WorldWideScience

Sample records for efficient plant regeneration

  1. Establishment of a high-efficiency plant regeneration and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... presented higher CIP, EIP and plant regeneration percentage (PRP) than others; the four materials, including Huangzao4, Huangye4, Jing24 and Ji853 from Tangsipingtou group, were not easy to be differentiated into plants, in spite of high CIP. Maize inbred line 18-599(red) as a representative was.

  2. Efficient regeneration of plants from shoot tip explants of ...

    African Journals Online (AJOL)

    Dendrobium densiflorum Lindl. is one of the horticulturally important orchids of Nepal due to its beautiful yellowish flower and medicinal properties. The present study was carried out for plant regeneration from shoot tip explants of D. densiflorum by tissue culture technique. The shoot tip explants of this species, obtained ...

  3. Development of an efficient plant regeneration protocol for sweet ...

    African Journals Online (AJOL)

    UKZN

    2012-10-18

    Oct 18, 2012 ... explants produced highly recalcitrant callus that did not regenerate into ... Key words: Tissue culture, regeneration, sweet potato, genetic transformation. .... sterilized in 5% (v/v) sodium hypochlorite solution for 20 min and.

  4. Improved efficiency of plant regeneration from protoplasts of eggplant Solanum melongena L.

    Science.gov (United States)

    Guri, A; Izhar, S

    1984-12-01

    Eggplant (Solanum melongena L.) mesophyll protoplasts were obtained from in vitro growing plants of line 410 and cv. 'Classic'. Relatively high (15%) plating efficiency was achieved using petri dishes with alternate quadrants containing reservoir medium (R medium + 1% activated charcoal) and culture medium. Shoot regeneration occurred within 6 weeks following initiation of protoplast culture.

  5. An efficient somatic embryogenesis based plant regeneration from ...

    African Journals Online (AJOL)

    ajl yemi

    2010-03-05

    Mar 5, 2010 ... Fang Yuan, Quan Wang, Qifang Pan, Guofeng Wang, Jingya Zhao, Yuesheng Tian and. Kexuan Tang*. Plant Biotechnology Research Center, School of Agriculture and Biology, Fudan-SJTU-Nottingham Plant Biotechnology. R&D Center, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

  6. Studies on plant regeneration and transformation efficiency of ...

    African Journals Online (AJOL)

    Jane

    2010-10-11

    Oct 11, 2010 ... most used method for the introduction of foreign genes into plant cells and the subsequent ... purine; NAA, α-naphthaleneacetic acid; MS, Murashige and. Skoog; nptII .... The amplified product was analyzed in 1% agarose.

  7. Efficient plant regeneration of bittersweet (Solanum dulcamara L., a medicinal plant

    Directory of Open Access Journals (Sweden)

    Arzu Ucar Turker

    2011-01-01

    Full Text Available Solanum dulcamara L. (bittersweet is a medicinal plant that has been used to treat skin diseases, warts, tumors, felons, arthritis, rheumatism, bronchial congestion, heart ailments, ulcerative colitis, eye inflammations, jaundice and pneumonia. A reliable in vitro culture protocol for bittersweet was established. Explants (leaf and petiole segments were cultured on Murashige and Skoog minimal organics (MSMO medium with various plant growth regulator combinations. Leaf explants formed more shoots than petiole explants. Plant regeneration was observed through indirect organogenesis with both explants. Best shoot proliferation was obtained from leaf explants with 3 mg/l BA (benzyladenine and 0.5 mg/l IAA (indole-3-acetic acid. Regenerated shoots were transferred to rooting media containing different levels of IAA (indole-3-acetic acid, IBA (indole-3-butyric acid, NAA (naphthalene acetic acid or 2,4-D (2,4 dichlorophenoxyacetic acid. Most shoots developed roots on medium with 0.5 mg/l IBA. Rooted explants were transferred to vermiculate in Magenta containers for acclimatization and after 2 weeks, they were planted in plastic pots containing potting soil and maintained in the plant growth room.

  8. Plant Regeneration and Genetic Transformation in Eggplant ...

    African Journals Online (AJOL)

    Dr Harmander Gill

    2014-02-05

    Feb 5, 2014 ... Review. Plant regeneration in eggplant (Solanum melongena L.): A review ... and development of somatic hybrids, efficient plant regeneration ... was first reported in eggplant from immature seed embryos .... Hormone free MS.

  9. Inside out: high-efficiency plant regeneration and Agrobacterium-mediated transformation of upland and lowland switchgrass cultivars.

    Science.gov (United States)

    Liu, Yan-Rong; Cen, Hui-Fang; Yan, Jian-Ping; Zhang, Yun-Wei; Zhang, Wan-Jun

    2015-07-01

    Selection of pre-embryogenic callus from a core structure from mature seed-derived callus is the key for high-efficiency plant regeneration and transformation of switchgrass different cultivars. Switchgrass (Panicum virgatum L.) has been identified as a dedicated biofuel crop. For its trait improvement through biotechnological approaches, we have developed a highly efficient plant regeneration and genetic transformation protocol for both lowland and upland cultivars. We identified and separated a pre-embryogenic "core" structure from the seed-derived callus, which often leads to development of highly regenerative type II calluses. From the type II callus, plant regeneration rate of lowland cultivars Alamo and Performer reaches 95%, and upland cultivars Blackwell and Dacotah, 50 and 76%, respectively. The type II callus was also amenable for Agrobacterium-mediated transformation. Transformation efficiency of 72.8% was achieved for lowland cultivar Alamo, and 8.0% for upland cultivar Dacotah. PCR, Southern blot and GUS staining assays were performed to verify the transgenic events. High regenerative callus lines could be established in 3 months, and transgenic plants could be obtained in 2 months after Agrobacterium infection. To our knowledge, this is the first report on successful plant regeneration and recovery of transgenic plants from upland switchgrass cultivars by Agrobacterium-mediated transformation. The method presented here could be helpful in breaking through the bottleneck of regeneration and transformation of lowland and upland switchgrass cultivars and probably other recalcitrant grass crops.

  10. Thidiazuron: A potent cytokinin for efficient plant regeneration in Himalayan poplar (Populus ciliata Wall. using leaf explants

    Directory of Open Access Journals (Sweden)

    Gaurav Aggarwal

    2012-11-01

    Full Text Available Populus species are important resource for certain branches of industry and have special roles for scientific study on biological and agricultural systems. The present investigation was undertaken with an objective of enhancing the frequency of plant regeneration in Himalayan poplar (Populus ciliata Wall.. The effect of Thiadizuron (TDZ alone and in combination with adenine and α-Naphthalene acetic acid (NAA were studied on the regeneration potential of leaf explants. A high efficiency of shoot regeneration was observed in leaf (80.00% explants on MS basal medium supplemented with 0.024 mg/l TDZ and 79.7 mg/l adenine. Elongation and multiplication of shoots were obtained on Murashige and Skoog (MS basal medium, containing 0.5 mg/l 6. Benzyl aminopurine (BAP + 0.2mg/l Indole 3-acetic acid (IAA + 0.3 mg/l Gibberellic acid (GA3. High frequency root regeneration from in vitro developed shoots was observed on MS basal medium supplemented with 0.10 mg/l Indole 3-butyric acid(IBA. Maximum of the in vitro rooted plantlets were well accomplished to the mixture of sand: soil (1:1 and exhibited similar morphology with the field plants. A high efficiency plant regeneration protocol has been developedfrom leaf explants in Himalayan poplar (Populus ciliata Wall..

  11. Efficient plant regeneration through somatic embryogenesis from callus cultures of Oncidium (Orchidaceae).

    Science.gov (United States)

    Chen, J -T.; Chang, W -C.

    2000-12-07

    An efficient method was established for high frequency somatic embryogenesis and plant regeneration from callus cultures of a hybrid of sympodial orchid (Oncidium 'Gower Ramsey'). Compact and yellow-white embryogenic calli formed from root tips and cut ends of stem and leaf segments on 1/2 MS [11] basal medium supplemented with 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea (TDZ, 0.1-3 mg/l), 2,4-dichlorophenoxyacetic acid (2,4-D, 3-10 mg/l) and peptone (1 g/l) for 4-7 weeks. Embryogenic callus was maintained by subculture on the same medium for callus induction and proliferated 2-4 times (fresh weight) in 1 month. Initiation of somatic embryogenesis and development up to the protocorm-like-bodies (PLBs) from callus cultures was achieved on hormone-free basal medium. Regenerants were recovered from somatic embryos (SEs) after transfer to the same medium and showed normal development. The optimized protocol required about 12-14 weeks from the initiation of callus to the plantlet formation. Generally, the frequency of embryo formation of root-derived callus was higher than stem- and leaf-derived calli. Combinations of naphthaleneacetic acid (NAA) and TDZ significantly promoted embryo formation from callus cultures. The high-frequency (93.8%) somatic embryogenesis and an average of 29.1 SEs per callus (3x3 mm(2)) was found in root-derived callus on a basal medium supplemented with 0.1 mg/l NAA and 3 mg/l TDZ. Almost all the SEs converted and the plantlets grew well with an almost 100% survival rate when potted in sphagnum moss and acclimatized in the greenhouse.

  12. Development of efficient plant regeneration and transformation system for impatiens using Agrobacterium tumefaciens and multiple bud cultures as explants.

    Science.gov (United States)

    Dan, Yinghui; Baxter, Aaron; Zhang, Song; Pantazis, Christopher J; Veilleux, Richard E

    2010-08-09

    Impatiens (Impatiens walleriana) is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have established a regeneration and transformation system for Impatiens that provides new alternatives to genetic improvement of this crop. In a first step towards the development of transgenic INSV-resistant Impatiens, we developed an efficient plant regeneration system using hypocotyl segments containing cotyledonary nodes as explants. With this regeneration system, 80% of explants produced an average of 32.3 elongated shoots per initial explant plated, with up to 167 elongated shoots produced per explant. Rooting efficiency was high, and 100% of shoots produced roots within 12 days under optimal conditions, allowing plant regeneration within approximately 8 weeks. Using this regeneration system, we developed an efficient Agrobacterium-mediated Impatiens transformation method using in vitro multiple bud cultures as explants and a binary plasmid (pHB2892) bearing gfp and nptII genes. Transgenic Impatiens plants, with a frequency up to 58.9%, were obtained within 12 to 16 weeks from inoculation to transfer of transgenic plants to soil. Transgenic plants were confirmed by Southern blot, phenotypic assays and T1 segregation analysis. Transgene expression was observed in leaves, stems, roots, flowers, and fruit. The transgenic plants were fertile and phenotypically normal. We report the development of a simple and efficient Agrobacterium-mediated transformation system for Impatiens. To the best of our knowledge, there have been no reports of Agrobacterium-mediated transformation of Impatiens with experimental evidence of stable integration of T-DNA and of Agrobacterium-mediated transformation method for plants using in vitro maintained multiple bud cultures as explants. This transformation system

  13. Development of Efficient Plant Regeneration and Transformation System for Impatiens Using Agrobacterium tumefaciens and Multiple Bud Cultures as Explants

    Directory of Open Access Journals (Sweden)

    Dan Yinghui

    2010-08-01

    Full Text Available Abstract Background Impatiens (Impatiens walleriana is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have established a regeneration and transformation system for Impatiens that provides new alternatives to genetic improvement of this crop. Results In a first step towards the development of transgenic INSV-resistant Impatiens, we developed an efficient plant regeneration system using hypocotyl segments containing cotyledonary nodes as explants. With this regeneration system, 80% of explants produced an average of 32.3 elongated shoots per initial explant plated, with up to 167 elongated shoots produced per explant. Rooting efficiency was high, and 100% of shoots produced roots within 12 days under optimal conditions, allowing plant regeneration within approximately 8 weeks. Using this regeneration system, we developed an efficient Agrobacterium-mediated Impatiens transformation method using in vitro multiple bud cultures as explants and a binary plasmid (pHB2892 bearing gfp and nptII genes. Transgenic Impatiens plants, with a frequency up to 58.9%, were obtained within 12 to 16 weeks from inoculation to transfer of transgenic plants to soil. Transgenic plants were confirmed by Southern blot, phenotypic assays and T1 segregation analysis. Transgene expression was observed in leaves, stems, roots, flowers, and fruit. The transgenic plants were fertile and phenotypically normal. Conclusion We report the development of a simple and efficient Agrobacterium-mediated transformation system for Impatiens. To the best of our knowledge, there have been no reports of Agrobacterium-mediated transformation of Impatiens with experimental evidence of stable integration of T-DNA and of Agrobacterium-mediated transformation method for plants using in vitro maintained

  14. Efficient callus formation and plant regeneration of goosegrass [Eleusine indica (L.) Gaertn.].

    Science.gov (United States)

