On the eigenfrequencies of fuel rod vibration in NPPs
International Nuclear Information System (INIS)
Lipcsei, S.; Kiss, S.; Por, G.
1992-05-01
In neutron fluctuation spectra measured in nuclear reactors, in-core vibrations appear generally as separate frequency peaks. Therefore, neutron fluctuation spectra can be used to analyze these vibrations and to obtain information for diagnostic purposes. Eigenfrequencies of fuel pins were calculated using fourth-order differential equation for vibration. Theoretical results were verified experimentally. It was shown that the series of eigenfrequencies follow a quadratic trend, and in the dependence of eigenfrequencies on constraints the low-order modes are largely influenced. Experimental and calculated results agree fairly well. (R.P.) 13 refs.; 10 figs.; 3 tabs
DEFF Research Database (Denmark)
Pedersen, Pauli; Pedersen, Niels Leergaard
2014-01-01
foundation. A numerical heuristic redesign procedure is proposed and illustrated with examples. For the ideal case, an optimality criterion is fulfilled if the design have the same sub-domain frequency (local Rayleigh quotient). Sensitivity analysis shows an important relation between squared system...... eigenfrequency and squared local sub-domain frequency for a given eigenmode. Higher order eigenfrequenciesmay also be controlled in this manner. The presented examples are based on 2D finite element models with the use of subspace iteration for analysis and a heuristic recursive design procedure based...... on the derived optimality condition. The design that maximize a frequency depend on the total amount of available material and on a necessary interpolation as illustrated by different design cases.In this note we have assumed a linear and conservative eigenvalue problem without multiple eigenvalues. The presence...
Spectroscopy of the eigenfrequencies of a fractional Josephson vortex molecule
Energy Technology Data Exchange (ETDEWEB)
Kienzle, Uta; Gaber, Tobias; Buckenmaier, Kai; Koelle, Dieter; Kleiner, Reinhold; Goldobin, Edward [Physikalisches Institut - Experimentalphysik II and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, Universitaet Karlsruhe (Germany)
2008-07-01
Using a pair of tiny current injectors one can create an arbitrary {kappa} discontinuity of the phase in a long Josephson junction (LJJ). To compensate this discontinuity a {kappa} vortex spontaneously appears. This vortex carries an arbitrary fraction {proportional_to}{kappa} of the magnetic flux quantum {phi}{sub 0} and is a generalization of a semifluxon observed in 0-{pi} LJJs. Such a vortex is pinned at the discontinuity point, but in an underdamped system it is able to oscillate around its equilibrium position with an eigenfrequency. In annular LJJs with two injector pairs two coupled {kappa} vortices, forming a molecule, can be studied. The dependence of the eigenfrequency on temperature and {kappa} of one and two coupled vortices was measured in the range from 300 mK up to 4.2 K. We discuss the results and compare them with simulations based on the perturbed sine-Gordon equation.
International Nuclear Information System (INIS)
Hill, H.A.; Gao, Qiang; Rosenwald, R.D.
1988-01-01
The fine structure found by Gu, Hill and Rosenwald between asymptotic theory eigenfrequencies and the observed eigenfrequencies reported by Hill and Gu is interpreted as the result of conditions not being met for the applicability of asymptotic theory at one or more radii in the solar interior. From an inversion of the observed fine structure, reasonably good agreement is obtained between observation and theory for either a localized perturbation in internal structure at r/R ∼ 0.06 or at r/R ∼ 0.23. The latter solution is, however, the better one. The amplitude of the perturbation in the mean molecular weight required to produce the fine structure is also inferred. 11 refs., 2 figs
On simultaneous shape and orientational design for eigenfrequency optimization
DEFF Research Database (Denmark)
Pedersen, Niels Leergaard
2007-01-01
Plates with an internal hole of fixed area are designed in order to maximize the performance with respect to eigenfrequencies. The optimization is performed by simultaneous shape, material, and orientational design. The shape of the hole is designed, and the material design is the design of an or......Plates with an internal hole of fixed area are designed in order to maximize the performance with respect to eigenfrequencies. The optimization is performed by simultaneous shape, material, and orientational design. The shape of the hole is designed, and the material design is the design...... of an orthotropic material that can be considered as a fiber-net within each finite element. This fiber-net is optimally oriented in the individual elements of the finite element discretization. The optimizations are performed using the finite element method for analysis, and the optimization approach is a two......-step method. In the first step, we find the best design on the basis of a recursive optimization procedure based on optimality criteria. In the second step, mathematical programming and sensitivity analysis are applied to find the final optimized design....
Study of eigenfrequencies with the help of Prony's method
Drobakhin, O. O.; Olevskyi, O. V.; Olevskyi, V. I.
2017-10-01
Eigenfrequencies can be crucial in the design of a construction. They define many parameters that determine limit parameters of the structure. Exceeding these values can lead to the structural failure of an object. It is especially important in the design of structures which support heavy equipment or are subjected to the forces of airflow. One of the most effective ways to acquire the frequencies' values is a computer-based numerical simulation. The existing methods do not allow to acquire the whole range of needed parameters. It is well known that Prony's method, is highly effective for the investigation of dynamic processes. Thus, it is rational to adapt Prony's method for such investigation. The Prony method has advantage in comparison with other numerical schemes because it provides the possibility to process not only the results of numerical simulation, but also real experimental data. The research was carried out for a computer model of a steel plate. The input data was obtained by using the Dassault Systems SolidWorks computer package with the Simulation add-on. We investigated the acquired input data with the help of Prony's method. The result of the numerical experiment shows that Prony's method can be used to investigate the mechanical eigenfrequencies with good accuracy. The output of Prony's method not only contains the information about values of frequencies themselves, but also contains data regarding the amplitudes, initial phases and decaying factors of any given mode of oscillation, which can also be used in engineering.
Topology optimization of an electronics cover plate with respect to eigenfrequencies
DEFF Research Database (Denmark)
A. Kristensen, Anders Schmidt
In the present paper it is illustrated how topology optimization with respect to eigenfrequency can be applied effectively in the product development process. The topology optimization code is implemented in ANSYS by a so called UPF. The maximization of eigenfrequency as objective is invoked...... into the existing code. As an example is chosen an electronics cover plate. The resulting design devised by the topology optimization yield a significant higher eigenfrequency than obtained by traditional design methods and experience....
International Nuclear Information System (INIS)
Ahn, Byungseong; Kim, Suh In; Kim, Yoon Young
2016-01-01
When a system consisting of rigid and flexible bodies is optimized to improve its dynamic characteristics, its eigenfrequencies are typically maximized. While topology optimization formulations dealing with simultaneous design of a system of rigid and flexible bodies are available, studies on eigenvalue maximization of the system are rare. In particular, no work has solved for the case when the target frequency becomes one of the repeated eigenfrequencies. The problem involving repeated eigenfrequencies is solved in this study, and a topology optimization formulation and sensitivity analysis are presented. Further, several numerical case studies are considered to demonstrate the validity of the proposed formulation
Yin, Jun; Zhang, Zhaoyan
2013-01-01
The influence of the thyroarytenoid (TA) and cricothyroid (CT) muscle activation on vocal fold stiffness and eigenfrequencies was investigated in a muscularly controlled continuum model of the vocal folds. Unlike the general understanding that vocal fold fundamental frequency was determined by vocal fold tension, this study showed that vocal fold eigenfrequencies were primarily determined by vocal fold stiffness. This study further showed that, with reference to the resting state of zero stra...
Yin, Jun; Zhang, Zhaoyan
2013-01-01
The influence of the thyroarytenoid (TA) and cricothyroid (CT) muscle activation on vocal fold stiffness and eigenfrequencies was investigated in a muscularly controlled continuum model of the vocal folds. Unlike the general understanding that vocal fold fundamental frequency was determined by vocal fold tension, this study showed that vocal fold eigenfrequencies were primarily determined by vocal fold stiffness. This study further showed that, with reference to the resting state of zero strain, vocal fold stiffness in both body and cover layers increased with either vocal fold elongation or shortening. As a result, whether vocal fold eigenfrequencies increased or decreased with CT/TA activation depended on how the CT/TA interaction influenced vocal fold deformation. For conditions of strong CT activation and thus an elongated vocal fold, increasing TA contraction reduced the degree of vocal fold elongation and thus reduced vocal fold eigenfrequencies. For conditions of no CT activation and thus a resting or slightly shortened vocal fold, increasing TA contraction increased the degree of vocal fold shortening and thus increased vocal fold eigenfrequencies. In the transition region of a slightly elongated vocal fold, increasing TA contraction first decreased and then increased vocal fold eigenfrequencies. PMID:23654401
Estimation of the nuclear fuel assembly eigenfrequencies in the probability sense
Directory of Open Access Journals (Sweden)
Zeman V.
2014-12-01
Full Text Available The paper deals with upper and lower limits estimation of the nuclear fuel assembly eigenfrequencies, whose design and operation parameters are random variables. Each parameter is defined by its mean value and standard deviation or by a range of values. The gradient and three sigma criterion approach is applied to the calculation of the upper and lower limits of fuel assembly eigenfrequencies in the probability sense. Presented analytical approach used for the calculation of eigenfrequencies sensitivity is based on the modal synthesis method and the fuel assembly decomposition into six identical revolved fuel rod segments, centre tube and load-bearing skeleton linked by spacer grids. The method is applied for the Russian TVSA-T fuel assembly in the WWER1000/320 type reactor core in the Czech nuclear power plant Temelín.
Spectroscopy of the fractional vortex eigenfrequency in a long Josephson 0-{kappa} junction
Energy Technology Data Exchange (ETDEWEB)
Buckenmaier, K.; Gaber, T.; Schittenhelm, I.; Kleiner, R.; Koelle, D.; Goldobin, E. [Physikalisches Inst., Experimentalphysik II, Univ. Tuebingen (Germany); Siegel, M. [Univ. Karlsruhe (Germany). Inst. fuer Mikro- und Nanoelektronische Systeme
2007-07-01
In long Josephson junctions with a {kappa}-phase discontinuity, created by two current injectors, a fractional Josephson vortex (FJV) is spontaneously formed at the interface between the 0- and {kappa}-part. A FJV carries an arbitrary fraction {phi}/{phi}{sub 0}={kappa}/2{pi} of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. In contrast to fluxons, FJVs are pinned at the discontinuity point, but in underdamped systems they are able to oscillate around their equilibrium point with characteristic eigenfrequencies. To experimentally determine the eigenfrequency we stimulated a FJV by irradiating our sample with microwaves. At resonance the junction switches to the resistive state. A measurement of the switching probability thus allows to determine the FJV eigenfrequency as a function of bias current and {kappa}. We compare our results with the prediction of the perturbed sine-Gordon equation. (orig.)
The pattern of eigenfrequencies of radial overtones which is predicted for a specified Earth-model
Directory of Open Access Journals (Sweden)
E. R. LAPWOOD
1977-06-01
Full Text Available In 1974 Anderssen and Cleary examined the distribution of eigenfrequencies
of radial overtones in torsional oscillations of Earth-models.
They pointed out that according to Sturm-Liouville theory this distribution
should approach asymptotically, for large overtone number m,
the value nnz/y, where y is the time taken by a shear-wave to travel
along a radius from the core-mantle interface to the surface, provided
elastic parameters vary continuously along the radius. They found that,
for all the models which they considered, the distributions of eigenfrequencies
deviated from the asymptote by amounts which depended on
the existence and size of internal discontinuities. Lapwood (1975 showed
that such deviations were to be expected from Sturm-Liouville theory,
and McNabb, Anderssen and Lapwood (1976 extended Sturm-Liouville
theory to apply to differential equations with discontinuous coefficients.
Anderssen (1977 used their results to show how to predict the pattern
of deviations —called by McNabb et al. the solotone effect— for a
given discontinuity in an Earth-model.
Recently Sato and Lapwood (1977, in a series of papers which will
be referred to here simply as I, II, III, have explored the solotone effect
for layered spherical shells, using approximations derived from an exacttheory which holds for uniform layering. They have shown how the
form of the pattern of eigenfrequencies, which is the graph of
S — YMUJI/N — m against m, where ,„CJI is the frequency of the m"'
overtone in the I"' (Legendre mode of torsional oscillation, is determined
as to periodicity (or quasi-periodicity by the thicknesses and velocities
of the layers, and as to amplitude by the amounts of the discontinuities
(III. The pattern of eigenfrequencies proves to be extremely sensitive
to small changes in layer-thicknesses in a model.
In
On design of fiber-nets and orientation for eigenfrequency optimization of plates
DEFF Research Database (Denmark)
Pedersen, Niels Leergaard
2006-01-01
Composite plates are designed in order to maximize the performance with respect to eigenfrequencies. The plates are considered to be laminates where the individual plies consist of orthotropic material. The design task is the orientation of the orthotropic material in each element of the discreti......Composite plates are designed in order to maximize the performance with respect to eigenfrequencies. The plates are considered to be laminates where the individual plies consist of orthotropic material. The design task is the orientation of the orthotropic material in each element...... of the discretization and the ratio between the amounts of material put in the two directions of the fiber-net. The optimizations are performed using the finite element method for analysis and the optimization approach is a two-step method. In the first step we first find the best design on the basis of a recursive...
Distributed material density and anisotropy for optimized eigenfrequency of 2D continua
DEFF Research Database (Denmark)
Pedersen, Pauli; Pedersen, Niels Leergaard
2015-01-01
A practical approach to optimize a continuum/structural eigenfrequency is presented, including design of the distribution of material anisotropy. This is often termed free material optimization (FMO). An important aspect is the separation of the overall material distribution from the local design...... with respect to material density and from this values of the element OC. Each factor of this expression has a physical interpretation. Stated alternatively, the optimization problem of material distribution is converted into a problem of determining a design of uniform OC values. The constitutive matrices...... are described by non-dimensional matrices with unity norms of trace and Frobenius, and thus this part of the optimized design has no influence on the mass distribution. Gradients of eigenfrequency with respect to the components of these non-dimensional constitutive matrices are therefore simplified...
Analysis of eigenfrequencies in piezoelectric transducers using the finite element method
DEFF Research Database (Denmark)
Jensen, Henrik
1988-01-01
transducers, which include the complete set of piezoelectric equations, have been included. They can find eigenfrequencies for undamped transducers and perform forced-response analysis for transducers with internal and radiation damping. The superelement technique is used to model the transducer backing......It is noted that the finite-element method is a valuable supplement to the traditional methods for design of novel transducer types because it can determine the vibrational pattern of piezoelectric transducers and is applicable to any geometry. Computer programs for analysis of axisymmetric...
Shape, position and orientational design of holes for plates with optimized eigenfrequencies
DEFF Research Database (Denmark)
Pedersen, Niels Leergaard; Pedersen, Pauli
2003-01-01
A hole with a given size is placed in the interior of a plate with an arbitrary external boundary. To avoid stress concentrations the shape of the hole must be smooth (continuous curvature). The objectives of the optimization are the eigenfrequencies of the plate with the hole. The optimization...... an analytical description of the hole. A rather general parameterization with only seven design parameters is applied, including the possibility of going from an ellipse to a square or even to a triangle. Optimal designs are obtained iteratively using mathematical programming, each of the redesigns is based...
Measurement of the Lightweight Rotor Eigenfrequencies and Tuning of its Model Parameters
Directory of Open Access Journals (Sweden)
Luboš SMOLÍK
2013-06-01
Full Text Available The common sizes and weights of rotors, which can be found e.g. in the energy production industry, allow to employ a standard methodology of an experimental modal analysis. However, certain applications with rotors of small weights lead to the usage of alternative measuring methods suitable for the identification of rotor eigenfrequencies. One of these methods, which is characterized by the measuring of noise, is introduced in this paper and the results for a particular rotor is presented. Moreover the tuning of the finite element rotor model on the basis of such measured values is shown.
Influence of the outer bath on the eigenfrequencies of rotating axisymmetric liquid bridges
Energy Technology Data Exchange (ETDEWEB)
Montanero, J.M. [Departamento de Electronica e Ingenieria Electromecanica, Universidad de Extremadura, E-06071, Badajoz (Spain)
2004-04-01
In experiments with liquid bridges, the neutral buoyancy technique has frequently been used to simulate microgravity conditions. In this technique the liquid bridge is surrounded by an outer liquid with similar density to compensate partially for the effect of the hydrostatic pressure over the interface. The outer bath is expected to play a relevant role not only in the static problem, but also in the dynamical behaviour of this fluid configuration. In the present contribution the eigenfrequencies characterizing the oscillation modes of a rotating axisymmetric liquid bridge are calculated. The analysis focuses on the influence of the outer bath and the liquid bridge equilibrium shape on those quantities. The results are obtained numerically by solving the inviscid two-dimensional model by means of a finite difference scheme. The method provides accurate results as is shown by comparison with the analytical solution for the cylindrical configuration. The comparison between the theoretical predictions for the first eigenfrequency and the experimental data obtained by Perales and Meseguer (1992) shows the capability of the model to describe the dynamics of real liquid bridges. (orig.)
Zhang, Zhengfang; Chen, Weifeng
2018-05-01
Maximization of the smallest eigenfrequency of the linearized elasticity system with area constraint is investigated. The elasticity system is extended into a large background domain, but the void is vacuum and not filled with ersatz material. The piecewise constant level set (PCLS) method is applied to present two regions, the original material region and the void region. A quadratic PCLS function is proposed to represent the characteristic function. Consequently, the functional derivative of the smallest eigenfrequency with respect to PCLS function takes nonzero value in the original material region and zero in the void region. A penalty gradient algorithm is proposed, which initializes the whole background domain with the original material and decreases the area of original material region till the area constraint is satisfied. 2D and 3D numerical examples are presented, illustrating the validity of the proposed algorithm.
Directory of Open Access Journals (Sweden)
Samira Mohamady
2009-01-01
Full Text Available Vibration of structures due to external sound is one of the main causes of interior noise in cavities like automobile, aircraft, and rotorcraft, which disturb the comfort of passengers. Accurate modelling of such phenomena is required in eigenfrequency analysis and in designing an active noise control system to reduce the interior noise. In this paper, the effect of periodic noise travelling into a rectangular enclosure is investigated with finite element method (FEM using COMSOL Multiphysics software. The periodic acoustic wave is generated by a point source outside the enclosure and propagated through the enclosure wall and excites an aluminium flexible panel clamped onto the enclosure. The behaviour of the transmission of sound into the cavity is investigated by computing the modal characteristics and the natural frequencies of the cavity. The simulation results are compared with previous analytical and experimental works for validation and an acceptable match between them were obtained.
DEFF Research Database (Denmark)
Pedersen, Niels Leergaard; Nielsen, A.
2004-01-01
In this paper we consider the optimization of general 3D truss structures. The design variables are the cross-sections of the truss bars together with the joint coordinates, and are considered to be continuous variables. Using these design variables we simultaneously carry out size optimization...... are imposed in correlation with industrial standards, to make the optimized designs valuable from a practical point of view. The optimization problem is solved using SLP (Sequential Linear Programming)....
Earth's Outer Core Properties Estimated Using Bayesian Inversion of Normal Mode Eigenfrequencies
Irving, J. C. E.; Cottaar, S.; Lekic, V.
2016-12-01
The outer core is arguably Earth's most dynamic region, and consists of an iron-nickel liquid with an unknown combination of lighter alloying elements. Frequencies of Earth's normal modes provide the strongest constraints on the radial profiles of compressional wavespeed, VΦ, and density, ρ, in the outer core. Recent great earthquakes have yielded new normal mode measurements; however, mineral physics experiments and calculations are often compared to the Preliminary reference Earth model (PREM), which is 35 years old and does not provide uncertainties. Here we investigate the thermo-elastic properties of the outer core using Earth's free oscillations and a Bayesian framework. To estimate radial structure of the outer core and its uncertainties, we choose to exploit recent datasets of normal mode centre frequencies. Under the self-coupling approximation, centre frequencies are unaffected by lateral heterogeneities in the Earth, for example in the mantle. Normal modes are sensitive to both VΦ and ρ in the outer core, with each mode's specific sensitivity depending on its eigenfunctions. We include a priori bounds on outer core models that ensure compatibility with measurements of mass and moment of inertia. We use Bayesian Monte Carlo Markov Chain techniques to explore different choices in parameterizing the outer core, each of which represents different a priori constraints. We test how results vary (1) assuming a smooth polynomial parametrization, (2) allowing for structure close to the outer core's boundaries, (3) assuming an Equation-of-State and adiabaticity and inverting directly for thermo-elastic parameters. In the second approach we recognize that the outer core may have distinct regions close to the core-mantle and inner core boundaries and investigate models which parameterize the well mixed outer core separately from these two layers. In the last approach we seek to map the uncertainties directly into thermo-elastic parameters including the bulk modulus, its pressure derivative, and molar mass and volume, with particular attention paid to the (inherent) trade-offs between the different coefficients. We discuss our results in terms of added uncertainty to the light element composition of the outer core and the potential existence of anomalous structure near the outer core's boundaries.
Do coupled nested pendula have the same eigenfrequencies as pendula in cascade?
International Nuclear Information System (INIS)
M Constancio Jr, M Constancio Jr; Aguiar, O D; Keiser, G McCurrach; Malheiro, M; Lemos, L J Rangel
2014-01-01
Over the last few years, several vibration isolation projects for gravitational wave detectors have been proposed. Some of them are related to N-stages cascaded systems which can achieve great factors of attenuation. However, these systems are usually very tall, which makes it difficult to build an efficient vaccum chamber for them. For this reason, this paper makes a comparison between a theoretical N-stage cascaded pendula with an experimental N-stage nested one. Preliminary results show that their resonant modes are very similar. The ratio between the results of experiment and theory is between 0.94 and 1.01 for the pendular modes and systematically close to 1.05 for the rotational modes. This result implies that an N-stage nested pendula set of about 1.4 m height can have resonant modes similar to a cascaded pendula set of about 6.6 m, which may suggests that a nested system can be theoretically treated as a cascaded one. So, the development of nested pendula can be an effective alternative of vibration isolation systems for future generations of gravitational wave detectors
Dynamic soil-pile-interaction effects on eigenfrequency and damping of slender structures
DEFF Research Database (Denmark)
Zania, Varvara
2014-01-01
after a rigorous solution of horizontal soil – pile vibration, while the modified SSI eigenperiod and damping are calculated accounting for the cross coupling stiffness and damping terms of the soil – pile system. Disregarding the off diagonal terms is considered inappropriate since it results to non...
Florsch , Nicolas; Chambat , Fréderic; Hinderer , Jacques; Legros , Hilaire
1994-01-01
International audience; We have analysed more than four years of data from the Strasbourg superconducting gravimeter to retrieve the period and damping of the nearly diurnal-free wobble (NDFW). The removal of noise spikes is found to be crucial for an accurate determination of tidal-wave amplitudes and phases. A new simple algorithm is derived which allows an analytical solution for the NDFW pertod and damping using the complex gravimetric factors of three resonant diurnal waves. The results ...
1983-12-14
the left half of the s- plane . These are representation independent. We shall be interested in these poles only. These poles are the complex...on the Left Half Plane Asymptotic Behavior of the SEM Expansion of Surface Currents, Published in Special Issue on the Singularity Expansion Method...precisely, the polarization chart is an orthogonal projection of the Poincare Sphere on a plane , having polar coordinates p= cos (2-) and
Roult, Geneviève; Rosat, Séverine; Clévédé, Eric; Millot-Langet, Raphaële; Hinderer, Jacques
2006-01-01
We present new modal Q measurements of the 0S 0 and 0S 2 modes, and first modal frequencies and Q measurements of 2S 1 and 0S 3 modes. The high quality of the GGP (Global Geodynamics Project) superconducting gravimeters (SGs) contributes to the clear observation of seismic normal modes at frequencies lower than 1 mHz and offers a good opportunity for studying the behaviour of these modes. The interest of scientists in the gravest normal modes is due to the fact that they do contribute to a better knowledge of the density profile in the Earth, helping to constrain Earth's models. These modes have been clearly identified after some large recent events recorded with superconducting gravimeters, particularly well-suited for low-frequency investigations. The Ms = 8.1 (Mw = 8.4) Peruvian earthquake of June 2001 and the Ms = 9.0 (Mw = 9.3) Sumatra-Andaman earthquake of December 2004 provide us with individual spectra which exhibit a clear splitting of the spheroidal modes 0S 2, 0S 3 and 2S 1, and a clear identification of each of the individual singlets, with a resolution never obtained from broad-band seismometers records. The Q quality factors have been determined from the apparent decrease of the amplitude of each singlet with time, according to a well-suited technique [Roult, G., Clévédé, E., 2000. New refinements in attenuation measurements from free-oscillation and surface-wave observations. Phys. Earth Planet. Inter. 121, 1-37]. The results are compared to the theoretical frequencies and Q quality factors computed for the PREM and 1066A models, taking into account both rotation and ellipticity effects of the Earth. The two observed datasets (frequencies and Q quality factors) exhibit a splitting on the observed values different from the predicted one. That seems to point out that some parameters as density or attenuation values used in the theoretical models do not explain the observations. A new dataset of frequencies and Q quality factors of the whole set of singlets of the gravest spheroidal modes is thus under construction. That dataset includes the five individual singlets of the 0S 2 mode clearly identified on the SG records, the three singlets of the 2S 1 mode recently observed for the first time by [Rosat, S., Hinderer, J., Rivera, L., 2003b. First observation of 2S 1 and study of the splitting of the football mode 0S 2 after the June 2001 Peru earthquake of magnitude 8.4. Geophys. Res. Lett. 30, 21211, doi:10-1029/2003L018304], the 0S 0 radial mode, and the seven individual singlets of the 0S 3 mode.
Natural vibration frequency and damping of slender structures founded on monopiles
DEFF Research Database (Denmark)
Zania, Varvara
2014-01-01
of the modified SSI eigenfrequency and damping is presented, which accounts for the cross coupling stiffness and damping terms of the soil–pile system and is applicable but not restrictive to OWTs. A parametric study was performed to illustrate the sensitivity of the eigenfrequency and damping on the foundation...
Directory of Open Access Journals (Sweden)
Jae Eun Kim
2013-07-01
Full Text Available We propose a vibration energy harvester consisting of an auxiliary frequency-tuned mass unit and a piezoelectric vibration energy harvesting unit for enhancing output power. The proposed integrated system is so configured that its out-of-phase mode can appear at the lowest eigenfrequency unlike in the conventional system using a tuned unit. Such an arrangement makes the resulting system distinctive: enhanced output power at or near the target operating frequency and very little eigenfrequency separation, not observed in conventional eigenfrequency-tuned vibration energy harvesters. The power enhancement of the proposed system is theoretically examined with and without tip mass normalization or footprint area normalization.
Distinguishing Newly Born Strange Stars from Neutron Stars with g-Mode Oscillations
International Nuclear Information System (INIS)
Fu Weijie; Wei Haiqing; Liu Yuxin
2008-01-01
The gravity-mode (g-mode) eigenfrequencies of newly born strange quark stars (SQSs) and neutron stars (NSs) are studied. It is found that the eigenfrequencies in SQSs are much lower than those in NSs by almost 1 order of magnitude, since the components of a SQS are all extremely relativistic particles while nucleons in a NS are nonrelativistic. We therefore propose that newly born SQSs can be distinguished from the NSs by detecting the eigenfrequencies of the g-mode pulsations of supernovae cores through gravitational radiation by LIGO-class detectors
Structural Damage Localization by Outlier Analysis of Signal-processed Mode Shapes
DEFF Research Database (Denmark)
Ulriksen, Martin Dalgaard; Damkilde, Lars
2016-01-01
Contrary to global modal parameters such as eigenfrequencies, mode shapes inherently provide structural information on a local level. Therefore, this particular modal parameter and its derivatives are utilized extensively for damage identification. Typically, more or less advanced mathematical...
A new treatment of localized modes in inhomogeneous Vlasov plasma
International Nuclear Information System (INIS)
Watanabe, Tsuguhiro; Sanuki, Heiji; Watanabe, Masaaki.
1978-04-01
A new eigenmode analysis is established in plasma with arbitrary density profile. Finite Larmor effect is taken into account even if k sub(x)rho>1. Eigenfrequencies are determined through a compact ''quantization condition''. (author)
ANALYSIS OF WIND-INDUCED VIBRATIONS IN HIGH-RISE BUILDINGS
DEFF Research Database (Denmark)
Persson, Peter; Austrell, Per-Erik; Kirkegaard, Poul Henning
2016-01-01
Buildings are getting taller due to increased urbanisation and densification of cities. More advanced construction methods and the desire to construct impressive buildings is also supporting the trend. Due to their inherent slenderness resulting in low eigenfrequencies, these buildings are suscep......Buildings are getting taller due to increased urbanisation and densification of cities. More advanced construction methods and the desire to construct impressive buildings is also supporting the trend. Due to their inherent slenderness resulting in low eigenfrequencies, these buildings...
International Nuclear Information System (INIS)
Castagnetti, Davide
2013-01-01
In order to develop self-powered wireless sensor nodes, many energy harvesting devices that are able to convert available ambient energy into electrical energy have been proposed in the literature. A promising technique, in terms of simplicity and high conversion efficiency, is the harvesting of ambient kinetic energy through piezoelectric materials. The aim of this work is to design and investigate the modal response and power output of a fractal-inspired, multi-frequency, piezoelectric energy converter. The converter is a square, thin sheet structure, characterized by a fractal geometry obtained through a pattern of cuts in the plate. There are two steps involved. First, a computational analysis of the converter is performed. Second, a physical prototype of the converter is built and its eigenfrequencies and power generation under different resistive loads are experimentally examined in the range from 0 to 120 Hz. The converter exhibits three eigenfrequencies and a good power output, particularly at the first eigenfrequency. (paper)
Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams
Song, O.; Librescu, L.; Rogers, C. A.
1992-01-01
The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.
Space-charge effects in Penning ion traps
Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.
2015-06-01
The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.
International Nuclear Information System (INIS)
Hasse, R.W.; Ghosh, G.
1982-01-01
The long-mean-free-path nuclear fluid dynamics is extended to include damping. First the damping stress is derived from the solution of the Boltzmann equation for a breathing spherical container filled with a Fermi gas. Then the corresponding damping force is incorporated into Euler equations of motion and energies and widths of low lying collective resonances are computed as eigenfrequencies of a vibrating nucleus under surface tension and Coulomb potential as well as the high lying isoscalar giant resonances as eigenfrequencies of an elastic nucleus. Maximum damping is obtained if the particle frequency approximately resonates with the wall frequency. Theoretical results are compared with experimental data and future improvements are indicated
Gravitational waves from the axial perturbations of hyperon stars
International Nuclear Information System (INIS)
Wen De-Hua; Yan Jing; Liu Xue-Mei
2012-01-01
The eigen-frequencies of the axial w-mode oscillations of hyperon stars are examined. It is shown that as the appearance of hyperons softens the equation of state of the super-density matter, the frequency of gravitational waves from the axial w-mode of hyperon star becomes smaller than that of a traditional neutron star at the same stellar mass. Moreover, the eigenfrequencies of hyperon stars also have scaling universality. It is shown that the EURO third-generation gravitational-wave detector has the potential to detect the gravitational-wave signal emitted from the axial w-mode oscillations of a hyperon star. (general)
CrossRef Space-charge effects in Penning ion traps
Porobić, T; Breitenfeldt, M; Couratin, C; Finlay, P; Knecht, A; Fabian, X; Friedag, P; Fléchard, X; Liénard, E; Ban, G; Zákoucký, D; Soti, G; Van Gorp, S; Weinheimer, Ch; Wursten, E; Severijns, N
2015-01-01
The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with View the MathML source using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.
Eigenvalue study of a chaotic resonator
Energy Technology Data Exchange (ETDEWEB)
Banova, Todorka [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstrasse 8, D-64289 Darmstadt (Germany); Technische Universitaet Darmstadt, Graduate School of Computational Engineering, Dolivostrasse 15, D-64293 Darmstadt (Germany); Ackermann, Wolfgang; Weiland, Thomas [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstrasse 8, D-64289 Darmstadt (Germany)
2013-07-01
The field of quantum chaos comprises the study of the manifestations of classical chaos in the properties of the corresponding quantum systems. Within this work, we compute the eigenfrequencies that are needed for the level spacing analysis of a microwave resonator with chaotic characteristics. The major challenges posed by our work are: first, the ability of the approaches to tackle the large scale eigenvalue problem and second, the capability to extract many, i.e. order of thousands, eigenfrequencies for the considered cavity. The first proposed approach for an accurate eigenfrequency extraction takes into consideration the evaluated electric field computations in time domain of a superconducting cavity and by means of signal-processing techniques extracts the eigenfrequencies. The second approach is based on the finite element method with curvilinear elements, which transforms the continuous eigenvalue problem to a discrete generalized eigenvalue problem. Afterwards, the Lanczos algorithm is used for the solution of the generalized eigenvalue problem. In the poster, a summary of the applied algorithms, as well as, critical implementation details together with the simulation results are provided.
DEFF Research Database (Denmark)
Damgaard, Mads; Bayat, Mehdi; Andersen, Lars Vabbersgaard
2014-01-01
The fatigue life of offshore wind turbines strongly depends on the dynamic behaviour of the structures including the underlying soil. To diminish dynamic amplification and avoid resonance, the eigenfrequency related to the lowest eigenmode of the wind turbine should not coalesce with excitation f...
FEM effective suggestion of guitar construction
Directory of Open Access Journals (Sweden)
Vladimír Dániel
2006-01-01
Full Text Available Modal analysis of the whole guitar construction was performed. The results of eigenfrequencies were obtained. Stress in strings affects not only static loading of material, but also shift of eigenfrequencies. From obtained natural frequencies for solved spectrum such frequencies were used which coincides with assumed ribs new positions of ribs were suggested. Other ribs which do not carry out the mechanical function were removed. Also static reaction was evaluated and new position of ribs was adjusted. For final model new eigenfrequencies were computed and compared with previous ones. Significant changes were revealed in low frequencies (bellow 400 Hz where fewer amounts of natural shapes were obtained. Approximately 50% were lost by adding of ribs. For chosen frequencies of equal temperament the harmonic analysis was performed. The analysis proved ability of oscillation for frequencies far of natural frequencies. The final model satisfies the requirement of minimization of static stress in material due to strings and allows very effective oscillation of top the guitar resonance board. In comparison with literature good agreement in amplitude size of front board and amount of modes in appropriate frequencies were achieved. Suggested model even offers higher amount of natural shapes in comparison with literature, namely in high frequencies. From additional comparison of eigenfrequencies and natural shapes the influence of ribs position on natural shapes was approved.
Finite mode analysis through harmonic waveguides
Alieva, T.; Wolf, K.B.
2000-01-01
The mode analysis of signals in a multimodal shallow harmonic waveguide whose eigenfrequencies are equally spaced and finite can be performed by an optoelectronic device, of which the optical part uses the guide to sample the wave field at a number of sensors along its axis and the electronic part
Circuit effects on Pierce instabilities revisited
International Nuclear Information System (INIS)
Kuhn, S.; Hoerhager, M.; Crystal, T.L.
1985-01-01
The problem of external circuit effects on Pierce diode instability studied by Raadu and Silevitch is reconsidered. The characteristic equation and the ensuing eigenfrequencies are found to disagree with those given by the authors above, which discrepancy is attributed to the fact that one of their boundary conditions is inconsistent with the model chosen. (author)
Identification of Damage in IR-Structures from Earthquake Records - Optimal Location of Sensors
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Skjærbæk, P. S.; Cakmak, A. S.
A method for localization of structural damage is seismically excited RC-structures using measured acceleration response time series is presented. from measured response from some or all storeys, the two lowest smoothed eigenfrequencies and mode shape coordinates are estimated. these estimates ar...
Energy Technology Data Exchange (ETDEWEB)
Gavilan Moreno, C. J.
2010-07-01
This paper provides a methodology to determine a thermo-well failure. The practical application will be made on a thermo-well in Cofrentes Nuclear Power Plant. This will be designed by the existence of a spare one and it will be determined the eigenfrequencies, the vortex emission frequencies in the flow, the susceptibility to fatigue, the loads, etc.
Light-emitting waveguide-plasmon polaritions
Rodriguez, S.R.K.; Murai, S.; Verschuuren, M.A.; Gómez Rivas, J.
2012-01-01
We demonstrate the generation of light in an optical waveguide strongly coupled to a periodic array of metallic nanoantennas. This coupling gives rise to hybrid waveguide-plasmon polaritons (WPPs), which undergo a transmutation from plasmon to waveguide mode and vice versa as the eigenfrequency
Maximization of eigenvalues using topology optimization
DEFF Research Database (Denmark)
Pedersen, Niels Leergaard
2000-01-01
to localized modes in low density areas. The topology optimization problem is formulated using the SIMP method. Special attention is paid to a numerical method for removing localized eigenmodes in low density areas. The method is applied to numerical examples of maximizing the first eigenfrequency, One example...
Measuring the local pressure amplitude in microchannel acoustophoresis
DEFF Research Database (Denmark)
Barnkob, Rune; Augustsson, Per; Laurell, Thomas
2010-01-01
/glass microchannels. The system is actuated by a PZT piezo transducer attached beneath the chip and driven by an applied ac voltage near its eigenfrequency of 2 MHz. For a given frequency a number of particle tracks are recorded by a CCD camera and fitted to a theoretical expression for the acoustophoretic motion...
Uncertainty of Modal Parameters Estimated by ARMA Models
DEFF Research Database (Denmark)
Jensen, Jakob Laigaard; Brincker, Rune; Rytter, Anders
In this paper the uncertainties of identified modal parameters such as eigenfrequencies and damping ratios are assessed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the param...
Filtering out Environmental Effects in Damage Detection of Civil Engineering Structures
DEFF Research Database (Denmark)
Andersen, P.; Kirkegaard, Poul Henning; Brincker, Rune
1997-01-01
This paper concerns the problems of using eigenfrequencies, estimated from sampled data, of a structural system exposed to fluctuating ambient conditions. In this paper it is the effects of a fluctuating ambient temperature that is of primary concern. A regression model, for elimination of the in...
Filtering out Environmental Effects in Damage Detection of Civil Engineering Structures
DEFF Research Database (Denmark)
Andersen, P.; Kirkegaard, Poul Henning; Brincker, Rune
This paper concerns the problems of using eigenfrequencies, estimated from sampled data, of a structural system exposed to fluctuating ambient conditions. In this paper it is the effects of a fluctuating ambient temperature that is of primary concern. A regression model, for elimination of the in...
Active structural health monitoring of composite plates and sandwiches
Directory of Open Access Journals (Sweden)
Sadílek P.
2013-12-01
Full Text Available The aim of presented work is to design, assemble and test a functional system, that is able to reveal damage from impact loading. This is done by monitoring of change of spectral characteristics on a damaged structure that is caused by change of mechanical properties of material or by change of structure’s geometry. Excitation and monitoring of structures was done using piezoelectric patches. Unidirectional composite plate was tested for eigenfrequencies using chirp signal. The eigenfrequencies were compared to results from experiments with an impact hammer and consequently with results from finite element method. Same method of finding eigenfrequencies was used on a different unidirectional composite specimen. Series of impacts were performed. Spectrum of eigenfrequencies was measured on undamaged plate and then after each impact. Measurements of the plate with different level of damage were compared. Following experiments were performed on sandwich materials where more different failures may happen. Set of sandwich beams (cut out from one plate made of two outer composite layers and a foam core was investigated and subjected to several impacts. Several samples were impacted in the same manner to get comparable results. The impacts were performed with growing impact energy.
Relative variance of the mean-squared pressure in multimode media: rehabilitating former approaches.
Monsef, Florian; Cozza, Andrea; Rodrigues, Dominique; Cellard, Patrick; Durocher, Jean-Noel
2014-11-01
The commonly accepted model for the relative variance of transmission functions in room acoustics, derived by Weaver, aims at including the effects of correlation between eigenfrequencies. This model is based on an analytical expression of the relative variance derived by means of an approximated correlation function. The relevance of the approximation used for modeling such correlation is questioned here. Weaver's model was motivated by the fact that earlier models derived by Davy and Lyon assumed independent eigenfrequencies and led to an overestimation with respect to relative variances found in practice. It is shown here that this overestimation is due to an inadequate truncation of the modal expansion, and to an improper choice of the frequency range over which ensemble averages of the eigenfrequencies is defined. An alternative definition is proposed, settling the inconsistency; predicted relative variances are found to be in good agreement with experimental data. These results rehabilitate former approaches that were based on independence assumptions between eigenfrequencies. Some former studies showed that simpler correlation models could be used to predict the statistics of some field-related physical quantity at low modal overlap. The present work confirms that this is also the case when dealing with transmission functions.
Generalized Fano lineshapes reveal exceptional points in photonic molecules
Caselli, N.; Intonti, F.; La China, Federico; Biccari, F.; Riboli, F.; Gerardino, A.; Li, L.; Linfield, E.H.; Pagliano, F.; Fiore, A.; Gurioli, M.
2018-01-01
The optical behavior of coupled systems, in which the breaking of parity and time-reversal symmetry occurs, is drawing increasing attention to address the physics of the exceptional point singularity, i.e., when the real and imaginary parts of the normal-mode eigenfrequencies coincide. At this
On the possible eigenoscillations of neutral sheets
International Nuclear Information System (INIS)
Almeida, W.A.; Costa, J.M. da; Aruquipa, E.G.; Sudano, J.P.
1974-12-01
A neutral sheet model with hyperbolic tangent equilibrium magnetic field and hyperbolic square secant density profiles is considered. It is shown that the equation for small oscillations takes the form of an eigenvalue oscillation problem. Computed eigenfrequencies of the geomagnetic neutral sheet were found to be in the range of the resonant frequencies of the geomagnetic plasma sheet computed by other authors
Study of the structural integrity of thermo-wells. Application to Class I components
International Nuclear Information System (INIS)
Gavilan Moreno, C. J.
2010-01-01
This paper provides a methodology to determine a thermo-well failure. The practical application will be made on a thermo-well in Cofrentes Nuclear Power Plant. This will be designed by the existence of a spare one and it will be determined the eigenfrequencies, the vortex emission frequencies in the flow, the susceptibility to fatigue, the loads, etc.
Apostol, Bogdan Felix; Florin Balan, Stefan; Ionescu, Constantin
2017-12-01
The effects of the earthquakes on buildings and the concept of seismic base isolation are investigated by using the model of the vibrating bar embedded at one end. The normal modes and the eigenfrequencies of the bar are highlighted and the amplification of the response due to the excitation of the normal modes (eigenmodes) is computed. The effect is much enhanced at resonance, for oscillating shocks which contain eigenfrequencies of the bar. Also, the response of two linearly joined bars with one end embedded is calculated. It is shown that for very different elastic properties the eigenfrequencies are due mainly to the “softer” bar. The effect of the base isolation in seismic structural engineering is assessed by formulating the model of coupled harmonic oscillators, as a simplified model for the structure building-foundation viewed as two coupled vibrating bars. The coupling decreases the lower eigenfrequencies of the structure and increases the higher ones. Similar amplification factors are derived for coupled oscillators at resonance with an oscillating shock.
Asteroseismic Theory of Rapidly Oscillating Ap Stars Margarida S ...
Indian Academy of Sciences (India)
In a spherically symmetric model the choice of direction for the polar axis of our ... value problem, the 2l + 1 eigenfrequencies associated with a mode of radial order .... of the eigenmodes that are solutions to the problem in the reference frame ...
Wahr, J. M.; Sasao, T.
1981-01-01
The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.
Directory of Open Access Journals (Sweden)
Cosmin-Mihai MIRIŢOIU
2015-05-01
Full Text Available In this paper I have build some composite sandwich bars. For these bars I have determined the dynamic response by recording their free vibrations. These bars have the core made of polypropylene honeycomb with upper and lower layers reinforced with steel wire mesh. For these bars I have determined the the eigenfrequency of the first eigenmode in this way: the bar was embedded at one end and free at the other where there was placed an accelerometer at 10 mm distance from the edge and I applied an initial force at the free end. I have determined the eigenfrequency because I will use its values for the loss factor and dynamic Young modulus determination.
Protection of WWER type primary loops against extreme effects
International Nuclear Information System (INIS)
Podrouzek, J.; Rejent, B.
1985-01-01
Dynamic analyses of the WWER-440 primary loops for the Mochovce nuclear power plant showed that the unprotected primary loop is very soft with a first eigenfrequency of 0.38 Hz. Protection with amortisseurs and viscous shock absorbers was compared and the viscous shock absorber in all cases proved to be more suitable. GERB viscous absorbers will be installed at the Mochovce nuclear power plant. First calculations of the dynamic resistance of the WWER-1000 primary loops for the Temelin nuclear power plant to extreme events were also made. It was shown that the unprotected primary loop is rather soft with a first eigenfrequency of 0.9 Hz, or 0.6 Hz at the pressurizer branch. It will therefore be necessary to protect the primary loops with viscous shock absorbers. (Z.M.)
Mali, K. D.; Singru, P. M.
2018-03-01
In this work effect of the impact location and the type of hammer tip on the frequency response function (FRF) is studied. Experimental modal analysis of rectangular plates is carried out for this purpose by using impact hammer, accelerometer and fast Fourier transform (FFT) analyzer. It is observed that the impulse hammer hit location has, no effect on the eigenfrequency, yet a difference in amplitude of the eigenfrequencies is obtained. The effect of the hammer tip on the pulse and the force spectrum is studied for three types of tips metal, plastic and rubber. A solid rectangular plate was excited by using these tips one by one in three different tests. It is observed that for present experimental set up plastic tip excites the useful frequency range.
Investigating solvability and complexity of linear active networks by means of matroids
DEFF Research Database (Denmark)
Petersen, Bjørn
1979-01-01
The solvability and complexity problems of finear active network are approached from a purely combinatorial point of view, using the concepts of matroid theory. Since the method is purely combinatorial, we take into account the network topology alone. Under this assumption necessary and sufficient...... conditions are given for the unique solvablity of linear active networks. The complexity and the number of dc-eigenfrequencies are also given. The method enables.you to decide if degeneracies are due to the topology alone, or if they are caused by special relations among network parameter values....... If the network parameter values are taken into account, the complexity and number of dc-eigenfrequencies given by the method, are only upper and lower bounds, respectively. The above conditions are fairly easily checked, and the complexity and number of dc-elgenfrequencies are found, using polynomially bounded...
International Nuclear Information System (INIS)
Erkaev, N. V.; Semenov, V. S.; Biernat, H. K.
2010-01-01
Hall magnetohydrodynamic model is investigated for current sheet flapping oscillations, which implies a gradient of the normal magnetic field component. For the initial undisturbed current sheet structure, the normal magnetic field component is assumed to have a weak linear variation. The profile of the electric current velocity is described by hyperbolic functions with a maximum at the center of the current sheet. In the framework of this model, eigenfrequencies are calculated as functions of the wave number for the ''kink'' and ''sausage'' flapping wave modes. Because of the Hall effects, the flapping eigenfrequency is larger for the waves propagating along the electric current, and it is smaller for the opposite wave propagation with respect to the current. The asymmetry of the flapping wave propagation, caused by Hall effects, is pronounced stronger for thinner current sheets. This is due to the Doppler effect related to the electric current velocity.
Periodicity-induced effects and methods in vibro-acoustics
DEFF Research Database (Denmark)
Sorokin, Sergey V.
2015-01-01
issue addressed in the paper is an influence of the corrugation shape and amplitude on the broadness and location of the stop- and pass-bands in an infinite periodic structure. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained......The paper is concerned with the modelling of wave propagation in and vibration of periodic elastic structures. Although analysis of waveguide properties of infinite periodic structures is a well establish research subject, some issues have not yet been fully addressed in the literature. The aim...... of the paper is to illustrate these issues in simple examples and to discuss possible applications and generalisations. First, the eigenfrequency spectra of finite periodic structures are compared with the location of stop-bands for their infinite counterparts. Special attention is paid to eigenfrequencies...
Periodicity effects of axial waves in elastic compound rods
DEFF Research Database (Denmark)
Nielsen, R. B.; Sorokin, S. V.
2015-01-01
Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase-closure Prin......Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase......-closure Principle, and their correspondence with stop band formation is shown. Steady-state and transient dynamics of a periodic rod of finite length are analysed numerically and the difference in structural response when excitation is done in either stop- or pass bands is demonstrated. A physical interpretation...
Spectroscopy of fractional Josephson vortex molecules
Energy Technology Data Exchange (ETDEWEB)
Goldobin, Edward; Gaber, Tobias; Buckenmaier, Kai; Kienzle, Uta; Sickinger, Hanna; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut - Experimentalphysik II, Center for Collective Quantum Phenomena, Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)
2010-07-01
Using tiny current injectors we create {kappa} discontinuities of the Josephson phase in a long Josephson junction. The junction reacts at the discontinuities by creating fractional Josephson vortices of size {lambda}{sub J} pinned at them. Such vortices carry the flux {phi}, which is a fraction of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. Being pinned, a fractional vortex has an eigenfrequency (localized mode), which depends on {kappa} and applied bias current, and which lays within the plasma gap. If one considers a molecule consisting of several coupled fractional vortices, the eigenfrequency will split into several modes. We report on spectroscopy of a fractional vortex molecule performed in the thermal regime.
Influence of the virtual photon field on the squeezing properties of an atom laser
International Nuclear Information System (INIS)
Jian-Gang, Zhao; Chang-Yong, Sun; Ling-Hua, Wen; Bao-Long, Liang
2009-01-01
This paper investigates the squeezing properties of an atom laser without rotating-wave approximation in the system of a binomial states field interacting with a two-level atomic Bose–Einstein condensate. It discusses the influences of atomic eigenfrequency, the interaction intensity between the optical field and atoms, parameter of the binomial states field and virtual photon field on the squeezing properties. The results show that two quadrature components of an atom laser can be squeezed periodically. The duration and the degree of squeezing an atom laser have something to do with the atomic eigenfrequency and the parameter of the binomial states field, respectively. The collapse and revival frequency of atom laser fluctuation depends on the interaction intensity between the optical field and atoms. The effect of the virtual photon field deepens the depth of squeezing an atom laser
Modal Measurements and Model Corrections of A Large Stroke Compliant Mechanism
Directory of Open Access Journals (Sweden)
Wijma W.
2014-08-01
Full Text Available In modelling flexure based mechanisms, generally flexures are modelled perfectly aligned and nominal values are assumed for the dimensions. To test the validity of these assumptions for a two Degrees Of Freedom (DOF large stroke compliant mechanism, eigenfrequency and mode shape measurements are compared to results obtained with a flexible multibody model. The mechanism consists of eleven cross flexures and seven interconnecting bodies. From the measurements 30% lower eigenfrequencies are observed than those obtained with the model. With a simplified model, it is demonstrated that these differences can be attributed to wrongly assumed leaf spring thickness and misalignment of the leaf springs in the cross flexures. These manufacturing tolerances thus significantly affect the behaviour of the two DOF mechanism, even though it was designed using the exact constraint design principle. This design principle avoids overconstraints to limit internal stresses due to manufacturing tolerances, yet this paper shows clearly that manufacturing imperfections can still result in significantly different dynamic behaviour.
Alfven frequency modes and global Alfven eigenmodes
International Nuclear Information System (INIS)
Villard, L.; Vaclavik, J.
1996-07-01
The spectrum of n=0 Alfven modes is calculated analytically and numerically in cylindrical and toroidal geometries. It includes Global Alfven Eigenmodes (GAE) and Surface Modes (SM) of the fast magnetoacoustic wave. These modes are not induced by toroidicity. The n=0 GAEs owe their existence to the shear. The frequency spacing between different radial and poloidal modes and the correlation of eigenfrequencies with changes in the edge density are examined and found in complete agreement with experimental observations of what has been named the 'Alfven Frequency Mode' (AFM) so far. Although the eigenfrequency is related to the edge density, the n=0 GAE (AFM) is not necessarily edge-localized. (author) figs., tabs., refs
International Nuclear Information System (INIS)
Su Xiaoxing; Wang Yuesheng
2010-01-01
In this paper, a new postprocessing method for the finite difference time domain (FDTD) calculation of the point defect states in two-dimensional (2D) phononic crystals (PNCs) is developed based on the chirp Z transform (CZT), one of the frequency zooming techniques. The numerical results for the defect states in 2D solid/liquid PNCs with single or double point defects show that compared with the fast Fourier transform (FFT)-based postprocessing method, the method can improve the estimation accuracy of the eigenfrequencies of the point defect states significantly when the FDTD calculation is run with relatively few iterations; and furthermore it can yield the point defect bands without calculating all eigenfrequencies outside the band gaps. The efficiency and accuracy of the FDTD method can be improved significantly with this new postprocessing method.
