it is required the energy-momentum tensor breaking energetic conditions. 9 refs., 7 figs

  18. The geometry of the SLsub(2,c) gauge formulation of general relativity

    International Nuclear Information System (INIS)

    Kaye, M.

    1978-01-01

    The formulation of Einstein's general theory of relativity as an SLsub(2,c) gauge theory is considered. Use is made of the language of fibre bundles and general arguments are put forward in favour of the SLsub(2,c) approach to problems connected with the study of the space-time structure. The possibility of deriving the dynamics of the theory from a Yang-Mills-type Lagrangian density is discussed. Finally, the spinor approach is compared with other approaches to the problem of formulating Einstein's theory as a gauge theory

  19. About symmetry of the gravitational action

    International Nuclear Information System (INIS)

    Tentyukov, M.N.

    1991-01-01

    The Einstein equations are investigated by imbedding of the metric tensor to the affinely connected space. It is shown that if using of the Einstein equations, then, despite the action functional invariance being violated with respect to the diffeomorphism group by the background object, a new infinite-parameter invariance appears, i.e., the action invariance can be extended from the group of motions of the background object to any infinite-parameter group. 10 refs

  20. An exact solution in Einstein-Cartan

    International Nuclear Information System (INIS)

    Roque, W.L.

    1982-01-01

    The exact solution of the field equations of the Einstein-Cartan theory is obtained for an artificial dust of radially polarized spins, with spherical symmetry and static. For a best estimation of the effect due the spin, the energy-momentum metric tensor is considered null. The gravitational field dynamics is studied for several torsion strengths, through the massive and spinless test-particle moviment, in particular for null torsion Schwarzschild solutions is again obtained. It is observed that the gravitational effects related to the torsin (spin) sometimes are attractives sometimes are repulsives, depending of the torsion values and of the test-particle position and velocity. (L.C.) [pt

  1. General relativity: An erfc metric

    Science.gov (United States)

    Plamondon, Réjean

    2018-06-01

    This paper proposes an erfc potential to incorporate in a symmetric metric. One key feature of this model is that it relies on the existence of an intrinsic physical constant σ, a star-specific proper length that scales all its surroundings. Based thereon, the new metric is used to study the space-time geometry of a static symmetric massive object, as seen from its interior. The analytical solutions to the Einstein equation are presented, highlighting the absence of singularities and discontinuities in such a model. The geodesics are derived in their second- and first-order differential formats. Recalling the slight impact of the new model on the classical general relativity tests in the solar system, a number of facts and open problems are briefly revisited on the basis of a heuristic definition of σ. A special attention is given to gravitational collapses and non-singular black holes.

  2. Dual giant gravitons in Sasaki-Einstein backgrounds

    International Nuclear Information System (INIS)

    Martelli, Dario; Sparks, James

    2006-01-01

    We study the dynamics of a BPS D3-brane wrapped on a three-sphere in AdS 5 xL, a so-called dual giant graviton, where L is a Sasakian five-manifold. The phase space of these configurations is the symplectic cone X over L, and geometric quantisation naturally produces a Hilbert space of L 2 -normalisable holomorphic functions on X, whose states are dual to scalar chiral BPS operators in the dual superconformal field theory. We define classical and quantum partition functions and relate them to earlier mathematical constructions by the authors and S.-T. Yau, [D. Martelli, J. Sparks, S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, hep-th/0603021]. In particular, a Sasaki-Einstein metric then minimises an entropy function associated with the D3-brane. Finally, we introduce a grand canonical partition function that counts multiple dual giant gravitons. This is related simply to the index-character of the above reference, and provides a method for counting multi-trace scalar BPS operators in the dual superconformal field theory

  3. The Einstein dossiers science and politics - Einstein's Berlin period with an appendix on Einstein's FBI file

    CERN Document Server

    Grundmann, Siegfried

    2004-01-01

    In 1919 the Prussian Ministry of Science, Arts and Culture opened a dossier on "Einstein's Theory of Relativity." It was rediscovered by the author in 1961 and is used in conjunction with numerous other subsequently identified 'Einstein' files as the basis of this fascinating book. In particular, the author carefully scrutinizes Einstein's FBI file from 1950-55 against mostly unpublished material from European including Soviet sources and presents hitherto unknown documentation on Einstein's alleged contacts with the German Communist Party and the Comintern. Siegfried Grundmann's thorough study of Einstein's participation on a committee of the League of Nations, based on archival research in Geneva, is also new. This book outlines Einstein's image in politics and German science policy. It covers the period from his appointment as a researcher in Berlin to his fight abroad against the "boycott of German science" after World War I and his struggle at home against attacks on "Jewish physics" of which he was made...

  4. Einstein today

    International Nuclear Information System (INIS)

    Aspect, A.; Grangier, Ph.; Bouchet, F.R.; Brunet, E.; Derrida, B.; Cohen-Tannoudji, C.; Dalibard, J.; Laloe, F.; Damour, Th.; Darrigol, O.; Pocholle, J.P.

    2005-01-01

    The most important contributions of Einstein involve 5 fields of physics : the existence of quanta (light quanta, stimulated radiation emission and Bose-Einstein condensation), relativity, fluctuations (Brownian motion and thermodynamical fluctuations), the basis of quantum physics and cosmology (cosmological constant and the expansion of the universe). Diverse and renowned physicists have appreciated the development of modern physics from Einstein's ideas to the knowledge of today. This book is a collective book that gathers their work under 7 chapters: 1) 1905, a new beginning; 2) from the Einstein, Podolsky and Rosen's article to quantum information (cryptography and quantum computers); 3) the Bose-Einstein condensation in gases; 4) from stimulated emission to the today's lasers; 5) Brownian motion and the fluctuation-dissipation theory; 6) general relativity; and 7) cosmology. (A.C.)

  5. On a new approach for constructing wormholes in Einstein-Born-Infeld gravity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Young [Kunsan National University, Department of Physics, Kunsan (Korea, Republic of); Park, Mu-In [Sogang University, Research Institute for Basic Science, Seoul (Korea, Republic of)

    2016-11-15

    We study a new approach for the wormhole construction in Einstein-Born-Infeld gravity, which does not require exotic matters in the Einstein equation. The Born-Infeld field equation is not modified by coordinate independent conditions of continuous metric tensor and its derivatives, even though the Born-Infeld fields have discontinuities in their derivatives at the throat in general. We study the relation of the newly introduced conditions with the usual continuity equation for the energy-momentum tensor and the gravitational Bianchi identity. We find that there is no violation of energy conditions for the Born-Infeld fields contrary to the usual approaches. The exoticity of the energy-momentum tensor is not essential for sustaining wormholes. Some open problems are discussed. (orig.)

  6. Extended differential geometry as a basis for physical field theory

    International Nuclear Information System (INIS)

    Bruce, M.H.

    1984-01-01

    An extension of Riemann differential geometry is considered as a broadened uniform basis for physical field theory. The requirements for such a theory are set and interpreted as a generalized Ricci calculus capable of supporting certain physical affine motions and metric constraints. Both tensor and spinor languages are considered and a variational calculus is formulated within the geometry. The dominant emergent feature is the replacement of ordinary derivatives by generalized differential operators involving the usual Christoffel symbols as well as more general connection parameters. Then the Euler-Lagrange equations with constraints may be regarded as a general differential geometry and an action principle is formulated to give equations of motion in terms of generalized momentum operations. A cononical momentum tensor is employed which yields, by a generalized boundary variations of the action a set of conservation laws. The formulation is then applied to such diverse topics as the generalizing of the Dirac equation, the Lorentz and radiation terms for a charged particle, the relativistic rotator, and considerations on a geometric origin for the the Einstein energy density tensor

  7. Einstein was right!

    CERN Document Server

    Hess, Karl

    2014-01-01

    All modern books on Einstein emphasize the genius of his relativity theory and the corresponding corrections and extensions of the ancient space-time concept. However, Einstein's opposition to the use of probability in the laws of nature and particularly in the laws of quantum mechanics is criticized and often portrayed as outdated. The author of Einstein Was Right! takes a unique view and shows that Einstein created a ""Trojan horse"" ready to unleash forces against the use of probability as a basis for the laws of nature. Einstein warned that the use of probability would, in the final analys

  8. Maja Winteler-Einstein

    Indian Academy of Sciences (India)

    Einstein. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 4 April 2000 pp 111-120 Reflections. Albert Einstein: A Biographical Sketch · Maja Winteler-Einstein · More Details Fulltext PDF ...

  9. Self-trapping mechanisms in the dynamics of three coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Franzosi, Roberto; Penna, Vittorio

    2002-01-01

    We formulate the dynamics of three coupled Bose-Einstein condensates within a semiclassical scenario based on the standard boson coherent states. We compare such a picture with that of K. Nemoto et al. [Phys. Rev. A 63, 013604 (2001)] and show how our approach entails a simple formulation of the dimeric regime therein studied. This allows us to recognize the parameters that govern the bifurcation mechanism causing self-trapping, and paves the way to the construction of analytic solutions

  10. Family of electrovac colliding wave solutions of Einstein's equations

    International Nuclear Information System (INIS)

    Li, W.; Ernst, F.J.

    1989-01-01

    Beginning with any colliding wave solution of the vacuum Einstein equations, a corresponding electrified colliding wave solution can be generated through the use of a transformation due to Harrison [J. Math. Phys. 9, 1744 (1968)]. The method, long employed in the context of stationary axisymmetric fields, is equally applicable to colliding wave solutions. Here it is applied to a large family of vacuum metrics derived by applying a generalized Ehlers transformation to solutions published recently by Ernst, Garcia, and Hauser (EGH) [J. Math. Phys. 28, 2155, 2951 (1987); 29, 681 (1988)]. Those EGH solutions were themselves a generalization of solutions first derived by Ferrari, Ibanez, and Bruni [Phys. Rev. D 36, 1053 (1987)]. Among the electrovac solutions that are obtained is a charged version of the Nutku--Halil [Phys. Rev. Lett. 39, 1379 (1977)] metric that possesses an arbitrary complex charge parameter

  11. A Hamiltonian functional for the linearized Einstein vacuum field equations

    International Nuclear Information System (INIS)

    Rosas-RodrIguez, R

    2005-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained

  12. Palatini approach to Born-Infeld-Einstein theory and a geometric description of electrodynamics

    International Nuclear Information System (INIS)

    Vollick, Dan N.

    2004-01-01

    The field equations associated with the Born-Infeld-Einstein action are derived using the Palatini variational technique. In this approach the metric and connection are varied independently and the Ricci tensor is generally not symmetric. For sufficiently small curvatures the resulting field equations can be divided into two sets. One set, involving the antisymmetric part of the Ricci tensor R or μν , consists of the field equation for a massive vector field. The other set consists of the Einstein field equations with an energy momentum tensor for the vector field plus additional corrections. In a vacuum with R or μν =0 the field equations are shown to be the usual Einstein vacuum equations. This extends the universality of the vacuum Einstein equations, discussed by Ferraris et al., to the Born-Infeld-Einstein action. In the simplest version of the theory there is a single coupling constant and by requiring that the Einstein field equations hold to a good approximation in neutron stars it is shown that mass of the vector field exceeds the lower bound on the mass of the photon. Thus, in this case the vector field cannot represent the electromagnetic field and would describe a new geometrical field. In a more general version in which the symmetric and antisymmetric parts of the Ricci tensor have different coupling constants it is possible to satisfy all of the observational constraints if the antisymmetric coupling is much larger than the symmetric coupling. In this case the antisymmetric part of the Ricci tensor can describe the electromagnetic field

  13. Einstein-Cartan-Dirac theory in (1+2)-dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Dereli, Tekin [Koc University, Department of Physics, Istanbul (Turkey); Oezdemir, Nese [Istanbul Technical University, Department of Physics Engineering, Istanbul (Turkey); Sert, Oezcan [Pamukkale University, Department of Physics, Denizli (Turkey)

    2013-01-15

    Einstein-Cartan theory is formulated in (1+2) dimensions using the algebra of exterior differential forms. A Dirac spinor is coupled to gravity and the field equations are obtained by a variational principle. The space-time torsion is found to be given algebraically in terms of a quadratic spinor condensate field. Circularly symmetric, exact solutions that collapse to AdS{sub 3} geometry in the absence of the Dirac condensate are found. (orig.)

  14. Gravitational and electromagnetic potentials of the stationary Einstein-Maxwell field equations

    International Nuclear Information System (INIS)

    Jones, T.C.

    1979-01-01

    Associated with the stationary Einstein-Maxwell field equations is an infinite hierarchy of potentials. The basic characteristics of these potentials are examined in general and then in greater detail for the particular case of the Reissner-Nordstrom metric. Thier essential utility in the process of solution generation is elucidated, and the necessary equations for solution generation are developed. Appropriate generating functions, which contain the complete infinite hierarchy of potentials, are developed and analyzed. Particular attention is paid to the inherent gauge freedom of these generating functions. Two methods of solution generation, which yield asymptotically flat solutions in vacuum, are generalized to include electromagnetism. One method, using potentials consistent with the Harrison transformation and the Reissner-Nordstrom metric, is discussed in detail, and its resultant difficulties are explored

  15. Lie-algebra expansions, Chern-Simons theories and the Einstein-Hilbert Lagrangian

    International Nuclear Information System (INIS)

    Edelstein, Jose D.; Hassaine, Mokhtar; Troncoso, Ricardo; Zanelli, Jorge

    2006-01-01

    Starting from gravity as a Chern-Simons action for the AdS algebra in five dimensions, it is possible to modify the theory through an expansion of the Lie algebra that leads to a system consisting of the Einstein-Hilbert action plus non-minimally coupled matter. The modified system is gauge invariant under the Poincare group enlarged by an Abelian ideal. Although the resulting action naively looks like general relativity plus corrections due to matter sources, it is shown that the non-minimal couplings produce a radical departure from GR. Indeed, the dynamics is not continuously connected to the one obtained from Einstein-Hilbert action. In a matter-free configuration and in the torsionless sector, the field equations are too strong a restriction on the geometry as the metric must satisfy both the Einstein and pure Gauss-Bonnet equations. In particular, the five-dimensional Schwarzschild geometry fails to be a solution; however, configurations corresponding to a brane-world with positive cosmological constant on the worldsheet are admissible when one of the matter fields is switched on. These results can be extended to higher odd dimensions

  16. Quark confinement and the short-range component of general affine gauge gravity

    International Nuclear Information System (INIS)

    Sijacki, D.

    1982-01-01

    Within the framework of a gauge field theory based on the general affine space-time symmetry, we propose a certain purely quadratic gauge field lagrangian. In the large-scale region it yields an Einstein-Cartan-like gravity with Newton's constand generated spontaneously, while in the particle domain it yields a renormalizable theory with a confining potential applying to quarks and not to leptons. (orig.)

  17. Lie-isotopic generalization of the Poincare symmetry: Classical formulation

    International Nuclear Information System (INIS)

    Santilli, R.M.

    1991-03-01

    This paper is devoted to the origin and methodology of the several phenomenological predictions of deviations from Einstein's Special Relativity and related Lorentz symmetry in the behaviour of the lifetime of unstable hadrons at different speeds, that exist in the literature since the early '60's. After reviewing the background phenomenological literature, we outline the Lie-isotopic symmetry of the emerging deformations of the Minkowski metric introduced in a preceding paper, and extend the results to the construction of the full Poincare-isotopic symmetry. The local isomorphism of the Poincare-isotopic symmetry with the conventional symmetry is proved for all possible topology-preserving deformations of the Minkowski metric. In this way we establish that the phenomenological predictions of deviations recalled earlier must be specifically referred to Einstein's Special Relativity, but they cannot be referred to the Lorentz (or to the Poincare) symmetry which remains exact. Particular attention is devoted to the proof of the compatibility of the exact validity of the Special Relativity for the center-of-mass trajectory of a hadron in a particle accelerator, with conceivable deviations from the same relativity in the interior structural problem. For completeness, the analysis is complemented with a few remarks on the gravitational profile. First, we review the pioneering Lie-isotopic generalization of Einstein's Gravitation worked out by Gasperini, which possesses precisely a locally Lorentz-isotopic structure. We then restrict this theory to the interior gravitational problem in order to achieve compatibility with the particle setting. The paper concludes with a review of the need to finally conduct direct experimental measures of the lifetime of unstable hadrons at different speeds, in order to finally resolve whether Einsteins's Special and General Relativities are locally valid in the interior of hadrons, or structurally more general relativities must be worked

  18. The metric on field space, functional renormalization, and metric–torsion quantum gravity

    International Nuclear Information System (INIS)

    Reuter, Martin; Schollmeyer, Gregor M.

    2016-01-01

    Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein–Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and “tetrad-only” gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modified FRGE is obtained if this metric is scale-dependent, as it happens in the metric–torsion system considered.

  19. Beyond Lovelock gravity: Higher derivative metric theories

    Science.gov (United States)

    Crisostomi, M.; Noui, K.; Charmousis, C.; Langlois, D.

    2018-02-01

    We consider theories describing the dynamics of a four-dimensional metric, whose Lagrangian is diffeomorphism invariant and depends at most on second derivatives of the metric. Imposing degeneracy conditions we find a set of Lagrangians that, apart form the Einstein-Hilbert one, are either trivial or contain more than 2 degrees of freedom. Among the partially degenerate theories, we recover Chern-Simons gravity, endowed with constraints whose structure suggests the presence of instabilities. Then, we enlarge the class of parity violating theories of gravity by introducing new "chiral scalar-tensor theories." Although they all raise the same concern as Chern-Simons gravity, they can nevertheless make sense as low energy effective field theories or, by restricting them to the unitary gauge (where the scalar field is uniform), as Lorentz breaking theories with a parity violating sector.

  20. Einstein and Prague

    International Nuclear Information System (INIS)

    Bicak, J.

    1979-01-01

    A commemorative publication is submitted issued on the occasion of Albert Einstein's centenary remembering Einstein's sojourn and work in Prague. In addition to the article Ueber den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes the publications contains the author's preface to the Czech edition of his Theory, the list of studies written by Einstein while in Prague, an assay on the great physicist's life and work, and extracts from the memoires of Philipp Frank published under the title Einstein, His Life and Times. (L.O.)

  1. The Origin of Gravitational Lensing: A Postscript to Einstein's 1936 Science Paper

    Science.gov (United States)

    Renn; Sauer; Stachel

    1997-01-10

    Gravitational lensing, now taken as an important astrophysical consequence of the general theory of relativity, was found even before this theory was formulated but was discarded as a speculative idea without any chance of empirical confirmation. Reconstruction of some of Einstein's research notes dating back to 1912 reveals that he explored the possibility of gravitational lensing 3 years before completing his general theory of relativity. On the basis of preliminary insights into this theory, Einstein had already derived the basic features of the lensing effect. When he finally published the very same results 24 years later, it was only in response to prodding by an amateur scientist.

  2. Mapping Affinities in Academic Organizations

    Directory of Open Access Journals (Sweden)

    Dario Rodighiero

    2018-02-01

    Full Text Available Scholarly affinities are one of the most fundamental hidden dynamics that drive scientific development. Some affinities are actual, and consequently can be measured through classical academic metrics such as co-authoring. Other affinities are potential, and therefore do not leave visible traces in information systems; for instance, some peers may share interests without actually knowing it. This article illustrates the development of a map of affinities for academic collectives, designed to be relevant to three audiences: the management, the scholars themselves, and the external public. Our case study involves the School of Architecture, Civil and Environmental Engineering of EPFL, hereinafter ENAC. The school consists of around 1,000 scholars, 70 laboratories, and 3 institutes. The actual affinities are modeled using the data available from the information systems reporting publications, teaching, and advising scholars, whereas the potential affinities are addressed through text mining of the publications. The major challenge for designing such a map is to represent the multi-dimensionality and multi-scale nature of the information. The affinities are not limited to the computation of heterogeneous sources of information; they also apply at different scales. The map, thus, shows local affinities inside a given laboratory, as well as global affinities among laboratories. This article presents a graphical grammar to represent affinities. Its effectiveness is illustrated by two actualizations of the design proposal: an interactive online system in which the map can be parameterized, and a large-scale carpet of 250 square meters. In both cases, we discuss how the materiality influences the representation of data, in particular the way key questions could be appropriately addressed considering the three target audiences: the insights gained by the management and their consequences in terms of governance, the understanding of the scholars’ own

  3. Einstein, Bohr, and Bell

    Science.gov (United States)

    Bellac, Michel Le

    2014-11-01

    The final form of quantum physics, in the particular case of wave mechanics, was established in the years 1925-1927 by Heisenberg, Schrödinger, Born and others, but the synthesis was the work of Bohr who gave an epistemological interpretation of all the technicalities built up over those years; this interpretation will be examined briefly in Chapter 10. Although Einstein acknowledged the success of quantum mechanics in atomic, molecular and solid state physics, he disagreed deeply with Bohr's interpretation. For many years, he tried to find flaws in the formulation of quantum theory as it had been more or less accepted by a large majority of physicists, but his objections were brushed away by Bohr. However, in an article published in 1935 with Podolsky and Rosen, universally known under the acronym EPR, Einstein thought he had identified a difficulty in the by then standard interpretation. Bohr's obscure, and in part beyond the point, answer showed that Einstein had hit a sensitive target. Nevertheless, until 1964, the so-called Bohr-Einstein debate stayed uniquely on a philosophical level, and it was actually forgotten by most physicists, as the few of them aware of it thought it had no practical implication. In 1964, the Northern Irish physicist John Bell realized that the assumptions contained in the EPR article could be tested experimentally. These assumptions led to inequalities, the Bell inequalities, which were in contradiction with quantum mechanical predictions: as we shall see later on, it is extremely likely that the assumptions of the EPR article are not consistent with experiment, which, on the contrary, vindicates the predictions of quantum physics. In Section 3.2, the origin of Bell's inequalities will be explained with an intuitive example, then they will be compared with the predictions of quantum theory in Section 3.3, and finally their experimental status will be reviewed in Section 3.4. The debate between Bohr and Einstein goes much beyond a

  4. Einstein and Planck

    Science.gov (United States)

    Heilbron, John

    2005-03-01

    As an editor of the Annalen der Physik, Max Planck published Einstein's early papers on thermodynamics and on special relativity, which Planck probably was the first major physicist to appreciate. They respected one another not only as physicists but also, for their inspired creation of world pictures, as artists. Planck helped to establish Einstein in a sinecure at the center of German physics, Berlin. Despite their differences in scientific style, social life, politics, and religion, they became fast friends. Their mutual admiration survived World War I, during which Einstein advocated pacifism and Planck signed the infamous Manifesto of the 93 Intellectuals supporting the German invasion of Belgium. It also survived the Weimar Republic, which Einstein favored and Planck disliked. Physics drew them together, as both opposed the Copenhagen Interpretation; so did common decency, as Planck helped to protect Einstein from anti-semitic attacks. Their friendship did not survive the Nazis. As a standing secretary of the Berlin Academy, Planck had to advise Einstein to resign from it before his colleagues, outraged at his criticism of the new Germany from the safety of California, expelled him. Einstein never forgave his old friend and former fellow artist for not protesting publicly against his expulsion and denigration, and other enormities of National Socialism. .

  5. Einsteins dream

    International Nuclear Information System (INIS)

    Parker, B.

    1986-01-01

    This book discusses the following topics: the search for meaning; Einstein's dream; curved space; Einstein and warped space-time and extreme wraping; early unified field theories; star death; beyond the white dwarf; the early universe; the hadron, Lepton, and Radiation eras; the redshift controversy; other universes; the final fate of the universe; the missing mass; bounce; fate of the open universe; the world of particles and fields; Dirac's equation; Yukawa; gauge theory; quantum chromodynamics; supergravity and superstrings; twistors and heaven; and the new Einstein

  6. Quantum effects from topological conditions in solutions of Einstein equations

    CERN Document Server

    Patiño, L

    2003-01-01

    In this paper it is shown that Dirac's approach to the quantization of the electric charge can be extended to gravitational configurations by defining a phase-like object related to the curvature of the space-time. Using this phase-like object, Dirac's argument is applied to the Kerr-Newmann and the Taub-NUT solutions to Einstein equations. As a result of this procedure we obtain that certain functions of the parameters entering the metric become quantized. Also, the phase acquired by an observer traveling along a loop around a curvature singularity is quantized. (Author)

  7. Gravitation Theory: Empirical Status from Solar System Experiments: All observations to date are consistent with Einstein's general relativity theory of gravity.

    Science.gov (United States)

    Nordtvedt, K L

    1972-12-15

    I have reviewed the historical and contemporary experiments that guide us in choosing a post-Newtonian, relativistic gravitational theory. The foundation experiments essentially constrain gravitation theory to be a metric theory in which matter couples solely to one gravitational field, the metric field, although other cosmological gravitational fields may exist. The metric field for any metric theory can be specified (for the solar system, for our present purposes) by a series of potential terms with several parameters. A variety of experiments specify (or put limits on) the numerical values of the seven parameters in the post-Newtonian metric field, and other such experiments have been planned. The empirical results, to date, yield values of the parameters that are consistent with the predictions of Einstein's general relativity.

  8. The Einstein formula: E0=mc2. 'Isn't the Lord laughing?'

    International Nuclear Information System (INIS)

    Okun, L B

    2008-01-01

    The article traces the way Einstein formulated the relation between energy and mass in his work from 1905 to 1955. Einstein emphasized quite often that the mass m of a body is equivalent to its rest energy E 0 . At the same time, he frequently resorted to the less clear-cut statement of the equivalence of energy and mass. As a result, Einstein's formula E 0 =mc 2 still remains much less known than its popular form, E=mc 2 , in which E is the total energy equal to the sum of the rest energy and the kinetic energy of a freely moving body. One of the consequences of this is the widespread fallacy that the mass of a body increases when its velocity increases and even that this is an experimental fact. As wrote the playwright A N Ostrovsky 'Something must exist for people, something so austere, so lofty, so sacrosanct that it would make profaning it unthinkable.' (from the history of physics)

  9. The Chevreton tensor and Einstein-Maxwell spacetimes conformal to Einstein spaces

    International Nuclear Information System (INIS)

    Bergqvist, Goeran; Eriksson, Ingemar

    2007-01-01

    In this paper, we characterize the source-free Einstein-Maxwell spacetimes which have a trace-free Chevreton tensor. We show that this is equivalent to the Chevreton tensor being of pure radiation type and that it restricts the spacetimes to Petrov type N or O. We prove that the trace of the Chevreton tensor is related to the Bach tensor and use this to find all Einstein-Maxwell spacetimes with a zero cosmological constant that have a vanishing Bach tensor. Among these spacetimes we then look for those which are conformal to Einstein spaces. We find that the electromagnetic field and the Weyl tensor must be aligned, and in the case that the electromagnetic field is null, the spacetime must be conformally Ricci-flat and all such solutions are known. In the non-null case, since the general solution is not known on a closed form, we settle by giving the integrability conditions in the general case, but we do give new explicit examples of Einstein-Maxwell spacetimes that are conformal to Einstein spaces, and we also find examples where the vanishing of the Bach tensor does not imply that the spacetime is conformal to a C-space. The non-aligned Einstein-Maxwell spacetimes with vanishing Bach tensor are conformally C-spaces, but none of them are conformal to Einstein spaces

  10. Quantum billiards with branes on product of Einstein spaces

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia, Institute of Gravitation and Cosmology, Moscow (Russian Federation)

    2016-05-15

    We consider a gravitational model in dimension D with several forms, l scalar fields and a Λ-term. We study cosmological-type block-diagonal metrics defined on a product of an 1-dimensional interval and n oriented Einstein spaces. As an electromagnetic composite brane ansatz is adopted and certain restrictions on the branes are imposed the conformally covariant Wheeler-DeWitt (WDW) equation for the model is studied. Under certain restrictions, asymptotic solutions to the WDW equation are found in the limit of the formation of the billiard walls. These solutions reduce the problem to the so-called quantum billiard in (n + l -1)-dimensional hyperbolic space. Several examples of quantum billiards in the model with electric and magnetic branes, e.g. corresponding to hyperbolic Kac-Moody algebras, are considered. In the case n = 2 we find a set of basis asymptotic solutions to the WDW equation and derive asymptotic solutions for the metric in the classical case. (orig.)

  11. Einstein's meanders

    Science.gov (United States)

    Lomnitz, C.

    2007-05-01

    What does Einstein have to do with subduction? Good question. Peaceful Lake Budi, lying at the heart of an Indian reservation in the Deep South of Chile, had subsided by two meters in the 1960 mega-thrust earthquake. This unique South American salt lake was hiding an awful secret: it was actually an oxbow, not a lake. But Einstein had realized in 1926 that meanders are natural freaks. Rivers will not flow uphill, yet - he claimed - they don't flow down the path of steepest descent either. This anomaly was put at the doorstep of a weak Coriolis Force. Thus Einstein problematized the dilemma of the earth sciences. How can a non-force produce margin-parallel compression in a convergent margin where extension is expected? In fact, where does the energy for meander formation come from? Good question . . . Even Wikipedia knows that Coriolis is not a “force” but an “effect”. So is the obliquity of plate convergence in subduction. Where did Einstein err, and where was he a pioneer? Coastal ablation plus alternating subsidence and emergence in giant earthquakes may yield an answer. Einstein, A. (1926). Die Ursache der Maeanderbildung der Flusslaeufe und das sogenannte Baersche Gesetz, Naturwissenschaften, 14, fascicle II.

  12. C-metric solution for conformal gravity with a conformally coupled scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Kun, E-mail: mengkun@tjpu.edu.cn [School of Science, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Liu, E-mail: lzhao@nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China)

    2017-02-15

    The C-metric solution of conformal gravity with a conformally coupled scalar field is presented. The solution belongs to the class of Petrov type D spacetimes and is conformal to the standard AdS C-metric appeared in vacuum Einstein gravity. For all parameter ranges, we identify some of the physically interesting static regions and the corresponding coordinate ranges. The solution may contain a black hole event horizon, an acceleration horizon, either of which may be cut by the conformal infinity or be hidden behind the conformal infinity. Since the model is conformally invariant, we also discussed the possible effects of the conformal gauge choices on the structure of the spacetime.

  13. Gravitational Goldstone fields from affine gauge theory

    Science.gov (United States)

    Tresguerres, Romualdo; Mielke, Eckehard W.

    2000-08-01

    In order to facilitate the application of standard renormalization techniques, gravitation should be described, in the pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincaré or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills-type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring this ``hidden'' piece within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide the general mathematical scheme for the foundation of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the affine group, tetrads become identified with nonlinear translational connections; the anholonomic metric no longer constitutes an independent gravitational potential, since its degrees of freedom reveal a correspondence to eliminateable Goldstone bosons. This may be an important advantage for quantization.

  14. Celebrating Einstein

    Science.gov (United States)

    Shapiro Key, Joey; Yunes, Nicolas

    2013-04-01

    The Gravity Group at Montana State University (MSU) hosted Celebrating Einstein, a free public arts and multimedia event celebrating Einstein and his ideas in Bozeman, Montana April 2-6, 2013. The products of our efforts are now available to any party interested in hosting a similar event. Celebrating Einstein is a truly interdisciplinary effort including art, film, dance, music, physics, history, and education. Events included a black hole immersive art installation, a series of public talks by physicists, and Einstein lessons in the public schools leading up to a live free public multimedia performance including a professional dance company, a live interview with a renowned physicist, and an original score composed for the MSU student symphony to be performed with an original film produced by the Science and Natural History film program at MSU. This project is funded by the Montana Space Grant Consortium, Montana State University, and the National Science Foundation.