    Yemets, A I; Klimkina, L A; Tarassenko, L V; Blume, Y B

    2003-02-01

    Efficient methods in totipotent callus formation, cell suspension culture establishment and whole-plant regeneration have been developed for the goosegrass [ Eleusine indica (L.) Gaertn.] and its dinitroaniline-resistant biotypes. The optimum medium for inducing morphogenic calli consisted of N6 basal salts and B5 vitamins supplemented with 1-2 mg l(-1) 2,4-dichlorophenoxyacetic acid (2,4-D), 2 mg l(-1) glycine, 100 mg l(-1) asparagine, 100 mg l(-1) casein hydrolysate, 30 g l(-1) sucrose and 0.6% agar, pH 5.7. The presence of organogenic and embryogenic structures in these calli was histologically documented. Cell suspension cultures derived from young calli were established in a liquid medium with the same composition. Morphogenic structures of direct shoots and somatic embryos were grown into rooted plantlets on medium containing MS basal salts, B5 vitamins, 1 mg l(-1) kinetin (Kn) and 0.1 mg l(-1) indole-3-acetic acid (IAA), 3% sucrose, 0.6% agar, pH 5.7. Calli derived from the R-biotype of E. indica possessed a high resistance to trifluralin (dinitroaniline herbicide) and cross-resistance to a structurally non-related herbicide, amiprophosmethyl (phosphorothioamidate herbicide), as did the original resistant plants. Embryogenic cell suspension culture was a better source of E. indica protoplasts than callus or mesophyll tissue. The enzyme solution containing 1.5% cellulase Onozuka R-10, 0.5% driselase, 1% pectolyase Y-23, 0.5% hemicellulase and N(6) mineral salts with an additional 0.2 M KCl and 0.1 M CaCl(2) (pH 5.4-5.5) was used for protoplast isolation. The purified protoplasts were cultivated in KM8p liquid medium supplemented with 2 mg l(-1) 2,4-D and 0.2 mg l(-1) Kn.

  15. Establishment of an efficient plant regeneration culture protocol and achievement of successful genetic transformation in Jatropha curcas L.

    Science.gov (United States)

    Liu, Ying; Liu, Guoxuan; Yang, Yali; Niu, Sufang; Yang, Fuguang; Yang, Shaoxia; Tang, Jianian; Chen, Jianping

    2017-12-01

    An efficient and reproducible protocol is described for shoot-bud regeneration and Agrobacterium tumefaciens-mediated genetic transformation of J. curcas. Treating the explants with high concentrations (5-120 mg/L) of TDZ for short durations (5-80 min) before inoculation culture increased significantly the regeneration frequency and improved the quality of the regenerated buds. The highest shoot-buds induction rate (87.35%) was achieved when petiole explants were treated with 20 mg/L TDZ solution for 20 min and inoculated on hormone-free MS medium for 30 days. Regenerated shoots of 0.5 cm or a little longer were isolated and grafted to seedling stocks of the same species, and then the grafted plantlets were planted on half-strength MS medium containing 0.1 mg/L IBA and 2 mg/L sodium nitroprusside (SNP). This grafting strategy was found to be very effective, to obtain that healthy grafted plantlets ready for acclimatization within 20 days. By the above mentioned protocol and with general Agrobacterium - mediated genetic transformation methods only 65 days were needed to obtain intact transgenic plants.

  16. Plant regeneration in wheat mature embryo culture

    African Journals Online (AJOL)

    Kamil Haliloğlu

    2011-11-09

    Nov 9, 2011 ... Success in genetic engineering of cereals depends on the callus formation and efficient plant regeneration system. Callus formation and plant regeneration of wheat mature embryos ... compiled by modification of methods previously mentioned in ..... of more and readily available nutrition than artificial cul-.

  17. Adventitious shoots induction and plant regeneration from ...

    African Journals Online (AJOL)

    A highly efficient regeneration system is a prerequisite step for successful genetic transformation of watermelon cultivars (Citrullus lanatus L.). The objective of this study was to establish efficient in vitro plant regeneration for three watermelon cultivars. To achieve optimal conditions for adventitious shoot induction, the ...

  18. Effects of soil drought stress on plant regeneration efficiency and endogenous hormone levels of immature embryos in wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Bie, X.; Wang, K.; Liu, C.; Du, L.

    2017-01-01

    In this study, the water supply in soil for wheat mother donor plants was controlled, leading to drought stress conditions, and the relative soil water content (RSWC) was measured in different soil depths. The immature embryos of common wheat (Triticum aestivum L.) 13 days post anthesis (DPA) were used to test regeneration capacity. The accumulation of the plant growth regulators (PGRs) including abscisic acid (ABA), indole-3-acetic acid (IAA), and hydrogen peroxide (H2O2) in the wheat embryos grown under the two conditions was measured. The results indicated that RSWC difference between the drought treatment and the irrigated control was more than 13% at the various soil depths, with the maximum difference was observed at 40 cm depth. Tissue culture evaluation showed that the plant regeneration efficiency of the immature embryos grown under drought stress treatment was significantly higher than that of the tissues grown under the control condition. Assay for PGR found that the drought stress caused obviously increased concentration of endogenous ABA and H2O2, and slightly decreased level of IAA in the target tissues. Therefore, it seems that the concentration of endogenous ABA, IAA, and H2O2 in immature wheat embryos is very important in regeneration capacity. Drought stress can improve the regeneration capacity by changing the levels of ABA, IAA, and H2O2. Our results would be helpful to efficient development of genetically modified wheat plants through improvement of regeneration via manipulating the endogenous PGRs. (author)

  19. Enhancement of callus induction and regeneration efficiency from ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... efficiency from embryo cultures of Datura stramonium ... cycle (callus induction and plant regeneration) for Datura stramonium by adjusting carbon sources and ... induction and development in various species, it is not.

  20. High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants.

    Science.gov (United States)

    Mehrotra, Meenakshi; Sanyal, Indraneel; Amla, D V

    2011-09-01

    To develop an efficient genetic transformation system of chickpea (Cicer arietinum L.), callus derived from mature embryonic axes of variety P-362 was transformed with Agrobacterium tumefaciens strain LBA4404 harboring p35SGUS-INT plasmid containing the uidA gene encoding β-glucuronidase (GUS) and the nptII gene for kanamycin selection. Various factors affecting transformation efficiency were optimized; as Agrobacterium suspension at OD(600) 0.3 with 48 h of co-cultivation period at 20°C was found optimal for transforming 10-day-old MEA-derived callus. Inclusion of 200 μM acetosyringone, sonication for 4 s with vacuum infiltration for 6 min improved the number of GUS foci per responding explant from 1.0 to 38.6, as determined by histochemical GUS assay. For introducing the insect-resistant trait into chickpea, binary vector pRD400-cry1Ac was also transformed under optimized conditions and 18 T(0) transgenic plants were generated, representing 3.6% transformation frequency. T(0) transgenic plants reflected Mendelian inheritance pattern of transgene segregation in T(1) progeny. PCR, RT-PCR, and Southern hybridization analysis of T(0) and T(1) transgenic plants confirmed stable integration of transgenes into the chickpea genome. The expression level of Bt-Cry protein in T(0) and T(1) transgenic chickpea plants was achieved maximum up to 116 ng mg(-1) of soluble protein, which efficiently causes 100% mortality to second instar larvae of Helicoverpa armigera as analyzed by an insect mortality bioassay. Our results demonstrate an efficient and rapid transformation system of chickpea for producing non-chimeric transgenic plants with high frequency. These findings will certainly accelerate the development of chickpea plants with novel traits.

  1. An efficient in vitro shoot regeneration from leaf petiolar explants and ex vitro rooting of Bixa orellana L.- A dye yielding plant.

    Science.gov (United States)

    Mohammed, Arifullah; Chiruvella, Kishore K; Namsa, Nima D; Ghanta, Rama Gopal

    2015-07-01

    Bixa orellana L. (Bixaceae) is a multipurpose tree grown for the production of commercially important dyes. In the present study, an efficient, reproducible protocol was developed for direct plant regeneration from in vitro derived petiole explants of Bixa orellana L. Murashige and Skoog medium (MS) supplemented with 2-isopentenyl adenine (9.8 μM) and naphthalene acetic acid (10.7 μM) was found to be optimum for production of high frequency of shoot organogenesis. Subculturing of the shoots onto the fresh MS medium containing similar concentrations of 2-iP (9.8 μM) and NAA (10.7 μM) produced elongated shoots. Elongated shoots when placed onto MS medium supplemented with 1.7 μM indole-3-acetic acid and 14.7 μM 2-iP produced optimal rooting. Rooted plantlets were acclimatized and transplanted to the field successfully. Histological investigation revealed the origin of shoot primordia, from sub-epidermal cells of petiole explants. The regeneration protocol developed in this study can be useful for mass in vitro propagation and effective genetic transformation of commercially important edible dye yielding tree species.

  2. Straight-Pore Microfilter with Efficient Regeneration

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.; McCallum. Thomas J.; Schmitt, Edwin W.

    2010-01-01

    A novel, high-efficiency gas particulate filter has precise particle size screening, low pressure drop, and a simple and fast regeneration process. The regeneration process, which requires minimal material and energy consumption, can be completely automated, and the filtration performance can be restored within a very short period of time. This filter is of a novel material composite that contains the support structure and a novel coating.

  3. Efficient in vitro regeneration protocol of Centella asiatica (L.) Urban ...

    African Journals Online (AJOL)

    The present communication reports an efficient in vitro plantlet regeneration protocol for endemic umbellifer Centella asiatica (L.) urban via callus mediated organogenesis from leaf and stem explants. The plant is pharmacologically very important and its consumption as underutilized green leafy vegetable affluent in ...

  4. Full Length Research Paper Plant regeneration of Michelia ...

    African Journals Online (AJOL)

    Michelia champaca L. is a woody ornamental tree species which has high commercial value to be used as a basic material for perfume, cosmetic, and medicine. The development of an efficient plant regeneration system for M. champaca is essential for the production of Champaca planting material and precondition for ...

  5. Effect of plant growth regulators on regeneration of the endangered ...

    African Journals Online (AJOL)

    Development of an efficient in vitro regeneration protocol of Calligonum comosum is important and that has achieved to protect the endangered multipurpose medicinally important desert plant in the Kingdom of Bahrain. Nodal segments were used as explants source and the effect of various plant growth regulators (PGRs) ...

  6. Plants regeneration from African cowpea variety (Vigna unguiculata ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... Vigna unguiculata (L.) Walp. plant was efficiently regenerated from cotyledonary node explants. The shoots multiplication rate was ... Africa, insect pests are often responsible for 100% losses of cowpea yields (Singh and .... 26 days after acclimatization first flower buds were observed; thus plants were ...

  7. The development of an efficient cultivar-independent plant regeneration system from callus derived from both apical and non-apical root segments of garlic (Allium sativum L.)

    NARCIS (Netherlands)

    Zheng, S.J.; Henken, G.; Krens, F.A.; Kik, C.

    2003-01-01

    Callus induction and later plant regeneration were studied in four widely grown garlic (Allium sativum L.) cultivars from Europe. Root segments from in vitro plantlets were used as starting material. In addition to cultivar effects, the effects of auxin and cytokinin levels and the position of the

  8. Enhanced plant regeneration in lemna minor by amino acids

    International Nuclear Information System (INIS)

    Yang, L.; Han, H.; Zhou, K.; Ren, C.; Zhu, Y.

    2014-01-01

    In present study we investigated the effects of different L-amino acids on the plant regeneration from callus of Lemna minor, and established an efficient protocol. Among the 20 L-amino acids, only L-Ser and L-Gly showed significant improving effect, with the optimal concentration being 1 mM and 1.5 mM, respectively. A regeneration frequency of 46% was observed when the callus transferred to the regeneration medium with addition of 1 mM L-Ser for 11 days. After 26 days of cultivation, the frond regeneration achieved 100% and 94% for 1 mM L-Ser and 1.5 mM L-Gly treatment, respectively. (author)

  9. Somatic Embryogenesis and Plant Regeneration in Eggplant ...

    African Journals Online (AJOL)

    DR SIDHU

    2013-02-20

    Feb 20, 2013 ... Two as well as three way interactions of three eggplant genotypes, media compositions and explants. (hypocotyl, cotyledon and leaf) showed significant differences for plant regeneration. Among three explants, hypocotyl induced highest percent callusing, but cotyledon showed best results for somatic.

  10. Plant regeneration through indirect organogenesis of chestnut ...

    African Journals Online (AJOL)

    Mehrcedeh

    2013-12-18

    Dec 18, 2013 ... Druce-A multiple desert tree. Researcher 1:28-32. Kvaalen H, Gram Daehlen O, Tove Rognstad A, Grǿnstad B,. Egertsdotter U (2005). Somatic embryogenesis for plant production of. Abies lasiocarpa. Can. J. For. Res. 35:1053-1060. Liu CZ, Murch SJ, Demerdash MEL, Saxena PK (2003). Regeneration.