Energy Technology Data Exchange (ETDEWEB)
Su Xiaoxing, E-mail: xxsu@bjtu.edu.c [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Li Jianbao; Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)
2010-05-15
If the energy bands of a phononic crystal are calculated by the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT), good estimation of the eigenfrequencies can only be ensured by the postprocessing of sufficiently long time series generated by a large number of FDTD iterations. In this paper, a postprocessing method based on the high-resolution spectral estimation via the Yule-Walker method is proposed to overcome this difficulty. Numerical simulation results for three-dimensional acoustic and two-dimensional elastic systems show that, compared with the classic FFT-based postprocessing method, the proposed method can give much better estimation of the eigenfrequencies when the FDTD is run with relatively few iterations.
International Nuclear Information System (INIS)
Su Xiaoxing; Li Jianbao; Wang Yuesheng
2010-01-01
If the energy bands of a phononic crystal are calculated by the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT), good estimation of the eigenfrequencies can only be ensured by the postprocessing of sufficiently long time series generated by a large number of FDTD iterations. In this paper, a postprocessing method based on the high-resolution spectral estimation via the Yule-Walker method is proposed to overcome this difficulty. Numerical simulation results for three-dimensional acoustic and two-dimensional elastic systems show that, compared with the classic FFT-based postprocessing method, the proposed method can give much better estimation of the eigenfrequencies when the FDTD is run with relatively few iterations.
Energy Technology Data Exchange (ETDEWEB)
Su Xiaoxing, E-mail: xxsu@bjtu.edu.c [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)
2010-09-01
In this paper, a new postprocessing method for the finite difference time domain (FDTD) calculation of the point defect states in two-dimensional (2D) phononic crystals (PNCs) is developed based on the chirp Z transform (CZT), one of the frequency zooming techniques. The numerical results for the defect states in 2D solid/liquid PNCs with single or double point defects show that compared with the fast Fourier transform (FFT)-based postprocessing method, the method can improve the estimation accuracy of the eigenfrequencies of the point defect states significantly when the FDTD calculation is run with relatively few iterations; and furthermore it can yield the point defect bands without calculating all eigenfrequencies outside the band gaps. The efficiency and accuracy of the FDTD method can be improved significantly with this new postprocessing method.
International Nuclear Information System (INIS)
Wen Dehua; Li Baoan; Krastev, Plamen G.
2009-01-01
The eigenfrequencies of the axial w-modes of oscillating neutron stars are studied using the continued fraction method with an equation of state (EOS) partially constrained by the recent terrestrial nuclear laboratory data. It is shown that the density dependence of the nuclear symmetry energy E sym (ρ) affects significantly both the frequencies and the damping times of these modes. Besides confirming the previously found universal behavior of the mass-scaled eigenfrequencies as functions of the compactness of neutron stars, we explored several alternative universal scaling functions. Moreover, the w II -mode is found to exist only for neutron stars having a compactness of M/R≥0.1078 independent of the EOS used.
Miriţoiu, C. M.; Stănescu, M. M.; Burada, C. O.; Bolcu, D.; Roşca, V.
2015-11-01
For modal identification, the single-point excitation method has been widely used in modal tests and it consists in applying a force in a given point and recording the vibratory structure response in all interest points, including the excitation point. There will be presented the experimental recordings for the studied bars (with Kevlar-carbon or carbon fibers), the frequency response function in Cartesian and polar coordinates. By using the frequency response functions we determine the eigenparameters for each bar. We present the final panel of the eigenmodes (with the damping factors, eigenfrequencies and critical damping) for each considered bar. Using the eigenfrequency of the first determined eigenmode, the bars stiffness has been determined. The presented bars can be used in practical engineering for: car or bus body parts, planes body parts, bullet-proof vests, reinforcements for sandwich beams, and so on.
Longitudinally Vibrating Elastic Rods with Locally and Non-Locally Reacting Viscous Dampers
Directory of Open Access Journals (Sweden)
Şefaatdin Yüksel
2005-01-01
Full Text Available Eigencharacteristics of a longitudinally vibrating elastic rod with locally and non-locally reacting damping are analyzed. The rod is considered as a continuous system and complex eigenfrequencies are determined as solution of a characteristic equation. The variation of the damping ratios with respect to damper locations and damping coefficients for the first four eigenfrequencies are obtained. It is shown that at any mode of locally or non-locally damped elastic rod, the variation of damping ratio with damper location is linearly proportional to absolute value of the mode shape of undamped system. It is seen that the increasing damping coefficient does not always increase the damping ratio and there are optimal values for the damping ratio. Optimal values for external damping coefficients of viscous dampers and locations of the dampers are presented.
Directory of Open Access Journals (Sweden)
I. V. Pavlenko
2017-05-01
Full Text Available In this paper the implementation of the mathematical model for rotor free oscillations of centrifugal machines is considered with the use of the computer program “Critical frequencies of the rotor”. The advantage of the program is the possibility of taking into account any advance given analytic dependence of support and seal stiffness on the rotor speed. As a result of numerical calculation on the example of the multistage centrifugal compressor 295GTS2-190/44-100M eigenfrequencies, critical frequencies and corresponding mode shapes are defined. The credibility of the proposed mathematical model is confirmed by theorem of the mutual position for spectrum of eigenfrequencies and correspondent critical frequencies, as well as by comparing the results of dynamic calculation in the program “Critical frequencies of the rotor” with the results of numerical simulation in ANSYS using the 3D finite element model and drawing the Campbell diagram.
Optimization of offshore wind turbine support structures using analytical gradient-based method
Chew, Kok Hon; Tai, Kang; Ng, E.Y.K.; Muskulus, Michael
2015-01-01
Design optimization of the offshore wind turbine support structure is an expensive task; due to the highly-constrained, non-convex and non-linear nature of the design problem. This report presents an analytical gradient-based method to solve this problem in an efficient and effective way. The design sensitivities of the objective and constraint functions are evaluated analytically while the optimization of the structure is performed, subject to sizing, eigenfrequency, extreme load an...
Structural Stability and Vibration
DEFF Research Database (Denmark)
Wiggers, Sine Leergaard; Pedersen, Pauli
This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....
Energy Technology Data Exchange (ETDEWEB)
Tachibana, H; Kojima, A; Chiba, S [Mitsubishi Motors Corp., Tokyo (Japan)
1997-10-01
An optimization using the homogenization method has been applied to a truck-structure on the concept design stage. A truck-structure is grouped into 3 classes (thin plate structure , thick plate structure and solid structure), then example, effectiveness and method for the application for the purpose of weight reduction , high rigidity and high eigen-frequency are introduced. 3 refs., 24 figs., 1 tab.
Nonlinear δf Simulation Studies of Intense Charged Particle Beams with Large Temperature Anisotropy
International Nuclear Information System (INIS)
Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong
2002-01-01
In this paper, a 3-D nonlinear perturbative particle simulation code (BEST) [H. Qin, R.C. Davidson and W.W. Lee, Physical Review Special Topics on Accelerators and Beams 3 (2000) 084401] is used to systematically study the stability properties of intense nonneutral charged particle beams with large temperature anisotropy (T perpendicularb >> T parallelb ). The most unstable modes are identified, and their eigenfrequencies, radial mode structure, and nonlinear dynamics are determined for axisymmetric perturbations with ∂/∂θ = 0
Improvement of Low-Frequency Sound Field Obtained by an Optimized Boundary
Institute of Scientific and Technical Information of China (English)
JING Lu; ZHU Xiao-tian
2006-01-01
An approach based on the finite element analysis was introduced to improve low-frequency sound field. The optimized scatters on the wall redistribute the modes of the room and provide effective diffusion of sound field. The frequency response, eigenfrequency, spatial distribution and transient response were calculated. Experimental data were obtained through a 1:5 scaled set up. The results show that the optimized treatment has a positive effect on sound field and the improvement is obvious.
International Nuclear Information System (INIS)
Didkovskij, L.V.
1989-01-01
a 12-DAY SERIES OF TWO-DIMNIONAL IMAGES OF SOLAR BRIGHTNESS OSCILLATIONS EIGENFREQUENCIES in the range of 6-32 degrees. The rotational frequency splitting of separate modes as a function of inner turn-points radius of acoustic waves is found. The results of the analysis shw fast rotation of the central region of the Sun and non-monotonous trend of angular rotation velocity varitions with radius of the boundary of solar core
International Nuclear Information System (INIS)
Diamond, P.H.; Shapiro, V.; Schevchenko, V.; Kim, Y.B.; Rosenbluth, M.N.; Carreras, B.A.; Sidikman, K.; Lynch, V.E.; Garcia, L.; Terry, P.W.; Sagdeev, R.Z.
1992-01-01
This paper describes developments in the theory of edge plasma turbulence in a differentially rotating plasma. The thesis that such systems are dynamically self-regulating is presented. Results indicate that relevant fluctuations will generate a predominantly curved flow. Similar, curvature is shown to be the predominant flow profile effect on fluctuations. A system fixed point is identified, the eigenfrequencies for small oscillations around it are calculated, and an over-all stability criterion is determined
Construction of Time-Dependent Spectra Using Wavelet Analysis for Determination of Global Damage
DEFF Research Database (Denmark)
Micaletti, R. C.; Cakmak, A. S.; Nielsen, Søren R.K.
A new method for computing Maximum Softening Damage Index (MSDI) is proposed. The MSDI, a measure of global damage, is based on the relative reduction of the first eigenfrequency (or equivalently, the relative increase in the fundamental period) of a structure over the course of a damage event. T....... The method proposed here makes use of wavelet transform coefficients of measured output response records to provide time-localized information on structural softening....
Active Lubrication: Feasibility and Limitations on Reducing Vibration in Rotating Machinery
DEFF Research Database (Denmark)
Nicoletti, Rodrigo; Santos, Ilmar
2004-01-01
of increasing their operational range. As a result, one achieves intelligent machines that are more flexible to operate in a fast-changing demand environment. Some limitations of the active lubrication are also discussed based on experimental data, where the response of the servo valves and the supply pressure...... play an important role: the eigenfrequency of the servo valves establishes the operational frequency range of the active lubrication, whereas the supply pressure establishes the amplitude of vibration reduction achieved with the active lubrication....
Analysis of current diffusive ballooning mode in tokamaks
International Nuclear Information System (INIS)
Uchida, M.; Fukuyama, A.; Itoh, S.-I.; Yagi, M.
1999-12-01
The effect of finite gyroradius on the current diffusive ballooning mode is examined. Starting from the reduced MHD equations including turbulent transports, coupling with drift motion and finite gyroradius effect of ions, we derive a ballooning mode equation with complex transport coefficients. The eigenfrequency, saturation level and thermal diffusivity are evaluated numerically from the marginal stability condition. Preliminary results of their parameter dependence is presented. (author)
International Nuclear Information System (INIS)
Wen, Dehua; Li, Baoan; Krastev, P.G.
2010-01-01
The frequencies and damping times of the axial w-mode oscillations of neutron stars are investigated using a nuclear equation of state (EOS) partially constrained by the available terrestrial laboratory data. It is found that the nuclear symmetry energy E sym (ρ), especially its high density behavior, plays an important role in determining both the eigen-frequencies and the damping times of these oscillations. (author)
International Nuclear Information System (INIS)
Por, G.; Izsak, E.; Valko, J.
1984-09-01
The pressure fluctuations were measured in the cooling system of the Paks-1 reactor. A shift of the peak was detected in low frequency component of the pressure fluctuation spectrum which is due to the fluctuations of water level in the pressurizer. Using the model of Katona and Nagy (1983), the eigenfrequencies, the magnitude of the shift and the sensitivity to the pressurizer water level were reproduced in good accordance with the experimental data. (D.Gy.)
Ion acoustic eigenmodes in a collisionless bounded plasma:
International Nuclear Information System (INIS)
Kuhn, S.; Schupfer, N.; Santiago, M.A.M.; Assis, A.S. de
1990-01-01
This paper is based on an integral-equation method developed for solving the general linearized perturbation problem for a one-dimensional, uniform collisionless plasma with thin sheats, bounded by two planar electrodes. The underlying system of equations consists of a) the Vlasov equations for all particle species involved; b) Poisson's equation; c) the equation of total-current conservation; d) the particle boundary conditions at the left and right hand electrodes and e) the external-circuit equation. The method allows for very general equilibrium, boundary and external-circuit conditions. Using Laplace transformations in both time and space, it is set up to handle the complete initial value problem but also yields, as a by-product, the solution to the eigenmode problem. The only application to date of this method was to the Pierce Diode with a non-trivial external circuit, in which case the equation determining the complex eigenfrequencies ω n was found in analytic form. The said method is applied to ion-acoustic eigenmodes in a one-dimensional, collisionless bounded plasma consisting of non-drifting thermal electrons and a cold ion beam propagating through them. In this case, which is of relevance in the context of both Q- and DP-machines, the eigenfrequencies can no longer be obtained as solutions of an analytically explicit homogeneous system of linear integral equations. Via appropriate basis- set expansions of all perturbation functions involved, this system is transformed into a system of linear algebraic equations for the ω-dependent expansion coefficients, from which the eigenfrequencies can be obtained as the zeros of the'system determinant'. The results include studies on how the eigenfrequencies depend on plasma, boundary, as well as a comparison between these bounded-system ion-acoustic eigenmodes and their infinite-plasma counter-parts. (Author)
Time-Varying Dynamic Properties of Offshore Wind Turbines Evaluated by Modal Testing
DEFF Research Database (Denmark)
Damgaard, Mads; Andersen, J. K. F.; Ibsen, Lars Bo
2014-01-01
resonance of the wind turbine structure. In this paper, free vibration tests and a numerical Winkler type approach are used to evaluate the dynamic properties of a total of 30 offshore wind turbines located in the North Sea. Analyses indicate time-varying eigenfrequencies and damping ratios of the lowest...... structural eigenmode. Isolating the oscillation oil damper performance, moveable seabed conditions may lead to the observed time dependency....
Theory of semicollisional kinetic Alfven modes in sheared magnetic fields
International Nuclear Information System (INIS)
Hahm, T.S.; Chen, L.
1985-02-01
The spectra of the semicollisional kinetic Alfven modes in a sheared slab geometry are investigated, including the effects of finite ion Larmor radius and diamagnetic drift frequencies. The eigenfrequencies of the damped modes are derived analytically via asymptotic analyses. In particular, as one reduces the resistivity, we find that, due to finite ion Larmor radius effects, the damped mode frequencies asymptotically approach finite real values corresponding to the end points of the kinetic Alfven continuum
Component vibration of VVER-reactors - diagnostics and modelling
International Nuclear Information System (INIS)
Altstadt, E.; Scheffler, M.; Weiss, F.-P.
1995-01-01
Flow induced vibrations of reactor pressure vessel (RPV) internals (control element and core barrel motions) at VVER-440 reactors have led to the development of dedicated methods for on-line monitoring. These methods need a certain developed stage of the faults to be detected. To achieve a real sensitive early detection of mechanical faults of RPV internals, a theoretical vibration model was developed based on finite elements. The model comprises the whole primary circuit including the steam generators (SG). By means of that model all eigenfrequencies up to 30 Hz and the corresponding mode shapes were calculated for the normal vibration behaviour. Moreover the shift of eigenfrequencies and of amplitudes due to the degradation or to the failure of internal clamping and spring elements could be investigated, showing that a recognition of such degradations even inside the RPV is possible by pure excore vibration measurements. A true diagnostic, that is the identification of the failed component, might become possible because different faults influence different and well separated eigenfrequencies. (author)
International Nuclear Information System (INIS)
Matthees, W.; Magiera, G.
1980-01-01
A sensitivity study for the interaction effects for adjacent structures of nuclear power plants i.e. for main buildings and auxiliary buildings has been performed due to horizontal seismic excitation. An interaction measuring rule for response spectra has been defined as the ratio of amplitude of response calculated inclusive the auxiliary building to the amplitude calculated without the auxiliary building in respect to the proper eigen-frequencies. The calculations of the three-dimensional effects are approximated with the program FLUSH. The accuracy of the achievable response herewith calculated is proven in comparison with other suitable methods. The interaction measuring rule is determined by a parameter investigation including the mathematical model consisting of the soil, the main building, and the auxiliary building. The following assumptions are asserted: 1. the soil characteristics are temporarily constant. Ignorance of the accuracy of the realistic i.e. stress depending soil values is encountered by variation of the decisive characteristics within their applicable band-width. 2. The fineness of the mathematical-mechanical modelling for the structural systems i.e. the number of the degrees of freedom is limited to a minimum. Attention is hereby paid that the eigen-frequencies of the main building as well as the eigen-frequencies of the layered soil system in the range of 0 to 10 Hz are computed with sufficient accuracy. (orig./HP) [de
Energy Technology Data Exchange (ETDEWEB)
Ma, N; Hirayama, T; Sato, N [Yokohama National University, Yokohama (Japan). Faculty of Engineering
1997-12-31
A semisubmersible very large floating structure is compared with an equivalent pontoon type in vertical displacement and longitudinal bending moment in waves. The theoretical calculation is based on the mode synthesis method, and fluid force is analyzed by the three-dimensional singularity method for the symmetric structure, in which the effects of elastic deformation are taken into account. The semisubmersible and pontoon types are not much different from each other in eigenfrequency and mode shape in the dry mode. In the wet mode, on the other hand, the pontoon type is characterized by the synthetic mode in which torsional and bending modes overlap each other, each mode having a similar eigenfrequency. These types are different in elastic response, the pontoon type having several tens times higher coefficient of attenuation than the semisubmersible type. The pontoon type is generally lower in response, but its torsional mode is excited in transverse waves, making it higher than the semisubmersible type at near eigenfrequency of this mode. 15 refs., 17 figs., 2 tabs.
Energy Technology Data Exchange (ETDEWEB)
Volkova, T.I., E-mail: tatiana.volkova@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany); Böhm, V., E-mail: valter.boehm@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany); Kaufhold, T., E-mail: tobias.kaufhold@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany); Popp, J., E-mail: jana.popp@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany); Becker, F., E-mail: felix.becker@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany); Borin, D.Yu., E-mail: dmitry.borin@tu-dresden.de [Technische Universität Dresden, Magnetofluiddynamics, Measuring and Automation Technology, D-01062 Dresden (Germany); Stepanov, G.V., E-mail: gstepanov@mail.ru [State Institute of Chemistry and Technology of Organoelement Compounds, 105118 Moscow (Russian Federation); Zimmermann, K., E-mail: klaus.zimmermann@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany)
2017-06-01
The development of sensor systems with a complex adaptive regulation of the operating sensitivity and behaviour is an actual scientific and technical challenge. Smart materials like magneto-sensitive elastomers (MSE) are seen as one potential solution for this problem, since their mechanical properties may be controlled by external magnetic fields. The present paper deals with the investigation of elastic and damping properties of MSE containing magnetically soft particles under the influence of a uniform magnetic field. Based on the measurement of the first eigenfrequency of free bending vibrations of a fixed beam, the effective Young's modulus is evaluated theoretically and also numerically using Finite Element Method. It is shown that this parameter, as well as the first eigenfrequency of the beam, increases monotonically with the magnitude of the applied magnetic field. The results are aimed to develop an acceleration sensor with adaptive magnetically controllable sensitivity range for the detection of external mechanical stimuli of the environment. - Highlights: • The motion behaviour of magneto-sensitive elastomers (MSE) with magnetically soft particles is investigated. • The first eigenfrequency of free bending vibrations of an MSE beam can be controlled by a uniform magnetic field. • Based on the experimental results, the effective Young's modulus of the system is evaluated theoretically and numerically. • The Young's modulus increases monotonically with the magnitude of the applied magnetic field. • The controlled mechanical compliance of MSE may be used for development of sensor systems with adaptive sensitivity range.
Energy Technology Data Exchange (ETDEWEB)
Ma, N.; Hirayama, T.; Sato, N. [Yokohama National University, Yokohama (Japan). Faculty of Engineering
1996-12-31
A semisubmersible very large floating structure is compared with an equivalent pontoon type in vertical displacement and longitudinal bending moment in waves. The theoretical calculation is based on the mode synthesis method, and fluid force is analyzed by the three-dimensional singularity method for the symmetric structure, in which the effects of elastic deformation are taken into account. The semisubmersible and pontoon types are not much different from each other in eigenfrequency and mode shape in the dry mode. In the wet mode, on the other hand, the pontoon type is characterized by the synthetic mode in which torsional and bending modes overlap each other, each mode having a similar eigenfrequency. These types are different in elastic response, the pontoon type having several tens times higher coefficient of attenuation than the semisubmersible type. The pontoon type is generally lower in response, but its torsional mode is excited in transverse waves, making it higher than the semisubmersible type at near eigenfrequency of this mode. 15 refs., 17 figs., 2 tabs.
Modes in a non-neutral plasma of finite length, m=0,1
International Nuclear Information System (INIS)
Rasband, S. Neil; Spencer, Ross L.
2003-01-01
For realistic, cold equilibria of finite length representing a pure electron plasma confined in a cylindrical Malmberg-Penning trap, the mode spectrum for Trivelpiece-Gould, m=0, and for diocotron, m=1, modes is calculated numerically. A novel method involving finite elements is used to successfully compute eigenfrequencies and eigenfunctions for plasma equilibria shaped like pancakes, cigars, long cylinders, and all things in between. Mostly sharp-boundary density configurations are considered but also included in this study are diffuse density profiles including ones with peaks off axis leading to instabilities. In all cases the focus has been on elucidating the role of finite length in determining mode frequencies and shapes. For m=0 accurate eigenfrequencies are tabulated and their dependence on mode number and aspect ratio is computed. For m=1 it is found that the eigenfrequencies are 2% to 3% higher than given by the Fine-Driscoll formula [Phys. Plasmas 5, 601 (1998)]. The 'new modes' of Hilsabeck and O'Neil [Phys. Plasmas 8, 407 (2001)] are identified as Dubin modes. For hollow profiles finite length in cold-fluid can account for up to ∼70% of the theoretical instability growth rate
Cally, Paul S.; Xiong, Ming
2018-01-01
Fast sausage modes in solar magnetic coronal loops are only fully contained in unrealistically short dense loops. Otherwise they are leaky, losing energy to their surrounds as outgoing waves. This causes any oscillation to decay exponentially in time. Simultaneous observations of both period and decay rate therefore reveal the eigenfrequency of the observed mode, and potentially insight into the tubes’ nonuniform internal structure. In this article, a global spectral description of the oscillations is presented that results in an implicit matrix eigenvalue equation where the eigenvalues are associated predominantly with the diagonal terms of the matrix. The off-diagonal terms vanish identically if the tube is uniform. A linearized perturbation approach, applied with respect to a uniform reference model, is developed that makes the eigenvalues explicit. The implicit eigenvalue problem is easily solved numerically though, and it is shown that knowledge of the real and imaginary parts of the eigenfrequency is sufficient to determine the width and density contrast of a boundary layer over which the tubes’ enhanced internal densities drop to ambient values. Linearized density kernels are developed that show sensitivity only to the extreme outside of the loops for radial fundamental modes, especially for small density enhancements, with no sensitivity to the core. Higher radial harmonics do show some internal sensitivity, but these will be more difficult to observe. Only kink modes are sensitive to the tube centres. Variation in internal and external Alfvén speed along the loop is shown to have little effect on the fundamental dimensionless eigenfrequency, though the associated eigenfunction becomes more compact at the loop apex as stratification increases, or may even displace from the apex.
Finite element analysis of an inflatable torus considering air mass structural element
Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.
2014-01-01
Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.
Directory of Open Access Journals (Sweden)
Maas Stefan
2015-01-01
Full Text Available Structural Health Monitoring (SHM intends to identify damage by changes of characteristics as for instance the modal parameters. The eigenfrequencies, mode-shapes and damping-values are either directly used as damage indicators or the changes of derived parameters are analysed, such as e.g. flexibilities or updated finite element models. One common way is a continuous monitoring under environmental excitation forces, such as wind or traffic, i.e. the so-called output-only modal analysis. Alternatively, a forced measured external excitation in distinct time-intervals may be used for input-output modal analysis. Both methods are limited by the precision or the repeatability under real-life conditions at site. The paper will summarize several field tests of artificially step-by-step damaged bridges prior to their final demolishment and it will show the changes of eigenfrequencies due to induced artificial damage. Additionally, some results of a monitoring campaign of a healthy bridge in Luxembourg are presented. Reinforced concrete shows non-linear behaviour in the sense that modal parameters depend on the excitation force amplitude, i.e. higher forces lead often to lower eigenfrequencies than smaller forces. Furthermore, the temperature of real bridges is neither constant in space nor in time, while for instance the stiffness of asphalt is strongly dependant on it. Finally, ageing as such can also change a bridge’s stiffness and its modal parameters, e.g. because creep and shrinkage of concrete or ageing of elastomeric bearing pads influence their modulus of elasticity. These effects cannot be considered as damage, though they influence the measurement of modal parameters and hinder damage detection.
Modes in a nonneutral plasma column of finite length
International Nuclear Information System (INIS)
Rasband, S. Neil; Spencer, Ross L.
2002-01-01
A Galerkin, finite-element, nonuniform mesh computation of the mode equation for waves in a non-neutral plasma of finite length in a Cold-Fluid model gives an accurate calculation of the mode eigenfrequencies and eigenfunctions. We report on studies of the following: (1) finite-length Trivelpiece-Gould modes with flat-top and realistic density profiles, (2) finite-length diocotron modes with flat density profiles. We compare with the frequency equation of Fine and Driscoll [Phys Plasmas 5, 601 (1998)
The Nuclear Scissors Mode by Two Approaches (Wigner Function Moments Versus RPA)
Balbutsev, E B
2004-01-01
Two complementary methods to describe the collective motion, RPA and Wigner Function Moments (WFM) method, are compared on an example of a simple model - harmonic oscillator with quadrupole-quadrupole residual interaction. It is shown that they give identical formulae for eigenfrequencies and transition probabilities of all collective excitations of the model including the scissors mode, which is a subject of our especial attention. The normalization factor of the "synthetic" scissors state and its overlap with physical states are calculated analytically. The orthogonality of the spurious state to all physical states is proved rigorously.
Open rigid string with the Gauss-Bonnet term in action
International Nuclear Information System (INIS)
Nesterenko, V.V.; Pirozhenko, I.G.
1998-01-01
The effect of the Gaussian curvature in the rigid string action on the interquark potential is investigated. The linearized equations of motion and boundary conditions, following from the modified string action, are obtained. The equation, defining the eigenfrequency spectrum of the string oscillations is derived. On this basis the interquark potential generated by the string is calculated in one-loop approximation. A substantial influence of the topological term in the string action on the interquark potential at the distances of hadronic size order or less is revealed
Properties of solar gravity mode signals in total irradiance observations
International Nuclear Information System (INIS)
Kroll, R.J.; Chen, J.; Hill, H.A.
1988-01-01
Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs
Identification of an Equivalent Linear Model for a Non-Linear Time-Variant RC-Structure
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune
are investigated and compared with ARMAX models used on a running window. The techniques are evaluated using simulated data generated by the non-linear finite element program SARCOF modeling a 10-storey 3-bay concrete structure subjected to amplitude modulated Gaussian white noise filtered through a Kanai......This paper considers estimation of the maximum softening for a RC-structure subjected to earthquake excitation. The so-called Maximum Softening damage indicator relates the global damage state of the RC-structure to the relative decrease of the fundamental eigenfrequency in an equivalent linear...
Dynamic analysis of complex tube systems in heat exchangers
International Nuclear Information System (INIS)
Kouba, J.; Dvorak, P.
1985-01-01
Using a computation model, a dynamic analysis was made of tube assemblies of heat exchanger bundles by the finite element method. The algorithm is presented for determining the frequency mode properties, based on the Sturm sequences combined with inverse vector iteration. The results obtained using the method are compared with those obtained by analytical solution and by the transfer matrix method, this for the cases of both eigenvibrations and resonance vibrations. The results are in very good agreement. For the first four eigenfrequencies, the calculation error is less than 1.5% as against the analytical solution. (J.B.). 4 tabs., 8 figs., 5 refs
Spin waves in the soft layer of exchange-coupled soft/hard bilayers
Energy Technology Data Exchange (ETDEWEB)
Xiong, Zheng-min; Ge, Su-qin; Wang, Xi-guang; Li, Zhi-xiong; Xia, Qing-lin; Wang, Dao-wei; Nie, Yao-zhuang; Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn [School of Physics and Electronics, Central South University, Changsha 410083 (China); Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China)
2016-05-15
The magnetic dynamical properties of the soft layer in exchange-coupled soft/hard bilayers have been investigated numerically using a one-dimensional atomic chain model. The frequencies and spatial profiles of spin wave eigenmodes are calculated during the magnetization reversal process of the soft layer. The spin wave modes exhibit a spatially modulated amplitude, which is especially evident for high-order modes. A dynamic pinning effect of surface magnetic moment is observed. The spin wave eigenfrequency decreases linearly with the increase of the magnetic field in the uniformly magnetized state and increases nonlinearly with field when spiral magnetization configuration is formed in the soft layer.
[Inelastic electron scattering from surfaces
International Nuclear Information System (INIS)
1993-01-01
This program uses ab-initio and multiple scattering to study surface dynamical processes; high-resolution electron-energy loss spectroscopy is used in particular. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50--300 eV). The analyses have been extended to surfaces of ordered alloys. Phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross section calculations. Work on low-energy electron and positron holography is mentioned
The Brain Physics: Multi Laser Beam Interaction with the Brain Topions (the Brain Neurocenters)
Stefan, V. Alexander
2015-03-01
A novel method for the treatment of the neurological diseases is proposed. The multiple-energy laser photons (the blue scanning photons and ultraviolet focusing photons) interact with the specific DNA molecules within the topion (such as Parkinson's and Alzheimer's brain topion) via the matching of laser frequency with the oscillation eigen-frequency of a particular molecule within the DNA. In this way, the corrupt molecules (the structure of molecules) can be manipulated so as to treat (eliminate) the neurological disease. Supported by Nikola Tesla Labs, Stefan University.
Research on low-frequency band gap property of a hybrid phononic crystal
Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Chao, Ding; Wang, Benchi
2018-05-01
A hybrid phononic crystal has been investigated. The characteristic frequency of XY mode, transmission loss and displacement vector have been calculated by the finite element method. There are Bragg scattering band gap and local resonance band gap in the band structures. We studied the influence factors of band gap. There are many flat bands in the eigenfrequencies curve. There are many flat bands in the curve. The band gap covers a large range in low frequency. The band gaps cover more than 95% below 3000 Hz.
On the emission spectrum of oscillator trapped in a potential well
International Nuclear Information System (INIS)
Kirichok, A.V.; Kuklin, V.M.; Zagorodny, A.G.
2013-01-01
We study the spectrum of electromagnetic waves emitted by oscillator, trapped in an external potential well. It is assumed that the natural frequency of the oscillator is much greater than the frequency of oscillations in the potential well. We consider the quantum model of emission with taking into account the recoil effect. The highest intensity of the absorption and emission lines is observed on the eigenfrequency of the oscillator when the recoil energy is equal to energy of the quantum of low-frequency oscillations in the potential well.
Directory of Open Access Journals (Sweden)
Zhichao Wu
2017-01-01
Full Text Available A new electromechanical coupling model was built to quantitatively analyze the tuning fork probes, especially the complex ones. A special feature of a novel, soft tuning fork probe, that the second eigenfrequency of the probe was insensitive to the effective force gradient, was found and used in a homemade bimodal atomic force microscopy to measure power dissipation quantitatively. By transforming the mechanical parameters to the electrical parameters, a monotonous and concise method without using phase to calculate the power dissipation was proposed.
Chardon, Gilles; Daudet, Laurent
2013-11-01
This paper extends the method of particular solutions (MPS) to the computation of eigenfrequencies and eigenmodes of thin plates, in the framework of the Kirchhoff-Love plate theory. Specific approximation schemes are developed, with plane waves (MPS-PW) or Fourier-Bessel functions (MPS-FB). This framework also requires a suitable formulation of the boundary conditions. Numerical tests, on two plates with various boundary conditions, demonstrate that the proposed approach provides competitive results with standard numerical schemes such as the finite element method, at reduced complexity, and with large flexibility in the implementation choices.
Modeling of mode-locked coupled-resonator optical waveguide lasers
DEFF Research Database (Denmark)
Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels
2010-01-01
Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...... of the emerging pulse train. A range of tuning around this frequency allows for effective mode locking. Finally, noise is added to the generalized single-cavity eigenfrequencies in order to evaluate the effects of fabrication imperfections on the cold-cavity transmission properties and consequently on the locking...
Case Study of Local Damage Indicators for a 2-Bay, 6-Storey RC-Frame subject to Earthquakes
DEFF Research Database (Denmark)
Skjærbæk, P. S.; Nielsen, Søren R. K.; Kirkegaard, Poul Henning
1997-01-01
A simulation study of a 2-bay, 6storey model test RC-frame(scale 1:5) subject to earthquakes is considered in this paper. Based on measured (simulated) storey accelerations and ground surface accelerations several indices for the storey damage, including interstorey drift, flexural damage ratios......, normalized cumulative dissipated energy, Park and Ang's indicator, a low-cycle fatigue damage index and a recently proposed local softening damage index estimated from time-varying eigenfrequencies are used to evaluate the damage state of the structure after the earthquake. Storey displacements are obtained...
Case Study of Local Damage Indicators for a 2-Bay, 6-Storey RC-Frame subject to Earthquakes
DEFF Research Database (Denmark)
Skjærbæk, P. S.; Nielsen, Søren R. K.; Kirkegaard, Poul Henning
A simulation study of a 2-bay, 6storey model test RC-frame(scale 1:5) subject to earthquakes is considered in this paper. Based on measured (simulated) storey accelerations and ground surface accelerations several indices for the storey damage, including interstorey drift, flexural damage ratios......, normalized cumulative dissipated energy, Park and Ang's indicator, a low-cycle fatigue damage index and a recently proposed local softening damage index estimated from time-varying eigenfrequencies are used to evaluate the damage state of the structure after the earthquake. Storey displacements are obtained...
Stabilization of ion temperature gradient driven modes by lower hybrid wave in a tokamak
International Nuclear Information System (INIS)
Kuley, Animesh; Tripathi, V. K.
2009-01-01
A gyrokinetic formalism has been developed to study lower hybrid wave stabilization of ion temperature gradient driven modes, responsible for anomalous ion transport in the inner region of tokamak. The parametric coupling between lower hybrid and drift waves produce lower hybrid sideband waves. The pump and the sidebands exert a ponderomotive force on electrons, modifying the eigenfrequency of the drift wave and influencing the growth rate. The longer wavelength drift waves are destabilized by the lower hybrid wave while the shorter wavelengths are suppressed. The requiste lower hybrid power is in the range of ∼900 kW at 4.6 GHz.
Molecular Wring Resonances in Chain Molecules
DEFF Research Database (Denmark)
Bohr, Henrik; Brunak, Søren; Bohr, Jakob
1997-01-01
It is shown that the eigenfrequency of collective twist excitations in chain molecules can be in the megahertz and gigahertz range. Accordingly, resonance states can be obtained at specific frequencies, and phenomena that involve structural properties can take place. Chain molecules can alter the...... their conformation and their ability to function, and a breaking of the chain can result. It is suggested that this phenomenon forms the basis for effects caused by the interaction of microwaves and biomolecules, e.g. microwave assisted hydrolysis of chain molecules....
Periodicity-induced effects and method in vibro-acoustics
DEFF Research Database (Denmark)
Sorokin, Sergey V.
2014-01-01
of the lecture is to illustrate these issues in simple examples and to discuss possible applications and generalisations. First, the eigenfrequency spectra of finite periodic structures are compared with the location of stop-bands for their infinite counterparts. This is done with the special attention being...... of the lecture is concerned with the numerical implementation of the Floquet theory and the experimental demonstration of periodicity effects. A brief exposition of the Wave Finite Element method and an assessment of its validity range in canonical benchmark problems are presented. The results of experimental...
Alq3 coated silicon nanomembranes for cavity optomechanics
Fogliano, Francesco; Ortu, Antonio; Camposeo, Andrea; Pisignano, Dario; Ciampini, Donatella; Fuso, Francesco; Arimondo, E.
2016-09-01
The optomechanical properties of a silicon-nitride membrane mirror covered by Alq3 and Silver layers are investigated. Excitation at two laser wavelengths, 780 and 405 nm, corresponding to different absorptions of the multilayer, is examined. Such dual driving will lead to a more flexible optomechanical operation. Topographic reconstruction of the whole static membrane deformation and cooling of the membrane oscillations are reported. The cooling, observed for blue laser detuning and produced by bolometric forces, is deduced from the optomechanical damping of the membrane eigenfrequency. We determine the presence of different contributions to the photothermal response of the membrane.
International Nuclear Information System (INIS)
Torchigin, V P; Torchigin, A V
2012-01-01
Optically induced forces applied to a transparent optical medium, which is inserted in a closed plane optical resonator, are calculated by means of an analysis of the changes in the eigenfrequency and energy stored in the resonator at various positions of the medium. These forces are compared with striction forces applied to the medium considered as a dielectric placed in an alternate electrical field within the resonator. It is shown that the optically induced forces are equal to the striction forces. The results of using the classical formula for striction forces in electrostatics are considered. (paper)
Acoustic loading effects on oscillating rod bundles
International Nuclear Information System (INIS)
Lin, W.H.
1980-01-01
An analytical study of the interaction between an infinite acoustic medium and a cluster of circular rods is described. The acoustic field due to oscillating rods and the acoustic loading on the rods are first solved in a closed form. The acoustic loading is then used as a forcing function for rod responses, and the acousto-elastic couplings are solved simultaneously. Numerical examples are presented for several cases to illustrate the effects of various system parameters on the acoustic reaction force coefficients. The effect of the acoustic loading on the coupled eigenfrequencies are discussed
Calculation of coupling factor for the heterogeneous accelerating structure
International Nuclear Information System (INIS)
Bian Xiaohao; Chen Huaibi; Zheng Shuxin
2006-01-01
The converging part of electron accelerator is designed to converge the phase of injecting electrons, improving the beam quality of the accelerator. It is very crucial to calculate the coupling factor between cavities and to design the geometry structure of the coupling irises. By the E module of code MAFIA, the authors calculate the frequency of every single resonant cavity and the two eigenfrequencies of two-cavitiy line. Then we get the coupling factor between the two cavities. This method can be used to design the geometry structure of the coupling isises between every two cavities. Compared to experiment, the results of the method is very accurate. (authors)
Spin waves in the soft layer of exchange-coupled soft/hard bilayers
Directory of Open Access Journals (Sweden)
Zheng-min Xiong
2016-05-01
Full Text Available The magnetic dynamical properties of the soft layer in exchange-coupled soft/hard bilayers have been investigated numerically using a one-dimensional atomic chain model. The frequencies and spatial profiles of spin wave eigenmodes are calculated during the magnetization reversal process of the soft layer. The spin wave modes exhibit a spatially modulated amplitude, which is especially evident for high-order modes. A dynamic pinning effect of surface magnetic moment is observed. The spin wave eigenfrequency decreases linearly with the increase of the magnetic field in the uniformly magnetized state and increases nonlinearly with field when spiral magnetization configuration is formed in the soft layer.
Spin eigenmodes of magnetic skyrmions and the problem of the effective skyrmion mass
Kravchuk, Volodymyr P.; Sheka, Denis D.; Rößler, Ulrich K.; van den Brink, Jeroen; Gaididei, Yuri
2018-02-01
The properties of magnon modes localized on a ferromagnetic skyrmion are studied. Mode eigenfrequencies display three types of asymptotic behavior for large skyrmion radius Rs, namely, ω0∝Rs-2 for the breathing mode and ω-|μ |∝Rs-1 and ω|μ |∝Rs-3 for modes with negative and positive azimuthal quantum numbers, respectively. A number of properties of the magnon eigenfunctions are determined. This enables us to demonstrate that the skyrmion dynamics for a traveling-wave ansatz obeys the massless Thiele equation.
Piezoelectric Analysis of Saw Sensor Using Finite Element Method
Directory of Open Access Journals (Sweden)
Vladimír KUTIŠ
2013-06-01
Full Text Available In this contribution modeling and simulation of surface acoustic waves (SAW sensor using finite element method will be presented. SAW sensor is made from piezoelectric GaN layer and SiC substrate. Two different analysis types are investigated - modal and transient. Both analyses are only 2D. The goal of modal analysis, is to determine the eigenfrequency of SAW, which is used in following transient analysis. In transient analysis, wave propagation in SAW sensor is investigated. Both analyses were performed using FEM code ANSYS.
Transverse beam cavity interaction. Pt. 1
International Nuclear Information System (INIS)
Weiland, T.
1982-03-01
The transverse interaction between a bunch of charged particles and cylindrically symmetric accelerating structures is studied in three steps. The particle motion is influenced by short range forces and long range forces. The short range forces are calculated by solving Maxwell's equations in the time domain including the presence of free moving charges passing an arbitrarily shaped structure off axis. The long range forces are dominated by resonant modes in cavities. These forces are computed in frequency domain by evaluating eigenmodes and eigenfrequencies. Since only high energy particles are considered, the particle motion, which is affected by both forces, can be studied seperately using simple models and computer simulations. (orig.)
Genomic Physics. Multiple Laser Beam Treatment of Alzheimer's Disease
Stefan, V. Alexander
2014-03-01
The synapses affected by Alzheimer's disease can be rejuvenated by the multiple ultrashort wavelength laser beams.[2] The guiding lasers scan the whole area to detect the amyloid plaques based on the laser scattering technique. The scanning lasers pinpoint the areas with plaques and eliminate them. Laser interaction is highly efficient, because of the focusing capabilities and possibility for the identification of the damaging proteins by matching the protein oscillation eigen-frequency with laser frequency.[3] Supported by Nikola Tesla Labs, La Jolla, California, USA.
Lyashko, A. D.
2017-11-01
A new analytical presentation of the solution for steady-state oscillations of orthotopic rectangular prism is found. The corresponding infinite system of linear algebraic equations has been deduced by the superposition method. A countable set of precise eigenfrequencies and elementary eigenforms is found. The identities are found which make it possible to improve the convergence of all the infinite series in the solution of the problem. All the infinite series in presentation of solution are analytically summed up. Numerical calculations of stresses in the rectangular orthotropic prism with a uniform along the border and harmonic in time load on two opposite faces have been performed.
On asymptotic analysis of spectral problems in elasticity
Directory of Open Access Journals (Sweden)
S.A. Nazarov
Full Text Available The three-dimensional spectral elasticity problem is studied in an anisotropic and inhomogeneous solid with small defects, i.e., inclusions, voids, and microcracks. Asymptotics of eigenfrequencies and the corresponding elastic eigenmodes are constructed and justified. New technicalities of the asymptotic analysis are related to variable coefficients of differential operators, vectorial setting of the problem, and usage of intrinsic integral characteristics of defects. The asymptotic formulae are developed in a form convenient for application in shape optimization and inverse problems.
Shear wave induced resonance elastography of spherical masses with polarized torsional waves
Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy
2012-03-01
Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.
Study of thermal - hydraulic sensors signal fluctuations in PWR
International Nuclear Information System (INIS)
Hennion, F.
1987-10-01
This thesis deals with signal fluctuations of thermal-hydraulic sensors in the main coolant primary of a pressurized water reactor. The aim of this work is to give a first response about the potentiality of use of these noise signals for the functionning monitoring. Two aspects have been studied: - the modelisation of temperature fluctuations of core thermocouples, by a Monte-Carlo method, gives the main characteristics of these signals and their domain of application. - the determination of eigenfrequency in the primary by an acoustic representation could permit the monitoring of local and global thermo-hydraulic conditions [fr
Energy Technology Data Exchange (ETDEWEB)
Farmer, William Anthony [Univ. of California, Los Angeles, CA (United States)
2014-01-01
The rst part of the dissertation investigates the e ects of multiple-ions on the propagation of shear Alfv en waves. It is shown that the presence of a second ion-species allows for the formation of an ion-ion hybrid resonator in the presence of a magnetic well. A fullwave description is shown to explain the measured eigenfrequencies and spatial form of the resonator modes identi ed in experiments in the Large Plasma Device (LAPD) at UCLA. However, it is determined that neither electron collisions or radial convection of the mode due to coupling to either the compressional or ion-Bernstein wave can explain the observed dissipation.
International Nuclear Information System (INIS)
Hoffmann, Alain; Jeanpierre, Francoise.
1976-01-01
The TRICO subroutine of the CEASEMT system is especially intended for elastic or plastic computation of structures made of thin shells and beams. TRICO involves the finite element method for shells and beams, and is also suitable for a dynamic structural analysis: eigenmode and eigenfrequency analysis, and analysis of the response to various sinusoidal excitations, or time dependent elastic and plastic loading. Structures may have various shapes composed of a number of materials. Data are distributed between different optional commands having a precise physical sense, corresponding to a sequential program. A dynamic memory control provides the adaptation of the size of the program to that of the problem to be solved [fr
Optimum Operating Conditions for PZT Actuators for Vibrotactile Wearables
Logothetis, Irini; Matsouka, Dimitra; Vassiliadis, Savvas; Vossou, Clio; Siores, Elias
2018-04-01
Recently, vibrotactile wearables have received much attention in fields such as medicine, psychology, athletics and video gaming. The electrical components presently used to generate vibration are rigid; hence, the design and creation of ergonomical wearables are limited. Significant advances in piezoelectric components have led to the production of flexible actuators such as piezoceramic lead zirconate titanate (PZT) film. To verify the functionality of PZT actuators for use in vibrotactile wearables, the factors influencing the electromechanical conversion were analysed and tested. This was achieved through theoretical and experimental analyses of a monomorph clamped-free structure for the PZT actuator. The research performed for this article is a three-step process. First, a theoretical analysis presents the equations governing the actuator. In addition, the eigenfrequency of the film was analysed preceding the experimental section. For this stage, by applying an electric voltage and varying the stimulating electrical characteristics (i.e., voltage, electrical waveform and frequency), the optimum operating conditions for a PZT film were determined. The tip displacement was measured referring to the mechanical energy converted from electrical energy. From the results obtained, an equation for the mechanical behaviour of PZT films as actuators was deduced. It was observed that the square waveform generated larger tip displacements. In conjunction with large voltage inputs at the predetermined eigenfrequency, the optimum operating conditions for the actuator were achieved. To conclude, PZT films can be adapted to assist designers in creating comfortable vibrotactile wearables.
Quantized impedance dealing with the damping behavior of the one-dimensional oscillator
Directory of Open Access Journals (Sweden)
Jinghao Zhu
2015-11-01
Full Text Available A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.
Energy Technology Data Exchange (ETDEWEB)
Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A. [Center for Advanced Power Generation, Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA (United States)
2010-09-15
The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)
Directory of Open Access Journals (Sweden)
V. A. Mazur
2006-07-01
Full Text Available A new concept is proposed for the emergence of ULF geomagnetic oscillations with a discrete spectrum of frequencies (0.8, 1.3, 1.9, 2.6 ...mHz registered in the magnetosphere's midnight-morning sector. The concept relies on the assumption that these oscillations are MHD-resonator eigenmodes in the near-Earth plasma sheet. This magnetospheric area is where conditions are met for fast magnetosonic waves to be confined. The confinement is a result of the velocity values of fast magnetosonic waves in the near-Earth plasma sheet which differ greatly from those in the magnetotail lobes, leading to turning points forming in the tailward direction for the waves under study. To compute the eigenfrequency spectrum of such a resonator, we used a model magnetosphere with parabolic geometry. The fundamental harmonics of this resonator's eigenfrequencies are shown to be capable of being clustered into groups with average frequencies matching, with good accuracy, the frequencies of the observed oscillations. A possible explanation for the stability of the observed oscillation frequencies is that such a resonator might only form when the magnetosphere is in a certain unperturbed state.
International Nuclear Information System (INIS)
Sekii, Takashi; Shibahashi, Hiromoto
1989-01-01
We present an inversion method of inferring the sound velocity distribution in the Sun from its oscillation data of p-modes. The equation governing the p-mode oscillations is reduced to a form similar to the Schroedinger equation in quantum mechanics. By using a quantization rule based on the KWBJ asymptotic method, we derive an integral equation of which solution provides the 'acoustic potential' of the wave equation. The acoustic potential consists of two parts: One of them is related with the squared sound velocity and is dependent on the degree of the mode l, while the other term is independent of l and dominates in the outer part of the Sun. By examining the l-dependence of the acoustic potential obtained as the solution of the integral equation, we separate these two components of the potential and eventually obtain the sound velocity distribution from a set of eigenfrequencies of p-modes. In order to evaluate prospects of this inversion method, we perform numerical simulations in which eigenfrequencies of a theoretical solar model are used to reproduce the sound velocity distribution of the model. The error of thus inferred sound velocity relative to the true values is estimated to be less than a few percent. (author)
Symmetric scrolled packings of multilayered carbon nanoribbons
Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.
2016-06-01
Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.
Geometrical and profile effects on toroidicity and ellipticity induced Alfven eigenmodes
International Nuclear Information System (INIS)
Villard, L.; Fu, G.Y.
1992-04-01
The wave structures, eigenfrequencies and damping rates of toroidicity and ellipticity induced Alfven eigenmodes (TAE, EAE) of low toroidal mode numbers (n) are calculated in various axisymmetric ideal MHD equilibria with the global wave finite element code LION. The importance of safety factor (q) and density (ρ) profiles on continuum damping rates is analysed. For realistic profiles several continuum gaps exist in the plasma discharge. Frequency misalignment of these gaps yields continuum damping rates γ/ω of the order of a few percent. Finite β pol lowers the TAE eigenfrequency. For β values below the Troyon limit the TAE enters the continuum and can thus be stabilized. Finite elongation allows the EAE to exist but triangularity can have a stabilizing effect through coupling to the continuum. The localization of TAE and EAE eigenfunctions is found to increase with the shear and with n. Therefore large shear, through enhanced Landau and collisional damping, is a stabilizing factor for TAE and EAE modes. (author) 16 figs., 28 refs
Characterization of Unstable Rock Slopes Through Passive Seismic Measurements
Kleinbrod, U.; Burjanek, J.; Fäh, D.
2014-12-01
Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.
Tidal generation of gravitational waves from orbiting Newtonian stars. I. General formalism
International Nuclear Information System (INIS)
Turner, M.
1977-01-01
A linearized formalism is presented for the calculation of the tidally produced gravitational radiation potential h/sup TT/ from binary systems with arbitrary orbits. The stars are Newtonian, isentropic, and nonrotating. Normal-mode analysis is used to calculate the tidally generated internal motions; the resulting radiation potential h/sup TT/ and its Fourier decomposition are calculated in the Newtonian limit of the multipole formalism. The tidal radiation potential is weaker than that produced by the orbital motion by a factor of order [(stellar radius)/(periastron distance)] 5 . If we assume that the time scale of the tidal perturbation is always much less than the damping time of the star, then if in addition the damping time is much less than the time between periastron passages, the radiation spectrum consists of the l=2 eigenfrequencies of the star near the fundamental l=2 eigenfrequency; if the reverse is true (damping time >> time between periastrons), the spectrum is similar to the orbital gravitational radiation specturm
Fractional Josephson vortices: oscillating macroscopic spins
Energy Technology Data Exchange (ETDEWEB)
Gaber, T.; Buckenmaier, K.; Koelle, D.; Kleiner, R.; Goldobin, E. [Universitaet Tuebingen, Physikalisches Institut - Experimentalphysik II, Tuebingen (Germany)
2007-11-15
Fractional Josephson vortices carry a magnetic flux {phi}, which is a fraction of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. We consider a fractional vortex which spontaneously appears at a phase discontinuity. Its properties are very different from the properties of the usual integer fluxon. In particular, a fractional vortex is pinned and may have one of two possible polarities - just like a usual spin 1/2 particle. The fractional vortex may also oscillate around its equilibrium position with an eigenfrequency which is expected to be within the Josephson plasma gap. Using microwave spectroscopy, we investigate the dependence of the eigenfrequency of a fractional Josephson vortex on its magnetic flux {phi} and on the bias current. The experimental results are in good agreement with theoretical predictions. Positive result of this experiment is a cornerstone for further investigation of more complex fractional vortex systems such as fractional vortex molecules and tunable bandgap materials. (orig.)