  15. The Einstein almanac

    CERN Document Server

    Calaprice, Alice

    2005-01-01

    Albert Einstein was an exceptional human being. Perhaps nothing reflects the breadth and scope of his brilliance, his interests, and his influence better than his publications -- more than six hundred scientific papers, books, essays, reviews, and opinion pieces. Einstein began publishing in March 1901 with a scientific work that appeared in the German journal Annalen der Physik when he was twenty-two; the last publication was an editorial in the journal Common Cause which appeared a few months before his death in 1955. In the fifty-four-year interval, his published work ranged widely over relativity theory and quantum physics, nationalism, Judaism, war, peace, and education. Indeed, Einstein's literary output was so abundant that even many of his most informed admirers are not familiar with all of it. The Einstein Almanac takes a look at Einstein's year-by-year output, explaining his three-hundred most important publications and setting them into the context of his life, science, and world history. Concentr...

  16. Iron line spectroscopy with Einstein-dilaton-Gauss-Bonnet black holes

    Science.gov (United States)

    Nampalliwar, Sourabh; Bambi, Cosimo; Kokkotas, Kostas D.; Konoplya, Roman A.

    2018-06-01

    Einstein-dilaton-Gauss-Bonnet gravity is a well-motivated alternative theory of gravity that emerges naturally from string theory. While black hole solutions have been known in this theory in numerical form for a while, an approximate analytical metric was obtained recently by some of us, which allows for faster and more detailed analysis. Here we test the accuracy of the analytical metric in the context of X-ray reflection spectroscopy. We analyze innermost stable circular orbits (ISCO) and relativistically broadened iron lines and find that both the ISCO and iron lines are determined sufficiently accurately up to the limit of the approximation. We also find that, though the ISCO increases by about 7% as dilaton coupling increases from zero to extremal values, the redshift at ISCO changes by less than 1%. Consequently, the shape of the iron line is much less sensitive to the dilaton charge than expected.

  17. Einstein and relativity

    International Nuclear Information System (INIS)

    Cullwick, E.G.

    1979-01-01

    Einstein published his Special Theory of Relativity in 1905 and in 1915 his General Theory which predicted the bending of light rays passing near the sun. This prediction was apparently confirmed experimentally in 1919 bringing Einstein popular acclaim. Einstein's work is reviewed and the question of whether he was in fact first in the field is examined with especial reference to the work of Maxwell, Lorentz and Poincare. (U.K.)

  18. Einstein the searcher his work explained from dialogues with Einstein

    CERN Document Server

    Moszkowski, Alexander

    2014-01-01

    This volume, first published in 1921, presents a series of portraits of Einstein, thus offering glimpses in the character and private reflections of the man who changed the course of modern science. Intended neither as a biography, nor as a résumé of Einsteinian physics, Einstein: The Searcher instead focusses on Einstein's relationship with the scientific project as he himself conceived it, and so is still of contemporary significance for those puzzled by the spirit of scientific enquiry.

  19. Almost Kaehler Ricci Flows and Einstein and Lagrange-Finsler Structures on Lie Algebroids

    CERN Document Server

    Vacaru, Sergiu I

    2015-01-01

    In this work we investigate Ricci flows of almost Kaehler structures on Lie algebroids when the fundamental geometric objects are completely determined by (semi) Riemannian metrics, or effective) regular generating Lagrange/ Finsler, functions. There are constructed canonical almost symplectic connections for which the geometric flows can be represented as gradient ones and characterized by nonholonomic deformations of Grigory Perelman's functionals. The first goal of this paper is to define such thermodynamical type values and derive almost K\\"ahler - Ricci geometric evolution equations. The second goal is to study how fixed Lie algebroid, i.e. Ricci soliton, configurations can be constructed for Riemannian manifolds and/or (co) tangent bundles endowed with nonholonomic distributions modelling (generalized) Einstein or Finsler - Cartan spaces. Finally, there are provided some examples of generic off-diagonal solutions for Lie algebroid type Ricci solitons and (effective) Einstein and Lagrange-Finsler algebro...

  20. From Einstein to AXAF

    International Nuclear Information System (INIS)

    Tananbaum, H.

    1990-01-01

    The presentations at the 10th Anniversary Einstein Symposium and the articles in this book cover a wide variety of scientific topics describing some of the important advances and discoveries made with the Einstein Observatory. The breadth and depth of science carried out with Einstein has made it essentially impossible to cover fully individual subdisciplines in single review talks and papers. Some of the major Einstein highlights are summarized and the scientific prospects for AXAF are assessed. (author)

  1. Einstein. A centenary volume

    International Nuclear Information System (INIS)

    French, A.P.

    1979-01-01

    The subject is divided as follows: part 1, reminiscences (of Einstein and his life, by various authors); part 2, Einstein and his work (includes accounts of special and general relativity, gravitation, the development of quantum physics and concepts of space and time); part 3, Einstein's letters; part 4, Einstein's writings (including accounts of electrodynamics of moving bodies, general relativity, method of theoretical physics and an elementary derivation of the equivalence of mass and energy). (U.K.)

  2. Regular black holes in Einstein-Gauss-Bonnet gravity

    Science.gov (United States)

    Ghosh, Sushant G.; Singh, Dharm Veer; Maharaj, Sunil D.

    2018-05-01

    Einstein-Gauss-Bonnet theory, a natural generalization of general relativity to a higher dimension, admits a static spherically symmetric black hole which was obtained by Boulware and Deser. This black hole is similar to its general relativity counterpart with a curvature singularity at r =0 . We present an exact 5D regular black hole metric, with parameter (k >0 ), that interpolates between the Boulware-Deser black hole (k =0 ) and the Wiltshire charged black hole (r ≫k ). Owing to the appearance of the exponential correction factor (e-k /r2), responsible for regularizing the metric, the thermodynamical quantities are modified, and it is demonstrated that the Hawking-Page phase transition is achievable. The heat capacity diverges at a critical radius r =rC, where incidentally the temperature is maximum. Thus, we have a regular black hole with Cauchy and event horizons, and evaporation leads to a thermodynamically stable double-horizon black hole remnant with vanishing temperature. The entropy does not satisfy the usual exact horizon area result of general relativity.

  3. A Classical Based Derivation of Time Dilation Providing First Order Accuracy to Schwarzschild's Solution of Einstein's Field Equations

    Science.gov (United States)

    Austin, Rickey W.

    In Einstein's theory of Special Relativity (SR), one method to derive relativistic kinetic energy is via applying the classical work-energy theorem to relativistic momentum. This approach starts with a classical based work-energy theorem and applies SR's momentum to the derivation. One outcome of this derivation is relativistic kinetic energy. From this derivation, it is rather straight forward to form a kinetic energy based time dilation function. In the derivation of General Relativity a common approach is to bypass classical laws as a starting point. Instead a rigorous development of differential geometry and Riemannian space is constructed, from which classical based laws are derived. This is in contrast to SR's approach of starting with classical laws and applying the consequences of the universal speed of light by all observers. A possible method to derive time dilation due to Newtonian gravitational potential energy (NGPE) is to apply SR's approach to deriving relativistic kinetic energy. It will be shown this method gives a first order accuracy compared to Schwarzschild's metric. The SR's kinetic energy and the newly derived NGPE derivation are combined to form a Riemannian metric based on these two energies. A geodesic is derived and calculations compared to Schwarzschild's geodesic for an orbiting test mass about a central, non-rotating, non-charged massive body. The new metric results in high accuracy calculations when compared to Einsteins General Relativity's prediction. The new method provides a candidate approach for starting with classical laws and deriving General Relativity effects. This approach mimics SR's method of starting with classical mechanics when deriving relativistic equations. As a compliment to introducing General Relativity, it provides a plausible scaffolding method from classical physics when teaching introductory General Relativity. A straight forward path from classical laws to General Relativity will be derived. This derivation

  4. Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors

    Directory of Open Access Journals (Sweden)

    Andrei A. Malykh

    2013-11-01

    Full Text Available We demonstrate how a combination of our recently developed methods of partner symmetries, symmetry reduction in group parameters and a new version of the group foliation method can produce noninvariant solutions of complex Monge-Ampère equation (CMA and provide a lift from invariant solutions of CMA satisfying Boyer-Finley equation to non-invariant ones. Applying these methods, we obtain a new noninvariant solution of CMA and the corresponding Ricci-flat anti-self-dual Einstein-Kähler metric with Euclidean signature without Killing vectors, together with Riemannian curvature two-forms. There are no singularities of the metric and curvature in a bounded domain if we avoid very special choices of arbitrary functions of a single variable in our solution. This metric does not describe gravitational instantons because the curvature is not concentrated in a bounded domain.

  5. The ultimate quotable Einstein

    CERN Document Server

    2011-01-01

    Here is the definitive new edition of the hugely popular collection of Einstein quotations that has sold tens of thousands of copies worldwide and been translated into twenty-five languages. The Ultimate Quotable Einstein features 400 additional quotes, bringing the total to roughly 1,600 in all. This ultimate edition includes new sections--"On and to Children," "On Race and Prejudice," and "Einstein's Verses: A Small Selection"--as well as a chronology of Einstein's life and accomplishments, Freeman Dyson's authoritative foreword, and new commentary by Alice Calaprice.

  6. Einstein and a century of time

    Science.gov (United States)

    Raine, D. J.

    2005-09-01

    this pivotal insight into the role of theory when it came to quantum mechanics. Much has been written about this and we do not add to it in this collection. Quantum theory is a consistent description of nature whatever Einstein may think of 'god' for making it so. Many of us would side with Einstein in hoping it will yet turn out not to be a complete description. This will not happen, as Einstein hoped throughout his later work, from a return to classical field theory. But quantum behaviour is a universal property of matter and may therefore be expected, according to Einstein's way of thought, to have a geometrical origin. The advent of non-commutative quantum geometries may turn out to be a step in this direction. My own introduction to Einstein's physics was through what has come to be known as Mach's principle. My research supervisor, Dennis Sciama, in what he always claimed was probably Einstein's last significant scientific conversation, talked with him on this subject, during which Einstein explained that he had abandoned the idea of Mach's principle. This principle had been a guiding thought in the development of general relativity, but superfluous to its final exposition. It can be interpreted variously as the determination of the local compass of inertia by the distant stars, the non-rotation of the Universe or, more restrictedly, as requiring a critical density universe (to generate the right amount of inertia). This last formulation amounts to Gρτ2 approx 1, where ρ is the density of the Universe at time τ. This appears to be a classical expression, which would probably be sufficient to relegate Mach's principle to mere historical interest along with the classical unified field theories. It is also usually considered to be accounted for by inflation, which drives the Universe to Ω=1. However, we can also think of the expression as saying that the Universe has a Planck mass in a Planck volume at the Planck time: G=(hc / G)1/2(c3 / Gh)3/2(Gh / c5)=1. This

  7. Einstein from 'B' to 'Z'

    CERN Document Server

    Stachel, John

    2002-01-01

    John Stachel, the author of this collection of 37 published and unpublished articles on Albert Einstein, has written about Einstein and his work for over 40 years. Trained as a theoretical physicist specializing in the theory of relativity, he was chosen as the founding editor of The Collected papers of Albert Einstein 25 years ago, and is currently Director of the Boston University Center for Einstein Studies. Based on a detailed study of documentary evidence, much of which was newly discovered in the course of his work, Stachel debunks many of the old (and some new) myths about Einstein and offers novel insight into his life and work. Throughout the volume, a new, more human picture of Einstein is offered to replace the plaster saint of popular legend. In particular, a youthful Einstein emerges from the obscurity that previously shrouded his early years, and much new light is shed on the origins of the special and general theories of relativity. Also discussed in some detail are Einstein's troubled relatio...

  8. Einstein

    CERN Document Server

    Smith, Peter D

    2003-01-01

    Albert Einstein re-wrote the textbooks of science in 1905: physics since has been little more than a series of footnotes to the theories of a 26-year-old patent-office clerk. Einstein's science and emotional life come together in this vivid portrait of a rebellious and contradictory figure, a pacifist whose legendary equation E=mc2 opened scientists' eyes to the terrible power within every atom. 'To punish me for my contempt for authority,' he lamented, 'Fate has made me an authority myself.'

  9. Evolution of nonlinear perturbations inside Einstein-Yang-Mills black holes

    International Nuclear Information System (INIS)

    Donets, E.E.; Tentyukov, M.N.; Tsulaya, M.M.

    1998-01-01

    We present our results on numerical study of evolution of nonlinear perturbations inside spherically symmetric black holes in the SU(2) Einstein-Yang-Mills (EYM) theory. Recent developments demonstrate a new type of the behaviour of the metric for EYM black hole interiors; the generic metric exhibits an infinitely oscillating approach to the singularity, which is a spacelike but not of the mixmaster type. The evolution of various types of spherically symmetric perturbations, propagating from the internal vicinity of the external horizon towards the singularity is investigated in a self-consistent way using an adaptive numerical algorithm. The obtained results give strong numerical evidence in favor of nonlinear stability of the generic EYM black hole interiors. Alternatively, the EYM black hole interiors of S (schwarzschild)-type, which form only a zero measure subset in the space of all internal solutions are found to be unstable and transform to the generic type as perturbations are developed

  10. Einstein, la luz, el espacio-tiempo y los cuantos

    Directory of Open Access Journals (Sweden)

    Fernando Barbero G., J.

    2015-10-01

    Full Text Available The study of light, its nature and properties was a central topic in the works of Albert Einstein. This paper discusses the role of light in the formulation of special relativity, in particular as a tool to provide operational definitions of the basic kinematic concepts. It also discusses the role of light in understanding general relativity and ends by briefly considering its quantum behaviour.El estudio de la luz, su naturaleza y sus propiedades ocupó un lugar central en los trabajos de Albert Einstein. En este artículo se discute el papel de la luz en la formulación de la relatividad especial, en particular como instrumento para la definición operacional de las magnitudes cinemáticas básicas, se muestra su importancia para la comprensión de la relatividad general y, por último, se considera brevemente su comportamiento cuántico.

  11. An infinite number of stationary soliton solutions to the five-dimensional vacuum Einstein equation

    International Nuclear Information System (INIS)

    Azuma, Takahiro; Koikawa, Takao

    2006-01-01

    We obtain an infinite number of soliton solutions to the five-dimensional stationary Einstein equation with axial symmetry by using the inverse scattering method. We start with the five-dimensional Minkowski space as a seed metric to obtain these solutions. The solutions are characterized by two soliton numbers and a constant appearing in the normalization factor which is related to a coordinate condition. We show that the (2, 0)-soliton solution is identical to the Myers-Perry solution with one angular momentum variable by imposing a condition on the relation between parameters. We also show that the (2, 2)-soliton solution is different from the black ring solution discovered by Emparan and Reall, although one component of the two metrics can be identical. (author)

  12. Scattering amplitudes in N=2 Maxwell-Einstein and Yang-Mills/Einstein supergravity

    CERN Document Server

    Chiodaroli, Marco; Johansson, Henrik; Roiban, Radu

    2015-01-01

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N=2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N=2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian and Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which th...

  13. Toric Geometry, Sasaki-Einstein Manifolds and a New Infinite Class of AdS/CFT Duals

    CERN Document Server

    Martelli, D; Martelli, Dario; Sparks, James

    2006-01-01

    Recently an infinite family of explicit Sasaki-Einstein metrics Y^{p,q} on S^2 x S^3 has been discovered, where p and q are two coprime positive integers, with qEinstein metric on the horizon of the complex cone over the first del Pezz...

  14. Albert Einstein a biography

    CERN Document Server

    Fölsing, Albrecht

    1997-01-01

    Albert Einstein's achievements are not just milestones in the history of science; decades ago they became an integral part of the twentieth-century world in which we live. Like no other modern physicist he altered and expanded our understanding of nature. Like few other scholars, he stood fully in the public eye. In a world changing with dramatic rapidity, he embodied the role of the scientist by personal example. Albrecht Folsing, relying on previously unknown sources and letters, brings Einstein's "genius" into focus. Whereas former biographies, written in the tradition of the history of science, seem to describe a heroic Einstein who fell to earth from heaven, Folsing attempts to reconstruct Einstein's thought in the context of the state of research at the turn of the century. Thus, perhaps for the first time, Einstein's surroundings come to light.

  15. Semiclassical strings in Sasaki-Einstein manifolds and long operators in N = 1 gauge theories

    International Nuclear Information System (INIS)

    Benvenuti, Sergio; Kruczenski, Martin

    2006-01-01

    We study the AdS/CFT relation between an infinite class of 5-d Y p,q Sasaki-Einstein metrics and the corresponding quiver theories. The long BPS operators of the field theories are matched to massless geodesics in the geometries, providing a test of AdS/CFT for these cases. Certain small fluctuations (in the BMN sense) can also be successfully compared. We then go further and find, using an appropriate limit, a reduced action, first order in time derivatives, which describes strings with large R-charge. In the field theory we consider holomorphic operators with large winding numbers around the quiver and find, interestingly, that, after certain simplifying assumptions, they can be described effectively as strings moving in a particular metric. Although not equal, the metric is similar to the one in the bulk. We find it encouraging that a string picture emerges directly from the field theory and discuss possible ways to improve the agreement

  16. The energy-momentum problem and gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of geometrized gravitation theories are considered. A covariant formulation of conservation laws in an arbitrary Riemann space-time is presented. In the Einstein theory both symmetric and canonical energy-momentum tensors of the matter and gravitational field system and, in particular, energy-momentum of free gravitational waves prove to be equal to zero. Since gravitational waves carry the curvature and, consequently, affect the detector, this bears witness to an intrinsic contradiction of the Einstein theory. To realize the sources of difficulties concerning energy-momentum in the Einstein theory the gravitational field is treated in the same way as all the other physical fields, i.e. in terms of usual Lorentz-invariant field theory. Unification of this approach with the Einstein idea of geometrization enables to construct the geometrized theory, which is free from contradictions, has clearly defined the notions of gravitation field energy-momentum and satisfactorily describes all known experimental facts. To construct a logically consistent theory one should geometrize only the density of the matter Lagrangian. The gravitation field equations are formulated in terms of the Euclidean space-time with a metric tensor γsub(ik), while the matter motion may be completely described in terms of the non-Euclidean space-time with a metric tensor gsub(ik). For strong gravitational fields the predictions of the quasi-linear theory under consideration appriciably differ from those of the Einstein formulation of the gravitation theory. No black holes are present in the theory. The results of the calculation for the energy flow of gravitational waves are rigorously unambiguous and show that gravitational waves carry positively definite energy

  17. Einstein's statistical mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Baracca, A; Rechtman S, R

    1985-08-01

    The foundation of equilibrium classical statistical mechanics were laid down in 1902 independently by Gibbs and Einstein. The latter's contribution, developed in three papers published between 1902 and 1904, is usually forgotten and when not, rapidly dismissed as equivalent to Gibb's. We review in detail Einstein's ideas on the foundations of statistical mechanics and show that they constitute the beginning of a research program that led Einstein to quantum theory. We also show how these ideas may be used as a starting point for an introductory course on the subject.

  18. Einstein's statistical mechanics

    International Nuclear Information System (INIS)

    Baracca, A.; Rechtman S, R.

    1985-01-01

    The foundation of equilibrium classical statistical mechanics were laid down in 1902 independently by Gibbs and Einstein. The latter's contribution, developed in three papers published between 1902 and 1904, is usually forgotten and when not, rapidly dismissed as equivalent to Gibb's. We review in detail Einstein's ideas on the foundations of statistical mechanics and show that they constitute the beginning of a research program that led Einstein to quantum theory. We also show how these ideas may be used as a starting point for an introductory course on the subject. (author)

  19. Unimodular Einstein-Cartan gravity: Dynamics and conservation laws

    Science.gov (United States)

    Bonder, Yuri; Corral, Cristóbal

    2018-04-01

    Unimodular gravity is an interesting approach to address the cosmological constant problem, since the vacuum energy density of quantum fields does not gravitate in this framework, and the cosmological constant appears as an integration constant. These features arise as a consequence of considering a constrained volume element 4-form that breaks the diffeomorphisms invariance down to volume preserving diffeomorphisms. In this work, the first-order formulation of unimodular gravity is presented by considering the spin density of matter fields as a source of spacetime torsion. Even though the most general matter Lagrangian allowed by the symmetries is considered, dynamical restrictions arise on their functional dependence. The field equations are obtained and the conservation laws associated with the symmetries are derived. It is found that, analogous to torsion-free unimodular gravity, the field equation for the vierbein is traceless; nevertheless, torsion is algebraically related to the spin density as in standard Einstein-Cartan theory. The particular example of massless Dirac spinors is studied, and comparisons with standard Einstein-Cartan theory are shown.

  20. Albert Einsteins Wonderjaar

    NARCIS (Netherlands)

    Dieks, D.G.B.J.

    In het jaar 1905 publiceerde Albert Einstein een reeks artikelen die een omwenteling voor de wetenschap betekende. En toch bleef Einstein een kind van zijn tijd, van een eeuw die in het teken stond van dynamo’s, raderen en stoommachines.

  1. Rediscovering Einstein's legacy: How Einstein anticipates Kuhn and Feyerabend on the nature of science.

    Science.gov (United States)

    Oberheim, Eric

    2016-06-01

    Thomas Kuhn and Paul Feyerabend promote incommensurability as a central component of their conflicting accounts of the nature of science. This paper argues that in so doing, they both develop Albert Einstein's views, albeit in different directions. Einstein describes scientific revolutions as conceptual replacements, not mere revisions, endorsing 'Kant-on-wheels' metaphysics in light of 'world change'. Einstein emphasizes underdetermination of theory by evidence, rational disagreement in theory choice, and the non-neutrality of empirical evidence. Einstein even uses the term 'incommensurable' specifically to apply to challenges posed to comparatively evaluating scientific theories in 1949, more than a decade before Kuhn and Feyerabend. This analysis shows how Einstein anticipates substantial components of Kuhn and Feyerabend's views, and suggests that there are strong reasons to suspect that Kuhn and Feyerabend were directly inspired by Einstein's use of the term 'incommensurable', as well as his more general methodological and philosophical reflections. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Einstein and cosmology

    International Nuclear Information System (INIS)

    Gekman, O.

    1982-01-01

    The brief essay of the development of the main ideas of relativistic cosmology is presented. The Einstein's cosmological work about the Universe - ''Cosmological considerations in connection with the general relativity theory'' - gave the basis to all further treatments in this field. In 1922 A. Friedman's work appeared, in which the first expanding Universe model was proposed as a solution of the Einstein field equations. The model was spherically closed, but its curvature radius was a function of time. About 1955 the searches for anisotropic homogeneous solutions to Einstein field equation began. It turned out that isotropic cosmological models are unstable in general. The predominant part of them transform to anisotropic at insignificant breaking of isotropy. The discovery of isotropic background cosmic radiation in 1965, along with the Hubble low of the Universe expansion, served as the direct confirmation of cosmology based on the Einstein theory

  3. Einstein's error

    International Nuclear Information System (INIS)

    Winterflood, A.H.

    1980-01-01

    In discussing Einstein's Special Relativity theory it is claimed that it violates the principle of relativity itself and that an anomalous sign in the mathematics is found in the factor which transforms one inertial observer's measurements into those of another inertial observer. The apparent source of this error is discussed. Having corrected the error a new theory, called Observational Kinematics, is introduced to replace Einstein's Special Relativity. (U.K.)

  4. De Sitter en Einstein. ‘Het lijkt mij dat Einstein hier een vergissing begaan heeft’

    Directory of Open Access Journals (Sweden)

    Jan Guichelaar

    2016-10-01

    Full Text Available De Sitter and EinsteinWillem de Sitter’s interest in gravity was based on his work on celestial mechanics, in particular on the four big moons of Jupiter. His work on cosmology was based on the general theory of relativity of Albert Einstein. De Sitter published in 1917, on request of Arthur Eddington to inform the English astronomers, a series of four articles in The Observatory and the Monthly Notices of the Royal Astronomical Society. Einstein developed his own cosmological models, containing mass. De Sitter found a different solution and described a universe without mass. Einstein could not accept De Sitter’s model and they ‘fought out’ two controversies in their correspondence. In theend Einstein had to confess De Sitter was mainly right in his criticisms. In 1932 Einstein and De Sitter published an article on a new model, the so-called Einstein-De Sitter Model of the universe. So, De Sitter was able to do fundamental work in classical celestial mechanics as well as in the new cosmological theories.

  5. Einstein-Rosen gravitational waves

    International Nuclear Information System (INIS)

    Astefanoaei, Iordana; Maftei, Gh.

    2001-01-01

    In this paper we analyse the behaviour of the gravitational waves in the approximation of the far matter fields, considering the indirect interaction between the matter sources and the gravitational field, in a cosmological model based on the Einstein-Rosen solution, Because the properties of the gravitational waves obtained as the solutions of Einstein fields equations (the gravitational field equations) are most obvious in the weak gravitational fields we consider here, the gravitational field in the linear approximation. Using the Newman-Penrose formalism, we calculate in the null-tetradic base (e a ), the spin coefficients, the directional derivates and the tetradic components of Ricci and Weyl tensors. From the Einstein field equations we obtained the solution for b(z, t) what described the behaviour of gravitational wave in Einstein-Rosen Universe and in the particular case, when t → ∞, p(z, t) leads us to the primordial gravitational waves in the Einstein-Rosen Universe. (authors)

  6. Holonomy of Einstein Lorentzian manifolds

    International Nuclear Information System (INIS)

    Galaev, Anton S

    2010-01-01

    The classification of all possible holonomy algebras of Einstein and vacuum Einstein Lorentzian manifolds is obtained. It is shown that each such algebra appears as the holonomy algebra of an Einstein (resp. vacuum Einstein) Lorentzian manifold; the direct constructions are given. Also the holonomy algebras of totally Ricci-isotropic Lorentzian manifolds are classified. The classification of the holonomy algebras of Lorentzian manifolds is reviewed and a complete description of the spaces of curvature tensors for these holonomies is given.

  7. Einstein (1879-1955)

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    In the first part of this book a historical review of Einstein life and works are presented. In the second part papers about different aspects of quantum mechanics are given. The third part is devoted to a round table on Einstein, Podolski and Rosen paradox [fr

  8. A possible realization of Einstein's causal theory underlying quantum mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.

    1979-06-01

    It is shown that a new microscopic mechanics formulated earlier can be looked upon as a possible causal theory underlying quantum mechanics, which removes Einstein's famous objections against quantum theory. This approach is free from objections raised against Bohm's hidden variable theory and leads to a clear physical picture in terms of familiar concepts, if self interactions are held responsible for deviations from classical behaviour. The new level of physics unfolded by this approach may reveal novel frontiers in high-energy physics. (author)

  9. Once upon Einstein

    CERN Document Server

    Damour, Thibault

    2006-01-01

    It is well known that Einstein founded twentieth-century physics with his work on relativity and quanta, but what do we really know about these ground breaking ideas? How were they discovered? What should we retain today from the conceptual upheavals he initiated? Through a selection of concrete scenes taken from Einstein's life, the author offers a view into the formation of his theories, as well as reminders of the day-to-day applications of his ideas. Simultaneously the reader is lead through a reflection on their philosophical impact: How should we think of time according to the theory of relativity, which removes any meaningful "now" and shows that twins can have different ages? How should we think of reality when quantum theory predicts that spatially separated objects nevertheless remain connected through Einstein's notion of "entanglement," which has recently been verified through scientific observation? This book puts readers in Einstein's place, allowing them to share some of those particular moment...

  10. Albert Einstein Centenary

    CERN Document Server

    Weisskopf, Victor Frederick; CERN. Geneva

    1979-01-01

    A socially engaged scientist by V. F. WEISSKOPF. On the origin of the Einstein-Russell statement on nuclear weapon by H. S. BURHOP. This week, we pay homage to Albert Einstein, the giant of twentieth-century physics born exactly 100 years ago on 14 March 1879 in Ulm, Germany. At the height of his career, Einstein made a whole series of monumental contributions to physics, including the elaborate theories of special and general relativity which revolutionized human thought and marked a major breakthrough in our understanding to the Universe. Along with quantum mechanics, relativity is one of the twin pillars of understanding which allow us here at CERN to study the behaviour of the tiniest components of matter. The development of quantum mechanics took the combined efforts of some of the greatest scientists the world has known, while relativity was developed almost single-handed by Einstein. The centenary of his birth is being commemorated all over the world. Exhibitions and symposia are being organized, books...

  11. An Einstein encyclopedia

    CERN Document Server

    Calaprice, Alice; Schulmann, Robert

    2015-01-01

    This is the single most complete guide to Albert Einstein’s life and work for students, researchers, and browsers alike. Written by three leading Einstein scholars who draw on their combined wealth of expertise gained during their work on the Collected Papers of Albert Einstein, this authoritative and accessible reference features more than one hundred entries and is divided into three parts covering the personal, scientific, and public spheres of Einstein’s life. An Einstein Encyclopedia contains entries on Einstein’s birth and death, family and romantic relationships, honors and awards, educational institutions where he studied and worked, citizenships and immigration to America, hobbies and travels, plus the people he befriended and the history of his archives and the Einstein Papers Project. Entries on Einstein’s scientific theories provide useful background and context, along with details about his assistants, collaborators, and rivals, as well as physics concepts related to his work. Coverage o...

  12. 2D Affine and Projective Shape Analysis.

    Science.gov (United States)

    Bryner, Darshan; Klassen, Eric; Huiling Le; Srivastava, Anuj

    2014-05-01

    Current techniques for shape analysis tend to seek invariance to similarity transformations (rotation, translation, and scale), but certain imaging situations require invariance to larger groups, such as affine or projective groups. Here we present a general Riemannian framework for shape analysis of planar objects where metrics and related quantities are invariant to affine and projective groups. Highlighting two possibilities for representing object boundaries-ordered points (or landmarks) and parameterized curves-we study different combinations of these representations (points and curves) and transformations (affine and projective). Specifically, we provide solutions to three out of four situations and develop algorithms for computing geodesics and intrinsic sample statistics, leading up to Gaussian-type statistical models, and classifying test shapes using such models learned from training data. In the case of parameterized curves, we also achieve the desired goal of invariance to re-parameterizations. The geodesics are constructed by particularizing the path-straightening algorithm to geometries of current manifolds and are used, in turn, to compute shape statistics and Gaussian-type shape models. We demonstrate these ideas using a number of examples from shape and activity recognition.

  13. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    International Nuclear Information System (INIS)

    Ayissi, Raoul Domingo; Noutchegueme, Norbert

    2015-01-01

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  14. Twisting null geodesic congruences and the Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Newman, Ezra T; Silva-Ortigoza, Gilberto

    2006-01-01

    In a recent article, we returned to the study of asymptotically flat solutions of the vacuum Einstein equations with a rather unconventional point of view. The essential observation in that work was that from a given asymptotically flat vacuum spacetime with a given Bondi shear, one can find a class of asymptotically shear-free (but, in general, twisting) null geodesic congruences where the class was uniquely given up to the arbitrary choice of a complex analytic 'worldline' in a four-dimensional complex space. By imitating certain terms in the Weyl tensor that are found in the algebraically special type II metrics, this complex worldline could be made unique and given-or assigned-the physical meaning as the complex centre of mass. Equations of motion for this case were found. The purpose of the present work is to extend those results to asymptotically flat solutions of the Einstein-Maxwell equations. Once again, in this case, we get a class of asymptotically shear-free null geodesic congruences depending on a complex worldline in the same four-dimensional complex space. However in this case there will be, in general, two distinct but uniquely chosen worldlines, one of which can be assigned as the complex centre of charge while the other could be called the complex centre of mass. Rather than investigating the situation where there are two distinct complex worldlines, we study instead the special degenerate case where the two worldlines coincide, i.e., where there is a single unique worldline. This mimics the case of algebraically special Einstein-Maxwell fields where the degenerate principle null vector of the Weyl tensor coincides with a Maxwell principle null vector. Again we obtain equations of motion for this worldline-but explicitly found here only in an approximation. Though there are ambiguities in assigning physical meaning to different terms it appears as if reliance on the Kerr and charged Kerr metrics and classical electromagnetic radiation theory helps

  15. Optimal conversion of an atomic to a molecular Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Hornung, Thomas; Gordienko, Sergei; Vivie-Riedle, Regina de; Verhaar, Boudewijn J.