  11. A new approach for in vitro regeneration of tomato plants devoid of exogenous plant growth hormones.

    Science.gov (United States)

    Plana, Dagmara; Fuentes, Alejandro; Alvarez, Marta; Lara, Regla M; Alvarez, Félix; Pujol, Merardo

    2006-10-01

    Many available methodologies for in vitro regeneration of commercial tomato varieties promote not only the production of normal shoots but also individual leaves, shoots without apical meristems and vitrified structures. All these abnormal formations influence and diminish the regeneration efficiency. At the basis of this phenomenon lies callus development. We optimized an alternative procedure by which the regeneration occurs without abnormal shoot formation. The portion including the proximal part of hypocotyls and the radicle was cultured on medium consisting of Murashige and Skoog salts, 4 mg/L thiamine, 100 mg/L mio-inositol and 3% sucrose. After two-three weeks, 60% explants showed adventitious shoot formation. No changes in the morphological characteristics of regenerated plants and fruits were observed as compared with parents. Karyotypic analysis of regenerated plants showed no variations in chromosome number. The optimized procedure offers the advantage of tomato plant regeneration avoiding callus formation, which enables normal plant recovery with an efficiency ranging from 1.45 +/- 0.05 to 2.57 +/- 0.06 shoots per explant in Campbell-28, Amalia, Lignon, and Floradel cultivars.

  12. Factors influencing callus induction and plant regeneration of ...

    African Journals Online (AJOL)

    ajl yemi

    2012-01-12

    ). Effect of basal medium on callus induction and plant regeneration. Three different kinds of basal mediums (MS, N6 and SH) were used to investigate their effects on callus induction and regeneration. Significant differences ...

  13. In vitro somatic embryogenesis and plant regeneration of cassava.

    Science.gov (United States)

    Szabados, L; Hoyos, R; Roca, W

    1987-06-01

    An efficient and reproducible plant regeneration system, initiated in somatic tissues, has been devised for cassava (Manihot esculenta Crantz). Somatic embryogenesis has been induced from shoot tips and immature leaves of in vitro shoot cultures of 15 cassava genotypes. Somatic embryos developed directly on the explants when cultured on a medium containing 4-16 mg/l 2,4-D. Differences were observed with respect to the embryogenic capacity of the explants of different varieties. Secondary embryogenesis has been induced by subculture on solid or liquid induction medium. Long term cultures were established and maintained for up to 18 months by repeated subculture of the proliferating somatic embryos. Plantlets developed from primary and secondary embryos in the presence of 0.1 mg/l BAP, 1mg/l GA3, and 0.01 mg/l 2,4-D. Regenerated plants were transferred to the field, and were grown to maturity.

  14. A rapid and efficient in vitro regeneration system for lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Armas, Isabel; Pogrebnyak, Natalia; Raskin, Ilya

    2017-01-01

    Successful biotechnological improvement of crop plants requires a reliable and efficient in vitro regeneration system. Lettuce ( Lactuca sativa L.), one the most important vegetable crops worldwide, is strongly genotype-dependent in terms of regeneration capacity, limiting the potential for biotechnological improvement of cultivars which show recalcitrance under currently available protocols. The effect of different nutrient sources, plant hormone combinations and activated charcoal supplementation on shoot induction efficiency was evaluated on the cultivar 'RSL NFR', which had previously shown poor regeneration efficiency. Multiple shoot organogenesis from cotyledon explants was recorded at the highest frequency and speed on Murashige and Skoog regeneration medium supplemented with 200 mg/l of activated charcoal, 3% sucrose, 10 mg/l benzylaminopurine and 0.5 mg/l naphthaleneacetic acid, which induced shoots through direct regeneration in 90.8 ± 7.9% of explants. High shoot induction efficiency was also observed, albeit not quantified, when using this medium on some other cultivars. This activated charcoal-containing regeneration medium might offer a rapid and efficient option for direct shoot induction in some lettuce genotypes that do not respond well to common lettuce regeneration protocols. This is also the first report of the effect of activated charcoal in lettuce tissue culture.

  15. Highly efficient in vitro adventitious shoot regeneration of Adenosma ...

    African Journals Online (AJOL)

    Adenosma glutinosum (Linn.) Druce is an important aromatic plant, but no information is available regarding its regeneration, callus induction and proliferation from leaf explants. In this study, an in vitro shoot regeneration procedure was developed for native A. glutinosum using leaf explants. Callus induction and shoots ...

  16. Regeneration of Stevia Plant Through Callus Culture

    Science.gov (United States)

    Patel, R. M.; Shah, R. R.

    2009-01-01

    Stevia rebaudiana Bertoni that conventionally propagated by seed or by cuttings or clump division which has a limitation of quality and quantity seed material. In present study, callus culture technique was tried to achieve rapid plant multiplication for quality seed material. Callus induction and multiplication medium was standardized from nodal as well as leaf sagments. It is possible to maintain callus on Murashige and Skoog medium supplemented with 6-benzyl amino purine and naphthalene acetic acid. Maximum callus induction was obtained on Murashige and Skoog medium incorporated with 6-benzyl amino purine (2.0-3.0 mg/l) and naphthalene acetic acid (2.0 mg/l) treatments. However, Murashige and Skoog medium containing 2.0 mg/l 6-benzyl amino purine+2.0 mg/l naphthalene acetic acid was found to be the best for callus induction. Higher regeneration frequency was noticed with Murashige and Skoog medium supplemented with 2.0 mg/l 6-benzyl amino purine+0.2 mg/l naphthalene acetic acid. Regenerated plants were rooted better on ¼ Murashige and Skoog strength supplemented with 0.1 mg/l indole-3-butyric acid. The rooted plantlets were hardened successfully in tera care medium with 63 per cent survival rate. The developed protocol can be utilized for mass production of true to type planting material on large scale independent of season, i.e. external environmental conditions. PMID:20177455

  17. Regeneration performance of CO2-rich solvents by using membrane vacuum regeneration technology: Relationships between absorbent structure and regeneration efficiency

    International Nuclear Information System (INIS)

    Yan, Shuiping; Fang, Mengxiang; Wang, Zhen; Luo, Zhongyang

    2012-01-01

    Highlights: ► MVR may be viable to successfully use less valuable heat to replace high grade steam. ► Increasing OH and amine groups will increase the regeneration efficiency. ► Absorbents with a four carbon chain length will be more attractive to MVR. ► Amino acid salts will be more appropriate for MVR. ► HRM conducted at ambient pressure and low temperature is inferior to MVR. -- Abstract: In order to give a better understanding for the selection of suitable absorbents for the novel membrane vacuum regeneration technology (MVR) which has the potential to reduce CO 2 energy requirement by utilizing the waste heat or low-grade energy, an experimental study to determine the relationships between chemical structure and vacuum regeneration behavior of CO 2 absorbents at 70 °C and 10 kPa was performed. Eleven typical absorbents with different functional groups in their chemical structures were investigated in terms of vacuum regeneration efficiencies. Results showed that the regeneration efficiency decreased with an increase of number of activated hydrogen atom in amine group and decreased with the number of hydroxyl group. Especially, more attention should be paid to these alkanolamines with one hydrogen atom in amine group and two or more hydroxyl groups in the structures due to their better comprehensive performance in regeneration, absorbent loss and CO 2 absorption aspects. Increasing the carbon chain length and amine groups in the absorbent structure contributed to the improvement of regeneration performance and reduction of absorbent volatile loss. These absorbents with a four carbon chain length bonded at amine group might be more attractive to MVR. Furthermore, polyamines were superior to monoamines in terms of higher regeneration efficiencies and lower absorbent losses. Additionally, the individual effects of the potassium carboxylate group and hydroxymethylene group were also compared in this study. Results showed that amino acid salts were more

  18. Exploring the efficiency potential for an active magnetic regenerator

    DEFF Research Database (Denmark)

    Eriksen, Dan; Engelbrecht, Kurt; Haffenden Bahl, Christian Robert

    2016-01-01

    A novel rotary state of the art active magnetic regenerator refrigeration prototype was used in an experimental investigation with special focus on efficiency. Based on an applied cooling load, measured shaft power, and pumping power applied to the active magnetic regenerator, a maximum second-la...... and replacing the packed spheres with a theoretical parallel plate regenerator. Furthermore, significant potential efficiency improvements through optimized regenerator geometries are estimated and discussed......., especially for the pressure drop, significant improvements can be made to the machine. However, a large part of the losses may be attributed to regenerator irreversibilities. Considering these unchanged, an estimated upper limit to the second-law efficiency of 30% is given by eliminating parasitic losses...

  19. An Efficient In Vitro Regeneration System for Ornamental Ginger (Hedychium spp.)

    Science.gov (United States)

    An improved and efficient regeneration protocol was established for Hedychium via somatic embryogenesis. The plant material used consisted of 11 species and 9 cultivars of Hedychium. The explants consisted of young leaves taken from lateral or terminal shoots of mature greenhouse grown plants. These...

  20. Plant Regeneration Through Tissue Culture Of Pear Millet ...

    African Journals Online (AJOL)

    1. 1. 2,5), MS(5) and N6(1.100.25) culture media, calli embryogenic potential and fertile plants regeneration were conserved for more than 12 months. Characteristics of regenerated plants were similar to control. It appears that dissected shoot ...

  1. Somatic embryogenesis and plant regeneration from leaf explants of ...

    African Journals Online (AJOL)

    An attempt was made to study the somatic embryogenesis and plant regeneration from the in vitro leaf explants of Rumex vesicarius L. a renowned medicinal plant, which belongs to polygonaceae family. Effective in vitro regeneration of R. vesicarius was achieved via young leaf derived somatic embryo cultures.

  2. Plant regeneration protocol of Andrographis paniculata (Burm. f ...

    African Journals Online (AJOL)

    Plant regeneration protocol of Andrographis paniculata (Burm. f.) - an important medicinal plant. ... Inclusion of 1.0 mg/l 1-naphthalene acetic acid (NAA) in the culture medium along with BA + Ads promoted a higher rate of shoot bud regeneration. Maximum mean number of shoot bud per explant (28.6) was achieved on the ...

  3. Plant regeneration and genetic transformation in Jatropha

    KAUST Repository

    Sujatha, M.

    2012-07-01

    Jatropha curcas, a non-edible oil bearing species with multiple uses, and considerable economic potential is emerging as a potential biofuel plant. The limited knowledge of this species, low and inconsistent yields, the narrow genetic variability, and vulnerability to insects and diseases are major constraints in successful cultivation of Jatropha as a biofuel crop. Hence, genetic improvement of Jatropha is essential by conventional and modern biotechnological tools to use as a viable alternative source of bio-diesel. Realising its potential as a bio-energy crop, in vitro regeneration methods have been established to meet the demand of large scale supply of superior clones, and also as a prelude for genetic improvement of the species through transgenic approaches. In this chapter, an overview of in vitro tissue culture and genetic transformation of Jatropha is discussed. © 2013 Springer Science+Business Media Dordrecht. All rights are reserved.

  4. Regeneration in Jatropha curcas: Factors affecting the efficiency of in vitro regeneration

    KAUST Repository

    Sharma, Sweta K.; Kumar, Nitish Chandramohana; Reddy, Muppala P.

    2011-01-01

    Factors influencing in vitro regeneration through direct shoot bud induction from hypocotyl explants of Jatropha curcas were studied in the present investigation. Regeneration in J. curcas was found to be genotype dependent and out of four toxic and one non-toxic genotype studied, non-toxic was least responsive. The best results irrespective of genotype were obtained on the medium containing 0.5mgL-1 TDZ (Thidiazuron) and in vitro hypocotyl explants were observed to have higher regeneration efficiency as compared to ex vitro explant in both toxic and non-toxic genotypes. Adventitious shoot buds could be induced from the distal end of explants in all the genotypes. The number of shoot buds formed and not the number of explants responding to TDZ treatment were significantly affected by the position of the explant on the seedling axis. Explants from younger seedlings (≤15 days) were still juvenile and formed callus easily, whereas the regeneration response declined with increase in age of seedlings after 30 days. Transient reduction of Ca2+ concentrations to 0.22gL-1 in the germination medium increased the number of responding explants.Induced shoot buds, upon transfer to MS medium containing 2mgL-1 Kn (Kinetin) and 1mgL-1 BAP (6-benzylamino purine) elongated. These elongated shoots were further proliferated on MS medium supplemented with 1.5mgL-1 IAA (indole-3-acetic acid) and 0.5mgL-1 BAP and 3.01-3.91cm elongation was achieved after 6 weeks. No genotype specific variance in shoot elongation was observed among the toxic genotypes except the CSMCRI-JC2, which showed reduced response. And for proliferation among the toxic genotypes, CSMCRI-JC4 showed highest number of shoots formed. Among the rest, no significant differences were observed. The elongated shoot could be rooted by pulse treatment on half-strength MS medium supplemented with 2% sucrose, 3mgL-1 IBA (indole-3-butyric acid), 1mgL-1 IAA, 1mgL-1 NAA (α-naphthalene acetic acid) and subsequent transfer on 0

  5. Regeneration in Jatropha curcas: Factors affecting the efficiency of in vitro regeneration

    KAUST Repository

    Sharma, Sweta K.