Zheng, Chang-Jun; Bi, Chuan-Xing; Zhang, Chuanzeng; Gao, Hai-Feng; Chen, Hai-Bo
2018-04-01
The vibration behavior of thin elastic structures can be noticeably influenced by the surrounding water, which represents a kind of heavy fluid. Since the feedback of the acoustic pressure onto the structure cannot be neglected in this case, a strong coupled scheme between the structural and fluid domains is usually required. In this work, a coupled finite element and boundary element (FE-BE) solver is developed for the free vibration analysis of structures submerged in an infinite fluid domain or a semi-infinite fluid domain with a free water surface. The structure is modeled by the finite element method (FEM). The compressibility of the fluid is taken into account, and hence the Helmholtz equation serves as the governing equation of the fluid domain. The boundary element method (BEM) is employed to model the fluid domain, and a boundary integral formulation with a half-space fundamental solution is used to satisfy the Dirichlet boundary condition on the free water surface exactly. The resulting nonlinear eigenvalue problem (NEVP) is converted into a small linear one by using a contour integral method. Adequate modifications are suggested to improve the efficiency of the contour integral method and avoid missing the eigenfrequencies of interest. The Burton-Miller method is used to filter out the fictitious eigenfrequencies of the boundary integral formulations. Numerical examples are given to demonstrate the accuracy and applicability of the developed eigensolver, and also show that the fluid-loading effect strongly depends on both the water depth and the mode shapes.
Oshmarin, D.; Sevodina, N.; Iurlov, M.; Iurlova, N.
2017-06-01
In this paper, with the aim of providing passive control of structure vibrations a new approach has been proposed for selecting optimal parameters of external electric shunt circuits connected to piezoelectric elements located on the surface of the structure. The approach is based on the mathematical formulation of the natural vibration problem. The results of solution of this problem are the complex eigenfrequencies, the real part of which represents the vibration frequency and the imaginary part corresponds to the damping ratio, characterizing the rate of damping. A criterion of search for optimal parameters of the external passive shunt circuits, which can provide the system with desired dissipative properties, has been derived based on the analysis of responses of the real and imaginary parts of different complex eigenfrequencies to changes in the values of the parameters of the electric circuit. The efficiency of this approach has been verified in the context of natural vibration problem of rigidly clamped plate and semi-cylindrical shell, which is solved for series-connected and parallel -connected external resonance (consisting of resistive and inductive elements) R-L circuits. It has been shown that at lower (more energy-intensive) frequencies, a series-connected external circuit has the advantage of providing lower values of the circuit parameters, which renders it more attractive in terms of practical applications.
Directory of Open Access Journals (Sweden)
V. A. Mazur
2006-07-01
Full Text Available A new concept is proposed for the emergence of ULF geomagnetic oscillations with a discrete spectrum of frequencies (0.8, 1.3, 1.9, 2.6 ...mHz registered in the magnetosphere's midnight-morning sector. The concept relies on the assumption that these oscillations are MHD-resonator eigenmodes in the near-Earth plasma sheet. This magnetospheric area is where conditions are met for fast magnetosonic waves to be confined. The confinement is a result of the velocity values of fast magnetosonic waves in the near-Earth plasma sheet which differ greatly from those in the magnetotail lobes, leading to turning points forming in the tailward direction for the waves under study. To compute the eigenfrequency spectrum of such a resonator, we used a model magnetosphere with parabolic geometry. The fundamental harmonics of this resonator's eigenfrequencies are shown to be capable of being clustered into groups with average frequencies matching, with good accuracy, the frequencies of the observed oscillations. A possible explanation for the stability of the observed oscillation frequencies is that such a resonator might only form when the magnetosphere is in a certain unperturbed state.
Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred
2018-05-01
Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-dielectric waveguides which propagate azimuthally nearby the plasma-dielectric interface across an axial external stationary magnetic field. Their eigenfrequency in particular can belong to the electron cyclotron frequency range. Excitation of azimuthal surface waves by rotating relativistic electron flows was studied in detail recently in the case of the zeroth radial mode for which the waves' radial phase change within the layer where the electrons gyrate is small. In this case, just the plasma parameters cause the main influence on the waves' dispersion properties. In the case of the first and higher radial modes, the wave eigenfrequency is higher and the wavelength is shorter than in the case of the zeroth radial mode. This gain being of interest for practical applications can be achieved without any change in the device design. The possibility of effective excitation of the higher order radial modes of azimuthal surface waves is demonstrated here. Getting shorter wavelengths of the excited waves in the case of higher radial modes is shown to be accompanied by decreasing growth rates of the waves. The results obtained here are of interest for developing new sources of electromagnetic radiation, in nano-physics and in medical physics.
Vibration behavior of the artificial barrier system
International Nuclear Information System (INIS)
Mikoshiba, Tadashi; Ogawa, Nobuyuki; Nakamura, Izuru
2000-01-01
This study aims at production of a mimic specimen of artificial barrier, experimental elucidation of influence of seismic motion due to a vibration experiment on the artificial barrier system, and establishment of an evaluating method on its long-term behavior. The study has been carried out under a cooperative study of the National Research Institute for Earth Science and Disaster Prevention and the Japan Nuclear Cycle Development Institute. In 1998 fiscal year, an artificial barrier specimen initiated by crosscut road was produced, and their random wave and actual seismic wave vibrations were carried out to acquire their fundamental data. As a result of the both vibrations, it was found that in a Case 2 specimen of which buffer material was swelled by poured water, the material was integrated with a mimic over-pack to vibrate under judgement of eigen-frequency, maximum acceleration ratio, and so forth on the test results. And, in a Case 1 specimen, it was thought that the mimic over-pack showed an extreme non-linear performance (soft spring) because of reducing eigen-frequency with increase of its vibration level. (G.K.)
International Nuclear Information System (INIS)
Panet, M.; Delmas, J.; Ballester, J.L.
1993-04-01
In each plant unit, there are about 250 earthquake-qualified safety related valves. Justifying their aseismic capacity has proved complex. The structures are so diversified that it is not easy for designers to determine a generic model. Generally speaking, the models tend to overestimate the resonance frequencies. An approach more representative of the actual structure of the component was consequently sought, on which qualification of technological options with respect to the safety authorities would be based, thereby optimizing vibrating table qualification test schedules. The paper describes application of the approximate spectral identification method from the OPTDIM system, which determines basic structure modal data to forecast the approximate eigenfrequencies of a sub-domain, materialized by the component. It is used for a posteriori justification of topworks in operating equipment (900 MWe series), with respect to the 33 Hz ≤ f condition, which guarantees zero amplification of seismic induced internal loads. In the seismic design context and supplementing the preliminary eigenfrequency studies, inverse method solution techniques are used to define the most representative model of the modal behaviour of an electrically controlled motor-operated valve. (authors). 6 figs., 6 tabs., 11 refs
Quantized impedance dealing with the damping behavior of the one-dimensional oscillator
Energy Technology Data Exchange (ETDEWEB)
Zhu, Jinghao; Zhang, Jing; Li, Yuan; Zhang, Yong; Fang, Zhengji; Zhao, Peide, E-mail: pdzhao@eyou.com, E-mail: pdzhao@hebut.edu.cn [School of Science, Hebei University of Technology, Beichen Campus, Tianjin 300401 (China); Li, Erping, E-mail: liep@zju.edu.cn [Institute of High Performance Computing, Fusionopolis, 1 Fusionopolis Way, No. 16-16 Connexis, Singapore 138632 (Singapore)
2015-11-15
A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.
Energy Technology Data Exchange (ETDEWEB)
Herfst, Rodolf; Dekker, Bert; Witvoet, Gert; Crowcombe, Will; Lange, Dorus de [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Sadeghian, Hamed, E-mail: hamed.sadeghianmarnani@tno.nl, E-mail: h.sadeghianmarnani@tudelft.nl [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Department of Precision and Microsystems Engineering, Delft University of Technology, Delft (Netherlands)
2015-11-15
One of the major limitations in the speed of the atomic force microscope (AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical (z) direction. According to the design principles of “light and stiff” and “static determinacy,” the bandwidth of the mechanical scanner is limited by the first eigenfrequency of the AFM head in case of tip scanning and by the sample stage in terms of sample scanning. Due to stringent requirements of the system, simply pushing the first eigenfrequency to an ever higher value has reached its limitation. We have developed a miniaturized, high speed AFM scanner in which the dynamics of the z-scanning stage are made insensitive to its surrounding dynamics via suspension of it on specific dynamically determined points. This resulted in a mechanical bandwidth as high as that of the z-actuator (50 kHz) while remaining insensitive to the dynamics of its base and surroundings. The scanner allows a practical z scan range of 2.1 μm. We have demonstrated the applicability of the scanner to the high speed scanning of nanostructures.
Vibration behavior of the artificial barrier system
Energy Technology Data Exchange (ETDEWEB)
Mikoshiba, Tadashi; Ogawa, Nobuyuki; Nakamura, Izuru [National Research Inst. for Earth sceince and Disaster Prevention (Japan)
2000-02-01
This study aims at production of a mimic specimen of artificial barrier, experimental elucidation of influence of seismic motion due to a vibration experiment on the artificial barrier system, and establishment of an evaluating method on its long-term behavior. The study has been carried out under a cooperative study of the National Research Institute for Earth Science and Disaster Prevention and the Japan Nuclear Cycle Development Institute. In 1998 fiscal year, an artificial barrier specimen initiated by crosscut road was produced, and their random wave and actual seismic wave vibrations were carried out to acquire their fundamental data. As a result of the both vibrations, it was found that in a Case 2 specimen of which buffer material was swelled by poured water, the material was integrated with a mimic over-pack to vibrate under judgement of eigen-frequency, maximum acceleration ratio, and so forth on the test results. And, in a Case 1 specimen, it was thought that the mimic over-pack showed an extreme non-linear performance (soft spring) because of reducing eigen-frequency with increase of its vibration level. (G.K.)
Sorokin, Sergey V
2011-03-01
Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis. © 2011 Acoustical Society of America
An improved phase-control system for superconducting low-velocity accelerating structures
International Nuclear Information System (INIS)
Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.
1989-01-01
Microphonic fluctuations in the rf eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the rf phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the rf energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the rf power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs
International Nuclear Information System (INIS)
Wassermann, K.
1983-01-01
Full-scale dynamic testing on intermediate and high levels was performed at the Heissdampfreaktor (HDR) in 1979. Various types of dynamic forces were applied and response of the reactor containment structure and internal components was measured. Precalculations of dynamic behaviour and response of the structure were made through different mathematical models for the structure and the underlying soil. Soil-Structure Interaction effects are investigated and different theoretical models are compared with experimental results. In each model, the soil is represented by springs attached to the structural model. Stiffnesses of springs are calculated by different finite-element idealizations and half-space approximations. Eigenfrequencies and damping values related to interaction effects (translation, rocking, torsion) are identified from test results. The comparisons of dynamic characteristic of the soil-structure system between precalculations and test results show good agreement in general. (orig.)
Integrated microelectromechanical gyroscope under shock loads
Nesterenko, T. G.; Koleda, A. N.; Barbin, E. S.
2018-01-01
The paper presents a new design of a shock-proof two-axis microelectromechanical gyroscope. Without stoppers, the shock load enables the interaction between the silicon sensor elements. Stoppers were installed in the gyroscope to prevent the contact interaction between electrodes and spring elements with fixed part of the sensor. The contact of stoppers occurs along the plane, thereby preventing the system from serious contact stresses. The shock resistance of the gyroscope is improved by the increase in its eigenfrequency at which the contact interaction does not occur. It is shown that the shock load directed along one axis does not virtually cause the movement of sensing elements along the crosswise axes. Maximum stresses observed in the proposed gyroscope at any loading direction do not exceed the value allowable for silicon.
Is the nutation of the solid inner core responsible for the 24-year libration of the pole
International Nuclear Information System (INIS)
Kakuta, Chuichi; Okamoto, Isao; Sasao, Tetsuo
1975-01-01
BUSSE's (1970) theory of the dynamical coupling between the rigid inner core and mantle of the Earth through the pressure reactions in the fluid outer core is examined. It is confirmed that the rigid inner core has the eigenfrequency, (1-rhosub(t)/rhosub(r))esub(r)Ω 0 , of nutation (Ω 0 : the mean rotation rate of the Earth, esub(r): ellipticity of the rigid inner core, and rhosub(t), rhosub(r): the densities of the fluid outer and rigid inner cores, respectively), but it is concluded to be extremely difficult to interpret the 24-yr libration of the pole suggested by MARKOWITZ (1960, 1968) in terms of the nutation with this frequency. (auth.)
Non-Axisymmetric Oscillation of Acoustically Levitated Water Drops at Specific Frequencies
International Nuclear Information System (INIS)
Chang-Le, Shen; Wen-Jun, Xie; Bing-Bo, Wei
2010-01-01
A category of non-axisymmetric oscillations of acoustically levitated water drops was observed. These oscillations can be qualitatively described by superposing a sectorial oscillating term upon the initial oblate shape resulting from the effect of acoustic radiation pressure. The oscillation frequencies are around 25 Hz for the 2-lobed mode and exactly 50 Hz for the 3- and 4-lobed modes. These oscillations were excited by the disturbance from the power supply. For the same water drop, higher mode oscillations were observed with more oblate initial shape, indicating that the eigenfrequencies of these non-axisymmetric oscillations decrease with increasing initial distortion. The maximum velocity and acceleration within the oscillating drop can attain 0.3m·s −1 and 98.7m·s −2 respectively, resulting in strong fluid convection and enhanced heat and mass transfer. (condensed matter: structure, mechanical and thermal properties)
New ideas for axion like particle dark matter search
Betz, Michael; Zioutas, Konstantin
2012-01-01
In the context of finding suitable large magnets for RF and microwave axion search, the Tore supra ring had been proposed. This Tokamak which could probably be made available for DM search has a huge volume and a strong magnetic field (30000 liter and 4.5 Tesla). It appears on a first glance, as an interesting candidate for this kind of experiment. One can find a suitable microwave mode which meets the condition that the RF electric field is parallel to the magnetostatic field. The eigenfrequency field pattern and Q factor for this mode and a few adjacent ones are calculated the some field patterns shown graphically. The use of the torus type cavity is not restricted to the Tore Supra. It can in principle be applied to any torus type structure also scaled up toward smaller dimensions and higher frequencies. In the second part of the slide presentation some alternatives and other cavity magnet concepts are shown and discussed.
Energy Technology Data Exchange (ETDEWEB)
Proskuryakov, K.N.; Yang Shan Afshar, E.; Polyakov, N.I. [Nuclear Power Plant Department of Moscow Power Engineering Institute Technical Univ., Moscow (Russian Federation)
2007-07-01
The experimental data that have been obtained from the measurements of noise signals in primary circuit of NPP with reactor of WWER-1000 are presented. The causes of resonant interaction between Eigen-Frequencies of Oscillations of the Coolant Pressure (EFOCP) and structure vibrations are discussed. An application-oriented approach to the problem of identification of abnormal phenomena of thermal-hydraulic parameters is proposed. Logarithmic Decrement {delta} is determined. The bigger damping ratio {zeta} provides bigger {delta} and correspondingly smaller values of Q-factor and amplitude X(t)max. All experimental units intended for NPP severe accident investigation must satisfy to the NPP Q-factor criterion of similarity. (authors)
International Nuclear Information System (INIS)
Proskuryakov, K.N.; Yang Shan Afshar, E.; Polyakov, N.I.
2007-01-01
The experimental data that have been obtained from the measurements of noise signals in primary circuit of NPP with reactor of WWER-1000 are presented. The causes of resonant interaction between Eigen-Frequencies of Oscillations of the Coolant Pressure (EFOCP) and structure vibrations are discussed. An application-oriented approach to the problem of identification of abnormal phenomena of thermal-hydraulic parameters is proposed. Logarithmic Decrement δ is determined. The bigger damping ratio ζ provides bigger δ and correspondingly smaller values of Q-factor and amplitude X(t)max. All experimental units intended for NPP severe accident investigation must satisfy to the NPP Q-factor criterion of similarity. (authors)
Odd-parity pertubations of spherically symmetric star clusters in general relativity
International Nuclear Information System (INIS)
Semenzato, R.; Ipser, J.R.
1981-01-01
The theory of odd-parity nonspherical peturbations of collisionless, isotropic, spherically symmetric star clusters is developed within general relativity for l> or =2. A variational principle is derived for the associated normal modes of oscillation. The variational expression reveals that an unstable normal mode has a pure exponentially growing time dependence--the corresponding complex ''eigenfrequency'' is purely imaginary--and hence that a normal mode can become unstable in a smooth fashion only thorugh zero frequency. Further, it is shown that no instabilities can set in through zero-frequency modes along smooth sequences of models with fewer high-energy stars than low-energy stars. Unless unstable normal modes suddenly appear in a nonsmooth fashion, the implications is that these models possess no unstable normal modes
Kovalev, A S
2002-01-01
The resonance activation of eigenmodes for a finite 2D easy-plane ferromagnet is considered to treat theoretically by the vortex switching in magnetic nanodots due to the action of external circular magnetic field. It is shown analytically that if the anisotropy is weak, i.e. the vortex has a nonzero polarity (total magnization along the z-axis), the process of the field action has a complicated nature. The circular field acts in a resonance way upon azimuthal system eigenmodes, in which magnetization depends on the azimuthal coordinate (as a direct resonance at the eigenfrequencies of these modes). The interaction of the azimuthal and symmetric modes (in which the magnetization does not depend on the azimuthal coordinate) via the applied field gives rise to complex parametric resonance at multifrequencies. The results obtained are compared with the data of previous numerical calculations.
Diskoseismology: Probing accretion disks. I - Trapped adiabatic oscillations
Nowak, Michael A.; Wagoner, Robert V.
1991-01-01
The normal modes of acoustic oscillations within thin accretion disks which are terminated by an innermost stable orbit around a slowly rotating black hole or weakly magnetized compact neutron star are analyzed. The dominant relativistic effects which allow modes to be trapped within the inner region of the disk are approximated via a modified Newtonian potential. A general formalism is developed for investigating the adiabatic oscillations of arbitrary unperturbed disk models. The generic behavior is explored by way of an expansion of the Lagrangian displacement about the plane of symmetry and by assuming separable solutions with the same radial wavelength for the horizontal and vertical perturbations. The lowest eigenfrequencies and eigenfunctions of a particular set of radial and quadrupole modes which have minimum motion normal for the plane are obtained. These modes correspond to the standard dispersion relation of disk theory.
Alpha-particle effects on high-n instabilities in tokamaks
International Nuclear Information System (INIS)
Rewoldt, G.
1988-06-01
Hot α-particles and thermalized helium ash particles in tokamaks can have significant effects on high toroidal mode number instabilities such as the trapped-electron drift mode and the kinetically calculated magnetohydrodynamic ballooning mode. In particular, the effects can be stabilizing, destabilizing, or negligible, depending on the parameters involved. In high-temperature tokamaks capable of producing significant numbers of hot α-particles, the predominant interaction of the mode with the α-particles is through resonances of various sorts. In turn, the modes can cause significant anomalous transport of the α-particles and the helium ash. Here, results of comprehensive linear eigenfrequency-eigenfunction calculations are presented for relevant realistic cases to show these effects. 24 refs., 12 figs., 6 tabs
Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators
International Nuclear Information System (INIS)
Eriksson, A M; Midtvedt, D; Croy, A; Isacsson, A
2013-01-01
We study circular nanomechanical graphene resonators by means of continuum elasticity theory, treating them as membranes. We derive dynamic equations for the flexural mode amplitudes. Due to the geometrical nonlinearity the mode dynamics can be modeled by coupled Duffing equations. By solving the Airy stress problem we obtain analytic expressions for the eigenfrequencies and nonlinear coefficients as functions of the radius, suspension height, initial tension, back-gate voltage and elastic constants, which we compare with finite element simulations. Using perturbation theory, we show that it is necessary to include the effects of the non-uniform stress distribution for finite deflections. This correctly reproduces the spectrum and frequency tuning of the resonator, including frequency crossings. (paper)
Stefan, V. Alexander
2015-11-01
The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.
Wahr, John; Bergen, Zachary
1986-01-01
The paper models the effects of mantle anelasticity on luni-solar nutations, on tidal deformation, on tidal variations in rotation rate, and on the eigenfrequency of the free core nutation. The results can be used to invert observations to solve for the anelastic contributions to the shear and bulk moduli of the upper and lower mantle. Specific anelastic models are used to numerically estimate the effects of anelasticity on these geodetic observables. The nutation estimates are compared with observational results. Among the conclusions: (1) mantle anelasticity is likely to be the most important source of damping for the free core nutation; (2) present VLBI nutation results are, in principle, accurate enough to usefully bound anelasticity at diurnal periods. But the discrepancy between the VLBI observed nutations and the 1984 IAU nutation model cannot be explained by anelasticity and is not yet well enough understood to allow anelasticity to be determined from the data.
Directory of Open Access Journals (Sweden)
D. Yu. Klimushkin
2008-06-01
Full Text Available The generation of a high-m Alfvén wave by substorm injected energetic particles in the magnetosphere is studied. The wave is supposed to be emitted by an alternating current created by the drifting particle cloud or ring current inhomogeneity. It is shown that the wave appears in some azimuthal location simultaneously with the particle cloud arrival at the same spot. The value of the azimuthal wave number is determined as m~ω/ωd, where ω is the eigenfrequency of the standing Alfvén wave and ωd is the particle drift frequency. The wave propagates westward, in the direction of the proton drift. Under the reasonable assumption about the density of the energetic particles, the amplitude of the generated wave is close to the observed amplitudes of poloidal ULF pulsations.
International Nuclear Information System (INIS)
Li, Wann-Quan; Ross, D.W.; Mahajan, Swadesh M.
1989-06-01
Kinetic effects of Alfven wave spatial resonances near the plasma edge are investigated numerically and analytically in a cylindrical tokamak model. In Part 1, cold plasma surface Alfven eigenmodes (SAE's) in a pure plasma are examined. Numerical calculations of antenna-driven waves exhibiting absorption resonances at certain discrete frequencies are first reviewed. From a simplified kinetic equation, an analytical dispersion relation is then obtained with the antenna current set equal to zero. The real and imaginary parts of its roots, which are the complex eigenfrequencies, agree with the central frequencies and widths, respectively, of the numerical antenna-driven resonances. These results serve as an introduction to the companion paper, in which it is shown that, in the presence of a minority species, certain SAE's, instead of heating the plasma exterior, can dissipate substantial energy in the two-ion hybrid layer near the plasma center. 11 refs., 8 figs., 1 tab
Energy Technology Data Exchange (ETDEWEB)
Nietzsche, S [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Nawrodt, R [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Zimmer, A [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Schnabel, R [Max-Planck-Institut fuer Gravitationsphysik, Universitaet Hannover, Callinstrasse 38, D-30167 Hannover (Germany); Vodel, W [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Seidel, P [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany)
2006-05-15
Future generations of gravitational wave interferometers are likely to be operated at cryogenic temperatures because one of the sensitivity limiting factors of the present generation is the thermal noise of end mirrors and beam splitters that occurs in the optical substrates as well as in the dielectric coatings. A possible method for minimizing thermal noise is cooling to cryogenic temperatures, maximizing the mechanical quality factor Q, and maximizing the eigenfrequencies of the substrate. We present experimental details of a new cryogenic apparatus that is suitable for the measurement of the temperature-dependent Q-factor of reflective, transmissive as well as nano-structured grating optics down to 5 K. In particular, the SQUID-based and the optical interferometric approaches to the measurement of the amplitude of vibrating test bodies are compared and the method of ring-down recording is described.
Proposed cryogenic Q-factor measurement of mirror substrates
Energy Technology Data Exchange (ETDEWEB)
Nietzsche, Sandor; Zimmer, Anja; Vodel, Wolfgang; Thuerk, Matthias; Schmidl, Frank; Seidel, Paul [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany)
2004-03-07
The thermal noise of optical components (e.g., end mirrors, beam splitters) is one of the limiting factors of the sensitivity of most of the present interferometric gravitational wave detectors, and it will be limiting in the advanced detectors now being designed. This thermal noise occurs mainly in the optical substrates and their mirror coatings. One possible method for minimizing thermal noise is cooling to cryogenic temperatures, maximizing the mechanical Q and maximizing the eigenfrequencies of the substrate. A new cryogenic apparatus for investigations of the temperature dependency of the Q-factor of several substrate materials down to 4.2 K is proposed. Possible methods of mode excitation and ring down measurement are discussed.
International Nuclear Information System (INIS)
1977-01-01
The TRICO part of the CEA-SEMT system is concerned with the elasticity or plasticity computation of structures made of thin shells and beams. TRICO uses the finite element method for shells and beams. TRICO also allows the dynamic computing of structures: search for eigenmodes and eigenfrequencies or response to any sinusoidal excitation, response to time dependent loads (direct integration) in elasticity or plasticity. The mechanical structures can offer any shape and be composed of a number of materials. A special effort has been put on data input (read without any format), the data being arranged in optional commands with a precise physical sense corresponding to an order for the program. A dynamic control of the memory allows the size of the program to be adapted to that the problem to be processed. Results are printed on listing, or many be described on a magnetic tape [fr
International Nuclear Information System (INIS)
Castagnetti, D
2012-01-01
An important issue in the field of energy harvesting through piezoelectric materials is the design of simple and efficient structures which are multi-frequency in the ambient vibration range. This paper deals with the experimental assessment of four fractal-inspired multi-frequency structures for piezoelectric energy harvesting. These structures, thin plates of square shape, were proposed in a previous work by the author and their modal response numerically analysed. The present work has two aims. First, to assess the modal response of these structures through an experimental investigation. Second, to evaluate, through computational simulation, the performance of a piezoelectric converter relying on one of these fractal-inspired structures. The four fractal-inspired structures are examined in the range between 0 and 100 Hz, with regard to both eigenfrequencies and eigenmodes. In the same frequency range, the modal response and power output of the piezoelectric converter are investigated. (paper)
Establishing a link between vehicular PM sources and PM measurements in urban street canyons.
Eisner, Alfred D; Richmond-Bryant, Jennifer; Wiener, Russell W; Hahn, Intaek; Drake-Richman, Zora E; Ellenson, William D
2009-12-01
The Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study, conducted in Brooklyn, NY, USA, in 2005, was designed with multiple goals in mind, two of which were contaminant source characterization and street canyon transport and dispersion monitoring. In the portion of the study described here, synchronized wind velocity and azimuth as well as particulate matter (PM) concentrations at multiple locations along 33rd Street were used to determine the feasibility of using traffic emissions in a complex urban topography as a sole tracer for studying urban contaminant transport. We demonstrate in this paper that it is possible to link downwind concentrations of contaminants in an urban street canyon to the vehicular traffic cycle using Eigen-frequency analysis. In addition, multivariable circular histograms are used to establish directional frequency maxima for wind velocity and contaminant concentration.
ERDBEBEN, Structure Displacements and Forces Under Earthquake Conditions
International Nuclear Information System (INIS)
Brandhuber, F.
1977-01-01
1 - Nature of physical problem solved: ERDBEBEN calculates the displacements and forces of a structure, excited by an earthquake. 2 - Method of solution: The mathematical method is the 'response spectrum modal analysis'. Before calculation, the user of ERDBEBEN has to idealize the structure with finite elements and to calculate its eigenfrequencies with the program NASTRAN (level 15). The superposition of the Eigen-forms will be done by the 'root mean square method'. 3 - Restrictions on the complexity of the problem: The length of the arrays can be variable (parameter card). Only the number of the different types of finite elements cannot be more than 5. The program calculates the element forces only for beam and spring elements
Spherical space Bessel-Legendre-Fourier mode solver for Maxwell's wave equations
Alzahrani, Mohammed A.; Gauthier, Robert C.
2015-02-01
For spherically symmetric dielectric structures, a basis set composed of Bessel, Legendre and Fourier functions, BLF, are used to cast Maxwell's wave equations into an eigenvalue problem from which the localized modes can be determined. The steps leading to the eigenmatrix are reviewed and techniques used to reduce the order of matrix and tune the computations for particular mode types are detailed. The BLF basis functions are used to expand the electric and magnetic fields as well as the inverse relative dielectric profile. Similar to the common plane wave expansion technique, the BLF matrix returns the eigen-frequencies and eigenvectors, but in BLF only steady states, non-propagated, are obtained. The technique is first applied to a air filled spherical structure with perfectly conducting outer surface and then to a spherical microsphere located in air. Results are compared published values were possible.
Performance Study of Diagonally Segmented Piezoelectric Vibration Energy Harvester
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae Eun [Catholic Univ. of Daegu, Daegu (Korea, Republic of)
2013-08-15
This study proposes a piezoelectric vibration energy harvester composed of two diagonally segmented energy harvesting units. An auxiliary structural unit is attached to the tip of a host structural unit cantilevered to a vibrating base, where the two components have beam axes in opposite directions from each other and matched short-circuit resonant frequencies. Contrary to the usual observations in two resonant frequency-matched structures, the proposed structure shows little eigenfrequency separation and yields a mode sequence change between the first two modes. These lead to maximum power generation around a specific frequency. By using commercial finite element software, it is shown that the magnitude of the output power from the proposed vibration energy harvester can be substantially improved in comparison with those from conventional cantilevered energy harvesters with the same footprint area and magnitude of a tip mass.
The Coefficient of the Voltage Induced Frequency Shift Measurement on a Quartz Tuning Fork
Directory of Open Access Journals (Sweden)
Yubin Hou
2014-11-01
Full Text Available We have measured the coefficient of the voltage induced frequency shift (VIFS of a 32.768 KHz quartz tuning fork. Three vibration modes were studied: one prong oscillating, two prongs oscillating in the same direction, and two prongs oscillating in opposite directions. They all showed a parabolic dependence of the eigen-frequency shift on the bias voltage applied across the fork, due to the voltage-induced internal stress, which varies as the fork oscillates. The average coefficient of the VIFS effect is as low as several hundred nano-Hz per millivolt, implying that fast-response voltage-controlled oscillators and phase-locked loops with nano-Hz resolution can be built.
Zaima, Kazunori; Sasaki, Koichi
2016-08-01
We investigated the transient phenomena in a premixed burner flame with the superposition of a pulsed dielectric barrier discharge (DBD). The length of the flame was shortened by the superposition of DBD, indicating the activation of combustion chemical reactions with the help of the plasma. In addition, we observed the modulation of the top position of the unburned gas region and the formations of local minimums in the axial distribution of the optical emission intensity of OH. These experimental results reveal the oscillation of the rates of combustion chemical reactions as a response to the activation by pulsed DBD. The cycle of the oscillation was 0.18-0.2 ms, which could be understood as the eigenfrequency of the plasma-assisted combustion reaction system.
Magnetic elliptical polarization of Schumann resonances
International Nuclear Information System (INIS)
Sentman, D.D.
1987-01-01
Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours. 16 references
Directory of Open Access Journals (Sweden)
Florian Pielmeier
2014-04-01
Full Text Available In frequency modulation atomic force microscopy (FM-AFM the stability of the eigenfrequency of the force sensor is of key importance for highest precision force measurements. Here, we study the influence of temperature changes on the resonance frequency of force sensors made of quartz, in a temperature range from 4.8–48 K. The sensors are based on the qPlus and length extensional principle. The frequency variation with temperature T for all sensors is negative up to 30 K and on the order of 1 ppm/K, up to 13 K, where a distinct kink appears, it is linear. Furthermore, we characterize a new type of miniaturized qPlus sensor and confirm the theoretically predicted reduction in detector noise.
Core rotational dynamics and geological events
Greff-Lefftz; Legros
1999-11-26
A study of Earth's fluid core oscillations induced by lunar-solar tidal forces, together with tidal secular deceleration of Earth's axial rotation, shows that the rotational eigenfrequency of the fluid core and some solar tidal waves were in resonance around 3.0 x 10(9), 1.8 x 10(9), and 3 x 10(8) years ago. The associated viscomagnetic frictional power at the core boundaries may be converted into heat and would destabilize the D" thermal layer, leading to the generation of deep-mantle plumes, and would also increase the temperature at the fluid core boundaries, perturbing the core dynamo process. Such phenomena could account for large-scale episodes of continental crust formation, the generation of flood basalts, and abrupt changes in geomagnetic reversal frequency.
Free vibration of complex systems of shells of revolution
International Nuclear Information System (INIS)
Markov, P.
1987-01-01
Simplified relations are presented for shells of revolution and the finite difference energy method is described as is its numerical application to the problems of the mechanics of the shells of revolution of a complex and branched meridian, used in the BOSOR4 program. Also presented are two examples of calculating the free vibration of systems of shells of revolution using the said program. Both problems stemmed from the needs of SKODA, Energeticke Strojirenstvi. The first concerns the free vibration of the system of WWER-440 reactor vessels, approximating its internals. The second concerns the eigenfrequencies and corresponding shapes of the vibrations of the DK3 diagnostic assembly which was designed and manufactured for improved knowledge of events taking place in the reactor core during different operating modes. (author). 7 figs., 2 tabs., 7 refs
A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates
Directory of Open Access Journals (Sweden)
Fufei Liu
2017-01-01
Full Text Available To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7–20 Hz range.
Dynamics of the Vacuum and Casimir Analogs to the Hydrogen Atom
White, Harold; Vera, Jerry; Bailey, Paul; March, Paul; Lawrence, Tim; Sylvester, Andre; Brady, David
2015-01-01
This paper will discuss the current viewpoint of the vacuum state and explore the idea of a "natural" vacuum as opposed to immutable, non-degradable vacuum. This concept will be explored for all primary quantum numbers to show consistency with observation at the level of Bohr theory. A comparison with the Casimir force per unit area will be made, and an explicit function for the spatial variation of the vacuum density around the atomic nucleus will be derived. This explicit function will be numerically modeled using the industry multi-physics tool, COMSOL(trademark), and the eigenfrequencies for the n = 1 to n = 7 states will be found and compared to expectation.
Modeling TAE Response To Nonlinear Drives
Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin
2012-10-01
Experiment has detected the Toroidal Alfven Eigenmodes (TAE) with signals at twice the eigenfrequency.These harmonic modes arise from the second order perturbation in amplitude of the MHD equation for the linear modes that are driven the energetic particle free energy. The structure of TAE in realistic geometry can be calculated by generalizing the linear numerical solver (AEGIS package). We have have inserted all the nonlinear MHD source terms, where are quadratic in the linear amplitudes, into AEGIS code. We then invert the linear MHD equation at the second harmonic frequency. The ratio of amplitudes of the first and second harmonic terms are used to determine the internal field amplitude. The spatial structure of energy and density distribution are investigated. The results can be directly employed to compare with experiments and determine the Alfven wave amplitude in the plasma region.
Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing
2014-11-17
Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.
Acoustic emission by self-organising effects of micro-hollow cathode discharges
Kotschate, Daniel; Gaal, Mate; Kersten, Holger
2018-04-01
We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investigated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well.
Semiclassical approach to giant resonances of rotating nuclei
International Nuclear Information System (INIS)
Winter, J.
1983-01-01
Quadrupole and isovector dipole resonances of rotating nuclei are investigated in the frame-work of Vlasov equations transformed to a rotating system of reference, which are based on the time-dependent Hartree-method for schematic forces. The parameter free model of the self-consistent vibrating harmonic oscillator potential for the quadrupole mode is extended to a coupling to rotation, which also includes large-amplitude behaviour. A generalization to an exactly solvable two-liquid model describing the isovector mode is established; for rotating nuclei Hilton's explicit result for the eigenfrequencies is obtained. The advantage of using the concept of the classical kinetic momentum in a rotating system also in quantum-mechanical descriptions is demonstrated. It completes the standard transformation of density matrices by a time-odd part realized in a phase-factor and permits a more direct interpretation of rotation effects in terms of the classical forces of inertia. (author)
International Nuclear Information System (INIS)
1999-01-01
Within the research programme on Benchmark studies of seismic analysis of WWER type reactors the blind pre-analysis must be prepared for the main building complex of Paks NPP, based on given excitations derived from explosion tests. The aim of the investigation was to validate different idealization concepts (mathematical models for the idealization of the structures and the soil) as well as investigation procedures (time domain and frequency domain analysis) and finally the software tools by comparing dynamic properties (eigenfrequencies, eigenmodes, modal values) and structural response results (time histories and response spectra). This report contains results of the blind pre-analysis performed by using three dimensional idealization of the main building complex (reactor building, turbine house, galleries) by means of time and frequency domian calculation procedures
Mode structure and continuum damping of high-n toroidal Alfven eigenmodes
International Nuclear Information System (INIS)
Rosenbluth, M.N.; Berk, H.L.; Van Dam, J.W.; Lindberg, D.M.
1992-02-01
An asymptotic theory is described for calculating the mode structure and continuum damping of short wave-length toroidal Alfven eigenmodes (TAE). The formalism somewhat resembles the treatment used for describing low-frequency toroidal modes with singular structure at a rational surface, where an inner solution, which for the TAE mode has toroidal coupling, is matched to an outer toroidally uncoupled solution. A three-term recursion relation among coupled poloidal harmonic amplitudes is obtained, whose solution gives the structure of the global wavefunction and the complex eigenfrequency, including continuum damping. Both analytic and numerical solutions are presented. The magnitude of the damping is essential for determining the thresholds for instability driven by the spatial gradients of energetic particles (e.g., neutral beam-injected ions or fusion-product alpha particles) contained in a tokamak plasma
Energy Technology Data Exchange (ETDEWEB)
Buckenmaier, Kai
2010-06-09
. For the measurements at 0.5 K a model of low to intermediate damping results in a much better agreement with the measurements. It was also tried to reach the regime, where the escape process is dominated by macroscopic quantum tunneling. During this thesis first hints of the macroscopic quantum tunneling of fractional vortices were observed. Beside the measurements of the activation energy, the resonant escape of {rho} vortices was investigated. As mentioned before, {rho} vortices are pinned at the discontinuity. They can be deformed and so they can oscillate around there equilibrium position with a characteristic eigenfrequency. By applying an AC current, with the vortex's eigenfrequency, the escape process is resonantly enhanced. Spectroscopic investigations of the resonant activation are successfully realized for a single vortex and a two-vortex molecule. In vortex molecules, vortex coupling results in an eigenfrequency splitting and the dependency of the vortex configuration can be observed. Here, a parallel and an antiparallel configuration is possible. Due to the coupling of the two vortices, a splitting of the eigenfrequency occurs, corresponding to an in and an out-of phase oscillation mode. The lowest mode has been measured as a function of the applied bias current and the coupling strength. Whereas the next higher mode could only be measured for a large distance between the two vortices and a small frequency splitting. (orig.)
Fractional flux quanta in Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Goldobin, E.; Buckenmaier, K.; Gaber, T.; Kemmler, M.; Pfeiffer, J.; Koelle, D.; Kleiner, R. [Physikalisches Inst. - Experimentalphysik II, Univ. Tuebingen (Germany); Weides, M.; Kohlstedt, H. [Center of Nanoelectronic Systems for Information Technology (CNI), Research Centre Juelich (Germany); Siegel, M. [Inst. fuer Mikro- und Nanoelektronische Systeme, Univ. Karlsruhe (Germany)
2007-07-01
Fractional Josephson vortices may appear in the so-called 0-{kappa} Josephson junctions ({kappa} is an arbitrary number) and carry magnetic flux {phi}, which is a fraction of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. Their properties are very different from the usual integer fluxons: they are pinned, and often represent the ground state of the system with spontaneous circulating supercurrent. They behave as well controlled macroscopic spins and can be used to construct bits, qubits, tunable photonic crystals and to study the (quantum) physics of spin systems. In this talk we discuss recent advances in 0-{pi} junction technology and present recent experimental results: evidence of the spontaneous flux in the ground state, spectroscopy of the fractional vortex eigenfrequencies and observation of dynamics effects related to the flipping of the fractional vortices. (orig.)
Magnetization dynamics induced by Rashba effect in a Permalloy nanodisk
Energy Technology Data Exchange (ETDEWEB)
Li, Huanan; Hua, Zhong, E-mail: jiyonghnli@126.com; Li, Dongfei
2017-02-15
Magnetic vortex dynamics mediated by spin-polarized ac current of different amplitudes and frequencies are investigated by micromagnetic simulations in a system lacking structure inversion symmetry. Micromagnetic calculations reveal that the critical current density required to induce vortex core reversal may be decreased to below 10{sup 10} A m{sup −2} due to strong transverse magnetic field by Rashba effect. We also find the spin torque of ac current plays a trivial role in magnetic vortex dynamics in a broken inversion symmetry system when the current density is on the order of 10{sup 10} A m{sup −2} and the current with frequency close to the vortex eigenfrequency is the most efficient for reversal.
Energy Technology Data Exchange (ETDEWEB)
Frolov, A. A., E-mail: frolov@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)
2016-12-15
A theory of generation of terahertz radiation under laser–cluster interaction, developed earlier for an overdense cluster plasma [A. A. Frolov, Plasma Phys. Rep. 42. 637 (2016)], is generalized for the case of arbitrary electron density. The spectral composition of radiation is shown to substantially depend on the density of free electrons in the cluster. For an underdense cluster plasma, there is a sharp peak in the terahertz spectrum at the frequency of the quadrupole mode of a plasma sphere. As the electron density increases to supercritical values, this spectral line vanishes and a broad maximum at the frequency comparable with the reciprocal of the laser pulse duration appears in the spectrum. The dependence of the total energy of terahertz radiation on the density of free electrons is analyzed. The radiation yield is shown to increase significantly under resonance conditions, when the laser frequency is close to the eigenfrequency of the dipole or quadrupole mode of a plasma sphere.
Computational performance of Free Mesh Method applied to continuum mechanics problems
YAGAWA, Genki
2011-01-01
The free mesh method (FMM) is a kind of the meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, or a node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm. The aim of the present paper is to review some unique numerical solutions of fluid and solid mechanics by employing FMM as well as the Enriched Free Mesh Method (EFMM), which is a new version of FMM, including compressible flow and sounding mechanism in air-reed instruments as applications to fluid mechanics, and automatic remeshing for slow crack growth, dynamic behavior of solid as well as large-scale Eigen-frequency of engine block as applications to solid mechanics. PMID:21558753
Numerical analysis and experimental investigation of modalproperties for the gearbox in wind turbine
Institute of Scientific and Technical Information of China (English)
Pengxing; YI; Peng; HUANG; Tielin; SHI
2016-01-01
Wind turbine gearbox （WTG）, which functionsas an accelerator, ensures theof wind turbine systems.performance and service lifeThis paper examines thedistinctive modal properties of WTGs through finiteelement （FE） and experimental modal analyses. Thestudy is performed in two parts. First, a whole systemmodel is developed to investigate the first 10 modalfrequencies and mode shapes of WTG using flexible multi-body modeling techniques. Given the complex structureand operating conditions of WTG, this study applies springelements to the model and quantifies how the beatings andgear pair interactions affect the dynamic characteristics ofWTGs. Second, the FE modal results are validated throughexperimental modal analyses of a 1.5 WM WTG using thefrequency response function method of single pointexcitation and multi-point response. The natural frequen-cies from the FE and experimental modal analyses showfavorable agreement and reveal that the characteristicfrequency of the studied gearbox avoids its eigen-frequency very well.
The splitting of giant multipole states of deformed nuclei
International Nuclear Information System (INIS)
Suzuki, T.; Rowe, D.J.
1977-01-01
A vibrating potential model is applied to deformed nuclei with a deformed harmonic oscillator potential in order to discuss the splitting of isoscalar giant quadrupole states. Eigenfrequencies of the collective states are estimated to be √2ω(1 - delta/3), √2ω(1 - delta/6) and √2ω(1 + delta/3) for K = 0 + ,1 + and 2 + modes, respectively. The splitting of isovector dipole and isovector quadrupole states is also studied according to a schematic model as proposed by Bohr and Mottelson. It is shown that isovector dipole states are split, as in a hydrodynamic model, while isovector quadrupole states with the same scaling factors as those of isocalar quadrupole modes. (Auth.)
The origin of the Vogel-Fulcher law near the liquid-glass transition
International Nuclear Information System (INIS)
Kitamura, T.
1999-01-01
Taking into account the scattering processes due to random eigenfrequencies and random hopping matrices, we calculate the correlation functions of density fluctuations associated with the particle-hole pairs in the intraband and interband. The correlation functions for the intraband yield sound velocity (proportional to the mean atomic velocity) and diffusion (equal to the relaxation time of atoms multiplied by square of the sound velocity). Those for the interband yield phonons and viscosity (equal to the Maxwell relaxation time multiplied by square of the phonon velocity). The relaxation times and the transport coefficients are governed by the Vogel-Fulcher law through the hopping matrices. Phonons exist in both phases, but sound disappears below the freezing point. The Stokes' law between diffusion and viscosity holds at higher temperatures, but breaks at lower temperatures. (Copyright (c) 1999 Elsevier Science B.V.., Amsterdam. All rights reserved.)
Flow stabilization with active hydrodynamic cloaks.
Urzhumov, Yaroslav A; Smith, David R
2012-11-01
We demonstrate that fluid flow cloaking solutions, based on active hydrodynamic metamaterials, exist for two-dimensional flows past a cylinder in a wide range of Reynolds numbers (Re's), up to approximately 200. Within the framework of the classical Brinkman equation for homogenized porous flow, we demonstrate using two different methods that such cloaked flows can be dynamically stable for Re's in the range of 5-119. The first highly efficient method is based on a linearization of the Brinkman-Navier-Stokes equation and finding the eigenfrequencies of the least stable eigenperturbations; the second method is a direct numerical integration in the time domain. We show that, by suppressing the von Kármán vortex street in the weakly turbulent wake, porous flow cloaks can raise the critical Reynolds number up to about 120 or five times greater than for a bare uncloaked cylinder.
Interior and exterior resonances in acoustic scattering. pt. 1 - spherical targets
International Nuclear Information System (INIS)
Gaunaurd, G.C.; Tanglis, E.; Uberall, H.; Brill, D.
1983-01-01
In acoustic scattering from elastic objects, resonance features appear in the returned echo at frequencies at which the object's eigenfrequencies are located, which are explained by the excitation of 'interior' creeping waves. Corresponding resonance terms may be split off from the total scattering amplitude, leaving behind an apparently nonresonant background amplitude. This is demonstrated here for scatterers of spherical geometry and in a companion paper also for scatterers of arbitrary geometry, by using the T-matrix approach. For the case of near-impenetrable spheres, it is subsequently shown that the background amplitude can be split further into specularly reflected contributions, plus highly attenuated resonance terms which are explained by the excitation of 'exterior' (Franz-type) creeping waves. The singularity structure of the scattering function is shown mathematically, by using the R-matrix approach of the nuclear-scattering theory, as that of a meromorphic function 'without' any additional 'entire function' (as had been postulated by the singularity expansion method)
Toroidal effects on drift wave turbulence
Energy Technology Data Exchange (ETDEWEB)
LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.
1992-09-23
The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling.
Resistive effects on helicity-wave current drive generated by Alfven waves in tokamak plasmas
International Nuclear Information System (INIS)
Bruma, C.; Cuperman, S.; Komoshvili, K.
1997-01-01
This work is concerned with the investigation of non-ideal (resistive) MHD effects on the excitation of Alfven waves by externally launched fast-mode waves, in simulated tokamak plasmas; both continuum range, CR ({ω Alf (r)} min Alf (r)} max ) and discrete range, DR, where global Alfven eigenmodes, GAEs (ω Alf (r)} min ) exist, are considered. (Here, ω Alf (r) ≡ ω Alf [n(r), B 0 (r)] is an eigenfrequency of the shear Alfven wave). For this, a cylindrical current carrying plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is used. Toroidicity effects are simulated by adopting for the axial equilibrium magnetic field component a suitable radial profile; shear and finite relative poloidal magnetic field are properly accounted for. A dielectric tensor appropriate to the physical conditions considered in this paper is derived and presented. (author)
Opportunities for shear energy scaling in bulk acoustic wave resonators.
Jose, Sumy; Hueting, Raymond J E
2014-10-01
An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.
International Nuclear Information System (INIS)
Langner, A.; Sahu, D.; George, T.F.
1988-01-01
In the heavy-fermion superconductor U/sub 1-//sub x/Th/sub x/Be/sub 13/, superconducting states coexist for thorium concentrations 0 ≤ x ≤ 0.06. Assuming s-wave and d-wave symmetries for these states, we derive a Ginzburg-Landau free-energy expression which couples s- and d-wave states and is rotationally invariant, in contrast to the free-energy expression proposed by P. Kumar and P. Woelfle [Phys. Rev. Lett. 59, 1954 (1987)]. We discuss in detail the consequences that follow from our free-energy relation. In particular, we predict that in the above system there are two eigenfrequencies associated with the dynamics of phase oscillations (internal Josephson effect) which are characteristic of the s-wave and d-wave states
Thermal and mechanical damping of solar p-modes
International Nuclear Information System (INIS)
Goldreich, P.; Kumar, P.
1991-01-01
Nonadiabatic effects associated with the transfer of energy and with turbulent stresses add small imaginary parts, ω-i(1) and ω-i(2), to solar p-mode eigenfrequencies. Numerical calculations have shown that these quite different processes make comparable contributions to ω-i at frequencies well below the acoustic cutoff at ω-ac. Analytic expressions are derived which reveal the connection between ω-i(1) and ω-i(2). The estimates yield ω-i proportional to omega exp 8 for omega much less than omega-ac in good agreement with the numerical calculations. However, the observed line width is proportional to omega exp 4.2 at low frequencies. It is suspected that there is an unmodeled component of perturbed convective energy transport or of turbulent viscosity that makes an important contribution to ω-i at omega much less than ω-ac. 8 refs
Stability of anisotropic beams with space charge
International Nuclear Information System (INIS)
Hofmann, I.
1997-07-01
We calculate coherent frequencies and stability properties of anisotropic or ''non-equipartitioned'' beams with different focusing constants and emittances in the two transverse directions. Based on the self-consistent Vlasov-Poisson equations the dispersion relations of transverse multipole oscillations with quadrupolar, sextupolar and octupolar symmetry are solved numerically. The eigenfrequencies give the coherent space charge tune shift for linear or nonlinear resonances in circular accelerators. We find that for sufficiently large energy anisotropy some of the eigenmodes become unstable in the space-charge-dominated regime. The properties of these anisotropy instabilities are used to show that ''non-equipartitioned'' beams can be tolerated in high-current linear accelerators. It is only in beams with strongly space-charge-depressed betatron tunes where harmful instabilities leading to emittance exchange should be expected. (orig.)
Resonant behavior of a fractional oscillator with fluctuating frequency
Soika, Erkki; Mankin, Romi; Ainsaar, Ain
2010-01-01
The long-time behavior of the first moment for the output signal of a fractional oscillator with fluctuating frequency subjected to an external periodic force is considered. Colored fluctuations of the oscillator eigenfrequency are modeled as a dichotomous noise. The viscoelastic type friction kernel with memory is assumed as a power-law function of time. Using the Shapiro-Loginov formula, exact expressions for the response to an external periodic field and for the complex susceptibility are presented. On the basis of the exact formulas it is demonstrated that interplay of colored noise and memory can generate a variety of cooperation effects, such as multiresonances versus the driving frequency and the friction coefficient as well as stochastic resonance versus noise parameters. The necessary and sufficient conditions for the cooperation effects are also discussed. Particularly, two different critical memory exponents have been found, which mark dynamical transitions in the behavior of the system.