    2002-01-01

    The work in this article extends the optimal control framework of variational calculus to optimize the conversion of a Bose-Einstein condensate of atoms to one of molecules. It represents the derivation of the closed form optimal control equations for a system governed by a nonlinear Schroedinger equation and its successful application. It was necessary to derive a density matrix formulation of the coupled Gross-Pitaevskii equations to optimize STIRAP-like Raman light fields, to overcome dissipation

  16. Neuromythology of Einstein's brain.

    Science.gov (United States)

    Hines, Terence

    2014-07-01

    The idea that the brain of the great physicist Albert Einstein is different from "average" brains in both cellular structure and external shape is widespread. This belief is based on several studies examining Einstein's brain both histologically and morphologically. This paper reviews these studies and finds them wanting. Their results do not, in fact, provide support for the claim that the structure of Einstein's brain reflects his intellectual abilities. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. How Einstein changed the world

    International Nuclear Information System (INIS)

    Boudenot, J.C.

    2005-01-01

    This book allows the reader to understand in a simple but detailed way the importance of the work of Einstein and its implications in the physics of today. The author first draws a biography of Einstein, then outlines the knowledge of physics at the beginning of the twentieth century, then describes the major contributions of Einstein to the brownian motion, the mass-energy equivalence, relativity and the notion of quantum, and ends by showing that the life-long Einstein's quest for a unitarian theory is still a present-day issue. (A.C.)

  18. Robustness of climate metrics under climate policy ambiguity

    International Nuclear Information System (INIS)

    Ekholm, Tommi; Lindroos, Tomi J.; Savolainen, Ilkka

    2013-01-01

    Highlights: • We assess the economic impacts of using different climate metrics. • The setting is cost-efficient scenarios for three interpretations of the 2C target. • With each target setting, the optimal metric is different. • Therefore policy ambiguity prevents the selection of an optimal metric. • Robust metric values that perform well with multiple policy targets however exist. -- Abstract: A wide array of alternatives has been proposed as the common metrics with which to compare the climate impacts of different emission types. Different physical and economic metrics and their parameterizations give diverse weights between e.g. CH 4 and CO 2 , and fixing the metric from one perspective makes it sub-optimal from another. As the aims of global climate policy involve some degree of ambiguity, it is not possible to determine a metric that would be optimal and consistent with all policy aims. This paper evaluates the cost implications of using predetermined metrics in cost-efficient mitigation scenarios. Three formulations of the 2 °C target, including both deterministic and stochastic approaches, shared a wide range of metric values for CH 4 with which the mitigation costs are only slightly above the cost-optimal levels. Therefore, although ambiguity in current policy might prevent us from selecting an optimal metric, it can be possible to select robust metric values that perform well with multiple policy targets

  19. Once Upon Einstein

    International Nuclear Information System (INIS)

    Giannetto, E

    2007-01-01

    Thibault Damour is a theoretical physicist, and a member of the French Academy of Sciences. This book is the translation, by Eric Novak, of the original French Si Einstein m'etait conte (Le Cherche Midi, 2005). It is neither a book of theoretical physics nor a biography of Einstein. It is not a book of history nor philosophy of science. In Damour's words it was written to encourage the reader to share with Einstein 'those times when he understood some part of the hidden order of the universe'. It is a relatively short book, written in a very fluent style, but it deals with all the major problems and achievements of Einstein's works. Starting from special relativity, it continues with general relativity, quantum theories, unified field theory and a brief overview of the actual research related to Einstein's legacy. It is essentially a popular science book with some related exploration in history and philosophy to interpret physical theories. The most important problem discussed by Damour is the nature of time. On this subject, there is a very interesting short paragraph (pp 33--35) dedicated to the reception of the relativity idea by the great writer Marcel Proust and its counterpart within A la Recherche du Temps Perdu. A correct discussion of the implications of a relativistic time should imply the distinction of the different possible interpretations of this concept. Damour seems to conclude that only one interpretation is possible: 'time does not exist', flowing of time is an illusion. One has to know that Einstein's ideas on time were related to Spinoza's perspective of a knowledge sub specie aeternitatis. However, other interpretations are possible and are related to the idea of time as an actuality. Damour speaks about the controversy between Einstein and Bergson, but Bergson is considered as a philosopher who did not understand relativity. This philosophical problem of relativistic time is indeed related to a historical problem briefly discussed by Damour

  20. Einstein's daughter the search for Lieserl

    CERN Document Server

    Zackheim, Michele

    1999-01-01

    A thoroughly gripping and groundbreaking investigation into the mysterious fate of Albert Einstein's illegitimate daughter. Albert Einstein fell in love with Mileva Maric, the woman who would become his first wife, when they were students at the Zurich Polytechnic Institute. When Maric conceived a child out of wedlock, she went home to her family in Serbia to have the child. Lieserl Maric Einstein was born in 1902. Though Einstein and Maric married the following year, Lieserl was left in the care of her grandparents and never became a part of the Einstein family. In fact, her very existence was unknown until the recent discovery of a cache of letters between Einstein and Maric. The final reference to Lieserl comes in a September 1903 letter, when, at the age of approximately eighteen months, she simply disappears. What happened to Einstein's daughter is the most potent mystery to emerge from the mythology that surrounds one of the century's legendary figures, owing in large part to the careful and apparent...

  1. Incompressible Navier-Stokes equation from Einstein-Maxwell and Gauss-Bonnet-Maxwell theories

    International Nuclear Information System (INIS)

    Niu Chao; Tian Yu; Wu Xiaoning; Ling Yi

    2012-01-01

    The dual fluid description for a general cutoff surface at radius r=r c outside the horizon in the charged AdS black brane bulk space-time is investigated, first in the Einstein-Maxwell theory. Under the non-relativistic long-wavelength expansion with parameter ε, the coupled Einstein-Maxwell equations are solved up to O(ε 2 ). The incompressible Navier-Stokes equation with external force density is obtained as the constraint equation at the cutoff surface. For non-extremal black brane, the viscosity of the dual fluid is determined by the regularity of the metric fluctuation at the horizon, whose ratio to entropy density η/s is independent of both the cutoff r c and the black brane charge. Then, we extend our discussion to the Gauss-Bonnet-Maxwell case, where the incompressible Navier-Stokes equation with external force density is also obtained at a general cutoff surface. In this case, it turns out that the ratio η/s is independent of the cutoff r c but dependent on the charge density of the black brane.

  2. Bose-Einstein correlations

    International Nuclear Information System (INIS)

    Zalewski, Kacper

    2000-01-01

    The effect of Bose-Einstein correlations on multiplicity distributions of identical pions is discussed. It is found that these correlations affect significantly the observed multiplicity distributions, but Einstein's condensation is unlikely to be achieved, unless 'cold spots', i.e. regions, where groups of pions with very small relative momenta are produced, occur in high energy heavy-ion collisions

  3. On the stationary Einstein-Maxwell-Klein-Gordon equations

    International Nuclear Information System (INIS)

    Gegenberg, J.D.

    1981-05-01

    The stationary Einstein-Maxwell-Klein-Gordon (EMKG) equations for interacting gravitational, electromagnetic and meson fields are examined. The theory is cast into the formalism of principal fiber bundles with a connection, wherein its relationship to current trends in theoretical physics is made manifest. The EMKG equations are shown to admit a Higgs-like mechanism for giving mass to the gauge field. A theorem specifying sufficient conditions for the stationarity of the spacetime metric to imply stationarity of the other fields is proved. By imposing additional constraints and symmetries, the EMKG equations are considerably simplified. An attempt is made to apply a solution-generation technique, and this meets with only partial success. Finally, a stationary but non-static solution is found, and the geometric and physical properties are discussed

  4. Thermodynamics in Einstein's thought

    International Nuclear Information System (INIS)

    Klein, M.J.

    1983-01-01

    The role of the thermodynamical approach in the Einstein's scientific work is analyzed. The Einstein's development of a notion about statistical fluctuations of thermodynamical systems that leads him to discovery of corpuscular-wave dualism is retraced

  5. Einstein's philosophy of physics

    International Nuclear Information System (INIS)

    Seeger, R.J.

    1979-01-01

    Sources of Einstein's philosophical ideas are discussed. Einstein was indebted to Mach and Poincare, and espoused more or less a logical empiricism. He looked upon Nature as real, rational, and understandable, at least to an extent

  6. a tensor theory of gravitation in a curved metric on a flat background

    International Nuclear Information System (INIS)

    Drummond, J.E.

    1979-01-01

    A theory of gravity is proposed using a tensor potential for the field on a flat metric. This potential cannot be isolated by local observations, but some details can be deduced from measurements at a distance. The requirement that the field equations for the tensor potential shall be deducible from an action integral, that the action and field equations are gauge invariant, and, conversely, that the Lagrangian in the action integral can be integrated from the field equations leads to Einstein's field equations. The requirement that the field energy-momentum tensor exists leads to a constraint on the tensor potential. If the constraint is a differential gauge condition, then it can only be the Hilbert condition giving a unique background tensor, metric tensor and tensor potential. For a continuous field inside a solid sphere the metric must be homogeneous in the spatial coordinates, and the associated field energy-momentum tensor has properties consistent with Newtonian dynamics. (author)

  7. Newton gauge cosmological perturbations for static spherically symmetric modifications of the de Sitter metric

    Science.gov (United States)

    Santa Vélez, Camilo; Enea Romano, Antonio

    2018-05-01

    Static coordinates can be convenient to solve the vacuum Einstein's equations in presence of spherical symmetry, but for cosmological applications comoving coordinates are more suitable to describe an expanding Universe, especially in the framework of cosmological perturbation theory (CPT). Using CPT we develop a method to transform static spherically symmetric (SSS) modifications of the de Sitter solution from static coordinates to the Newton gauge. We test the method with the Schwarzschild de Sitter (SDS) metric and then derive general expressions for the Bardeen's potentials for a class of SSS metrics obtained by adding to the de Sitter metric a term linear in the mass and proportional to a general function of the radius. Using the gauge invariance of the Bardeen's potentials we then obtain a gauge invariant definition of the turn around radius. We apply the method to an SSS solution of the Brans-Dicke theory, confirming the results obtained independently by solving the perturbation equations in the Newton gauge. The Bardeen's potentials are then derived for new SSS metrics involving logarithmic, power law and exponential modifications of the de Sitter metric. We also apply the method to SSS metrics which give flat rotation curves, computing the radial energy density profile in comoving coordinates in presence of a cosmological constant.

  8. Correspondence passed between Einstein and Schroedinger; La correspondance entre Einstein et Schroedinger

    Energy Technology Data Exchange (ETDEWEB)

    Balibar, F. [Paris-7 Univ., 75 (France)

    1992-12-31

    The main points of the 26 year long correspondence between Einstein and Schroedinger are reviewed: from the de Broglie thesis and the Bose-Einstein statistics to the Schroedinger equation (1925-1926); from the EPR paradox to the cat parable (1935); a complete collaboration on unitary theories.

  9. Generation of exact solutions to the Einstein field equations for homogeneous space--time

    International Nuclear Information System (INIS)

    Hiromoto, R.E.

    1978-01-01

    A formalism is presented capable of finding all homogeneous solutions of the Einstein field equations with an arbitrary energy-stress tensor. Briefly the method involves the classification of the four-dimensional Lie algebra over the reals into nine different broad classes, using only the Lorentz group. Normally the classification of Lie algebras means that one finds all essentially different solutions of the Jacobi identities, i.e., there exists no nonsingular linear transformation which transforms two sets of structure constants into the other. This approach is to utilize the geometrical considerations of the homogeneous spacetime and field equations to be solved. Since the set of orthonormal basis vectors is not only endowed with a Minkowskian metric, but also constitutes the vector space of our four-dimensional Lie algebras, the Lie algebras are classified against the Lorentz group restricts the linear group of transformations, denoting the essentially different Lie algebras, into nine different broad classes. The classification of the four-dimensional Lie algebras represents the unification of various methods previously introduced by others. Where their methods found only specific solutions to the Einstein field equations, systematic application of the nine different classes of Lie algebras guarantees the extraction of all solutions. Therefore, the methods of others were extended, and their foundations of formalism which goes beyond the present literature of exact homogeneous solutions to the Einstein field equations is built upon

  10. On some classes of super quasi-Einstein manifolds

    International Nuclear Information System (INIS)

    Ozguer, Cihan

    2009-01-01

    Quasi-Einstein and generalized quasi-Einstein manifolds are the generalizations of Einstein manifolds. In this study, we consider a super quasi-Einstein manifold, which is another generalization of an Einstein manifold. We find the curvature characterizations of a Ricci-pseudosymmetric and a quasi-conformally flat super quasi-Einstein manifolds. We also consider the condition C ∼ .S=0 on a super quasi-Einstein manifold, where C ∼ and S denote the quasi-conformal curvature tensor and Ricci tensor of the manifold, respectively.

  11. Once Upon Einstein

    Energy Technology Data Exchange (ETDEWEB)

    Giannetto, E [Dipartimento di Fisica ' A Volta' , via A Bassi 6, I-27100 Pavia (Italy)

    2007-07-20

    Thibault Damour is a theoretical physicist, and a member of the French Academy of Sciences. This book is the translation, by Eric Novak, of the original French Si Einstein m'etait conte (Le Cherche Midi, 2005). It is neither a book of theoretical physics nor a biography of Einstein. It is not a book of history nor philosophy of science. In Damour's words it was written to encourage the reader to share with Einstein 'those times when he understood some part of the hidden order of the universe'. It is a relatively short book, written in a very fluent style, but it deals with all the major problems and achievements of Einstein's works. Starting from special relativity, it continues with general relativity, quantum theories, unified field theory and a brief overview of the actual research related to Einstein's legacy. It is essentially a popular science book with some related exploration in history and philosophy to interpret physical theories. The most important problem discussed by Damour is the nature of time. On this subject, there is a very interesting short paragraph (pp 33--35) dedicated to the reception of the relativity idea by the great writer Marcel Proust and its counterpart within A la Recherche du Temps Perdu. A correct discussion of the implications of a relativistic time should imply the distinction of the different possible interpretations of this concept. Damour seems to conclude that only one interpretation is possible: 'time does not exist', flowing of time is an illusion. One has to know that Einstein's ideas on time were related to Spinoza's perspective of a knowledge sub specie aeternitatis. However, other interpretations are possible and are related to the idea of time as an actuality. Damour speaks about the controversy between Einstein and Bergson, but Bergson is considered as a philosopher who did not understand relativity. This philosophical problem of relativistic time is indeed related to a

  12. Charged black holes in Hořava gravity

    International Nuclear Information System (INIS)

    Janiszewski, Stefan; Karch, Andreas; Robinson, Brandon; Sommer, David

    2014-01-01

    We explore static spherically symmetric black hole solutions allowing a bulk U(1) vector field in the khronometric formulation of Hořava gravity by way of Einstein-Æther. We examine analytic solutions and study numerical results in the limit that the khronon does not backreact on the metric

  13. Conformal Einstein spaces

    International Nuclear Information System (INIS)

    Kozameh, C.N.; Newman, E.T.; Tod, K.P.

    1985-01-01

    Conformal transformations in four-dimensional. In particular, a new set of two necessary and sufficient conditions for a space to be conformal to an Einstein space is presented. The first condition defines the class of spaces conformal to C spaces, whereas the last one (the vanishing of the Bach tensor) gives the particular subclass of C spaces which are conformally related to Einstein spaces. (author)

  14. Scattering amplitudes in N=2 Maxwell-Einstein and Yang-Mills/Einstein supergravity

    International Nuclear Information System (INIS)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; Roiban, Radu

    2015-01-01

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N=2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N=2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian and Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at tree-level and one loop. The double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.

  15. Relativistic Bose-Einstein condensates thin-shell wormholes

    Science.gov (United States)

    Richarte, M. G.; Salako, I. G.; Graça, J. P. Morais; Moradpour, H.; Övgün, Ali

    2017-10-01

    We construct traversable thin-shell wormholes which are asymptotically Ads/dS applying the cut and paste procedure for the case of an acoustic metric created by a relativistic Bose-Einstein condensate. We examine several definitions of the flare-out condition along with the violation or not of the energy conditions for such relativistic geometries. Under reasonable assumptions about the equation of state of the matter located at the shell, we concentrate on the mechanical stability of wormholes under radial perturbation preserving the original spherical symmetry. To do so, we consider linearized perturbations around static solutions. We obtain that dS acoustic wormholes remain stable under radial perturbations as long as they have small radius; such wormholes with finite radius do not violate the strong/null energy condition. Besides, we show that stable Ads wormhole satisfy some of the energy conditions whereas unstable Ads wormhole with large radii violate them.

  16. Albert Einstein 1879-1955.

    Science.gov (United States)

    Physics Today, 1979

    1979-01-01

    Celebrates the centennial of Einstein's birth with an eight-page pictorial biography and two special articles: (1) Einstein the catalyst; and (2) Unitary field theories. His special and general theories of relativity and his contributions to quantum physics and other topics are also presented. (HM)

  17. Problems which are well posed in a generalized sense with applications to the Einstein equations

    International Nuclear Information System (INIS)

    Kreiss, H-O; Winicour, J

    2006-01-01

    In the harmonic description of general relativity, the principal part of the Einstein equations reduces to a constrained system of ten curved space wave equations for the components of the spacetime metric. We use the pseudo- differential theory of systems which are strongly well posed in the generalized sense to establish the well posedness of constraint-preserving boundary conditions for this system when treated in a second-order differential form. The boundary conditions are of a generalized Sommerfeld type that is benevolent for numerical calculation

  18. Beyond Einstein

    Science.gov (United States)

    Hertz, P.

    2003-03-01

    The Structure and Evolution of the Universe (SEU) theme within NASA's Office of Space Science seeks to explore and understand the dynamic transformations of energy in the Universe - the entire web of biological and physical interactions that determine the evolution of our cosmic habitat. This search for understanding will enrich the human spirit and inspire a new generation of explorers, scientists, and engineers. To that end, NASA's strategic planning process has generated a new Roadmap to enable those goals. Called "Beyond Einstein", this Roadmap identifies three science objectives for the SEU theme: (1) Find out what powered the Big Bang; (2) Observe how black holes manipulate space, time, and matter; and (3) Identify the mysterious dark energy pullingthe Universe apart. These objectives can be realized through a combination of large observatories (Constellation-X, LISA), moderate sized, PI-led missions (the Einstein Probes), and a contuinuing program of technology development, research and analysis, and education/public outreach. In this presentation, NASA's proposed Beyond Einstein Program will be described. The full Roadmap is available at http://universe.nasa.gov/.

  19. Einstein, Podolsky, and Rosen paradox in atomic, nuclear, and particle physics

    CERN Document Server

    Afriat, Alexander

    1999-01-01

    This text is the first exhaustive treatise on the Einstein, Podolsky, and Rosen (EPR) Paradox - the incompatibility, at empirical level, between local realism and the existing quantum theory The volume collates all the data and thought on the Paradox, from its original formulation in 1935, to some very recent theoretical developments The authors devote an entire chapter to the EPR Paradox for pairs of neutral kaons In addition, their text provides 6 different proofs of Bell's Theorem, about 150 references to the literature, and 74 illustrations

  20. The practical Einstein experiments, patents, inventions

    CERN Document Server

    Illy, József

    2012-01-01

    Albert Einstein may be best known as the wire-haired whacky physicist who gave us the theory of relativity, but that's just one facet of this genius' contribution to human knowledge and modern science. As Jozsef Illy expertly shows in this book, Einstein had an eminently practical side as well. As a youth, Einstein was an inveterate tinkerer in the electrical supply factory his father and uncle owned and operated. His first paid job was as a patent examiner. Later in life, Einstein contributed to many inventions, including refrigerators, microphones, and instruments for aviation. In published papers, Einstein often provided ways to test his theories and fundamental problems of the scientific community of his times. He delved deeply into a variety of technological innovations, most notably the gyrocompass, and consulted for industry in patent cases and on other legal matters. Einstein also provided explanations for common and mundane phenomena, such as the meandering of rivers. In these and other hands-on exam...

  1. k-Schur functions and affine Schubert calculus

    CERN Document Server

    Lam, Thomas; Morse, Jennifer; Schilling, Anne; Shimozono, Mark; Zabrocki, Mike

    2014-01-01

    This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems. Affine Schubert calculus lies at the crossroads of combinatorics, geometry, and representation theory. Its modern development is motivated by two seemingly unrelated directions. One is the introduction of k-Schur functions in the study of Macdonald polynomial positivity, a mostly combinatorial branch of symmetric function theory. The other direction is the study of the Schubert bases of the (co)homology of the affine Grassmannian, an algebro-topological formulation of a problem in enumerative geometry. This is the first introductory text on this subject. It contains many examples in Sage, a free open source general purpose mathematical software system, to entice the reader to investigate the open problems. This book is written for advanced undergraduate and graduate students, as well as researchers, who want to become familiar with ...

  2. Einstein's Revolutionary Light-Quantum Hypothesis

    Science.gov (United States)

    Stuewer, Roger H.

    2005-05-01

    The paper in which Albert Einstein proposed his light-quantum hypothesis was the only one of his great papers of 1905 that he himself termed ``revolutionary.'' Contrary to widespread belief, Einstein did not propose his light-quantum hypothesis ``to explain the photoelectric effect.'' Instead, he based his argument for light quanta on the statistical interpretation of the second law of thermodynamics, with the photoelectric effect being only one of three phenomena that he offered as possible experimental support for it. I will discuss Einstein's light-quantum hypothesis of 1905 and his introduction of the wave-particle duality in 1909 and then turn to the reception of his work on light quanta by his contemporaries. We will examine the reasons that prominent physicists advanced to reject Einstein's light-quantum hypothesis in succeeding years. Those physicists included Robert A. Millikan, even though he provided convincing experimental proof of the validity of Einstein's equation of the photoelectric effect in 1915. The turning point came after Arthur Holly Compton discovered the Compton effect in late 1922, but even then Compton's discovery was contested both on experimental and on theoretical grounds. Niels Bohr, in particular, had never accepted the reality of light quanta and now, in 1924, proposed a theory, the Bohr-Kramers-Slater theory, which assumed that energy and momentum were conserved only statistically in microscopic interactions. Only after that theory was disproved experimentally in 1925 was Einstein's revolutionary light-quantum hypothesis generally accepted by physicists---a full two decades after Einstein had proposed it.

  3. Einstein Up in Smoke

    Science.gov (United States)

    Lisle, John

    2016-01-01

    Albert Einstein's biographers have not explained why he developed the abdominal aortic aneurysm that led to his death. Early conjectures proposed that it was caused by syphilis, without accurate evidence. The present article gives evidence to the contrary, and argues that the principal cause of Einstein's death was smoking.

  4. The Routledge guidebook to Einstein's relativity

    CERN Document Server

    Trefil, James

    2015-01-01

    Albert Einstein, one of the most prolific scientists of the twentieth century, developed the theory of relativity which was crucial for the advancement of modern physics. Young Einstein identified a paradox between Newtonian Mechanics and Maxwell's equations which pointed to a flawed understanding of space and time by the scientists of the day. In Relativity, Einstein presents his findings using a minimal amount of mathematical language, but the text can still be challenging for readers who lack an extensive scientific background.The Routledge Guidebook to Einstein's Relativity expands on and

  5. Einstein's cosmology review of 1933: a new perspective on the Einstein-de Sitter model of the cosmos

    Science.gov (United States)

    O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon

    2015-09-01

    We present a first English translation and analysis of a little-known review of relativistic cosmology written by Albert Einstein in late 1932. The article, which was published in 1933 in a book of Einstein papers translated into French, contains a substantial review of static and dynamic relativistic models of the cosmos, culminating in a discussion of the Einstein-de Sitter model. The article offers a valuable contemporaneous insight into Einstein's cosmology in the early 1930s and confirms that his interest lay in the development of the simplest model of the cosmos that could account for observation. The article also confirms that Einstein did not believe that simplified relativistic models could give an accurate description of the early universe.

  6. Comments on the interacting Einstein-Hilbert drop

    International Nuclear Information System (INIS)

    Khanal, U.

    2004-12-01

    The bosonic internal co-ordinates of the Einstein-Hilbert drop is complexified to include U(1) gauge interaction. The equations of motion of the gauge fields are Maxwell equations. The EOM of the internal co-ordinates are elliptic under matter domination and hyperbolic under vacuum domination. These equations take on the familiar form of the wave equation of the interacting massless scalar field in any world spacetime that has the sum of its energy-momentum and Einstein tensors proportional to the induced metric. The reparametrization invariance of the worldtime can be used to identify it with the internal time. This results in a gauge condition that relates time to the curvature, gauge potential and energy-momentum. In gaussian normal co-ordinates of a constant curvature worldspace with real time, this condition translates into vanishing pressure, allowing a solution for the time dependence of the time-component of the vector potential. This potential has a simple pole at the origin of the complex time-plane, and another at a point on the imaginary axis. The singularity at the origin occurs only in the imaginary part of the potential. This potential in turn makes it possible to solve for the time dependence of the internal co-ordinates. Real internal co-ordinates have to be linear in worldtime. The complex internal co-ordinate also has two simple poles: one is at the same point on the imaginary axis as the potential; the other at infinity occurs only in the imaginary part. The origin turns out to be a regular point. (author)

  7. Indefinite metric, quantum axiomatics, and the Markov property

    International Nuclear Information System (INIS)

    Brownell, F.H.

    1978-01-01

    In answer to a remark of Jauch, a set of axioms for an 'indefinite metric' formulation of quantum electro-dynamics is presented, and the connection with orthocomplementation noted. Here a strict version of the Markov property apparently fails, leading to a novel interpretation. (Auth.)

  8. The Adolescence of Relativity: Einstein, Minkowski, and the Philosophy of Space and Time

    Science.gov (United States)

    Dieks, Dennis

    An often repeated account of the genesis of special relativity tells us that relativity theory was to a considerable extent the fruit of an operationalist philosophy of science. Indeed, Einstein's 1905 paper stresses the importance of rods and clocks for giving concrete physical content to spatial and temporal notions. I argue, however, that it would be a mistake to read too much into this. Einstein's operationalist remarks should be seen as serving rhetoric purposes rather than as attempts to promulgate a particular philosophical position - in fact, Einstein never came close to operationalism in any of his philosophical writings. By focussing on what could actually be measured with rods and clocks Einstein shed doubt on the empirical status of a number of pre-relativistic concepts, with the intention to persuade his readers that the applicability of these concepts was not obvious. This rhetoric manoeuvre has not always been rightly appreciated in the philosophy of physics. Thus, the influence of operationalist misinterpretations, according to which associated operations strictly define what a concept means, can still be felt in present-day discussions about the conventionality of simultaneity.The standard story continues by pointing out that Minkowski in 1908 supplanted Einstein's approach with a realist spacetime account that has no room for a foundational role of rods and clocks: relativity theory became a description of a four-dimensional "absolute world." As it turns out, however, it is not at all clear that Minkowski was proposing a substantivalist position with respect to spacetime. On the contrary, it seems that from a philosophical point of view Minkowski's general position was not very unlike the one in the back of Einstein's mind. However, in Minkowski's formulation of special relativity it becomes more explicit that the content of spatiotemporal concepts relates to considerations about the form of physical laws. If accepted, this position has important

  9. First-order symmetrizable hyperbolic formulations of Einstein's equations including lapse and shift as dynamical fields

    International Nuclear Information System (INIS)

    Alvi, Kashif

    2002-01-01

    First-order hyperbolic systems are promising as a basis for numerical integration of Einstein's equations. In previous work, the lapse and shift have typically not been considered part of the hyperbolic system and have been prescribed independently. This can be expensive computationally, especially if the prescription involves solving elliptic equations. Therefore, including the lapse and shift in the hyperbolic system could be advantageous for numerical work. In this paper, two first-order symmetrizable hyperbolic systems are presented that include the lapse and shift as dynamical fields and have only physical characteristic speeds

  10. Coexistence of photonic and atomic Bose-Einstein condensates in ideal atomic gases

    Directory of Open Access Journals (Sweden)

    N. Boichenko

    2015-12-01

    Full Text Available We have studied conditions of photon Bose-Einstein condensate formation that is in thermodynamic equilibrium with ideal gas of two-level Bose atoms below the degeneracy temperature. Equations describing thermodynamic equilibrium in the system were formulated; critical temperatures and densities of photonic and atomic gas subsystems were obtained analytically. Coexistence conditions of these photonic and atomic Bose-Einstein condensates were found. There was predicted the possibility of an abrupt type of photon condensation in the presence of Bose condensate of ground-state atoms: it was shown that the slightest decrease of the temperature could cause a significant gathering of photons in the condensate. This case could be treated as a simple model of the situation known as "stopped light" in cold atomic gas. We also showed how population inversion of atomic levels can be created by lowering the temperature. The latter situation looks promising for light accumulation in atomic vapor at very low temperatures.

  11. Einstein A to Z

    CERN Document Server

    Fox, Karen C

    2004-01-01

    Einstein was the twentieth century's most celebrated scientist - a man who developed the theory of relativity, revolutionised physics and became an iconic genius in the popular imagination. Essays range from the reasonably scientific including the theory of relativity, to the odd and engaging, such as Einstein's brain, his favourite jokes and films.

  12. Physics before and after Einstein

    CERN Document Server

    Capria, M Mamone

    2005-01-01

    It is now a century ago that one of the icons of modern physics published some of the most influential scientific papers of all times. With his work on relativity and quantum theory, Albert Einstein has altered the field of physics forever. It should not come as a surprise that looking back at Einstein''s work, one needs to rethink the whole scope of physics, before and after his time. This books aims to provide a perspective on the history of modern physics, spanning from the late 19th century up to today. It is not an encyclopaedic work, but it presents the groundbreaking and sometimes provocative main contributions by Einstein as marking the line between ''old'' and ''new'' physics, and expands on some of the developments and open issues to which they gave rise.

  13. Unified Maxwell-Einstein and Yang-Mills-Einstein supergravity theories in five dimensions

    International Nuclear Information System (INIS)

    Guenaydin, Murat; Zagermann, Marco

    2003-01-01

    Unified N = 2 Maxwell-Einstein supergravity theories (MESGTs) are supergravity theories in which all the vector fields, including the graviphoton, transform in an irreducible representation of a simple global symmetry group of the Lagrangian. As was established long time ago, in five dimensions there exist only four unified Maxwell-Einstein supergravity theories whose target manifolds are symmetric spaces. These theories are defined by the four simple euclidean Jordan algebras of degree three. In this paper, we show that, in addition to these four unified MESGTs with symmetric target spaces, there exist three infinite families of unified MESGTs as well as another exceptional one. These novel unified MESGTs are defined by non-compact (minkowskian) Jordan algebras, and their target spaces are in general neither symmetric nor homogeneous. The members of one of these three infinite families can be gauged in such a way as to obtain an infinite family of unified N = 2 Yang-Mills-Einstein supergravity theories, in which all vector fields transform in the adjoint representation of a simple gauge group of the type SU(N,1). The corresponding gaugings in the other two infinite families lead to Yang-Mills-Einstein supergravity theories coupled to tensor multiplets. (author)

  14. Charge-field formulation of quantum electrodynamics (QEMED)

    International Nuclear Information System (INIS)

    Leiter, D.