    2011-07-01

    Factors influencing in vitro regeneration through direct shoot bud induction from hypocotyl explants of Jatropha curcas were studied in the present investigation. Regeneration in J. curcas was found to be genotype dependent and out of four toxic and one non-toxic genotype studied, non-toxic was least responsive. The best results irrespective of genotype were obtained on the medium containing 0.5mgL-1 TDZ (Thidiazuron) and in vitro hypocotyl explants were observed to have higher regeneration efficiency as compared to ex vitro explant in both toxic and non-toxic genotypes. Adventitious shoot buds could be induced from the distal end of explants in all the genotypes. The number of shoot buds formed and not the number of explants responding to TDZ treatment were significantly affected by the position of the explant on the seedling axis. Explants from younger seedlings (≤15 days) were still juvenile and formed callus easily, whereas the regeneration response declined with increase in age of seedlings after 30 days. Transient reduction of Ca2+ concentrations to 0.22gL-1 in the germination medium increased the number of responding explants.Induced shoot buds, upon transfer to MS medium containing 2mgL-1 Kn (Kinetin) and 1mgL-1 BAP (6-benzylamino purine) elongated. These elongated shoots were further proliferated on MS medium supplemented with 1.5mgL-1 IAA (indole-3-acetic acid) and 0.5mgL-1 BAP and 3.01-3.91cm elongation was achieved after 6 weeks. No genotype specific variance in shoot elongation was observed among the toxic genotypes except the CSMCRI-JC2, which showed reduced response. And for proliferation among the toxic genotypes, CSMCRI-JC4 showed highest number of shoots formed. Among the rest, no significant differences were observed. The elongated shoot could be rooted by pulse treatment on half-strength MS medium supplemented with 2% sucrose, 3mgL-1 IBA (indole-3-butyric acid), 1mgL-1 IAA, 1mgL-1 NAA (α-naphthalene acetic acid) and subsequent transfer on 0

  6. Efficient in vitro plant regeneration from immature zygotic embryos of pearl millet [Pennisetum glaucum (L.) R. Br.] and Sorghum bicolor (L.) Moench

    CSIR Research Space (South Africa)

    Oldach, KH

    2001-07-01

    Full Text Available -20 days after pollination and cultured on various L3 media. The influence of different parameters during the callus induction phase was examined with respect to the regeneration rate: (1) the concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D...

  7. Competence and regulatory interactions during regeneration in plants

    Directory of Open Access Journals (Sweden)

    Ajai Joseph Pulianmackal

    2014-04-01

    Full Text Available The ability to regenerate is widely exploited by multitudes of organisms ranging from unicellular bacteria to multicellular plants for their propagation and repair. But the levels of competence for regeneration vary from species to species. While variety of living cells of a plant display regeneration ability, only a few set of cells maintain their stemness in mammals. This highly pliable nature of plant cells in-terms of regeneration can be attributed to their high developmental plasticity. De novo organ initiation can be relatively easily achieved in plants by proper hormonal regulations. Elevated levels of plant hormone auxin induces the formation of proliferating mass of pluripotent cells called callus, which predominantly express lateral root meristem markers and hence is having an identity similar to lateral root primordia. Organ formation can be induced from the callus by modulating the ratio of hormones. An alternative for de novo organogenesis is by the forced expression of plant specific transcription factors. The mechanisms by which plant cells attain competence for regeneration on hormonal treatment or forced expression remain largely elusive. Recent studies have provided some insight into how the epigenetic modifications in plants affect this competence. In this review we discuss the present understanding of regenerative biology in plants and scrutinize the future prospectives of this topic. While discussing about the regeneration in the sporophyte of angiosperms which is well studied, here we outline the regenerative biology of the gametophytic phase and discuss about various strategies of regeneration that have evolved in the domain of life so that a common consensus on the entire process of regeneration can be made.

  8. In vitro embryo rescue and plant regeneration following self ...

    African Journals Online (AJOL)

    In vitro embryo rescue and plant regeneration following self-pollination with irradiated ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... shows that pollen irradiation coupled with self-pollination and embryo rescue ...

  9. Direct and indirect plant regeneration from various explants of ...

    African Journals Online (AJOL)

    user

    2011-04-18

    Apr 18, 2011 ... Populus species are important resource for certain branches of industry and have special roles for ... Key words: Poplar, tissue culture, regeneration, organogenesis. .... the best (90 to 100%) adaptation ratio in the plant growth.

  10. Economic efficiency of brownfield regeneration: study of South Moravian projects

    Directory of Open Access Journals (Sweden)

    Jana Korytárová

    2017-06-01

    Full Text Available The objective of brownfield regeneration is to increase the attractiveness and value of individual sites to a level where they can compete directly with the construction of a greenfi eld project. The aim of this paper is to examine the economic efficiency of brownfield regeneration. By using CBA outputs, the contribution of socio-economic efficiency to the total efficiency of individual projects based on EBCR was investigated on the basis of a sample of 14 projects located in the South Moravian Region. Furthermore, the expected value of EBCR was simulated by using the Monte Carlo method. The results reveal that socio-economic efficiency contributes significantly to the overall efficiency of these projects and therefore cannot be neglected during their evaluation. At the end of the paper, future research directions in this area are outlined.

  11. Rapid plant regeneration of chrysanthemum (Chrysanthemum ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... demand for chrysanthemum, it has become one of the first commercial targets for ... frequency of multiple shoot regeneration response was. 95 and 91%, for nodal ..... Dordrecht, The Netherlands, pp. 91-101. Prasad RN ...

  12. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars

    Directory of Open Access Journals (Sweden)

    Sahoo Khirod K

    2011-12-01

    Full Text Available Abstract Background Rice genome sequencing projects have generated remarkable amount of information about genes and genome architecture having tremendous potential to be utilized in both basic and applied research. Success in transgenics is paving the way for preparing a road map of functional genomics which is expected to correlate action of a gene to a trait in cellular and organismal context. However, the lack of a simple and efficient method for transformation and regeneration is a major constraint for such studies in this important cereal crop. Results In the present study, we have developed an easy, rapid and highly efficient transformation and regeneration protocol using mature seeds as explants and found its successful applicability to a choice of elite indica rice genotypes. We have optimized various steps of transformation and standardized different components of the regeneration medium including growth hormones and the gelling agent. The modified regeneration medium triggers production of large number of shoots from smaller number of calli and promotes their faster growth, hence significantly advantageous over the existing protocols where the regeneration step requires maximum time. Using this protocol, significantly higher transformation efficiency (up to 46% and regeneration frequency (up to 92% for the untransformed calli and 59% for the transformed calli were achieved for the four tested cultivars. We have used this protocol to produce hundreds of independent transgenic lines of different indica rice genotypes. Upon maturity, these transgenic lines were fertile thereby indicating that faster regeneration during tissue culture did not affect their reproductive potential. Conclusions This speedy, yet less labor-intensive, protocol overcomes major limitations associated with genetic manipulation in rice. Moreover, our protocol uses mature seeds as the explant, which can easily be obtained in quantity throughout the year and kept

  13. In vitro propagation and whole plant regeneration from callus in ...

    African Journals Online (AJOL)

    user

    2011-01-17

    Jan 17, 2011 ... Leaf explants and mature embryos of Datura were separately cultured in MS basal medium ... al., 2001). It was found that in vitro culture can enable plants to produce secondary metabolites under controlled culture conditions. Furthermore, the establishment of ..... formation and plant regeneration in tomato.

  14. In Vitro Regeneration of Endangered Medicinal Plant Heliotropium kotschyi (Ramram).

    Science.gov (United States)

    Sadeq, Manal Ahmed; Pathak, Malabika Roy; Salih, Ahmed Ali; Abido, Mohammed; Abahussain, Asma

    2016-01-01

    Heliotropium kotschyi (Ramram) is an important endangered medicinal plant distributed in the Kingdom of Bahrain. Plant tissue culture technique is applied for ex situ conservation study. Nodal stem segments are cultured in modified MS media supplemented with various combination and concentration of plant growth regulators (PGRs). Plants are regenerated via shoot organogenesis from the nodal meristems. Plants are regenerated in three different steps: initial shoot development, shoot multiplication, and rooting. After 4 weeks of culture, 100 % explants respond to shoot initiation on the medium containing 8.88 μM BAP and 5.71 μM IAA. The highest frequency of shoot regeneration is observed in the same media after second subculture of shoots. The highest rooting frequency is observed in the presence of 2.85 μM IAA. After root development, the plantlets are transferred to pots filled with soil and 60 % of plants survived after 45 days. This plant regeneration protocol is of great value for rapid desert plant propagation program.

  15. Transformation and regeneration of the holoparasitic plant Phelipanche aegyptiaca

    Directory of Open Access Journals (Sweden)

    Fernández-Aparicio Mónica

    2011-11-01

    Full Text Available Abstract Background Transformation and subsequent regeneration of holoparasitic plants has never been reported, in part due to challenges in developing transformation protocols, but also because regeneration of obligate parasites is difficult since their survival depends completely on successful haustorium penetration of a host and the formation of vascular connections. The recent completion of a massive transcriptome sequencing project (the Parasitic Plant Genome Project will fuel the use of genomic tools for studies on parasitic plants. A reliable system for holoparasite transformation is needed to realize the full value of this resource for reverse genetics and functional genomics studies. Results Here we demonstrate that transformation of Phelipanche aegyptiaca is achieved by infection of 3 month-old in vitro grown P. aegyptiaca calli with Agrobacterium rhizogenes harboring the yellow fluorescent protein (YFP. Four months later, YFP-positive regenerated calli were inoculated onto tomato plants growing in a minirhizotron system. Eight days after inoculation, transgenic parasite tissue formed lateral haustoria that penetrated the host and could be visualized under UV illumination through intact host root tissue. YFP-positive shoot buds were observed one month after inoculation. Conclusions This work constitutes a breakthrough in holoparasitic plant research methods. The method described here is a robust system for transformation and regeneration of a holoparasitic plant and will facilitate research on unique parasitic plant capabilities such as host plant recognition, haustorial formation, penetration and vascular connection.

  16. Plant regeneration via somatic embryogenesis from root explants of ...

    African Journals Online (AJOL)

    A system for induction of callus and plant regeneration via somatic embryogenesis from root explants of Hevea brasiliensis Muell. Arg. clone Reyan 87-6-62 was evaluated. The influence of plant growth regulators (PGRs) including 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (6-BA) and kinetin (KT) on ...

  17. Establishment of plant regeneration system from anther culture of ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... Plant regeneration of Tagetes patula was achieved from anther explants via adventitious shoot differentiation from callus. The effects of genotype, temperature pretreatment, plant growth regulators, light regimes and sucrose concentration were studied. Eight of ten genotypes tested were successfully.

  18. An Efficient Energy Regeneration System for Diesel Engines

    OpenAIRE

    HUANG, Ying; YANG, Fuyuan; OUYANG, Minggao; CHEN, Lin; GAO, Guojing; He, Yongsheng

    2010-01-01

    In order to further improve the fuel economy of vehicles, an efficient energy regeneration system for diesel engines is designed and constructed. An additional automatic clutch is added between the engine and the motor in a conventional ISG (Integrated Starter and Generator) system. During regenerative braking, the clutch can be disengaged and the engine braking is avoided. Control strategy is redesigned to determine the braking torque distribution and coordinate all the components. The gener...

  19. Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest.