Tube bundle vibrations in transversal flow
International Nuclear Information System (INIS)
Gibert, R.J.; Sagner, M.
1978-01-01
This study gives important information concerning characteristic parameters about lock-in and whirling instability phenomena, in the case of tube arrays. The work is mainly an experimental one though models are also developed: 1) an equilateral pitch bundle (p=1,5 D with D=tube diameter) is tested. Tube damping (epsilon) and first eigenfrequency (f), flow velocity are explored in a large domain. Vibratory level of the tubes are measured and critical points are ploted on the fluidelastic parameters diagram. Several bundles with various usual pitches and arrangements (in line or staggered) are tested. Critical velocities are measured and the whirling instability characteristic coefficient is tabulated. A complementary experiment is made on tube rows with various pitches. This gives valuable informations concerning the look-in domain in VR and A'R diagram. Furthermore this puts in evidence the important effect of a frequency difference between two adjacent tubes on the whirling critical velocity
Mainaud Durand, H; Griffet, S; Kemppinen, J; Leuxe, R; Sosin, M
2011-01-01
The CLIC main beam quadrupoles need to be prealigned within 17 um rms with respect to a straight reference line along a sliding window of 200 m. A readjustment system based on eccentric cam movers, which will provide stiffness to the support assembly, is being studied. The cam movers were qualified on a 1 degree of freedom (DOF) test setup, where a repeatability of adjustment below 1um was measured along their whole range. This paper presents the 5 DOF mock-up, built for the validation of the eccentric cam movers, as well as the first results of tests carried out: resolution of displacement along the whole range, measurements of the support eigenfrequencies.
Lackner, F; Collette, C; Mainaud Durand, H; Hauviller, C; Kemppinen, J; Leuxe, R
2010-01-01
CLIC (Compact Linear Collider) is a study for a future electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities of today's particle accelerators. The demanding transverse and vertical beam sizes and emittance specifications are resulting in stringent alignment and a nanometre stability requirement. In the current feasibility study, the main beam quadrupole magnets have to be actively pre-aligned with a precision of 1 µm in 5 degrees of freedom (d.o.f.) before being mechanically stabilized to the nm scale above 1 Hz. This contribution describes the approach of performing this active pre-alignment based on an eccentric cam system. In order to limit the amplification of the vibration sources at resonant frequencies a sufficiently high Eigenfrequency is required. Therefore the contact region between cam and support was optimized for adequate stiffness based on the Hertzian theory. Furthermore, practical tests performed on a single degree of freedom mock-up wil...
International Nuclear Information System (INIS)
Buckenmaier, Kai
2010-01-01
results in a much better agreement with the measurements. It was also tried to reach the regime, where the escape process is dominated by macroscopic quantum tunneling. During this thesis first hints of the macroscopic quantum tunneling of fractional vortices were observed. Beside the measurements of the activation energy, the resonant escape of ρ vortices was investigated. As mentioned before, ρ vortices are pinned at the discontinuity. They can be deformed and so they can oscillate around there equilibrium position with a characteristic eigenfrequency. By applying an AC current, with the vortex's eigenfrequency, the escape process is resonantly enhanced. Spectroscopic investigations of the resonant activation are successfully realized for a single vortex and a two-vortex molecule. In vortex molecules, vortex coupling results in an eigenfrequency splitting and the dependency of the vortex configuration can be observed. Here, a parallel and an antiparallel configuration is possible. Due to the coupling of the two vortices, a splitting of the eigenfrequency occurs, corresponding to an in and an out-of phase oscillation mode. The lowest mode has been measured as a function of the applied bias current and the coupling strength. Whereas the next higher mode could only be measured for a large distance between the two vortices and a small frequency splitting. (orig.)
Usage of modal synthesis method with condensation in rotor
Directory of Open Access Journals (Sweden)
Zeman V.
2008-11-01
Full Text Available The paper deals with mathematical modelling of vibration and modal analysis of rotors composed of a flexible shaft and several flexible disks. The shaft is modelled as a one dimensional continuum whereon flexible disks modelled as a three dimensional continuum are rigid mounted to shaft. The presented approach allows to introduce continuously distributed centrifugal and gyroscopic effects. The finite element method was used for shaft and disks discretization. The modelling of such flexible multi-body rotors with large DOF number is based on the system decomposition into subsystems and on the modal synthesis method with condensation. Lower vibration mode shapes of the mutually uncoupled and non-rotating subsystems are used for creation of the rotor condensed mathematical model. An influence of the different level of a rotor condensation model on the accuracy of calculated eigenfrequencies and eigenvectors is discussed.
DEFF Research Database (Denmark)
A. Kristensen, Anders Schmidt; Damkilde, Lars
2007-01-01
. A way to solve the initial design problem namely finding a form can be solved by so-called topology optimization. The idea is to define a design region and an amount of material. The loads and supports are also fidefined, and the algorithm finds the optimal material distribution. The objective function...... dictates the form, and the designer can choose e.g. maximum stiness, maximum allowable stresses or maximum lowest eigenfrequency. The result of the topology optimization is a relatively coarse map of material layout. This design can be transferred to a CAD system and given the necessary geometrically...... refinements, and then remeshed and reanalysed in other to secure that the design requirements are met correctly. The output of standard topology optimization has seldom well-defined, sharp contours leaving the designer with a tedious interpretation, which often results in less optimal structures. In the paper...
Control of magnetic vortex polarity by the phase difference between voltage signals
Cui, Huanqing; Cai, Li; Yang, Xiaokuo; Wang, Sen; Zhang, Mingliang; Li, Cheng; Feng, Chaowen
2018-02-01
Using micromagnetic simulations, we investigate the voltage control of magnetic vortex polarity based on a designed multiferroic heterostructure that contains two separate piezoelectric films beneath a magnetostrictive nanodisk. The results show that controllable switching of vortex polarity can be achieved by proper modulation of the phase difference between two sinusoidal voltage pulses V1 and V2, which are applied to the two separate piezoelectric films, respectively. The frequencies of V1 and V2 are set at the gyrotropic eigenfrequency fG of the nanodisk, and the vortex polarity switching is completed via the nucleation-annihilation process of the vortex-antivortex pair. Our findings provide an additional effective means for ultralow power switching of the magnetic vortex, which lays the foundation for voltage-controlled vortex random access memory.
Identification of material properties of sandwich structure with piezoelectric patches
Directory of Open Access Journals (Sweden)
Zemčík R.
2008-11-01
Full Text Available The work focuses on light-weight sandwich structures made of carbon-epoxy skins and foam core which have unique bending stiffness compared to conventional materials. The skins are manufactured by vacuum autoclave technology from unidirectional prepregs and the sandwich is then glued together. The resulting material properties of the structure usually differ from those provided by manufacturer or even those obtained from experimental tests on separate materials, which makes computational models unreliable. Therefore, the properties are identified using the combination of experimental analysis of the sandwich with attached piezoelectric transducer and corresponding static and modal finite element analyses. Simple mathematical optimization with repetitive finite element solution is used. The model is then verified by transient analysis when the piezoelectric patch is excited by harmonic signals covering the first two eigen-frequencies and the induced oscillations are measured by laser sensor.
International Nuclear Information System (INIS)
Uryu, Mitsuru; Terada, Shuji; Shinohara, Takaharu; Yamazaki, Toshihiko; Nakayama, Kazuhiko; Kondo, Toshinari; Hosoya, Hisashi
1997-10-01
The Tokai reprocessing facility buildings are constituted by a lower foundation, vibration controlling layers, and upper structure. At the vibration controlling layer, a laminated rubber aiming support of the building load and extension of the eigenfrequency and a damper aiming absorption of earthquake energy are provided. Of course, the facility buildings are directly supported at the arenaceous shale (Taga Layer) of the Miocene in the Neogene confirmed to the stablest ground, as well the buildings with high vibration resistant importance in Japan. This report shows that when the vibration controlling structure is adopted for the reprocessing facility buildings where such high vibration resistance is required, reduction of input acceleration for equipments and pipings can be achieved and the earthquake resistant safety can also be maintained with sufficient tolerance and reliability. (G.K.)
Generator dynamics in aeroelastic analysis and simulations
DEFF Research Database (Denmark)
Larsen, Torben J.; Hansen, Morten Hartvig; Iov, F.
2003-01-01
This report contains a description of a dynamic model for a doubly-fed induction generator. The model has physical input parameters (voltage, resistance, reactance etc.) and can be used to calculate rotor and stator currents, hence active and reactivepower. A perturbation method has been used...... to reduce the original generator model equations to a set of equations which can be solved with the same time steps as a typical aeroelastic code. The method is used to separate the fast transients of the modelfrom the slow variations and deduce a reduced order expression for the slow part. Dynamic effects...... of the first order terms in the model as well as the influence on drive train eigenfrequencies and damping has been investigated. Load response during timesimulation of wind turbine response have been compared to simulations with a traditional static generator model based entirely on the slip angle. A 2 MW...
Vibron Solitons and Soliton-Induced Infrared Spectra of Crystalline Acetanilide
Takeno, S.
1986-01-01
Red-shifted infrared spectra at low temperatures of amide I (C=O stretching) vibrations of crystalline acetanilide measured by Careri et al. are shown to be due to vibron solitons, which are nonlinearity-induced localized modes of vibrons arising from their nonlinear interactions with optic-type phonons. A nonlinear eigenvalue equation giving the eigenfrequency of stationary solitons is solved approximately by introducing lattice Green's functions, and the obtained result is in good agreement with the experimental result. Inclusion of interactions with acoustic phonons yields the Debye-Waller factor in the zero-phonon line spectrum of vibron solitons, in a manner analogous to the case of impurity-induced localized harmonic phonon modes in alkali halides.
Lumped model for rotational modes in phononic crystals
Peng, Pai
2012-10-16
We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model provides a physical interpretation of the origin of the rotational modes, reveals the important role played by the rotational motion in determining the band structure, and reproduces the dispersion relations in a certain range. The model increases the possibilities of manipulating wave propagation in phononic crystals. In particular, expressions derived from the model for eigenfrequencies at high symmetry points unambiguously predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of accidental degeneracy of the rotational and dipolar modes.
Anchorage fatigue. Vermoeiing in verankeringen
Energy Technology Data Exchange (ETDEWEB)
Liemberg, B J
1983-01-01
Modern wind turbines are equipped with slender and slack masts with low eigenfrequency, fastened with anchor bolts to a concrete foundation. As a result of wind loads and the behavior of the turbine these joints are subjected to strongly and irregularly fluctuating forces. This aspect of wind turbine design, mostly somewhat neglected, is investigated by the Sima Stevin laboratory at Delft. Static tests and even normal dynamic tests with loads fluctuating with constant amplitude and frequency are not in accordance with the facts and consequently of limited value. S-N diagrams are made up and discussed. Knowledge of stress concentration lines is necessary for further computations and tests. The case of bolted joints anchored in concrete and under strain of tension (the critical point for these constructions) is elaborated in detail.
Lumped model for rotational modes in phononic crystals
Peng, Pai; Mei, Jun; Wu, Ying
2012-01-01
We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model provides a physical interpretation of the origin of the rotational modes, reveals the important role played by the rotational motion in determining the band structure, and reproduces the dispersion relations in a certain range. The model increases the possibilities of manipulating wave propagation in phononic crystals. In particular, expressions derived from the model for eigenfrequencies at high symmetry points unambiguously predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of accidental degeneracy of the rotational and dipolar modes.
Energy Technology Data Exchange (ETDEWEB)
Hoegger, B A; Schneider, H; Vaucher, B G [Fribourg Univ. (Switzerland). Inst. de Physique
1982-06-30
Magnetoacoustic oscillations are excited in an inhomogeneous magnetized plasma cylinder by amplitude modulation of a high frequency field (2.45 GHz, 3 kW PEP). The antenna is a long helical slow-wave structure. The axial field-oscillating with the modulation frequency (2/15 MHz) is monitored by means of electrostatically shielded magnetic probes. Resonance behaviour is observed around the eigenfrequency of the plasma cylinder. Power absorption is measured with diamagnetic loop technique. The plasma parameters are: mean electron density 3x10/sup 12/ cm/sup -3/, electron temperature 3.5 eV, magnetic field 1.6 kG, filling gas 7x10/sup -4/ Torr argon.
Directory of Open Access Journals (Sweden)
Mao Liu
2015-01-01
Full Text Available A new two-dimensional locally resonant phononic crystal with microcavity structure is proposed. The acoustic wave band gap characteristics of this new structure are studied using finite element method. At the same time, the corresponding displacement eigenmodes of the band edges of the lowest band gap and the transmission spectrum are calculated. The results proved that phononic crystals with microcavity structure exhibited complete band gaps in low-frequency range. The eigenfrequency of the lower edge of the first gap is lower than no microcavity structure. However, for no microcavity structure type of quadrilateral phononic crystal plate, the second band gap disappeared and the frequency range of the first band gap is relatively narrow. The main reason for appearing low-frequency band gaps is that the proposed phononic crystal introduced the local resonant microcavity structure. This study provides a good support for engineering application such as low-frequency vibration attenuation and noise control.
DMTO – a method for Discrete Material and Thickness Optimization of laminated composite structures
DEFF Research Database (Denmark)
Sørensen, Søren Nørgaard; Sørensen, Rene; Lund, Erik
2014-01-01
This paper presents a gradient based topology optimization method for Discrete Material and Thickness Optimization of laminated composite structures, labelled the DMTOmethod. The capabilities of the proposed method are demonstrated on mass minimization, subject to constraints on the structural...... criteria; buckling load factors, eigenfrequencies, and limited displacements. Furthermore, common design guidelines or rules, referred to as manufacturing constraints, are included explicitly in the optimization problem as series of linear inequalities. The material selection and thickness variation...... to manufacturability. The results will thus give insight into the relation between potential weight saving and design complexity. The results show that the DMTO method is capable of solving the problems robustly with only few intermediate valued design variables....
Bridges for Pedestrians with Random Parameters using the Stochastic Finite Elements Analysis
Szafran, J.; Kamiński, M.
2017-02-01
The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.
Bridges for Pedestrians with Random Parameters using the Stochastic Finite Elements Analysis
Directory of Open Access Journals (Sweden)
Szafran J.
2017-02-01
Full Text Available The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.
DEFF Research Database (Denmark)
Kumpf, C.; Müller, A.; Weigand, W.
2003-01-01
The atomic structure and lattice dynamics of epitaxial BeTe(001) thin films are derived from surface x-ray diffraction and Raman spectroscopy. On the Te-rich BeTe(001) surface [1 (1) over bar0]-oriented Te dimers are identified. They cause a (2 X 1) superstructure and induce a pronounced buckling...... in the underlying Te layer. The Be-rich surface exhibits a (4 X 1) periodicity with alternating Te dimers and Te-Be-Te trimers. A vibration eigenfrequency of 165 cm(-1) is observed for the Te-rich surface, while eigenmodes at 157 and 188 cm(-1) are found for the Be-rich surface. The experimentally derived atomic...... geometry and the vibration modes are in very good agreement with the results of density functional theory calculations....
Linear kinetic stability of a field-reversed configuration with two ion components
International Nuclear Information System (INIS)
Staudenmeier, J.L.; Barnes, D.C.; Lewis, H.R.
1990-01-01
It has been suggested that a small fraction of non-axis encircling high energy ions may be sufficient to stabilize the tilt mode in a large s FRC. Experimental alteration of the ion distribution function in this manner might be achieved by rf heating the tail of the distribution function or by neutral beam injection. A linear Vlasov-fluid eigenfunction-eigenfrequency approach was used to investigate possible stabilization of the tilt mode by a high energy component. The ion distribution function is modeled as the sum of two Maxwellians with separate temperatures and no ion flow velocity. The cold component has a thermal s = 7, where s is the approximate number of ion gyroradii contained between the field null and the separatrix. The temperature ratio of the hot component to the cold component (T H /T T ) was varied from 2 to 100. Global hot particle fractions (n H ) up to ∼ .5 were used in the computations
DEFF Research Database (Denmark)
Theisen, Lukas Roy Svane; Galeazzi, Roberto; Niemann, Hans Henrik
2015-01-01
frequencies. Active lubrication of the journal during operations could enhance the damping and stabilisation characteristics of the sytems, and this could be achieved by means of stabilising controllers. This paper investigates the feasibility of using reduced order models obtained through Grey......-Box identification for the design of stabilising controllers, capable of enabling the active lubrication of the journal. The root locus analysis shows that two different control solutions are feasible for the dampening of the first two eigenfrequencies of the rotor-gas bearing in the horizontal and vertical...... directions. Hardening and softening P-lead controllers are designed based on the models experimentally identified, and salient features of both controllers are discussed. Both controllers are implemented and validated on the physical test rig. Experimental results confirm the validity of the proposed...
Single-atom lasing induced atomic self-trapping
International Nuclear Information System (INIS)
Salzburger, T.; Ritsch, H.
2004-01-01
We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)
Li, Weiwei; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin
2016-06-01
We propose to generate high-power terahertz (THz) radiation from a cylindrical dielectric loaded waveguide (DLW) excited by a direct-current electron beam with the harmonics generation method. The DLW supports a discrete set of modes that can be excited by an electron beam passing through the structure. The interaction of these modes with the co-propagating electron beam results in micro-bunching and the coherent enhancement of the wakefield radiation, which is dominated by the fundamental mode. By properly choosing the parameters of DLW and beam energy, the high order modes can be the harmonics of the fundamental one; thus, high frequency radiation corresponding to the high order modes will benefit from the dominating bunching process at the fundamental eigenfrequency and can also be coherently excited. With the proposed method, high power THz radiation can be obtained with an easily achievable electron beam and a large DLW structure.
Computational Tools for RF Structure Design
Jensen, E
2004-01-01
The Finite Differences Method and the Finite Element Method are the two principally employed numerical methods in modern RF field simulation programs. The basic ideas behind these methods are explained, with regard to available simulation programs. We then go through a list of characteristic parameters of RF structures, explaining how they can be calculated using these tools. With the help of these parameters, we introduce the frequency-domain and the time-domain calculations, leading to impedances and wake-fields, respectively. Subsequently, we present some readily available computer programs, which are in use for RF structure design, stressing their distinctive features and limitations. One final example benchmarks the precision of different codes for calculating the eigenfrequency and Q of a simple cavity resonator.
Dynamic Soil-Pile Interaction for large diameter monopile foundations
DEFF Research Database (Denmark)
Zania, Varvara
2013-01-01
of the study is to analyse the dynamic interaction of the soil and a single pile embedded in it by accounting for the geometric and stiffness properties of the pile. In doing so, a semi – analytical approach is adopted based on the fundamental solution of horizontal pile vibration by Novak and Nogami (1977...... eigenfrequencies of the soil layer do not affect the soil – pile interaction. The decrease of the eigefrequency of the OWT depends on the aforementioned variation of the dynamic stiffness and the slenderness ratio of the monopile.......Monopile foundations have been used in a large extent to support offshore wind turbines (OWT), being considered as a reliable and cost effective design solution. The accurate estimation of their dynamic response characteristics is essential, since the design of support structures for OWTs has been...
International Nuclear Information System (INIS)
Henestroza, E.; Yu, S.S.; Li, H.
1995-04-01
An inductively detuned traveling wave cavity for the Relativistic Klystron Two Beam Accelerator expected to extract high RF power at 11. 424 GHz for the 1 TeV Center of Mass Next Linear Collider has been designed. Longitudinal beam dynamics studies led to the following requirements on cavity design: (a) Extraction of 360 MW of RF power with RF component of the current being 1.15 kAmps at 11.424 GHz, (b) Inductively detuned traveling wave cavity with wave phase velocity equal to 4/3 the speed of light, (c) Output cavity with appropriate Q ext and eigenfrequency for proper matching. Furthermore, transverse beam dynamics require low shunt impedances to avoid the beam break-up instability. We describe the design effort to meet these criteria based on frequency-domain and time-domain computations using 2D- and 3D- electromagnetic codes
Infrared-active optical phonons in LiFePO4 single crystals
Stanislavchuk, T. N.; Middlemiss, D. S.; Syzdek, J. S.; Janssen, Y.; Basistyy, R.; Sirenko, A. A.; Khalifah, P. G.; Grey, C. P.; Kostecki, R.
2017-07-01
Infrared-active optical phonons were studied in olivine LiFePO4 oriented single crystals by means of both rotating analyzer and rotating compensator spectroscopic ellipsometry in the spectral range between 50 and 1400 cm-1. The eigenfrequencies, oscillator strengths, and broadenings of the phonon modes were determined from fits of the anisotropic harmonic oscillator model to the data. Optical phonons in a heterosite FePO4 crystal were measured from the delithiated ab-surface of the LiFePO4 crystal and compared with the phonon modes of the latter. Good agreement was found between experimental data and the results of solid-state hybrid density functional theory calculations for the phonon modes in both LiFePO4 and FePO4.
On multiple crack detection in beam structures
Energy Technology Data Exchange (ETDEWEB)
Moradi, Shapour; Kargozarfard, Mohammad [Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)
2013-01-15
This study presents an inverse procedure to identify multiple cracks in beams using an evolutionary algorithm. By considering the crack detection procedure as an optimization problem, an objective function can be constructed based on the change of the eigenfrequencies and some strain energy parameters. Each crack is modeled by a rotational spring. The changes in natural frequencies due to the presence of the cracks are related to a damage index vector. Then, the bees algorithm, a swarm-based evolutionary optimization technique, is used to optimize the objective function and find the damage index vector, whose positive components show the number and position of the cracks. A second objective function is also optimized to find the crack depths. Several experimental studies on cracked cantilever beams are conducted to ensure the integrity of the proposed method. The results show that the number of cracks as well as their sizes and locations can be predicted well through this method.
DEFF Research Database (Denmark)
Akhmatov, Vladislav; Knudsen, H.
2002-01-01
. Because the shaft system gives a soft coupling between the rotating wind turbine and the induction generator, the large-scale wind farm cannot always be reduced to one-machine equivalent and use of multi-machine equivalents will be necessary for reaching accuracy of the investigation results....... This will be in cases with irregular wind distribution over the wind farm area. The torsion mode of the shaft systems of large wind turbines is commonly in the range of 1-2 Hz and close to typical values of the electric power grid eigenfrequencies why there is a risk of oscillation between the wind turbines...... and the entire network. All these phenomena are different compared to previous experiences with modelling of conventional power plants with synchronous generators and stiff shaft systems....
An improved phase-controlled system for superconducting low-velocity accelerating structures
International Nuclear Information System (INIS)
Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.
1989-01-01
Microphonic fluctuations in the RF eigenfrequency of supeconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the RF energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the RF power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs
An improved phase-control system for superconducting low-velocity accelerating structures
Energy Technology Data Exchange (ETDEWEB)
Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.
1989-01-01
Microphonic fluctuations in the rf eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the rf phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the rf energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the rf power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs.
International Nuclear Information System (INIS)
Santiago, M.A.M.
1987-01-01
A review of the problem of growth rate calculations for tearing modes in field reversed Θ-pinches is presented. Its shown that in the several experimental data, the methods used for analysing the plasma with a global finite resistivity has a better quantitative agreement than the boundary layer analysis. A comparative study taking into account the m = 1 resistive kindmode and the m = 2 mode, which is more dangerous for the survey of rotational instabilities of the plasma column is done. It can see that the imaginary component of the eigenfrequency, which determinates the growth rate, has a good agreement with the experimental data and the real component is different from the rotational frequency as it has been measured in some experiments. (author) [pt
Toroidal effects on drift wave turbulence
International Nuclear Information System (INIS)
LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.
1992-01-01
The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling
Effect of distributive mass of spring on power flow in engineering test
Sheng, Meiping; Wang, Ting; Wang, Minqing; Wang, Xiao; Zhao, Xuan
2018-06-01
Mass of spring is always neglected in theoretical and simulative analysis, while it may be a significance in practical engineering. This paper is concerned with the distributive mass of a steel spring which is used as an isolator to simulate isolation performance of a water pipe in a heating system. Theoretical derivation of distributive mass effect of steel spring on vibration is presented, and multiple eigenfrequencies are obtained, which manifest that distributive mass results in extra modes and complex impedance properties. Furthermore, numerical simulation visually shows several anti-resonances of the steel spring corresponding to impedance and power flow curves. When anti-resonances emerge, the spring collects large energy which may cause damage and unexpected consequences in practical engineering and needs to be avoided. Finally, experimental tests are conducted and results show consistency with that of the simulation of the spring with distributive mass.
Quasinormal-Mode Expansion of the Scattering Matrix
Directory of Open Access Journals (Sweden)
Filippo Alpeggiani
2017-06-01
Full Text Available It is well known that the quasinormal modes (or resonant states of photonic structures can be associated with the poles of the scattering matrix of the system in the complex-frequency plane. In this work, the inverse problem, i.e., the reconstruction of the scattering matrix from the knowledge of the quasinormal modes, is addressed. We develop a general and scalable quasinormal-mode expansion of the scattering matrix, requiring only the complex eigenfrequencies and the far-field properties of the eigenmodes. The theory is validated by applying it to illustrative nanophotonic systems with multiple overlapping electromagnetic modes. The examples demonstrate that our theory provides an accurate first-principles prediction of the scattering properties, without the need for postulating ad hoc nonresonant channels.
Quark mass correction to the string potential
International Nuclear Information System (INIS)
Lambiase, G.; Nesterenko, V.V.
1995-01-01
A consistent method for calculating the interquark potential generated by the relativistic string with massive ends is proposed. In this approach the interquark potential in the model of the Nambu-Goto string with point-like masses at its ends is calculated. At first the calculation is done in the one-loop approximation and then the variational estimation is performed. The quark mass correction results in decreasing the critical distance (deconfinement radius). When quark mass decreases the critical distance also decreases. For obtaining a finite result under summation over eigenfrequencies of the Nambu-Goto string with massive ends a suitable mode-by-mode subtraction is proposed. This renormalization procedure proves to be completely unique. In the framework of the developed approach the one-loop interquark potential in the model of the relativistic string with rigidity is also calculated. 34 refs., 2 figs
First observation of spin flips with a single proton stored in a cryogenic Penning trap
International Nuclear Information System (INIS)
Ulmer, Stefan
2011-01-01
In this thesis the very first observation of spin transitions of a single proton stored in a cryogenic double-Penning trap is presented. The experimental observation of spin transitions is based on the continuous Stern-Gerlach effect, which couples the spin of the single trapped proton to its axial eigenfrequency, by means of an inhomogeneous magnetic field. A spin transition causes a change of the axial frequency, which can be measured non-destructively. Due to the tiny magnetic moment of the proton, the direct detection of proton spin-flips is an exceeding challenge. To achieve spin-flip resolution, the proton was stored in the largest magnetic field inhomogeneity, which has ever been superimposed to a Penning trap, and its axial frequency was detected non-destructively. Therefore, superconducting detection systems with ultrahigh-sensitivity were developed, allowing the direct observation of the single trapped proton, as well as the high-precision determination of its eigenfrequencies. Based on novel experimental methods, which were developed in the framework of this thesis, the axial frequency of the particle was stabilized to a level, where the observation of single-proton spin-flips is possible, which was demonstrated. This experimental success is one of the most important steps towards the high-precision determination of the magnetic moment of the free proton. With the very first observation of spin transitions with a single trapped proton, a highly exciting perspective opens. All experimental techniques which were developed in this thesis can be directly applied to the antiproton. Thus, the first high-precision measurement of the magnetic moment of the antiproton becomes possible. This will provide a new high-precision test of the matterantimatter symmetry. (orig.)
Akbari, Kamran; Mišković, Zoran L.; Segui, Silvina; Gervasoni, Juana L.; Arista, Néstor R.
2018-06-01
We analyze the energy loss channels for a fast charged particle traversing a multi-layer graphene (MLG) structure with N layers under normal incidence. Focusing on a terahertz (THz) range of frequencies, and assuming equally doped graphene layers with a large enough separation d between them to neglect interlayer electron hopping, we use the Drude model for two-dimensional conductivity of each layer to describe hybridization of graphene’s Dirac plasmon polaritons (DPPs). Performing a layer decomposition of ohmic energy losses, which include excitation of hybridized DPPs (HDPPs), we have found for N = 3 that the middle HDPP eigenfrequency is not excited in the middle layer due to symmetry constraint, whereas the excitation of the lowest HDPP eigenfrequency produces a Fano resonance in the graphene layer that is first traversed by the charged particle. While the angular distribution of transition radiation emitted in the far field region also shows asymmetry with respect to the traversal order by the incident charged particle at supra-THz frequencies, the integrated radiative energy loss is surprisingly independent of both d and N for N ≤ 5, which is explained by a dominant role of the outer graphene layers in transition radiation. We have further found that the integrated ohmic energy loss in optically thin MLG scales as ∝1/N at sub-THz frequencies, which is explained by exposing the role of dissipative processes in graphene at low frequencies. Finally, prominent peaks are observed at supra-THz frequencies in the integrated ohmic energy loss for MLG structures that are not optically thin. The magnitude of those peaks is found to scale with N for N ≥ 2, while their shape and position replicate the peak in a double-layer graphene (N = 2), which is explained by arguing that plasmon hybridization in such MLG structures is dominated by electromagnetic interaction between the nearest-neighbor graphene layers.
THEORY OF SECULAR CHAOS AND MERCURY'S ORBIT
International Nuclear Information System (INIS)
Lithwick, Yoram; Wu Yanqin
2011-01-01
We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions, which dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple planets. To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities modify the frequencies, and can shift them into and out of resonance with either the planets' eigenfrequencies (forming eccentricity or inclination secular resonances), or with linear combinations of those frequencies (forming mixed high-order secular resonances). The overlap of these nonlinear secular resonances drives secular chaos. We calculate the locations and widths of nonlinear secular resonances, display them together on a newly developed map (the 'map of the mean momenta'), and find good agreement between analytical and numerical results. This map also graphically demonstrates how chaos emerges from overlapping secular resonances. We then apply this newfound understanding to Mercury to elucidate the origin of its orbital chaos. We find that since Mercury's two free precession frequencies (in eccentricity and inclination) lie within ∼25% of two other eigenfrequencies in the solar system (those of the Jupiter-dominated eccentricity mode and the Venus-dominated inclination mode), secular resonances involving these four modes overlap and cause Mercury's chaos. We confirm this with N-body integrations by showing that a slew of these resonant angles alternately librate and circulate. Our new analytical understanding allows us to calculate the criterion for Mercury to become chaotic: Jupiter and Venus must have eccentricity and inclination of a few percent. The timescale for Mercury's chaotic diffusion depends sensitively on the forcing. As it is, Mercury appears to be perched on the threshold for chaos, with an instability timescale comparable to the lifetime of the solar system.
Vibration energy harvesting in railway tunnels with a wireless sensor node application
Energy Technology Data Exchange (ETDEWEB)
Wischke, Martin
2012-07-01
Vibration harvesting is a promising concept to prolong the lifetime of batterypowered stand-alone systems, or even to enable their energy-autonomy. This thesis focuses on ambient vibrations converted by electromechanical transducers into electricity. The final goal is energy scavenging from train-induced vibrations in railway tunnels. This is achieved via the development of a suitable harvester for this environment and the practical demonstration of a vibrationpowered wireless sensor node (WSN). At the beginning of this thesis, extensive vibration measurements were performed in several traffic tunnels. The obtained unique data set formed the basis for the design and test of several harvesters. The railway sleeper was chosen as usable harvester location. A shock-resistant double-side suspended piezoelectric cantilever was developed. Several cantilevers with different eigenfrequencies are combined in an array, creating a robust harvester with a broad bandwidth. A field test of 7 days in the Loetschbergbasis-tunnel verified that, on average the sufficient energy for powering a virtual wireless sensor node was scavenged. For application in a real WSN, the harvester array was scaled up to 10 cantilevers. The power management for the sensor node was developed concurrently. The central component is a power switch that monitors the energy level in the system's storage capacitor and only triggers the wireless interface when sufficient energy is available. Combined with a train detection circuit, the presented energy-autonomous WSN reliably reports every passing vehicle. In addition to the development of an energy-autonomous fully integrated WSN, this work investigates nonlinear properties of PZT ceramics. Consideration of the elastostriction and the electrostriction enables a more precises prediction of the tip displacement of a piezoelectric cantilever actuator. Further, the elastostriction is exploited to modify the resonance frequency of a bimorph cantilever. Basing
INTRODUCING CAFein, A NEW COMPUTATIONAL TOOL FOR STELLAR PULSATIONS AND DYNAMIC TIDES
International Nuclear Information System (INIS)
Valsecchi, F.; Farr, W. M.; Willems, B.; Rasio, F. A.; Kalogera, V.
2013-01-01
Here we present CAFein, a new computational tool for investigating radiative dissipation of dynamic tides in close binaries and of non-adiabatic, non-radial stellar oscillations in isolated stars in the linear regime. For the latter, CAFein computes the non-adiabatic eigenfrequencies and eigenfunctions of detailed stellar models. The code is based on the so-called Riccati method, a numerical algorithm that has been successfully applied to a variety of stellar pulsators, and which does not suffer from the major drawbacks of commonly used shooting and relaxation schemes. Here we present an extension of the Riccati method to investigate dynamic tides in close binaries. We demonstrate CAFein's capabilities as a stellar pulsation code both in the adiabatic and non-adiabatic regimes, by reproducing previously published eigenfrequencies of a polytrope, and by successfully identifying the unstable modes of a stellar model in the β Cephei/SPB region of the Hertzsprung-Russell diagram. Finally, we verify CAFein's behavior in the dynamic tides regime by investigating the effects of dynamic tides on the eigenfunctions and orbital and spin evolution of massive main sequence stars in eccentric binaries, and of hot Jupiter host stars. The plethora of asteroseismic data provided by NASA's Kepler satellite, some of which include the direct detection of tidally excited stellar oscillations, make CAFein quite timely. Furthermore, the increasing number of observed short-period detached double white dwarfs (WDs) and the observed orbital decay in the tightest of such binaries open up a new possibility of investigating WD interiors through the effects of tides on their orbital evolution
Influence of air humidity on polymeric microresonators
International Nuclear Information System (INIS)
Schmid, S; Kühne, S; Hierold, C
2009-01-01
The influence of air humidity on polymeric microresonators is investigated by means of three different resonator types. SU-8 microbeams, SU-8 microstrings and a silicon micromirror with SU-8 hinges are exposed to relative humidities between 3% and 60%. The shifts of the resonant frequencies as a function of the relative humidity (RH) are explained based on mechanical models which are extended with water absorption models in polymer materials. The dominant effect causing the resonant frequency change is evaluated for each structure type. The eigenfrequency of the microstrings and the micromirror in the out-of-plane mode, which both mainly are defined by the pre-stress of the polymeric structures, are found to be highly sensitive to changes of air humidity. The humidity-induced (hygrometric) volume expansion reversibly reduces the pre-stress which results in relative frequency changes of up to 0.78%/%RH for the microstrings. A maximum coefficient of humidity-induced volume expansion for SU-8 of α hyg = 52.3 ppm/%RH is evaluated by fitting the data with the analytical model. It was found that microstrings that were stored at 150 °C over 150 h are more moisture sensitive compared to structures that were stored at room temperature. For the SU-8 microbeams and the micromirror in the tilt mode, the eigenfrequency is mainly defined by the modulus of the polymer material. The measured relative resonant frequency changes were below 1% for the given RH range. For low RH values, antiplasticization is observed (the modulus increases) followed by a plasticization for increasing RH values
Directory of Open Access Journals (Sweden)
S. R. Hebden
2005-07-01
Full Text Available Resonance features of the Ionospheric Alfvén Resonator (IAR can be observed in pulsation magnetometer data from Sodankylä, Finland using dynamic spectra visualizations. IAR resonance features were identified on 13 of 30 days in October 1998, with resonance structures lasting for 3 or more hours over 10 intervals. The diurnal evolution of the harmonic features was quantified for these 10 intervals using a manual cursor-clicking technique. The resonance features displayed strong linear relationships between harmonic frequency and harmonic number for all of the time intervals studied, enabling a homogeneous cavity model for the IAR to be adopted to interpret the data. This enabled the diurnal variation of the effective size of the IAR to be obtained for each of the 10 time intervals. The average effective size was found to be 530 km, and to have an average variation of 32% over each time interval: small compared to the average variation in Alfvén velocity of 61%. Thus the diurnal variation of the harmonics is chiefly caused by the changing plasma density within the IAR due to changing insolation. This study confirms Odzimek (2004 that the dominating factor affecting the IAR eigenfrequencies is the variation in the Alfvén velocity at the F-layer ion-density peak, with the changing IAR size affecting the IAR eigenfrequencies to a smaller extent. Another IAR parameter was derived from the analysis of the IAR resonance features associated with the phase matching structure of the standing waves in the IAR. This parameter varied over the time intervals studied by 20% on average, possibly due to changing ionospheric conductivity. Keywords. Ionosphere (Auroral ionosphere;Wave propagation – Radio science (Electromagnetic noise and interference
Spatial Variations of Poloidal and Toroidal Mode Field Line Resonances Observed by MMS
Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Anderson, B. J.; Kepko, L.; Nakamura, R.; Plaschke, F.; Torbert, R. B.
2017-12-01
Field line resonances (FLRs) are magnetosphere's responses to solar wind forcing and internal instabilities generated by solar wind-magnetospheric interactions. They are standing waves along the Earth's magnetic field lines oscillating in either poloidal or toroidal modes. The two types of waves have their unique frequency characteristics. The eigenfrequency of FLRs is determined by the length of the field line and the plasma density, and thus gradually changes with L. For toroidal mode oscillations with magnetic field perturbations in the azimuthal direction, ideal MHD predicts that each field line oscillates independently with its own eigenfrequency. For poloidal mode waves with field lines oscillating radially, their frequency cannot change with L easily as L shells need to oscillate in sync to avoid efficient damping due to phase mixing. Observations, mainly during quiet times, indeed show that poloidal mode waves often exhibit nearly constant frequency across L shells. Our recent observations, on the other hand, reveal a clear L-dependent frequency trend for a long lasting storm-time poloidal wave event, indicating the wave can maintain its power with changing frequencies for an extended period [Le et al., 2017]. The spatial variation of the frequency shows discrete spatial structures. The frequency remains constant within each discrete structure that spans about 1 REalong L, and changes discretely. We present a follow-up study to investigate spatial variations of wave frequencies using the Wigner-Ville distribution. We examine both poloidal and toroidal waves under different geomagnetic conditions using multipoint observations from MMS, and compare their frequency and occurrence characteristics for insights into their generation mechanisms. Reference: Le, G., et al. (2017), Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm, Geophys. Res. Lett., 44, 3456-3464, doi:10.1002/2017GL073048.
Estimation of the mechanical properties of the eye through the study of its vibrational modes.
Directory of Open Access Journals (Sweden)
M Á Aloy
Full Text Available Measuring the eye's mechanical properties in vivo and with minimally invasive techniques can be the key for individualized solutions to a number of eye pathologies. The development of such techniques largely relies on a computational modelling of the eyeball and, it optimally requires the synergic interplay between experimentation and numerical simulation. In Astrophysics and Geophysics the remote measurement of structural properties of the systems of their realm is performed on the basis of (helio-seismic techniques. As a biomechanical system, the eyeball possesses normal vibrational modes encompassing rich information about its structure and mechanical properties. However, the integral analysis of the eyeball vibrational modes has not been performed yet. Here we develop a new finite difference method to compute both the spheroidal and, specially, the toroidal eigenfrequencies of the human eye. Using this numerical model, we show that the vibrational eigenfrequencies of the human eye fall in the interval 100 Hz-10 MHz. We find that compressible vibrational modes may release a trace on high frequency changes of the intraocular pressure, while incompressible normal modes could be registered analyzing the scattering pattern that the motions of the vitreous humour leave on the retina. Existing contact lenses with embebed devices operating at high sampling frequency could be used to register the microfluctuations of the eyeball shape we obtain. We advance that an inverse problem to obtain the mechanical properties of a given eye (e.g., Young's modulus, Poisson ratio measuring its normal frequencies is doable. These measurements can be done using non-invasive techniques, opening very interesting perspectives to estimate the mechanical properties of eyes in vivo. Future research might relate various ocular pathologies with anomalies in measured vibrational frequencies of the eye.
Principles of fluid-structure interaction
International Nuclear Information System (INIS)
Schumann, U.; Kernforschungszentrum Karlsruhe G.m.b.H.
1981-01-01
Fluid-structure interaction (FSI) is an important physical phenomenon which has attracted significant attention in nuclear reactor safety analysis. Here, simple explanations of the principle effects of FSI are given and illustrated by reference to numerical and experimental results. First, a very simple fluid-structure model is introduced which consists of a spring supported piston closing a fluid filled rigid pipe. The motion of the piston and the fluid is approximately described by one degree of freedom, respectively. Depending on the load frequency and material parameters one finds that the coupled system is characterized by virtual masses and stiffnesses or by the inverse properties which are termed virtual fluidities and compressibilities. Thus the two parts interact as if they are connected in series or in parallel. The two eigenfrequencies of the coupled system enclose the eigenfrequencies of the individual fluid and structure parts. Second, the great importance of Hamilton's principle for derivation of the coupled equations of motion is emphasized. From this principle upper and lower bounds for the effective density of a heterogeneous fluid-solid mixture are deduced. Continuum models for such mixtures contain a virtual density tensor. Finally, we discuss FSI for the case of a loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR) in the first (subcooled) blowdown period. Here, the fluid imposes pressure loadings on internal structures like the core barrel and the motion of these structures influences the fluid motion. Recent experimental results obtained at the HDR are compared with numerical predictions of the FLUX 2-code. The fair agreement confirms that we have well understood the principal effects of FSI. (orig.) [de
Intermediate and high level earthquakes testing at the HDR - overview, objectives, results
International Nuclear Information System (INIS)
Jehlicka, P.; Malcher, L.
1981-01-01
The main objective of these earthquake investigations is the verification of calculation methods relating to structure dynamics which are used for the seismic design of nuclear power plants. Structures analyzed by tests and precalculations were the reactor building, the reactor pressure vessel, two large-diameter piping systems and one of the flood water tanks. Excitation methods used were eccentric mass shakers, snapback devices, explosives and solid propellant rockets. Some of the tests involving excitation of the building by shakers and two of the blast tests were carried out with the reactor pressure vessel and the pipes under operating conditions. The precalculations using both linear and nonlinear methods were made by German industry groups, independent experts groups and international partners. Soil-structure interaction can be determined accurately by means of simplified methods using frequency dependent soil springs. The reduction in the eigenfrequencies of the building when the load was increased by a factor of 25 could be predicted. Comparison of the results obtained for the vibrational behaviour of the building show that a simplification to the rotationally symmetric shell model appears to be a reasonable compromise between simple beam models and sophisticated 3D-shell models. The strong decrease in eigenfrequencies observed in the experiments during the transition from empty to partly filled reactor pressure vessel, and the resultant change of the mode shapes was perfectly reflected if the virtual mass of water was introduced in the calculation. Damping values evaluated from the measurements demonstrate that for some structures damping can remain low, even at levels of response leading to local yielding, while for other structures damping was very high at a rather low level of response. It appears that the use of generalized damping values for the seismic analysis of mechanical and structural systems is not appropriate. (orig./HP)
A Combined Structural and Electromechanical FE Approach for Industrial Ultrasonic Devices Design
Schorderet, Alain; Prenleloup, Alain; Colla, Enrico
2011-05-01
Ultrasonic assistance is widely used in manufacturing, both for conventional (e.g. grinding, drilling) and non-conventional (e.g. EDM) processes. Ultrasonic machining is also used as a stand alone process for instance for micro-drilling. Industrial application of these processes requires increasingly efficient and accurate development tools to predict the performance of the ultrasonic device: the so-called sonotrode and the piezo-transducer. This electromechanical system consists of a structural part and of a piezo-electrical part (actuator). In this paper, we show how to combine two simulation softwares—for stuctures and electromechanical devices—to perform a complete design analysis and optimization of a sonotrode for ultrasonic drilling applications. The usual design criteria are the eigenfrequencies of the desired vibrational modes. In addition, during the optimization phase, one also needs to consider the maximum achievable displacement for a given applied voltage. Therefore, one must be able to predict the electromechanical behavior of the integrated piezo-structure system, in order to define, adapt and optimize the electric power supply as well as the control strategy (search, tracking of the eigenfrequency). In this procedure, numerical modelling follows a two-step approach, by means of a solid mechanics FE code (ABAQUS) and of an electromechanical simulation software (ATILA). The example presented illustrates the approach and describes the obtained results for the development of an industrial sonotrode system dedicated to ultrasonic micro-drilling of ceramics. The 3D model of the sonotrode serves as input for generating the FE mesh in ABAQUS and this mesh is then translated into an input file for ATILA. ABAQUS results are used to perform the first optimization step in order to obtain a sonotrode design leading to the requested modal behaviour—eigen-frequency and corresponding dynamic amplification. The second step aims at evaluating the dynamic
Extract relation between structures of proton and nuclei
International Nuclear Information System (INIS)
Gareev, E.A.; Gareeva, G.; )
2001-01-01
Full text: Schroedinger wrote that an interaction between microscopic physical objects is controlled by specific resonance laws. According to these laws, the difference between two eigenenergies (eigenfrequencies) in one system should be equal to each other: hv 1 -hv' 1 =hv 2 -hv' 2 , v 1 -v' 1 =v 2 -v' 2 . Therefore, the eigenfrequencies are additive. In other words, the resonance condition is formulated in the following way: oscillations participating in an interaction process should be constituents of the same frequency. Thus, we come to the conclusion: in a whole interacting self-consistent wave system the hierarchy of frequencies is established So, the sum of all partial frequencies is an integral of motion. Any interaction in a microscopic hierarchic wave system exhibits the resonance character. Due to the above-said the corresponding partial motions are determinate. As the resonance condition arises from the fundamental energy conservation law, the rhythms and synchronization of the majority of phenomena to be observed are the reflection of the universal property of self-organization of the Universe. The Huygens synchronization principle is substantiated at the microscopic level. We come to the conclusion that the proton stability can be explained by the assumption: channel motions in a proton are exactly synchronous. Therefore proton represent coherent synchronized states The aim this paper is to establish some bridge between structures of proton and nuclei as the further extension our phenomenological analysis. The parameter-free formula for spectra of nuclei has been obtained which establish some bridge between the structures of a proton and nuclei. The energies of nuclear states have been systematically analyzed by using all available experimental data. The interest of our results is not only in their closeness to the experimental data, but also in the derivation of formula from the fundamental law of Nature: the conservation law of energy
Li, Xintao; Zhang, Weiwei; Gao, Chuanqiang
2018-03-01
Wake-induced vibration (WIV) contains rich and complex phenomena due to the flow interference between cylinders. The aim of the present study is to gain physical insight into the intrinsic dynamics of WIV via linear stability analysis (LSA) of the fluid-structure interaction (FSI) system. A reduced-order-model-based linear dynamic model, combined with the direct computational fluid dynamics/computational structural dynamics simulation method, is adopted to investigate WIV in two identical tandem cylinders at low Re. The spacing ratio L/D, with L as the center-to-center distance and D as the diameter of cylinders, is selected as 2.0 to consider the effect of proximity flow interference. Results show that extensive WIV along with the vortex shedding could occur at subcritical Re conditions due to the instability of one coupled mode (i.e., coupled mode I, CM-I) of the FSI system. The eigenfrequency of CM-I transfers smoothly from close to the reduced natural frequency of structure to the eigenfrequency of uncoupled wake mode as the reduced velocity U* increases. Thus, CM-I characterizes as the structure mode (SM) at low U*, while it characterizes as the wake mode (WM) at large U*. Mode conversion of CM-I is the primary cause of the "frequency transition" phenomenon observed in WIV responses. Furthermore, LSA indicates that there exists a critical mass ratio mcr*, below which no upper instability boundary of CM-I exists (Uup p e r *→∞ ). The unbounded instability of CM-I ultimately leads to the "infinite WIV" phenomenon. The neutral stability boundaries for WIV in the (Re, U*) plane are determined through LSA. It is shown that the lowest Re possible for WIV regarding the present configuration is R el o w e s t≈34 . LSA accurately captures the dynamics of WIV at subcritical Re and reveals that it is essentially a fluid-elastic instability problem. This work lays a good foundation for the investigation of WIV at supercritical high Re and gives enlightenment to the
A multi-frequency fatigue testing method for wind turbine rotor blades
Eder, M. A.; Belloni, F.; Tesauro, A.; Hanis, T.
2017-02-01
Rotor blades are among the most delicate components of modern wind turbines. Reliability is a crucial aspect, since blades shall ideally remain free of failure under ultra-high cycle loading conditions throughout their designated lifetime of 20-25 years. Full-scale blade tests are the most accurate means to experimentally simulate damage evolution under operating conditions, and are therefore used to demonstrate that a blade type fulfils the reliability requirements to an acceptable degree of confidence. The state-of-the-art testing method for rotor blades in industry is based on resonance excitation where typically a rotating mass excites the blade close to its first natural frequency. During operation the blade response due to external forcing is governed by a weighted combination of its eigenmodes. Current test methodologies which only utilise the lowest eigenfrequency induce a fictitious damage where additional tuning masses are required to recover the desired damage distribution. Even with the commonly adopted amplitude upscaling technique fatigue tests remain a time-consuming and costly endeavour. The application of tuning masses increases the complexity of the problem by lowering the natural frequency of the blade and therefore increasing the testing time. The novel method presented in this paper aims at shortening the duration of the state-of-the-art fatigue testing method by simultaneously exciting the blade with a combination of two or more eigenfrequencies. Taking advantage of the different shapes of the excited eigenmodes, the actual spatial damage distribution can be more realistically simulated in the tests by tuning the excitation force amplitudes rather than adding tuning masses. This implies that in portions of the blade the lowest mode is governing the damage whereas in others higher modes contribute more significantly due to their higher cycle count. A numerical feasibility study based on a publicly available large utility rotor blade is used to
Pintér, Balázs; Erdélyi, R.