    1980-01-01

    By expressing classical electron theory in terms of 'charge-field' functional structures, it is shown that a finite formulation of the classical electrodynamics of point charges emerges in a simple and elegant fashion. This is used to construct a 'charge-field' quantum electrodynamic theory. It is found that interacting photon states are generated as a secondary manifestation of electron-positron quantization, and do not require the usual 'free' canonical quantization scheme. The possibility is discussed that this approach may lead to a better formulation of quantum electrodynamics in the Heisenberg picture and suggests a crucial experimental test to distinguish this new 'charge-field' quantum electrodynamics 'QEMED' from the standard QED formulation. Specifically QEMED predicts that the 'Einstein principle of separability' should be found to be valid for correlated photon polarization measurements, in which the polarizers are changed more rapidly than a characteristic photon travel time. Such an experiment (Aspect 1976) can distinguish between QEMED and QED in a complete and clear-cut fashion. (U.K.)

  15. Optical orientation of the homogeneous non-equilibrium Bose-Einstein condensate of bright excitons (polaritons)

    OpenAIRE

    Korenev, V. L.

    2011-01-01

    A simple model, describing the dynamics of the non-equilibrium pseudospin of a homogeneous Bose-Einstein condensate of exciton polaritons, has been formulated. It explains the suppression of spin splitting of a non-equilibrium polariton condensate in an external magnetic field, the optical alignment, and the conversion of alignment into orientation of polaritons. It has been shown that inverse effects are possible, to wit, the spontaneous circular polarization and the enhancement of spin spli...

  16. Einstein's cosmos how Albert Einstein's vision transformed our understanding of space and time

    CERN Document Server

    Kaku, Michio

    2004-01-01

    Few figures loom as large as Albert Einstein in our contemporary culture. It is truly remarkable that a man from such humble beginnings, an unemployed dreamer without a future or a job, who was written off by his professors as a hopeless loser, could to dare to scale the heights he reached. In this enlightening book Michio Kaku reasseses Einstein's work by centering on his three great theories - special relativity, general relativity and the Unified Field Theory. The first yielded the equation E =mc which is now such a fixture in our culture that it is practically a ubiquitous slogan. But the subsequent theories led to the Big Bang theory and have changed irrevocably the way we perceive time and space. Michio Kaku gives a new, refreshing look at the pioneering work of Einstein, giving a more accurate portrayal of his enduring legacy than previous biographies. As today's advanced physicists continue their intense search to fulfill Einstein's most cherished dream, a 'theory of everything', he is recognised as a...

  17. The NASA Beyond Einstein Program

    Science.gov (United States)

    White, Nicholas E.

    2006-01-01

    Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.

  18. Einstein a hundred years of relativity

    CERN Document Server

    Robinson, Andrew

    2015-01-01

    "The eternal mystery of the world is its comprehensibility … The fact that it is comprehensible is a miracle." --Albert Einstein, 1936 Albert Einstein's universal appeal is only partially explained by his brilliant work in physics, as Andrew Robinson demonstrates in this authoritative, accessible, and richly illustrated biography. The main narrative is enriched by twelve essays by well-known scientists, scholars, and artists, including three Nobel Laureates. The book presents clearly the beautiful simplicity at the heart of Einstein's greatest discoveries, and explains how his ideas have continued to influence scientific developments such as lasers, the theory of the big bang, and "theories of everything." Einstein's life and activities outside of science are also considered, including his encounters with famous contemporaries such as Chaplin, Roosevelt, and Tagore, his love of music, and his troubled family life. The book recognizes that Einstein's striking originality was expressed in many ways, from hi...

  19. Conversations With Albert Einstein. II

    Science.gov (United States)

    Shankland, R. S.

    1973-01-01

    Discusses Einstein's views on the role of Michelson-Morley, Fizeau, and Miller experiments in the development of relativity and his attitude toward the theories of new quantum mechanics. Indicates that Einstein's opposition to quantum mechanics is beyond dispute. (CC)

  20. Albert Einstein Centenary

    CERN Document Server

    Amati, Daniele; Weisskopf, Victor Frederick; CERN. Geneva

    1979-01-01

    The scientist and his work by D. AMATI and S. FUBINI. A socially engaged scientist by V. F. WEISSKOPF. This week, we pay homage to Albert Einstein, the giant of twentieth-century physics born exactly 100 years ago on 14 March 1879 in Ulm, Germany. At the height of his career, Einstein made a whole series of monumental contributions to physics, including the elaborate theories of special and general relativity which revolutionized human thought and marked a major breakthrough in our understanding to the Universe. Along with quantum mechanics, relativity is one of the twin pillars of understanding which allow us here at CERN to study the behaviour of the tiniest components of matter. The development of quantum mechanics took the combined efforts of some of the greatest scientists the world has known, while relativity was developed almost single-handed by Einstein. The centenary of his birth is being commemorated all over the world. Exhibitions and symposia are being organized, books published, postage stamps is...

  1. Boltzmann, Einstein, Natural Law and Evolution

    International Nuclear Information System (INIS)

    Broda, E.

    1980-01-01

    Like Boltzmann, Einstein was a protagonist of atomistics. As a physicist, he has been called Boltzmann's true successor. Also in epistemology, after overcoming the positivist influence of Mach, Einstein approached Boltzmann. Any difference between Boltzmann's realism, or even materialism, and Einstein's pantheism may be merely a matter of emphasis. Yet a real difference exists in another respect. Boltzmann explained man's power of thinking and feeling, his morality and his esthetic sense, on an evolutionary, Darwinian, basis. In contrast, evolution had no role in Einstein's thought, though Darwin was accepted by him. This lack of appreciation of the importance of evolution is now attributed to socio-political factors. (author)

  2. Singularities of plane complex curves and limits of Kähler metrics with cone singularities. I: Tangent Cones

    Directory of Open Access Journals (Sweden)

    Borbon Martin de

    2017-02-01

    Full Text Available The goal of this article is to provide a construction and classification, in the case of two complex dimensions, of the possible tangent cones at points of limit spaces of non-collapsed sequences of Kähler-Einstein metrics with cone singularities. The proofs and constructions are completely elementary, nevertheless they have an intrinsic beauty. In a few words; tangent cones correspond to spherical metrics with cone singularities in the projective line by means of the Kähler quotient construction with respect to the S1-action generated by the Reeb vector field, except in the irregular case ℂβ₁×ℂβ₂ with β₂/ β₁ ∉ Q.

  3. The metric and curvature properties of H-space

    International Nuclear Information System (INIS)

    Hansen, R.O.; Newman, E.T.; Penrose, R.; Tod, K.P.

    1978-01-01

    The space H of asymptotically (left-) shear-free cuts of the future null infinity (good cuts) of an asymptotically flat space-time M is defined. The connection between this space and the asymptotic projective twistor space of M is discussed, and this relation is used to prove that H is four-complex-dimensional for sufficiently 'calm' gravitational radiation in M. The metric on H-space is defined by a simple contour integral expression and is found to be complex Riemannian. The good cut equation governing H-space is solved to three orders by a Taylor series and the solution is used to demonstrate that the curvature of H-space is always a self dual (left flat) solution of the Einstein vacuum equations. (author)

  4. When Art Meets Einstein

    Science.gov (United States)

    Science Scope, 2006

    2006-01-01

    This article deals with a pale blue sculpture entitled "A New World View", as an homage to the most famous scientist in modern history, Albert Einstein. It has 32 bas-relief squares composed of glass and steel that represent one aspect of the life and legacy of Albert Einstein. Images of children's faces peer out from behind the glass squares,…

  5. Albert Einstein memorial lectures

    CERN Document Server

    Mechoulam, Raphael; The Israel Academy for Sciences and Humanities

    2012-01-01

    This volume consists of a selection of the Albert Einstein Memorial Lectures presented annually at the Israel Academy of Sciences and Humanities. Delivered by eminent scientists and scholars, including Nobel laureates, they cover a broad spectrum of subjects in physics, chemistry, life science, mathematics, historiography and social issues. This distinguished memorial lecture series was inaugurated by the Israel Academy of Sciences and Humanities following an international symposium held in Jerusalem in March 1979 to commemorate the centenary of Albert Einstein's birth. Considering that Einstein's interests, activities and influence were not restricted to theoretical physics but spanned broad fields affecting society and the welfare of humankind, it was felt that these memorial lectures should be addressed to scientists, scholars and erudite laypersons rather than to physicists alone.

  6. Astrophysical observations: lensing and eclipsing Einstein's theories.

    Science.gov (United States)

    Bennett, Charles L

    2005-02-11

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics.

  7. Einstein before Israel Zionist icon or iconoclast?

    CERN Document Server

    Rosenkranz, Ze’ev

    2011-01-01

    Albert Einstein was initially skeptical and even disdainful of the Zionist movement, yet he affiliated himself with this controversial political ideology and today is widely seen as an outspoken advocate for a modern Jewish homeland in Palestine. What enticed this renowned scientist and humanitarian, who repeatedly condemned nationalism of all forms, to radically change his views? Was he in fact a Zionist? Einstein Before Israel traces Einstein's involvement with Zionism from his initial contacts with the movement at the end of World War I to his emigration from Germany in 1933 in the wake of Hitler's rise to power. Drawing on a wealth of rare archival evidence--much of it never before published--this book offers the most nuanced picture yet of Einstein's complex and sometimes stormy relationship with Jewish nationalism. Ze'ev Rosenkranz sheds new light on Einstein's encounters with prominent Zionist leaders, and reveals exactly what Einstein did and didn't like about Zionist beliefs, objectives, and methods...

  8. Vortex sorter for Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Whyte, Graeme; Veitch, John; Courtial, Johannes; Oehberg, Patrik

    2004-01-01

    We have designed interferometers that sort Bose-Einstein condensates into their vortex components. The Bose-Einstein condensates in the two arms of the interferometer are rotated with respect to each other through fixed angles; different vortex components then exit the interferometer in different directions. The method we use to rotate the Bose-Einstein condensates involves asymmetric phase imprinting and is itself new. We have modeled rotation through fixed angles and sorting into vortex components with even and odd values of the topological charge of two-dimensional Bose-Einstein condensates in a number of states (pure or superposition vortex states for different values of the scattering length). Our scheme may have applications for quantum information processing

  9. Averaging problem in general relativity, macroscopic gravity and using Einstein's equations in cosmology.

    Science.gov (United States)

    Zalaletdinov, R. M.

    1998-04-01

    The averaging problem in general relativity is briefly discussed. A new setting of the problem as that of macroscopic description of gravitation is proposed. A covariant space-time averaging procedure is described. The structure of the geometry of macroscopic space-time, which follows from averaging Cartan's structure equations, is described and the correlation tensors present in the theory are discussed. The macroscopic field equations (averaged Einstein's equations) derived in the framework of the approach are presented and their structure is analysed. The correspondence principle for macroscopic gravity is formulated and a definition of the stress-energy tensor for the macroscopic gravitational field is proposed. It is shown that the physical meaning of using Einstein's equations with a hydrodynamic stress-energy tensor in looking for cosmological models means neglecting all gravitational field correlations. The system of macroscopic gravity equations to be solved when the correlations are taken into consideration is given and described.

  10. Einstein's Jury The Race to Test Relativity

    CERN Document Server

    Crelinsten, Jeffrey

    2006-01-01

    Einstein's Jury is the dramatic story of how astronomers in Germany, England, and America competed to test Einstein's developing theory of relativity. Weaving a rich narrative based on extensive archival research, Jeffrey Crelinsten shows how these early scientific debates shaped cultural attitudes we hold today. The book examines Einstein's theory of general relativity through the eyes of astronomers, many of whom were not convinced of the legitimacy of Einstein's startling breakthrough. These were individuals with international reputations to uphold and benefactors and shareholders to p

  11. Canonical formulations of full nonlinear topologically massive gravity

    International Nuclear Information System (INIS)

    Deser, S.; Xiang, X.

    1991-01-01

    First-order forms of the complete nonlinear Einstein plus Chern-Simons third-derivative-order action are exhibited in both metric and dreibein forms. The 'hamiltonians' are combinations of diffeomorphism and tangent space rotation generators as expected of generally covariant systems; the pure Chern-Simons hamiltonian has an additional, conformal transformation, term. These constraints reduce the apparent number of degrees of freedom to 1 and 0 respectively. The constraint algebras close, as required by this counting, without second-class constraints. The nature of the noninvariant terms in the Chern-Simons lagrangian density is discussed. For comparison, the linearized limit and the corresponding nonabelian vector action's canonical form are also given. (orig.)

  12. Multisymplectic unified formalism for Einstein-Hilbert gravity

    Science.gov (United States)

    Gaset, Jordi; Román-Roy, Narciso

    2018-03-01

    We present a covariant multisymplectic formulation for the Einstein-Hilbert model of general relativity. As it is described by a second-order singular Lagrangian, this is a gauge field theory with constraints. The use of the unified Lagrangian-Hamiltonian formalism is particularly interesting when it is applied to these kinds of theories, since it simplifies the treatment of them, in particular, the implementation of the constraint algorithm, the retrieval of the Lagrangian description, and the construction of the covariant Hamiltonian formalism. In order to apply this algorithm to the covariant field equations, they must be written in a suitable geometrical way, which consists of using integrable distributions, represented by multivector fields of a certain type. We apply all these tools to the Einstein-Hilbert model without and with energy-matter sources. We obtain and explain the geometrical and physical meaning of the Lagrangian constraints and we construct the multimomentum (covariant) Hamiltonian formalisms in both cases. As a consequence of the gauge freedom and the constraint algorithm, we see how this model is equivalent to a first-order regular theory, without gauge freedom. In the case of the presence of energy-matter sources, we show how some relevant geometrical and physical characteristics of the theory depend on the type of source. In all the cases, we obtain explicitly multivector fields which are solutions to the gravitational field equations. Finally, a brief study of symmetries and conservation laws is done in this context.

  13. Einstein's universe

    CERN Document Server

    Calder, Nigel

    1979-01-01

    This brilliantly written book unlocks the astounding implications of Einstein's revolutionary theories on the nature of science, time and motion. It far surpasses any previous explanation of Relativity for laymen.

  14. Black holes, parallelizable horizons, and half-BPS states for the Einstein-Gauss-Bonnet theory in five dimensions

    International Nuclear Information System (INIS)

    Canfora, Fabrizio; Giacomini, Alex; Troncoso, Ricardo

    2008-01-01

    Exact vacuum solutions with a nontrivial torsion for the Einstein-Gauss-Bonnet theory in five dimensions are constructed. We consider a class of static metrics whose spacelike section is a warped product of the real line with a nontrivial base manifold endowed with a fully antisymmetric torsion. It is shown that requiring solutions of this sort to exist, fixes the Gauss-Bonnet coupling such that the Lagrangian can be written as a Chern-Simons form. The metric describes black holes with an arbitrary, but fixed, base manifold. It is shown that requiring its ground state to possess unbroken supersymmetries fixes the base manifold to be locally a parallelized three-sphere. The ground state turns out to be half-BPS, which could not be achieved in the absence of torsion in vacuum. The Killing spinors are explicitly found

  15. Solutions of Einstein's field equations

    Energy Technology Data Exchange (ETDEWEB)

    Tomonaga, Y [Utsunomiya Univ. (Japan). Faculty of Education

    1978-12-01

    In this paper the author investigates the Einstein's field equations of the non-vacuum case and generalizes the solution of Robertson-Walker by the three dimensional Einstein spaces. In Section 2 the author shortly generalizes the dynamic space-time of G. Lemetre and A. Friedmann by a simple transformation.

  16. Conceptual Development of Einstein's Mass-Energy Relationship

    Science.gov (United States)

    Wong, Chee Leong; Yap, Kueh Chin

    2005-01-01

    Einstein's special theory of relativity was published in 1905. It stands as one of the greatest intellectual achievements in the history of human thought. Einstein described the equivalence of mass and energy as "the most important upshot of the special theory of relativity" (Einstein, 1919). In this paper, we will discuss the evolution of the…

  17. Einstein for Schools and the General Public

    Science.gov (United States)

    Johansson, K. E.; Kozma, C; Nilsson, Ch

    2006-01-01

    In April 2005 the World Year of Physics (Einstein Year in the UK and Ireland) was celebrated with an Einstein week in Stockholm House of Science. Seven experiments illustrated Einstein's remarkable work in 1905 on Brownian motion, the photoelectric effect and special relativity. Thirteen school classes with 260 pupils, 30 teachers and 25 members…

  18. Series expansion of the modified Einstein Procedure

    Science.gov (United States)

    Seema Chandrakant Shah-Fairbank

    2009-01-01

    This study examines calculating total sediment discharge based on the Modified Einstein Procedure (MEP). A new procedure based on the Series Expansion of the Modified Einstein Procedure (SEMEP) has been developed. This procedure contains four main modifications to MEP. First, SEMEP solves the Einstein integrals quickly and accurately based on a series expansion. Next,...

  19. Mileva Maric Einstein vivre avec Albert Einstein

    CERN Document Server

    Milentijevic, Radmila

    2013-01-01

    Radmila Milentijevic n’est pas la première à écrire sur les relations entre le génial Albert Einstein et sa première épouse et précieuse collaboratrice durant ses années de recherches, la scientifique serbe Mileva Maric. Mais c’est la première fois qu’un ouvrage traite de cette idylle, puis de ce drame familial qui a duré près de cinquante années, sous une forme quasiment poétique, si rare dans l’historiographie scientifique.Professeur émérite d’histoire à l’université de New York, l’auteur propose ici une monographie riche et vivante, dévoilant une face cachée d’Albert Einstein, et faisant de sa compagne une figure historique de premier plan en même temps qu’un personnage romanesque dont le destin tragique ne laissera aucun lecteur indifférent.

  20. 2011 Einstein Fellows Chosen

    Science.gov (United States)

    2011-03-01

    ASA has announced the selection of the 2011 Einstein Fellows who will conduct research related to NASA's Physics of the Cosmos program, which aims to expand our knowledge of the origin, evolution, and fate of the Universe. The Einstein Fellowship provides support to the awardees for three years, and the Fellows may pursue their research at a host university or research center of their choosing in the United States. The new Fellows will begin their programs in the fall of 2011. The new Einstein Fellows and their host institutions are listed below: * Akos Bogdan (Smithsonian Astrophysical Observatory, Cambridge, Mass.) * Samuel Gralla (University of Maryland, College Park, Md.) * Philip Hopkins (University of California at Berkeley) * Matthew Kunz (Princeton University, Princeton, N.J.) * Laura Lopez (Massachusetts Institute of Technology, Cambridge, Mass.) * Amy Reines (National Radio Astronomy Observatory, Charlottesville, Virg.) * Rubens Reis (University of Michigan, Ann Arbor) * Ken Shen (Lawrence Berkeley National Laboratory, Berkeley, Calif.) * Jennifer Siegal-Gaskins (California Institute of Technology, Pasadena) * Lorenzo Sironi (Harvard University, Cambridge, Mass.) NASA has two other astrophysics theme-based fellowship programs: the Sagan Fellowship Program, which supports research into exoplanet exploration, and the Hubble Fellowship Program, which supports research into cosmic origins. More information on the Einstein Fellowships can be found at: http://cxc.harvard.edu/fellows/

  1. Exact Solutions for Einstein's Hyperbolic Geometric Flow

    International Nuclear Information System (INIS)

    He Chunlei

    2008-01-01

    In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow

  2. Spinning higher dimensional Einstein-Yang-Mills black holes

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.; Papnoi, Uma

    2014-01-01

    We construct a Kerr-Newman-like spacetime starting from higher dimensional (HD) Einstein-Yang-Mills black holes via complex transformations suggested by Newman-Janis. The new metrics are a HD generalization of Kerr-Newman spacetimes which has a geometry that is precisely that of Kerr-Newman in 4D corresponding to a Yang-Mills (YM) gauge charge, but the sign of the charge term gets flipped in the HD spacetimes. It is interesting to note that the gravitational contribution of the YM gauge charge, in HD, is indeed opposite (attractive rather than repulsive) to that of the Maxwell charge. The effect of the YM gauge charge on the structure and location of static limit surface and apparent horizon is discussed. We find that static limit surfaces become less prolate with increase in dimensions and are also sensitive to the YM gauge charge, thereby affecting the shape of the ergosphere. We also analyze some thermodynamical properties of these BHs. (orig.)

  3. Spinning higher dimensional Einstein-Yang-Mills black holes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of Kwa-Zulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Private Bag 54001, Durban (South Africa); Papnoi, Uma [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India)

    2014-08-15

    We construct a Kerr-Newman-like spacetime starting from higher dimensional (HD) Einstein-Yang-Mills black holes via complex transformations suggested by Newman-Janis. The new metrics are a HD generalization of Kerr-Newman spacetimes which has a geometry that is precisely that of Kerr-Newman in 4D corresponding to a Yang-Mills (YM) gauge charge, but the sign of the charge term gets flipped in the HD spacetimes. It is interesting to note that the gravitational contribution of the YM gauge charge, in HD, is indeed opposite (attractive rather than repulsive) to that of the Maxwell charge. The effect of the YM gauge charge on the structure and location of static limit surface and apparent horizon is discussed. We find that static limit surfaces become less prolate with increase in dimensions and are also sensitive to the YM gauge charge, thereby affecting the shape of the ergosphere. We also analyze some thermodynamical properties of these BHs. (orig.)

  4. Quantum theory and Einstein's general relativity

    International Nuclear Information System (INIS)

    Borzeszkowski, H.H.v.; Treder, H.J.

    1984-01-01

    The paper concerns Einstein's general relativity, wave mechanics and the quantization of Einstein's gravitation equations. The principle of equivalence and its association with both wave mechanics and quantum gravity, is discussed. (U.K.)

  5. On the relation between the Einstein and the Komar expressions for the energy of the gravitational field

    International Nuclear Information System (INIS)

    Chrusciel, P.T.

    1983-09-01

    It is shown that the interpretation of the Einstein energy-momentum ''pseudo-tensor'', ''covariantized'' with the help of a background metric, as the energy-momentum tensor of the gravitational field with respect to a background field is consistent with a geometric Hamiltonian analysis. It is also shown that the von Freud superpotential and the Komar superpotential describe the dynamics of the gravitational field in different function spaces, subject to different boundary conditions. One can pass from one superpotential to the other by performing a Legendre transformation on the boundary. (author)

  6. Real symplectic formulation of local special geometry

    CERN Document Server

    Ferrara, Sergio; Ferrara, Sergio; Macia, Oscar

    2006-01-01

    We consider a formulation of local special geometry in terms of Darboux special coordinates $P^I=(p^i,q_i)$, $I=1,...,2n$. A general formula for the metric is obtained which is manifestly $\\mathbf{Sp}(2n,\\mathbb{R})$ covariant. Unlike the rigid case the metric is not given by the Hessian of the real function $S(P)$ which is the Legendre transform of the imaginary part of the holomorphic prepotential. Rather it is given by an expression that contains $S$, its Hessian and the conjugate momenta $S_I=\\frac{\\partial S}{\\partial P^I}$. Only in the one-dimensional case ($n=1$) is the real (two-dimensional) metric proportional to the Hessian with an appropriate conformal factor.

  7. The world-line. Albert Einstein and modern physics; Die Weltlinie. Albert Einstein und die moderne Physik

    Energy Technology Data Exchange (ETDEWEB)

    Maalampi, Jukka [Jyvaeskylae Univ. (Finland). Dept. of Physics

    2008-07-01

    This book is an entertaining and formula-free presentation of modern physics from the 19th century to present. The life of Albert Einstein and his scientific works are drawn as red fathom through the text. The author explains central terms and results of modern physics in populary-scientific form from the historical perspective. To the reader in humorous form an imagination is mediated how modern physics has been developed. We learn from the exciting effects of the ether, we hear from faraday and magnetic needles, from Maxwell's prediction of the electromagnetic waves, from heinrich Hertz and from the photoelectric effect. Was the Michelson-Morley experiment a measurement success or an unsuccess? Why has Einstein abandoned the ether? How has Einstein in the miraculous year 1905 revolutionated physics and why he has begged Newton for excusement? Exist atoms? What is motion? What is light and what is to be understood under ''now'' and ''here''? Light deviation or non-deviation? How act the tidal forces? And above all: How has Einstein answered these questions. We meet Poincare, Lorentz and Hilbert, Boltzmann and Bohr, Minkowski, Planck, de Broglie, Hubble and Weyl, Gamow, Hahn and Meitner, Kapiza and Landau, Fermi and many other famous scientists. What had Eddington against Chandrasekhar and what had Einstein against black holes? Why should space tourists and dream tourists make holiday not on the Loch Ness but on the safe side of a black hole? Why inveighed Pauli against Einstein? Is the concern with the atomic-bomb formula right? Smeared matter, big bang and cosmic background radiation, gravitational waves and double pulsars, the cosmological constant and the expansion of the universe are further themes, which keep the reader in breath and let no mental vacuum arise. [German] Das Buch ist eine unterhaltsame und formelfreie Darstellung der modernen Physik vom 19. Jahrhundert bis zur Gegenwart. Das Leben Albert Einsteins

  8. Albert Einstein's Magic Mountain: An Aarau Education*

    Science.gov (United States)

    Hunziker, Herbert

    2015-03-01

    For economic reasons, the electrotechnical factory J. Einstein & Cie. (co-owned by Albert Einstein's father Hermann) had to be closed in the summer of 1894. While Albert's parents emigrated to Italy to build a new existence, he remained in Munich to complete his studies at the Gymnasium. Left behind, however, he had a difficult time with what he considered the rigid educational practices at the Munich Luitpold-Gymnasium and quit without a diploma. The present article discusses Einstein's richly winding path to the Aargau Cantonal School (Switzerland), especially its history and educational philosophy during the time of his stay in Aarau. There, Einstein met some outstanding teachers, who could serve him as models of scholars and human beings. In spite of Einstein's distinct independence of mind, these personalities may well have had a significant influence on the alignment of his inner compass.

  9. Some Remarks on Space-Time Decompositions, and Degenerate Metrics, in General Relativity

    Science.gov (United States)

    Bengtsson, Ingemar

    Space-time decomposition of the Hilbert-Palatini action, written in a form which admits degenerate metrics, is considered. Simple numerology shows why D = 3 and 4 are singled out as admitting a simple phase space. The canonical structure of the degenerate sector turns out to be awkward. However, the real degenerate metrics obtained as solutions are the same as those that occur in Ashtekar's formulation of complex general relativity. An exact solution of Ashtekar's equations, with degenerate metric, shows that the manifestly four-dimensional form of the action, and its 3 + 1 form, are not quite equivalent.

  10. Albert Einstein: A Biographical Sketch

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 4. Albert Einstein: A Biographical Sketch. Maja Winteler-Einstein. Reflections Volume 5 Issue 4 April 2000 pp 111-120. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/04/0111-0120 ...

  11. A Piecewise Affine Hybrid Systems Approach to Fault Tolerant Satellite Formation Control

    DEFF Research Database (Denmark)

    Grunnet, Jacob Deleuran; Larsen, Jesper Abildgaard; Bak, Thomas

    2008-01-01

    In this paper a procedure for modelling satellite formations   including failure dynamics as a piecewise-affine hybrid system is   shown. The formulation enables recently developed methods and tools   for control and analysis of piecewise-affine systems to be applied   leading to synthesis of fault...... tolerant controllers and analysis of   the system behaviour given possible faults.  The method is   illustrated using a simple example involving two satellites trying   to reach a specific formation despite of actuator faults occurring....

  12. Einstein's Materialism and Modern Tests of Quantum Mechanics

    Science.gov (United States)

    Vigier, J. P.

    After a presentation of Einstein's and Bohr's antagonistic point of view on the interpretation of Quantum Mechanics an illustration of their conflicting positions in the particular case of Young's double slit experiment is presented. It is then shown that in their most recent form (i. e. time dependent neutron interferometry) these experiments suggest (if one accepts absolute energymomentum conservation in all individual microprocesses) that Einstein was right in the Bohr-Einstein controversy.Translated AbstractEinsteins Materialismus und heutige Tests der QuantenmechanikNach einer Darstellung von Einsteins und Bohrs antagonistischen Standpunkten in der Interpretation der Quantenmechanik werden ihre widersprüchlichen Positionen im speziellen Fall des Youngschen Doppelspaltexperiments dargestellt. Es wird dann gezeigt, daß diese Experimente in ihrer neuesten Form (d. h. zeitabhängige Neutroneninterferometrie) Einstein in der Bohr-Einsteinkontroverse recht gaben (wenn man absolute Energie-Impulserhaltung bei allen individuellen Mikroprozessen annimmt).

  13. Group covariance and metrical theory

    International Nuclear Information System (INIS)

    Halpern, L.

    1983-01-01

    The a priori introduction of a Lie group of transformations into a physical theory has often proved to be useful; it usually serves to describe special simplified conditions before a general theory can be worked out. Newton's assumptions of absolute space and time are examples where the Euclidian group and translation group have been introduced. These groups were extended to the Galilei group and modified in the special theory of relativity to the Poincare group to describe physics under the given conditions covariantly in the simplest way. The criticism of the a priori character leads to the formulation of the general theory of relativity. The general metric theory does not really give preference to a particular invariance group - even the principle of equivalence can be adapted to a whole family of groups. The physical laws covariantly inserted into the metric space are however adapted to the Poincare group. 8 references

  14. Revisiting Einstein's brain in Brain Awareness Week.

    Science.gov (United States)

    Chen, Hao; Chen, Su; Zeng, Lidan; Zhou, Lin; Hou, Shengtao

    2014-10-01

    Albert Einstein's brain has long been an object of fascination to both neuroscience specialists and the general public. However, without records of advanced neuro-imaging of his brain, conclusions regarding Einstein's extraordinary cognitive capabilities can only be drawn based on the unique external features of his brain and through comparison of the external features with those of other human brain samples. The recent discovery of 14 previously unpublished photographs of Einstein's brain taken at unconventional angles by Dr. Thomas Stoltz Harvey, the pathologist, ignited a renewed frenzy about clues to explain Einstein's genius. Dr. Dean Falk and her colleagues, in their landmark paper published in Brain (2013; 136:1304-1327), described in such details about the unusual features of Einstein's brain, which shed new light on Einstein's intelligence. In this article, we ask what are the unique structures of his brain? What can we learn from this new information? Can we really explain his extraordinary cognitive capabilities based on these unique brain structures? We conclude that studying the brain of a remarkable person like Albert Einstein indeed provides us a better example to comprehensively appreciate the relationship between brain structures and advanced cognitive functions. However, caution must be exercised so as not to over-interpret his intelligence solely based on the understanding of the surface structures of his brain.

  15. Albert Einstein and Wernher von Braun - the two great German-American physicists seen in a historical perspective.

    Science.gov (United States)

    Winterberg, Friedwardt

    2008-04-01

    It was Albert Einstein who for the first time changed our view of the universe to be a non-euclidean curved space-time. And it was Wernher von Braun who blazed the trail to take us into this universe, leaving for the first time the gravitational field of our planet earth, with the landing a man on the moon the greatest event in human history. Both these great physicists did this on the shoulders of giants. Albert Einstein on the shoulders of his landsman, the mathematician Bernhard Riemann, and Wernher von Braun on the shoulders of Goddard and Oberth. Both Einstein and von Braun made a Faustian pact with the devil, von Braun by accepting research funds from Hitler, and Einstein by urging Roosvelt to build the atom bomb (against Hitler). Both of these great men later regretted the use of their work for the killing of innocent bystanders, even though in the end the invention of nuclear energy and space flight is for the benefit of man. Their example serves as a warning for all of us. It can be formulated as follows: ``Can I in good conscience accept research funds from the military to advance scientific knowledge, for weapons developed against an abstract enemy I never have met in person?'' Weapons if used do not differentiate between the scientist, who invented these weapons, and the non-scientist.