    Science.gov (United States)

    Waring, Bonnie G; Becknell, Justin M; Powers, Jennifer S

    2015-07-01

    Plants on infertile soils exhibit physiological and morphological traits that support conservative internal nutrient cycling. However, potential trade-offs among use efficiencies for N, P, and cations are not well explored in species-rich habitats where multiple elements may limit plant production. We examined uptake efficiency and use efficiency of N, P, K, Ca, Mg, Al, and Na in plots of regenerating tropical dry forests spanning a gradient of soil fertility. Our aim was to determine whether plant responses to multiple elements are correlated, or whether there are trade-offs among exploitation strategies across stands varying in community composition, soil quality, and successional stage. For all elements, both uptake efficiency and use efficiency decreased as availability of the corresponding element increased. Plant responses to N, Na, and Al were uncoupled from uptake and use efficiencies for P and essential base cations, which were tightly correlated. N and P use efficiencies were associated with shifts in plant species composition along the soil fertility gradient, and there was also a trend towards increasing N use efficiency with stand age. N uptake efficiency was positively correlated with the abundance of tree species that associate with ectomycorrhizal fungi. Taken together, our results suggest that successional processes and local species composition interact to regulate plant responses to availability of multiple resources. Successional tropical dry forests appear to employ different strategies to maximize response to N vs. P and K.

  20. Plant regeneration of Erigeron breviscapus (vant.) Hand. Mazz. and its chromatographic fingerprint analysis for quality control.

    Science.gov (United States)

    Liu, Chun-Zhao; Gao, Min; Guo, Bin

    2008-01-01

    An efficient micropropagation system for Erigeron breviscapus (vant.) Hand. Mazz., an important medicinal plant for heart disease, has been developed. Shoot organogenesis occurred from E. breviscapus leaf explants inoculated on a medium supplemented with a combination of plant growth regulators. On average, 17 shoots per leaf explant were produced after 30 days when they were cultured on MS basal salts and vitamin medium containing 5 microM 6-benzylaminopurine (BAP) and 5 microM 1-naphthaleneacetic acid (NAA). All the regenerated shoots formed complete plantlets on a medium containing 2.5-10 microM indole-3-butyric acid (IBA) within 30 days, and 80.2% of the regenerated plantlets survived and grew vigorously in field conditions. Based on the variation in common peaks and the produced amount of the most important bioactive component, scutellarin, a high performance liquid chromatography (HPLC) fingerprinting system was developed for quality control of these micropropagated plants. Chemical constituents in E. breviscapus micropropagated plants varied during plant development from regeneration to maturation, the latter of which showed the most similar phytochemical profile in comparison with mother plants. The regeneration protocol and HPLC fingerprint analysis developed here provided a new approach to quality control of micropropagated plants producing secondary metabolites with significant implications for germplasm conservation.

  1. Plant regeneration from cotyledons of mature soybean (Glycine max L.) Wilis cultivar using gamma rays

    International Nuclear Information System (INIS)

    Hutabarat, D.; Ratna, R.

    1999-01-01

    Soybean Wilis cultivar was efficiently regenerated in vitro via somatic embryogenesis. Cotyledonary explants were excised from mature germinating seeds. Seeds were germinated on agar solution and on B5 medium enriched with 5 ppm BA, 0.25 ppm BA, 0.25 ppm IBA and 500 ppm casein hydrolyzate. Cotyledonary nodes from both germinating seeds were excised and cultured on B5 medium enriched with 5 ppm BA, 0.25 ppm IBA and 500 ppm casein hydrolyzate. Age of seedlings had a remarkable influence on shoot regeneration. Cotyledon from seeds germinated on agar solution with light gave better result in shoot regeneration compare with those germinated in darkness. The highest number of regenerants per explants (5 shoots) was produced by cotyledon from seeds germinated on B5 medium enriched with 5 ppm IBA and 500 ppm casein hydrolyzate in darkness. The seeds of soybean were exposed to gamma-rays doses 10 Gy then germinated on B5 medium enriched with 5 ppm BA, 0.25 ppm IBA and 500 ppm casein hydrolyzate did not improve the number of plant regeneration. Only 5-day-old seedlings from seeds were exposed to gamma-rays dose 30 Gy could improve the number of shoot regeneration, one of the cotyledonary node treated produced 21 regeneration shoots

  2. Vegetative Regeneration Capacities of Five Ornamental Plant Invaders After Shredding

    Science.gov (United States)

    Monty, Arnaud; Eugène, Marie; Mahy, Grégory

    2015-02-01

    Vegetation management often involves shredding to dispose of cut plant material or to destroy the vegetation itself. In the case of invasive plants, this can represent an environmental risk if the shredded material exhibits vegetative regeneration capacities. We tested the effect of shredding on aboveground and below-ground vegetative material of five ornamental widespread invaders in Western Europe that are likely to be managed by cutting and shredding techniques: Buddleja davidii (butterfly bush, Scrophulariaceae), Fallopia japonica (Japanese knotweed, Polygonaceae), Spiraea × billardii Hérincq (Billard's bridewort, Rosaceae), Solidago gigantea (giant goldenrod, Asteraceae), and Rhus typhina L. (staghorn sumac, Anacardiaceae). We looked at signs of vegetative regeneration and biomass production, and analyzed the data with respect to the season of plant cutting (spring vs summer), the type of plant material (aboveground vs below-ground), and the shredding treatment (shredded vs control). All species were capable of vegetative regeneration, especially the below-ground material. We found differences among species, but the regeneration potential was generally still present after shredding despite a reduction of growth rates. Although it should not be excluded in all cases (e.g., destruction of giant goldenrod and staghorn sumac aboveground material), the use of a shredder to destroy woody alien plant material cannot be considered as a general management option without significant environmental risk.

  3. Plant regeneration of Brassica oleracea subsp. italica (Broccoli) CV ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul. Ehsan, Malaysia. Accepted 20 March, 2009. Hypocotyls and shoot tips were used as explants in in vitro plant regeneration of broccoli (Brassica oleracea subsp.italica) cv. Green Marvel.

  4. Plant regeneration system from cotyledons-derived calluses cultures ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    Sep 26, 2011 ... The objective of this study was to successfully establish plant regeneration system with cotyledons of. Stylosanthes guianensis Sw. cv. 'Reyan 2' as explants. In this study, the following results were obtained; (1) the highest rates of callus induction on medium MS with 3.0 mg L-1 2, 4-D with cotyledons.

  5. Embryogenesis and plant regeneration from unpollinated ovaries of ...

    African Journals Online (AJOL)

    Embryogenesis and plant regeneration from unpollinated ovaries of Amorphophallus konjac. Lingling Zhao, Jinping Wu, Ying Diao, Zhongli Hu. Abstract. The system of somatic embryogenesis of Amorphophallus konjac had been built through unpollinated ovaries. The embryogenic calli were induced on Murashige and ...

  6. Plant regeneration of Michelia champaca L., through somatic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-03

    May 3, 2010 ... as a basic material for perfume, cosmetic, and medicine. The development of an ... Plant regeneration systems of M. champaca through somatic ... The embryogenic cells proliferated and formed somatic embryos (30%) after four to six .... by using MS excel program and Duncan's new multiple range test.

  7. The composition and regeneration status of wild food plants in ...

    African Journals Online (AJOL)

    The composition and regeneration status of wild food plants in Chenene Miombo woodland, Dodoma rural district, Tanzania. VE Tairo. Abstract. No Abstract. Discovery and Innovation Vol. 19 (1&2) 2007: pp. 107-121. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  8. In vitro embryo rescue and plant regeneration following self ...

    African Journals Online (AJOL)

    EJIRO

    2015-07-08

    Jul 8, 2015 ... 2Department of Biological Sciences, College of Natural Sciences, Makerere ... Key words: Cassava, doubled haploids, embryo rescue, plant regeneration, pollen germination, pollen ... breeding as inbred lines are readily tested and used within a ... dominance, allowing the separation of homozygotes from.

  9. Uniformity of plants regenerated from orange (Citrus sinensis Osb.) protoplasts.

    Science.gov (United States)

    Kobayashi, S

    1987-05-01

    Using 25 plants (protoclones) regenerated from orange (Citrus sinensis Osb.) protoplasts, several characters, including leaf and flower morphology, leaf oil, isozyme patterns and chromosome number, were examined. No significant variations in each character were recorded among the protoclones. Uniformity observed among protoclones was identical to that of nucellar seedlings.

  10. Optimization of callus induction and plant regeneration from ...

    African Journals Online (AJOL)

    An efficient regeneration system was developed using germinating seeds of two cultivars of sweet sorghum, Sorghum bicolor 'Yuantian No.1' and 'M81E', as explants. We tested different media supplements effects on callus induction. The effects of combinations of 2,4-D, KT, sucrose, agar and proline at different ...

  11. Plant regeneration and genetic transformation in Jatropha

    KAUST Repository

    Sujatha, M.; Nithianantham, S.; Reddy, Muppala P.

    2012-01-01

    Jatropha curcas, a non-edible oil bearing species with multiple uses, and considerable economic potential is emerging as a potential biofuel plant. The limited knowledge of this species, low and inconsistent yields, the narrow genetic variability

  12. Visual selection and maintenance of the cell lines with high plant regeneration ability and low ploidy level in Dianthus acicularis by monitoring with flow cytometry analysis.

    Science.gov (United States)

    Shiba, Tomonori; Mii, Masahiro

    2005-12-01

    Efficient plant regeneration system from cell suspension cultures was established in D. acicularis (2n=90) by monitoring ploidy level and visual selection of the cultures. The ploidy level of the cell cultures closely related to the shoot regeneration ability. The cell lines comprising original ploidy levels (2C+4C cells corresponding to DNA contents of G1 and G2 cells of diploid plant, respectively) showed high regeneration ability, whereas those containing the cells with 8C or higher DNA C-values showed low or no regeneration ability. The highly regenerable cell lines thus selected consisted of compact cell clumps with yellowish color and relatively moderate growth, suggesting that it is possible to select visually the highly regenerable cell lines with the original ploidy level. All the regenerated plantlets from the highly regenerable cell cultures exhibited normal phenotypes and no variations in ploidy level were observed by flow cytometry (FCM) analysis.

  13. Somatic embryogenesis and plant regeneration of Capsicum baccatum L.

    Directory of Open Access Journals (Sweden)

    Peddaboina Venkataiah

    2016-06-01

    Full Text Available A plant regeneration protocol via somatic embryogenesis was achieved in cotyledon and leaf explants of Capsicum baccatum, when cultured on MS medium supplemented with various concentrations of 2,4-dichlorophenoxy acetic acid (2,4-D, 0.5–5.0 mg l−1 in combination with Kinetin (Kn, 0.5 mg l−1 and 3% sucrose. Various stages were observed during the development of somatic embryos, including globular, heart, and torpedo-stages. Torpedo stage embryos were separated from the explants and subcultured on medium supplemented with various concentrations of different plant growth regulators for maturation. Maximum percentage (55% of somatic embryo germination and plantlet formation was found at 1.0 mg l−1 BA. Finally, about 68% of plantlets were successfully established under field conditions. The regenerated plants were morphologically normal, fertile and able to set viable seeds.

  14. PLANT REGENERATION THROUGH TISSUE CULTURE OF PEAR ...

    African Journals Online (AJOL)

    AISA

    Pennisetum Glaucum (L) R.) K.TIECOURA 1, L. LEDOUX.2 AND M. DINANT.2. 1 Laboratoire de Génétique et amélioration des plantes, UFR de Biosciences, Université de Cocody,. B.P.582 Abidjan 22, Côte d'Ivoire. 2 Laboratoire de Génétique ...

  15. Efficient regeneration of partially spent ammonia borane fuel

    International Nuclear Information System (INIS)

    Davis, Benjamin Lee; Gordon, John C.; Stephens, Frances; Dixon, David A.; Matus, Myrna H.

    2008-01-01

    A necessary target in realizing a hydrogen (H 2 ) economy, especially for the transportation sector, is its storage for controlled delivery, presumably to an energy producing fuel cell. In this vein, the U.S. Department of Energy's (DOE) Centers of Excellence (CoE) in Hydrogen Storage have pursued different methodologies, including metal hydrides, chemical hydrides, and sorbents, for the expressed purpose of supplanting gasoline's current > 300 mile driving range. Chemical hydrogen storage has been dominated by one appealing material, ammonia borane (H 3 B-NH 3 , AB), due to its high gravimetric capacity of hydrogen (19.6 wt %) and low molecular weight (30.7 g mol -1 ). In addition, AB has both hydridic and protic moieties, yielding a material from which H2 can be readily released. As such, a number of publications have described H 2 release from amine boranes, yielding various rates depending on the method applied. Even though the viability of any chemical hydrogen storage system is critically dependent on efficient recyclability, reports on the latter subject are sparse, invoke the use of high energy reducing agents, and suffer from low yields. For example, the DOE recently decided to no longer pursue the use of NaBH 4 as a H 2 storage material, in part because of inefficient regeneration. We thus endeavored to find an energy efficient regeneration process for the spent fuel from H 2 depleted AB with a minimum number of steps.