2018-01-01
Solar fundamental (f) acoustic mode oscillations are investigated analytically in a magnetohydrodynamic (MHD) model. The model consists of three layers in planar geometry, representing the solar interior, the magnetic atmosphere, and a transitional layer sandwiched between them. Since we focus on the fundamental mode here, we assume the plasma is incompressible. A horizontal, canopy-like, magnetic field is introduced to the atmosphere, in which degenerated slow MHD waves can exist. The global (f-mode) oscillations can couple to local atmospheric Alfvén waves, resulting, e.g., in a frequency shift of the oscillations. The dispersion relation of the global oscillation mode is derived, and is solved analytically for the thin-transitional layer approximation and for the weak-field approximation. Analytical formulae are also provided for the frequency shifts due to the presence of a thin transitional layer and a weak atmospheric magnetic field. The analytical results generally indicate that, compared to the fundamental value (ω =√{ gk }), the mode frequency is reduced by the presence of an atmosphere by a few per cent. A thin transitional layer reduces the eigen-frequencies further by about an additional hundred microhertz. Finally, a weak atmospheric magnetic field can slightly, by a few percent, increase the frequency of the eigen-mode. Stronger magnetic fields, however, can increase the f-mode frequency by even up to ten per cent, which cannot be seen in observed data. The presence of a magnetic atmosphere in the three-layer model also introduces non-permitted propagation windows in the frequency spectrum; here, f-mode oscillations cannot exist with certain values of the harmonic degree. The eigen-frequencies can be sensitive to the background physical parameters, such as an atmospheric density scale-height or the rate of the plasma density drop at the photosphere. Such information, if ever observed with high-resolution instrumentation and inverted, could help to
Simulation of Vibrations in Real Time Plane Milling with Spindle Speed Correction
Directory of Open Access Journals (Sweden)
I. I. Ivanov
2017-01-01
Full Text Available In milling the hard-to-machine materials vibrations (chatter often arise from the high cutting forces if a technological system is insufficiently rigid.The main way to suppress these vibrations is to increase a stiffness of the mounting system of the tool and the work-piece to be machined. However, sometimes this method doesn’t lead to desirable result because of high values of intrinsic pliability of the tool and the work-piece. Currently, there are more complicated methods to ensure milling process quality. Among them there are three main groups:mathematical simulation of milling process dynamics and computation of processing parameters which provide high quality of machined surface, low level of vibrations and static deflections of a tool and a work-piece;introduction of the active vibration suppression devices into machine tool design; such devices include a vibration sensor, a feedback circuit, and an actuator which induces kinematic or force action on the oscillatory system;control of processing parameters, mainly of rotation frequency for minimizing the amplitudes of vibrations.The paper studies one of the 3rd group methods. There is a suggestion to process a signal of vibrational accelerations in real time and detect a chatter onset. If the chatter has been detected its frequency is to be identified, and the new value of rotation speed is set:where Ω – rotation frequency, rot/s; p – the tool eigenfrequency value identified during processing, Hz; z – mill tooth number; i – positive integer number; ε<1 – small positive parameter. In the current research it is assumed that ε = 0,2.The formula has been chosen because at the rotation frequency axis where tooth pass frequency is slightly less than the eigenfrequency divided by the integer value there are stable zones of dynamics in the milling process.The study shows a developed model of the plane milling dynamics. It includes a dynamic model of the tool, a model of cutting
Upgraded phase control system for superconducting low-velocity accelerating structures
Energy Technology Data Exchange (ETDEWEB)
Added, N [Sao Paulo Univ., SP (Brazil); Clifft, B E; Shepard, K W [Argonne National Lab., IL (United States)
1992-11-01
Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the RF cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 4.2 K resonant cavity with less than 2 W of RF loss into 4.2 K. (Author) 6 refs., 2 figs.
Upgraded phase control system for superconducting low-velocity accelerating structures
International Nuclear Information System (INIS)
Added, N.; Clifft, B.E.; Shepard, K.W.
1992-01-01
Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the RF cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 4.2 K resonant cavity with less than 2 W of RF loss into 4.2 K. (Author) 6 refs., 2 figs
Upgraded phase control system for superconducting low-velocity accelerating structures
International Nuclear Information System (INIS)
Added, N.
1992-01-01
Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K
Tests of a niobium split-ring superconducting heavy ion accelerating structure
International Nuclear Information System (INIS)
Benaroya, R.; Bollinger, L.M.; Jaffey, A.H.; Khoe, T.K.; Olesen, M.C.; Scheibelhut, C.H.; Shepard, K.W.; Wesolowski, W.A.
1976-01-01
A niobium split-ring accelerating structure designed for use in the Argonne superconducting heavy-ion energy booster was successfully tested. The superconducting resonator has a resonant frequency of 97 MHz and an optimum particle velocity β = 0.11. Ultimate performance is expected to be limited by peak surface fields, which in this structure are 4.7 E/sub a/ electric and 170 E/sub a/ (Gauss) magnetic, where E/sub a/ is the effective accelerating gradient in MV/m. The rf losses in two demountable superconducting joints severely limited performance in initial tests. Following independent measurements of the rf loss properties of several types of demountable joints, one demountable joint was eliminated and the other modified. Subsequently, the resonator could be operated continuously at E/sub a/ = 3.6 MV/m (corresponding to an energy gain of 1.3 MeV per charge) with 10W rf input power. Maximum field level was limited by electron loading. The mechanical stability of the resonator under operating conditions is excellent: vibration induced eigenfrequency noise is less than 120 Hz peak to peak, and the radiation pressure induced frequency shift is Δf/f = 1.6 x 10 -6 E/sub a/ 2
Updating of a finite element model of the Cruas 2 cooling tower
International Nuclear Information System (INIS)
Billet, L.
1994-03-01
A method based on modal analysis and inversion of a dynamic FEM model is used to detect changes in the dynamic behavior of nuclear plant cooling towers. Prior to detection, it is necessary to build a representative model of the structure. In this paper are given details about the CRUAS N. 2 cooling tower modelling and the updating procedure used to match the model to on-site measurements. First, were reviewed previous numerical and experimental studies on cooling towers vibrations. We found that the first eigenfrequencies of cooling towers are very sensitive to boundary conditions at the top and the bottom of the structure. Then, we built a beam and plate FEM model of the CRUAS N. 2 cooling tower. The first calculated modes were located in the proper frequency band (0.9 Hz - 1.30 Hz) but not distributed according to the experimental order. We decided to update the numerical model with MADMACS, an updating model software. It was necessary to: - decrease the shell stiffness by 30%; - increase the top ring stiffness by 300%; - modify the boundary conditions at the bottom by taking into account the soil impedance. In order to obtain a difference between the measured and the corresponding calculated frequencies less than 1%. The model was then judged to be realistic enough. (author). 23 figs., 13 refs., 1 annex
International Nuclear Information System (INIS)
Billet, L.
1994-01-01
The Research and Development Division of Electricite de France is developing a surveillance method of cooling towers involving on-site wind-induced measurements. The method is supposed to detect structural damage in the tower. The damage is identified by tuning a finite element model of the tower on experimental mode shapes and eigenfrequencies. The sensitivity of the method was evaluated through numerical tests. First, the dynamic response of a damaged tower was simulated by varying the stiffness of some area of the model shell (from 1 % to 24 % of the total shell area). Second, the structural parameters of the undamaged cooling tower model were updated in order to make the output of the undamaged model as close as possible to the synthetic experimental data. The updating method, based on the minimization of the differences between experimental modal energies and modal energies calculated by the model, did not detect a stiffness change over less than 3 % of the shell area. Such a sensitivity is thought to be insufficient to detect tower cracks which behave like highly localized defaults. (author). 8 refs., 9 figs., 6 tabs
Identification of elastic properties of composite plate
International Nuclear Information System (INIS)
Kovalovs, A; Rucevskis, S
2011-01-01
Composite laminates are used extensively in the aerospace industry, especially for the fabrication of high-performance structures. The determination of stiffness parameters for complex materials, such as fibre-reinforced composites, is much more complicated than for isotropic materials. A conventional way is testing the coupon specimens, which are manufactured by technology similar to that used for the real, large structures. When such a method is used, the question arises of whether the material properties obtained from the coupon tests are the same as those in the large structure. Therefore, the determination of actual material properties for composite laminates using non-destructive evaluation techniques has been widely investigated. A number of various non-destructive evaluation techniques have been proposed for determining the material properties of composite laminates. In the present study, attention is focused on the identification of the elastic properties of laminated plate using vibration test data. The problem associated with vibration testing is converting the measured modal frequencies to elastic constants. A standard method for solving this problem is the use of a numerical-experimental model and optimization techniques. The identification functional represents the gap between the numerical model response and the experimental one. This gap should be minimized, taking into account the side constraints on the design variables (elastic constants). The minimization problem is solved by using non-linear mathematical programming techniques and sensitivity analysis. The results obtained were verified by comparing the experimentally measured eigenfrequencies with the numerical ones obtained by FEM at the point of optima
A simplified method for random vibration analysis of structures with random parameters
International Nuclear Information System (INIS)
Ghienne, Martin; Blanzé, Claude
2016-01-01
Piezoelectric patches with adapted electrical circuits or viscoelastic dissipative materials are two solutions particularly adapted to reduce vibration of light structures. To accurately design these solutions, it is necessary to describe precisely the dynamical behaviour of the structure. It may quickly become computationally intensive to describe robustly this behaviour for a structure with nonlinear phenomena, such as contact or friction for bolted structures, and uncertain variations of its parameters. The aim of this work is to propose a non-intrusive reduced stochastic method to characterize robustly the vibrational response of a structure with random parameters. Our goal is to characterize the eigenspace of linear systems with dynamic properties considered as random variables. This method is based on a separation of random aspects from deterministic aspects and allows us to estimate the first central moments of each random eigenfrequency with a single deterministic finite elements computation. The method is applied to a frame with several Young's moduli modeled as random variables. This example could be expanded to a bolted structure including piezoelectric devices. The method needs to be enhanced when random eigenvalues are closely spaced. An indicator with no additional computational cost is proposed to characterize the ’’proximity” of two random eigenvalues. (paper)
[Inelastic electron scattering from surfaces
International Nuclear Information System (INIS)
1993-01-01
This program is aimed at the quantitative study of surface dynamical processes (vibrational, magnetic excitations) in crystalline slabs, ultrathin-layered materials, and chemisorbed systems on substrates, and of the geometric structure connected to these dynamical excitations. High-resolution electron-energy loss spectroscopy (HREELS) is a powerful probe. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50-300 eV). The analyses has been used to study surfaces of ordered alloys (NiAl). Ab-initio surface lattice dynamical results were combined with phonon-loss cross sections to achieve a more accurate microscopic description. First-principles phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross-section calculations. The combined microscopic approach was used to analyze EELS data of Cu(0001) and Ag(001) at two points. Positron diffraction is discussed as a structural and imaging tool. The relation between geometric structure of a film and its local magnetic properties will be studied in the future, along with other things
Model of a generator end-winding cage; Modelisation d`une cage de developpantes d`alternateur
Energy Technology Data Exchange (ETDEWEB)
Leger, A.C.; Fanton, J.P.; Davies, C.
1994-09-01
This document presents some studies concerning the vibratory characterization of particular structures called: generator end-winding cages. These structures are mainly made up of the endings of armature windings. The question of their good mechanical behaviour is of prime importance, since they are submitted to high electromagnetic efforts during the different electrical ratings encountered during operation. The designer (GEC-Alsthom) and the user (EDF) have both undertaken numerical calculations in order to characterize a given machine, in this case a 600 MW bipolar generator; it appeared interesting to compare such calculations. The models realized respectively by GEC-Alsthom and EDF make use of different techniques and hypotheses. GEC-Alsthom represents the sets of rods and spacers by plates, which properties are determined by a pre-processor. The model is simplified to take into account the existing symmetries. It takes profit of previous experience and aims at a fast utilisation. The EDF model tends to allow a further comprehensive calculation, form the electromagnetic efforts to the determination of local stresses. The whole set of the constituting elements of the structure is modelled by beams, which leads to an important size for the model (21 000 degrees of freedom). The validation performed on the two models has been focused on the comparison between respective results and also with experimental results. Each model provides values for the first eigenfrequencies and the associated modes shapes. (authors). 3 refs., 3 figs., 2 tabs.
Model of a generator end-winding cage
International Nuclear Information System (INIS)
Leger, A.C.; Fanton, J.P.; Davies, C.
1994-09-01
This document presents some studies concerning the vibratory characterization of particular structures called: generator end-winding cages. These structures are mainly made up of the endings of armature windings. The question of their good mechanical behaviour is of prime importance, since they are submitted to high electromagnetic efforts during the different electrical ratings encountered during operation. The designer (GEC-Alsthom) and the user (EDF) have both undertaken numerical calculations in order to characterize a given machine, in this case a 600 MW bipolar generator; it appeared interesting to compare such calculations. The models realized respectively by GEC-Alsthom and EDF make use of different techniques and hypotheses. GEC-Alsthom represents the sets of rods and spacers by plates, which properties are determined by a pre-processor. The model is simplified to take into account the existing symmetries. It takes profit of previous experience and aims at a fast utilisation. The EDF model tends to allow a further comprehensive calculation, form the electromagnetic efforts to the determination of local stresses. The whole set of the constituting elements of the structure is modelled by beams, which leads to an important size for the model (21 000 degrees of freedom). The validation performed on the two models has been focused on the comparison between respective results and also with experimental results. Each model provides values for the first eigenfrequencies and the associated modes shapes. (authors). 3 refs., 3 figs., 2 tabs
Nano-Electromechanical Systems: Displacement Detection and the Mechanical Single Electron Shuttle
Blick, R. H.; Beil, F. W.; Höhberger, E.; Erbe, A.; Weiss, C.
For an introduction to nano-electromechanical systems we present measurements on nanomechanical resonators operating in the radio frequency range. We discuss in detail two different schemes of displacement detection for mechanical resonators, namely conventional reflection measurements of a probing signal and direct detection by capacitive coupling via a gate electrode. For capacitive detection we employ an on-chip preamplifier, which enables direct measurements of the resonator's disp lacement. We observe that the mechanical quality factor of the resonator depends on the detection technique applied, which is verified in model calculations and report on the detection of sub-harmonics. In the second part we extend our investigations to include transport of single electrons through an electron island on the tip of a nanomachined mechanical pendulum. The pendulum is operated by applying a modulating electromagnetic field in the range of 1 - 200 MHz, leading to mechanical oscillations between two laterally integrated source and drain contacts. Forming tunneling barriers the metallic tip shuttles single electrons from source to drain. The resulting tunneling current shows distinct features corresponding to the discrete mechanical eigenfrequencies of the pendulum. We report on measurements covering the temperature range from 300 K down to 4.2 K. The transport properties of the device are compared in detail to model calculations based on a Master-equation approach.
Fast vortex oscillations in a ferrimagnetic disk near the angular momentum compensation point
Kim, Se Kwon; Tserkovnyak, Yaroslav
2017-07-01
We theoretically study the oscillatory dynamics of a vortex core in a ferrimagnetic disk near its angular momentum compensation point, where the spin density vanishes but the magnetization is finite. Due to the finite magnetostatic energy, a ferrimagnetic disk of suitable geometry can support a vortex as a ground state similar to a ferromagnetic disk. In the vicinity of the angular momentum compensation point, the dynamics of the vortex resemble those of an antiferromagnetic vortex, which is described by equations of motion analogous to Newton's second law for the motion of particles. Owing to the antiferromagnetic nature of the dynamics, the vortex oscillation frequency can be an order of magnitude larger than the frequency of a ferromagnetic vortex, amounting to tens of GHz in common transition-metal based alloys. We show that the frequency can be controlled either by applying an external field or by changing the temperature. In particular, the latter property allows us to detect the angular momentum compensation temperature, at which the lowest eigenfrequency attains its maximum, by performing ferromagnetic resonance measurements on the vortex disk. Our work proposes a ferrimagnetic vortex disk as a tunable source of fast magnetic oscillations and a useful platform to study the properties of ferrimagnets.
Characteristics of steady vibration in a rotating hub-beam system
Zhao, Zhen; Liu, Caishan; Ma, Wei
2016-02-01
A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.
Process of cracking in reinforced concrete beams (simulation and experiment
Directory of Open Access Journals (Sweden)
I. N. Shardakov
2016-10-01
Full Text Available The paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and solved using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. A series of sequential quasi-static 4-point bend tests leading to the formation of cracks in a reinforced concrete beam were performed. At each loading step, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. During the first stage the nonconservative process of deformation begins to develope, but has not visible signs. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the ordinary concrete beams and the beams strengthened with a carbon-fiber polymer. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring crack formation and assessing the quality of measures aimed at strengthening concrete structures
MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD
International Nuclear Information System (INIS)
Soler, R.; Oliver, R.; Ballester, J. L.
2009-01-01
Oscillations and propagating waves are commonly seen in high-resolution observations of filament threads, i.e., the fine-structures of solar filaments/prominences. Since the temperature of prominences is typically of the order of 10 4 K, the prominence plasma is only partially ionized. In this paper, we study the effect of neutrals on the wave propagation in a filament thread modeled as a partially ionized homogeneous magnetic flux tube embedded in an homogeneous and fully ionized coronal plasma. Ohmic and ambipolar magnetic diffusion are considered in the basic resistive magnetohydrodynamic (MHD) equations. We numerically compute the eigenfrequencies of kink, slow, and Alfven linear MHD modes and obtain analytical approximations in some cases. We find that the existence of propagating modes is constrained by the presence of critical values of the longitudinal wavenumber. In particular, the lower and upper frequency cutoffs of kink and Alfven waves owe their existence to magnetic diffusion parallel and perpendicular to magnetic field lines, respectively. The slow mode only has a lower frequency cutoff, which is caused by perpendicular magnetic diffusion and is significantly affected by the ionization degree. In addition, ion-neutral collision is the most efficient damping mechanism for short wavelengths, while ohmic diffusion dominates in the long-wavelength regime.
Radial modes of slowly rotating compact stars in the presence of magnetic field
Energy Technology Data Exchange (ETDEWEB)
Panda, N.R. [Institute of Physics, Bhubaneswar (India); Siksha ' O' Anusandhan University, Bhubaneswar (India); Mohanta, K.K. [Rairangpur College, Rairangpur, Odisha (India); Sahu, P.K. [Institute of Physics, Bhubaneswar (India)
2016-09-15
Compact stars are composed of very high-density hadron matter. When the matter is above nuclear matter density, then there is a chance of different phases of matter such as hadron matter to quark matter. There is a possible phase which, having the quark core surrounded by a mixed phase followed by hadronic matter, may be considered as a hybrid phase inside the stars called hybrid star (HS). The star which consists of only u, d and s quarks is called quark star (QS) and the star which has only hadronic matter is called neutron star (NS). For the equation of state (EOS) of hadronic matter, we have considered the Relativistic Mean Field (RMF) theory and we incorporated the effect of strong magnetic fields. For the EOS of the quark phase we use the simple MIT bag model. We have assumed Gaussian parametrization to make the density dependent for both bag pressure in quark matter and magnetic field. We have constructed the intermediate mixed phase by using the Glendenning conjecture. Eigenfrequencies of radial pulsations of slowly rotating magnetized compact stars (NS, QS, HS) are calculated in a general relativistic formalism given by Chandrasekhar and Friedman. We have studied the effect of central density on the square of the frequencies of the compact stars in the presence of zero and strong magnetic field. (orig.)
Multi-Mode Cavity Accelerator Structure
International Nuclear Information System (INIS)
Jiang, Yong; Hirshfield, Jay Leonard
2016-01-01
This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10"-"7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise Δ T. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E_s_u_r"m"a"x< 260 MV/m and pulsed surface heating Δ T"m"a"x< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power - as compared with operation at the same acceleration gradient using only the fundamental mode.
Directory of Open Access Journals (Sweden)
S. Schäfer
2007-05-01
Full Text Available Oscillating magnetic field lines are frequently observed by spacecraft in the terrestrial and other planetary magnetospheres. The CLUSTER mission is a very suitable tool to further study these Alfvén waves as the four CLUSTER spacecraft provide for an opportunity to separate spatial and temporal structures in the terrestrial magnetosphere. Using a large scaled configuration formed by the four spacecraft we are able to detect a poloidal Ultra-Low-Frequency (ULF pulsation of the magnetic and electric field in order to analyze its temporal and spatial structures. For this purpose the measurements are transformed into a specific field line related coordinate system to investigate their specific amplitude pattern depending on the path of the CLUSTER spacecraft across oscillating field lines. These measurements are then compared with modeled spacecraft observations across a localized poloidal wave resonator in the dayside plasmasphere. A detailed investigation of theoretically expected poloidal eigenfrequencies allows us to specify the observed 16 mHz pulsation as a third harmonic oscillation. Based on this we perform a case study providing a clear identification of wave properties such as an spatial scale structure of about 0.67 R_{E}, the azimuthal wave number m≈30, temporal evolution, and energy transport in the detected ULF pulsations.
Disentangling α and β relaxation in orientationally disordered crystals with theory and experiments
Cui, Bingyu; Gebbia, Jonathan F.; Tamarit, Josep-Lluis; Zaccone, Alessio
2018-05-01
We use a microscopically motivated generalized Langevin equation (GLE) approach to link the vibrational density of states (VDOS) to the dielectric response of orientational glasses (OGs). The dielectric function calculated based on the GLE is compared with experimental data for the paradigmatic case of two OGs: freon-112 and freon-113, around and just above Tg. The memory function is related to the integral of the VDOS times a spectral coupling function γ (ωp) , which tells the degree of dynamical coupling between molecular degrees of freedom at different eigenfrequencies. The comparative analysis of the two freons reveals that the appearance of a secondary β relaxation in freon-112 is due to cooperative dynamical coupling in the regime of mesoscopic motions caused by stronger anharmonicity (absent in freon-113) and is associated with the comparatively lower boson peak in the VDOS. The proposed framework brings together all the key aspects of glassy physics (VDOS with the boson peak, dynamical heterogeneity, dissipation, and anharmonicity) into a single model.
Stabilization of axisymmetric liquid bridges through vibration-induced pressure fields.
Haynes, M; Vega, E J; Herrada, M A; Benilov, E S; Montanero, J M
2018-03-01
Previous theoretical studies have indicated that liquid bridges close to the Plateau-Rayleigh instability limit can be stabilized when the upper supporting disk vibrates at a very high frequency and with a very small amplitude. The major effect of the vibration-induced pressure field is to straighten the liquid bridge free surface to compensate for the deformation caused by gravity. As a consequence, the apparent Bond number decreases and the maximum liquid bridge length increases. In this paper, we show experimentally that this procedure can be used to stabilize millimeter liquid bridges in air under normal gravity conditions. The breakup of vibrated liquid bridges is examined experimentally and compared with that produced in absence of vibration. In addition, we analyze numerically the dynamics of axisymmetric liquid bridges far from the Plateau-Rayleigh instability limit by solving the Navier-Stokes equations. We calculate the eigenfrequencies characterizing the linear oscillation modes of vibrated liquid bridges, and determine their stability limits. The breakup process of a vibrated liquid bridge at that stability limit is simulated too. We find qualitative agreement between the numerical predictions for both the stability limits and the breakup process and their experimental counterparts. Finally, we show the applicability of our technique to control the amount of liquid transferred between two solid surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.
Fluid structure interaction in LMFBR cores modelling by an homogenization method
International Nuclear Information System (INIS)
Brochard, D.
1988-01-01
The upper plenum of the internals of PWR, the steam generator bundle, the nuclear reactor core, may be schematically represented by a beam bundle immersed in a fluid. The dynamical study of such a system needs to take into account fluid structure interaction. A refined model at the scale of the tubes can be used but leads to a very difficult problem to solve even on the largest computers. The homogenization method allows to have an approximation of the fluid structure interaction for the global behaviour of the bundle. It consists of replacing the heterogeneous physical medium (tubes and fluid) by an equivalent homogeneous medium whose characteristics are determined from the resolution of a set of problems on the elementary cell. The aim of this paper is to present the main steps of the determination of this equivalent medium in the case of small displacements (acoustic behaviour of the fluid). Then an application to LMFBR core geometry has been realised, which shows the lowering effect on eigenfrequencies due to the fluid. Some comparisons with test results will be presented. 6 refs, 7 figs, 2 tabs
Directory of Open Access Journals (Sweden)
Vincas Benevicius
2013-08-01
Full Text Available Due to their small size, low weight, low cost and low energy consumption, MEMS accelerometers have achieved great commercial success in recent decades. The aim of this research work is to identify a MEMS accelerometer structure for human body dynamics measurements. Photogrammetry was used in order to measure possible maximum accelerations of human body parts and the bandwidth of the digital acceleration signal. As the primary structure the capacitive accelerometer configuration is chosen in such a way that sensing part measures on all three axes as it is 3D accelerometer and sensitivity on each axis is equal. Hill climbing optimization was used to find the structure parameters. Proof-mass displacements were simulated for all the acceleration range that was given by the optimization problem constraints. The final model was constructed in Comsol Multiphysics. Eigenfrequencies were calculated and model’s response was found, when vibration stand displacement data was fed into the model as the base excitation law. Model output comparison with experimental data was conducted for all excitation frequencies used during the experiments.
Energy Technology Data Exchange (ETDEWEB)
Girka, V O; Girka, I O [Kharkiv State Univ. (Ukraine)
1997-12-31
The physical basis is discussed of electronic devices whose operation is based on the beam or dissipative instability of the azimuthal surface waves (ASW). The ASW are electromagnetic surface waves with extraordinary polarization (with field components E{sub r}, E{sub {phi}}, H{sub z}), propagating across the axial external steady magnetic field in the cylindrical metal waveguide with cold plasma filling. The ASW fields are described by Maxwell equations. To solve the problem, the authors used the Fourier method and numerical simulation of the equations obtained. The ASW excitation was examined under conditions of beam and dissipative instabilities due to the electron beam motion. The correction to ASW eigenfrequencies caused by the waveguide chamber noncircularity was also studied. ASW delaying leads to a negative frequency correction. The ASW energy can be emitted from the narrow slot in the metallic chamber of the waveguide. The optimum wavenumber range was found where the increment values are much greater than those of the ASW decrement caused by their energy radiation. (author). 2 figs., 3 refs.
International Nuclear Information System (INIS)
Michel, A.; Heinecke, E.; Decken, C.B. von der.
1986-01-01
Unsteady flow forces arising in heat exchangers with cross-flow may lead to serious vibrations of the tubes. These vibrations can destroy the tubes in the end supports or in the baffles, which would require expensive repairs. The flow forces reach unexpectedly by high values if the vibration of the tube intensifies these forces. To clear up this coupling mechanism the flow forces and the vibration amplitude were measured simultaneously in a staggered and in an inline tube bundle. Considering the tube as a one-mass oscillator excited by the flow force, the main parameters can be derived, i.e. dynamic pressure, reduced mass, eigenfrequency and damping. These parameters form a dimensionless model number describing the coherence of the vibration amplitude and the force coefficient. The validity of this number has been confirmed by varying the test conditions. With the aid of this model number, the expected force coefficient can be calculated and then using a finite-element program information can be obtained about mechanical tensions and the lifetime of the heat exchanger tubes. With this model number the results of other authors, who measured the vibration amplitude only, could be confirmed in good agreement. The experiments were carried out in air with Reynolds numbers 10 4 5 . (orig.) [de
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
International Nuclear Information System (INIS)
Tataronis, J. A.
2004-01-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfven continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named ''accumulation continuum'' and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory
Control of the MKQA tuning and aperture kickers of the LHC
Barlow, R A; Pianfetti, J P; Senaj, V; Cattin, M; CERN. Geneva. TE Department
2009-01-01
The large hadron collider (LHC) at CERN has been equipped with four fast pulsed kicker magnets in RA43 situated at point 4 which are part of the measurement system for the tune and the dynamic aperture of the LHC beam (Beam 1 and Beam 2). For the tune measurement 'Q', the magnets will excite oscillations in part of the beam. This is achieved by means of a generator producing a 5 µs base half-sine pulse of 1.2 kA [1] amplitude, superimposed with a 3rd harmonic to produce a 2 µs flat top. A kick repetition rate of 2 Hz will be possible. To measure the dynamic aperture 'A' of the LHC at different beam energies, the same magnets will also be driven by a more powerful generator which produces a 43 µs base half-sine current pulse of 3.8 kA. For the 'A' mode a thyristor is used as switching element inside the generator. A final third mode named 'AC dipole' will rely on the beam being excited coherently at a frequency close but outside its Eigen-frequencies by an oscillating dipole field. The beam is expected to o...
Crack identification based on synthetic artificial intelligent technique
International Nuclear Information System (INIS)
Shim, Mun Bo; Suh, Myung Won
2001-01-01
It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a Continuous Evolutionary Algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising
Vibrational properties of the Au-(√{3 }×√{3 } )/Si(111) surface reconstruction
Halbig, B.; Liebhaber, M.; Bass, U.; Geurts, J.; Speiser, E.; Räthel, J.; Chandola, S.; Esser, N.; Krenz, M.; Neufeld, S.; Schmidt, W. G.; Sanna, S.
2018-01-01
The vibrational properties of the Au-induced (√{3 }×√{3 })R 30∘ reconstruction of the Si(111) surface are investigated by polarized surface Raman spectroscopy and density-functional theory. The Raman measurements are performed in situ at room temperature as well as 20 K, and they reveal the presence of vibrational eigenmodes in the spectral range from 20 to 450 cm-1. In particular, two peaks of E symmetry at 75 and 183 cm-1 dominate the spectra. No substantial difference between room- and low-temperature spectra is observed, suggesting that the system does not undergo a phase transition down to 20 K. First-principles calculations are performed based on the structural models discussed in the literature. The thermodynamically stable conjugate honeycomb-chained-trimer model (CHCT) [Surf. Sci. 275, L691 (1992), 10.1016/0039-6028(92)90785-5] leads to phonon eigenvalues compatible with the experimental observations in the investigated spectral range. On the basis of the phonon eigenfrequencies, symmetries, and Raman intensities, we assign the measured spectral features to the calculated phonon modes. The good agreement between measured and calculated modes provides a strong argument in favor of the CHCT model.
Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis
Giorgio, I.; Rizzi, N. L.; Turco, E.
2017-11-01
A nonlinear two-dimensional (2D) continuum with a latent internal structure is introduced as a coarse model of a plane network of beams which, in turn, is assumed as a model of a pantographic structure made up by two families of equispaced beams, superimposed and connected by pivots. The deformation measures of the beams of the network and that of the 2D body are introduced and the former are expressed in terms of the latter by making some kinematical assumptions. The expressions for the strain and kinetic energy densities of the network are then introduced and given in terms of the kinematic quantities of the 2D continuum. To account for the modelling abilities of the 2D continuum in the linear range, the eigenmode and eigenfrequencies of a given specimen are determined. The buckling and post-buckling behaviour of the same specimen, subjected to two different loading conditions are analysed as tests in the nonlinear range. The problems have been solved numerically by means of the COMSOL Multiphysics finite element software.
International Nuclear Information System (INIS)
Hoffmann, Alain; Jeanpierre, Francoise; Axisa, Francois; Chevalier, Gerard; Lepareux, Michel.
1977-01-01
The TEDEL code is intended for elastic and plastic computation of three-dimensional pipes and frames with possible junction to shells. The structures are described with using assemblies of beam elements, or piping elements such as, curved pipes, 90 0 elbows, tees, any elements, the stiffness properties of which are given to TEDEL. TEDEL allows the dynamic computation of the structures: search of eigenfrequencies and eigenmodes of vibration, time response to any time-dependent canvassing. This response can be obtained either from recombining a number of eigenmodes, or from a direct numerical integration of the dynamics equation. In these last two cases TEDEL accounts for some possible damping. A TEDEL option allows critical buckling loads to be computed (Euler). The structures can offer any shapes comprising any number of materials. The data are readout without any format, and distributed in optional commands with a precise physical meaning: GEOMETRY, MATERIALS, LOAD, COMPUTATION, END. A dynamical memory control allows the size of the routine to be adapted to the problem to be treated. For pipings, an option is intended for an automatic checking of the stress level with regard to the limiting values of the ASME. Geometrical data, node positions, element numbering are given by COCO which also delivers perspective drawings for the structure to be studied. The results on magnetic tapes can be treated by the subroutines ESPACE-VISU-TEMPS [fr
Reconstruction of the residual stresses in a hyperelastic body using ultrasound techniques
Joshi, Sunnie
2013-09-01
This paper focuses on a novel approach for characterizing the residual stress field in soft tissue using ultrasound interrogation. A nonlinear inverse spectral technique is developed that makes fundamental use of the finite strain nonlinear response of the material to a quasi-static loading. The soft tissue is modeled as a nonlinear, prestressed and residually stressed, isotropic, slightly compressible elastic body with a rectangular geometry. A boundary value problem is formulated for the residually stressed and prestressed soft tissue, the boundary of which is subjected to a quasi-static pressure, and then an idealized model for the ultrasound interrogation is constructed by superimposing small amplitude time harmonic infinitesimal vibrations on static finite deformation via an asymptotic construction. The model is studied, through a semi-inverse approach, for a specific class of deformations that leads to a system of second order differential equations with homogeneous boundary conditions of Sturm-Liouville type. By making use of the classical theory of inverse Sturm-Liouville problems, and root finding and optimization techniques, several inverse spectral algorithms are developed to approximate the residual stress distribution in the body, given the first few eigenfrequencies of several induced static pressures. © 2013 Elsevier Ltd. All rights reserved.
Nonequilibrium quantum solvation with a time-dependent Onsager cavity
Kirchberg, H.; Nalbach, P.; Thorwart, M.
2018-04-01
We formulate a theory of nonequilibrium quantum solvation in which parameters of the solvent are explicitly depending on time. We assume in a simplest approach a spherical molecular Onsager cavity with a time-dependent radius. We analyze the relaxation properties of a test molecular point dipole in a dielectric solvent and consider two cases: (i) a shrinking Onsager sphere and (ii) a breathing Onsager sphere. Due to the time-dependent solvent, the frequency-dependent response function of the dipole becomes time-dependent. For a shrinking Onsager sphere, the dipole relaxation is in general enhanced. This is reflected in a temporally increasing linewidth of the absorptive part of the response. Furthermore, the effective frequency-dependent response function shows two peaks in the absorptive part which are symmetrically shifted around the eigenfrequency. By contrast, a breathing sphere reduces damping as compared to the static sphere. Interestingly, we find a non-monotonous dependence of the relaxation rate on the breathing rate and a resonant suppression of damping when both rates are comparable. Moreover, the linewidth of the absorptive part of the response function is strongly reduced for times when the breathing sphere reaches its maximal extension.
Multimodal piezoelectric devices optimization for energy harvesting
Directory of Open Access Journals (Sweden)
G Acciani
2016-09-01
Full Text Available The use of the piezoelectric effect to convert ambient vibration into useful electrical energy constitutes one of the most studied areas in Energy Harvesting (EH research. This paper presents a typical cantilevered Energy Harvester device, which relates the electrical outputs to the vibration mode shape easily. The dynamic strain induced in the piezoceramic layer results in an alternating voltage output. The first six modes of frequencies and the deformation pattern of the beam are carried out basing on an eigenfrequency analysis conducted by the MEMS modules of the COMSOL Multiphysic® v3.5a to perform the Finite Element Analysis of the model. Subsequently, the piezoelectric material is cut around the inflection points to minimize the voltage cancellation effect occurring when the sign changes in the material. This study shows that the voltage produced by the device, increases in as the dimensions of the cuts vary in the piezoelectric layer. Such voltage reaches the optimum amount of piezoelectric material and cuts positioning. This proves that the optimized piezoelectric layer is 16% more efficient than the whole piezoelectric layer.
Development of PZT Actuated Valveless Micropump
Directory of Open Access Journals (Sweden)
Fathima Rehana Munas
2018-04-01
Full Text Available A piezoelectrically actuated valveless micropump has been designed and developed. The principle components of this system are piezoelectrically actuated (PZT metal diaphragms and a complete fluid flow system. The design of this pump mainly focuses on a cross junction, which is generated by a nozzle jet attached to a pump chamber and the intersection of two inlet channels and an outlet channel respectively. During each PZT diaphragm vibration cycle, the junction connecting the inlet and outlet channels with the nozzle jet permits consistencies in fluidic momentum and resistances in order to facilitate complete fluidic path throughout the system, in the absence of any physical valves. The entire micropump structure is fabricated as a plate-by-plate element of polymethyl methacrylate (PMMA sheets and sandwiched to get required fluidic network as well as the overall device. In order to identify the flow characteristics, and to validate the test results with numerical simulation data, FEM analysis using ANSYS was carried out and an eigenfrequency analysis was performed to the PZT diaphragm using COMSOL Multiphysics. In addition, the control system of the pump was designed and developed to change the applied frequency to the piezoelectric diaphragms. The experimental data revealed that the maximum flow rate is 31.15 mL/min at a frequency of 100 Hz. Our proposed design is not only for a specific application but also useful in a wide range of biomedical applications.
International Nuclear Information System (INIS)
Crystal, T.L.; Kuhn, S.; Birdsall, C.K.
1984-01-01
The classical Pierce diode is a simple 1-d system of two shorted metal plates, a cold beam of electrons injected from one side and a neutralizing background of rigid ions. While the plasma medium is technically stable, the finiteness of the Pierce system allows stable and unstable operation. It is usefully studied as an archetypical bounded plasma system, related e.g., to Q-machines, particle accelerators, thermionic converters. New particle simulations of the Pierce diode have successfully recovered many novel linear phenomena including the dominant linear eigenmodes (seen in the internal electrostatic fields), and the dominant and subdominant eigenfrequencies, (seen both in the internal electrostatics and in the external circuit current, J/sub ext/(t)). These simulation results conform very well to detailed predictions of a new linear analysis. The final (nonlinear) state recovered can show critical dependence on initial (linear perturbation) conditions, and can be made steady-state (d.c.) or periodic-oscillatory by simply changing the initial conditions by a factor of 10/sup -4/ or less. A third class of final state is also possible which has oscillations which seem to be nonperiodic
Sears, Nicholas C.; Harne, Ryan L.
2018-01-01
The performance, integrity, and safety of built-up structural systems are critical to their effective employment in diverse engineering applications. In conflict with these goals, harmonic or random excitations of structural panels may promote large amplitude oscillations that are particularly harmful when excitation energies are concentrated around natural frequencies. This contributes to fatigue concerns, performance degradation, and failure. While studies have considered active or passive damping treatments that adapt material characteristics and configurations for structural control, it remains to be understood how vibration properties of structural panels may be tailored via internal material transitions. Motivated to fill this knowledge gap, this research explores an idea of adapting the static and dynamic material distribution of panels through embedded microvascular channels and strategically placed voids that permit the internal movement of fluids within the panels for structural dynamic control. Finite element model and experimental investigations probe how redistributing material in the form of microscale voids influences the global vibration modes and natural frequencies of structural panels. Through parameter studies, the relationships among void shape, number, size, and location are quantified towards their contribution to the changing structural dynamics. For the panel composition and boundary conditions considered in this report, the findings reveal that transferring material between strategically placed voids may result in eigenfrequency changes as great as 10.0, 5.0, and 7.4% for the first, second, and third modes, respectively.
Lower limit on the achievable temperature in resonator-based sideband cooling
Grajcar, M.; Ashhab, S.; Johansson, J. R.; Nori, F.
2009-03-01
A resonator with eigenfrequency φr can be effectively used as a cooler for another linear oscillator with a much smaller frequency φmφr. A huge cooling effect, which could be used to cool a mechanical oscillator below the energy of quantum fluctuations, has been predicted by several authors. However, here we show that there is a lower limit T^* on the achievable temperature, given by T^* = Tm; φm/ φr, that was not considered in previous work and can be higher than the quantum limit in realistic experimental realizations. We also point out that the decay rate of the resonator, which previous studies stress should be small, must be larger than the decay rate of the cooled oscillator for effective cooling. M. Grajcar, S. Ashhab, J.R. Johansson, F. Nori, Lower limit on the achievable temperature in resonator-based sideband cooling, Phys. Rev. B 78, 035406 (2008). URL: http://link.aps.org/abstract/PRB/v78/e035406
A mystery of black-hole gravitational resonances
International Nuclear Information System (INIS)
Hod, Shahar
2016-01-01
More than three decades ago, Detweiler provided an analytical formula for the gravitational resonant frequencies of rapidly-rotating Kerr black holes. In the present work we shall discuss an important discrepancy between the famous analytical prediction of Detweiler and the recent numerical results of Zimmerman et al. In addition, we shall refute the claim that recently appeared in the physics literature that the Detweiler-Teukolsky-Press resonance equation for the characteristic gravitational eigenfrequencies of rapidly-rotating Kerr black holes is not valid in the regime of damped quasinormal resonances with ℑω/T_B_H≫1 (here ω and T_B_H are respectively the characteristic quasinormal resonant frequency of the Kerr black hole and its Bekenstein-Hawking temperature). The main goal of the present paper is to highlight and expose this important black-hole quasinormal mystery (that is, the intriguing discrepancy between the analytical and numerical results regarding the gravitational quasinormal resonance spectra of rapidly-rotating Kerr black holes).
Electrodynamics of the magnetosphere-ionosphere coupling in the nightside subauroral zone
International Nuclear Information System (INIS)
Streltsov, A.V.; Foster, J.C.
2004-01-01
Results from a numerical study of the oscillations of the electric field measured by the Millstone Hill incoherent scatter radar in the E-layer of the nightside subauroral ionosphere during the geomagnetic storm of May 25, 2000 are presented. The frequencies of these oscillations correspond to the discrete frequencies of geomagnetic pulsations usually attributed to the field line resonances or global cavity modes at a high-latitude auroral zone, but they are well below the fundamental eigenfrequency of the subauroral magnetosphere. It is shown that these oscillations can be interpreted as an ionospheric footprint of the surface Alfven waves generated at the equatorial magnetosphere on a steep transverse gradient in the background plasma density associated with the inner edge of the plasmapause developed during strong geomagnetic storms/substorms. This density gradient together with the ionospheric Pedersen conductivity defines the location and amplitude of the electric field in the E-layer: the amplitude of the field is proportional to the amplitude of the density inhomogeneity and inversely proportional to its scale-size and the ionospheric conductivity. Interaction of the large amplitude perpendicular electric field with the low-conducting ionosphere can cause the ionospheric feedback instability, which leads to the formation of small-scale, intense structures in the electric field and the parallel current density in the subauroral magnetosphere
Resonant ULF absorption in storm time conditions
Directory of Open Access Journals (Sweden)
Badin V.I.
2017-03-01
Full Text Available The work deals with ULF radar observations of the high-latitude ionosphere. Doppler data from the Norwegian STARE instrument are analyzed for the moderate magnetic storm observed on December 31, 1999 – January 01, 2000. Upon averaging the Doppler signals along radar beams, the spectral power of signals is determined for each beam as a function of frequency ranging from 1 to 10 mHz. Sharp drops (about 10 dB of spectral powers with frequency are found for all radar beams. A variational analysis of spectral powers is carried out by least squares, with power drops being modeled by stepwise profiles constructed of mean spectral powers preceding and succeeding the drops. Using this variational analysis, the frequency of the power drop is determined for each radar beam. Being averaged over all beams, this frequency is 4.8±0.5 mHz. The results obtained are interpreted as resonant absorption of ultra-low-frequency (ULF waves occurring on eigenfrequencies of magnetic field lines over wave propagation from the magnetopause deep into the magnetosphere.
SSI on the Dynamic Behaviour of a Historical Masonry Building: Experimental versus Numerical Results
Directory of Open Access Journals (Sweden)
Francesca Ceroni
2014-11-01
Full Text Available A reliable procedure to identify the dynamic behaviour of existing masonry buildings is described in the paper, referring to a representative case study: a historical masonry palace located in Benevento (Italy. Since the building has been equipped with a permanent dynamic monitoring system by the Department of Civil Protection, some of the recorded data, acquired in various operating conditions, have been analysed with basic instruments of the Operational Modal Analysis in order to identify the main eigenfrequencies and vibration modes of the structure. The obtained experimental results have been compared to the numerical outcomes provided by three detailed Finite Element (FE models of the building. The influence of Soil-Structure Interaction (SSI has been also introduced in the FE model by a sub-structure approach where concentrated springs were placed at the base of the building to simulate the effect of soil and foundation on the global dynamic behaviour of the structure. The obtained results evidence that subsoil cannot a priori be disregarded in identifying the dynamic response of the building.
Terahertz magnonics: Feasibility of using terahertz magnons for information processing
Zakeri, Khalil
2018-06-01
An immediate need of information technology is designing fast, small and low-loss devices. One of the ways to design such devices is using the bosonic quasiparticles, such as magnons, for information transfer/processing. This is the main idea behind the field of magnonics. When a magnon propagates through a magnetic medium, no electrical charge transport is involved and therefore no energy losses, creating Joule heating, occur. This is the most important advantage of using magnons for information transfer. Moreover the mutual conversion between magnons and the other carriers e.g. electrons, photons and plasmons shall open new opportunities to realize tunable multifunctional devices. Magnons cover a very wide range of frequency, from sub-gigahertz up to a few hundreds of terahertz. The magnon frequency has an important impact on the performance of magnon-based devices (the larger the excitation frequency, the faster the magnons). This means that the use of high-frequency (terahertz) magnons would provide a great opportunity for the design of ultrafast devices. However, up to now the focus in magnonics has been on the low-frequency gigahertz magnons. Here we discuss the feasibility of using terahertz magnons for application in magnonic devices. We shall bring the concept of terahertz magnonics into discussion. We discuss how the recently discovered phenomena in the field of terahertz magnons may inspire ideas for designing new magnonic devices. We further introduce methods to tune the fundamental properties of terahertz magnons, e.g. their eigenfrequency and lifetime.
Large scale electromechanical transistor with application in mass sensing
Energy Technology Data Exchange (ETDEWEB)
Jin, Leisheng; Li, Lijie, E-mail: L.Li@swansea.ac.uk [Multidisciplinary Nanotechnology Centre, College of Engineering, Swansea University, Swansea SA2 8PP (United Kingdom)
2014-12-07
Nanomechanical transistor (NMT) has evolved from the single electron transistor, a device that operates by shuttling electrons with a self-excited central conductor. The unfavoured aspects of the NMT are the complexity of the fabrication process and its signal processing unit, which could potentially be overcome by designing much larger devices. This paper reports a new design of large scale electromechanical transistor (LSEMT), still taking advantage of the principle of shuttling electrons. However, because of the large size, nonlinear electrostatic forces induced by the transistor itself are not sufficient to drive the mechanical member into vibration—an external force has to be used. In this paper, a LSEMT device is modelled, and its new application in mass sensing is postulated using two coupled mechanical cantilevers, with one of them being embedded in the transistor. The sensor is capable of detecting added mass using the eigenstate shifts method by reading the change of electrical current from the transistor, which has much higher sensitivity than conventional eigenfrequency shift approach used in classical cantilever based mass sensors. Numerical simulations are conducted to investigate the performance of the mass sensor.
Identification of multiple modes of axisymmetric or circularly repetitive structures
International Nuclear Information System (INIS)
Kopff, P.
1983-01-01
The axisymmetric structures, or those composed with circularly repetitive elements, often display multiple modes, which are not easy to separate by modal identification of experimental responses. To be able to solve in situ some problems related to the vibrational behaviour of reactor vessels or other such huge structures, ELECTRICITY DE FRANCE developed a few years ago, experimental capabilities providing heavy harmonic driving forces, and elaborate data acquisition, signal processing and modal identification software, self-contained in an integrated mobile test facility. The modal analysis techniques we have developed with the LABORATOIRE DE MECANIQUE Appliquee of University of BESANCON (FRANCE) were especially suited for identification of multiple or separation of quasi-multiple modes, i.e. very close and strongly coupled resonances. Besides, the curve fitting methods involved, compute the same complex eigen-frequencies for all the vibration pick-ups, for better accuracy of the related eigen-vector components. Moreover, the latest extensions of these algorithms give us the means to deal with non-linear behaviour. The performances of these programs are drawn from some experimental results on axisymmetric or circularly repetitive structure, we tested in our laboratory to validate the computational hypothesis used in models for seismic responses of breeder reactor vessels. (orig.)
A SIMPLE TOY MODEL OF THE ADVECTIVE-ACOUSTIC INSTABILITY. I. PERTURBATIVE APPROACH
International Nuclear Information System (INIS)
Foglizzo, T.
2009-01-01
Some general properties of the advective-acoustic instability are described and understood using a toy model, which is simple enough to allow for analytical estimates of the eigenfrequencies. The essential ingredients of this model, in the unperturbed regime, are a stationary shock and a subsonic region of deceleration. For the sake of analytical simplicity, the two-dimensional unperturbed flow is parallel and the deceleration is produced adiabatically by an external potential. The instability mechanism is determined unambiguously as the consequence of a cycle between advected and acoustic perturbations. The purely acoustic cycle, considered alone, is proven to be stable in this flow. Its contribution to the instability can be either constructive or destructive. A frequency cutoff is associated with the advection time through the region of deceleration. This cutoff frequency explains why the instability favors eigenmodes with a low frequency and a large horizontal wavelength. The relation between the instability occurring in this highly simplified toy model and the properties of standing accretion shock instability observed in the numerical simulations of stellar core collapse is discussed. This simple setup is proposed as a benchmark test to evaluate the accuracy, in the linear regime, of numerical simulations involving this instability. We illustrate such benchmark simulations in a companion paper.
Physically Inspired Models for the Synthesis of Stiff Strings with Dispersive Waveguides
Directory of Open Access Journals (Sweden)
Testa I
2004-01-01
Full Text Available We review the derivation and design of digital waveguides from physical models of stiff systems, useful for the synthesis of sounds from strings, rods, and similar objects. A transform method approach is proposed to solve the classic fourth-order equations of stiff systems in order to reduce it to two second-order equations. By introducing scattering boundary matrices, the eigenfrequencies are determined and their dependency is discussed for the clamped, hinged, and intermediate cases. On the basis of the frequency-domain physical model, the numerical discretization is carried out, showing how the insertion of an all-pass delay line generalizes the Karplus-Strong algorithm for the synthesis of ideally flexible vibrating strings. Knowing the physical parameters, the synthesis can proceed using the generalized structure. Another point of view is offered by Laguerre expansions and frequency warping, which are introduced in order to show that a stiff system can be treated as a nonstiff one, provided that the solutions are warped. A method to compute the all-pass chain coefficients and the optimum warping curves from sound samples is discussed. Once the optimum warping characteristic is found, the length of the dispersive delay line to be employed in the simulation is simply determined from the requirement of matching the desired fundamental frequency. The regularization of the dispersion curves by means of optimum unwarping is experimentally evaluated.
Two-stream sausage and hollowing instabilities in high-intensity particle beams
International Nuclear Information System (INIS)
Uhm, Han S.; Davidson, Ronald C.; Kaganovich, Igor
2001-01-01
Axisymmetric two-stream instabilities in high-intensity particle beams are investigated analytically by making use of the Vlasov-Maxwell equations in the smooth-focusing approximation. The eigenfunctions for the axisymmetric radial modes are calculated self-consistently in order to determine the dispersion relation describing collective stability properties. Stability properties for the sausage and hollowing modes, characterized by radial mode numbers n=1 and n=2, respectively, are investigated, and the dispersion relations are obtained for the complex eigenfrequency ω in terms of the axial wavenumber k and other system parameters. The eigenfunctions obtained self-consistently for the sausage and hollowing modes indicate that the perturbations exist only inside the beam. Therefore, the location of the conducting wall does not have an effect on stability behavior. The growth rates of the sausage and hollowing modes are of the same order of magnitude as that of the hose (dipole-mode) instability. Therefore, it is concluded that the axisymmetric sausage and hollowing instabilities may also be deleterious to intense ion beam propagation when a background component of electrons is presented
A mystery of black-hole gravitational resonances
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Academic College, Jerusalem 91010 (Israel)
2016-08-30
More than three decades ago, Detweiler provided an analytical formula for the gravitational resonant frequencies of rapidly-rotating Kerr black holes. In the present work we shall discuss an important discrepancy between the famous analytical prediction of Detweiler and the recent numerical results of Zimmerman et al. In addition, we shall refute the claim that recently appeared in the physics literature that the Detweiler-Teukolsky-Press resonance equation for the characteristic gravitational eigenfrequencies of rapidly-rotating Kerr black holes is not valid in the regime of damped quasinormal resonances with ℑω/T{sub BH}≫1 (here ω and T{sub BH} are respectively the characteristic quasinormal resonant frequency of the Kerr black hole and its Bekenstein-Hawking temperature). The main goal of the present paper is to highlight and expose this important black-hole quasinormal mystery (that is, the intriguing discrepancy between the analytical and numerical results regarding the gravitational quasinormal resonance spectra of rapidly-rotating Kerr black holes).
Large scale modulation of high frequency acoustic waves in periodic porous media.
Boutin, Claude; Rallu, Antoine; Hans, Stephane
2012-12-01
This paper deals with the description of the modulation at large scale of high frequency acoustic waves in gas saturated periodic porous media. High frequencies mean local dynamics at the pore scale and therefore absence of scale separation in the usual sense of homogenization. However, although the pressure is spatially varying in the pores (according to periodic eigenmodes), the mode amplitude can present a large scale modulation, thereby introducing another type of scale separation to which the asymptotic multi-scale procedure applies. The approach is first presented on a periodic network of inter-connected Helmholtz resonators. The equations governing the modulations carried by periodic eigenmodes, at frequencies close to their eigenfrequency, are derived. The number of cells on which the carrying periodic mode is defined is therefore a parameter of the modeling. In a second part, the asymptotic approach is developed for periodic porous media saturated by a perfect gas. Using the "multicells" periodic condition, one obtains the family of equations governing the amplitude modulation at large scale of high frequency waves. The significant difference between modulations of simple and multiple mode are evidenced and discussed. The features of the modulation (anisotropy, width of frequency band) are also analyzed.