  16. BOOK REVIEW: Once Upon Einstein

    Science.gov (United States)

    Giannetto, E.

    2007-07-01

    Thibault Damour is a theoretical physicist, and a member of the French Academy of Sciences. This book is the translation, by Eric Novak, of the original French Si Einstein m'etait conté (Le Cherche Midi, 2005). It is neither a book of theoretical physics nor a biography of Einstein. It is not a book of history nor philosophy of science. In Damour's words it was written to encourage the reader to share with Einstein `those times when he understood some part of the hidden order of the universe'. It is a relatively short book, written in a very fluent style, but it deals with all the major problems and achievements of Einstein's works. Starting from special relativity, it continues with general relativity, quantum theories, unified field theory and a brief overview of the actual research related to Einstein's legacy. It is essentially a popular science book with some related exploration in history and philosophy to interpret physical theories. The most important problem discussed by Damour is the nature of time. On this subject, there is a very interesting short paragraph (pp 33--35) dedicated to the reception of the relativity idea by the great writer Marcel Proust and its counterpart within À la Recherche du Temps Perdu. A correct discussion of the implications of a relativistic time should imply the distinction of the different possible interpretations of this concept. Damour seems to conclude that only one interpretation is possible: `time does not exist', flowing of time is an illusion. One has to know that Einstein's ideas on time were related to Spinoza's perspective of a knowledge sub specie aeternitatis. However, other interpretations are possible and are related to the idea of time as an actuality. Damour speaks about the controversy between Einstein and Bergson, but Bergson is considered as a philosopher who did not understand relativity. This philosophical problem of relativistic time is indeed related to a historical problem briefly discussed by Damour

  17. Einstein 1905-1955: His Approach to Physics

    Science.gov (United States)

    Damour, Thibault

    We review Einstein's epistemological conceptions, and indicate their philosophical roots. The particular importance of the ideas of Hume, Kant, Mach, and Poincaré is highlighted. The specific characteristics of Einstein's approach to physics are underlined. Lastly, we consider the practical application of Einstein's methodological principles to the two theories of relativity, and to quantum theory. We emphasize a Kantian approach to quantum theory.

  18. Einstein's first paper on relativity

    International Nuclear Information System (INIS)

    Schwartz, H.M.

    1977-01-01

    Because of its exceptional significance in the history of great ideas in science, Einstein's first paper on relativity, especially its first part, deserves a more careful translation into English than presently exists. A new and annotated translation of this first part is presented here, together with a brief discussion of certain aspects of Einstein's paper

  19. Conformally-flat, non-singular static metric in infinite derivative gravity

    Science.gov (United States)

    Buoninfante, Luca; Koshelev, Alexey S.; Lambiase, Gaetano; Marto, João; Mazumdar, Anupam

    2018-06-01

    In Einstein's theory of general relativity the vacuum solution yields a blackhole with a curvature singularity, where there exists a point-like source with a Dirac delta distribution which is introduced as a boundary condition in the static case. It has been known for a while that ghost-free infinite derivative theory of gravity can ameliorate such a singularity at least at the level of linear perturbation around the Minkowski background. In this paper, we will show that the Schwarzschild metric does not satisfy the boundary condition at the origin within infinite derivative theory of gravity, since a Dirac delta source is smeared out by non-local gravitational interaction. We will also show that the spacetime metric becomes conformally-flat and singularity-free within the non-local region, which can be also made devoid of an event horizon. Furthermore, the scale of non-locality ought to be as large as that of the Schwarzschild radius, in such a way that the gravitational potential in any metric has to be always bounded by one, implying that gravity remains weak from the infrared all the way up to the ultraviolet regime, in concurrence with the results obtained in [arXiv:1707.00273]. The singular Schwarzschild blackhole can now be potentially replaced by a non-singular compact object, whose core is governed by the mass and the effective scale of non-locality.

  20. Evaluation metrics for biostatistical and epidemiological collaborations.

    Science.gov (United States)

    Rubio, Doris McGartland; Del Junco, Deborah J; Bhore, Rafia; Lindsell, Christopher J; Oster, Robert A; Wittkowski, Knut M; Welty, Leah J; Li, Yi-Ju; Demets, Dave

    2011-10-15

    Increasing demands for evidence-based medicine and for the translation of biomedical research into individual and public health benefit have been accompanied by the proliferation of special units that offer expertise in biostatistics, epidemiology, and research design (BERD) within academic health centers. Objective metrics that can be used to evaluate, track, and improve the performance of these BERD units are critical to their successful establishment and sustainable future. To develop a set of reliable but versatile metrics that can be adapted easily to different environments and evolving needs, we consulted with members of BERD units from the consortium of academic health centers funded by the Clinical and Translational Science Award Program of the National Institutes of Health. Through a systematic process of consensus building and document drafting, we formulated metrics that covered the three identified domains of BERD practices: the development and maintenance of collaborations with clinical and translational science investigators, the application of BERD-related methods to clinical and translational research, and the discovery of novel BERD-related methodologies. In this article, we describe the set of metrics and advocate their use for evaluating BERD practices. The routine application, comparison of findings across diverse BERD units, and ongoing refinement of the metrics will identify trends, facilitate meaningful changes, and ultimately enhance the contribution of BERD activities to biomedical research. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Cosmological implications of modified gravity induced by quantum metric fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xing [Sun Yat-Sen University, School of Physics, Guangzhou (China); Sun Yat-Sen University, Yat Sen School, Guangzhou (China); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom); Liang, Shi-Dong [Sun Yat-Sen University, School of Physics, Guangzhou (China); Sun Yat-Sen University, State Key Laboratory of Optoelectronic Material and Technology, Guangdong Province Key Laboratory of Display Material and Technology, School of Physics, Guangzhou (China)

    2016-08-15

    We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a non-minimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For each considered model we obtain the gravitational field equations, and the generalized Friedmann equations for the case of a flat homogeneous and isotropic geometry. In some of these models the divergence of the matter energy-momentum tensor is non-zero, indicating a process of matter creation, which corresponds to an irreversible energy flow from the gravitational field to the matter fluid, and which is direct consequence of the non-minimal curvature-matter coupling. The cosmological evolution equations of these modified gravity models induced by the quantum fluctuations of the metric are investigated in detail by using both analytical and numerical methods, and it is shown that a large variety of cosmological models can be constructed, which, depending on the numerical values of the model parameters, can exhibit both accelerating and decelerating behaviors. (orig.)

  2. Recursive form of general limited memory variable metric methods

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Vlček, Jan

    2013-01-01

    Roč. 49, č. 2 (2013), s. 224-235 ISSN 0023-5954 Institutional support: RVO:67985807 Keywords : unconstrained optimization * large scale optimization * limited memory methods * variable metric updates * recursive matrix formulation * algorithms Subject RIV: BA - General Mathematics Impact factor: 0.563, year: 2013 http://dml.cz/handle/10338.dmlcz/143365

  3. Mixed hyperbolic-second-order-parabolic formulations of general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios

    2008-01-01

    Two new formulations of general relativity are introduced. The first one is a parabolization of the Arnowitt-Deser-Misner formulation and is derived by the addition of combinations of the constraints and their derivatives to the right-hand side of the Arnowitt-Deser-Misner evolution equations. The desirable property of this modification is that it turns the surface of constraints into a local attractor because the constraint propagation equations become second-order parabolic independently of the gauge conditions employed. This system may be classified as mixed hyperbolic--second-order parabolic. The second formulation is a parabolization of the Kidder-Scheel-Teukolsky formulation and is a manifestly mixed strongly hyperbolic--second-order-parabolic set of equations, bearing thus resemblance to the compressible Navier-Stokes equations. As a first test, a stability analysis of flat space is carried out and it is shown that the first modification exponentially damps and smoothes all constraint-violating modes. These systems provide a new basis for constructing schemes for long-term and stable numerical integration of the Einstein field equations.

  4. Books on Einstein--Collectors' Delight

    Science.gov (United States)

    Khoon, Koh Aik; Jalal, Azman; Abd-Shukor, R.; Yatim, Baharudin; Talib, Ibrahim Abu; Daud, Abdul Razak; Samat, Supian

    2009-01-01

    A survey of thirteen books on Einstein is presented. Its gives an idea on how much is written about the man and how frequent are the publications. The year 2005 saw the most publications. It is the centenary for the Miraculous Year. Interestingly some books can just sustain their readers' interest with just words. Einstein comes alive with the…

  5. Einstein pictures the x-ray sky

    International Nuclear Information System (INIS)

    Hartline, B.K.

    1979-01-01

    The second High Energy Astronomy Observatory (HEAO-2, Einstein) is revolutionizing x-ray astronomy just as its namesake revolutionized physics. Earlier x-ray observatories, including HEAO-1, were designed to scan the sky for x-ray emitters. With Einstein, the challenge has shifted from discovering x-ray sources to understanding the processes producing the x-rays. But having 500 times the sensitivity of previous detectors, Einstein makes more than its share of discoveries, too. For example, it sees distant quasars and clusters of galaxies that can barely be detected by the largest optical telescopes

  6. Complex Monge–Ampère equations and geodesics in the space of Kähler metrics

    CERN Document Server

    2012-01-01

    The purpose of these lecture notes is to provide an introduction to the theory of complex Monge–Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary). These operators are of central use in several fundamental problems of complex differential geometry (Kähler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford–Taylor), Monge–Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi–Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli–Kohn–Nirenberg–Spruc...

  7. Studies in higher-derivative gravitation

    International Nuclear Information System (INIS)

    Dutt, S.K.

    1987-01-01

    In this work two formulations of gravitation in which the action includes the second-derivatives of the metric in a non-trivial fashion are investigated. In the first part, the gauge theory of gravitation proposed by Yang in 1974 is investigated. The implications of coupling the pure space equations to matter sources via the action principle proposed by Yang is studied. It is shown that this action principle does not couple to matter sources in a satisfactory fashion. An earlier study by Fairchild along similar lines is critically examined. It is argued that Fairchild's action functional, and his objections to Yang's gauge approach to gravitation, arise from a not very meaningful analogy with the case of a general gauge field. Also, a conjecture originated in that work is refuted. A modification of Yang's action functional is provided which leads to both the Einstein and Yang field-equations. This system is shown to have non-trivial solutions in the presence of matter. An additional advantage is that the unphysical solutions of the pure space equations can be ruled out. It is shown that the joint system of Einstein and Yang field-equations leads to a physically viable cosmological model based on the Robertson-Walker metric, which satisfies both sets of field-equations. In the second part of this work, the Hamiltonian for pure gravity in Einstein's theory is obtained directly from the Hilbert Lagrangian. Since the Lagrangian depends upon the second-derivatives of the metric tensor, first the Hamiltonian formulation for a Lagrangian which may, in general depend upon the Nth-order time derivatives of the dynamical variables is developed

  8. A student's guide to Einstein's major papers

    CERN Document Server

    Kennedy, Robert E

    2012-01-01

    Our understanding of the physical universe underwent a revolution in the early twentieth century - evolving from the classical physics of Newton, Galileo, and Maxwell to the modern physics of relativity and quantum mechanics. The dominant figure in this revolutionary change was Albert Einstein. In a single year, 1905, Einstein produced breakthrough works in three areas of physics: on the size and the effects of atoms; on the quantization of the electromagnetic field; and on the special theory of relativity. In 1916 he produced a fourth breakthrough work, the general theory of relativity. A Student's Guide to Einstein's Major Papers focuses on Einstein's contributions, setting his major works into their historical context, and then takes the reader through the details of each paper, including the mathematics. This book helps the reader appreciate the simplicity and insightfulness of Einstein's ideas and how revolutionary his work was, and locate it in the evolution of scientific thought begun by the ancient...

  9. Secrets of the old one Einstein, 1905

    CERN Document Server

    Bernstein, Jeremy

    2006-01-01

    In March 1905, at approximately eight week intervals, the Editor of the noted German physics journal, Annalen der Physik, received three hand-written manuscripts from a relatively unknown patent examiner in Bern, Switzerland. This patent examiner was the twenty-six year old Albert Einstein and the three papers would set the agenda for twentieth century physics. A fourth short paper was received in September 1905 and contained Einstein's derivation of the formula E=mc^2. These papers changed our lives in the twentieth century and beyond. While to a professional physicist the mathematics in these papers are quite straight forward, the ideas behind them are not. In fact, none of Einstein's contemporaries fully understood what he had done. In SECRETS OF THE OLD ONE: Einstein, 1905, renowned science writer Jeremy Bernstein makes these ideas accessible to a general reader with a limited background in mathematics. After reading this book, you will understand why 1905 is often designated as Einstein's miracle year.

  10. Einstein's Mirror

    Science.gov (United States)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-10-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity.1-4 The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a constant velocity.5 Einstein showed an intriguing fact that the usual law of reflection would not hold in the case of a uniformly moving mirror, that is, the angles of incidence and reflection of the light would not equal each other. Later on, it has been shown that the law of reflection at a moving mirror can be obtained in various alternative ways,6-10 but none of them seems suitable for bringing this interesting subject into the high school classroom.

  11. The Einstein-Podolsky-Rosen paradox

    International Nuclear Information System (INIS)

    Roy, S.M.

    1980-01-01

    The celebrated arguments of Einstein, Podolsky and Rosen claiming that quantum mechanics cannot be a complete theory are reviewed. Recent research climaxed by Bell's theorem shows that Einstein's locality or ''no telepathy'' postulate conflicts with quantum theory. It adds a new dimension to the paradox by catapulting the problem from the domain of metaphysics into that of experimental physics. (auth.)

  12. Finite temperature effects in Bose-Einstein condensed dark matter halos

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Madarassy, Enikö J.M.

    2012-01-01

    Once the critical temperature of a cosmological boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Zero temperature condensed dark matter can be described as a non-relativistic, Newtonian gravitational condensate, whose density and pressure are related by a barotropic equation of state, with barotropic index equal to one. In the present paper we analyze the effects of the finite dark matter temperature on the properties of the dark matter halos. We formulate the basic equations describing the finite temperature condensate, representing a generalized Gross-Pitaevskii equation that takes into account the presence of the thermal cloud. The static condensate and thermal cloud in thermodynamic equilibrium is analyzed in detail, by using the Hartree-Fock-Bogoliubov and Thomas-Fermi approximations. The condensed dark matter and thermal cloud density and mass profiles at finite temperatures are explicitly obtained. Our results show that when the temperature of the condensate and of the thermal cloud are much smaller than the critical Bose-Einstein transition temperature, the zero temperature density and mass profiles give an excellent description of the dark matter halos. However, finite temperature effects may play an important role in the early stages of the cosmological evolution of the dark matter condensates

  13. The times of Albert Einstein

    International Nuclear Information System (INIS)

    Ahmad, S.M.W.

    1990-09-01

    ''The life of Albert Einstein has a dramatic quality that does not rest exclusively on his theory of relativity. The extravagant timing of history linked him with three shattering developments of the twentieth century: the rise and fall of Nazi Germany, the birth of nuclear weapons, and the birth of zionism (and Israel). Their impact on Einstein's genius combined to drive him into a contact with the affairs of the world for which Einstein had little taste''. This article is the result of my lecture delivered at ICTP on 17 August, 1990 before a knowledgable audience that included scientists from many countries including the third world countries. This one and half hour lecture was organised by Dr. A.M. Hamende and Dr. H.R. Dalafi. 10 refs

  14. Albert Einstein, Analogizer Extraordinaire

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Where does deep insight in physics come from? It is tempting to think that it comes from the purest and most precise of reasoning, following ironclad laws of thought that compel the clear mind completely rigidly. And yet the truth is quite otherwise. One finds, when one looks closely at any major discovery, that the greatest of physicists are, in some sense, the most crazily daring and irrational of all physicists. Albert Einstein exemplifies this thesis in spades. In this talk I will describe the key role, throughout Albert Einstein's fabulously creative life, played by wild guesses made by analogy lacking any basis whatsoever in pure reasoning. In particular, in this year of 2007, the centenary of 1907, I will describe how over the course of two years (1905 through 1907) of pondering, Einstein slowly came, via analogy, to understand the full, radical consequences of the equation that he had first discovered and published in 1905, arguably the most famous equation of all time: E = mc2.

  15. The Einstein-Vlasov System/Kinetic Theory.

    Science.gov (United States)

    Andréasson, Håkan

    2011-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to a good comprehension of kinetic theory in general relativity.

  16. Einstein in love a scientific romance

    CERN Document Server

    Overbye, Dennis

    2000-01-01

    At its height, Einstein's marriage to Mileva was an extraordinary one - a colleague and often fierce adversary, Mileva was brilliantly matched with the scientific genius. Dennis Overbye seeks to present this scientific romance in a vivid light, telling the private story of the young Einstein.

  17. Development of a nonlinear model for the prediction of response times of glucose affinity sensors using concanavalin A and dextran and the development of a differential osmotic glucose affinity sensor

    Science.gov (United States)

    Reis, Louis G.

    With the increasing prevalence of diabetes in the United States and worldwide, blood glucose monitoring must be accurate and reliable. Current enzymatic sensors have numerous disadvantages that make them unreliable and unfavorable among patients. Recent research in glucose affinity sensors correct some of the problems that enzymatic sensors experience. Dextran and concanavalin A are two of the more common components used in glucose affinity sensors. When these sensors were first explored, a model was derived to predict the response time of a glucose affinity sensor using concanavalin A and dextran. However, the model assumed the system was linear and fell short of calculating times representative of the response times determined through experimental tests with the sensors. In this work, a new model that uses the Stokes-Einstein Equation to demonstrate the nonlinear behavior of the glucose affinity assay was developed to predict the response times of similar glucose affinity sensors. In addition to the device tested by the original linear model, additional devices were identified and tested with the proposed model. The nonlinear model was designed to accommodate the many different variations between systems. The proposed model was able to accurately calculate response times for sensors using the concanavalin A-dextran affinity assay with respect to the experimentally reported times by the independent research groups. Parameter studies using the nonlinear model were able to identify possible setbacks that could compromise the response of thesystem. Specifically, the model showed that the improper use of asymmetrical membranes could increase the response time by as little as 20% or more as the device is miniaturized. The model also demonstrated that systems using the concanavalin Adextran assay would experience higher response times in the hypoglycemic range. This work attempted to replicate and improve an osmotic glucose affinity sensor. The system was designed to

  18. Ceremony marking Einstein Year

    CERN Multimedia

    2005-01-01

    Sunday 13th November at 10:00amat Geneva's St. Peter's Cathedral To mark Einstein Year and the importance of the intercultural dialogue of which it forms a part, a religious service will take place on Sunday 13 November at 10 a.m. in St. Peter's Cathedral, to which CERN members and colleagues are warmly welcomed. Pastor Henry Babel, senior minister at the Cathedral, will speak on the theme: 'God in Einstein's Universe'. Diether Blechschmidt will convey a message on behalf of the scientific community.

  19. Quantum theory and Einstein's general relativity

    International Nuclear Information System (INIS)

    Borzeszkowski, H. von; Treder, H.

    1982-01-01

    We dicusss the meaning and prove the accordance of general relativity, wave mechanics, and the quantization of Einstein's gravitation equations themselves. Firstly, we have the problem of the influence of gravitational fields on the de Broglie waves, which influence is in accordance with Einstein's weak principle of equivalence and the limitation of measurements given by Heisenberg's uncertainty relations. Secondly, the quantization of the gravitational fields is a ''quantization of geometry.'' However, classical and quantum gravitation have the same physical meaning according to limitations of measurements given by Einstein's strong principle of equivalence and the Heisenberg uncertainties for the mechanics of test bodies

  20. Action principle for the generalized harmonic formulation of general relativity

    International Nuclear Information System (INIS)

    Brown, J. David

    2011-01-01

    An action principle for the generalized harmonic formulation of general relativity is presented. The action is a functional of the spacetime metric and the gauge source vector. An action principle for the Z4 formulation of general relativity has been proposed recently by Bona, Bona-Casas, and Palenzuela. The relationship between the generalized harmonic action and the Bona, Bona-Casas, and Palenzuela action is discussed in detail.

  1. A comment on 'The Cauchy problem of f(R) gravity'

    International Nuclear Information System (INIS)

    Capozziello, S; Vignolo, S

    2009-01-01

    A critical comment on (N Lanahan-Tremblay and V Faraoni 2007 Class. Quantum Grav. 24 5667) is given discussing the well-formulation of the Chauchy problem for f(R)-gravity in metric-affine theories. (comments and replies)

  2. Correspondence passed between Einstein and Schroedinger

    International Nuclear Information System (INIS)

    Balibar, F.

    1992-01-01

    The main points of the 26 year long correspondence between Einstein and Schroedinger are reviewed: from the de Broglie thesis and the Bose-Einstein statistics to the Schroedinger equation (1925-1926); from the EPR paradox to the cat parable (1935); a complete collaboration on unitary theories

  3. Affine and quasi-affine frames for rational dilations

    DEFF Research Database (Denmark)

    Bownik, Marcin; Lemvig, Jakob

    2011-01-01

    In this paper we extend the investigation of quasi-affine systems, which were originally introduced by Ron and Shen [J. Funct. Anal. 148 (1997), 408-447] for integer, expansive dilations, to the class of rational, expansive dilations. We show that an affine system is a frame if, and only if......, the corresponding family of quasi-affine systems are frames with uniform frame bounds. We also prove a similar equivalence result between pairs of dual affine frames and dual quasi-affine frames. Finally, we uncover some fundamental differences between the integer and rational settings by exhibiting an example...

  4. Bose-Einstein condensation in microgravity.

    Science.gov (United States)

    van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J

    2010-06-18

    Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.

  5. Equilibrium thermodynamics and neutrino decoupling in quasi-metric cosmology

    Science.gov (United States)

    Østvang, Dag

    2018-05-01

    The laws of thermodynamics in the expanding universe are formulated within the quasi-metric framework. The quasi-metric cosmic expansion does not directly influence momenta of material particles, so the expansion directly cools null particles only (e.g., photons). Therefore, said laws differ substantially from their counterparts in standard cosmology. Consequently, all non-null neutrino mass eigenstates are predicted to have the same energy today as they had just after neutrino decoupling in the early universe. This indicates that the predicted relic neutrino background is strongly inconsistent with detection rates measured in solar neutrino detectors (Borexino in particular). Thus quasi-metric cosmology is in violent conflict with experiment unless some exotic property of neutrinos makes the relic neutrino background essentially undetectable (e.g., if all massive mass eigenstates decay into "invisible" particles over cosmic time scales). But in absence of hard evidence in favour of the necessary exotic neutrino physics needed to resolve said conflict, the current status of quasi-metric relativity has been changed to non-viable.

  6. Magnetic branes in Gauss-Bonnet gravity with nonlinear electrodynamics: correction of magnetic branes in Einstein-Maxwell gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, Seyed Hossein [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Panahiyan, Shahram; Panah, Behzad Eslam [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2015-06-15

    In this paper, we consider two first order corrections to both the gravity and the gauge sides of the Einstein-Maxwell gravity: Gauss-Bonnet gravity and quadratic Maxwell invariant as corrections. We obtain horizonless magnetic solutions by implying a metric representing a topological defect. We analyze the geometric properties of the solutions and investigate the effects of both corrections, and find that these solutions may be interpreted as magnetic branes. We study the singularity condition and find a nonsingular spacetime with a conical geometry. We also investigate the effects of different parameters on the deficit angle of spacetime near the origin. (orig.)

  7. Magnetic branes in Gauss-Bonnet gravity with nonlinear electrodynamics: correction of magnetic branes in Einstein-Maxwell gravity

    International Nuclear Information System (INIS)

    Hendi, Seyed Hossein; Panahiyan, Shahram; Panah, Behzad Eslam

    2015-01-01

    In this paper, we consider two first order corrections to both the gravity and the gauge sides of the Einstein-Maxwell gravity: Gauss-Bonnet gravity and quadratic Maxwell invariant as corrections. We obtain horizonless magnetic solutions by implying a metric representing a topological defect. We analyze the geometric properties of the solutions and investigate the effects of both corrections, and find that these solutions may be interpreted as magnetic branes. We study the singularity condition and find a nonsingular spacetime with a conical geometry. We also investigate the effects of different parameters on the deficit angle of spacetime near the origin. (orig.)

  8. Einstein's essays in science

    CERN Document Server

    Einstein, Albert

    2009-01-01

    His name is synonymous with ""genius,"" but these essays by the renowned physicist and scholar are accessible to any reader. In addition to outlining the core of relativity theory in everyday language, Albert Einstein presents fascinating discussions of other scientific fields to which he made significant contributions. The Nobel Laureate also profiles some of history's most influential physicists, upon whose studies his own work was based.Assembled during Einstein's lifetime from his speeches and essays, this book marks the first presentation to the wider world of the scientist's accomplishme

  9. Ethic and Evolution in Boltzmann's and Einstein's Thought

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1980-07-01

    In physics and to a large extent in epistomology, Einstein was the natural successor to Boltzmann. But while Boltzmann was an ardent evolutionist, Einstein cared little for biology. Boltzmann applied Darwinian principles also to ethics, but remained aloof from politics. In contrast, Einstein's morality, though expressed in magnificent and selfless activity, lacked a firm theoretical basis. (author)

  10. Ethic and Evolution in Boltzmann's and Einstein's Thought

    International Nuclear Information System (INIS)

    Broda, E.

    1980-01-01

    In physics and to a large extent in epistomology, Einstein was the natural successor to Boltzmann. But while Boltzmann was an ardent evolutionist, Einstein cared little for biology. Boltzmann applied Darwinian principles also to ethics, but remained aloof from politics. In contrast, Einstein's morality, though expressed in magnificent and selfless activity, lacked a firm theoretical basis. (author)

  11. Towards a theory of macroscopic gravity

    International Nuclear Information System (INIS)

    Zalaletdinov, R.M.

    1993-01-01

    By averaging out Cartan's structure equations for a four-dimensional Riemannian space over space regions, the structure equations for the averaged space have been derived with the procedure being valid on an arbitrary Riemannian space. The averaged space is characterized by a metric, Riemannian and non-Riemannian curvature 2-forms, and correlation 2-, 3- and 4-forms, an affine deformation 1-form being due to the non-metricity of one of two connection 1-forms. Using the procedure for the space-time averaging of the Einstein equations produces the averaged ones with the terms of geometric correction by the correlation tensors. The equations of motion for averaged energy momentum, obtained by averaging out the coritracted Bianchi identifies, also include such terms. Considering the gravitational induction tensor to be the Riemannian curvature tensor (the non-Riemannian one is then the field tensor), a theorem is proved which relates the algebraic structure of the averaged microscopic metric to that of the induction tensor. It is shown that the averaged Einstein equations can be put in the form of the Einstein equations with the conserved macroscopic energy-momentum tensor of a definite structure including the correlation functions. By using the high-frequency approximation of Isaacson with second-order correction to the microscopic metric, the self-consistency and compatibility of the equations and relations obtained are shown. Macrovacuum turns out to be Ricci non-flat, the macrovacuum source being defined in terms of the correlation functions. In the high-frequency limit the equations are shown to become Isaacson's ones with the macrovacuum source becoming Isaacson's stress tensor for gravitational waves. 17 refs

  12. Einstein and solid-state physics

    International Nuclear Information System (INIS)

    Aut, I.

    1982-01-01

    A connection between the development of solid-state physics and the works and activity of Albert Einstein is traced. A tremendous Einstein contribution to solid state physics is marked. A strict establishment of particle-wave dualism; a conclusion about the applicability of the Plank radiation law not only to black body radiation; finding out particles indistinguishability - all three discoveries have a principle significance for solid state physics too

  13. Einstein and the twin paradox

    International Nuclear Information System (INIS)

    Pesic, Peter

    2003-01-01

    Einstein was the first to discuss and resolve the 'twin paradox', which in 1905 he did not consider paradoxical and treated as a consequence of lack of simultaneity. He maintained this view until at least 1914. However, in 1918 Einstein brought forward arguments about accelerated frames of reference that tended to overshadow his initial resolution. His earlier arguments were gradually rediscovered during the subsequent controversy about this 'paradox'

  14. Entanglement Equilibrium and the Einstein Equation.

    Science.gov (United States)

    Jacobson, Ted

    2016-05-20

    A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.

  15. BRS invariant stochastic quantization of Einstein gravity

    International Nuclear Information System (INIS)

    Nakazawa, Naohito.

    1989-11-01

    We study stochastic quantization of gravity in terms of a BRS invariant canonical operator formalism. By introducing artificially canonical momentum variables for the original field variables, a canonical formulation of stochastic quantization is proposed in the sense that the Fokker-Planck hamiltonian is the generator of the fictitious time translation. Then we show that there exists a nilpotent BRS symmetry in an enlarged phase space of the first-class constrained systems. The phase space is spanned by the dynamical variables, their canonical conjugate momentum variables, Faddeev-Popov ghost and anti-ghost. We apply the general BRS invariant formulation to stochastic quantization of gravity which is described as a second-class constrained system in terms of a pair of Langevin equations coupled with white noises. It is shown that the stochastic action of gravity includes explicitly the De Witt's type superspace metric which leads to a geometrical interpretation of quantum gravity analogous to nonlinear σ-models. (author)

  16. An Einstein-Cartan Fine Structure Constant Definition

    Directory of Open Access Journals (Sweden)

    Stone R. A. Jr.

    2010-01-01

    Full Text Available The fine structure constant definition given in Stone R.A. Jr. Progress in Physics, 2010, v.1, 11-13 is compared to an Einstein-Cartan fine structure constant definition. It is shown that the Einstein-Cartan definition produces the correct pure theory value, just not the measure value. To produce the measured value, the pure theory Einstein-Cartan fine structure constant requires only the new variables and spin coupling of the fine structure constant definition in [1].

  17. Albert Einstein and the relativity theory

    International Nuclear Information System (INIS)

    Pavlickova, E.

    1975-01-01

    A bibliography is presented of Albert Einstein's works, listing his correspondence, biographical literature, articles on A. Einstein published in Czech journals, principal relativity theory monographs and popular, historical and philosophical publications. The bibliographical records are listed alphabetically. Most references give the abbreviations of libraries where the publications are available. (J.P.)

  18. BOOK REVIEW: A Student's Guide to Einstein's Major Papers A Student's Guide to Einstein's Major Papers

    Science.gov (United States)

    Janssen, Michel

    2013-12-01

    The core of this volume is formed by four chapters (2-5) with detailed reconstructions of the arguments and derivations in four of Einstein's most important papers, the three main papers of his annus mirabilis 1905 (on the light quantum, Brownian motion, and special relativity) and his first systematic exposition of general relativity of 1916. The derivations are given in sufficient detail and in sufficiently modernized notation (without any serious distortion of the originals) for an undergraduate physics major to read and understand them with far less effort than it would take him or her to understand (English translations of) Einstein's original papers. Each of these four papers is accompanied by a detailed introduction, which covers the conceptual development of the relevant field prior to Einstein's contribution to it and corrects some of the myths surrounding these papers that still have not been fully eradicated among physicists. (One quibble: though Kennedy correctly points out that the goal of the light quantum paper was not to explain the photoelectric effect, it is also not quite right to say that 'it was written to explain the Wien region of blackbody radiation' (p. xv). Einstein used this explanatory feat as the central argument for his light quantum hypothesis.) These four chapters then are the most valuable part of the volume. They could be used, independently of one another, but preferably in conjunction with Einstein's original texts, in courses on quantum mechanics, statistical mechanics, electrodynamics, and general relativity, respectively, to add a historical component to such courses. As a historian of science embedded in a physics department who is regularly called upon to give guest lectures in such courses on the history of their subjects, I can highly recommend the volume for this purpose. However, I would not adopt this volume as (one of) the central text(s) for a course on the history of modern physics. For one thing, chapter 1, which in

  19. Torsion in extra-dimensions

    International Nuclear Information System (INIS)

    Wali, Kameshwar C

    2010-01-01

    We consider a variant of the 5 dimensional Kaluza-Klein theory within the framework of Einstein-Cartan formalism. By imposing a set of constraints on torsion and Ricci rotation coefficients, we show that the torsion components are completely expressed in terms of the metric. and the Ricci tensor in 5D corresponds exactly to what one would obtain from torsion-free general relativity on a 4D hypersurface. The contributions of the scalar and vector fields of the standard K-K theory to the Ricci tensor and the affine connections are completely nullified by the contributions from the torsion. As a consequence, geodesic motions do not distinguish the torsion free 4D space-time from a hypersurface of 5D space-time with torsion satisfying the constraints. Since torsion is not an independent dynamical variable in this formalism, the modified Einstein equations are different from those in the general Einstein-Cartan theory. This leads to important cosmological consequences such as the emergence of cosmic acceleration.