  16. Callus induction and plant regeneration of Ulex europaeus

    OpenAIRE

    Ramírez,Ingrid; Dorta,Fernando; Cuadros-Inostroza,Álvaro; Peña-Cortés,Hugo

    2012-01-01

    A callus induction and plant regeneration protocol was developed from leaf and thorn explants for the plant Ulex europaeus. Explants were incubated on 2% sucrose half-strength Murashige and Skoog Medium (MS) with various combinations of plant growth regulators and antioxidants. The best frequency of callus and shoot formation was obtained with 2,4-dichlorophenoxyacetic acid (2,4-D) 1 mg/l x kinetin (Kin) 0.2 mg/l (DK Medium; callus induction) and zeatin (Z) 1 mg/l (DK medium; shoot induction)...

  17. Plants Regeneration Derived From Various on Peanut on Mutant Lines

    International Nuclear Information System (INIS)

    Dewi, Kumala; Masrizal; Mugiono

    1998-01-01

    The study of calli, greenspot formation and shoot regeneration on peanut mutant lines has ben conducted by MS media. Three explants derived from shoot tips, embryo and seeding root of two mutant lines a/20/3 and D/25/3/2 were used in this experiment. the explants were cultured on modified MS media enriched by vitamins, growth regulation, amino acids for fourth teen calli were transferred on regeneration media. The ability of calli formation and plant regeneration of each explant and genotypes of plants was varied. Greenspot and shoot formation were observed seventh days after the calli transferred on regeneration media. It is shown that the ability of calli, greenspot and shoot formation of each explants and genotypes was varied. the high ability of calli, greenspot and shoot formation were found in explant derived from shoot tip and embryo. Seedling root explant has lower ability in calli formation, while greenspot and shoot was formatted. The ability of calli, greenspot and shoot formation on A/20/3 mutant line was better than D/25/3/2 mutant line. (author)

  18. Plant regeneration from leaf protoplasts of Solanum torvum.

    Science.gov (United States)

    Guri, A; Volokita, M; Sink, K C

    1987-07-01

    A protocol to obtain regenerated plants from protoplasts of Solanum torvum Sw a wild species of eggplant resistant to Verticillium wilt is reported. Leaf protoplasts were enzymatically isolated from six-week old seedlings grown in a controlled environment chamber. Protoplasts were plated on modified KM medium (0.4 M glucose)+(mg/l): 1.0 p-chlorophenoxyacetic acid (CPA)+1.0 naphthaleneacetic acid (NAA)+0.5 6-benzylaminopurine (BAP) and 0.02 abscisic acid (ABA). The protoplast density was 5×10(4) per ml with 5 ml placed in each of two quadrants in X-dishes (100×15 mm). The reservoir medium was modified KM+(mg/l): 0.1 NAA+0.5 BAP+0.1 M sucrose+0.1 M mannitol+0.6% washed agar+1% activated charcoal. Dishes were initially placed in the dark at 27°C. Protoplast division was initiated in 1-2 weeks and 4 weeks later p-calli were 1-3 mm. Plating efficiency was 11% when measured at 3 weeks. Six-week old p-calli were transferred individually onto Whatman No. 1 filter paper layered on modified KM (0.15 M sucrose)+mg/l: 2.0 indoleacetic acid (IAA)+2.0 zeatin+0.5% washed agar for 2 weeks. Subsequently, shoots occurred within 4 weeks at 70% efficiency on MS+30 g/l sucrose+2 mg/l zeatin. Shoots were rooted on half strength MS+10 g/l sucrose.

  19. Zinc tolerance and accumulation in stable cell suspension cultures and in vitro regenerated plants of the emerging model plant Arabidopsis halleri (Brassicaceae).

    Science.gov (United States)

    Vera-Estrella, Rosario; Miranda-Vergara, Maria Cristina; Barkla, Bronwyn J

    2009-03-01

    Arabidopsis halleri is increasingly employed as a model plant for studying heavy metal hyperaccumulation. With the aim of providing valuable tools for studies on cellular physiology and molecular biology of metal tolerance and transport, this study reports the development of successful and highly efficient methods for the in vitro regeneration of A. halleri plants and production of stable cell suspension lines. Plants were regenerated from leaf explants of A. halleri via a three-step procedure: callus induction, somatic embryogenesis and shoot development. Efficiency of callus proliferation and regeneration depended on the initial callus induction media and was optimal in the presence of 1 mg L(-1) 2,4-dichlorophenoxyacetic acid, and 0.05 mg L(-1) benzylaminopurine. Subsequent shoot and root regeneration from callus initiated under these conditions reached levels of 100% efficiency. High friability of the callus supported the development of cell suspension cultures with minimal cellular aggregates. Characterization of regenerated plants and cell cultures determined that they maintained not only the zinc tolerance and requirement of the whole plant but also the ability to accumulate zinc; with plants accumulating up to 50.0 micromoles zinc g(-1) FW, and cell suspension cultures 30.9 micromoles zinc g(-1) DW. Together this work will provide the experimental basis for furthering our knowledge of A. halleri as a model heavy metal hyperaccumulating plant.

  20. Regeneration of Pinus cubensis Griseb. plants

    Directory of Open Access Journals (Sweden)

    Raima Cantillo Ardebol

    2011-01-01

    Full Text Available Micropropagation of plants from the genus Pinus has been done in several species. However, micropropagation of Pinus cubensis Griseb has not been reported. This species has a great economical importance. Then, the aim of the current research was to achieve in vitro propagation of Pinus cubensis Griseb. to increase the number of individuals in their natural habitat. The concentration of sodium hypochlorite and immersion time were determined for seeds disinfection and embryos establishment. The effect of the presence or absence of the seed coat was also studied. Two growth regulators and three concentrations of each one were tested to achieve the emission of axillary buds in the multiplication phase. Five subcultures every 21 days were done. Rooting and acclimatization were carried out simultaneously. Shoots were individualized and immersed in a rooting solution. Zygotic embryos of P. cubensis wer e dev el o ped in vitro. The highest percentages of disinfection and germination were obtained by introducing the seeds in a solution of sodium hypochlorite at 20% for 15 minutes, planting them after that without the seed coat. The number and length of axillary buds increased by using 22.5 µM of 6-benzylaminopurine and 5.4 µM naphthaleneacetic acid in the multiplication phase. The in vitro propagation of Pinus cubensis Griseb. from zygotic embryos was achieved for the first time. A protocol was also established, reaching 50% of survival in the acclimatization phase. Key words: acclimatization, axillary buds, forestry, multiplication, pinus

  1. Magnetic field exposure stiffens regenerating plant protoplast cell walls.

    Science.gov (United States)

    Haneda, Toshihiko; Fujimura, Yuu; Iino, Masaaki

    2006-02-01

    Single suspension-cultured plant cells (Catharanthus roseus) and their protoplasts were anchored to a glass plate and exposed to a magnetic field of 302 +/- 8 mT for several hours. Compression forces required to produce constant cell deformation were measured parallel to the magnetic field by means of a cantilever-type force sensor. Exposure of intact cells to the magnetic field did not result in any changes within experimental error, while exposure of regenerating protoplasts significantly increased the measured forces and stiffened regenerating protoplasts. The diameters of intact cells or regenerating protoplasts were not changed after exposure to the magnetic field. Measured forces for regenerating protoplasts with and without exposure to the magnetic field increased linearly with incubation time, with these forces being divided into components based on the elasticity of synthesized cell walls and cytoplasm. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye, and no changes were noted after exposure to the magnetic field. Analysis suggested that exposure to the magnetic field roughly tripled the Young's modulus of the newly synthesized cell wall without any lag.

  2. Effect of sorbitol in callus induction and plant regeneration in wheat

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-01

    Dec 1, 2009 ... Key words: Callus induction, plant regeneration, wheat, 2,4-D, sorbitol. INTRODUCTION ... regeneration is better on hormone-free medium or that .... AB (interaction). 15 ... element and creates osmotic stress as reported by.

  3. Regeneration of some monocotyledonous plants from subterranean organs in vitro

    Directory of Open Access Journals (Sweden)

    Krystyna D. Kromer

    2013-12-01

    Full Text Available The aim in view was investigation ofthe regenerative potential of rhizomes, bulbs and corms of ten monocotyledonous plant species from four families: Amaryllidaceae (Haemanthus katharinae, Crinum abyssinicum, Leucojum vernum, Araceae (Spathiphyllum wallisii, Iridaceae (Crocus vernus, Iris germanica, Liliaceae (Hosta lancifolia, Muscari racemosum, Scilla laxiflora, Veltheimia viridifolia under conditions of in vitro culture. All the investigated species were capable of buld or, alternatively, bud and root regeneration. Different morphogenetic potential was noted between the particular families. A high regenerative potential under the conditions of culture applied was characteristic for plants of the Liliaceae and Araceae families, it was lower in plants belonging to Amaryllidaceae and lowest in those of the Iridaceae family. Plants from the Liliaceae family exhibited also the highest ability of callus formation, whereas Amaryllidaceae and Iridaceae plants possessed this ability in only a low degree. The influence of growth regulators of the auxin group (NAA, IAA, 2,4-D and of cytokinins (K on the initiation and course of organogenesis was tested. The results of the experiments indicate that auxins in interaction with kinetin gave the highest percentage of regenerating explants and also a large number of buds on the latter. Stimulation of callus tissue was highest under the influence of 2,4-D, and weaker when NAA IAA were used.

  4. Plants for water recycling, oxygen regeneration and food production

    Science.gov (United States)

    Bubenheim, D. L.

    1991-01-01

    During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.

  5. Regeneration of Centella asiatica plants from non-embryogenic cell lines and evaluation of antibacterial and antifungal properties of regenerated calli and plants

    Directory of Open Access Journals (Sweden)

    Habib Darima

    2011-10-01

    Full Text Available Abstract Background The threatened plant Centella asiatica L. is traditionallyused for a number of remedies. In vitro plant propagation and enhanced metabolite production of active metabolites through biotechnological approaches has gained attention in recent years. Results Present study reveals that 6-benzyladenine (BA either alone or in combination with 1-naphthalene acetic acid (NAA supplemented in Murashige and Skoog (MS medium at different concentrations produced good quality callus from leaf explants of C. asiatica. The calli produced on different plant growth regulators at different concentrations were mostly embryogenic and green. Highest shoot regeneration efficiency; 10 shoots per callus explant, from non-embryogenic callus was observed on 4.42 μM BA with 5.37 μM NAA. Best rooting response was observed at 5.37 and 10.74 μM NAA with 20 average number of roots per explant. Calli and regenerated plants extracts inhibited bacterial growth with mean zone of inhibition 9-13 mm diameter when tested against six bacterial strains using agar well diffusion method. Agar tube dilution method for antifungal assay showed 3.2-76% growth inhibition of Mucor species, Aspergillus fumigatus and Fusarium moliniformes. Conclusions The present investigation reveals that non-embryogenic callus can be turned into embryos and plantlets if cultured on appropriate medium. Furthermore, callus from leaf explant of C. asiatica can be a good source for production of antimicrobial compounds through bioreactor.

  6. Efficient regeneration of sorghum, Sorghum bicolor (L.) Moench, from shoot-tip explant.

    Science.gov (United States)

    Syamala, D; Devi, Prathibha

    2003-12-01

    Novel protocols for production of multiple shoot-tip clumps and somatic embryos of Sorghum bicolor (L.) Moench were developed with long-term goal of crop improvement through genetic transformation. Multiple shoot-tip clumps were developed in vitro from shoot-tip explant of one-week old seedling, cultured on MS medium containing only BA (0.5, 1 or 2 mg/l) or both BA (1 or 2 mg/l) and 2,4-D (0.5 mg/l) with bi-weekly subculture. Somatic embryos were directly produced on the enlarged dome shaped growing structures that developed from the shoot-tips of one-week old seedling explants (without any callus formation) when cultured on MS medium supplemented with both 2,4-D (0.5 mg/l) and BA (0.5 mg/l). However, the supplementation of MS medium with only 2,4-D (0.5 mg/l) induced compact callus without any plantlet regeneration. Each multiple shoot-clump was capable of regenerating more than 80 shoots via an intensive differentiation of both axillary and adventitious shoot buds, the somatic embryos were capable of 90% germination, plant conversion and regeneration. The regenerated shoots could be efficiently rooted on MS medium containing indole-3-butyric acid (IBA 1 mg/l). The plants were successfully transplanted to glasshouse and grown to maturity with a survival rate of 98%. Morphogenetic response of the explants was found to be genotypically independent.

  7. Plant regeneration from haploid cell suspension-derived protoplasts of Mediterranean rice (Oryza sativa L. cv. Miara).