Radiating Fröhlich system as a model of cellular electromagnetism.
Šrobár, Fedor
2015-01-01
Oscillating polar entities inside the biological cells, most notably microtubules, are bound to emit electromagnetic radiation. This phenomenon is described by Fröhlich kinetic equations expressing, in terms of quantum occupancy numbers of each discrete collective oscillatory mode, the balance between incoming metabolic energy flow and losses due to linear and non-linear interactions with the thermal environs of the oscillators. Hitherto, radiation losses have not been introduced as part of the balance; it was assumed that they were proportional to the modal occupation numbers. It is demonstrated that this formulation is incorrect and the radiation losses must be taken into account in the kinetic equations explicitly. Results of a numerical study of kinetic equations, enlarged in this sense, are presented for the case of three coupled oscillators which was shown to evince the essential attributes of the Fröhlich systems. Oscillator eigenfrequencies were chosen, alternatively, to fall into the MHz and the THz frequency domains. It was found that large radiation levels destroy the main hallmark of the Fröhlich systems, the energy condensation in the lowest frequency mode. The system then functions as a convertor of metabolic energy into radiation. At more moderate radiation levels, both energy condensation and significant radiation can coexist. Possible consequences for the cell physiology are suggested.
On some aspects of the semiclassical approach to giant resonances of rotating nuclei
International Nuclear Information System (INIS)
Winter, J.
1985-01-01
Quadrupole and isovector dipole resonances of rotating nuclei are investigated in the frame-work of Vlasov equations transformed to a rotating system of reference, which are based on the time-dependent Hartree-method for schematic forces. The parameter free model of the self-consistent vibrating harmonic oscillator potential for the quadrupole mode is extended to a coupling to rotation, which also includes large amplitude behaviour. A generalization to an exactly solvable two-liquid model describing the isovector mode is established; for rotating nuclei Hilton's explicit result for the eigenfrequencies is obtained. - The advantage of using the concept of the classical kinetic momentum in a rotating system also in quantum-mechanical descriptions is demonstrated. It completes the standard transformation of density matrices by a time-odd part realized in a phase-factor and permits a more direct interpretation of rotation effects in terms of the classical forces of inertia. - In its generalization from constant angular velocity to constant angular momentum, our model is used to demonstrate that cranking calculations of rotating giant resonances should be corrected for an oscillation of the cranking parameter to assure angular-momentum conservation. (orig.)
Quantum dynamics of atoms in a resonator-generated optical lattice
International Nuclear Information System (INIS)
Maschler, C.; Ritsch, H.
2005-01-01
Full text: We investigate the quantum motion of coherently driven ultracold atoms in the field of a damped high-Q optical cavity mode. The laser field is chosen far detuned from the atomic transition but close to a cavity resonance, so that spontaneous emission is strongly suppressed but a coherent field builds up in the resonator by stimulated scattering. On one hand the shape of the atomic wave function determines the field dynamics via the magnitude of the scattering and the effective refractive index the atoms create for the mode. The mode intensity on the other hand determines the optical dipole force on the atoms.The system shows rich atom-field dynamics including self organization, self-trapping, cooling or heating. In the limit of deep trapping we are able to derive a system of closed, coupled equations for a finite set of atomic expectation values and the field. This allows us to determine the self-consistent ground state of the system as well as the eigenfrequencies and damping rates for excitations. To treat several atoms in more detail we introduce the Bose-Hubbard model. This allows us to investigate several aspects of the quantum motion of the atoms inside the cavity. (author)
Infrared helioseismology - Detection of the chromospheric mode
Deming, D.; Kaeufl, H. U.; Espenak, F.; Glenar, D. A.; Hill, A. A.
1986-01-01
Time-series observations of an infrared solar OH absorption line profile have been obtained on two consecutive days using a laser heterodyne spectrometer to view a 2 arcsec portion of the quiet sun at disk center. A power spectrum of the line center velocity shows the well-known photospheric p-mode oscillations very prominently, but also shows a second feature near 4.3 mHz. A power spectrum of the line intensity shows only the 4.3 mHz feature, which is identified as the fundamental p-mode resonance of the solar chromosphere. The frequency of the mode is observed to be in substantial agreement with the eigenfrequency of current chromospheric models. A time series of two beam difference measurements shows that the mode is present only for horizontal wavelengths greater than 19 Mm. The period of a chromospheric p-mode resonance is directly related to the sound travel time across the chromosphere, which depends on the chromospheric temperature and geometric height. Thus, detection of this resonance will provide an important new constraint on chromospheric models.
International Nuclear Information System (INIS)
Gleiser, M.
1988-01-01
Boson stars are gravitationally bound, spherically symmetric equilibrium configurations of cold, free, or interacting complex scalar fields phi. As these equilibrium configurations naturally present local anisotropy, it is sensible to expect departures from the well-known stability criteria for fluid stars. With this in mind, I investigate the dynamical instability of boson stars against charge-conserving, small radial perturbations. Following the method developed by Chandrasekhar, a variational base for determining the eigenfrequencies of the perturbations is found. This approach allows one to find numerically an upper bound for the central density where dynamical instability occurs. As applications of the formalism, I study the stability of equilibrium configurations obtained both for the free and for the self-interacting [with V(phi) = (λ/4)chemical bondphichemical bond 4 ] massive scalar field phi. Instabilities are found to occur not for the critical central density as in fluid stars but for central densities considerably higher. The departure from the results for fluid stars is sensitive to the coupling λ; the higher the value of λ, the more the stability properties of boson stars approach those of a fluid star. These results are linked to the fractional anisotropy at the radius of the configuration
Multi-Mode Cavity Accelerator Structure
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)
2016-11-10
This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10^{-7}/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E_{sur}^{max}< 260 MV/m and pulsed surface heating ΔT^{max}< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.
A consistent response spectrum analysis including the resonance range
International Nuclear Information System (INIS)
Schmitz, D.; Simmchen, A.
1983-01-01
The report provides a complete consistent Response Spectrum Analysis for any component. The effect of supports with different excitation is taken into consideration, at is the description of the resonance ranges. It includes information explaining how the contributions of the eigenforms with higher eigenfrequencies are to be considered. Stocking of floor response spectra is also possible using the method described here. However, modified floor response spectra must now be calculated for each building mode. Once these have been prepared, the calculation of the dynamic component values is practically no more complicated than with the conventional, non-consistent methods. The consistent Response Spectrum Analysis can supply smaller and larger values than the conventional theory, a fact which can be demonstrated using simple examples. The report contains a consistent Response Spectrum Analysis (RSA), which, as far as we know, has been formulated in this way for the first time. A consistent RSA is so important because today this method is preferentially applied as an important tool for the earthquake proof of components in nuclear power plants. (orig./HP)
On-line structural damage localization and quantification using wireless sensors
International Nuclear Information System (INIS)
Hsu, Ting-Yu; Huang, Shieh-Kung; Lu, Kung-Chung; Loh, Chin-Hsiung; Wang, Yang; Lynch, Jerome Peter
2011-01-01
In this paper, a wireless sensing system is designed to realize on-line damage localization and quantification of a structure using a frequency response function change method (FRFCM). Data interrogation algorithms are embedded in the computational core of the wireless sensing units to extract the necessary structural features, i.e. the frequency spectrum segments around eigenfrequencies, automatically from measured structural response for the FRFCM. Instead of the raw time history of the structural response, the extracted compact structural features are transmitted to the host computer. As a result, with less data transmitted from the wireless sensors, the energy consumed by the wireless transmission is reduced. To validate the performance of the proposed wireless sensing system, a six-story steel building with replaceable bracings in each story is instrumented with the wireless sensors for on-line damage detection during shaking table tests. The accuracy of the damage detection results using the wireless sensing system is verified through comparison with the results calculated from data recorded of a traditional wired monitoring system. The results demonstrate that, by taking advantage of collocated computing resources in wireless sensors, the proposed wireless sensing system can locate and quantify damage with acceptable accuracy and moderate energy efficiency
The spectral problem of global microinstabilities in tokamak-like plasmas using a gyrokinetic model
International Nuclear Information System (INIS)
Brunner, S.; Vaclavik, J.; Fivaz, M.; Appert, K.
1996-01-01
Tokamak-like plasmas are modeled by a periodic cylindrical system with magnetic shear and realistic density and temperature profiles. Linear electrostatic microinstabilities in such plasmas are studied by solving the eigenvalue problem starting from gyrokinetic theory. The actual eigenvalue equation is then of integral type. With this approach, finite Larmor radius (FLR) effects to all orders are taken into account. FLR effects provide for the only radial coupling in a cylinder and to lowest order correspond to polarization drift. This effectively one-dimensional problem helped us to gain useful knowledge for solving gyrokinetic equations in a curved system. When searching for the eigenfrequencies of the global modes, two different methods have been tested and compared. Either the true eigenvalue problem is solved by finding the zeros of the characteristic equation, or one considers a system driven by an antenna and looks for resonances in the power response of the plasma. In addition, mode structures were computed as well in direct as in Fourier space. The advantages and disadvantages of these various approaches are discussed. Ion temperature gradient (ITG) instabilities are studied over a wide range of parameters and for wavelengths perpendicular to the magnetic field down to the scale of ion Larmor radii. Flute instabilities driven by magnetic curvature drifts are also considered. Some of these results are compared with a time evolution PIC code. Such comparisons are valuable as the convergence of PIC results is often questioned. Work considering true toroidal geometry is in progress
Mechanical properties of non-centrosymmetric CePt3Si and CePt3B
Rogl, G.; Legut, D.; Sýkora, R.; Müller, P.; Müller, H.; Bauer, E.; Puchegger, S.; Zehetbauer, M.; Rogl, P.
2017-05-01
Elastic moduli, hardness (both at room temperature) and thermal expansion (4.2-670 K) have been experimentally determined for polycrystalline CePt3Si and its prototype compound CePt3B as well as for single-crystalline CePt3Si. Resonant ultrasound spectroscopy was used to determine elastic properties (Young’s modulus E and Poisson’s ratio ν) via the eigenfrequencies of the sample and the knowledge of sample mass and dimensions. Bulk and shear moduli were calculated from E and ν, and the respective Debye temperatures were derived. In addition, ab initio DFT calculations were carried out for both compounds. A comparison of parameters evaluated from DFT with those of experiments revealed, in general, satisfactory agreement. Positive and negative thermal expansion values obtained from CePt3Si single crystal data are fairly well explained in terms of the crystalline electric field model, using CEF parameters derived recently from inelastic neutron scattering. DFT calculations, in addition, demonstrate that the atomic vibrations keep almost unaffected by the antisymmetric spin-orbit coupling present in systems with crystal structures having no inversion symmetry. This is opposite to electronic properties, where the antisymmetric spin-orbit interaction has shown to distinctly influence features like the superconducting condensate of CePt3Si.
Energy Technology Data Exchange (ETDEWEB)
Kiefer, René; Schad, Ariane; Roth, Markus [Kiepenheuer-Institut für Sonnenphysik, Schöneckstraße 6, D-79104 Freiburg (Germany)
2017-09-10
Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.
Full scale vibration test on nuclear power plant auxiliary building: Part I
International Nuclear Information System (INIS)
Langer, V.; Tinic, S.; Berger, E.; Zwicky, P.; Prater, E.G.
1987-01-01
In connection with the construction of the reinforced concrete auxiliary building housing the two boric water tanks (so-called BOTA building) of the Beznau Nuclear Power Plant in Switzerland the opportunity was given to carry out full scale vibration tests in November 1985. The overall aim of the tests was to validate computational models and parameters widely used in the seismic analysis of the structures and critical components of nuclear power plants. The scope of the experimental investigation was the determination of the eigenfrequencies and damping values for the fundamental soil-structure interaction (SSI) modes. The excitation level was aimed to be as high as feasibly possible. A working group was formed of representatives of the owner, NOK, the consulting firm Basler and Hofmann and the ETH to supervise the project. The project's main phases were the planning and execution of the tests, the evaluation of recorded data, numerical simulation of the tests using different computer models and finally the comparison and interpretation of measured and computed results
Suppression of an acoustic mode by an elastic mode of a liquid-filled spherical shell resonator.
Lonzaga, Joel B; Raymond, Jason L; Mobley, Joel; Gaitan, D Felipe
2011-02-01
The purpose of this paper is to report on the suppression of an approximately radial (radially symmetric) acoustic mode by an elastic mode of a water-filled, spherical shell resonator. The resonator, which has a 1-in. wall thickness and a 9.5-in. outer diameter, was externally driven by a small transducer bolted to the external wall. Experiments showed that for the range of drive frequencies (19.7-20.6 kHz) and sound speeds in water (1520-1570 m/s) considered in this paper, a nonradial (radially nonsymmetric) mode was also excited, in addition to the radial mode. Furthermore, as the sound speed in the liquid was changed, the resonance frequency of the nonradial mode crossed with that of the radial one and the amplitude of the latter was greatly reduced near the crossing point. The crossing of the eigenfrequency curves of these two modes was also predicted theoretically. Further calculations demonstrated that while the radial mode is an acoustic one associated with the interior fluid, the nonradial mode is an elastic one associated with the shell. Thus, the suppression of the radial acoustic mode is apparently caused by the overlapping with the nonradial elastic mode near the crossing point.
A Comprehensive Review of Boundary Integral Formulations of Acoustic Scattering Problems
Directory of Open Access Journals (Sweden)
S.I. Zaman
2000-12-01
Full Text Available This is a review presenting an overview of the developments in boundary integral formulations of the acoustic scattering problems. Generally, the problem is formulated in one of two ways viz. Green’s representation formula, and the Layer-theoretic formulation utilizing either a simple-layer or a double-layer potential. The review presents and expounds the major contributions in this area over the last four decades. The need for a robust and improved formulation of the exterior scattering problem (Neumann or Dirichlet arose due to the fact that the classical formulation failed to yield a unique solution at (acoustic wave-numbers which correspond to eigenvalues (eigenfrequencies of the corresponding interior scattering problem. Moreover, this correlation becomes more pronounced as the wave-numbers become larger i.e. as the (acoustic frequency increases. The robust integral formulations which are discussed here yield Fredholms integral equations of the second kind which are more amenable to computation than the first kind. However, the integral equation involves a hypersingular kernel which creates ill-conditioning in the final matrix representation. This is circumvented by a regularisation technique. An extensive useful list of references is also presented here for researchers in this area.
Asteroseismic Diagram for Subgiants and Red Giants
Energy Technology Data Exchange (ETDEWEB)
Gai, Ning; Tang, Yanke [College of Physics and Electronic information, Dezhou University, Dezhou 253023 (China); Yu, Peng [College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Dou, Xianghua, E-mail: ning_gai@163.com, E-mail: tyk450@163.com [Shandong Provincial Key Laboratory of Biophysics, Dezhou University, Dezhou 253023 (China)
2017-02-10
Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ{sub 1}–Δ ν asteroseismic diagram from models of subgiants and red giants with various masses and metallicities. The relationship ΔΠ{sub 1}–Δ ν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M {sub ⊙}, the ΔΠ{sub 1}–Δ ν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ , which indicate similar evolution states especially for similar mass stars, on the ΔΠ{sub 1}–Δ ν diagram.
International Nuclear Information System (INIS)
Caplan, M.
1986-01-01
The cyclotron maser or gyrotron is capable of generating high power microwaves at millimeter wave frequencies for applications in fusion heating, radar astronomy and communications. Analytic and numerical simulation models are developed that describe the behavior of these devices under realistic laboratory conditions including the effects of circuit geometry, beam thermal spread, and mode competition. In Chapter 2, a generalized linear theory for the gyrotron is presented in the form of an integro-differential equation that can be solved within various circuit geometries thus describing gyro-amplifiers, gyro-oscillatory and gyroklystrons. In Chapter 3 a complete description of a finite size electromagnetic particle simulation model is presented that describes gyrotrons operating in a TE/sub mn/ waveguide mode. In Chapter 4 simulations and theoretical analysis are made of gyrotron amplifiers operating in the TE/sub 01/ mode. In Chapter 5 the linear eigenmodes and eigenfrequencies of gyrotron oscillators are examined. In Chapter 6 the experimental development of a GHz gyrotron is presented. Theoretical and numerical predictions of oscillation thresholds and efficiencies compare favorably with experimental data
Ab Initio Calculation of XAFS Debye-Waller Factors for Crystalline Materials
Dimakis, Nicholas
2007-02-01
A direct an accurate technique for calculating the thermal X-ray absorption fine structure (XAFS) Debye-Waller factors (DWF) for materials of crystalline structure is presented. Using the Density Functional Theory (DFT) under the hybrid X3LYP functional, a library of MnO spin—optimized clusters are built and their phonon spectrum properties are calculated; these properties in the form of normal mode eigenfrequencies and eigenvectors are in turn used for calculation of the single and multiple scattering XAFS DWF. DWF obtained via this technique are temperature dependent expressions and can be used to substantially reduce the number of fitting parameters when experimental spectra are fitted with a hypothetical structure without any ad hoc assumptions. Due to the high computational demand a hybrid approach of mixing the DFT calculated DWF with the correlated Debye model for inner and outer shells respectively is presented. DFT obtained DWFs are compared with corresponding values from experimental XAFS spectra on manganosite. The cluster size effect and the spin parameter on the DFT calculated DWFs are discussed.
Resistive effects on helicity-wave current drive generated by Alfven waves in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Bruma, C.; Cuperman, S.; Komoshvili, K. [Tel Aviv Univ. (Israel). Faculty of Exact Sciences
1997-05-01
This work is concerned with the investigation of non-ideal (resistive) MHD effects on the excitation of Alfven waves by externally launched fast-mode waves, in simulated tokamak plasmas; both continuum range, CR ({l_brace}{omega}{sub Alf}(r){r_brace}{sub min} < {omega} < {l_brace}{omega}{sub Alf}(r){r_brace}{sub max}) and discrete range, DR, where global Alfven eigenmodes, GAEs ({omega} < {l_brace}{sub Alf}(r){r_brace}{sub min}) exist, are considered. (Here, {omega}{sub Alf}(r) {identical_to} {omega}{sub Alf}[n(r), B{sub 0}(r)] is an eigenfrequency of the shear Alfven wave). For this, a cylindrical current carrying plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is used. Toroidicity effects are simulated by adopting for the axial equilibrium magnetic field component a suitable radial profile; shear and finite relative poloidal magnetic field are properly accounted for. A dielectric tensor appropriate to the physical conditions considered in this paper is derived and presented. (author).
Non-inductive current drive via helicity injection by Alfven waves in low aspects ratio Tokamak
International Nuclear Information System (INIS)
Cuperman, S.; Bruma, C.; Komoshvili, K.
1996-01-01
A theoretical investigation of radio frequency (RF) current drive via helicity injection in low aspect ratio tokamaks was carried out. A current-carrying cylindrical plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell was considered. Toroidal features of low aspect ratio tokamaks were simulated by incorporation of the following effects: (i) arbitrarily small aspect ratio, R o /a ≡ 1/ε (ii) strongly sheared equilibrium magnetic field; and (iii) relatively large poloidal component of the equilibrium magnetic field. The study concentrates on the Alfven continuum, i.e. the case in which the wave frequency satisfies the condition {ω Alf (r)} min ≤ω≥{ω Alf (r)} max , where ω Alf (r)≡ω[n(r),B o (o)] is an eigenfrequency of the shear Alfven wave (SAW). Thus, using low-p, ideal magneto-hydrodynamics, the wave equation with correct boundary (matching) conditions was solved, the RF field components were found and subsequently, current drive , power deposition and efficiency were computed. The results of our investigation clearly demonstrate the possibility of generation of RF-driven currents via helicity injection by Alfven waves in low aspect ratio tokamaks, in the SAW mode. A special algorithm was developed which enables the selection of the antenna parameters providing optimal current drive efficiency. (authors)
Non-inductive current drive via helicity injection by Alfven waves in low-aspect-ratio tokamaks
Energy Technology Data Exchange (ETDEWEB)
Cuperman, S.; Bruma, C.; Komoshvili, K. [Tel Aviv Univ. (Israel). Sackler Faculty of Exact Sciences
1996-08-01
A theoretical investigation of radio-frequency (RF) current drive via helicity injection in low aspect ratio tokamaks is carried out. A current-carrying cylindrical plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is considered. Toroidal features of low-aspect-ratio tokamaks are simulated by incorporating the following effects: (i) arbitrarily small aspect ratio, R{sub O}/a ``identical to`` 1/{epsilon}; (ii) strongly sheared equilibrium magnetic field; and (iii) relatively large poloidal component of the equilibrium magnetic field. This study concentrates on the Alfven continuum, i.e. the case in which the wave frequency satisfies the condition {l_brace}{omega}{sub Alf}({tau}){r_brace}{sub min}{r_brace} {<=} {omega} {<=} {l_brace}{omega}{sub Alf}({tau}){r_brace}{sub max}, where {omega}{sub Alf}({tau}) ``identical to`` {omega}{sub Alf}[n({tau}), B{sub O}({tau})] is an eigenfrequency of the shear Alfven wave (SAW). Thus, using low-{beta} magnetohydrodynamics, the wave equation with correct boundary (matching) conditions is solved, the RF field components are found, and subsequently current drive, power deposition and efficiency are computed. The results of our investigation clearly demonstrate the possibility of generation of RF-driven currents via helicity injection by Alfven waves in low-aspect-ratio tokamaks, in the SAW mode. A special algorithm is developed that enables one to select the antenna parameters providing optimal current drive efficiency. (Author).
Generator dynamics in aeroelastic analysis and simulations
Energy Technology Data Exchange (ETDEWEB)
Larsen, T.J.; Hansen, M.H.; Iov, F.
2003-05-01
This report contains a description of a dynamic model for a doubly-fed induction generator implemented in the aeroelastic code HAWC. The model has physical input parameters (resistance, reactance etc.) and input variables (stator and rotor voltage and rotor speed). The model can be used to simulate the generator torque as well as the rotor and stator currents, active and reactive power. A perturbation method has been used to reduce the original generator model equations to a set of equations which can be solved with the same time steps as a typical aeroelastic code. The method is used to separate the fast transients of the model from the slow variations and deduce a reduced order expression for the slow part. Dynamic effects of the first order terms in the model as well as the influence on drive train eigenfrequencies and damping has been investigated. Load response during time simulation of wind turbine response have been compared to simulations with a linear static generator model originally implemented i HAWC. A 2 MW turbine has been modelled in the aeroelastic code HAWC. When using the new dynamic generator model there is an interesting coupling between the generator dynamics and a global turbine vibration mode at 4.5 Hz, which only occurs when a dynamic formulation of the generator equations is applied. This frequency can especially be seen in the electrical power of the generator and the rotational speed of the generator, but also as torque variations in the drive train. (au)
CLIC main beam quadrupole active pre-alignment based on cam movers
Kemppinen, J; Leuxe, R; Mainaud Durand, H; Sandomierski, J; Sosin, M
2012-01-01
Compact Linear Collider (CLIC) is a study for a future 48 km long linear electron-positron collider in the multi TeV range. Its target luminosity can only be reached if the main beam quadrupoles (MB quads) are actively pre-aligned within 17 µm in sliding windows of 200 m with respect to a straight reference line. In addition to the positioning requirement, the pre-alignment system has to provide a rigid support for the nano-stabilization system to ensure that the first eigenfrequency is above 100 Hz. Re-adjustment based on cam movers was chosen for detailed studies to meet the stringent pre-alignment requirements. There are four different types of MB quads in CLIC. Their lengths and masses vary so that at least two types of cam movers have to be developed. The validation of the cams with less stringent space restrictions has proceeded to a test setup in 5 degrees of freedom (DOF). Prototypes of the more demanding, smaller cams have been manufactured and they are under tests in 1 DOF. This paper describes the...
Development of PZT Actuated Valveless Micropump.
Munas, Fathima Rehana; Melroy, Gehan; Abeynayake, Chamitha Bhagya; Chathuranga, Hiniduma Liyanage; Amarasinghe, Ranjith; Kumarage, Pubudu; Dau, Van Thanh; Dao, Dzung Viet
2018-04-24
A piezoelectrically actuated valveless micropump has been designed and developed. The principle components of this system are piezoelectrically actuated (PZT) metal diaphragms and a complete fluid flow system. The design of this pump mainly focuses on a cross junction, which is generated by a nozzle jet attached to a pump chamber and the intersection of two inlet channels and an outlet channel respectively. During each PZT diaphragm vibration cycle, the junction connecting the inlet and outlet channels with the nozzle jet permits consistencies in fluidic momentum and resistances in order to facilitate complete fluidic path throughout the system, in the absence of any physical valves. The entire micropump structure is fabricated as a plate-by-plate element of polymethyl methacrylate (PMMA) sheets and sandwiched to get required fluidic network as well as the overall device. In order to identify the flow characteristics, and to validate the test results with numerical simulation data, FEM analysis using ANSYS was carried out and an eigenfrequency analysis was performed to the PZT diaphragm using COMSOL Multiphysics. In addition, the control system of the pump was designed and developed to change the applied frequency to the piezoelectric diaphragms. The experimental data revealed that the maximum flow rate is 31.15 mL/min at a frequency of 100 Hz. Our proposed design is not only for a specific application but also useful in a wide range of biomedical applications.
International Nuclear Information System (INIS)
Guihot, P.; Le Picard, J.P.
1993-12-01
This test report presents vibration analysis results obtained on the prestressed tie rods attaching the N. 1 live steam line clamps to the concrete structures of the PALUEL-1 unit. The purpose of these tests was to assess the feasibility of using a vibration analysis to determine the effective prestress level in the tie rods. The previous investigations performed with an impact hammer yielded no definite conclusions as to the feasibility of the method. The new series of tests, performed with a sinusoidal scanning electro-dynamic exciter, gave far more accurate results. However, the eigenfrequencies characterizing the tie rod tension level were not evidenced. It would consequently not seem possible to identify the tightening level by monitoring the first resonant frequency with the equipment installed. There are alternative solutions, such as keeping the same principle and substantially increasing the excitation levels, thereby precluding a head and foot restraint response from the tie rod, or using an ultrasonic method. (authors). 2 figs., 3 refs., 2 annexes
Magnetostatic excitations in thin ferrite films
International Nuclear Information System (INIS)
Zil'berman, P.E.; Lugovskoi, A.V.
1987-01-01
The authors discuss the influence of the exchange interaction and dissipative processes in thin ferrite films on the eigenfrequency spectrum of magnetostatic standing waves and on the dispersion relation and attenuation of magnetostatic traveling waves. For the first time they obtain explicitly the dispersion relation for magnetostatic waves (MSWs) in a tangential saturating magnetic field H 0 to second order (inclusive) in the exchange interaction parameter λ. The authors obtain computer solutions for this equation in the complex frequency (ω) plane (for standing waves) or wave-number (q) plane (for traveling waves). The authors show that the dispersion relation constructed from the standing-wave spectrum is different from that of the traveling waves if λ≠0, even if dissipation is neglected. The traveling waves have auxiliary branches of the dispersion relation with weak damping near the spin-wave-resonance (SWR) frequencies. Dissipation has only a relatively weak effect on the frequency spectrum of the standing waves, shifting it upward. For the traveling waves, however, dissipation leads to qualitative changes in the structure of the dispersion relation, giving rise to new branches, forbidden bands, reentrant and anomalous-dispersion regions
Excitation of hydrogen atom by ultrashort laser pulses in optically dense plasma
Energy Technology Data Exchange (ETDEWEB)
Calisti, A. [Aix Marseille Universite, CNRS, PIIM, Marseille (France); Astapenko, V.A. [Moscow Institute of Physics and Technology, Dolgoprudnyi (Russian Federation); Lisitsa, V.S. [Moscow Institute of Physics and Technology, Dolgoprudnyi (Russian Federation); Russian Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation)
2017-10-15
The features of excitation of a hydrogen atom by ultrashort laser pulses (USP) with a Gaussian envelope in optically dense plasma at a Lyman-beta transition are studied theoretically. The problem is of interest for diagnostics of optically dense media. USP have two doubtless advantages over conventional laser excitation: (a) the USP carrier frequency is shifted to the region of short wavelengths allowing exciting atoms from the ground state and (b) the wide spectrum of USP allows them to penetrate into optically dense media to much longer distances as compared with monochromatic radiation. As actual realistic cases, two examples are considered: hot rarefied plasma (the coronal limit) and dense cold plasma (the Boltzmann equilibrium). Universal expressions for the total probability of excitation of the transition under consideration are obtained in view of absorption of radiation in a medium. As initial data for the spectral form of a line, the results of calculations by methods of molecular dynamics are used. The probability of excitation of an atom is analysed for different values of problem parameters: the pulse duration, the optical thickness of a medium, and the detuning of the pulse carrier frequency from the eigenfrequency of an electron transition. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Report of workshop on vibration related to fluid in atomic energy field. 6
International Nuclear Information System (INIS)
1996-01-01
The accident of the fast breeder prototype reactor, 'Monju' on sodium leakage in its second cooling system occurred on December 8, 1995 was broadcast widely through mass-communication such as newspaper, television and others. Because of suspicion of whether concealment of videotape taken the accident state was intended to not, a method of information opening was an argument point. In spite of this, technical details of the accident was not transferred to researchers of each specified field by formal state still yet. Informations expected by the specialists of flow relating vibration are, for example, objective data such as accurate shape, eigenfrequency, attenuation, and others of the thermometer well, flow conditions and so forth, by knowing which they could judge reason of occurring the accident. It seems to be meaningful to conduct the information exchange on even a scale of the 'Yayoi Research Group'. Therefore, the Research Group was received all of objective facts on eddy excitation vibration of Monju's secondary system thermometer well accurately from its interested persons, reviewed on the eddy excitation vibration at this accident once more, and argued with a method of future research. In this book, the following 14 reports are described; 1) Outline of the Monju secondary system sodium leakage accident, 2) Karman vortex, 3) Flow at circumference of vibrates, 4) Flowing power analysis of the thermometer, 5) Flowing power vibration water flow test of the thermometer well, 6) Water flow test on the flow excitation vibration of the Monju's thermometer well, and others. (G.K.)
Creation of skyrmion through resonance excitation
Energy Technology Data Exchange (ETDEWEB)
Li, Zhi-xiong; Chen, Yi-fu; Zhou, Zhen-wei; Nie, Yao-zhuang; Xia, Qing-lin; Wang, Dao-wei; Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn
2017-07-01
Highlights: • Intrinsic oscillation modes of skyrmion are studied by using micromagnetic simulation. • Creation of skyrmion through resonant excitation is proposed. • The number of generated skyrmions can be effectively controlled by manipulating the driving field. • Skyrmion lattice in extended film is generated via resonant excitation. - Abstract: Controllable creation of magnetic skyrmions in nanostructures is a prerequisite for the application of skyrmions in spintronics. Here, we propose a new method for the creation of skyrmions. We show by using micromagnetic simulations that the skyrmions can be nucleated by resonantly exciting one of the skyrmion intrinsic oscillation modes. We first studied the dynamics of skyrmion in a ferromagnetic nanodisk with perpendicular anisotropy. One breathing mode and two non-degenerate gyrotropic modes are identified. Then we applied a circular-polarized microwave field to excite the uniformly magnetized nanodisk. When the frequency of the driving field is equal to the eigenfrequency of the skyrmion gyrotropic mode, stable skyrmions can be created from the initial uniform state. The number of skyrmions can be effectively controlled by appropriately choosing the duration of the driving field or tuning the field amplitude.
Modal density of rectangular structures in a wide frequency range
Parrinello, A.; Ghiringhelli, G. L.
2018-04-01
A novel approach to investigate the modal density of a rectangular structure in a wide frequency range is presented. First, the modal density is derived, in the whole frequency range of interest, on the basis of sound transmission through the infinite counterpart of the structure; then, it is corrected by means of the low-frequency modal behavior of the structure, taking into account actual size and boundary conditions. A statistical analysis reveals the connection between the modal density of the structure and the transmission of sound through its thickness. A transfer matrix approach is used to compute the required acoustic parameters, making it possible to deal with structures having arbitrary stratifications of different layers. A finite element method is applied on coarse grids to derive the first few eigenfrequencies required to correct the modal density. Both the transfer matrix approach and the coarse grids involved in the finite element analysis grant high efficiency. Comparison with alternative formulations demonstrates the effectiveness of the proposed methodology.
Multiple atomic dark solitons in cigar-shaped Bose-Einstein condensates
International Nuclear Information System (INIS)
Theocharis, G.; Kevrekidis, P. G.; Weller, A.; Ronzheimer, J. P.; Gross, C.; Oberthaler, M. K.; Frantzeskakis, D. J.
2010-01-01
We consider the stability and dynamics of multiple dark solitons in cigar-shaped Bose-Einstein condensates. Our study is motivated by the fact that multiple matter-wave dark solitons may naturally form in such settings as per our recent work [Phys. Rev. Lett. 101, 130401 (2008)]. First, we study the dark soliton interactions and show that the dynamics of well-separated solitons (i.e., ones that undergo a collision with relatively low velocities) can be analyzed by means of particle-like equations of motion. The latter take into regard the repulsion between solitons (via an effective repulsive potential) and the confinement and dimensionality of the system (via an effective parabolic trap for each soliton). Next, based on the fact that stationary, well-separated dark multisoliton states emerge as a nonlinear continuation of the appropriate excited eigenstates of the quantum harmonic oscillator, we use a Bogoliubov-de Gennes analysis to systematically study the stability of such structures. We find that for a sufficiently large number of atoms, multiple soliton states are dynamically stable, while for a small number of atoms, we predict a dynamical instability emerging from resonance effects between the eigenfrequencies of the soliton modes and the intrinsic excitation frequencies of the condensate. Finally, we present experimental realizations of multisoliton states including a three-soliton state consisting of two solitons oscillating around a stationary one and compare the relevant results to the predictions of the theoretical mean-field model.
Energy Technology Data Exchange (ETDEWEB)
Sturm, Sven
2012-09-06
This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike {sup 28}Si{sup 13+}. The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision. The development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 4 . 10{sup -11}, which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.
International Nuclear Information System (INIS)
Rubio, Wilfredo Montealegre; Paulino, Glaucio H; Silva, Emilio Carlos Nelli
2011-01-01
Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method
The structure of ideal MHD Alfven modes
International Nuclear Information System (INIS)
Turnbull, A.D.; Chu, M.S.; Lao, L.L.; Greene, J.M.; Strait, E.J.; Chance, M.S.
1991-01-01
Continuum Alfven modes have undergone a resurgence in interest with the recent realization that so-called Toroidicity-Induced Alfven Eigenmodes (TAE modes) can be destabilized either by energetic beam ions in a strongly heated plasma or by alpha particles in a burning plasma. The GATO Ideal MHD Stability code, which minimizes the potential energy according to a variational formulation, has now been modified to isolate and calculate stable continuum eigenmodes. The existence of the TAE mode and its associated gap has been verified, using this code, for a circular cross-section, finite aspect ratio equilibrium. Moreover, the eigenfrequencies and eigenmodes obtained from this variational calculation are found to be in extremely good quantitative agreement with those obtained from the non-variational NOVA code. A systematic survey of the stable continuum has further revealed a surprising diversity in the structure of the continuum Alfven modes; the logarithmic singularity can be so broad, in some cases, as to occupy the whole cross-section. This has important implications for heating experiments which aim to locally excite the plasma by rf waves in the Alfven frequency range. The structure of several representative examples is discussed. The Alfven continuum, in general, and the TAE mode and its associated gap, in particular, are also found to be strongly modified by cross-sectional shaping. The dependence of the spectrum on various shaping factors is explored
Hybrid Alfvén resonant mode generation in the magnetosphere-ionosphere coupling system
International Nuclear Information System (INIS)
Hiraki, Yasutaka; Watanabe, Tomo-Hiko
2012-01-01
Feedback unstable Alfvén waves involving global field-line oscillations and the ionospheric Alfvén resonator (IAR) were comprehensively studied to clarify their properties of frequency dispersion, growth rate, and eigenfunctions. It is discovered that a new mode called here the hybrid Alfvén resonant (HAR) mode can be destabilized in the magnetosphere-ionosphere coupling system with a realistic Alfvén velocity profile. The HAR mode found in a high frequency range over 0.3 Hz is caused by coupling of IAR modes with strong dispersion and magnetospheric cavity resonances. The harmonic relation of HAR eigenfrequencies is characterized by a constant frequency shift from those of IAR modes. The three modes are robustly found even if effects of two-fluid process and ionospheric collision are taken into account and thus are anticipated to be detected by magnetic field observations in a frequency range of 0.3–1 Hz in auroral and polar-cap regions.
Integrability and Linear Stability of Nonlinear Waves
Degasperis, Antonio; Lombardo, Sara; Sommacal, Matteo
2018-03-01
It is well known that the linear stability of solutions of 1+1 partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general N× N matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for N=3 for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants.
In-process, non-destructive multimodal dynamic testing of high-speed composite rotors
Kuschmierz, Robert; Filippatos, Angelos; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgern W.; Fischer, Andreas
2014-03-01
Fibre reinforced plastic (FRP) rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency, lifetime and loading limits. Due to complex rotor structures, high anisotropy and non-linear behavior of FRP under dynamic loads, an in-process measurement system is necessary to monitor and to investigate the evolution of damages under real operation conditions. A non-invasive, optical laser Doppler distance sensor measurement system is applied to determine the biaxial deformation of a bladed FRP rotor with micron uncertainty as well as the tangential blade vibrations at surface speeds above 300 m/s. The laser Doppler distance sensor is applicable under vacuum conditions. Measurements at varying loading conditions are used to determine elastic and plastic deformations. Furthermore they allow to determine hysteresis, fatigue, Eigenfrequency shifts and loading limits. The deformation measurements show a highly anisotropic and nonlinear behavior and offer a deeper understanding of the damage evolution in FRP rotors. The experimental results are used to validate and to calibrate a simulation model of the deformation. The simulation combines finite element analysis and a damage mechanics model. The combination of simulation and measurement system enables the monitoring and prediction of damage evolutions of FRP rotors in process.
Influence of the piezoelectric parameters on the dynamics of an active rotor
Gawryluk, Jarosław; Mitura, Andrzej; Teter, Andrzej
2018-01-01
The main aim of this paper is an experimental and numerical analysis of the dynamic behavior of an active rotor with three composite blades. The study focuses on developing an effective FE modeling technique of a macro fiber composite element (denoted as MFC or active element) for the dynamic tests of active structures. The active rotor under consideration consists of a hub with a drive shaft, three grips and three glass-epoxy laminate blades with embedded active elements. A simplified FE model of the macro fiber composite element exhibiting the d33 piezoelectric effect is developed using the Abaqus software package. The discussed transducer is modeled as quasi-homogeneous piezoelectric material, and voltage is applied to the opposite faces of the element. In this case, the effective (equivalent) piezoelectric constant d33* is specified. Both static and dynamic tests are performed to verify the proposed model. First, static deflections of the active blade caused by the voltage signal are determined by numerical and experimental analyses. Next, a numerical modal analysis of the active rotor is performed. The eigenmodes and corresponding eigenfrequencies are determined by the Lanczos method. The influence of the model parameters (i.e., the effective piezoelectric constant d33 *, voltage signal, angular velocity) on the dynamics of the active rotor is examined. Finally, selected numerical results are validated in experimental tests. The experimental findings demonstrate that the structural stiffening effect caused by the active element strongly depends on the value of the effective piezoelectric constant.
International Nuclear Information System (INIS)
Bulavin, V.V.; Pavelko, V.I.
1995-01-01
On the basis of pressure fluctuation measurements in some primary circuit loops at 2 nd Unit of Kola NPP with VVER-440 type reactors, the shapes of acoustic standing waves (ASW) were determined at frequencies corresponding to four minimal oscillation eigenfrequencies in the primary circuit coolant. On identification of the ASW modes and properties, experimental results based on six circulating loops in symmetric arrangement allowed determination of the three-dimensional space structure of the wave nodes and antinodes inside and outside of the reactor vessel (RV). As part of this analysis, the geometric features of the primary circuit that caused the formation of these standing waves were identified. Differences in each ASW shape were shown to cause different individual effects on the neutron field in the reactor core and on fuel assembly vibration. This has been partially confirmed by ex-core neutron ionization chamber noise analysis. One type of ASW, possessing an antinode inside the RV, can be used for measurement of the pressure coefficient of reactivity. However, this must be done with care to avoid the potential for incorrect results in some cases. The results presented in this paper can be readily extended to other VVER type reactors with both odd and even number of loops. (author)
Energy Technology Data Exchange (ETDEWEB)
Kreim, Susanne Waltraud
2009-08-25
This PhD thesis presents experiments performed on a single proton stored in a Penning trap. The eigenmotion of an isolated, free proton could be detected electronically via a coupling to a resonance circuit. This represents a non-destructive measurement, i.e. the particle is not lost during the measurement. The free cyclotron frequency emerging from the measured eigenfrequencies is one of the two frequencies required for the determination of the magnetic moment. This enables a direct determination of the g-factor contrary to already existing works. Design, developing, and commissioning of the experimental setup have been accomplished within the scope of this work leading to a measuring accuracy of 10{sup -7}. The technical challenges for the determination of the second frequency (the Larmor frequency) arising from the smallness of the magnetic moment were mastered. Since the spin state required for this measurement is an internal degree of freedom, it can only be accessed through a coupling of the magnetic moment to the eigenmotion. A novel, hybrid penning trap is presented in this work, which imprints the spin information onto the eigenmotion, thus, realizing a quantum jump spectrometer. Therewith, the frequency shift of the two spin states resulting from the magnetic coupling reaches for the first time an electronically detectable range. (orig.)
Chróścielewski, Jacek; Schmidt, Rüdiger; Eremeyev, Victor A.
2018-05-01
This paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite rotations of the normal. The finite element model can be applied to static, stability, and transient analysis of smart structures consisting of a master structure and integrated piezoelectric actuator layers or patches attached to the upper and lower surfaces. Two problems are studied extensively: (i) FE analyses of a clamped semicircular ring shell that has been used as a benchmark problem for linear vibration control in several recent papers are critically reviewed and extended to account for the effects of structural nonlinearity and (ii) a smart circular arch subjected to a hydrostatic pressure load is investigated statically and dynamically in order to study the shift of bifurcation and limit points, eigenfrequencies, and eigenvectors, as well as vibration control for loading conditions which may lead to dynamic loss of stability.
Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid
Bahaadini, Reza; Hosseini, Mohammad; Jamali, Behnam
2018-01-01
In this paper, divergence and flutter instabilities of supported piezoelectric nanotubes containing flowing fluid are investigated. To take the size effects into account, the nonlocal elasticity theory is implemented in conjunction with the Euler-Bernoulli beam theory incorporating surface stress effects. The Knudsen number is applied to investigate the slip boundary conditions between the flow and wall of nanotube. The nonlocal governing equations of nanotube are obtained using Newtonian method, including the influence of piezoelectric voltage, surface effects, Knudsen number and nonlocal parameter. Applying Galerkin approach to transform resulting equations into a set of eigenvalue equations under the simple-simple (S-S) and clamped-clamped (C-C) boundary conditions. The effects of the piezoelectric voltage, surface effects, Knudsen number, nonlocal parameter and boundary conditions on the divergence and flutter boundaries of nanotubes are discussed. It is observed that the fluid-conveying nanotubes with both ends supported lose their stability by divergence first and then by flutter with increase in fluid velocity. Results indicate the importance of using piezoelectric voltage, nonlocal parameter and Knudsen number in decrease of critical flow velocities of system. Moreover, the surface effects have a significant role on the eigenfrequencies and critical fluid velocity.
Energy Technology Data Exchange (ETDEWEB)
Rinder, L. [Technische Univ., Wien (Austria). Abt. Maschinenelemente; Svigler, J.; Pasek, M.; Albl, P. [Westboehmische Univ., Pilsen (Czech Republic). Lehrstuhl fuer Mechanik
1998-12-31
The demand for continuing improvements of screw machines leads to a vibration research of these machines. The presented paper deals with the experimental measurement of screw compressor operational vibrations and the determination of vibration sources. The measuring of operational vibrations, modal analysis and the determination of mode shape forms of a screw compressor were performed. The main sources of the operational vibrations were determined and the screw compressor eigenfrequencies were found in the frequency spectrum. This contribution forms a basis for the comparison of the theoretical and experimental results. This work was done in cooperation between the University of West Bohemia Pilsen and the Technical University Vienna. (orig.) [Deutsch] Staendig steigende Anforderungen an die Laufruhe von Schraubenkompressoren machen Schwingungsuntersuchungen an diesen Maschinen notwendig. Die vorliegende Arbeit beschreibt Messungen des Betriebs-Schwingungszustandes und die Bestimmung der Erregerquellen an einem oeleingespritzten Schraubenverdichter. Es wird der Schwingungszustand mit Beschleunigungsaufnehmern gemessen, eine Modalanalyse beider Rotoren durchgefuehrt und es werden die Eigenformen der Laeufer bestimmt. Die Haupterregerquellen fuer die Schwingungen koennen ermittelt werden. Die Eigenfrequenzen des Kompressors sind im Frequenzspektrum festzustellen. Die Ergebnisse dienen als Basis fuer den Vergleich zwischen experimenteller Schwingungsanalyse und theoretischen Schwingungsuntersuchungen. Ueber theoretische Ergebnisse soll in naechster Zukunft berichtet werden. Die Arbeit entstand im Rahmen einer Zusammenarbeit zwischen der Westboehmischen Universitaet Pilsen und der Technischen Universitaet Wien. Die Schwingungsmessungen wurden am Schraubenverdichterpruefstand des Instituts fuer Maschinenelemente der TU Wien durchgefuehrt. (orig.)
A novel approach to predict the stability limits of combustion chambers with large eddy simulation
Pritz, B.; Magagnato, F.; Gabi, M.
2010-06-01
Lean premixed combustion, which allows for reducing the production of thermal NOx, is prone to combustion instabilities. There is an extensive research to develop a reduced physical model, which allows — without time-consuming measurements — to calculate the resonance characteristics of a combustion system consisting of Helmholtz resonator type components (burner plenum, combustion chamber). For the formulation of this model numerical investigations by means of compressible Large Eddy Simulation (LES) were carried out. In these investigations the flow in the combustion chamber is isotherm, non-reacting and excited with a sinusoidal mass flow rate. Firstly a combustion chamber as a single resonator subsequently a coupled system of a burner plenum and a combustion chamber were investigated. In this paper the results of additional investigations of the single resonator are presented. The flow in the combustion chamber was investigated without excitation at the inlet. It was detected, that the mass flow rate at the outlet cross section is pulsating once the flow in the chamber is turbulent. The fast Fourier transform of the signal showed that the dominant mode is at the resonance frequency of the combustion chamber. This result sheds light on a very important source of self-excited combustion instabilities. Furthermore the LES can provide not only the damping ratio for the analytical model but the eigenfrequency of the resonator also.
A deformable bag model of hadrons, 1
International Nuclear Information System (INIS)
Ui, Haruo; Saito, Koich
1983-01-01
As a generalization of the MIT spherical bag model, we construct the spheroidal bag model of hadron with an arbitrary eccentricity. This generalization is made by slightly modifying the MIT linear boundary condition: The linear boundary condition is examined in detail. Our model always satisfies two necessary requirements of the MIT bag model - i.e., n.j = 0, no quark colour flux leaves the bag, and q-barq = 0, the scalar density of quark should vanish on the bag surface- and it reduces to the MIT spherical bag model in the limit of zero-eccentricity. Lagrangian formalism of our model is briefly described. The eigenfrequencies of a single massless quark confined in this spheroidal bag are numerically calculated. We obtain the level-splitting of the excited quark orbits, which is just analogous to the well-known Nilsson's splitting of single particle orbits in deformed nuclei. By using the numerical results of the lowest orbit, the effect of the bag-deformation on the mass of low-lying hadrons is estimated. It is found that, although the spherical bag is stable, the quark bag is extremely soft against the quadrupole deformation. Brief discussions are added on the mechanisms which make the spherical bag more stable. (author)
Torsional Vibration of a Shafting System under Electrical Disturbances
Directory of Open Access Journals (Sweden)
Ling Xiang
2012-01-01
Full Text Available Torsional vibration responses of a nonlinear shafting system are studied by a modified Riccati torsional transfer matrix combining with the Newmark-β method. Firstly, the system is modeled as a chain consisting of an elastic spring with concentrated mass points, from which a multi-segment lumped mass model is established. Secondly, accumulated errors are eliminated from the eigenfrequencies and responses of the system's torsional vibration by this newly developed procedure. The incremental transfer matrix method, combining the modified Riccati torsional transfer matrix with Newmark-β method, is further applied to solve the dynamical equations for the torsional vibration of the nonlinear shafting system. Lastly, the shafting system of a turbine-generator is employed as an illustrating example, and simulation analysis has been performed on the transient responses of the shaft's torsional vibrations during typical power network disturbances, such as three-phase short circuit, two-phase short circuit and asynchronous juxtaposition. The results validate the present method and are instructive for the design of a turbo-generator shaft.
Sensitivity Analysis of a CPAM Inverse Algorithm for Composite Laminates Characterization
Directory of Open Access Journals (Sweden)
Farshid Masoumi
2017-01-01
Full Text Available Using experimental data and numerical simulations, a new combined technique is presented for characterization of thin and thick orthotropic composite laminates. Four or five elastic constants, as well as ply orientation angles, are considered as the unknown parameters. The material characterization is first examined for isotropic plates under different boundary conditions to evaluate the method’s accuracy. The proposed algorithm, so-called CPAM (Combined Programs of ABAQUS and MATLAB, utilizes an optimization procedure and makes simultaneous use of vibration test data together with their corresponding numerical solutions. The numerical solutions are based on a commercial finite element package for efficiently identifying the material properties. An inverse method based on particle swarm optimization algorithm is further provided using MATLAB software. The error function to be minimized is the sum of squared differences between experimental and simulated data of eigenfrequencies. To evaluate the robustness of the model’s results in the presence of uncertainty and unwanted noises, a sensitivity analysis that employs Gaussian disorder model is directly applied to the measured frequencies. The results with high accuracy confirm the validity and capability of the present method in simultaneous determination of mechanical constants and fiber orientation angles of composite laminates as compared to prior methods.
Strain in shock-loaded skeletal muscle and the time scale of muscular wobbling mass dynamics.
Christensen, Kasper B; Günther, Michael; Schmitt, Syn; Siebert, Tobias
2017-10-16
In terrestrial locomotion, muscles undergo damped oscillations in response to limb impacts with the ground. Muscles are also actuators that generate mechanical power to allow locomotion. The corresponding elementary contractile process is the work stroke of an actin-myosin cross-bridge, which may be forcibly detached by superposed oscillations. By experimentally emulating rat leg impacts, we found that full activity and non-fatigue must meet to possibly prevent forcible cross-bridge detachment. Because submaximal muscle force represents the ordinary locomotor condition, our results show that forcible, eccentric cross-bridge detachment is a common, physiological process even during isometric muscle contractions. We also calculated the stiffnesses of the whole muscle-tendon complex and the fibre material separately, as well as Young's modulus of the latter: 1.8 MPa and 0.75 MPa for fresh, fully active and passive fibres, respectively. Our inferred Young's modulus of the tendon-aponeurosis complex suggests that stiffness in series to the fibre material is determined by the elastic properties of the aponeurosis region, rather than the tendon material. Knowing these stiffnesses and the muscle mass, the complex' eigenfrequency for responses to impacts can be quantified, as well as the size-dependency of this time scale of muscular wobbling mass dynamics.