  20. Gravity in the Einstein-Gauss-Bonnet theory with the Randall-Sundrum background

    International Nuclear Information System (INIS)

    Kim, Jihn E.; Lee, Hyun Min

    2001-01-01

    We obtain the full 5D graviton propagator in the Randall-Sundrum model with the Gauss-Bonnet interaction. From the decomposition of the graviton propagator on the brane, we show that localization of gravity arises in the presence of the Gauss-Bonnet term. We also obtain the metric perturbation for observers on the brane with considering the brane bending and compute the amplitude of one massless graviton exchange. For the positive definite amplitude or no ghost states, the sign of the Gauss-Bonnet term should be negative in our convention, which is compatible with string amplitude computations. In that case, the ghost-free condition is sufficient for obtaining the Newtonian gravity. For a vanishing Gauss-Bonnet coefficient, the brane bending allows us to reproduce the correct graviton polarizations for the effective 4D Einstein gravity

  1. CERN physicist receives Einstein Medal

    CERN Multimedia

    2006-01-01

    On 29 June the CERN theorist Gabriele Veneziano was awarded the prestigious Albert Einstein Medal for significant contributions to the understanding of string theory. This award is given by the Albert Einstein Society in Bern to individuals whose scientific contributions relate to the work of Einstein. Former recipients include exceptional physicists such as Murray Gell-Mann last year, but also Stephen Hawking and Victor Weisskopf. Gabriele Veneziano, a member of the integrated CERN Theory Team since 1977, led the Theory Division from 1994 to 1997 and has already received many prestigious prizes for his outstanding work, including the Enrico Fermi Prize (see CERN Courier, November 2005), the Dannie Heineman Prize for mathematical physics of the American Physical Society in 2004 (see Bulletin No. 47/2003), and the I. Ya. Pomeranchuk Prize of the Institute of Theoretical and Experimental Physics (Moscow) in 1999.

  2. Einstein as a Missionary of Science

    Science.gov (United States)

    Renn, Jürgen

    2013-01-01

    The paper reviews Einstein's engagement as a mediator and popularizer of science. It discusses the formative role of popular scientific literature for the young Einstein, showing that not only his broad scientific outlook but also his internationalist political views were shaped by these readings. Then, on the basis of recent detailed…

  3. Einstein-Friedmann equation, nonlinear dynamics and chaotic behaviours

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Nakano, Shingo; Ohta, Shigetoshi; Mori, Keisuke; Horiuchi, Tanji

    2009-01-01

    We have studied the Einstein-Friedmann equation [Case 1] on the basis of the bifurcation theory and shown that the chaotic behaviours in the Einstein-Friedmann equation [Case 1] are reduced to the pitchfork bifurcation and the homoclinic bifurcation. We have obtained the following results: (i) 'The chaos region diagram' (the p-λ plane) in the Einstein-Friedmann equation [Case 1]. (ii) 'The chaos inducing chart' of the homoclinic orbital systems in the unforced differential equations. We have discussed the non-integrable conditions in the Einstein-Friedmann equation and proposed the chaotic model: p=p 0 ρ n (n≥0). In case n≠0,1, the Einstein-Friedmann equation is not integrable and there may occur chaotic behaviours. The cosmological constant (λ) turns out to play important roles for the non-integrable condition in the Einstein-Friedmann equation and also for the pitchfork bifurcation and the homoclinic bifurcation in the relativistic field equation. With the use of the E-infinity theory, we have also discussed the physical quantities in the gravitational field equations, and obtained the formula logκ=-10(1/φ) 2 [1+(φ) 8 ]=-26.737, which is in nice agreement with the experiment (-26.730).

  4. An accurate metric for the spacetime around rotating neutron stars

    Science.gov (United States)

    Pappas, George

    2017-04-01

    The problem of having an accurate description of the spacetime around rotating neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a rotating neutron star. Furthermore, an accurate appropriately parametrized metric, I.e. a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to infer the properties of the structure of a neutron star from astrophysical observations. In this work, we present such an approximate stationary and axisymmetric metric for the exterior of rotating neutron stars, which is constructed using the Ernst formalism and is parametrized by the relativistic multipole moments of the central object. This metric is given in terms of an expansion on the Weyl-Papapetrou coordinates with the multipole moments as free parameters and is shown to be extremely accurate in capturing the physical properties of a neutron star spacetime as they are calculated numerically in general relativity. Because the metric is given in terms of an expansion, the expressions are much simpler and easier to implement, in contrast to previous approaches. For the parametrization of the metric in general relativity, the recently discovered universal 3-hair relations are used to produce a three-parameter metric. Finally, a straightforward extension of this metric is given for scalar-tensor theories with a massless scalar field, which also admit a formulation in terms of an Ernst potential.

  5. Linearized pseudo-Einstein equations on the Heisenberg group

    Science.gov (United States)

    Barletta, Elisabetta; Dragomir, Sorin; Jacobowitz, Howard

    2017-02-01

    We study the pseudo-Einstein equation R11bar = 0 on the Heisenberg group H1 = C × R. We consider first order perturbations θɛ =θ0 + ɛ θ and linearize the pseudo-Einstein equation about θ0 (the canonical Tanaka-Webster flat contact form on H1 thought of as a strictly pseudoconvex CR manifold). If θ =e2uθ0 the linearized pseudo-Einstein equation is Δb u - 4 | Lu|2 = 0 where Δb is the sublaplacian of (H1 ,θ0) and L bar is the Lewy operator. We solve the linearized pseudo-Einstein equation on a bounded domain Ω ⊂H1 by applying subelliptic theory i.e. existence and regularity results for weak subelliptic harmonic maps. We determine a solution u to the linearized pseudo-Einstein equation, possessing Heisenberg spherical symmetry, and such that u(x) → - ∞ as | x | → + ∞.

  6. Einstein y la complejidad

    Directory of Open Access Journals (Sweden)

    Jou, David

    2007-12-01

    Full Text Available We study Einstein’s contributions to thermodynamics and statistical physics and their influence on some fields of physics which have led to current studies on complexity. We focus our attention on the use of fluctuations and entropy as a common framework for light and matter, whcich leds him to some of his fundamental contributions (phtoelectric effect, Brownian motion, specific heat of solids, stimulated light emission, Bose-Einstein condensation. We underline some aspects of Einstein’s research style: extrapolations, analogies, simplifications. We underline the relationship between light and matter as a common link of his researches in statistical physics.Presentamos las contribuciones de Einstein a la termodinámica y la mecánica estadística y su resonancia en ramas de la física que han conducido hasta la consideración actual de lo complejo. Nos referimos especialmente al uso de las fluctuaciones y de la entropía como marco común y nexo de unión entre luz y materia, que le conducen a algunas de sus aportaciones fundamentales (efecto fotoeléctrico, movimiento browniano, calor específico de los sólidos, emisión estimulada de la luz, condensación de Bose-Einstein. Consideramos también algunas facetas del estilo de investigación de Einstein, que se manifiestan con especial claridad en este campo: extrapolaciones, analogías, simplificaciones. Destacamos especialmente la importancia de la relación entre luz y materia en sus investigaciones.

  7. Astrophysically Satisfactory Solutions to Einstein's R-33 Gravitational Field Equations Exterior/Interior to Static Homogeneous Oblate Spheroidal Masses

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2009-10-01

    Full Text Available In this article, we formulate solutions to Einstein's geometrical field equations derived using our new approach. Our field equations exterior and interior to the mass distribution have only one unknown function determined by the mass or pressure distribution. Our obtained solutions yield the unknown function as generalizations of Newton's gravitational scalar potential. Thus, our solution puts Einstein's geometrical theory of gravity on same footing with Newton's dynamical theory; with the dependence of the field on one and only one unknown function comparable to Newton's gravitational scalar potential. Our results in this article are of much significance as the Sun and planets in the solar system are known to be more precisely oblate spheroidal in geometry. The oblate spheroidal geometries of these bodies have effects on their gravitational fields and the motions of test particles and photons in these fields.

  8. Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis

    DEFF Research Database (Denmark)

    Strother, Stephen C.; Conte, Stephen La; Hansen, Lars Kai

    2004-01-01

    We argue that published results demonstrate that new insights into human brain function may be obscured by poor and/or limited choices in the data-processing pipeline, and review the work on performance metrics for optimizing pipelines: prediction, reproducibility, and related empirical Receiver......, temporal detrending, and between-subject alignment) in a group analysis of BOLD-fMRI scans from 16 subjects performing a block-design, parametric-static-force task. Large-scale brain networks were detected using a multivariate linear discriminant analysis (canonical variates analysis, CVA) that was tuned...... of baseline scans have constant, equal means, and this assumption was assessed with prediction metrics. Higher-order polynomial warps compared to affine alignment had only a minor impact on the performance metrics. We found that both prediction and reproducibility metrics were required for optimizing...

  9. Raychaudhuri equation in the self-consistent Einstein-Cartan theory with spin-density

    Science.gov (United States)

    Fennelly, A. J.; Krisch, Jean P.; Ray, John R.; Smalley, Larry L.

    1988-01-01

    The physical implications of the Raychaudhuri equation for a spinning fluid in a Riemann-Cartan spacetime is developed and discussed using the self-consistent Lagrangian based formulation for the Einstein-Cartan theory. It was found that the spin-squared terms contribute to expansion (inflation) at early times and may lead to a bounce in the final collapse. The relationship between the fluid's vorticity and spin angular velocity is clarified and the effect of the interaction terms between the spin angular velocity and the spin in the Raychaudhuri equation investigated. These results should prove useful for studies of systems with an intrinsic spin angular momentum in extreme astrophysical or cosmological problems.

  10. Solitons, gauge theories and the 'great Einstein theorem'

    International Nuclear Information System (INIS)

    Dresden, M.; Chen, S.F.

    1976-01-01

    A field theory is said to be of 'Einstein type' if it has the property that the field equations imply the equations of motion. It is known that general relativity is of Einstein type, it is demonstrated here that the Yang-Mills gauge theory is of Einstein type. The relationship between the singularities in the solutions of the field equations and soliton type is analyzed. (Auth.)

  11. Metric Relativity and the Dynamical Bridge: highlights of Riemannian geometry in physics

    Energy Technology Data Exchange (ETDEWEB)

    Novello, Mario [Centro Brasileiro de Pesquisas Fisicas (ICRA/CBPF), Rio de Janeiro, RJ (Brazil). Instituto de Cosmologia Relatividade e Astrofisica; Bittencourt, Eduardo, E-mail: eduardo.bittencourt@icranet.org [Physics Department, La Sapienza University of Rome (Italy)

    2015-12-15

    We present an overview of recent developments concerning modifications of the geometry of space-time to describe various physical processes of interactions among classical and quantum configurations. We concentrate in two main lines of research: the Metric Relativity and the Dynamical Bridge. We describe the notion of equivalent (dragged) metric ĝ μ υ which is responsible to map the path of any accelerated body in Minkowski space-time onto a geodesic motion in such associatedĝ geometry. Only recently, the method introduced by Einstein in general relativity was used beyond the domain of gravitational forces to map arbitrary accelerated bodies submitted to non-Newtonian attractions onto geodesics of a modified geometry. This process has its roots in the very ancient idea to treat any dynamical problem in Classical Mechanics as nothing but a problem of static where all forces acting on a body annihilates themselves including the inertial ones. This general procedure, that concerns arbitrary forces - beyond the uses of General Relativity that is limited only to gravitational processes - is nothing but the relativistic version of the d'Alembert method in classical mechanics and consists in the principle of Metric Relativity. The main difference between gravitational interaction and all other forces concerns the universality of gravity which added to the interpretation of the equivalence principle allows all associated geometries-one for each different body in the case of non-gravitational forces-to be unified into a unique Riemannian space-time structure. The same geometrical description appears for electromagnetic waves in the optical limit within the context of nonlinear theories or material medium. Once it is largely discussed in the literature, the so-called analogue models of gravity, we will dedicate few sections on this emphasizing their relation with the new concepts introduced here. Then, we pass to the description of the Dynamical Bridge formalism

  12. The Einstein-Vlasov System/Kinetic Theory

    Directory of Open Access Journals (Sweden)

    Håkan Andréasson

    2002-12-01

    Full Text Available The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e., fluid models. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.

  13. Sky surveys with Einstein

    International Nuclear Information System (INIS)

    Gioia, I.M.

    1990-01-01

    Since the early times after the launch of the Einstein Observatory, systematic studies of serendipitous Einstein x-ray sources have been carried out by several observers with interests in both galactic and extragalactic astronomy. The majority of these studies were not surveys in the strict sense of the word: in several cases no analyses requiring flux completeness were performed. However, these systematic searches for sources added much to our knowledge of the behaviour in the X-ray domain of the different classes of astronomical objects and in many instances led to the study of their properties at different wavebands. (author)

  14. Einstein and modern cosmology

    International Nuclear Information System (INIS)

    Stabell, R.

    1979-01-01

    Einstein applied his gravitation theory to a universe model with positively curved space in 1917. In order to maintain a static universe he introduced the cosmological constant, which in the light of later nonstatic universe models, he described as his life's greatest mistake. The best known such model is the Einstein-de Sitter model, which is here discussed in some detail. The 'big bang' theory is also discussed leading to the cosmic background radiation. The early phase of the 'big bang' cosmology, the first ten seconds, and the first minutes are discussed, leading to the transparent stage. (JIW)

  15. The intellectual quadrangle: Mach-Boltzmann-Planck-Einstein

    International Nuclear Information System (INIS)

    Broda, E.

    1981-01-01

    These four men were influential in the transition from classical to modern physics. They interacted as scientists, often antagonistically. Thus Boltzmann was the greatest champion of the atom, while Mach remained unconvinced all his life. As a aphysicist, Einstein was greatly influenced by both Mach and Boltzmann, although Mach in the end rejected relativity as well. Because of his work on statistical mechanics, fluctuations, and quantum theory, Einstein has been called the natural successor to Boltzmann. Planck also was influenced by Mach at first. Hence he and Boltzmann were adversaries antil Planck converted to atomistics in 1900 and used the statistical interpretation of entropy to establish his radiation law. Planck accepted relativity early, but in quantum theory he was for a long time partly opposed to Einstein, and vice versa - Einstein considered Planck's derivation of his radiation law as unsound, while Planck could not accept the light quantum. In the case of all four physicists, science was interwoven with philosophy. Boltzmann consistently fought Mach's positivism, while Planck and Einstein moved from positivism to realism. All were also, though in very different ways, actively interested in public affairs. (orig.)

  16. How History Helped Einstein in Special Relativity

    Science.gov (United States)

    Martinez, Alberto

    2013-04-01

    I will discuss how the German intellectual movement known as ``critical history'' motivated several physicists in the late 1900s to radically analyze the fundamental principles of mechanics, leading eventually to Einstein's special theory of relativity. Eugen Karl Dühring, Johann Bernhard Stallo, Ludwig Lange, and Ernst Mach wrote critical histories of mechanics, some of which emphasized notions of relativity and observation, in opposition to old metaphysical concepts that seemed to infect the foundations of physics. This strand of critical history included the ``genetic method'' of analyzing how concepts develop over time, in our minds, by way of ordinary experiences, which by 1904 was young Albert Einstein's favorite approach for examining fundamental notions. Thus I will discuss how history contributed in Einstein's path to relativity, as well as comment more generally on Einstein's views on history.

  17. Ehrenfest en Einstein. Menselijke katalysator van het heldere denken

    Directory of Open Access Journals (Sweden)

    Marijn J. Hollestelle

    2016-10-01

    Full Text Available Ehrenfest and EinsteinEhrenfest and Einstein met just before Ehrenfest became professor at Leiden University. They had much in common and became best friends. Ehrenfest shed light on some problematic aspects of Einstein’s work and during the years acted as an important sparring partner for Einstein. Ehrenfest also explained difficult aspects of Einstein’s work to the physics community. He set others on the track of working on general relativity and made Leiden an international centre for these developments during the years 1912–1920. Ehrenfest made sure Einstein was appointed part-time professor at Leiden, from which Leiden physics profited. He also aided Bohr and Einstein during their notorious debates. Ehrenfest struggled with depression his whole life. The rapid developments and mathematicising of quantum physics, Hitler’s appointment as Reichs Chancellor, money and marriage problems worsened his depressions. In 1933 Ehrenfest committed suicide, and Einstein moved to the United States and away from the study on quantum physics.

  18. Ferroelectricity by Bose-Einstein condensation in a quantum magnet.

    Science.gov (United States)

    Kimura, S; Kakihata, K; Sawada, Y; Watanabe, K; Matsumoto, M; Hagiwara, M; Tanaka, H

    2016-09-26

    The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl 3 , leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.

  19. Harmonic mapping character of Rosen's bimetric theory of gravity and the geometry of its harmonic mapping space

    International Nuclear Information System (INIS)

    Stoeger, W.R.; Whitman, A.P.; Knill, R.J.

    1985-01-01

    After showing that Rosen's bimetric theory of gravity is a harmonic map, the geometry of the ten-dimensional harmonic mapping space (HMS), and of its nine-dimensional symmetric submanifolds, which are the leaves of the codimension one foliation of the HMS, is detailed. Both structures are global affinely symmetric spaces. For each, the metric, connections, and Riemann, Ricci, and scalar curvatures are given. The Killing vectors in each case are also worked out and related to the ''conserved quantities'' naturally associated with the harmonic mapping character of the theory. The structure of the Rosen HMS is very much like that determined by the DeWitt metric on the six-dimensional Wheeler superspace of all positive definite three-dimensional metrics. It is clear that a slight modification of the Rosen HMS metric will yield the corresponding metric on the space of all four-dimensional metrics of Lorentz signature. Finally, interesting avenues of further research are indicated, particularly with respect to the structure and comparison of Lagrangian-based gravitational theories which are similar to Einstein's general relativity

  20. The Schwarzschild metric: It's the coordinates, stupid!

    Science.gov (United States)

    Fromholz, Pierre; Poisson, Eric; Will, Clifford M.

    2014-04-01

    Every general relativity textbook emphasizes that coordinates have no physical meaning. Nevertheless, a coordinate choice must be made in order to carry out real calculations, and that choice can make the difference between a calculation that is simple and one that is a mess. We give a concrete illustration of the maxim that "coordinates matter" using the exact Schwarzschild solution for a vacuum, static spherical spacetime. We review the standard textbook derivation, Schwarzschild's original 1916 derivation, and a derivation using the Landau-Lifshitz formulation of the Einstein field equations. The last derivation is much more complicated, has one aspect for which we have been unable to find a solution, and gives an explicit illustration of the fact that the Schwarzschild geometry can be described in infinitely many coordinate systems.

  1. Einstein, Ethics and the Atomic Bomb

    Science.gov (United States)

    Rife, Patricia

    2005-03-01

    Einstein voiced his ethical views against war as well as fascism via venues and alliances with a variety of organizations still debated today. In 1939, he signed a letter to President Roosevelt (drafted by younger colleagues Szilard, Wigner and others) warning the U.S.government about the danger of Nazi Germany gaining control of uranium in the Belgian-controlled Congo in order to develop atomic weapons, based on the discovery of fission by Otto Hahn and Lise Meitner. In 1945, he became a member of the Princeton-based ``Emergency Committee for Atomic Scientists'' organized by Bethe, Condon, Bacher, Urey, Szilard and Weisskopf. Rare Einstein slides will illustrate Dr.Rife's presentation on Albert Einstein's philosophic and ethical convictions about peace, and public stance against war (1914-1950).

  2. Classes of exact Einstein Maxwell solutions

    Science.gov (United States)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  3. Static and time-dependent solutions of Einstein-Maxwell-Yukawa fields

    International Nuclear Information System (INIS)

    Lal, K.B.; Khan, M.Q.

    1977-01-01

    An exact solution of Einstein-Maxwell-Yukawa field equations has been obtained in a space-time with a static metric. A critical analysis reveals that the results previously obtained by Patel (Tensor New Sci.; 29:237 (1975)), Singh (Gen. Rel. Grav.; 6:657 (1974)), and Taub (Ann. Math.; 53:472 (1951)) are particular cases of the present solution. The singular behaviour of the solution is also discussed in this paper. Further, extending the technique developed by Janis et al (Phys. Rev.; 186:1729 (1969)), for static fields, to the case of nonstatic fields, an exact time-dependent axially symmetric solution of EMY fields has been obtained. The present solution in the nonstatic case is nonsingular in the sense of Bonnor (J. Math. Mech.; 6:203 (1957)) and presents a generalization of the results obtained by Misra (Proc. Cambridge Philos. Soc.; 58:711 (1962)) to the case when a zero-mass scalar field coexists with a source free electromagnetic field. (author)

  4. Gabriele Veneziano : "La physique moderne doit dépasser Einstein et explorer l'avant-Big Bang"

    CERN Multimedia

    Deschamps, Pascale-Marie

    2004-01-01

    Interview with Gabriele Veneziana: in search of the infinitesimally small and infinitesimally large, the Standard Model of elementary particles and Einstein's general relativity are not enough to explain the universe. The "visible" matter predicted by the Standard Model represents only 5% of the energy of the Universe, the dark "invisible" matter constitutes 25 to 30%. Therefore 65 to 70 % of something else is missing. String theory calls into question all that one knows of the primordial universe formulated by the Standard Model (4 pages)

  5. Einstein wrote back my life in physics

    CERN Document Server

    Moffat, John W

    2012-01-01

    John W. Moffat was a poor student of math and science. That is, until he read Einstein's famous paper on general relativity. Realizing instantly that he had an unusual and unexplained aptitude for understanding the complex physics described in the paper, Moffat wrote a letter to Einstein that would change the course of his life. Einstein Wrote Back tells the story of Moffat's unusual entry into the world of academia and documents his career at the frontlines of twentieth-century physics as he worked and associated with some of the greatest minds in scientific history, including Niels Bohr,

  6. Einstein constraints in the Yang-Mills form

    International Nuclear Information System (INIS)

    Ashtekar, A.

    1987-01-01

    It is pointed out that constraints of Einstein's theory play a powerful role in both classical and quantum theory because they generate motions in spacetime, rather than in an internal space. New variables are then introduced on the Einstein phase space in terms of which constraints simplify considerably. In particular, the use of these variables enables one to imbed the constraint surface of Einstein's theory into that of Yang-Mills. The imbedding suggests new lines of attack to a number of problems in classical and quantum gravity and provides new concepts and tools to investigate the microscopic structure of space-time geometry

  7. Self Completeness of Einstein Gravity

    CERN Document Server

    Dvali, Gia

    2010-01-01

    We argue, that in Einsteinian gravity the Planck length is the shortest length of nature, and any attempt of resolving trans-Planckian physics bounces back to macroscopic distances due to black hole formation. In Einstein gravity trans-Planckian propagating quantum degrees of freedom cannot exist, instead they are equivalent to the classical black holes that are fully described by lighter infra-red degrees of freedom and give exponentially-soft contribution into the virtual processes. Based on this property we argue that pure-Einstein (super)gravity and its high-dimensional generalizations are self-complete in deep-UV, but not in standard Wilsonian sense. We suggest that certain strong-coupling limit of string theory is built-in in pure Einstein gravity, whereas the role of weakly-coupled string theory limit is to consistently couple gravity to other particle species, with their number being set by the inverse string coupling. We also discuss some speculative ideas generalizing the notion of non-Wilsonian sel...

  8. On the relation between the Einstein and the Komar expressions for the energy of the gravitational field

    International Nuclear Information System (INIS)

    Chrusciel, P.T.

    1985-01-01

    It is shown, that the interpretation of the Einstein energy-momentum ''pseudo-tensor'',''covariantized'' with the help of a background metric, as the energy-momentum tensor of the gravitational field with respect to a background field, is consistent with a geometric hamiltonian analysis. It is also shown, that the von Freud superpotential and the Komar superpotential describe the dynamics of the gravitational field in different function spaces, subject to different boundary conditions. One can pass from one superpotential to the other by performing a Legendre transformation on the boundary. It is explained why the ADM and the von Freud energy expressions are the same, for asymptotically flat space-times

  9. Learning Global-Local Distance Metrics for Signature-Based Biometric Cryptosystems

    Directory of Open Access Journals (Sweden)

    George S. Eskander Ekladious

    2017-11-01

    Full Text Available Biometric traits, such as fingerprints, faces and signatures have been employed in bio-cryptosystems to secure cryptographic keys within digital security schemes. Reliable implementations of these systems employ error correction codes formulated as simple distance thresholds, although they may not effectively model the complex variability of behavioral biometrics like signatures. In this paper, a Global-Local Distance Metric (GLDM framework is proposed to learn cost-effective distance metrics, which reduce within-class variability and augment between-class variability, so that simple error correction thresholds of bio-cryptosystems provide high classification accuracy. First, a large number of samples from a development dataset are used to train a global distance metric that differentiates within-class from between-class samples of the population. Then, once user-specific samples are available for enrollment, the global metric is tuned to a local user-specific one. Proof-of-concept experiments on two reference offline signature databases confirm the viability of the proposed approach. Distance metrics are produced based on concise signature representations consisting of about 20 features and a single prototype. A signature-based bio-cryptosystem is designed using the produced metrics and has shown average classification error rates of about 7% and 17% for the PUCPR and the GPDS-300 databases, respectively. This level of performance is comparable to that obtained with complex state-of-the-art classifiers.

  10. Beyond Einstein Gravity A Survey of Gravitational Theories for Cosmology and Astrophysics

    CERN Document Server

    Faraoni, Valerio

    2011-01-01

    Beyond Einstein’s Gravity is a graduate level introduction to extended theories of gravity and cosmology, including variational principles, the weak-field limit, gravitational waves, mathematical tools, exact solutions, as well as cosmological and astrophysical applications. The book provides a critical overview of the research in this area and unifies the existing literature using a consistent notation. Although the results apply in principle to all alternative gravities, a special emphasis is on scalar-tensor and f(R) theories. They were studied by theoretical physicists from early on, and in the 1980s they appeared in attempts to renormalize General Relativity and in models of the early universe. Recently, these theories have seen a new lease of life, in both their metric and metric-affine versions, as models of the present acceleration of the universe without introducing the mysterious and exotic dark energy. The dark matter problem can also be addressed in extended gravity. These applications are contr...

  11. Connection between Einstein equations, nonlinear sigma models, and self-dual Yang-Mills theory

    International Nuclear Information System (INIS)

    Sanchez, N.; Whiting, B.

    1986-01-01

    The authors analyze the connection between nonlinear sigma models self-dual Yang-Mills theory, and general relativity (self-dual and non-self-dual, with and without killing vectors), both at the level of the equations and at the level of the different type of solutions (solitons and calorons) of these theories. They give a manifestly gauge invariant formulation of the self-dual gravitational field analogous to that given by Yang for the self-dual Yang-Mills field. This formulation connects in a direct and explicit way the self-dual Yang-Mills and the general relativity equations. They give the ''R gauge'' parametrization of the self-dual gravitational field (which corresponds to modified Yang's-type and Ernst equations) and analyze the correspondence between their different types of solutions. No assumption about the existence of symmetries in the space-time is needed. For the general case (non-self-dual), they show that the Einstein equations contain an O nonlinear sigma model. This connection with the sigma model holds irrespective of the presence of symmetries in the space-time. They found a new class of solutions of Einstein equations depending on holomorphic and antiholomorphic functions and we relate some subclasses of these solutions to solutions of simpler nonlinear field equations that are well known in other branches of physics, like sigma models, SineGordon, and Liouville equations. They include gravitational plane wave solutions. They analyze the response of different accelerated quantum detector models, compare them to the case when the detectors are linterial in an ordinary Planckian gas at a given temperature, and discuss the anisotropy of the detected response for Rindler observers

  12. Albert Einstein and 20th century's physics

    International Nuclear Information System (INIS)

    Zajac, R.

    1979-01-01

    Albert Einstein's teaching and his three fundamental works are discussed dealing with the molecular theory of heat applied to the motion of suspended particles in liquids at rest, the photoelectric effect, and the theory of relativity. Albert Einstein's impact on contemporary physics is evaluated. (J.P.)

  13. Spectroscopy of dark soliton states in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Bongs, K; Burger, S; Hellweg, D; Kottke, M; Dettmer, S; Rinkleff, T; Cacciapuoti, L; Arlt, J; Sengstock, K; Ertmer, W

    2003-01-01

    Experimental and numerical studies of the velocity field of dark solitons in Bose-Einstein condensates are presented. The formation process after phase imprinting as well as the propagation of the emerging soliton are investigated using spatially resolved Bragg spectroscopy of soliton states in Bose-Einstein condensates of 87 Rb. A comparison of experimental data to results from numerical simulations of the Gross-Pitaevskii equation clearly identifies the flux underlying a dark soliton propagating in a Bose-Einstein condensate. The results allow further optimization of the phase imprinting method for creating collective excitations of Bose-Einstein condensates

  14. Solitons and the energy-momentum tensor for affine Toda theory

    Science.gov (United States)

    Olive, D. I.; Turok, N.; Underwood, J. W. R.

    1993-07-01

    Following Leznov and Saveliev, we present the general solution to Toda field theories of conformal, affine or conformal affine type, associated with a simple Lie algebra g. These depend on a free massless field and on a group element. By putting the former to zero, soliton solutions to the affine Toda theories with imaginary coupling constant result with the soliton data encoded in the group element. As this requires a reformulation of the affine Kac-Moody algebra closely related to that already used to formulate the physical properties of the particle excitations, including their scattering matrices, a unified treatment of particles and solitons emerges. The physical energy—momentum tensor for a general solution is broken into a total derivative plus a part dependent only on the derivatives of the free field. Despite the non-linearity of the field equations and their complex nature the energy and momentum of the N-soliton solution is shown to be real, equalling the sum of contributions from the individual solitons. There are rank-g species of soliton, with masses given by a generalisation of a formula due to Hollowood, being proportional to the components of the left Perron-Frobenius eigenvector of the Cartan matrix of g.

  15. Solitons and the energy-momentum tensor for affine Toda theory

    International Nuclear Information System (INIS)

    Olive, D.I.; Turok, N.; Underwood, J.W.R.

    1993-01-01

    Following Leznov and Saveliev, we present the general solution to Toda field theories of conformal, affine or conformal affine type, associated with a simple Lie algebra g. These depend on a free massless field and on a group element. By putting the former to zero, soliton solutions to the affine Toda theories with imaginary coupling constant result with the soliton data encoded in the group element. As this requires a reformulation of the affine Kac-Moodyy algebra closely related to that already used to formulate the physical properties of the particle excitations, including their scattering matrices, a unified treatment of particles and solitons emerges. The physical energy-momentum tensor for a general solution is broken into a total derivative plus a part dependent only on the derivatives of the free field. Despite the non-linearity of the field equations and their complex nature the energy and momentum of the N-soliton solution is shown to be real, equalling the sum of contributions from the individual solitons. There are rank-g species of soliton, with masses given by a generalisation of a formula due to Hollowood, being proportional to the components of the left Perron-Frobenius eigenvector of the Cartan matrix of g. (orig.)