    Science.gov (United States)

    Guiderdoni, E; Chaïr, H

    1992-11-01

    More than 750 plants were regenerated from protoplasts isolated from microspore callus-derived cell suspensions of the Mediterranean japonica rice Miara, using a nurse-feeder technique and N6-based culture medium. The mean plating efficiency and the mean regeneration ability of the protocalluses were 0.5% and 49% respectively. Flow cytometric evaluation of the DNA contents of 7 month old-cell and protoplast suspensions showed that they were still haploid. Contrastingly, the DNA contents of leaf cell nuclei of the regenerated protoclones ranged from 1C to 5C including 60% 2C plants. This was consistent with the morphological type and the fertility of the mature plants. These results and the absence of chimeric plants suggest that polyploidization occurred during the early phase of protoplast culture.

  8. Factors affecting callus and protoplast production and regeneration of plants from garlic tissue cultures

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Nabulsi, I.

    2001-08-01

    Five cultivars of garlic, two explants, six callusing media, six regeneration media, two kinds of light and several doses of gamma irradiation were used to determine the best conditions for callus induction and plant regeneration from garlic tissue cultures. Also, some experiments were conducted to study the possibility to isolate protoplast and regenerate plants. The experiment showed that medium MS9 was good for regenerating plant directly from basal plate without going through callus phase. ANOVA exhibited significant differences among used cultivars in their ability to form callus. No significant difference was observed between 16 hr light and complete darkness in callus growth. However, appearance of callus was generally better on darkness. Cultivar varied in their ability to regenerate and interaction between cultivars and media was observed. Cultivar kisswany was the best in regeneration (38%) and medium MS47 was the best among used media (35%). Light type played a significant role in regeneration of plants where red light was much better than white light in inducing regeneration (68% vs 36%). ANOVA revealed significant effect of low doses of gamma irradiation on stimulation regeneration of plant whereas high doses prevented regeneration. Many experiments were conducted to isolate protoplast and regenerate plants. The best method for culturing was the droplet and the best conditions for incubation were complete darkness at 25 Degreed centigrade. This lead to formation of cell wall but no cell division was observed (author)

  9. Regeneration efficiency based on genotype, culture condition and growth regulators of eggplant (Solanum melongena L.

    Directory of Open Access Journals (Sweden)

    Md Abdul Muktadir

    2016-01-01

    Full Text Available Several experiments were carried out to establish an efficient regenerating protocol for cultivated eggplant varieties. Among the five varieties cultured on Murashige and Skoog (MS medium with free plant growth regulator (PGR, Nayantara performed better considering the number of shoots/explant (2.48. Considering explant types and culture conditions, better performance was observed (3.68 shoots/explant when seed germination in the dark was proceeded by bottom hypocotyl segments cultured under dark conditions. A higher rate of shoot regeneration was observed in Nayantara when cultured in Zeatin Riboside (ZR and Thidizuron (TDZ supplemented MS medium. The highest number of shoots per explant was produced on MS medium supplemented with 2.0 mg/L ZR and 0.1 mg/L indole acetic acid (6.65 shoots/explant. Proliferation and elongation of the regenerated shoots were obtained in the MS medium with free PGR. The best rooting performance was observed in MS medium supplemented with 2.0 mg/L indole butyric acid. Plantlets with well developed roots and shoots were successfully transferred to soil.

  10. High efficiency indirect shoot regeneration and hypericin content in ...

    African Journals Online (AJOL)

    USER

    2010-04-12

    Apr 12, 2010 ... opium poppy. Support of hormone-free medium on shoot regeneration from callus has also been underlined for sugarbeet (Doley and Saunders, 1989). In our study, obtained regenerants acclimatized readily, alived (94%) and are still continuing to grow in the greenhouse of our department. Cell or callus ...

  11. Regeneration

    Science.gov (United States)

    George A. Schier; Wayne D. Shepperd; John R. Jones

    1985-01-01

    There are basically two approaches to regenerating aspen stands-sexual reproduction using seed, or vegetative regeneration by root suckering. In the West, root suckering is the most practical method. The advantage of having an existing, well established root system capable of producing numerous root suckers easily outweighs natural or artificial reforestation in the...

  12. TDZ-Induced Plant Regeneration in Jatropha curcas: A Promising Biofuel Plant

    KAUST Repository

    Kumar, Nitish

    2018-03-23

    In recent years, Jatropha curcas has pronounced attention due to its capacity of production of biodiesel. Uniform large-scale propagation of J. curcas is one of the significant keys that will eventually decide victory. Direct regeneration is one of the methods which help in the production of uniform and homogenous plant, and TDZ plays an important role in the production of plantlets by direct organogenesis in several number of plant species including J. curcas. Measuring the economical importance of J. curcas and the role of TDZ in shoot regeneration, the present book chapter briefly reviews the impact of TDZ on shoot bud induction from various explants of J. curcas.

  13. TDZ-Induced Plant Regeneration in Jatropha curcas: A Promising Biofuel Plant

    KAUST Repository

    Kumar, Nitish; Bhatt, Vacha D.; Mastan, Shaik G.; Reddy, Muppala P.

    2018-01-01

    In recent years, Jatropha curcas has pronounced attention due to its capacity of production of biodiesel. Uniform large-scale propagation of J. curcas is one of the significant keys that will eventually decide victory. Direct regeneration is one of the methods which help in the production of uniform and homogenous plant, and TDZ plays an important role in the production of plantlets by direct organogenesis in several number of plant species including J. curcas. Measuring the economical importance of J. curcas and the role of TDZ in shoot regeneration, the present book chapter briefly reviews the impact of TDZ on shoot bud induction from various explants of J. curcas.

  14. Callus induction and plant regeneration by Brazilian new elite wheat genotypes

    Directory of Open Access Journals (Sweden)

    Eliane Cristina Gruszka Vendruscolo

    2008-01-01

    Full Text Available The distinction of genotypes responsive to tissue culture and the development of an efficient regenerationsystem are the first steps towards transgenic plant production. Nine Brazilian wheat (Triticum aestivum L. genotypes werecultivated in vitro to evaluate the embryogenetic capacity. The explants (immature zygotic embryos were tested in twodifferent culture media, MS (Murashige and Skoog 1962 and modified MS - MMS (Zhou et al. 1995 with decreasing dosagesof hormone regulators. Three distinct phases were observed in each medium: induction, maintenance and regeneration. Afterinduction, the somatic embryogenesis of calli was evaluated every 21 days. Genotypes responded differently to the differentculture media. The embryogenic response of genotype CD104 was best in both culture media tested. On MMS, the values ofcallus induction, plant regeneration and ratio of regenerated plantlets per rescued embryo of this genotype were 100%, 99.5%and 1.1%, respectively. Genotypes CD104, CD200126 and CDFAPA 2001129 were most responsive on MS (regenerationcapacity of 37.5%, 33.5% and 33% respectively, and therefore interesting for genetic transformation in plant breedingprograms that develop new elite cultivars with a commercial purpose.

  15. Genetic stability and phytochemical analysis of the in vitro regenerated plants of Dendrobium nobile Lindl., an endangered medicinal orchid

    Science.gov (United States)

    Bhattacharyya, Paromik; Kumaria, Suman; Diengdoh, Reemavareen; Tandon, Pramod

    2014-01-01

    An efficient genetically stable regeneration protocol with increased phytochemical production has been established for Dendrobium nobile, a highly prized orchid for its economic and medicinal importance. Protocorm like bodies (PLBs) were induced from the pseudostem segments using thidiazuron (TDZ; 1.5 mg/l), by-passing the conventional auxin–cytokinin complement approach for plant regeneration. Although, PLB induction was observed at higher concentrations of TDZ, plantlet regeneration from those PLBs was affected adversely. The best rooting (5.41 roots/shoot) was achieved in MS medium with 1.5 mg/l TDZ and 0.25% activated charcoal. Plantlets were successfully transferred to a greenhouse with a survival rate of 84.3%, exhibiting normal development. Genetic stability of the regenerated plants was investigated using randomly amplified polymorphic DNA (RAPD) and start codon targeted (SCoT) polymorphism markers which detected 97% of genetic fidelity among the regenerants. The PIC values of RAPD and SCoT primers were recorded to be 0.92 and 0.76 and their Rp values ranged between 3.66 and 10, and 4 and 12 respectively. The amplification products of the regenerated plants showed similar banding patterns to that of the mother plant thus demonstrating the homogeneity of the micropropagated plants. A comparative phytochemical analysis among the mother and the micropropagated plants showed a higher yield of secondary metabolites. The regeneration protocol developed in this study provides a basis for ex-situ germplasm conservation and also harnesses the various secondary metabolite compounds of medicinal importance present in D. nobile. PMID:25606433

  16. Biotechnological applications in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-04-01

    Biotechnology holds promise for genetic improvement of important vegetable crops. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop of the family Brassicaceae. However, various biotic and abiotic stresses cause enormous crop yield losses during commercial cultivation of broccoli. Establishment of a reliable, reproducible and efficient in vitro plant regeneration system with cell and tissue culture is a vital prerequisite for biotechnological application of crop improvement programme. An in vitro plant regeneration technique refers to culturing, cell division, cell multiplication, de-differentiation and differentiation of cells, protoplasts, tissues and organs on defined liquid/solid medium under aseptic and controlled environment. Recent progress in the field of plant tissue culture has made this area one of the most dynamic and promising in experimental biology. There are many published reports on in vitro plant regeneration studies in broccoli including direct organogenesis, indirect organogenesis and somatic embryogenesis. This review summarizes those plant regeneration studies in broccoli that could be helpful in drawing the attention of the researchers and scientists to work on it to produce healthy, biotic and abiotic stress resistant plant material and to carry out genetic transformation studies for the production of transgenic plants.

  17. Development of efficient catharanthus roseus regeneration and transformation system using agrobacterium tumefaciens and hypocotyls as explants

    Directory of Open Access Journals (Sweden)

    Wang Quan

    2012-06-01

    Full Text Available Abstract Background As a valuable medicinal plant, Madagascar periwinkle (Catharanthus roseus produces many terpenoid indole alkaloids (TIAs, such as vindoline, ajamlicine, serpentine, catharanthine, vinblastine and vincristine et al. Some of them are important components of drugs treating cancer and hypertension. However, the yields of these TIAs are low in wild-type plants, and the total chemical synthesis is impractical in large scale due to high-cost and their complicated structures. The recent development of metabolic engineering strategy offers a promising solution. In order to improve the production of TIAs in C. roseus, the establishment of an efficient genetic transformation method is required. Results To develop a genetic transformation method for C. roseus, Agrobacterium tumefaciens strain EHA105 was employed which harbors a binary vector pCAMBIA2301 containing a report β-glucuronidase (GUS gene and a selectable marker neomycin phosphotransferase II gene (NTPII. The influential factors were investigated systematically and the optimal transformation condition was achieved using hypocotyls as explants, including the sonication treatment of 10 min with 80 W, A. tumefaciens infection of 30 min and co-cultivation of 2 d in 1/2 MS medium containing 100 μM acetosyringone. With a series of selection in callus, shoot and root inducing kanamycin-containing resistance media, we successfully obtained stable transgenic regeneration plants. The expression of GUS gene was confirmed by histochemistry, polymerase chain reaction, and genomic southern blot analysis. To prove the efficiency of the established genetic transformation system, the rate-limiting gene in TIAs biosynthetic pathway, DAT, which encodes deacetylvindoline-4-O-acetyltransferase, was transferred into C. roseus using this established system and 9 independent transgenic plants were obtained. The results of metabolite analysis using high performance liquid chromatography (HPLC

  18. Design, enhanced Thermal and Flow efficiency of a 2KW active magnetic regenerator

    DEFF Research Database (Denmark)

    Dallolio, Stefano; Eriksen, Dan; Engelbrecht, Kurt

    power of 1500 W over a temperature span of 25 K. This paper explains several details of the device, such as the design of the magnet, the regenerator housing and the flow system. In particular, this paper investigates the best geometry for the regenerator bed to achieve a thermal and mechanically...... efficient housing to be used in the AMR system. Particular attention has been given to the reduction of the parasitic losses through the regenerator housing: both heat leaks between the magnetocaloric material (MCM) and an adjacent iron ring and the surroundings through a lid on top of the regenerator...

  19. Ribosomal DNA sequence analysis of different geographically distributed Aloe Vera plants: Comparison with clonally regenerated plants

    International Nuclear Information System (INIS)

    Yagi, A.; Sato, Y.; Miwa, Y.; Kabbash, A.; Moustafa, S.; Shimomura, K.; El-Bassuony, A.