Li, Jipeng; Li, Haitao; Zheng, Jun; Zheng, Botian; Huang, Huan; Deng, Zigang
2017-06-01
The nonlinear vibration of high temperature superconducting (HTS) bulks in an applied permanent magnetic array (Halbach array) field, as a precondition for commercial application to HTS maglev train and HTS bearing, is systematically investigated. This article reports the actual vibration rules of HTS bulks from three aspects. First, we propose a new numerical model to simplify the calculation of levitation force. This model could provide precise simulations, especially the estimation of eigenfrequency. Second, an approximate analytic solution of the vibration of the HTS bulks is obtained by using the method of harmonic balance. Finally, to verify the results mentioned above, we measure the vertical vibration acceleration signals of an HTS maglev model, consisting of eight YBaCuO bulks, oscillating freely above a Halbach array with large displacement excitation. Higher order harmonic components, which indicate the nonlinear vibration phenomenon, are detected in the responses. All the three results are compared and agreed well with each other. This study combines the experimental and theoretical analyses and provides a deep understanding of the physical phenomenon of the nonlinear vibration and is meaningful for the vibration control of the relevant applications.
Scaling of mode shapes from operational modal analysis using harmonic forces
Brandt, A.; Berardengo, M.; Manzoni, S.; Cigada, A.
2017-10-01
This paper presents a new method for scaling mode shapes obtained by means of operational modal analysis. The method is capable of scaling mode shapes on any structure, also structures with closely coupled modes, and the method can be used in the presence of ambient vibration from traffic or wind loads, etc. Harmonic excitation can be relatively easily accomplished by using general-purpose actuators, also for force levels necessary for driving large structures such as bridges and highrise buildings. The signal processing necessary for mode shape scaling by the proposed method is simple and the method can easily be implemented in most measurement systems capable of generating a sine wave output. The tests necessary to scale the modes are short compared to typical operational modal analysis test time. The proposed method is thus easy to apply and inexpensive relative to some other methods for scaling mode shapes that are available in literature. Although it is not necessary per se, we propose to excite the structure at, or close to, the eigenfrequencies of the modes to be scaled, since this provides better signal-to-noise ratio in the response sensors, thus permitting the use of smaller actuators. An extensive experimental activity on a real structure was carried out and the results reported demonstrate the feasibility and accuracy of the proposed method. Since the method utilizes harmonic excitation for the mode shape scaling, we propose to call the method OMAH.
Sinusoidal visuomotor tracking: intermittent servo-control or coupled oscillations?
Russell, D M; Sternad, D
2001-12-01
In visuomotor tasks that involve accuracy demands, small directional changes in the trajectories have been taken as evidence of feedback-based error corrections. In the present study variability, or intermittency, in visuomanual tracking of sinusoidal targets was investigated. Two lines of analyses were pursued: First, the hypothesis that humans fundamentally act as intermittent servo-controllers was re-examined, probing the question of whether discontinuities in the movement trajectory directly imply intermittent control. Second, an alternative hypothesis was evaluated: that rhythmic tracking movements are generated by entrainment between the oscillations of the target and the actor, such that intermittency expresses the degree of stability. In 2 experiments, participants (N = 6 in each experiment) swung 1 of 2 different hand-held pendulums, tracking a rhythmic target that oscillated at different frequencies with a constant amplitude. In 1 line of analyses, the authors tested the intermittency hypothesis by using the typical kinematic error measures and spectral analysis. In a 2nd line, they examined relative phase and its variability, following analyses of rhythmic interlimb coordination. The results showed that visually guided corrective processes play a role, especially for slow movements. Intermittency, assessed as frequency and power components of the movement trajectory, was found to change as a function of both target frequency and the manipulandum's inertia. Support for entrainment was found in conditions in which task frequency was identical to or higher than the effector's eigenfrequency. The results suggest that it is the symmetry between task and effector that determines which behavioral regime is dominant.
Wave chaos in the elastic disk.
Sondergaard, Niels; Tanner, Gregor
2002-12-01
The relation between the elastic wave equation for plane, isotropic bodies and an underlying classical ray dynamics is investigated. We study, in particular, the eigenfrequencies of an elastic disk with free boundaries and their connection to periodic rays inside the circular domain. Even though the problem is separable, wave mixing between the shear and pressure component of the wave field at the boundary leads to an effective stochastic part in the ray dynamics. This introduces phenomena typically associated with classical chaos as, for example, an exponential increase in the number of periodic orbits. Classically, the problem can be decomposed into an integrable part and a simple binary Markov process. Similarly, the wave equation can, in the high-frequency limit, be mapped onto a quantum graph. Implications of this result for the level statistics are discussed. Furthermore, a periodic trace formula is derived from the scattering matrix based on the inside-outside duality between eigenmodes and scattering solutions and periodic orbits are identified by Fourier transforming the spectral density.
Dipole modes of a superfluid Bose–Fermi mixture in the BCS-BEC crossover
International Nuclear Information System (INIS)
Wen, Wen; Chen, Bingyan; Zhang, Xuewu
2017-01-01
Motivated by the first experimental realization by the Ecole Normale Supérieure (ENS) group of a mixture of a Bose–Einstein condensate with a Fermi superfluid continuously changing from a Bardeen–Cooper–Schrieffer (BCS) superfluid to a Bose–Einstein condensate (BEC) (Ferrier-Barbut et al 2014 Science 345 1035), we analytically study the dipole modes of the superfluid Bose–Fermi mixture in the BCS-BEC crossover. The analytical approach can explicitly reveal relationships between the frequencies of the dipole modes and the microscopic properties of the novel system. We start from coupled hydrodynamic equations, where the equation of state for the Fermi superfluid in the crossover is an analytical fitting formula based on experimental data, and by using a scaling approach we analytically study eigenfrequencies of the dipole modes for the coupled system in the ENS experimental parameters. Without the boson–fermion interaction in the equilibrium density profiles, our theoretical results can be reduced to the mean-field model and is consistent with the experimental data. However, by further taking into account the boson–fermion interaction numerically and analytically, we find that the results disagree with the experiment, especially in the parameter regime where the boson interaction is smaller than the boson–fermion interaction. (paper)
Effect of laser beam filamentation on plasma wave localization and stimulated Raman scattering
International Nuclear Information System (INIS)
Purohit, Gunjan; Sharma, R. P.
2013-01-01
This paper presents the effect of laser beam filamentation on the localization of electron plasma wave (EPW) and stimulated Raman scattering (SRS) in unmagnitized plasma when both relativistic and ponderomotive nonlinearities are operative. The filamentary dynamics of laser beam is studied and the splitted profile of the laser beam is obtained due to uneven focusing of the off-axial rays. The localization of electron plasma wave takes place due to nonlinear coupling between the laser beam and EPW. Stimulated Raman scattering of this EPW is studied and backreflectivity has been calculated. The localization of EPW also affects the eigenfrequency and damping of plasma wave; consequently, mismatch and modified enhanced Landau damping lead to the disruption of SRS process and a substantial reduction in the backreflectivity. The new enhanced damping of the plasma wave has been calculated and it is found that the SRS process gets suppressed due to the localization of plasma wave in laser beam filamentary structures. For typical laser beam and plasma parameters with wavelength λ (=1064 nm), power flux (=10 16 W/cm 2 ) and plasma density (n/n cr ) = 0.2; the SRS back reflectivity is found to be suppressed by a factor of around 5%. (author)
Einstein’s “true” discontinuity.With an application to Zeno
Directory of Open Access Journals (Sweden)
Constantin Antonopoulos
2009-11-01
Full Text Available The question whether quantum discontinuity can or cannot provide an answer to Zeno’s Paradoxes is reopened. It is observed that what is usually understood by the term “discontinuity”, namely, Einstein’s conception of the photon as described by himself and all others, is unsuitable to the task because, essentially,it reduces to the trivial ‘discontinuity’ of objects scattered in space. By contrast, quantization of energy levels, which are not in space but can only alternate in time, provide the right sort of discontinuity required. Discrete quantized orbits, corresponding to eigen-frequencies, are irreducible, and nothing is allowed to stand in-between them in satisfaction of the quantum postulate, furnishing the requisite, and so far missing, immediate nextness of a point to a certain other. In this way, Zeno’s Runner need not postpone his first step indefinitely, always waiting upon an infinity of preceding steps, before it can be taken. There is now a point that is next to a point and so a step on that point, which is the first step. It follows that, if one kind of discontinuity, Einstein’s, is incapable of offerring an answer to Zeno, while another kind can, the two are discrepant. One of them, the former, is not a kind of discontinuity properly so called at all, though evidently the consequence of one.
International Nuclear Information System (INIS)
Bhattacharya, Sayak; Shah, Kushal
2015-01-01
The analytical dispersion relation of spoof surface plasmon (SSP) is known only in the low-frequency limit and thus cannot be used to describe various practically important characteristics of SSP in the high-frequency limit (such as multimodal nature, anisotropic propagation, self-collimation). In this article, we consider a square lattice of holes made on a perfect electric conductor and derive a closed form expression of the SSP dispersion relation in the high-frequency limit using a tight binding model. Instead of using prior knowledge of the band diagram along the entire first Brillouin zone (BZ) edge, we analytically determine the hopping parameters by using the eigenfrequencies only at the three high-symmetry points of the square lattice. Using this dispersion relation, we derive an expression for the self-collimation frequency of SSP. We show that this analytical formulation is also applicable to dielectric photonic crystals and can be used to predict the frequencies corresponding to centimetre-scale supercollimation and second band self-collimation in these structures. Finally, we show that our analytical results are in agreement with the simulation results for both SSP and photonic crystals. (paper)
Load alleviation on wind turbine blades using variable airfoil geometry
Energy Technology Data Exchange (ETDEWEB)
Basualdo, S.
2005-03-01
A two-dimensional theoretical study of the aeroelastic behaviour of an airfoil has been performed, whose geometry can be altered using a rear-mounted flap. This device is governed by a controller, whose objective is to reduce the airfoil displacements and, therefore, the stresses present in a real blade. The aerodynamic problem was solved numerically by a panel method using the potential theory, suitable for modelling attached flows. It is therefore mostly applicable for Pitch Regulated Variable Speed (PRVS) wind turbines, which mainly operate under this flow condition. The results show evident reductions in the airfoil displacements by using simple control strategies having the airfoil position and its first and second derivatives as input, especially at the system's eigenfrequency. The use of variable airfoil geometry is an effective means of reducing the vibration magnitudes of an airfoil that represents a section of a wind turbine blade, when subject to stochastic wind signals. The results of this investigation encourage further investigations with 3D aeroelastic models to predict the reduction in loads in real wind turbines. (author)
Active flow control of the laminar separation bubble on a plunging airfoil near stall
Pande, Arth; Agate, Mark; Little, Jesse; Fasel, Hermann
2017-11-01
The effects of small amplitude (A/c = 0.048) high frequency (πfc/U∞ = 0.70) plunging motion on the X-56A airfoil are examined experimentally at Re = 200,000 for 12° angle of attack (CL,MAX = 12.25°) . The purpose of this research is to study the aerodynamic influence of structural motion when the wing is vibrating close to its eigenfrequency near static stall. Specific focus is placed on the laminar separation bubble (LSB) near the leading edge and its control via plasma actuation. In the baseline case, the leading edge bubble bursts during the oscillation cycle causing moment stall. A collaborative computational effort has shown that small amplitude forcing at a frequency that is most amplified by the primary instability of the LSB (FLSB+= 1, Fc+= 52) generates coherent spanwise vortices that entrain freestream momentum, thus reducing separation all while maintaining a laminar flow state. Results (PIV and surface pressure) indicate that a similar control mechanism is effective in the experiments. This is significant given the existence of freestream turbulence in the wind tunnel which has been shown to limit the efficacy of this active flow control technique in a model problem using Direct Numerical Simulation. The implications of these results are discussed.
International Nuclear Information System (INIS)
Manela, A.
2016-01-01
The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.
Energy Technology Data Exchange (ETDEWEB)
Manela, A. [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel)
2016-07-15
The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.
International Nuclear Information System (INIS)
Kreim, Susanne Waltraud
2009-01-01
This PhD thesis presents experiments performed on a single proton stored in a Penning trap. The eigenmotion of an isolated, free proton could be detected electronically via a coupling to a resonance circuit. This represents a non-destructive measurement, i.e. the particle is not lost during the measurement. The free cyclotron frequency emerging from the measured eigenfrequencies is one of the two frequencies required for the determination of the magnetic moment. This enables a direct determination of the g-factor contrary to already existing works. Design, developing, and commissioning of the experimental setup have been accomplished within the scope of this work leading to a measuring accuracy of 10 -7 . The technical challenges for the determination of the second frequency (the Larmor frequency) arising from the smallness of the magnetic moment were mastered. Since the spin state required for this measurement is an internal degree of freedom, it can only be accessed through a coupling of the magnetic moment to the eigenmotion. A novel, hybrid penning trap is presented in this work, which imprints the spin information onto the eigenmotion, thus, realizing a quantum jump spectrometer. Therewith, the frequency shift of the two spin states resulting from the magnetic coupling reaches for the first time an electronically detectable range. (orig.)
Cyclone–anticyclone vortex asymmetry mechanism and linear Ekman friction
Energy Technology Data Exchange (ETDEWEB)
Chefranov, S. G., E-mail: schefranov@mail.ru [Russian Academy of Sciences, Obukhov Institute of Atmospheric Physics (Russian Federation)
2016-04-15
Allowance for the linear Ekman friction has been found to ensure a threshold (in rotation frequency) realization of the linear dissipative–centrifugal instability and the related chiral symmetry breaking in the dynamics of Lagrangian particles, which leads to the cyclone–anticyclone vortex asymmetry. An excess of the fluid rotation rate ω{sub 0} over some threshold value determined by the fluid eigenfrequency ω (i.e., ω{sub 0} > ω) is shown to be a condition for the realization of such an instability. A new generalization of the solution of the Karman problem to determine the steady-state velocity field in a viscous incompressible fluid above a rotating solid disk of large radius, in which the linear Ekman friction was additionally taken into account, has been obtained. A correspondence of this solution and the conditions for the realization of the dissipative–centrifugal instability of a chiral-symmetric vortex state and the corresponding cyclone–anticyclone vortex asymmetry has been shown. A generalization of the well-known spiral velocity distribution in an “Ekman layer” near a solid surface has been established for the case where the fluid rotation frequency far from the disk ω differs from the disk rotation frequency ω{sub 0}.
Astroseismology of neutron stars from gravitational waves in the limit of perfect measurement
Suvorov, A. G.
2018-04-01
The oscillation spectrum of a perturbed neutron star is intimately related to the physical properties of the star, such as the equation of state. Observing pulsating neutron stars therefore allows one to place constraints on these physical properties. However, it is not obvious exactly how much can be learnt from such measurements. If we observe for long enough, and precisely enough, is it possible to learn everything about the star? A classical result in the theory of spectral geometry states that one cannot uniquely `hear the shape of a drum'. More formally, it is known that an eigenfrequency spectrum may not uniquely correspond to a particular geometry; some `drums' may be indistinguishable from a normal-mode perspective. In contrast, we show that the drum result does not extend to perturbations of simple neutron stars within general relativity - in the case of axial (toroidal) perturbations of static, perfect fluid stars, a quasi-normal mode spectrum uniquely corresponds to a stellar profile. We show in this paper that it is not possible for two neutron stars, with distinct fluid profiles, to oscillate in an identical manner. This result has the information-theoretic consequence that gravitational waves completely encode the properties of any given oscillating star: unique identifications are possible in the limit of perfect measurement.
Energy Technology Data Exchange (ETDEWEB)
Capiez-Lernout, E.; Soize, Ch. [Universite de Marne la Vallee, Lab. de Mecanique, 77 (France)
2003-10-01
The mis-tuning of blades is frequently the cause of spatial localizations for the dynamic forced response in turbomachinery industry. The random character of mis-tuning requires the construction of probabilistic models of random uncertainties. A usual parametric probabilistic description considers the mis-tuning through the Young modulus of each blade. This model consists in mis-tuning blade eigenfrequencies, assuming the blade modal shapes unchanged. Recently a new approach known as a non-parametric model of random uncertainties has been introduced for modelling random uncertainties in elasto-dynamics. This paper proposes the construction of a non-parametric model which is coherent with all the uncertainties which characterize mis-tuning. As mis-tuning is a phenomenon which is independent from one blade to another one, the structure is considered as an assemblage of substructures. The mean reduced matrix model required by the non-parametric approach is thus constructed by dynamic sub-structuring. A comparative approach is also needed to study the influence of the non-parametric approach for a usual parametric model adapted to mis-tuning. A numerical example is presented. (authors)
Upgraded phase control system for superconducting low-velocity accelerating structures
Energy Technology Data Exchange (ETDEWEB)
Added, N. (Sao Paulo Univ., SP (Brazil). Dept. de Fisica Nuclear); Clifft, B.E.; Shepard, K.W. (Argonne National Lab., IL (United States))
1992-01-01
Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K.
Tests of a niobium split-ring superconducting heavy ion accelerating structure
Energy Technology Data Exchange (ETDEWEB)
Benaroya, R.; Bollinger, L.M.; Jaffey, A.H.; Khoe, T.K.; Olesen, M.C.; Scheibelhut, C.H.; Shepard, K.W.; Wesolowski, W.A.
1976-01-01
A niobium split-ring accelerating structure designed for use in the Argonne superconducting heavy-ion energy booster was successfully tested. The superconducting resonator has a resonant frequency of 97 MHz and an optimum particle velocity ..beta.. = 0.11. Ultimate performance is expected to be limited by peak surface fields, which in this structure are 4.7 E/sub a/ electric and 170 E/sub a/ (Gauss) magnetic, where E/sub a/ is the effective accelerating gradient in MV/m. The rf losses in two demountable superconducting joints severely limited performance in initial tests. Following independent measurements of the rf loss properties of several types of demountable joints, one demountable joint was eliminated and the other modified. Subsequently, the resonator could be operated continuously at E/sub a/ = 3.6 MV/m (corresponding to an energy gain of 1.3 MeV per charge) with 10W rf input power. Maximum field level was limited by electron loading. The mechanical stability of the resonator under operating conditions is excellent: vibration induced eigenfrequency noise is less than 120 Hz peak to peak, and the radiation pressure induced frequency shift is ..delta..f/f = 1.6 x 10/sup -6/ E/sub a//sup 2/.
Upgraded phase control system for superconducting low-velocity accelerating structures
Energy Technology Data Exchange (ETDEWEB)
Added, N. [Sao Paulo Univ., SP (Brazil). Dept. de Fisica Nuclear; Clifft, B.E.; Shepard, K.W. [Argonne National Lab., IL (United States)
1992-09-01
Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K.
International Nuclear Information System (INIS)
Sturm, Sven
2012-01-01
This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike 28 Si 13+ . The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision. The development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 4 . 10 -11 , which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.
Statistical Evaluation of the Identified Structural Parameters of an idling Offshore Wind Turbine
International Nuclear Information System (INIS)
Kramers, Hendrik C.; Van der Valk, Paul L.C.; Van Wingerden, Jan-Willem
2016-01-01
With the increased need for renewable energy, new offshore wind farms are being developed at an unprecedented scale. However, as the costs of offshore wind energy are still too high, design optimization and new innovations are required for lowering its cost. The design of modern day offshore wind turbines relies on numerical models for estimating ultimate and fatigue loads of the turbines. The dynamic behavior and the resulting structural loading of the turbines is determined for a large part by its structural properties, such as the natural frequencies and damping ratios. Hence, it is important to obtain accurate estimates of these modal properties. For this purpose stochastic subspace identification (SSI), in combination with clustering and statistical evaluation methods, is used to obtain the variance of the identified modal properties of an installed 3.6MW offshore wind turbine in idling conditions. It is found that one is able to obtain confidence intervals for the means of eigenfrequencies and damping ratios of the fore-aft and side-side modes of the wind turbine. (paper)
A New Energy-Based Structural Design Optimization Concept under Seismic Actions
Directory of Open Access Journals (Sweden)
George Papazafeiropoulos
2017-07-01
Full Text Available A new optimization concept is introduced which involves the optimization of non-linear planar shear buildings by using gradients based on equivalent linear structures, instead of the traditional practice of calculating the gradients from the non-linear objective function. The optimization problem is formulated as an equivalent linear system of equations in which a target fundamental eigenfrequency and equal dissipated energy distribution within the storeys of the building are the components of the objective function. The concept is applied in a modified Newton–Raphson algorithm in order to find the optimum stiffness distribution of two representative linear or non-linear MDOF shear buildings, so that the distribution of viscously damped and hysteretically dissipated energy, respectively, over the structural height is uniform. A number of optimization results are presented in which the effect of the earthquake excitation, the critical modal damping ratio, and the normalized yield inter-storey drift limit on the optimum stiffness distributions is studied. Structural design based on the proposed approach is more rational and technically feasible compared to other optimization strategies (e.g., uniform ductility concept, whereas it is expected to provide increased protection against global collapse and loss of life during strong earthquake events. Finally, it is proven that the new optimization concept not only reduces running times by as much as 91% compared to the classical optimization algorithms but also can be applied in other optimization algorithms which use gradient information to proceed to the optimum point.
The use of Classical Rolling Pendulum Bearings (CRPB for vibration control of stay-cables
Directory of Open Access Journals (Sweden)
Papastergiou Georgia
2018-01-01
Full Text Available Cables are efficient structural elements that are used in cable-stayed bridges, suspension bridges and other cable structures. A significant problem which arose from the praxis is the cables’ rain-wind induced vibrations as these cables are subjected to environmental excitations. Rain-wind induced stay-cable vibrations may occur at different cable eigenfrequencies. Large amplitude Rain-Wind-Induced-Vibrations (RWIV of stay cables are a challenging problem in the design of cable-stayed bridges. Several methods, including aerodynamic or structural means, have been investigated in order to control the vibrations of bridge’s stay-cables. The present research focuses on the effectiveness of a movable anchorage system with a Classical Rolling Pendulum Bearing (CRPB device. An analytical model of cable-damper system is developed based on the taut string representation of the cable. The gathered integral-differential equations are solved through the use of the Lagrange transformation. . Finally, a case study with realistic geometrical parameters is also presented to establish the validity of the proposed system.
Dynamic performance of the beam position monitor support at the SSRF.
Wang, Xiao; Cao, Yun; Du, Hanwen; Yin, Lixin
2009-01-01
Electron beam stability is very important for third-generation light sources, especially for the Shanghai Synchrotron Radiation Facility whose ground vibrations are much larger than those for other light sources. Beam position monitors (BPMs), used to monitor the position of the electron beam, require a greater stability than other mechanical structures. This paper concentrates on an investigation of the dynamic performance of the BPM support prototype. Modal and response analyses have been carried out by finite-element (FE) calculations and vibration measurements. Inconsistent results between calculation and measurement have motivated a change in the soft connections between the support and the ground from a ground bolt in the initial design to full grout. As a result the mechanical stability of the BPM support is greatly improved, showing an increase in the first eigenfrequency from 20.2 Hz to 50.2 Hz and a decrease in the ratio of the root-mean-square displacement (4-50 Hz) between the ground and the top of the support from 4.36 to 1.23 in the lateral direction. An example is given to show how FE analysis can guide the mechanical design and dynamic measurements (i.e. it is not just used as a verification method). Similar ideas can be applied to improve the stability of other mechanical structures.
Inertial wave beams and inertial wave modes in a rotating cylinder with time-modulated rotation rate
Borcia, Ion D.; Ghasemi V., Abouzar; Harlander, Uwe
2014-05-01
Inertial gravity waves play an crucial role in atmospheres, oceans, and the fluid inside of planets and moons. In the atmosphere, the effect of rotation is neglected for small wavelength and the waves bear the character of internal gravity waves. For long waves, the hydrostatic assumption is made which in turn makes the atmosphere inelastic with respect to inertial motion. In contrast, in the Earth's interior, pure inertial waves are considered as an important fundamental part of the motion. Moreover, as the deep ocean is nearly homogeneous, there the inertial gravity waves bear the character of inertial waves. Excited at the oceans surface mainly due to weather systems the waves can propagate downward and influence the deep oceans motion. In the light of the aforesaid it is important to understand better fundamental inertial wave dynamics. We investigate inertial wave modes by experimental and numerical methods. Inertial modes are excited in a fluid filled rotating annulus by modulating the rotation rate of the outer cylinder and the upper and lower lids. This forcing leads to inertial wave beams emitted from the corner regions of the annulus due to periodic motions in the boundary layers (Klein et al., 2013). When the forcing frequency matches with the eigenfrequency of the rotating annulus the beam pattern amplitude is increasing, the beams broaden and mode structures can be observed (Borcia et al., 2013a). The eigenmodes are compared with analytical solutions of the corresponding inviscid problem (Borcia et al, 2013b). In particular for the pressure field a good agreement can be found. However, shear layers related to the excited wave beams are present for all frequencies. This becomes obvious in particular in the experimental visualizations that are done by using Kalliroscope particles, highlighting relative motion in the fluid. Comparing the eigenfrequencies we find that relative to the analytical frequencies, the experimental and numerical ones show a small
Elastodynamic cloaking and field enhancement for soft spheres
Diatta, Andre; Guenneau, Sebastien
2016-11-01
We propose a spherical cloak described by a non-singular asymmetric elasticity tensor {C} depending upon a small parameter η, that defines the softness of a region one would like to conceal from elastodynamic waves. By varying η, we generate a class of soft spheres dressed by elastodynamic cloaks, which are shown to considerably reduce the scattering of the soft spheres. Importantly, such cloaks also provide some wave protection except for a countable set of frequencies, for which some large elastic field enhancement can be observed within the soft spheres. Through an investigation of trapped modes in elasticity, we supply a good approximation of such Mie-type resonances by some transcendental equation. Our results, unlike previous studies that focused merely on the invisibility aspects, shed light on potential pitfalls of elastodynamic cloaks for earthquake protection designed via geometric transforms: a seismic cloak needs to be designed in such a way that its inner resonances differ from eigenfrequencies of the building one wishes to protect. In order to circumvent this downfall of field enhancement inside the cloaked area, we introduce a novel generation of cloaks, named here, mixed cloaks. Such mixed cloaks consist of a shell that detours incoming waves, hence creating an invisibility region, and of a perfectly matched layer (PML, located at the inner boundary of the cloaks) that absorbs residual wave energy in such a way that aforementioned resonances in the soft sphere are strongly attenuated. The designs of mixed cloaks with a non-singular elasticity tensor combined with an inner PML and non-vanishing density bring seismic cloaks one step closer to a practical implementation. Note in passing that the concept of mixed cloaks also applies in the case of singular cloaks and can be translated in other wave areas for a similar purpose (i.e. to smear down inner resonances within the invisibility region).
Development and Realization of a Shock Wave Test on Expert Flap Qualification Model
De Fruytier, C.; Dell'Orco, F.; Ullio, R.; Gomiero, F.
2012-07-01
This paper presents the methodology and the results of the shock test campaign conducted by TAS-I and TAS ETCA to qualify the EXPERT Flap in regards of shock wave and acoustic load generated by pyrocord detonation at stages 2/3 separation phase of the EXPERT vehicle. The design concept of the open flap (manufactured by MT AEROSPACE) is a fully integral manufactured, four sided control surface, with an additional stiffening rib and flanges to meet the first eigenfrequency and the allowable deformation requirement with a minimum necessary mass. The objectives were to reproduce equivalent loading at test article level in terms of pulse duration, front pressure, front velocity and acoustic emission. The Thales Alenia Space ETCA pyrotechnic shock test device is usually used to produce high level shocks by performing a shock on a test fixture supporting the unit under test. In this case, the facility has been used to produce a shock wave, with different requested physical characteristics, directed to the unit under test. Different configurations have been tried on a dummy of the unit to test, following an empirical process. This unusual work has lead to the definition of a nominal set- up meeting the requested physical parameters. Two blast sensors have been placed to acquire the pressure around the flap. The distance between the two sensors has allowed estimating the front pressure velocity. Then, several locations have been selected to acquire the acceleration responses on the unit when it was submitted to this environment. Additionally, a “standard” shock test has been performed on this model. The qualification of the flap, in regards of shock environment, has been successfully conducted.
Energy Technology Data Exchange (ETDEWEB)
Rousseau, G.
1994-02-01
We first recall the most important definitions about the fluid/structure interaction. We also define some non-dimensional numbers in order to analyze the physical effects in the fluid we have to take into account: viscosity, compressibility, gravity, inertial effect. Then, in the first part called ``Calculation of the added mass: Models``, we explain the equations which allow us to find the added mass on one structure. After that, we deal with the dynamical behaviour of tube bundles immersed in a fluid. We present a two dimensional modelling. Therefore, the fluid structure interaction only takes place in the planes perpendicular to the tube axis. The added mass matrix of the fluid on the whole tubes is built for every kind of cross-section. But we also focus our attention on the special case of circular cross-section. Lastly, when the number of the tubes in the bundle is huge, the direct calculation of the global added mass matrix is impossible: we must use a method of homogenization to describe the global dynamical behaviour of the tube bundles. In particular, the eigenfrequencies of such homogenized medium are determined. We especially focus our attention on the square nuclear fuel bundles immersed in a confined fluid. In the second part called ``Numerical methods used for the fluid structure interaction``, we first tackle the integral methods. However, in these methods, some theoretical and numerical difficulties arise and this fact makes the advantage of a little number of degrees of freedom far less interesting. This leads us to consider the finite element methods. It allows us to determine the added mass matrix of the fluid on the structure expressed with the nodal interpolation functions used by the FE methods. We then propose a discretization of the equations of the movement of tube bundles immersed in a fluid, with or without homogenization. At last, we compare the efficiency of the integral methods to the FE methods. (author). figs., tabs., 54 refs.
Deraemaeker, A.; Worden, K.
2018-05-01
This paper discusses the possibility of using the Mahalanobis squared-distance to perform robust novelty detection in the presence of important environmental variability in a multivariate feature vector. By performing an eigenvalue decomposition of the covariance matrix used to compute that distance, it is shown that the Mahalanobis squared-distance can be written as the sum of independent terms which result from a transformation from the feature vector space to a space of independent variables. In general, especially when the size of the features vector is large, there are dominant eigenvalues and eigenvectors associated with the covariance matrix, so that a set of principal components can be defined. Because the associated eigenvalues are high, their contribution to the Mahalanobis squared-distance is low, while the contribution of the other components is high due to the low value of the associated eigenvalues. This analysis shows that the Mahalanobis distance naturally filters out the variability in the training data. This property can be used to remove the effect of the environment in damage detection, in much the same way as two other established techniques, principal component analysis and factor analysis. The three techniques are compared here using real experimental data from a wooden bridge for which the feature vector consists in eigenfrequencies and modeshapes collected under changing environmental conditions, as well as damaged conditions simulated with an added mass. The results confirm the similarity between the three techniques and the ability to filter out environmental effects, while keeping a high sensitivity to structural changes. The results also show that even after filtering out the environmental effects, the normality assumption cannot be made for the residual feature vector. An alternative is demonstrated here based on extreme value statistics which results in a much better threshold which avoids false positives in the training data, while
Method for stability analysis based on the Floquet theory and Vidyn calculations
Energy Technology Data Exchange (ETDEWEB)
Ganander, Hans
2005-03-01
This report presents the activity 3.7 of the STEM-project Aerobig and deals with aeroelastic stability of the complete wind turbine structure at operation. As a consequence of the increase of sizes of wind turbines dynamic couplings are being more important for loads and dynamic properties. The steady ambition to increase the cost competitiveness of wind turbine energy by using optimisation methods lowers design margins, which in turn makes questions about stability of the turbines more important. The main objective of the project is to develop a general stability analysis tool, based on the VIDYN methodology regarding the turbine dynamic equations and the Floquet theory for the stability analysis. The reason for selecting the Floquet theory is that it is independent of number of blades, thus can be used for 2 as well as 3 bladed turbines. Although the latter ones are dominating on the market, the former has large potential when talking about offshore large turbines. The fact that cyclic and individual blade pitch controls are being developed as a mean for reduction of fatigue also speaks for general methods as Floquet. The first step of a general system for stability analysis has been developed, the code VIDSTAB. Together with other methods, as the snap shot method, the Coleman transformation and the use of Fourier series, eigenfrequences and modes can be analysed. It is general with no restrictions on the number of blades nor the symmetry of the rotor. The derivatives of the aerodynamic forces are calculated numerically in this first version. Later versions would include state space formulations of these forces. This would also be the case for the controllers of turbine rotation speed, yaw direction and pitch angle.
Optimization of piezoelectric cantilever energy harvesters including non-linear effects
International Nuclear Information System (INIS)
Patel, R; McWilliam, S; Popov, A A
2014-01-01
This paper proposes a versatile non-linear model for predicting piezoelectric energy harvester performance. The presented model includes (i) material non-linearity, for both substrate and piezoelectric layers, and (ii) geometric non-linearity incorporated by assuming inextensibility and accurately representing beam curvature. The addition of a sub-model, which utilizes the transfer matrix method to predict eigenfrequencies and eigenvectors for segmented beams, allows for accurate optimization of piezoelectric layer coverage. A validation of the overall theoretical model is performed through experimental testing on both uniform and non-uniform samples manufactured in-house. For the harvester composition used in this work, the magnitude of material non-linearity exhibited by the piezoelectric layer is 35 times greater than that of the substrate layer. It is also observed that material non-linearity, responsible for reductions in resonant frequency with increases in base acceleration, is dominant over geometric non-linearity for standard piezoelectric harvesting devices. Finally, over the tested range, energy loss due to damping is found to increase in a quasi-linear fashion with base acceleration. During an optimization study on piezoelectric layer coverage, results from the developed model were compared with those from a linear model. Unbiased comparisons between harvesters were realized by using devices with identical natural frequencies—created by adjusting the device substrate thickness. Results from three studies, each with a different assumption on mechanical damping variations, are presented. Findings showed that, depending on damping variation, a non-linear model is essential for such optimization studies with each model predicting vastly differing optimum configurations. (paper)
A View into Saturn through its Natural Seismograph
Mankovich, Christopher
2018-04-01
Saturn's nonradial oscillations perturb the orbits of ring particles. The C ring is fortuitous in that it spans several resonances with Saturn's fundamental acoustic (f-) modes, and its moderate optical depth allows the characterization of wave features using stellar occultations. The growing set of C-ring waves with precise pattern frequencies and azimuthal order m measured from Cassini stellar occultations (Hedman & Nicholson 2013, 2014; French et al. 2016) provides new constraints on Saturn's internal structure, with the potential to aid in resolving long-standing questions about the planet's distribution of helium and heavier elements, its means of internal energy transport, and its rotation state.We construct Saturn interior models and calculate mode eigenfrequencies, mapping the planet mode frequencies to resonant locations in the rings to compare with the locations of observed spiral density and vertical bending waves in the C ring. While spiral density waves at low azimuthal order (m=2-3) appear strongly affected by resonant coupling between f-modes and deep g-modes (Fuller 2014), the locations of waves with higher azimuthal order can be fit with a spectrum of pure f-modes for Saturn models with adiabatic envelopes and realistic equations of state. Notably, several newly observed density waves and bending waves (Nicholson et al., in preparation) align with outer Lindblad and outer vertical resonances for non-sectoral (m!=l) Saturn f-modes of relatively high angular degree, and we present normal mode identifications for these waves. We assess the range of resonance locations in the C and D rings allowed for the spectrum of f-modes given gravity field constraints, point to other resonance locations that should experience strong forcing, and use the full set of observed waves to estimate Saturn's bulk rotation rate.
International Nuclear Information System (INIS)
Krieg, R.; Schlechtendahl, E.G.
1977-01-01
YAQUIR has been applied to large PWR blowdown problems and compared with LECK results. The structural model of CYLDY2 and the fluid model of YAQUIR have been coupled in the code STRUYA. First tests with the fluid dynamic systems code FLUST have been successful. The incompressible fluid version of the 3D coupled code FLUX for HDR-geometry was checked against some analytical test cases and was used for evaluation of the eigenfrequencies of the coupled system. Several test cases were run with the two phase flow code SOLA-DF with satisfactory results. Remarkable agreement was found between YAQUIR results and experimental data obtained from shallow water analogy experiments. A test for investigation of nonequilibrium twophase flow dynamics has been specified in some detail. The test is to be performed early 1978 in the water loop of the IRB. Good agreement was found between the natural frequency predictions for the core barrel obtained from CYLDY2 and STRUDL/DYNAL. Work started on improvement of the beam mode treatment in CYLDY2. The name of this modified version will be CYLDY3. The fluiddynamic code SING1, based on an advanced singularity method and applicable to a broad class of highly transient, incompressible 3D-problems with negligible viscosity has been developed and tested. It will be used in connection with the planned laboratory experiments in order to investigate the effect of the core structure on the blowdown process. Coupling of SING1 with structural dynamics is on the way. (orig./RW) [de
Glushkov, E. V.; Glushkova, N. V.; Evdokimov, A. A.
2018-01-01
Numerical simulation of traveling wave excitation, propagation, and diffraction in structures with local inhomogeneities (obstacles) is computationally expensive due to the need for mesh-based approximation of extended domains with the rigorous account for the radiation conditions at infinity. Therefore, hybrid numerical-analytic approaches are being developed based on the conjugation of a numerical solution in a local vicinity of the obstacle and/or source with an explicit analytic representation in the remaining semi-infinite external domain. However, in standard finite-element software, such a coupling with the external field, moreover, in the case of multimode expansion, is generally not provided. This work proposes a hybrid computational scheme that allows realization of such a conjugation using a standard software. The latter is used to construct a set of numerical solutions used as the basis for the sought solution in the local internal domain. The unknown expansion coefficients on this basis and on normal modes in the semi-infinite external domain are then determined from the conditions of displacement and stress continuity at the boundary between the two domains. We describe the implementation of this approach in the scalar and vector cases. To evaluate the reliability of the results and the efficiency of the algorithm, we compare it with a semianalytic solution to the problem of traveling wave diffraction by a horizontal obstacle, as well as with a finite-element solution obtained for a limited domain artificially restricted using absorbing boundaries. As an example, we consider the incidence of a fundamental antisymmetric Lamb wave onto surface and partially submerged elastic obstacles. It is noted that the proposed hybrid scheme can also be used to determine the eigenfrequencies and eigenforms of resonance scattering, as well as the characteristics of traveling waves in embedded waveguides.
Structural analysis of aircraft impact on a nuclear powered ship
International Nuclear Information System (INIS)
Dietrich, R.
1976-01-01
The paper investigates the aircraft impact on the collision barrier at the side of the ship. The aircraft impact on top of the reactor hatchway is investigated by another analysis. It appears that the most unfavorable angle of impact is always normal to the surface of the collision barrier. Consequently, only normal impact will be considered here. For the specific case of an aircraft striking a nuclear powered ship, the following two effects are considered: Local penetration and dynamic response of the structuure. The local penetration occurs at points where the engines or other rigid objects hit the structure. It is assumed that the aircraft engine is a rigid body projectile and the side wall of the ship is the target. The applied steel penetration formulae for projectiles were empirically derived for military applications, where both the projectile and the target are unlike those of an impact of an aircraft engine. For this reason it is expedient to calculate the upper and the lower limit values of the penetration depths. The results show that the highest penetration depth is less than the sum of all wall thicknesses of the collision barrier. The solution of the dynamic analysis is obtained by using the finite element method. The results are the eigenmodes, the eigenfrequencies, the displacements of the nodes, and the stresses in the applied plane stress elements. It is shown that the maximum stress which only appears in one element is on the same level as the yield stress of the St. 42 steel. The structural analysis shows that the collision barrier is a sufficient safeguard against the perforation of the engine and against the cracking of the structure as a result of the dynamic response to an aircraft impact. (orig./HP) [de
Seismicity as dynamic load of pipes and fittings
International Nuclear Information System (INIS)
Rejent, B.
1984-01-01
The load is discussed of pipe systems and fittings for nuclear power plants which may result from earthquakes, etc. Modifications of the equation of motion are discussed which may be solved using the response spectrum method or the method of direct numerical integration. A mathematical description of both methods is given. The seismic resistance of fittings, pumps, etc., is experimentally determined by loking for their eigenfrequencies and monitoring the response of equipment to resonance oscillations. The principle is described of uniaxial hydraulic and mechanical shock absorbers and a viscous damper. The presented computation method was used for evaluating the primary circuit (Sigma Modrany) and rods for the remote control of fittings (Sigma Hodonin) supplied for the Mochovce nuclear power plant. Variants were compared of seismic protection of the primary circuit by hydraulic and mechanical shock absorbers with viscous dampers and of circuits without any protection. The unprotected system oscillates in the first harmonic, the system with shock absorbers keeps the deflections within the range of the shock absorber function (to 2 mm), and the system using viscous dampers oscillates approximately according to the first waveform with a deflection of around 11 mm. A diagram and a dynamic model are presented of a rod for the remote control of fittings. Figure shows the computation model and the response of this rod in individual time moments, both affected and not affected by play in the dilatation joint. Table shows the effect of play in the dilatation joint on deformation maxima and on rod bend stress from a symmetric load of 8g. (E.S.)
2009-01-01
Topics covered include: Aligning a Receiving Antenna Array to Reduce Interference; Collecting Ground Samples for Balloon-Borne Instruments; Tethered Pyrotechnic Apparatus for Acquiring a Ground Sample; Enhanced Video-Oculography System; Joint Carrier-Phase Synchronization and LDPC Decoding; Dual-Polarization, Sideband-Separating, Balanced Receiver for 1.5 THz Modular Battery Charge Controller; Efficient Multiplexer FPGA Block Structures Based on G4FETs; VLSI Microsystem for Rapid Bioinformatic Pattern Recognition; Low-Noise Amplifier for 100 to 180 GHz; Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures; Inert Welding/Brazing Gas Filters and Dryers; Fabricating Copper Nanotubes by Electrodeposition; Reducing Aerodynamic Drag on Empty Open Cargo Vehicles; Rotary Percussive Auto-Gopher for Deep Drilling and Sampling; More About Reconfigurable Exploratory Robotic Vehicles; Thermostatic Valves Containing Silicone-Oil Actuators; Improving Heat Flux Performance of Flat Surface in Spray-Cooling Systems; Treating Fibrous Insulation to Reduce Thermal Conductivity; Silica-Aerogel Composites Opacified with La(sub0.7)Sr(sub0.3)MnO3; Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles; Ceramic Fiber Structures for Cryogenic Load-Bearing Applications; Elastomer Reinforced with Carbon Nanotubes; Biologically Inspired Purification and Dispersion of SWCNTs; A Technique for Adjusting Eigenfrequencies of WGM Resonators; Low-Pressure, Field-Ionizing Mass Spectrometer; Modifying Operating Cycles to Increase Stability in a LITS; Chamber for Simulating Martian and Terrestrial Environments; Algorithm for Detecting a Bright Spot in an Image; Extreme Programming: Maestro Style; Adaptive Behavior for Mobile Robots; Protocol for Communication Networking for Formation Flying; Planning Complex Sequences Using Compressed Representations; and Self-Supervised Learning of Terrain Traversability from Proprioceptive Sensors.
MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations
Directory of Open Access Journals (Sweden)
Felix Weber
2016-12-01
Full Text Available This paper describes a semi-active vibration absorber (SVA concept based on a real-time controlled magnetorheological damper (MR-SVA for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD. Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited.
Energy Technology Data Exchange (ETDEWEB)
Shneyder, E.I., E-mail: shneyder@iph.krasn.ru [Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation); Reshetnev Siberian State Aerospace University, Krasnoyarsk 660014 (Russian Federation); Spitaler, J. [Materials Center Leoben Forschung GmbH, Rosegger-Straße 18, A-8700 Leoben (Austria); Kokorina, E.E.; Nekrasov, I.A. [Institute of Electrophysics UB RAS, Amundsena Str. 106, 620016 Yekaterinburg (Russian Federation); Gavrichkov, V.A. [Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation); Draxl, C. [Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin (Germany); Ovchinnikov, S.G. [Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation)
2015-11-05
We present results for the electron-phonon interaction of the Γ-point phonons in the tetragonal high-temperature phase of La{sub 2} CuO{sub 4} obtained from a hybrid scheme, combining density-functional theory (DFT) with the generalized tight-binding approach. As a starting point, eigenfrequencies and eigenvectors for the Γ-point phonons are determined from DFT within the frozen phonon approach utilizing the augmented plane wave + local orbitals method. The so obtained characteristics of electron-phonon coupling are converted into parameters of the generalized tight-binding method. This approach is a version of cluster perturbation theory and takes the strong on-site electron correlations into account. The obtained parameters describe the interaction of phonons with Hubbard fermions which form quasiparticle bands in strongly correlated electron systems. As a result, it is found that the Γ-point phonons with the strongest electron-phonon interaction are the A{sub 2u} modes (236 cm{sup −1}, 131 cm{sup −1} and 476 cm{sup −1}). Finally it is shown, that the single-electron spectral-weight redistribution between different Hubbard fermion quasiparticles results in a suppression of electron-phonon interaction which is strongest for the triplet Hubbard band with z oriented copper and oxygen electrons. - Highlights: • Electron-phonon interaction in strongly correlated electron systems is analyzed. • Interaction parameters between strongly correlated electrons and phonons are obtained. • The suppression of these parameters by strong electron correlations is demonstrated.
Approach for a smart device for active vibration suppression as an add-on for robot-based systems
Energy Technology Data Exchange (ETDEWEB)
Perner, Marcus; Krombholz, Christian; Monner, Hans Peter [Institute of Composite Structures and Adaptive Systems, Braunschweig (Germany)
2014-11-15
Robot-based systems are defined by the capabilities of links and joints that form the robot arm, the control including drive engines and the end effector. In particular, articulated robots have a serial structure. They have to carry the drive engine of each ongoing axis, which results in higher susceptibility to vibration. To compensate weak precision the German Aerospace Center (DLR) integrates a quality improving sensor system on the robot platform. A vibration monitoring system detects vibrations that affect the precision during motion tasks. Currently, higher precision is achieved by slowing down the speed in production. Therefore, a compromise is given between speed and precision. To push the limits for these two conflicting process properties, we propose an approach for an additional smart device to decouple the process-sensitive unit from disturbances arising through motion of the kinematic structure. The smart device enables active vibration suppression by use of a piezo-based actuator with a lever mechanism connected to a motion platform. The lever mechanism provides the required force and displacement adaption. The platform provides mounting and steering of the process-sensitive components. First, an insight into the automation task is given within this paper. Secondly, the system design is illustrated. Based on simulation results the characteristic of the proposed mechanism is shown. Besides the mechanical properties like stiffness and lever amplification, dynamical issues like the smallest eigenfrequency are discussed. To verify simulation results initial measurements are presented and discussed. The paper sums up with the discussion of an implementation of a closed-loop control system to achieve vibration-free and fast motion.
Directory of Open Access Journals (Sweden)
Jianxiu QIN
2018-03-01
Full Text Available In order to numerically evaluate the acoustic characteristics of liquid rocket engine thrust chambers by means of a computational fluid dynamics method, a mathematical model of an artificial constant-volume bomb is proposed in this paper. A localized pressure pulse with a very high amplitude can be imposed on specified regions in a combustion chamber, the numerical procedure of which is described. Pressure oscillations actuated by the released constant-volume bomb can then be analyzed via Fast Fourier Transformation (FFT, and their modes can be identified according to the theoretical acoustic eigenfrequencies of the thrust chamber. The damping performances of the corresponding acoustic modes are evaluated by the half-power bandwidth method. The predicted acoustic characteristics and their damping for a special engine combustor agree well with the experimental data, validating the mathematical model and its numerical procedures. A small-thrust liquid rocket engine chamber is then analyzed by the present model. The First Longitudinal (1L acoustic mode can be excited easily and is hard to be damped. The axial position of the central constant-volume bomb has little influence on the amplitude and damping capacity of the First Radial (1R and 1L acoustic modes. Tangential acoustic modes can only be triggered by an off-centered constant-volume bomb, among which the First Tangential (1T mode is the strongest and regarded as the most harmful one. The amplitude of the 1L acoustic mode is smaller, but its damping factor is larger, as a constant-volume bomb is imposed approaching the injector face. These results are contributed to evaluate the acoustic characteristics and their damping of the combustion chamber. Keywords: Acoustic mode, Constant-volume bomb, Damping characteristics, Damping factor, Half-power bandwidth, Pressure oscillation
International Nuclear Information System (INIS)
Berger, E.; Tinic, S.
1988-01-01
The Beznau Nuclear Power Plant is located in northern Switzerland. The plant is owned and operated by the Nordostschweizerische Kraftwerke AG (NOK) in Baden, Switzerland. It is a twin unit plant (2 x 350 MWe) which was designed in the early 1960's and placed into commercial operation between 1969 and 1971. In connection with a major backfit project, which will improve the safety of the plant against external events, the free-standing boric water tanks had to be relocated and were replaced by two boric water tanks in a new building (the so called BOTA-building). It enabled to plan and perform full scale vibration tests.The scope of experimental investigation was to determine the eigenfrequencies and damping values for fundamental soil-structure interaction. The vibration tests allowed identification of the important modes of the soil-structure system in the range 3 to 15 Hz. The excitation was strung enough to generate accelerations in the structure comparable to those of a small earthquake. From the comparisons of computed and measured results it is concluded that the rocking frequency can be reasonably well predicted by either Finite Element or Lumped Parameter models with springs simulating the soil-foundation stiffness, provided in the case of the latter the embedment is taken into account. The prediction of the amplitude of structural response appears to be more difficult, as shown by the differences in the mode shapes. In the frequency range 8 to 10 Hz the agreement between computed and test results was less satisfactory. The actual structural behaviour turned out to be more complex than expected and needs further investigation with the aid of more refined models for the soil-structure system
Saturn's Internal Structure: A View through its Natural Seismograph
Mankovich, Christopher; Marley, Mark S.; Fortney, Jonathan J.; Movshovitz, Naor
2017-10-01
Saturn's nonradial oscillations perturb the orbits of ring particles. The C ring is fortuitous in that it spans several resonances with Saturn's fundamental acoustic (f-) modes, and its moderate optical depth allows the characterization of wave features using stellar occultations. The growing set of C-ring waves with precise pattern frequencies and azimuthal order m measured from Cassini stellar occultations (Hedman & Nicholson 2013, 2014; French et al. 2016) provides new constraints on Saturn's internal structure, with the potential to resolve long-standing questions about the planet's distribution of helium and heavier elements, its means of internal energy transport, and its rotation state.We construct Saturn interior models and calculate mode eigenfrequencies, mapping the planet mode frequencies to resonant locations in the rings to compare with the locations of observed spiral density and vertical bending waves in the C ring. While spiral density waves at low azimuthal order (m=2-3) appear strongly affected by resonant coupling between f-modes and deep g-modes (Fuller 2014), the locations of waves with higher azimuthal order can be fit reasonably well with a spectrum of pure f-modes for Saturn models with adiabatic envelopes and realistic equations of state. In particular, four observed bending waves (Nicholson et al., DPS 2016) align with outer vertical resonances for non-sectoral (m≠l) Saturn f-modes of relatively high angular degree, and we present preliminary identifications of these. We assess the range of resonance locations in the C and D rings allowed for the spectrum of f-modes given gravity field constraints and discuss what role a realistic helium distribution in the planet might play.
Distributed adaptive diagnosis of sensor faults using structural response data
Dragos, Kosmas; Smarsly, Kay
2016-10-01
The reliability and consistency of wireless structural health monitoring (SHM) systems can be compromised by sensor faults, leading to miscalibrations, corrupted data, or even data loss. Several research approaches towards fault diagnosis, referred to as ‘analytical redundancy’, have been proposed that analyze the correlations between different sensor outputs. In wireless SHM, most analytical redundancy approaches require centralized data storage on a server for data analysis, while other approaches exploit the on-board computing capabilities of wireless sensor nodes, analyzing the raw sensor data directly on board. However, using raw sensor data poses an operational constraint due to the limited power resources of wireless sensor nodes. In this paper, a new distributed autonomous approach towards sensor fault diagnosis based on processed structural response data is presented. The inherent correlations among Fourier amplitudes of acceleration response data, at peaks corresponding to the eigenfrequencies of the structure, are used for diagnosis of abnormal sensor outputs at a given structural condition. Representing an entirely data-driven analytical redundancy approach that does not require any a priori knowledge of the monitored structure or of the SHM system, artificial neural networks (ANN) are embedded into the sensor nodes enabling cooperative fault diagnosis in a fully decentralized manner. The distributed analytical redundancy approach is implemented into a wireless SHM system and validated in laboratory experiments, demonstrating the ability of wireless sensor nodes to self-diagnose sensor faults accurately and efficiently with minimal data traffic. Besides enabling distributed autonomous fault diagnosis, the embedded ANNs are able to adapt to the actual condition of the structure, thus ensuring accurate and efficient fault diagnosis even in case of structural changes.