  16. Stationary axisymmetric Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Catenacci, R.; Diaz Alonso, J.

    1976-01-01

    We show the existence of a formal identity between Einstein's and Ernst's stationary axisymmetric gravitational field equations and the Einstein--Maxwell and the Ernst equations for the electrostatic and magnetostatic axisymmetric cases. Our equations are invariant under very simple internal symmetry groups, and one of them appears to be new. We also obtain a method for associating two stationary axisymmetric vacuum solutions with every electrostatic known

  17. On nonlocally interacting metrics, and a simple proposal for cosmic acceleration

    Science.gov (United States)

    Vardanyan, Valeri; Akrami, Yashar; Amendola, Luca; Silvestri, Alessandra

    2018-03-01

    We propose a simple, nonlocal modification to general relativity (GR) on large scales, which provides a model of late-time cosmic acceleration in the absence of the cosmological constant and with the same number of free parameters as in standard cosmology. The model is motivated by adding to the gravity sector an extra spin-2 field interacting nonlocally with the physical metric coupled to matter. The form of the nonlocal interaction is inspired by the simplest form of the Deser-Woodard (DW) model, α R1/squareR, with one of the Ricci scalars being replaced by a constant m2, and gravity is therefore modified in the infrared by adding a simple term of the form m21/squareR to the Einstein-Hilbert term. We study cosmic expansion histories, and demonstrate that the new model can provide background expansions consistent with observations if m is of the order of the Hubble expansion rate today, in contrast to the simple DW model with no viable cosmology. The model is best fit by w0~‑1.075 and wa~0.045. We also compare the cosmology of the model to that of Maggiore and Mancarella (MM), m2R1/square2R, and demonstrate that the viable cosmic histories follow the standard-model evolution more closely compared to the MM model. We further demonstrate that the proposed model possesses the same number of physical degrees of freedom as in GR. Finally, we discuss the appearance of ghosts in the local formulation of the model, and argue that they are unphysical and harmless to the theory, keeping the physical degrees of freedom healthy.

  18. What about Albert Einstein? Using Biographies to Promote Students' Scientific Thinking

    Science.gov (United States)

    Fingon, Joan C.; Fingon, Shallon D.

    2009-01-01

    Who hasn't heard of Einstein? Science educators everywhere are familiar with Einstein's genius and general theory of relativity. Students easily recognize Einstein's image by his white flyaway hair and bushy mustache. It is well known that Einstein was a brilliant physicist and an abstract thinker who often used his creativity and imagination in…

  19. Thermal and quantum fluctuations of confined Bose–Einstein condensate beyond the Bogoliubov approximation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y., E-mail: yusuke.n@asagi.waseda.jp [Department of Electronic and Physical Systems, Waseda University, Tokyo 169-8555 (Japan); Nagano Prefectural Kiso Seiho High School, Nagano 397-8571 (Japan); Kawaguchi, T., E-mail: pionelish30@toki.waseda.jp [Department of Electronic and Physical Systems, Waseda University, Tokyo 169-8555 (Japan); Torii, Y., E-mail: torii0139@asagi.waseda.jp [Department of Electronic and Physical Systems, Waseda University, Tokyo 169-8555 (Japan); Yamanaka, Y., E-mail: yamanaka@waseda.jp [Department of Electronic and Physical Systems, Waseda University, Tokyo 169-8555 (Japan)

    2017-01-15

    The formulation for zero mode of a Bose–Einstein condensate beyond the Bogoliubov approximation at zero temperature [Y. Nakamura et al., Phys. Rev. A 89 (2014) 013613] is extended to finite temperature. Both thermal and quantum fluctuations are considered in a manner consistent with a concept of spontaneous symmetry breakdown for a finite-size system. Therefore, we need a proper treatment of the zero mode operators, which invoke non-trivial enhancements in depletion condensate and thermodynamical quantities such as the specific heat. The enhancements are visible in the weak interaction case. Our approach reproduces the results of a homogeneous system in the Bogoliubov approximation in a large particle number limit.

  20. Classes of general axisymmetric solutions of Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Krori, K.D.; Choudhury, T.

    1981-01-01

    An exact solution of the Einstein equations for a stationary axially symmetric distribution of mass composed of all types of multipoles is obtained. Following Ernst (1968), from this vacuum solution the corresponding solution of the coupled Einstein-Maxwell equations is derived. A solution of Einstein-Maxwell fields for a static axially symmetric system composed of all types of multipoles is also obtained. (author)

  1. Bose-Einstein Condensation

    Indian Academy of Sciences (India)

    absolute zero. These ideas had ... Everybody is talking about Bose-Einstein condensation. This discovery ... needed if we want to find the probability distribution of the x- ... Boltzmann took two approaches to the problem, both of them deep and ...

  2. Competition between Bose-Einstein Condensation and Spin Dynamics.

    Science.gov (United States)

    Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B

    2016-10-28

    We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.

  3. Einstein's Mirror

    Science.gov (United States)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  4. Open Problem: Kernel methods on manifolds and metric spaces

    DEFF Research Database (Denmark)

    Feragen, Aasa; Hauberg, Søren

    2016-01-01

    Radial kernels are well-suited for machine learning over general geodesic metric spaces, where pairwise distances are often the only computable quantity available. We have recently shown that geodesic exponential kernels are only positive definite for all bandwidths when the input space has strong...... linear properties. This negative result hints that radial kernel are perhaps not suitable over geodesic metric spaces after all. Here, however, we present evidence that large intervals of bandwidths exist where geodesic exponential kernels have high probability of being positive definite over finite...... datasets, while still having significant predictive power. From this we formulate conjectures on the probability of a positive definite kernel matrix for a finite random sample, depending on the geometry of the data space and the spread of the sample....

  5. You err, Einstein.. Newton, Einstein, Heisenberg, and Feynman discuss quantum physics

    International Nuclear Information System (INIS)

    Fritzsch, Harald

    2008-01-01

    Harald Fritzsch and his star physicists Einstein, Heisenberg, and Feynman explain the central concept of nowadays physics, quantum mechanics, without it nothing goes in modern world. And the great Isaac newton puts the questions, which all would put

  6. Gravitational waves in Fully Constrained Formulation in a dynamical spacetime with matter content

    Energy Technology Data Exchange (ETDEWEB)

    Cordero-Carrion, Isabel; Cerda-Duran, Pablo [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85741, Garching (Germany); Ibanez, Jose MarIa, E-mail: chabela@mpa-garching.mpg.de, E-mail: cerda@mpa-garching.mpg.de, E-mail: jose.m.ibanez@uv.es [Departamento de AstronomIa y Astrofisica, Universidad de Valencia, C/ Dr. Moliner 50, E-46100 Burjassot, Valencia (Spain)

    2011-09-22

    We analyze numerically the behaviour of the hyperbolic sector of the Fully Constrained Formulation (FCF) (Bonazzola et al. 2004). The numerical experiments allow us to be confident in the performances of the upgraded version of the CoCoNuT code (Dimmelmeier et al. 2005) by replacing the Conformally Flat Condition (CFC), an approximation of Einstein equations, by FCF. First gravitational waves in FCF in a dynamical spacetime with matter content will be shown.

  7. Molecular electron affinities

    International Nuclear Information System (INIS)

    Fukuda, E.K.

    1983-01-01

    Molecular electron affinities have historically been difficult quantities to measure accurately. These difficulties arise from differences in structure between the ion and neutral as well as the existence of excited negative ion states. To circumvent these problems, relative electron affinities were determined in this dissertation by studying equilibrium electron transfer reactions using a pulsed ion cyclotron resonance (ICR) spectrometer. Direct measurement of ion and neutral concentrations for reactions of the general type, A - + B = B - + A, allow calculation of the equilibrium constant and, therefore, the free energy change. The free energy difference is related to the difference in electron affinities between A and B. A relative electron affinity scale covering a range of about 45 kcal/mol was constructed with various substituted p-benzoquinones, nitrobenzenes, anhydrides, and benzophenones. To assign absolute electron affinities, various species with accurately known electron affinities are tied to the scale via ion-cyclotron double resonance bracketing techniques. After the relative scale is anchored to these species with well-known electron affinities, the scale is then used as a check on other electron affinity values as well as generating new electron affinity values. Many discrepancies were found between the electron affinities measured using the ICR technique and previous literature determinations

  8. Structure of the space of solutions of Einstein's equations II: Several killing fields and the Einstein-Yang-Mills equations

    International Nuclear Information System (INIS)

    Arms, J.M.; Marsden, J.E.; Moncrief, V.

    1982-01-01

    The space of solutions of Einstein's vacuum equations is shown to have conical singularities at each spacetime possessing a compact Cauchy surface of constant mean curvature and a nontrivial set of Killing fields. Similar results are shown for the coupled Einstein-Yang-Mills system. Combined with an appropriate slice theorem, the results show that the space of geometrically equivalent solutions is a stratified manifold with each stratum being a symplectic manifold characterized by the symmetry type of its members. Contents: Introduction 1. The Kuranishi map and its properties. 2. The momentum constraints. 3. The Hamiltonian constraints. 4. The Einstein-Yang-Mills system. 5. Discussion and examples

  9. Einstein's Years in Switzerland

    Science.gov (United States)

    Plendl, Hans S.

    2005-11-01

    Albert Einstein left Germany, the country of his birth, in 1894 and moved to Switzerland in 1895. He studied, worked and taught there, except for a year's stay in Prague, until1914. That year he returned to Germany, where he lived until his emigration to the United States in 1933. In 1905, while living with his wife Mileva and their first son Hans Albert in Bern and working as a technical expert at the Swiss Patent Office, he published his dissertation on the determination of molecular dimensions, his papers on Brownian Motion that helped to establish the Kinetic Theory of Heat and on the Photo-Electric Effect that validated the Quantum Theory of Light, and the two papers introducing the Special Theory of Relativity. How the young Einstein could help to lay the foundations of these theories while still working on his dissertation, holding a full-time job and helping to raise a family has evoked much discussion among his biographers. In this contribution, the extent to which living within Swiss society and culture could have made this feat possible will be examined. Old and recent photos of places in Switzerland where Einstein has lived and worked will be shown.

  10. What Einstein Can Teach Us about Education

    Science.gov (United States)

    Hayes, Denis

    2007-01-01

    People are more likely to associate Einstein with complex scientific theories and mathematical calculations than with education theory. In fact, Einstein's own experiences of schooling and his reflections on the meaning of life and the significance of education are profound and oddly relevant to the situation that pertains in England today. It is…

  11. From Einstein's theorem to Bell's theorem: a history of quantum non-locality

    Science.gov (United States)

    Wiseman, H. M.

    2006-04-01

    In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to physics ‘folklore’, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality locality completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full non-locality of the quantum world for the first time.

  12. Einstein's photoemission emission from heavily-doped quantized structures

    CERN Document Server

    Ghatak, Kamakhya Prasad

    2015-01-01

    This monograph solely investigates the Einstein's Photoemission(EP) from Heavily Doped(HD) Quantized Structures on the basis of newly formulated electron dispersion laws. The materials considered are quantized structures of HD non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, GaP, Gallium Antimonide, II-V, Bismuth Telluride together with various types of HD superlattices and their Quantized counterparts respectively. The EP in HD opto-electronic materials and their nanostructures is studied in the presence of strong light waves and intense electric fields  that control the studies of such quantum effect devices. The suggestions for the experimental determinations of different important physical quantities in HD 2D and 3D materials  and the importance of measurement of band gap in HD optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring   physical properties in the presence of intense light waves w...

  13. Die Leben Einsteins eine Reise durch die Geschichte der Physik

    CERN Document Server

    Fiami

    2005-01-01

    Jeder kennt die Namen Einstein, Newton oder Galilei. aber was weiss man über sie? Hier ein Porträt Einsteins anhand von sechs Meilensteinen aus der Geschichte der Physik. Einstein tritt auf als Protagonist in verschiedenen Epochen und bei verschiedenen Entdeckungen, die die Welt verändert haben.

  14. Massive bosons interacting with gravity: No standard solutions in Robertson-Walker space-time

    International Nuclear Information System (INIS)

    Zecca, A.

    2009-01-01

    The problem of the interaction of boson and gravitational field is formulated in the Robertson-Walker space-time. It consist the simultaneous solution of the boson and of the Einstein field equation whose source is the energy momentum tensor of the boson field. By direct verification it is shown that the problem does not admit solutions in the class of massive standard solutions, previously determined, of the boson field equation. Also there cannot be solutions, in case of massive interacting boson, that are superpositions of standard solutions. The case of massless boson field is left open. The result is essentially due to the very special form of the Einstein tensor in Robertson-Walker metric.

  15. A continuous time formulation of the Regge calculus

    International Nuclear Information System (INIS)

    Brewin, Leo

    1988-01-01

    A complete continuous time formulation of the Regge calculus is presented by developing the associated continuous time Regge action. It is shown that the time constraint is, by way of the Bianchi identities conserved by the evolution equations. This analysis leads to an explicit first integral for each of the evolution equations. The dynamical equations of the theory are therefore reduced to a set of first-order differential equations. In this formalism the time constraints reduce to a simple sum of the integration constants. This result is unique to the Regge calculus-there does not appear to be a complete set of first integrals available for the vacuum Einstein equations. (author)

  16. Derivation of Einstein-Cartan theory from general relativity

    Science.gov (United States)

    Petti, Richard

    2015-04-01

    General relativity cannot describe exchange of classical intrinsic angular momentum and orbital angular momentum. Einstein-Cartan theory fixes this problem in the least invasive way. In the late 20th century, the consensus view was that Einstein-Cartan theory requires inclusion of torsion without adequate justification, it has no empirical support (though it doesn't conflict with any known evidence), it solves no important problem, and it complicates gravitational theory with no compensating benefit. In 1986 the author published a derivation of Einstein-Cartan theory from general relativity, with no additional assumptions or parameters. Starting without torsion, Poincaré symmetry, classical or quantum spin, or spinors, it derives torsion and its relation to spin from a continuum limit of general relativistic solutions. The present work makes the case that this computation, combined with supporting arguments, constitutes a derivation of Einstein-Cartan theory from general relativity, not just a plausibility argument. This paper adds more and simpler explanations, more computational details, correction of a factor of 2, discussion of limitations of the derivation, and discussion of some areas of gravitational research where Einstein-Cartan theory is relevant.

  17. Metric elasticity in a collapsing star: Gravitational radiation coupled to torsional motion

    International Nuclear Information System (INIS)

    Gerlach, U.H.; Scott, J.F.

    1986-01-01

    Torsional oscillatory matter motion as well as differential rotation couple via the linearized Einstein field equations to the gravitational degrees of freedom. For an arbitrary spherically symmetric background, such as that of a wildly pulsating or a catastrophically collapsing star, we exhibit (a) the strain tensor and (b) the corresponding stress-energy tensor. It is found that in the star there are two elasticity tensors. One expresses the familiar elasticity of matter, the other expresses the elasticity of the geometry. This metric elasticity is responsible for coupling the gravitational and matter degrees of freedom. The two coupled scalar wave equations for these degrees of freedom are exhibited. Also exhibited are their characteristics as well as the junction conditions for their solutions across any spherical surface of discontinuity

  18. Elastic scattering of a Bose-Einstein condensate at a potential landscape

    International Nuclear Information System (INIS)

    Březinová, Iva; Burgdörfer, Joachim; Lode, Axel U J; Streltsov, Alexej I; Cederbaum, Lorenz S; Alon, Ofir E; Collins, Lee A; Schneider, Barry I

    2014-01-01

    We investigate the elastic scattering of Bose-Einstein condensates at shallow periodic and disorder potentials. We show that the collective scattering of the macroscopic quantum object couples to internal degrees of freedom of the Bose-Einstein condensate such that the Bose-Einstein condensate gets depleted. As a precursor for the excitation of the Bose-Einstein condensate we observe wave chaos within a mean-field theory

  19. Generalized Einstein-Aether theories and the Solar System

    International Nuclear Information System (INIS)

    Bonvin, Camille; Durrer, Ruth; Ferreira, Pedro G.; Zlosnik, Tom G.; Starkman, Glenn

    2008-01-01

    It has been shown that generalized Einstein-Aether theories may lead to significant modifications to the nonrelativistic limit of the Einstein equations. In this paper we study the effect of a general class of such theories on the Solar System. We consider corrections to the gravitational potential in negative and positive powers of distance from the source. Using measurements of the perihelion shift of Mercury and time delay of radar signals to Cassini, we place constraints on these corrections. We find that a subclass of generalized Einstein-Aether theories is compatible with these constraints

  20. Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates

    Science.gov (United States)

    2015-06-23

    AFRL-OSR-VA-TR-2015-0141 INTERACTIONS OF ULTRACOLD IMPURITY PARTICLES WITH BOSE- EINSTEIN CONDENSATES Georg Raithel UNIVERSITY OF MICHIGAN Final...SUBTITLE Interactions of ultracold impurity particles with Bose- Einstein Condensates 5a. CONTRACT NUMBER FA9550-10-1-0453 5b. GRANT NUMBER 5c...Interactions of ultracold impurity particles with Bose- Einstein Condensates Contract/Grant #: FA9550-10-1-0453 Reporting Period: 8/15/2010 to 2/14

  1. [Photoeffects, Einstein's light quanta and the history of their acceptance].

    Science.gov (United States)

    Wiederkehr, Karl Heinrich

    2006-01-01

    It is generally supposed, that the discovery of the efficacy-quantum by Planck was the impetus to Einstein's hypothesis of lightquanta. With its help Einstein could explain the external light-electrical effect. But even years before Einstein had worked at the photoeffect and already made experiments on it. For that reason the article gives a short survey about the history of the lightelectric effects. Lenard's basical work about the release of the photoelectrons is dealt with in detail, without which Einstein would scarcely have found his lightquanta. Furthermore it is shown how difficult it was for the physicists to give up--at least partially--the traditional view of the undulation-nature of light, and how they searched to explain the great energies of the photoelectrons. On the other side it is set forth how Einstein's formula of lightquanta was gradually confirmed. The tragical development of Einstein's personal relations with Johannes Stark and Philipp Lenard are briefly described. Stark was one of the few who supported Einstein's ideas at the beginning. Only with the Compton-effect, which could only be quantitatively interpreted by means of lightquanta and the special theory of relativity 1923, the way was free for the general acceptance of the lightquanta. Einstein did not agree to the obtained dualism of undulation and corpuscle; he had a different solution in mind about the fusion of the two forms of appearance of light.

  2. Approximate radiative solutions of the Einstein equations

    International Nuclear Information System (INIS)

    Kuusk, P.; Unt, V.

    1976-01-01

    In this paper the external field of a bounded source emitting gravitational radiation is considered. A successive approximation method is used to integrate the Einstein equations in Bondi's coordinates (Bondi et al, Proc. R. Soc.; A269:21 (1962)). A method of separation of angular variables is worked out and the approximate Einstein equations are reduced to key equations. The losses of mass, momentum, and angular momentum due to gravitational multipole radiation are found. It is demonstrated that in the case of proper treatment a real mass occurs instead of a mass aspect in a solution of the Einstein equations. In an appendix Bondi's new function is given in terms of sources. (author)

  3. Classical and quantum Fisher information in the geometrical formulation of quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Facchi, Paolo [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Kulkarni, Ravi [Vivekananda Yoga Research Foundation, Bangalore 560 080 (India); Man' ko, V.I., E-mail: manko@na.infn.i [P.N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, Giuseppe [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Sudarshan, E.C.G. [Department of Physics, University of Texas, Austin, TX 78712 (United States); Ventriglia, Franco [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy)

    2010-11-01

    The tomographic picture of quantum mechanics has brought the description of quantum states closer to that of classical probability and statistics. On the other hand, the geometrical formulation of quantum mechanics introduces a metric tensor and a symplectic tensor (Hermitian tensor) on the space of pure states. By putting these two aspects together, we show that the Fisher information metric, both classical and quantum, can be described by means of the Hermitian tensor on the manifold of pure states.

  4. Classical and quantum Fisher information in the geometrical formulation of quantum mechanics

    International Nuclear Information System (INIS)

    Facchi, Paolo; Kulkarni, Ravi; Man'ko, V.I.; Marmo, Giuseppe; Sudarshan, E.C.G.; Ventriglia, Franco

    2010-01-01

    The tomographic picture of quantum mechanics has brought the description of quantum states closer to that of classical probability and statistics. On the other hand, the geometrical formulation of quantum mechanics introduces a metric tensor and a symplectic tensor (Hermitian tensor) on the space of pure states. By putting these two aspects together, we show that the Fisher information metric, both classical and quantum, can be described by means of the Hermitian tensor on the manifold of pure states.

  5. Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates

    Science.gov (United States)

    Fadel, Matteo; Zibold, Tilman; Décamps, Boris; Treutlein, Philipp

    2018-04-01

    Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks.

  6. Academic Training: Einstein and beyond: Introduction to General relativity

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 3, 4, 5, 6, 7 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Einstein and beyond: Introduction to General relativity by N. Straumann / Institut fur theoretische physics, Univ. Zürich We review the enduring achievements of Einstein's papers of 1905 and their impact on the further developments in physics. Program : Lectures I and II:Einstein's Contributions to Statistical Mechanics and Quantum Theory Lecture III:Einstein's Thesis at the University of Zürich Lecture IV: From Special to General Relativity Lecture V: The History and the Mystery of the Cosmological Constant ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  7. Momentum and angular momentum in the H-space of asymptotically flat, Einstein-Maxwell space-time

    International Nuclear Information System (INIS)

    Hallidy, W.; Ludvigsen, M.

    1979-01-01

    New definitions are proposed for the momentum and angular momentum of Einstein-Maxwell fields that overcome the deficiencies of earlier definitions of these terms and are appropriate to the new H-space formulations of space-time. Definitions are made in terms of the Winicour-Tamburino linkages applied to the good cuts of Cj + . The transformations between good cuts then correspond to the translations and Lorentz transformations at points in H-space. For the special case of Robinson-Trautman type II space-times, it is shown that the definitions of momentum and angular momentum yield previously published results. (author)

  8. Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering

    International Nuclear Information System (INIS)

    Wittmann, Bernhard; Ramelow, Sven; Zeilinger, Anton; Steinlechner, Fabian; Langford, Nathan K; Ursin, Rupert; Brunner, Nicolas; Wiseman, Howard M

    2012-01-01

    Tests of the predictions of quantum mechanics for entangled systems have provided increasing evidence against local realistic theories. However, there remains the crucial challenge of simultaneously closing all major loopholes—the locality, freedom-of-choice and detection loopholes—in a single experiment. An important sub-class of local realistic theories can be tested with the concept of ‘steering’. The term ‘steering’ was introduced by Schrödinger in 1935 for the fact that entanglement would seem to allow an experimenter to remotely steer the state of a distant system as in the Einstein-Podolsky-Rosen (EPR) argument. Einstein called this ‘spooky action at a distance’. EPR-steering has recently been rigorously formulated as a quantum information task opening it up to new experimental tests. Here, we present the first loophole-free demonstration of EPR-steering by violating three-setting quadratic steering inequality, tested with polarization-entangled photons shared between two distant laboratories. Our experiment demonstrates this effect while simultaneously closing all loopholes: both the locality loophole and a specific form of the freedom-of-choice loophole are closed by having a large separation of the parties and using fast quantum random number generators, and the fair-sampling loophole is closed by having high overall detection efficiency. Thereby, we exclude—for the first time loophole-free—an important class of local realistic theories considered by EPR. Besides its foundational importance, loophole-free steering also allows the distribution of quantum entanglement secure event in the presence of an untrusted party. (paper)

  9. Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering

    Science.gov (United States)

    Wittmann, Bernhard; Ramelow, Sven; Steinlechner, Fabian; Langford, Nathan K.; Brunner, Nicolas; Wiseman, Howard M.; Ursin, Rupert; Zeilinger, Anton

    2012-05-01

    Tests of the predictions of quantum mechanics for entangled systems have provided increasing evidence against local realistic theories. However, there remains the crucial challenge of simultaneously closing all major loopholes—the locality, freedom-of-choice and detection loopholes—in a single experiment. An important sub-class of local realistic theories can be tested with the concept of ‘steering’. The term ‘steering’ was introduced by Schrödinger in 1935 for the fact that entanglement would seem to allow an experimenter to remotely steer the state of a distant system as in the Einstein-Podolsky-Rosen (EPR) argument. Einstein called this ‘spooky action at a distance’. EPR-steering has recently been rigorously formulated as a quantum information task opening it up to new experimental tests. Here, we present the first loophole-free demonstration of EPR-steering by violating three-setting quadratic steering inequality, tested with polarization-entangled photons shared between two distant laboratories. Our experiment demonstrates this effect while simultaneously closing all loopholes: both the locality loophole and a specific form of the freedom-of-choice loophole are closed by having a large separation of the parties and using fast quantum random number generators, and the fair-sampling loophole is closed by having high overall detection efficiency. Thereby, we exclude—for the first time loophole-free—an important class of local realistic theories considered by EPR. Besides its foundational importance, loophole-free steering also allows the distribution of quantum entanglement secure event in the presence of an untrusted party.

  10. Einstein was right!

    CERN Multimedia

    2003-01-01

    For the first time scientists have succeeded in measuring the speed of gravity. They took advantage of a rare alignment of Jupiter against a far-off quasar to measure the fundamental constant described by Albert Einstein in his general theory of relativity (2 pages).

  11. New details emerge from the Einstein files

    CERN Multimedia

    Overbye, D

    2002-01-01

    For many years the FBI spied on Einstein. New details of this surveilance are emerging in "The Einstein File: J. Edgar Hoover's Secret War Against the World's Most Famous Scientist," by Fred Jerome, who sued the government with the help of the Public Citizen Litigation Group to obtain a less censored version of the file (1 page).

  12. EPR before EPR: A 1930 Einstein-Bohr thought Experiment Revisited

    Science.gov (United States)

    Nikolic, Hrvoje

    2012-01-01

    In 1930, Einstein argued against the consistency of the time-energy uncertainty relation by discussing a thought experiment involving a measurement of the mass of the box which emitted a photon. Bohr seemingly prevailed over Einstein by arguing that Einstein's own general theory of relativity saves the consistency of quantum mechanics. We revisit…

  13. A Student's Guide to Einstein's Major Papers

    International Nuclear Information System (INIS)

    Janssen, Michel

    2013-01-01

    The core of this volume is formed by four chapters (2–5) with detailed reconstructions of the arguments and derivations in four of Einstein's most important papers, the three main papers of his annus mirabilis 1905 (on the light quantum, Brownian motion, and special relativity) and his first systematic exposition of general relativity of 1916. The derivations are given in sufficient detail and in sufficiently modernized notation (without any serious distortion of the originals) for an undergraduate physics major to read and understand them with far less effort than it would take him or her to understand (English translations of) Einstein's original papers. Each of these four papers is accompanied by a detailed introduction, which covers the conceptual development of the relevant field prior to Einstein's contribution to it and corrects some of the myths surrounding these papers that still have not been fully eradicated among physicists. (One quibble: though Kennedy correctly points out that the goal of the light quantum paper was not to explain the photoelectric effect, it is also not quite right to say that 'it was written to explain the Wien region of blackbody radiation' (p. xv). Einstein used this explanatory feat as the central argument for his light quantum hypothesis.) These four chapters then are the most valuable part of the volume. They could be used, independently of one another, but preferably in conjunction with Einstein's original texts, in courses on quantum mechanics, statistical mechanics, electrodynamics, and general relativity, respectively, to add a historical component to such courses. As a historian of science embedded in a physics department who is regularly called upon to give guest lectures in such courses on the history of their subjects, I can highly recommend the volume for this purpose. However, I would not adopt this volume as (one of) the central text(s) for a course on the history of modern physics. For one thing, chapter 1, which

  14. Indefinite-metric quantum field theory of general relativity

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1978-01-01

    Quantum field theory of Einstein's general relativity is formulated in the indefinitemetric Hilbert space in such a way that asymptotic fields are manifestly Lorentz covariant and the physical S-matrix is unitary. The general coordinate transformation is transcribed into a q-number transformation, called the BRS transformation. Its abstract definition is presented on the basis of the BRS transformation for the Yang-Mills theory. The BRS transformation for general relativity is then explicitly constructed. The gauge-fixing Lagrangian density and the Faddeev-Popov one are introduced in such a way that their sum behaves like a scalar density under the BRS transformation. One can then proceed in the same way as in the Kugo-Ojima formalism of the Yang-Mills theory to establish the unitarity of the physical S-matrix. (author)

  15. Test of the FLRW Metric and Curvature with Strong Lens Time Delays

    International Nuclear Information System (INIS)

    Liao, Kai; Li, Zhengxiang; Wang, Guo-Jian; Fan, Xi-Long

    2017-01-01

    We present a new model-independent strategy for testing the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the former test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ∼0.057 or ∼0.041 (1 σ ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.

  16. Test of the FLRW Metric and Curvature with Strong Lens Time Delays

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Kai [School of Science, Wuhan University of Technology, Wuhan 430070 (China); Li, Zhengxiang; Wang, Guo-Jian [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Fan, Xi-Long, E-mail: liaokai@whut.edu.cn, E-mail: xilong.fan@glasgow.ac.uk [Department of Physics and Mechanical and Electrical Engineering, Hubei University of Education, Wuhan 430205 (China)

    2017-04-20

    We present a new model-independent strategy for testing the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the former test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ∼0.057 or ∼0.041 (1 σ ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.

  17. The Stokes-Einstein relation at moderate Schmidt number.

    Science.gov (United States)

    Balboa Usabiaga, Florencio; Xie, Xiaoyi; Delgado-Buscalioni, Rafael; Donev, Aleksandar

    2013-12-07

    The Stokes-Einstein relation for the self-diffusion coefficient of a spherical particle suspended in an incompressible fluid is an asymptotic result in the limit of large Schmidt number, that is, when momentum diffuses much faster than the particle. When the Schmidt number is moderate, which happens in most particle methods for hydrodynamics, deviations from the Stokes-Einstein prediction are expected. We study these corrections computationally using a recently developed minimally resolved method for coupling particles to an incompressible fluctuating fluid in both two and three dimensions. We find that for moderate Schmidt numbers the diffusion coefficient is reduced relative to the Stokes-Einstein prediction by an amount inversely proportional to the Schmidt number in both two and three dimensions. We find, however, that the Einstein formula is obeyed at all Schmidt numbers, consistent with linear response theory. The mismatch arises because thermal fluctuations affect the drag coefficient for a particle due to the nonlinear nature of the fluid-particle coupling. The numerical data are in good agreement with an approximate self-consistent theory, which can be used to estimate finite-Schmidt number corrections in a variety of methods. Our results indicate that the corrections to the Stokes-Einstein formula come primarily from the fact that the particle itself diffuses together with the momentum. Our study separates effects coming from corrections to no-slip hydrodynamics from those of finite separation of time scales, allowing for a better understanding of widely observed deviations from the Stokes-Einstein prediction in particle methods such as molecular dynamics.