Megaquakes, prograde surface waves and urban evolution
Lomnitz, C.; Castaños, H.
2013-05-01
Cities grow according to evolutionary principles. They move away from soft-ground conditions and avoid vulnerable types of structures. A megaquake generates prograde surface waves that produce unexpected damage in modern buildings. The examples (Figs. 1 and 2) were taken from the 1985 Mexico City and the 2010 Concepción, Chile megaquakes. About 400 structures built under supervision according to modern building codes were destroyed in the Mexican earthquake. All were sited on soft ground. A Rayleigh wave will cause surface particles to move as ellipses in a vertical plane. Building codes assume that this motion will be retrograde as on a homogeneous elastic halfspace, but soft soils are intermediate materials between a solid and a liquid. When Poisson's ratio tends to ν→0.5 the particle motion turns prograde as it would on a homogeneous fluid halfspace. Building codes assume that the tilt of the ground is not in phase with the acceleration but we show that structures on soft ground tilt into the direction of the horizontal ground acceleration. The combined effect of gravity and acceleration may destabilize a structure when it is in resonance with its eigenfrequency. Castaños, H. and C. Lomnitz, 2013. Charles Darwin and the 1835 Chile earthquake. Seismol. Res. Lett., 84, 19-23. Lomnitz, C., 1990. Mexico 1985: the case for gravity waves. Geophys. J. Int., 102, 569-572. Malischewsky, P.G. et al., 2008. The domain of existence of prograde Rayleigh-wave particle motion. Wave Motion 45, 556-564.; Figure 1 1985 Mexico megaquake--overturned 15-story apartment building in Mexico City ; Figure 2 2010 Chile megaquake Overturned 15-story R-C apartment building in Concepción
Detection of individual spin transitions of a single proton confined in a cryogenic Penning trap
Energy Technology Data Exchange (ETDEWEB)
Kracke, Holger
2013-02-27
The presented experiment for the determination of the magnetic moment of the proton is based on the measurement of the ratio of cyclotron frequency and Larmor frequency of a single proton confined in a cryogenic double-Penning trap. In the course of this thesis, the simultaneous non-destructive measurement of two of the three eigenfrequencies of the proton in thermal equilibrium with corresponding detection systems was demonstrated, which reduces the measurement time of the cyclotron frequency by a factor of two. Furthermore, this thesis presents the first detection of individual spin transitions of a single proton, which allows for the determination of the Larmor frequency. The continuous Stern-Gerlach effect is utilized to couple the magnetic moment to the axial mode of the trapped proton by means of a magnetic bottle. Thus, a spin flip causes a jump of the axial frequency, which can be measured non-destructively with highly-sensitive detection systems. However, not only the spin momentum is coupled to the axial motion but also the angular momentum. Thus, the main experimental challenge is the elimination of energy fluctuations in the radial modes in order to maintain spin flip resolution. Due to systematic studies on the stability of the axial frequency and a complete revision of the experimental setup, this goal was achieved. The spin state of the proton can be determined with very high fidelity for the very first time. Thus, this thesis represents an important step towards a high-precision determination of the magnetic moment of the proton.
Directory of Open Access Journals (Sweden)
A. G. Yahnin
2003-03-01
Full Text Available Continuous observations of fluctuations of the geomagnetic field at Sodankylä Geophysical Observatory (L = 5.2 were used for a comprehensive morphological study of the spectral resonance structure (SRS seen in the background electromagnetic noise in the frequency range of 0.1–4.0 Hz. It is shown that the occurrence rate of SRS is higher in the nighttime than in the daytime. The occurrence rate is higher in winter than in summer. The SRS frequencies and the difference between neighbouring eigenfrequencies (the frequency scale increase towards nighttime and decrease towards daytime. Both frequency scale and occurrence rate exhibit a clear tendency to decrease from minimum to maximum of the solar activity cycle. It is found that the occurrence rate of SRS decreases when geomagnetic activity increases. The SRS is believed to be a consequence of a resonator for Alfvén waves, which is suggested to exist in the upper ionosphere. According to the theory of the ionospheric Alfvén resonator (IAR, characteristics of SRS crucially depend on electron density in the F-layer maximum, as well as on the altitudinal scale of the density decay above the maximum.We compared the SRS morphological properties with predictions of the IAR theory. The ionospheric parameters needed for calculation were obtained from the ionosphere model (IRI-95, as well as from measurements made with the ionosonde in Sodankylä. We conclude that, indeed, the main morphological properties of SRS are explained on the basis of the IAR theory. The measured parameters of SRS can be used for improving the ionospheric models.Key words. Ionosphere (auroral ionosphere; wave propagation – Radio Science (electromagnetic noise and interference
Nonlinear effects of energetic particle driven instabilities in tokamaks
International Nuclear Information System (INIS)
Bruedgam, Michael
2010-01-01
In a tokamak plasma, a population of superthermal particles generated by heating methods can lead to a destabilization of various MHD modes. Due to nonlinear wave-particle interactions, a consequential fast particle redistribution reduces the plasma heating and can cause severe damages to the wall of the fusion device. In order to describe the wave-particle interaction, the drift-kinetic perturbative HAGIS code is applied which evolves the particle trajectories and the waves nonlinearly. For a simulation speed-up, the 6-d particle phase-space is reduced by the guiding centre approach to a 5-d description. The eigenfunction of the wave is assumed to be invariant, but its amplitude and phase is altered in time. A sophisticated δ/f-method is employed to model the change in the fast particle distribution so that numerical noise and the excessive number of simulated Monte-Carlo points are reduced significantly. The original code can only calculate the particle redistribution inside the plasma region. Therefore, a code extension has been developed during this thesis which enlarges the simulation region up to the vessel wall. By means of numerical simulations, this thesis addresses the problem of nonlinear waveparticle interactions in the presence of multiple MHD modes with significantly different eigenfrequencies and the corresponding fast particle transport inside the plasma. In this context, a new coupling mechanism between resonant particles and waves has been identified that leads to enhanced mode amplitudes and fast particle losses. The extension of the code provides for the first time the possibility of a quantitative and qualitative comparison between simulation results and recent measurements in the experiment. The findings of the comparison serve as a validation of both the theoretical model and the interpretation of the experimental results. Thus, a powerful interface tool has been developed for a deeper insight of nonlinear wave-particle interaction. (orig.)
Directory of Open Access Journals (Sweden)
Edward A. Startsev
2003-08-01
Full Text Available In plasmas with strongly anisotropic distribution functions (T_{∥b}/T_{⊥b}≪1 a Harris-like collective instability may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Such anisotropies develop naturally in accelerators and may lead to a deterioration of beam quality. This paper extends previous numerical studies [E. A. Startsev, R. C. Davidson, and H. Qin, Phys. Plasmas 9, 3138 (2002] of the stability properties of intense non-neutral charged particle beams with large temperature anisotropy (T_{⊥b}≫T_{∥b} to allow for nonaxisymmetric perturbations with ∂/∂θ≠0. The most unstable modes are identified, and their eigenfrequencies, radial mode structure, and nonlinear dynamics are determined. The simulation results clearly show that moderately intense beams with s_{b}=ω[over ^]_{pb}^{2}/2γ_{b}^{2}ω_{β⊥}^{2}≳0.5 are linearly unstable to short-wavelength perturbations with k_{z}^{2}r_{b}^{2}≳1, provided the ratio of longitudinal and transverse temperatures is smaller than some threshold value. Here, ω[over ^]_{pb}^{2}=4πn[over ^]_{b}e_{b}^{2}/γ_{b}m_{b} is the relativistic plasma frequency squared, and ω_{β⊥} is the betatron frequency associated with the applied smooth-focusing field. A theoretical model is developed based on the Vlasov-Maxwell equations which describes the essential features of the linear stages of instability. Both the simulations and the analytical theory predict that the dipole mode (azimuthal mode number m=1 is the most unstable mode. In the nonlinear stage, tails develop in the longitudinal momentum distribution function, and the kinetic instability saturates due to resonant wave-particle interactions.
Thermo-Acoustic Properties of a Burner with Axial Temperature Gradient: Theory and Experiment
Directory of Open Access Journals (Sweden)
Béla Kosztin
2013-03-01
Full Text Available This paper presents a model for thermo-acoustic effects in a gas turbine combustor. A quarter-wavelength burner with rectangular cross-section has been built and studied from an experimental and theoretical perspective. It has a premixed methane-air flame, which is held by a bluff body, and spans the width of the burner. The flame is compact, i.e. its length is much smaller than that of the burner. The fundamental mode of the burner is unstable; its frequency and pressure distribution have been measured. The complex pressure reflection coefficients at the upstream and downstream end of the burner were also measured. For the theoretical considerations, we divide the burner into three regions (the cold pre-combustion chamber, the flame region and the hot outlet region, and assume one-dimensional acoustic wave propagation in each region. The acoustic pressure and velocity are assumed continuous across the interface between the precombustion chamber and flame region, and across the interface between the flame region and outlet region. The burner ends are modelled by the measured pressure reflection coefficients. The mean temperature is assumed to have the following profile: uniformly cold and uniformly hot in the pre-combustion chamber and outlet region, respectively, and rising continuously from cold to hot in the flame region. For comparison, a discontinuous temperature profile, jumping directly from cold to hot, is also considered. The eigenfrequencies are calculated, and the pressure distribution of the fundamental mode is predicted. There is excellent agreement with the experimental results. The exact profile of the mean temperature in the flame region is found to be unimportant. This study gives us an experimentally validated Green's function, which is a very useful tool for further theoretical studies.
Nonlinear effects of energetic particle driven instabilities in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Bruedgam, Michael
2010-03-25
In a tokamak plasma, a population of superthermal particles generated by heating methods can lead to a destabilization of various MHD modes. Due to nonlinear wave-particle interactions, a consequential fast particle redistribution reduces the plasma heating and can cause severe damages to the wall of the fusion device. In order to describe the wave-particle interaction, the drift-kinetic perturbative HAGIS code is applied which evolves the particle trajectories and the waves nonlinearly. For a simulation speed-up, the 6-d particle phase-space is reduced by the guiding centre approach to a 5-d description. The eigenfunction of the wave is assumed to be invariant, but its amplitude and phase is altered in time. A sophisticated {delta}/f-method is employed to model the change in the fast particle distribution so that numerical noise and the excessive number of simulated Monte-Carlo points are reduced significantly. The original code can only calculate the particle redistribution inside the plasma region. Therefore, a code extension has been developed during this thesis which enlarges the simulation region up to the vessel wall. By means of numerical simulations, this thesis addresses the problem of nonlinear waveparticle interactions in the presence of multiple MHD modes with significantly different eigenfrequencies and the corresponding fast particle transport inside the plasma. In this context, a new coupling mechanism between resonant particles and waves has been identified that leads to enhanced mode amplitudes and fast particle losses. The extension of the code provides for the first time the possibility of a quantitative and qualitative comparison between simulation results and recent measurements in the experiment. The findings of the comparison serve as a validation of both the theoretical model and the interpretation of the experimental results. Thus, a powerful interface tool has been developed for a deeper insight of nonlinear wave-particle interaction
Correlation of Pc5 wave power inside and outside themagnetosphere during high speed streams
Directory of Open Access Journals (Sweden)
R. L. Kessel
2004-01-01
Full Text Available We show a clear correlation between the ULF wave power (Pc5 range inside and outside the Earth's magnetosphere during high speed streams in 1995. We trace fluctuations beginning 200R_{E} upstream using Wind data, to fluctuations just upstream from Earth's bow shock and in the magnetosheath using Geotail data and compare to pulsations on the ground at the Kilpisjarvi ground station. With our 5-month data set we draw the following conclusions. ULF fluctuations in the Pc5 range are found in high speed streams; they are non-Alfvénic at the leading edge and Alfvénic in the central region. Compressional and Alfvénic fluctuations are modulated at the bow shock, some features of the waveforms are preserved in the magnetosheath, but overall turbulence and wave power is enhanced by about a factor of 10. Parallel (compressional and perpendicular (transverse power are at comparable levels in the solar wind and magnetosheath, both in the compression region and in the central region of high speed streams. Both the total parallel and perpendicular Pc5 power in the solar wind (and to a lesser extent in the magnetosheath correlate well with the total Pc5 power of the ground-based H-component magnetic field. ULF fluctuations in the magnetosheath during high speed streams are common at frequencies from 1–4mHz and can coincide with the cavity eigenfrequencies of 1.3, 1.9, 2.6, and 3.4mHz, though other discrete frequencies are also often seen.
Key words. Interplanetary physics (MHD waves and turbulence – Magnetospheric physics (solar wind-magnetosphere interactions; MHD waves and instabilities
Electromagnetic Weible Instability in Intense Charged Particle Beams with Large Energy Anisotropy
International Nuclear Information System (INIS)
Startsev, Edward A.; Davidson, Ronald C.
2003-01-01
In plasmas with strongly anisotropic distribution functions, collective instabilities may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson and H. Qin, PRSTAB, 6, 084401 (2003); Phys. Plasmas 9, 3138 (2002)] demonstrated that a fast, electrostatic, Harris-like instability develops, and saturates nonlinearly, for sufficiently large temperature anisotropy (T perpendi c ular b /T parallelb >> 1). The total distribution function after saturation, however, is still far from equipartitioned. In this paper the linearized Vlasov-Maxwell equations are used to investigate detailed properties of the transverse electromagnetic Weibel-type instability for a long charge bunch propagating through a cylindrical pipe of radius r w . The kinetic stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. The most unstable modes are identified, and their eigenfrequencies, radial mode structure and instability thresholds are determined. The stability analysis shows that, although there is free energy available to drive the electromagnetic Weibel instability, the finite transverse geometry of the charged particle beam introduces a large threshold value for the temperature anisotropy ((T perpendi c ularb /T parallelb ) Weibel >> (T perpendi c ularb /T parallelb ) Harris ) below which the instability is absent. Hence, unlike the case of an electrically neutral plasma, the Weibel instability is not expected to play as significant a role in the process of energy isotropization of intense unneutralized charged particle beams as the electrostatic Harris-type instability
Approach for a smart device for active vibration suppression as an add-on for robot-based systems
International Nuclear Information System (INIS)
Perner, Marcus; Krombholz, Christian; Monner, Hans Peter
2014-01-01
Robot-based systems are defined by the capabilities of links and joints that form the robot arm, the control including drive engines and the end effector. In particular, articulated robots have a serial structure. They have to carry the drive engine of each ongoing axis, which results in higher susceptibility to vibration. To compensate weak precision the German Aerospace Center (DLR) integrates a quality improving sensor system on the robot platform. A vibration monitoring system detects vibrations that affect the precision during motion tasks. Currently, higher precision is achieved by slowing down the speed in production. Therefore, a compromise is given between speed and precision. To push the limits for these two conflicting process properties, we propose an approach for an additional smart device to decouple the process-sensitive unit from disturbances arising through motion of the kinematic structure. The smart device enables active vibration suppression by use of a piezo-based actuator with a lever mechanism connected to a motion platform. The lever mechanism provides the required force and displacement adaption. The platform provides mounting and steering of the process-sensitive components. First, an insight into the automation task is given within this paper. Secondly, the system design is illustrated. Based on simulation results the characteristic of the proposed mechanism is shown. Besides the mechanical properties like stiffness and lever amplification, dynamical issues like the smallest eigenfrequency are discussed. To verify simulation results initial measurements are presented and discussed. The paper sums up with the discussion of an implementation of a closed-loop control system to achieve vibration-free and fast motion.
Boundary layer effects on the vortex shedding in a Donaldson- type hydrofoil
International Nuclear Information System (INIS)
Fontanals, A; Guardo, A; Egusquiza, E; Zobeiri, A; Farhat, M; Avellan, F
2014-01-01
Fluid - Structure Interaction (FSI) phenomena is becoming a relevant study field for the design or revamping of hydropower plants. The generalized trend of increasing flow rates and reducing rotor blades/stay vanes thickness in order to improve the efficiency of the machine together with a major push from plant owners/operators for production flexibility (partial load operation is more common nowadays) make the FSI between the vortex shedding phenomenon and the vanes/blades of the machine an area of interest. From a design point of view, the machine structure has to resist all the hydrodynamic forces generated and maintain tension stresses under the fatigue limit to ensure a machine lifetime of several decades. To accomplish that goal, designers have to assure there is no presence of strong coupling phenomena (lock-in) between the vortex shedding frequency and the eigenfrequencies of the structure. As the vortex street is directly related to the state of the boundary layer along the hydrofoil, in this paper the effect of the boundary layer on the vortex shedding in a Donaldson-type hydrofoil is studied using Computational Fluid Dynamics (CFD). The development of the boundary layer along the Donaldson trailing edge hydrofoil chord is presented under lock-off conditions. The results are validated against previously obtained experimental results. Since the Donaldson trailing edge is non-symmetric, the boundary layer velocity profiles are reported for the suction and pressure side of the hydrofoil. In addition, the effect of the Donaldson trailing edge on laminar-to-turbulent transition on both sides of the hydrofoil is studied
Energy Technology Data Exchange (ETDEWEB)
Berger, E [Basler and Hofmann AG, Consulting Engineers, Zurich (Switzerland); Tinic, S [Nordostschweizerische Kraftwerke AG, Baden (Switzerland)
1988-07-01
The Beznau Nuclear Power Plant is located in northern Switzerland. The plant is owned and operated by the Nordostschweizerische Kraftwerke AG (NOK) in Baden, Switzerland. It is a twin unit plant (2 x 350 MWe) which was designed in the early 1960's and placed into commercial operation between 1969 and 1971. In connection with a major backfit project, which will improve the safety of the plant against external events, the free-standing boric water tanks had to be relocated and were replaced by two boric water tanks in a new building (the so called BOTA-building). It enabled to plan and perform full scale vibration tests.The scope of experimental investigation was to determine the eigenfrequencies and damping values for fundamental soil-structure interaction. The vibration tests allowed identification of the important modes of the soil-structure system in the range 3 to 15 Hz. The excitation was strung enough to generate accelerations in the structure comparable to those of a small earthquake. From the comparisons of computed and measured results it is concluded that the rocking frequency can be reasonably well predicted by either Finite Element or Lumped Parameter models with springs simulating the soil-foundation stiffness, provided in the case of the latter the embedment is taken into account. The prediction of the amplitude of structural response appears to be more difficult, as shown by the differences in the mode shapes. In the frequency range 8 to 10 Hz the agreement between computed and test results was less satisfactory. The actual structural behaviour turned out to be more complex than expected and needs further investigation with the aid of more refined models for the soil-structure system.
Added mass induced by an uncompressible ideal and still fluid on a structure a bibliography
International Nuclear Information System (INIS)
Rousseau, G.
1994-02-01
We first recall the most important definitions about the fluid/structure interaction. We also define some non-dimensional numbers in order to analyze the physical effects in the fluid we have to take into account: viscosity, compressibility, gravity, inertial effect. Then, in the first part called ''Calculation of the added mass: Models'', we explain the equations which allow us to find the added mass on one structure. After that, we deal with the dynamical behaviour of tube bundles immersed in a fluid. We present a two dimensional modelling. Therefore, the fluid structure interaction only takes place in the planes perpendicular to the tube axis. The added mass matrix of the fluid on the whole tubes is built for every kind of cross-section. But we also focus our attention on the special case of circular cross-section. Lastly, when the number of the tubes in the bundle is huge, the direct calculation of the global added mass matrix is impossible: we must use a method of homogenization to describe the global dynamical behaviour of the tube bundles. In particular, the eigenfrequencies of such homogenized medium are determined. We especially focus our attention on the square nuclear fuel bundles immersed in a confined fluid. In the second part called ''Numerical methods used for the fluid structure interaction'', we first tackle the integral methods. However, in these methods, some theoretical and numerical difficulties arise and this fact makes the advantage of a little number of degrees of freedom far less interesting. This leads us to consider the finite element methods. It allows us to determine the added mass matrix of the fluid on the structure expressed with the nodal interpolation functions used by the FE methods. We then propose a discretization of the equations of the movement of tube bundles immersed in a fluid, with or without homogenization. At last, we compare the efficiency of the integral methods to the FE methods. (author). figs., tabs., 54 refs
A case study testing the cavity mode model of the magnetosphere
Directory of Open Access Journals (Sweden)
D. V. Sarafopoulos
2005-07-01
Full Text Available Based on a case study we test the cavity mode model of the magnetosphere, looking for eigenfrequencies via multi-satellite and multi-instrument measurements. Geotail and ACE provide information on the interplanetary medium that dictates the input parameters of the system; the four Cluster satellites monitor the magnetopause surface waves; the POLAR (L=9.4 and LANL 97A (L=6.6 satellites reveal two in-situ monochromatic field line resonances (FLRs with T=6 and 2.5 min, respectively; and the IMAGE ground magnetometers demonstrate latitude dependent delays in signature arrival times, as inferred by Sarafopoulos (2004b. Similar dispersive structures showing systematic delays are also extensively scrutinized by Sarafopoulos (2005 and interpreted as tightly associated with the so-called pseudo-FLRs, which show almost the same observational characteristics with an authentic FLR. In particular for this episode, successive solar wind pressure pulses produce recurring ionosphere twin vortex Hall currents which are identified on the ground as pseudo-FLRs. The BJN ground magnetometer records the pseudo-FLR (alike with the other IMAGE station responses associated with an intense power spectral density ranging from 8 to 12 min and, in addition, two discrete resonant lines with T=3.5 and 7 min. In this case study, even though the magnetosphere is evidently affected by a broad-band compressional wave originated upstream of the bow shock, nevertheless, we do not identify any cavity mode oscillation within the magnetosphere. We fail, also, to identify any of the cavity mode frequencies proposed by Samson (1992.
Keywords. Magnetospheric physics (Magnetosphereionosphere interactions; Solar wind-magnetosphere interactions; MHD waves and instabilities
Alligné, S.; Maruzewski, P.; Dinh, T.; Wang, B.; Fedorov, A.; Iosfin, J.; Avellan, F.
2010-08-01
The growing development of renewable energies combined with the process of privatization, lead to a change of economical energy market strategies. Instantaneous pricings of electricity as a function of demand or predictions, induces profitable peak productions which are mainly covered by hydroelectric power plants. Therefore, operators harness more hydroelectric facilities at full load operating conditions. However, the Francis Turbine features an axi-symmetric rope leaving the runner which may act under certain conditions as an internal energy source leading to instability. Undesired power and pressure fluctuations are induced which may limit the maximum available power output. BC Hydro experiences such constraints in a hydroelectric power plant consisting of four 435 MW Francis Turbine generating units, which is located in Canada's province of British Columbia. Under specific full load operating conditions, one unit experiences power and pressure fluctuations at 0.46 Hz. The aim of the paper is to present a methodology allowing prediction of this prototype's instability frequency from investigations on the reduced scale model. A new hydro acoustic vortex rope model has been developed in SIMSEN software, taking into account the energy dissipation due to the thermodynamic exchange between the gas and the surrounding liquid. A combination of measurements, CFD simulations and computation of eigenmodes of the reduced scale model installed on test rig, allows the accurate calibration of the vortex rope model parameters at the model scale. Then, transposition of parameters to the prototype according to similitude laws is applied and stability analysis of the power plant is performed. The eigenfrequency of 0.39 Hz related to the first eigenmode of the power plant is determined to be unstable. Predicted frequency of the full load power and pressure fluctuations at the unit unstable operating point is found to be in general agreement with the prototype measurements.
International Nuclear Information System (INIS)
Alligne, S; Maruzewski, P; Avellan, F; Dinh, T; Wang, B; Fedorov, A; Iosfin, J
2010-01-01
The growing development of renewable energies combined with the process of privatization, lead to a change of economical energy market strategies. Instantaneous pricings of electricity as a function of demand or predictions, induces profitable peak productions which are mainly covered by hydroelectric power plants. Therefore, operators harness more hydroelectric facilities at full load operating conditions. However, the Francis Turbine features an axi-symmetric rope leaving the runner which may act under certain conditions as an internal energy source leading to instability. Undesired power and pressure fluctuations are induced which may limit the maximum available power output. BC Hydro experiences such constraints in a hydroelectric power plant consisting of four 435 MW Francis Turbine generating units, which is located in Canada's province of British Columbia. Under specific full load operating conditions, one unit experiences power and pressure fluctuations at 0.46 Hz. The aim of the paper is to present a methodology allowing prediction of this prototype's instability frequency from investigations on the reduced scale model. A new hydro acoustic vortex rope model has been developed in SIMSEN software, taking into account the energy dissipation due to the thermodynamic exchange between the gas and the surrounding liquid. A combination of measurements, CFD simulations and computation of eigenmodes of the reduced scale model installed on test rig, allows the accurate calibration of the vortex rope model parameters at the model scale. Then, transposition of parameters to the prototype according to similitude laws is applied and stability analysis of the power plant is performed. The eigenfrequency of 0.39 Hz related to the first eigenmode of the power plant is determined to be unstable. Predicted frequency of the full load power and pressure fluctuations at the unit unstable operating point is found to be in general agreement with the prototype measurements.
Conducted and radiated noise in detection devices
International Nuclear Information System (INIS)
Moisa, D.
2001-01-01
frequencies of oscillations (eigen frequencies). Because a Fourier analyzer was not available, the eigen-frequencies were just evaluated by the oscilloscope. The conclusions are: 1. For a 8 ns width pulse, the oscillation is damped in time with a constant between about 100 ns for cooper bars and double-shielded coaxes and up to around 600 ns for twisted-pair ribbons; 2. The frequency of these oscillations depends on the conductor under test and so they are eigen-frequencies of that conductor. For a RG 59BU cable (F and G) the dominant EF was 20 MHZ as for the same RG59U (Amphenol) the EF was 69 MHZ. This is so because the technology to make the shielding is different. For a cooper bar for instance EF was measures as 46 MHz for 3.7 mm diameter and 26 MHz for 2.35 mm diameter. To understand if these EM pulses which propagate everywhere are important or not we have to remind that these pulses propagate on the surface of the conductors. For a shielded coax, they cannot go inside to change the signal. The situation in totally different when such pulse reaches a twisted-pair cable. The signal is superimposed on the useful signal and is propagated as a 'normal' signal. For this situation, the receiver of a twisted pair cable is differential so that the common mode signal could be rejected by a proper designed receiver. This is so only at the receiver side. If such noise propagates toward the source of signal (the output of the preamplifier for instance), when this EM energy goes inside the transmitter, the electronic device reacts at these EM pulses. Its reaction can be a signal which goes back to line and this is impossible to be rejected by receiver because is like a normal differential signal. For a user it looks like being generated by the detector. In an experiment, a real preamplifier, a real ribbon (about 5 meter long) and a real receiver were connected on a table. An 8 ns pulse was inserted somewhere on that 5 meter twisted-pair cable and the signal on the receiver was
Suppression of the dayside magnetopause surface modes
Directory of Open Access Journals (Sweden)
Pilipenko V.A.
2017-12-01
Full Text Available Magnetopause surface eigenmodes were suggested as a potential source of dayside high-latitude broadband pulsations in the Pc5-6 band (frequency about 1–2 mHz. However, the search for a ground signature of these modes has not provided encouraging results. The comparison of multi-instrument data from Svalbard with the latitudinal structure of Pc5-6 pulsations, recorded by magnetometers covering near-cusp latitudes, has shown that often the latitudinal maximum of pulsation power occurs about 2–3° deeper in the magnetosphere than the dayside open-closed field line boundary (OCB. The OCB proxy was determined from SuperDARN radar data as the equatorward boundary of enhanced width of a return radio signal. The OCB-ULF correspondence is further examined by comparing the latitudinal profile of the near-noon pulsation power with the equatorward edge of the auroral red emission from the meridian scanning photometer. In most analyzed events, the “epicenter” of Pc5-6 power is at 1–2° lower latitude than the optical OCB proxy. Therefore, the dayside Pc5-6 pulsations cannot be associated with the ground image of the magnetopause surface modes or with oscillations of the last field line. A lack of ground response to these modes beneath the ionospheric projection of OCB seems puzzling. As a possible explanation, we suggest that a high variability of the outer magnetosphere near the magnetopause region may suppress the excitation efficiency. To quantify this hypothesis, we consider a driven field line resonator terminated by conjugate ionospheres with stochastic fluctuations of its eigenfrequency. A solution of this problem predicts a substantial deterioration of resonant properties of MHD resonator even under a relatively low level of background fluctuations. This effect may explain why there is no ground response to magnetopause surface modes or oscillations of the last field line at the OCB latitude, but it can be seen at somewhat lower latitudes
Energy balance measurements over a small reservoir in Ghana's Upper East Region
van de Giesen, Nick; Ohene Annor, Frank
2013-04-01
Near the small village of Binaba (10.778927 deg N, 0.464859 deg E), a small irrigation reservoir has been instrumented to measure different parts of the energy balance of this water body. Instruments were placed on, or attached to, a spar platform. This platform consisted of a long PVC pipe, the spar, which is closed at the bottom. On the PVC pipe rests an aluminum frame platform that carries instrumentation and solar power panel. In turn, the platform rests partially on a large inflated tire. At the bottom of the PVC pipe, lead weights and batteries were placed to ensure a very low point of gravity to minimize wave impact on the platform movement. The tire ensures a large second moment of the water plane. The combination of large second momentum of the water plane and small displacement, ensures a high placement of the metacenter. The distance between the point of gravity and the metacenter is relatively long and the weight is large due to the weights and batteries. This ensures that the eigenfrequency of the platform is very low. On the platform, we fixed a WindMaster Pro (sonic anemometer for 3D wind speed and air temperature to perform eddy covariance measurements of sensible heat flux), a NR Lite (net radiometer), and air temperature and relative humidity sensors. Water temperature at different depths was measured with a string of TidbiT's (waterproof temperature sensors and loggers). The platform had a wind vane and the spar could turn freely around its anchor cable to ensure that the anemometer always faced upwind. A compass in the logger completed this setup. First results suggest, as expected, that the sensible heat flux is relatively small with on average 20 W/m2 over the course of a day. Sensible heat flux peaked around midnight at 35 W/m2, when the warm water warmed up the air from the colder surrounding land. The dynamics of heat storage during the daytime and longwave radiation during the night time, are important to calculate the latent heat flux.
International Nuclear Information System (INIS)
Agnor, Craig B.; Lin, D. N. C.
2012-01-01
We examine how the late divergent migration of Jupiter and Saturn may have perturbed the terrestrial planets. Using a modified secular model we have identified six secular resonances between the ν 5 frequency of Jupiter and Saturn and the four apsidal eigenfrequencies of the terrestrial planets (g 1-4 ). We derive analytic upper limits on the eccentricity and orbital migration timescale of Jupiter and Saturn when these resonances were encountered to avoid perturbing the eccentricities of the terrestrial planets to values larger than the observed ones. Because of the small amplitudes of the j = 2, 3 terrestrial eigenmodes the g 2 – ν 5 and g 3 – ν 5 resonances provide the strongest constraints on giant planet migration. If Jupiter and Saturn migrated with eccentricities comparable to their present-day values, smooth migration with exponential timescales characteristic of planetesimal-driven migration (τ ∼ 5-10 Myr) would have perturbed the eccentricities of the terrestrial planets to values greatly exceeding the observed ones. This excitation may be mitigated if the eccentricity of Jupiter was small during the migration epoch, migration was very rapid (e.g., τ ∼< 0.5 Myr perhaps via planet-planet scattering or instability-driven migration) or the observed small eccentricity amplitudes of the j = 2, 3 terrestrial modes result from low probability cancellation of several large amplitude contributions. Results of orbital integrations show that very short migration timescales (τ < 0.5 Myr), characteristic of instability-driven migration, may also perturb the terrestrial planets' eccentricities by amounts comparable to their observed values. We discuss the implications of these constraints for the relative timing of terrestrial planet formation, giant planet migration, and the origin of the so-called Late Heavy Bombardment of the Moon 3.9 ± 0.1 Ga ago. We suggest that the simplest way to satisfy these dynamical constraints may be for the bulk of any giant
A contribution to the computation of the impedance in acceleration resonators
International Nuclear Information System (INIS)
Liu, Cong
2016-05-01
This thesis is focusing on the numerical computation of the impedance in acceleration resonators and corresponding components. For this purpose, a dedicated solver based on the Finite Element Method (FEM) has been developed to compute the broadband impedance in accelerating components. In addition, various numerical approaches have been used to calculate the narrow-band impedance in superconducting radio frequency (RF) cavities. From that an overview of the calculated results as well as the comparisons between the applied numerical approaches is provided. During the design phase of superconducting RF accelerating cavities and components, a challenging and difficult task is the determination of the impedance inside the accelerators with the help of proper computer simulations. Impedance describes the electromagnetic interaction between the particle beam and the accelerators. It can affect the stability of the particle beam. For a superconducting RF accelerating cavity with waveguides (beam pipes and couplers), the narrow-band impedance, which is also called shunt impedance, corresponds to the eigenmodes of the cavity. It depends on the eigenfrequencies and its electromagnetic field distribution of the eigenmodes inside the cavity. On the other hand, the broadband impedance describes the interaction of the particle beam in the waveguides with its environment at arbitrary frequency and beam velocity. With the narrow-band and broadband impedance the detailed knowledges of the impedance for the accelerators can be given completely. In order to calculate the broadband longitudinal space charge impedance for acceleration components, a three-dimensional (3D) solver based on the FEM in frequency domain has been developed. To calculate the narrow-band impedance for superconducting RF cavities, we used various numerical approaches. Firstly, the eigenmode solver based on Finite Integration Technique (FIT) and a parallel real-valued FEM (CEM3Dr) eigenmode solver based on
Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance.
Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro G; Nomura, Taishin
2016-01-01
also showed that this result can be better characterized by an eigenfrequency associated with the dynamic-UCM. In summary, our analysis highlights the close relationship between the two control strategies, namely their ability to simultaneously establish small CoM variations and postural stability, but also make it clear that the intermittent control hypothesis better explains the spectral characteristics of sway.
Dynamic determinants of the uncontrolled manifold during human quiet stance
Directory of Open Access Journals (Sweden)
Yasuyuki Suzuki
2016-12-01
hip. We also showed that this result can be better characterized by an eigenfrequency associated with the dynamic-UCM. In summary, our analysis highlights the close relationship between the two control strategies, namely their ability to simultaneously establish small CoM variations and postural stability, but also make it clear that the intermittent control hypothesis better explains the spectral characteristics of sway.
Cyclic and dynamic response of a bridge pier model located at the Volvi European test site in Greece
International Nuclear Information System (INIS)
Manos, G.C.; Kourtides, V.; Soulis, V.J.
2005-01-01
the presence or not of diagonal cables between the foundation and the deck as well the presence or not of extra mass at the deck apart from the concrete slab. The deck acceleration response was recorded and was studied in the frequency domain in order to extract the most significant eigen-modes and eigen-frequencies for the various configurations of the pier bridge model, which are presented here in a summary form. Moreover, an extensive numerical simulation of the response was also performed, which includes the flexibility of the foundation. Good agreement can be seen when the measured values are compared with the corresponding numerical predictions. (authors)
Velazquez, Antonio; Swartz, R. Andrew
2013-04-01
Renewable energy sources like wind are important technologies, useful to alleviate for the current fossil-fuel crisis. Capturing wind energy in a more efficient way has resulted in the emergence of more sophisticated designs of wind turbines, particularly Horizontal-Axis Wind Turbines (HAWTs). To promote efficiency, traditional finite element methods have been widely used to characterize the aerodynamics of these types of multi-body systems and improve their design. Given their aeroelastic behavior, tapered-swept blades offer the potential to optimize energy capture and decrease fatigue loads. Nevertheless, modeling special complex geometries requires huge computational efforts necessitating tradeoffs between faster computation times at lower cost, and reliability and numerical accuracy. Indeed, the computational cost and the numerical effort invested, using traditional FE methods, to reproduce dependable aerodynamics of these complex-shape beams are sometimes prohibitive. A condensed Spinning Finite Element (SFE) method scheme is presented in this study aimed to alleviate this issue by means of modeling wind-turbine rotor blades properly with tapered-swept cross-section variations of arbitrary order via Lagrangian equations. Axial-flexural-torsional coupling is carried out on axial deformation, torsion, in-plane bending and out-of-plane bending using super-convergent elements. In this study, special attention is paid for the case of damped yaw effects, expressed within the described skew-symmetric damped gyroscopic matrix. Dynamics of the model are analyzed by achieving modal analysis with complex-number eigen-frequencies. By means of mass, damped gyroscopic, and stiffness (axial-flexural-torsional coupling) matrix condensation (order reduction), numerical analysis is carried out for several prototypes with different tapered, swept, and curved variation intensities, and for a practical range of spinning velocities at different rotation angles. A convergence study
Zong, Weikai; Charpinet, Stéphane; Fu, Jian-Ning; Vauclair, Gérard; Niu, Jia-Shu; Su, Jie
2018-02-01
We present the first results of an ensemble and systematic survey of oscillation mode variability in pulsating hot B subdwarf (sdB) and white dwarf stars observed with the original Kepler mission. The satellite provides uninterrupted high-quality photometric data with a time baseline that can reach up to 4 yr collected on pulsating stars. This is a unique opportunity to characterize long-term behaviors of oscillation modes. A mode modulation in amplitude and frequency can be independently inferred by its fine structure in the Fourier spectrum, from the sLSP, or with prewhitening methods applied to various parts of the light curve. We apply all these techniques to the sdB star KIC 3527751, a long-period-dominated hybrid pulsator. We find that all the detected modes with sufficiently large amplitudes to be thoroughly studied show amplitude and/or frequency variations. Components of three identified quintuplets around 92, 114, and 253 μHz show signatures that can be linked to nonlinear interactions according to the resonant mode coupling theory. This interpretation is further supported by the fact that many oscillation modes are found to have amplitudes and frequencies showing correlated or anticorrelated variations, a behavior that can be linked to the amplitude equation formalism, where nonlinear frequency corrections are determined by their amplitude variations. Our results suggest that oscillation modes varying with diverse patterns are a very common phenomenon in pulsating sdB stars. Close structures around main frequencies therefore need to be carefully interpreted in light of this finding to secure a robust identification of real eigenfrequencies, which is crucial for seismic modeling. The various modulation patterns uncovered should encourage further developments in the field of nonlinear stellar oscillation theory. It also raises a warning to any long-term project aiming at measuring the rate of period change of pulsations caused by stellar evolution, or at
Energy Technology Data Exchange (ETDEWEB)
Sathiah, Pratap, E-mail: sathiah@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Haren, Steven van, E-mail: vanharen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Komen, Ed, E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Roekaerts, Dirk, E-mail: d.j.e.m.roekaerts@tudelft.nl [Department of Multi-Scale Physics, Delft University of Technology, P.O. Box 5, 2600 AA Delft (Netherlands)
2012-11-15
mesh refinement has been further validated against three hydrogen deflagration experiments performed in the ENACCEF facility. For each test, mesh and time step sensitivity analyses have been performed. From the presented validation analyses, it could be concluded that the maximum pressures were predicted within 13% accuracy, while the rate of pressure rise dp/dt was predicted within about 30%. The eigen-frequencies of the residual pressure wave phenomena were predicted within a few %. Therefore, it was overall concluded that the current model predicts the considered ENACCEF experiments very well.
Iacovino, Chiara; Ditommaso, Rocco; Auletta, Gianluca; Ponzo, Felice C.
2017-04-01
Continuous monitoring based on vibrational identification methods is increasingly employed for the evaluation of the state of health of existing buildings after strong motion earthquake. Different damage identification methods are based on the variations of damage indices defined in terms modal (eigenfrequencies, mode shapes, and modal damping) and/or non-modal parameters. Most of simplified methods for structural health monitoring and damage detection are based on the evaluation of the dynamic characteristics evolution associated to the fundamental mode of vibration of a monitored structure. Aim of this work is the upgrade of an existing method for damage localization on framed structures during a moderate/destructive earthquake. The existing version of the method is based on the comparison of the geometric characteristics (with particular reference to the mode curvature) exhibited by the structures, related to fundamental mode of vibration, before and during an earthquake. The approach is based on the use of a nonlinear filter, the band-variable filter, based on the Stockwell Transform able to extract the nonlinear response of each mode of vibration. The new version of the method provides the possibility to quantify a possible damage occurred on the monitored structure linking the mode curvature variation with the maximum inter-story drift. This paper shows the preliminary results obtained from several simulations on nonlinear numerical models of reinforced concrete framed structures, designed for only gravity loads, without and with the presence of infill panels. Furthermore, a correlation between maximum mode curvature difference and maximum inter-story drift has been defined for the different numerical models in order to quantify the structural damage. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the
A contribution to the computation of the impedance in acceleration resonators
Energy Technology Data Exchange (ETDEWEB)
Liu, Cong
2016-05-15
This thesis is focusing on the numerical computation of the impedance in acceleration resonators and corresponding components. For this purpose, a dedicated solver based on the Finite Element Method (FEM) has been developed to compute the broadband impedance in accelerating components. In addition, various numerical approaches have been used to calculate the narrow-band impedance in superconducting radio frequency (RF) cavities. From that an overview of the calculated results as well as the comparisons between the applied numerical approaches is provided. During the design phase of superconducting RF accelerating cavities and components, a challenging and difficult task is the determination of the impedance inside the accelerators with the help of proper computer simulations. Impedance describes the electromagnetic interaction between the particle beam and the accelerators. It can affect the stability of the particle beam. For a superconducting RF accelerating cavity with waveguides (beam pipes and couplers), the narrow-band impedance, which is also called shunt impedance, corresponds to the eigenmodes of the cavity. It depends on the eigenfrequencies and its electromagnetic field distribution of the eigenmodes inside the cavity. On the other hand, the broadband impedance describes the interaction of the particle beam in the waveguides with its environment at arbitrary frequency and beam velocity. With the narrow-band and broadband impedance the detailed knowledges of the impedance for the accelerators can be given completely. In order to calculate the broadband longitudinal space charge impedance for acceleration components, a three-dimensional (3D) solver based on the FEM in frequency domain has been developed. To calculate the narrow-band impedance for superconducting RF cavities, we used various numerical approaches. Firstly, the eigenmode solver based on Finite Integration Technique (FIT) and a parallel real-valued FEM (CEM3Dr) eigenmode solver based on
Research in aeroelasticity EFP-2002; Forskning i aeroelasticitet EFP-2002
Energy Technology Data Exchange (ETDEWEB)
Bak, Christian (ed.)
2004-02-01
This report contains results from the Energy Research Project 'Application, demonstration and further development of advanced aerodynamic and aeroelastic models' (EFP 2002), covering the time from July 1 2002 to December 31 2003. The partners in the project are Risoe National Labo-ratory (Risoe), The Technical University of Denmark (DTU), Bonus Energy A/S, LM Glasfiber A/S, NEG Micon A/S og Vestas Wind Systems A/S. In the project, Risoe and DTU have de-monstrated the application of their advanced computational methods on several different mega-Watt-size wind turbine designs. Compared to traditional methods the advanced methods have among other results shown: 1) that the aerodynamics at the blade tip for a wind turbine cannot be analysed correctly for a non-rotating blade. 2) that the drag coefficient distribution on a rotor in stand still according to Computational Fluid Dynamics should be increased from the blade root towards the blade tip. 3) that the maximum 2D lift coefficient in airfoil characteristics should be reduced at the blade tip and should be increased significantly on the inner part of the rotor. The drag coefficients should in general be increased for all sections on the blade, when the flow is separating. 4) that the choice of airfoil characteristics, aerodynamical as well as structural, are impor-tant for the loads, the noise and the design of a wind turbine. 5) that blade edgewise vibrations in stand still computed with an aeroelastic code are most critical around 40 deg. and 140 deg. angles of attack and that these vibrations depend completely on the given values of lift and drag. 6) that the energy production decreases in the case of large deflections of the blades. 7) that the blade flap eigenfrequency increases in the case of large deflections. 8) that there is an increased coupling between blade edge and blade torsional frequency in the case of large deflections. 9) that an overview of the dynamics for a wind turbine design can be
Seismology on drifting icebergs: Catching earthquakes, tsunamis, swell, and iceberg music
Okal, E. A.; Macayeal, D. R.
2006-12-01
originating in the ice masses, many of which characterized by clearly preferential eigenfrequencies in the 1-3 Hz range, accomnpanied by harmonics, and discussed in detail in a companion presentation (MacAyeal et al.).
Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.
2017-01-01
.5 times at the weight growth up to 15%, whereas the eigenfrequencies at the 6 first natural vibration modes have been increased by 5-15%. The present approach and developed programming tools that demonstrated a good efficiency and stability at the acceptable computational costs can be used to optimize a wide range of shell-like structures made of quasi-isotropic laminates.
The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine
International Nuclear Information System (INIS)
Bayati, I; Jonkman, J; Robertson, A; Platt, A
2014-01-01
The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of a floating system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the Maritime Research Institute Netherlands (MARIN) offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method was applied to the Offshore Code Comparison Collaboration Continuation OC4-DeepCwind semisubmersible platform, supporting the National Renewable Energy Laboratory's 5-MW baseline wind turbine. In this paper, the loads and response of the system caused by the second-order hydrodynamics are analysed and compared to the first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second
Induced surface stress at crystal surfaces
International Nuclear Information System (INIS)
Dahmen, K.
2002-05-01
Changes of the surfaces stress Δτ (s) can be studied by observing the bending of thin crystalline plates. With this cantilever method one can gain the induced change of surface stress Δτ (s) from the bending of plates with the help of elasticity theory. For elastic isotropic substrates the relevant relations are known. Here the relations are generalized to elastic anisotropic crystals with a C 2v - Symmetry. The equilibrium shapes of crystalline plates oriented along the (100)-, (110)-, or (111)-direction which are clamped along one edge are calculated with a numeric method under the load of a homogeneous but pure isotropic or anisotropic surface stress. The results can be displayed with the dimensionality, so that the effect of clamping can be described in a systematic way. With these tabulated values one can evaluate cantilever experiments exactly. These results are generalized to cantilever methods for determining magnetoelastic constants. It is shown which magnetoelastic constants are measured in domains of thin films with ordered structures. The eigenshape and the eigenfrequency of plates constraint through a clamping at one side are calculated. These results give a deeper understanding of the elastic anisotropy. The induced surface stress of oxygen on the (110)-surface of molybdenum is measured along the principle directions Δτ [001] and Δτ [ anti 110] . The anisotropy of the surface stress is found for the p(2 x 2)-reconstruction. Lithium induces a tensile surface stress on the Molybdenum (110)-surface up to a coverage of Θ = 0, 3 monolayer. For a higher coverage the induced stress drops and reaches a level of less than -1, 2 N/m at one monolayer. It is shown, that cobalt induces a linear increasing stress with respect to the coverage on the (100)-surface of copper with a value of 2, 4GPa. The copper (100)-surface is bombarded with accelerated ions in the range between 800-2200 eV. The resulting induced compressive stress (Δτ (s) < 0) of the order
International Nuclear Information System (INIS)
Sigrist, Jean-Francois; Laine, Christian; Broc, Daniel
2006-01-01
. The paper has the following contents: Introduction; A homogenization method; Validation of the method; Conclusion. In conclusion, a homogenization method has been exposed in the present paper to deal with the modal analysis of a coupled fluid-structure problem that takes into account the presence of solid inner inclusions on the fluid domain. The basic theory of the developed homogenization method has been recalled. The fluid-structure interaction is described in terms of pressure-displacement with the corrective terms taking into account the confinement effect induced by the inclusion. From the theoretical point of view, the method is furthermore demonstrated to be physically consistent in terms of total mass conservation. The method is validated on a generic 2D case, by a comparison of calculation performed on the fluid-structure system with inclusions and on the fluid-structure modified problem without inclusions. The numerical results are identical both in terms of Eigen-frequencies, Eigenmodes and modal masses. The method can be applied to the modal analysis of a nuclear reactor
Spacecraft Dynamic Characterization by Strain Energies Method
Bretagne, J.-M.; Fragnito, M.; Massier, S.
2002-01-01
forcing direction. The first step consists of the following : for each part the modal strain energy ratio is calculated with respect to the total strain energy of the Spacecraft global model. The results are shown in tabular form : for each mode the parts with a strain energy ratio greater then 1% are reported. The second step can be summarized as follows : for each part or subsystem, in order to compare the relative importance, in terms of dynamic response, among all the modes identified by the percentage method, the subsystem strain energy in Joule is calculated for each axis 1g base driven excitation. Then plots are given where, for each subsystem and for each base forcing direction, the strain energy values are shown in a 0-100 Hz frequency range. Through this method, for each subsystem the sizing eigenfrequencies and associated excitation axis are identified in a clear way, allowing at the same time a better understanding of dynamic responses.
BOOK REVIEW: Plasma and Fluid Turbulence: Theory and Modelling
Yoshizawa, A.; Itoh, S. I.; Itoh, K.
2003-03-01
extensive description of dynamo theory in Magnetohydrodynamic turbulence. This area has applications both in geophysics and plasma confinement by magnetic fields. The most well known example being the reversed field pinch. This part is fundamental in several respects and the principle of relaxation of the turbulence to quasi stationary states that can be predicted theoretically is very elegant. The problem of rotation of magnetized plasmas and its importance for obtaining internal transport barriers is also treated here. This part is entirely described by the one-fluid magnetohydrodynamic (MHD) equations. The next part deals with plasma turbulence. It starts from the Braginskii collisional fluid equations. These are then reduced for typical cases of quasi two dimensional plasma turbulence where the magnetic perturbations can be described by a vector potential which is parallel to the unperturbed magnetic field. Also a couple of well known sets of nonlinear electrostatic systems for drift waves are presented as well as a gyro-averaged kinetic description for inhomogeneous plasmas. Then, several low frequency eigenmodes in magnetized plasmas are described and finally the quasilinear theory of transport is presented. The following part deals with strongly nonlinear phenomena in inhomogeneous plasma turbulence. Here, concepts of importance for confinement such as convective cells, zonal flows and streamers are presented. As a natural continuation, renormalization and scale invariance methods for strongly nonlinear plasmas are given. Also non-Markovian properties are discussed. This is natural since turbulence in inhomogeneous plasmas typically has a rather large real eigenfrequency leading to memory of the wave phase. The next part deals with plasma turbulence driven by inhomogeneities. This is followed by a new part on flows where the flows this time are generated by the turbulence which is driven by plasma inhomogeneities. In particular flows driven by such instabilities can
International Nuclear Information System (INIS)
Pazsit, I.; Demaziere, C.; Arzhanov, V.
2003-01-01
the Haar wavelet function, which gave a reasonably good correlation of the impacting indicator with the reported damage, namely 0.38. As a comparison, the best non-wavelet based indicator showed a correlation of 0.43. This report extends the investigation to a broader set of wavelet functions. Wavelets available in MATLAB have now been tried. A general wavelet-based algorithm to evaluate the impacting rate has been developed. It uses only one model parameter, the fuel box eigenfrequency, that must be set a priori. The rest is done fully automatically. Given a wavelet function, the algorithm selects: the level of wavelet decomposition; the white noise component; the threshold to identify separate impacting . As a result of the investigation, a sorted list of wavelets is presented where the best wavelet function shows a correlation of 0.53, which considerably improves the performance of the Haar wavelet and exceeds the best non-wavelet indicator reported in the previous report. For the next stage we propose an investigation aimed at improving the algorithm performance in the following: more accurate estimate of the white noise component; more accurate estimate of the threshold. Another possible direction of investigation could be to consider some of wavelets not included in MATLAB