  18. Energies and damping rates of elementary excitations in spin-1 Bose-Einstein-condensed gases

    International Nuclear Information System (INIS)

    Szirmai, Gergely; Szepfalusy, Peter; Kis-Szabo, Krisztian

    2003-01-01

    The finite temperature Green's function technique is used to calculate the energies and damping rates of the elementary excitations of homogeneous, dilute, spin-1 Bose gases below the Bose-Einstein condensation temperature in both the density and spin channels. For this purpose a self-consistent dynamical Hartree-Fock model is formulated, which takes into account the direct and exchange processes on equal footing by summing up certain classes of Feynman diagrams. The model is shown to satisfy the Goldstone theorem and to exhibit the hybridization of one-particle and collective excitations correctly. The results are applied to gases of 23 Na and 87 Rb atoms

  19. Zero-sum two-player game theoretic formulation of affine nonlinear discrete-time systems using neural networks.

    Science.gov (United States)

    Mehraeen, Shahab; Dierks, Travis; Jagannathan, S; Crow, Mariesa L

    2013-12-01

    In this paper, the nearly optimal solution for discrete-time (DT) affine nonlinear control systems in the presence of partially unknown internal system dynamics and disturbances is considered. The approach is based on successive approximate solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in optimal control. Successive approximation approach for updating control and disturbance inputs for DT nonlinear affine systems are proposed. Moreover, sufficient conditions for the convergence of the approximate HJI solution to the saddle point are derived, and an iterative approach to approximate the HJI equation using a neural network (NN) is presented. Then, the requirement of full knowledge of the internal dynamics of the nonlinear DT system is relaxed by using a second NN online approximator. The result is a closed-loop optimal NN controller via offline learning. A numerical example is provided illustrating the effectiveness of the approach.

  20. Constraint propagation of C2-adjusted formulation: Another recipe for robust ADM evolution system

    International Nuclear Information System (INIS)

    Tsuchiya, Takuya; Yoneda, Gen; Shinkai, Hisa-aki

    2011-01-01

    With a purpose of constructing a robust evolution system against numerical instability for integrating the Einstein equations, we propose a new formulation by adjusting the ADM evolution equations with constraints. We apply an adjusting method proposed by Fiske (2004) which uses the norm of the constraints, C 2 . One of the advantages of this method is that the effective signature of adjusted terms (Lagrange multipliers) for constraint-damping evolution is predetermined. We demonstrate this fact by showing the eigenvalues of constraint propagation equations. We also perform numerical tests of this adjusted evolution system using polarized Gowdy-wave propagation, which show robust evolutions against the violation of the constraints than that of the standard ADM formulation.

  1. Einstein's conversion from his static to an expanding universe

    Science.gov (United States)

    Nussbaumer, Harry

    2014-02-01

    In 1917 Einstein initiated modern cosmology by postulating, based on general relativity, a homogenous, static, spatially curved universe. To counteract gravitational contraction he introduced the cosmological constant. In 1922 Alexander Friedman showed that Albert Einstein's fundamental equations also allow dynamical worlds, and in 1927 Georges Lemaître, backed by observational evidence, concluded that our universe was expanding. Einstein impetuously rejected Friedman's as well as Lemaître's findings. However, in 1931 he retracted his former static model in favour of a dynamic solution. This investigation follows Einstein on his hesitating path from a static to the expanding universe. Contrary to an often advocated belief the primary motive for his switch was not observational evidence, but the realisation that his static model was unstable.

  2. Einstein's pathway to the special theory of relativity

    CERN Document Server

    Weinstein, Galina

    2015-01-01

    This book pieces together the jigsaw puzzle of Einstein's journey to discovering the special theory of relativity. Between 1902 and 1905, Einstein sat in the Patent Office and may have made calculations on old pieces of paper that were once patent drafts. One can imagine Einstein trying to hide from his boss, writing notes on small sheets of paper, and, according to reports, seeing to it that the small sheets of paper on which he was writing would vanish into his desk-drawer as soon as he heard footsteps approaching his door. He probably discarded many pieces of papers and calculations and flu

  3. Einstein's space-time an introduction to special and general relativity

    CERN Document Server

    Ferraro, Rafael

    2007-01-01

    Einstein's Space-Time: An Introduction to Special and General Relativity is a textbook addressed to students in physics and other people interested in Relativity and a history of physics. The book contains a complete account of Special Relativity that begins with the historical analysis of the reasons that led to a change in our manner of regarding the space and time. The first chapters are aimed to afford a deep understanding of the relativistic spacetime and its consequences for Dynamics. The chapter about covariant formulation includes among its topics the concepts of volume and hypersurfaces in manifolds, energy-momentum tensor of a fluid, and prepares the language for General Relativity. The last two chapters are devoted to an introduction of General Relativity and Cosmology in a modern approach connected with the latest discoveries in these areas.

  4. Restricted gravity: Abelian projection of Einstein's theory

    International Nuclear Information System (INIS)

    Cho, Y.M.

    2013-01-01

    Treating Einstein's theory as a gauge theory of Lorentz group, we decompose the gravitational connection Γμ into the restricted connection made of the potential of the maximal Abelian subgroup H of Lorentz group G and the valence connection made of G/H part of the potential which transforms covariantly under Lorentz gauge transformation. With this we show that Einstein's theory can be decomposed into the restricted gravity made of the restricted connection which has the full Lorentz gauge invariance which has the valence connection as gravitational source. The decomposition shows the existence of a restricted theory of gravitation which has the full general invariance but is much simpler than Einstein's theory. Moreover, it tells that the restricted gravity can be written as an Abelian gauge theory,

  5. New Information about Albert Einstein's Brain.

    Science.gov (United States)

    Falk, Dean

    2009-01-01

    In order to glean information about hominin (or other) brains that no longer exist, details of external neuroanatomy that are reproduced on endocranial casts (endocasts) from fossilized braincases may be described and interpreted. Despite being, of necessity, speculative, such studies can be very informative when conducted in light of the literature on comparative neuroanatomy, paleontology, and functional imaging studies. Albert Einstein's brain no longer exists in an intact state, but there are photographs of it in various views. Applying techniques developed from paleoanthropology, previously unrecognized details of external neuroanatomy are identified on these photographs. This information should be of interest to paleoneurologists, comparative neuroanatomists, historians of science, and cognitive neuroscientists. The new identifications of cortical features should also be archived for future scholars who will have access to additional information from improved functional imaging technology. Meanwhile, to the extent possible, Einstein's cerebral cortex is investigated in light of available data about variation in human sulcal patterns. Although much of his cortical surface was unremarkable, regions in and near Einstein's primary somatosensory and motor cortices were unusual. It is possible that these atypical aspects of Einstein's cerebral cortex were related to the difficulty with which he acquired language, his preference for thinking in sensory impressions including visual images rather than words, and his early training on the violin.

  6. Nonmetricity and torsion: Facts and fancies in gauge approaches to gravity

    International Nuclear Information System (INIS)

    Baekler, P.; Hehl, F.W.; Mielke, E.W.

    1986-04-01

    In general relativity, the Riemannian connection of spacetime is symmetric and metric-compatible. If we relax at first the symmetry, we arrive at a Riemann-Cartan spacetime U 4 with torsion. If we relax, additionally, the metric-compatibility, then we are led to a metric-affine spacetime (L 4 ,g) with nonmetricity and torsion. In Part 1 we turn to the (L 4 ,g) spacetime and review an appropriate framework for corresponding gravitational model theories. They can be understood as gauge approaches to the 4-dimensional affine group GL(4,R)xR 4 . They embody, in addition to the ordinary ''weak'' gravitational field, a ''strong'' piece, which is mediated by the connection and coupled to the hypermomentum current. In Part 2, by putting the nonmetricity to zero, we turn to the subcase of the Poincare gauge theory. We show in some detail, how this dynamic torsion theory can look effectively Einsteinian from a macroscopic point of view. This applies also to the Einstein-Cartan theory, which is a special case of the Poincare gauge theory for ''frozen'' torsion. In Part 3 we present new exact solutions of the Poincare gauge theory with mass, electric charge, and NUT-parameter. The properties of the new solutions are discussed. (author)

  7. Object matching using a locally affine invariant and linear programming techniques.

    Science.gov (United States)

    Li, Hongsheng; Huang, Xiaolei; He, Lei

    2013-02-01

    In this paper, we introduce a new matching method based on a novel locally affine-invariant geometric constraint and linear programming techniques. To model and solve the matching problem in a linear programming formulation, all geometric constraints should be able to be exactly or approximately reformulated into a linear form. This is a major difficulty for this kind of matching algorithm. We propose a novel locally affine-invariant constraint which can be exactly linearized and requires a lot fewer auxiliary variables than other linear programming-based methods do. The key idea behind it is that each point in the template point set can be exactly represented by an affine combination of its neighboring points, whose weights can be solved easily by least squares. Errors of reconstructing each matched point using such weights are used to penalize the disagreement of geometric relationships between the template points and the matched points. The resulting overall objective function can be solved efficiently by linear programming techniques. Our experimental results on both rigid and nonrigid object matching show the effectiveness of the proposed algorithm.

  8. Report: Affinity Chromatography.

    Science.gov (United States)

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  9. Higher-order momentum distributions and locally affine LDDMM registration

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Nielsen, Mads; Darkner, Sune

    2013-01-01

    description of affine transformations and subsequent compact description of non-translational movement in a globally nonrigid deformation. The resulting representation contains directly interpretable information from both mathematical and modeling perspectives. We develop the mathematical construction......To achieve sparse parametrizations that allow intuitive analysis, we aim to represent deformation with a basis containing interpretable elements, and we wish to use elements that have the description capacity to represent the deformation compactly. To accomplish this, we introduce in this paper...... higher-order momentum distributions in the large deformation diffeomorphic metric mapping (LDDMM) registration framework. While the zeroth-order moments previously used in LDDMM only describe local displacement, the first-order momenta that are proposed here represent a basis that allows local...

  10. Lagrangian and Hamiltonian Formulation of Transmission Line Systems with Boundary Energy Flow

    NARCIS (Netherlands)

    Jeltsema, Dimitri; Schaft, Arjan J. van der

    The classical Lagrangian and Hamiltonian formulation of an electrical transmission line is reviewed and extended to allow for varying boundary conditions, The method is based on the definition of an infinite-dimensional analogue of the affine Lagrangian and Hamiltonian input-output systems

  11. Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs)

    International Nuclear Information System (INIS)

    Manjunath, Archana; Gross, George

    2017-01-01

    A key motivator for wider deployment of electric vehicles (EVs) – vehicles that are fully powered by battery charged from grid electricity – is to bring about environmental cleanliness. This goal is based on the fact that EVs produce zero tailpipe emissioon the associated carbon emissins. However, the generation and transmission of the charge electricity produce emissions that are not explicitly accounted by current measurement metrics for EV greenhouse gas (GHG) emissions and as such, the notion of environmental cleanliness of EVs becomes questionable. In this paper, we propose a comprehensive metric to quantify the actual environmental impacts of EVs. The new metric that we call the electric vehicle emissions index (EVEI) captures CO_2 emissions in the electricity production to consumption stages. Our metric is the first that provides transparency in the comparison of total emissions among various EV models, as well as in the side-by-side comparison of an EV with a gasoline vehicle (GV). Illustrative results indicate that the actual environmental impacts of an EV may show wide spatial variations and in some case, these impacts may be even greater than that of GV. Such insights that the EVEI provides may be useful in a wide range of applications, particularly in policy and incentive formulation. - Highlights: • We propose the Electric Vehicle Emission Index (EVEI) metric. • EVEI indicates the EV environmental impacts w.r.t gasoline vehicles (GVs). • Fuel economy and resource mix are the major contributors to emissions. • Results indicate EVs may prove to be dirtier than GVs in certain areas of usage. • Insights may prove to be valuable to policy and incentive formulation.

  12. General structure of quantum mechanics. The objections raised by Einstein, Podolsky and Rosen

    International Nuclear Information System (INIS)

    Laloe, F.

    1981-01-01

    First, the general formulation of quantum mechanics is briefly presented, with the so called 'Copenhagen interpretation', and a few very simple examples are given. Then, the general experimental scheme imagined by Einstein, Podolsky and Rosen is discussed in detail, for two correlated spin 1/2 particules, in terms of the elements of physical reality which can be attached to the system. A macroscopic analogue is given, in order to emphasize how strange the language of quantum mechanics may become when applied to every day life phenomena, where all correlation phenomena are explained in terms of a common cause in the past. Finally, the notions of separability, locality and determinism are introduced [fr

  13. Fermilab | Science | Questions for the Universe | Einstein's Dream of

    Science.gov (United States)

    newsletter Einstein's Dream of Unified Forces In this Section: Einstein's Dream of Unified Forces Are there dream of an ultimate explanation for everything from the tiniest quanta of particle physics to the

  14. Einstein's enigma or black holes in my bubble bath

    CERN Document Server

    Vishveshwara, C V

    2006-01-01

    A funny rendition of the story of gravitation theory from the early historic origins to the developments in astrophysics, focusing on Albert Einstein''s theory of general relativity and black-hole physics.

  15. On Einstein's kinematics and his derivation of Lorentz transformation equations

    International Nuclear Information System (INIS)

    Gulati, Shobha; Gulati, S.P.

    1981-01-01

    Recently the present authors have claimed that Einstein's historic derivation of 1905 of Lorentz transformation equations is a 'howler' - a correct result achieved through some incorrect steps. In the present contribution, this howler is fully resolved. Incidently, Einstein's kinematical considerations are found to be void of any new definitional elements or conventionality as unjustifiably claimed by Einstein and some other scientists. (author)

  16. Reassessing the Ritz-Einstein debate on the radiation asymmetry in classical electrodynamics

    Science.gov (United States)

    Frisch, Mathias; Pietsch, Wolfgang

    2016-08-01

    We investigate the debate between Walter Ritz and Albert Einstein on the origin and nature of the radiation asymmetry. We argue that Ritz's views on the radiation asymmetry were far richer and nuanced than the oft-cited joint letter with Einstein (Ritz & Einstein, 1909) suggests, and that Einstein's views in 1909 on the asymmetry are far more ambiguous than is commonly recognized. Indeed, there is strong evidence that Einstein ultimately came to agree with Ritz that elementary radiation processes in classical electrodynamics are non-symmetric and fully retarded.

  17. A college course on relativity and cosmology

    CERN Document Server

    Cheng, Ta-Pei

    2015-01-01

    This advanced undergraduate text introduces Einstein's general theory of relativity. The topics covered include geometric formulation of special relativity, the principle of equivalence, Einstein's field equation and its spherical-symmetric solution, as well as cosmology. An emphasis is placed on physical examples and simple applications without the full tensor apparatus. It begins by examining the physics of the equivalence principle and looks at how it inspired Einstein's idea of curved spacetime as the gravitational field. At a more mathematically accessible level, it provides a metric description of a warped space, allowing the reader to study many interesting phenomena such as gravitational time dilation, GPS operation, light deflection, precession of Mercury's perihelion, and black holes. Numerous modern topics in cosmology are discussed from primordial inflation and cosmic microwave background to the dark energy that propels an accelerating universe. Building on Cheng's previous book, 'Relativity, Grav...

  18. Applying Halstead's Metric to Oberon Language

    Directory of Open Access Journals (Sweden)

    Fawaz Ahmed Masoud

    1999-12-01

    Full Text Available Oberon is a small, simple and difficult programming language. The guiding principle of Oberon was a quote from Albert Einstein: "Make it as simple as possible, but not simpler". Oberon language is based on few fundamental concepts that are easy to understand and use. It supports two programming paradigms: the procedural paradigm, and the object-oriented paradigm This paper provides the application of Halstead's software science theory to Oberon programs. Applying Halstead's metric to the Oberon language has provided the analysis and measurements for module and within module maintenance complexity of programs written in Oberon. This type of analysis provides a manager or programmer with enough information about the maintenance complexity of the Oberon programs. So they can be aware of how much effort they need to maintain a certain Oberon program. The maintenance complexity of the programs written in Oberon or any other language is based on counting the number of operators and operands within the statements of the tested program. The counting process is accomplished by a program written in C language- Results are obtained, analyzed, and discussed in detail.

  19. Discrete Bose-Einstein spectra

    International Nuclear Information System (INIS)

    Vlad, Valentin I.; Ionescu-Pallas, Nicholas

    2001-03-01

    The Bose-Einstein energy spectrum of a quantum gas, confined in a rigid cubic box, is shown to become discrete and strongly dependent on the box geometry (size L), temperature, T and atomic mass number, A at , in the region of small γ=A at TV 1/3 . This behavior is the consequence of the random state degeneracy in the box. Furthermore, we demonstrate that the total energy does not obey the conventional law any longer, but a new law, which depends on γ and on the quantum gas fugacity. This energy law imposes a faster decrease to zero than it is classically expected, for γ→0. The lighter the gas atoms, the higher the temperatures or the box size, for the same effects in the discrete Bose-Einstein regime. (author)

  20. Considerations on development, validation, application, and quality control of immuno(metric) biomarker assays in clinical cancer research: an EORTC-NCI working group report.

    NARCIS (Netherlands)

    Sweep, C.G.J.; Fritsche, H.A.; Gion, M.; Klee, G.G.; Schmitt, M.

    2003-01-01

    A major dilemma associated with immuno(metric) assays for biomarkers is that various kits employing antibodies with differing specificities and binding affinities may generate non-equivalent test results. Also, variation in sample processing and the use of different standards (reference material)

  1. Albert Einstein

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    In a single year, 1905, Albert Einstein made several dramatic contributions to physics. He deduced the true nature of Brownian motion (doing much to underline the molecular and atomic nature of matter), he demonstrated the particle nature of light in a way which was accessible to experimental investigation (the work for which he received the Nobel prize) and, most dramatically of all, he conceived the special theory of relativity

  2. The Einstein@Home search for gravitational waves and neutron stars

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Einstein@Home is a volunteer distributed computing project with more than 300,000 participants. Like other volunteer computing projects, Einstein@Home harvests idle computer cycles from the the laptop and desktop computers of the general public. This provides enormous computing power, on the scale of some of the world's fastest supercomputers, but at very low cost. I describe the current status of the Einstein@Home search for new neutron stars, using data from the Laser Interferometer Gravitational-wave Observatory (LIGO), from the Arecibo and Parkes radio telescopes, and from the Fermi gamma-ray satellite. The sensitivity of these searches is limited by computing power, so the Einstein@Home approach allows the detection of weaker signals than more conventional approaches. In the past 18 months, Einstein@Home has discovered more than 20 new radio and gamma-ray pulsars, including a number of particularly interesting and exotic systems.

  3. Beyond Einstein: Exploring the Extreme Universe

    Science.gov (United States)

    Barbier, Louis M.

    2005-01-01

    This paper will give an overview of the NASA Universe Division Beyond Einstein program. The Beyond Einstein program consists of a series of exploratory missions to investigate some of the most important and pressing problems in modern-day astrophysics - including searches for Dark Energy and studies of the earliest times in the universe, during the inflationary period after the Big Bang. A variety of new technologies are being developed both in the science instrumentation these missions will carry and in the spacecraft that will carry those instruments.

  4. Partially massless graviton on beyond Einstein spacetimes

    Science.gov (United States)

    Bernard, Laura; Deffayet, Cédric; Hinterbichler, Kurt; von Strauss, Mikael

    2017-06-01

    We show that a partially massless graviton can propagate on a large set of spacetimes which are not Einstein spacetimes. Starting from a recently constructed theory for a massive graviton that propagates the correct number of degrees of freedom on an arbitrary spacetime, we first give the full explicit form of the scalar constraint responsible for the absence of a sixth degree of freedom. We then spell out generic conditions for the constraint to be identically satisfied, so that there is a scalar gauge symmetry which makes the graviton partially massless. These simplify if one assumes that spacetime is Ricci symmetric. Under this assumption, we find explicit non-Einstein spacetimes (some, but not all, with vanishing Bach tensors) allowing for the propagation of a partially massless graviton. These include in particular the Einstein static Universe.

  5. The formative years of relativity the history and meaning of Einstein's Princeton lectures : featuring Einstein's classic text The meaning of relativity in its historical context

    CERN Document Server

    Gutfreund, Hanoch

    2017-01-01

    First published in 1922 and based on lectures delivered in May 1921, Albert Einstein's The Meaning of Relativity offered an overview and explanation of the then new and controversial theory of relativity. The work would go on to become a monumental classic, printed in numerous editions and translations worldwide. Now, The Formative Years of Relativity introduces Einstein's masterpiece to new audiences. This beautiful volume contains Einstein's insightful text, accompanied by important historical materials and commentary looking at the origins and development of general relativity. Hanoch Gutfreund and Jurgen Renn provide fresh, original perspectives, placing Einstein's achievements into a broader context for all readers. In this book, Gutfreund and Renn tell the rich story behind the early reception, spread, and consequences of Einstein's ideas during the formative years of general relativity in the late 1910s and 1920s. They show that relativity's meaning changed radically throughout the nascent years of it...

  6. Self-gravitating static non-critical black holes in 4 D Einstein-Klein-Gordon system with nonminimal derivative coupling

    Science.gov (United States)

    Gunara, Bobby Eka; Yaqin, Ainol

    2018-06-01

    We study static non-critical hairy black holes of four dimensional gravitational model with nonminimal derivative coupling and a scalar potential turned on. By taking an ansatz, namely, the first derivative of the scalar field is proportional to square root of a metric function, we reduce the Einstein field equation and the scalar field equation of motions into a single highly nonlinear differential equation. This setup implies that the hair is secondary-like since the scalar charge-like depends on the non-constant mass-like quantity in the asymptotic limit. Then, we show that near boundaries the solution is not the critical point of the scalar potential and the effective geometries become spaces of constant scalar curvature.

  7. Structure of the space of solutions of Einstein's equations II: Several killing fields and the Einstein-Yang-Mills equations

    Energy Technology Data Exchange (ETDEWEB)

    Arms, J.M.; Marsden, J.E.; Moncrief, V.

    1982-11-01

    The space of solutions of Einstein's vacuum equations is shown to have conical singularities at each spacetime possessing a compact Cauchy surface of constant mean curvature and a nontrivial set of Killing fields. Similar results are shown for the coupled Einstein-Yang-Mills system. Combined with an appropriate slice theorem, the results show that the space of geometrically equivalent solutions is a stratified manifold with each stratum being a symplectic manifold characterized by the symmetry type of its members. Contents: Introduction 1. The Kuranishi map and its properties. 2. The momentum constraints. 3. The Hamiltonian constraints. 4. The Einstein-Yang-Mills system. 5. Discussion and examples.

  8. On the stability of the Einstein universe

    International Nuclear Information System (INIS)

    Soares, I.D.

    1983-01-01

    It is shown sthat the Einstein Universe is stable by a large class of exact perturbations, which are made starting from a detailed exam of the topology of the model, and which include perturbations of the type considered by Lemaitre. The problem is reduced to the one-dimensional motion of a particle, in a potential well whose minimum corresponds to the configuration of the Einstein Universe. (Author) [pt

  9. The second postulate of Einstein's theory of special relativity

    International Nuclear Information System (INIS)

    McMorris, M.N.

    1979-01-01

    This paper argues that Einstein in his original publication on special relativity uses two separate principles concerning the velocity of light: (i) its value, c(s), is independent of the motion of its source; (ii) its value, c(o), is independent of the motion of the observer. Where commentators have not been plainly ignorant of the existence of both principles in Einstein's work, they have been uncertain as to which one should be put forward. Uncertainty has arisen in the literature because Einstein occassionally uses constant velocity of light without any qualification. This paper sets out specifically to clear up the uncertainty as to whether c(s) or c(o) is being referred to in the early sections. It is established that c(s) is used right up to the middle of the third section, when c(o) is introduced for the first time. The paper also emphasises that there was no need to introduce c(o) before this point. It clarifies another (neglected) point also, that in so far as Einstein uses c(s), this constancy of the wave propagation is not peculiar to light; but in so far as he uses c(o) it is. The occassion is also taken to point out a contradiction and a logical infelicity occurring in Einstein's paper. The intention here is to show that Einstein's original oaper, at least up to the derivation of the Lorentz transformation equations, was not as satisfactory as it could have been. (auth.)

  10. Herwig Schopper Einstein's Legacy

    CERN Multimedia

    Schneegans, Susan

    2005-01-01

    "Last June, the United Nations declared 2005 the International Year of Physics and invited UNESCO to take the lead in celebrating the hundreth anniversary of Albert Einstein's legandary articles on relativisty, quantum theory and Brownian motion" (3 pages)

  11. Resonances for coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Haroutyunyan, H.L.; Nienhuis, G.

    2004-01-01

    The properties of a Bose-Einstein condensate in a two-well potential can be manipulated by periodic modulation of the potential parameters. We study the effects arising from modulating the barrier height and the difference in well depth. At certain modulation frequencies the system exhibits resonances, which may show up in an enhancement of the tunneling rate between the wells. Resonances can be used to control the particle distribution over the wells. Some of the effects occurring in the two-well system also arise for a Bose-Einstein condensate in an optical lattice

  12. Einstein and general relativity: historical perspectives

    International Nuclear Information System (INIS)

    Chandrasekhar, S.

    1978-01-01

    The place of Einstein in 20th-century physics is discussed. The basic ideas that led Einstein to his theory of gravitation by the sheer power of speculative thought are described in the most general terms. The prediction of the bending of starlight by the Sun and the eclipse expedition of 1919 are recounted. The author feels that ''the general theory of relativity is incredibly rich in its content;...one finds a glittering face at almost every turn.'' The prediction of black holes by general relativity is noted

  13. Mathematical implications of Einstein-Weyl causality

    International Nuclear Information System (INIS)

    Borchers, H.J.; Sen, R.N.

    2006-01-01

    The present work is the first systematic attempt at answering the following fundamental question: what mathematical structures does Einstein-Weyl causality impose on a point-set that has no other previous structure defined on it? The authors propose an axiomatization of Einstein-Weyl causality (inspired by physics), and investigate the topological and uniform structures that it implies. Their final result is that a causal space is densely embedded in one that is locally a differentiable manifold. The mathematical level required of the reader is that of the graduate student in mathematical physics. (orig.)

  14. Bohr vs. Einstein: Fortolkning af kvantemekanikken

    DEFF Research Database (Denmark)

    Andersen, Christian Kraglund; Wade, Andrew Christopher James

    2013-01-01

    Siden 1913, da Bohr fremlagde sin kvantemekaniske model for atomet, har fysikere diskuteret, hvordan kvan- temekanikken skal fortolkes. Specielt aktive i denne diskussion var Bohr og Einstein, som havde modstridende opfattelser af, hvordan kvantemekanikken skulle forstås. Kan katte være både...... levende og døde på samme tid? Kan vi teleportere partikler mellem Månen og Jorden? Disse spørgsmål, og mange flere, forsøgte Bohr og Einstein at besvare, og det vil vi ligeledes i denne artikel....

  15. The problem of electric sources in Einstein's Hermite-symmetric field theory

    International Nuclear Information System (INIS)

    Kreisel, E.

    1986-01-01

    The possibility is investigated to introduce a geometric source without A-invariance and Hermite-symmetry breaking of Einstein's Hermitian relativity. It would be very meaningful to interpret a source of this kind as electric current. With this extension Einstein's unitary field theory contains Einstein's gravitation, electromagnetism and the gluonic vacuum of chromodynamics. (author)

  16. The world-line. Albert Einstein and modern physics

    International Nuclear Information System (INIS)

    Maalampi, Jukka

    2008-01-01

    This book is an entertaining and formula-free presentation of modern physics from the 19th century to present. The life of Albert Einstein and his scientific works are drawn as red fathom through the text. The author explains central terms and results of modern physics in populary-scientific form from the historical perspective. To the reader in humorous form an imagination is mediated how modern physics has been developed. We learn from the exciting effects of the ether, we hear from faraday and magnetic needles, from Maxwell's prediction of the electromagnetic waves, from heinrich Hertz and from the photoelectric effect. Was the Michelson-Morley experiment a measurement success or an unsuccess? Why has Einstein abandoned the ether? How has Einstein in the miraculous year 1905 revolutionated physics and why he has begged Newton for excusement? Exist atoms? What is motion? What is light and what is to be understood under ''now'' and ''here''? Light deviation or non-deviation? How act the tidal forces? And above all: How has Einstein answered these questions. We meet Poincare, Lorentz and Hilbert, Boltzmann and Bohr, Minkowski, Planck, de Broglie, Hubble and Weyl, Gamow, Hahn and Meitner, Kapiza and Landau, Fermi and many other famous scientists. What had Eddington against Chandrasekhar and what had Einstein against black holes? Why should space tourists and dream tourists make holiday not on the Loch Ness but on the safe side of a black hole? Why inveighed Pauli against Einstein? Is the concern with the atomic-bomb formula right? Smeared matter, big bang and cosmic background radiation, gravitational waves and double pulsars, the cosmological constant and the expansion of the universe are further themes, which keep the reader in breath and let no mental vacuum arise [de

  17. Einstein's Annalen Papers: The Complete Collection 1901 - 1922

    Science.gov (United States)

    Renn, Jürgen

    2005-05-01

    In 1905, Einstein's Annus Mirabilis, Albert Einstein made three discoveries concerning the foundations of nature which form the basis of his fame as a physicist. These revolutionary papers on the light-quantum hypothesis, Brownian motion, and special relativity, were published in the journal "Annalen der Physik". All three are now established as pillars of modern science and its applications in technology and are an indispensable part of the modern world. This volume presents some of the most significant original papers which Albert Einstein ever wrote. It includes the facsimiles of the three revolutionary papers of 1905. In addition it contains papers which show the consequences of the ground-breaking ideas of these seminal papers from E=mc² to the quantum theory of specific heats. It also features Einstein's first exposition of his new general theory of relativity. Introducing the original German papers the science historians Jürgen Renn (MPI for the History of Science, Berlin), David C. Cassidy (Hofstra University, Hempstead), Michel Janssen (University of Minnesota), and Robert Rynasiewicz (John Hopkins University) complement and comment the collection with topical articles.

  18. Einstein and interpretation of quantum field theory

    International Nuclear Information System (INIS)

    Kashlyun, F.

    1982-01-01

    The main problems of the quantum theory, the basis of which was laid by Planck in 1900 as a result of the discovery of elementary quantum of action, are examined. The most important Einstein contributions to the quantum theory are enumerated. The Einstein work about the light quanta, proved wave-particle dualism, stated one of the most complicated problems to the physics. The work on the specific heat capacity of solids shows that the quantum theory should be beyond the limits of the narrow range of the problems on black radiation. The works on the equilibrium of radiation have convincingly demonstrates statistical character of the radiation processes and have marked the way to Heizenberg form of the quantum mechanics. Einstein generalized the idea of wave-particle dualism to the ordinary gas. It helped to prepare the Schroedinger form of quantum mechanics

  19. More accurate theory for Bose-Einstein condensation fraction

    International Nuclear Information System (INIS)

    Biswas, Shyamal

    2008-01-01

    Bose-Einstein statistics is derived in the thermodynamic limit when the ratio of system size to thermal de Broglie wavelength goes to infinity. However, according to the experimental setup of Bose-Einstein condensation of harmonically trapped Bose gas of alkali atoms, the ratio near the condensation temperature (T o ) is 30-50. And, at ultralow temperatures well below T o , this ratio becomes comparable to 1. We argue that finite size as well as the ultralow temperature induces corrections to Bose-Einstein statistics. From the corrected statistics we plot condensation fraction versus temperature graph. This theoretical plot satisfies well with the experimental plot [A. Griesmaier et al., Phys. Rev. Lett. 94 (2005) 160401

  20. Optical absorption in a degenerate Bose-Einstein gas

    International Nuclear Information System (INIS)

    Yip, S.K.

    2002-01-01

    We develop a theory on optical absorption in a dilute Bose-Einstein gas at low temperatures. This theory is motivated by the Bogoliubov theory of elementary excitations for this system, and takes into account explicitly the modification of the nature and dispersion of elementary excitations due to Bose-Einstein condensation. Our results show important differences from existing theories