    2006-01-01

    A comparison of the sequences in an internally transcribed spacer (ITS) 1 region of rDNA between clonally regenerated A.vera and same species in Japan, USA and Egypt revealed the presence of two types of nucleotide sequences, 252 and 254 bps. Based on the findings in the ITS 1 region, A.vera having 252 and 254 bps clearly showed a stable sequence similarity, suggesting high conversation of the base peak sequence in the ITS 1 region. However, frequent base substitutions in the 252 bps samples leaves that came from callus tissue and micropropagated plants were observed around the regions of nucleotide positions 66, 99 and 199-201. The minor deviation in clonally regenerated A.vera may be due to the stage of regeneration and cell specification in cases of the callus tissue. In the present study, the base peak sequence of the Its 1 region of rDNA was adopted as a molecular marker for differentiating A.vera plants from geographically distributed and clonally regenerated A.vera plants and it was suggested that the base peak substitutions in the ITS 1 region may arise from the different nutritional and environmental factors in cultivation and plant growth stages. (author)

  20. Shoot Organogenesis and Plant Regeneration from Leaf Explants of Lysionotus serratus D. Don

    Directory of Open Access Journals (Sweden)

    Qiansheng Li

    2013-01-01

    Full Text Available The gesneriaceous perennial plant, Lysionotus serratus, has been used in traditional Chinese medicine. It also has a great development potential as an ornamental plant with its attractive foliage and beautiful flowers. An efficient propagation and regeneration system via direct shoot organogenesis from leaf explant was established in this study. High active cytokinin (6-benzyladenine (BA or thidiazuron (TDZ was effective for direct organogenesis of initial induction. Murashige and Skoog (MS growth media containing 0.5 mg L−1 BA alone or with combination of 0.1 mg L−1  α-Naphthaleneacetic acid (NAA were the most effective for shoot proliferation. High BA concentration (1.0 mg L−1 in the media caused high percentage of vitrified shoots though they introduced high shoot proliferation rate. Histological observation indicated that adventitious shoot regeneration on the medium containing 0.5 mg L−1 BA alone occurred directly from leaf epidermal cells without callus formation. Regenerated shoots rooted well on medium containing half-strength MS medium with 0.5 mg L−1 indole-3-butyric acid (IBA and indole-3-acetic acid (IAA, and the plantlets successfully acclimatized and grew vigorously in the greenhouse with a 94.2% and 92.1% survival rate.

  1. THE PARTICULARITIES OF PROLONGED CULTIVATION OF PLANTS-REGENERANTS OF TOMATO INTERSPECIFIC HYBRIDS

    Directory of Open Access Journals (Sweden)

    T. N. Miroshnichenko

    2015-01-01

    Full Text Available The particularities of the changes of the morphological parameters of plants-regenerants of tomato hybrids F1 during prolonged cultivation in conditions of in vitro have been studied. The cultivation during 12 passages in hormoneless MS medium does not lead to somaclonal variants, but act to raise the increasing of coefficient of variability of plants-regenerants features. 

  2. In vitro plant regeneration of Spartina argentinensis Parodi

    Directory of Open Access Journals (Sweden)

    Mirian Susana Bueno

    2012-07-01

    ; in vitro; organogénesis; variación somaclonal. Abstract: Spartina argentinensis Parodi is the dominant species of the temporally-flooded halophyte communities of the Santa Fe Province, Argentina. It occupies around 20,000 km2 and it is mainly used as low-cost impute forage for cattle production. The objective of this work was to develop a simple method for in vitro plant regeneration of S. argentinensis that could be used for fundamental and applied research. Leaf-basal segments from both young and mature plants, roots tips and immature inflorescences were used as explants. Culture media for calli, shoot, and root induction consisted of Murashige & Skoog salts supplemented with different plant growth regulators (2,4-D; BAP or ANA. Most of the explants (with the exception of root tips showed cell proliferation and calli formation after 30 days of culture. However, only immature inflorescences responded to shoot and root induction when calli were incubated on MS salts plus 2,4_D and BAP (0.1 and 0.01 mg.L-1, respectively, transferred to shoot inductionmedia (MS salts plus BAP, 0.5 mg.L-1 and then to root induction media (MS slts plus NAA 0.5 mg.L-1. Regenerated plants were evaluated for morphological abnormalities and lignin content. Historical analysis of regenerating calli showed that shoots and roots originated via organogenesis. A low proportion of regenerated plants resulted with deficiency in chlorophyll (albino plants and other morphological abnormalities. Interestingly, significant variations in the lignin content were detected between regenerated plants. The protocol described in this work could be used ordinarily for S. argentinensis in vitro plant regeneration and selecting somaclonal variants for breeding purposes. Key words: Spartina argentinensis; in vitro; organogenesis; somaclonal variation.

  3. Plants regeneration of a papaya hybrid (IBP 42-99 from callus obtained from apexes of in vitro plants.

    Directory of Open Access Journals (Sweden)

    Jorge Gallardo Colina

    2004-07-01

    Full Text Available In Cuba there realizes innumerable efforts to increase the food production and especially the fruit trees Inside which the papaya has great importance. In this sense studies are realized to obtain plants resistant to virus that they need of tools that they support and increase the indexes of obtaining transgenic line in the events of transformation specifically in a papaya hybrid. As main objective was to develop a protocol for the regeneration of plants of papaya hybrid from callus obtained of in vitro plant apexes.plan to develop a tool that supports and increases the indexes of obtaining line transgenic in the events of transformation in a hybrid of papaya.In vitro plants of the hybrid IBP 42-99 were used as plant material. The culture medium Nitsh and Nitsh was used and the growth regulators that permitted the obtaining of the best callus with embryogenic structures were studied, and also, the concentrations in which they were more efficient were adjusted. The capacity of callus formation from different parts of the stem of the in vitro plants was studied. Different culture medium for the regeneration of papaya plants from the obtained callus was studied. It was possible to obtain callus by combining 6-BAP with ANA and AIA. The best results are obtained when segments from in vitro plants shoot, 1 cm length from the meristem, were used. Also, by eliminating the meristem in the apexes, an increase in the callus formation capacity of the explant was achieved. Plants were obtained from callus using the culture medium MS supplement with 0.09mg.l-1 of AIA, 0.01mg.l-1 of AG3 and 2mg.l-1 of Zeatin and the best percentage was achieved with the callus coming from the treatments with less concentration of 6-BAP and AIA. Key words: culture medium, micropropagation, organogenesis, segments

  4. Efficient regeneration of the endangered banana cultivar 'Virupakshi ...

    African Journals Online (AJOL)

    Plantlets of the banana cultivar 'Virupakshi' (AAB) were regenerated from somatic embryos derived from embryogenic cells of calli from immature male flower explants. Induction of calli from explants was favored by a relatively moderate concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) (4 mg/L), high concentrations of ...

  5. Infection of Early and Young Callus Tissues of Indica Rice BPT 5204 Enhances Regeneration and Transformation Efficiency

    Directory of Open Access Journals (Sweden)

    P. MANIMARAN

    2013-11-01

    Full Text Available A rapid and reproducible method to develop transgenic plants with enhanced transformation efficiency using Agrobacterium has been developed for the elite indica rice variety BPT 5204. Different rice calli aged from 3 to 30 d were co-cultivated with pre-incubated Agrobacterium suspension culture (LBA4404: pSB1, pCAMBIA1301 and incubated in dark for 3 d. Based on the transient GUS gene expression analysis, 6-day-old young calli showed high transformation frequency followed by 21-day-old ones. Thus, both 6- and 21-day-old calli were used for assessing the stable transformation efficiency. It was observed that the 6-day-old young transformed calli showed about 2-fold higher regeneration frequency when compared with 21-day-old calli. The transformation efficiency was enhanced for young calli to 5.9% compared with 0.8% of the 21-day-old calli. Molecular and genetic analysis of transgenic plants (T0 revealed the presence of 1–2 copies of T-DNA integration in transformants and it follows Mendalian ratio in T1 transgenic plants. From the present study, it was concluded that the development of transgenic rice plants in less duration with high regeneration and transformation efficiency was achieved in BPT 5204 by using 6-day-old young calli as explants.

  6. Optimized system for plant regeneration of watermelon (Citrullus ...

    African Journals Online (AJOL)

    Jane

    2011-08-29

    Aug 29, 2011 ... Table 1. MS basal medium containing ten combinations of IAA and BA. Hormone ..... 3: Ca-Ci. New Delhi: Publication and Information Directorate, CSIR; 606-609. Blackmon WJ ... Dong JZ, Jia SR (1991). High efficiency plant ...

  7. High capacity of plant regeneration from callus of interspecific hybrids with cultivated barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Bagger Jørgensen, Rikke; Jensen, C. J.; Andersen, B.

    1986-01-01

    Callus was induced from hybrids between cultivated barley (Hordeum vulgare L. ssp. vulgare) and ten species of wild barley (Hordeum L.) as well as from one backcross line ((H. lechleri .times. H. vulgare) .times. H. vulgare). Successful callus induction and regeneration of plants were achieved from...... explants of young spikes on the barley medium J 25-8. The capacity for plant regeneration was dependent on the wild parental species. In particular, combinations with four related wild species, viz. H. jubatum, H. roshevitzii, H. lechleri, and H. procerum, regenerated high numbers of plants from calli....

  8. Plant regeneration of non-toxic Jatropha curcas—impacts of plant growth regulators, source and type of explants

    KAUST Repository

    Kumar, Nitish

    2011-01-28

    Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel plant, however, oil and deoiled cake are toxic. A non-toxic variety of J. curcas is reported from Mexico. The present investigation explores the effects of different plant growth regulators (PGRs) viz. 6-benzyl aminopurine (BAP) or thidiazuron (TDZ) individually and in combination with indole-3-butyric acid (IBA), on regeneration from in vitro and field-grown mature leaf explants, in vitro and glasshouse-grown seedlings cotyledonary leaf explants of non-toxic J. curcas. In all the tested parameters maximum regeneration efficiency (81.07%) and the number of shoot buds per explants (20.17) was observed on 9.08 μM TDZ containing Murashige and Skoog’s (MS) medium from in vitro cotyledonary leaf explants. The regenerated shoot buds were transferred to MS medium containing 10 μM kinetin (Kn), 4.5 μM BAP and 5.5 μM α-naphthaleneacetic acid (NAA) for shoot proliferation. The proliferated shoots could be elongated on MS medium supplemented with 2.25 μM BAP and 8.5 μM IAA. Rooting was achieved when the basal cut end of elongated shoots were dipped in half strength MS liquid medium containing different concentrations and combinations of IBA, IAA and NAA for four days followed by transfer to growth regulators free half strength MS medium supplemented 0.25 mg/l activated charcoal. The rooted plants could be established in soil with more than 90% survival rate.

  9. Plant regeneration of non-toxic Jatropha curcas—impacts of plant growth regulators, source and type of explants

    KAUST Repository

    Kumar, Nitish; Vijay Anand, K. G.; Reddy, Muppala P.

    2011-01-01

    Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel plant, however, oil and deoiled cake are toxic. A non-toxic variety of J. curcas is reported from Mexico. The present investigation explores the effects of different plant growth regulators (PGRs) viz. 6-benzyl aminopurine (BAP) or thidiazuron (TDZ) individually and in combination with indole-3-butyric acid (IBA), on regeneration from in vitro and field-grown mature leaf explants, in vitro and glasshouse-grown seedlings cotyledonary leaf explants of non-toxic J. curcas. In all the tested parameters maximum regeneration efficiency (81.07%) and the number of shoot buds per explants (20.17) was observed on 9.08 μM TDZ containing Murashige and Skoog’s (MS) medium from in vitro cotyledonary leaf explants. The regenerated shoot buds were transferred to MS medium containing 10 μM kinetin (Kn), 4.5 μM BAP and 5.5 μM α-naphthaleneacetic acid (NAA) for shoot proliferation. The proliferated shoots could be elongated on MS medium supplemented with 2.25 μM BAP and 8.5 μM IAA. Rooting was achieved when the basal cut end of elongated shoots were dipped in half strength MS liquid medium containing different concentrations and combinations of IBA, IAA and NAA for four days followed by transfer to growth regulators free half strength MS medium supplemented 0.25 mg/l activated charcoal. The rooted plants could be established in soil with more than 90% survival rate.

  10. An efficient numerical scheme for the simulation of parallel-plate active magnetic regenerators

    DEFF Research Database (Denmark)

    Torregrosa-Jaime, Bárbara; Corberán, José M.; Payá, Jorge

    2015-01-01

    A one-dimensional model of a parallel-plate active magnetic regenerator (AMR) is presented in this work. The model is based on an efficient numerical scheme which has been developed after analysing the heat transfer mechanisms in the regenerator bed. The new finite difference scheme optimally com...... to the fully implicit scheme, the proposed scheme achieves more accurate results, prevents numerical errors and requires less computational effort. In AMR simulations the new scheme can reduce the computational time by 88%....

  11. Plant regeneration from protoplasts of Gentiana straminea Maxim

    Directory of Open Access Journals (Sweden)

    Shi Guomin

    2016-01-01

    Full Text Available A protocol is described for plant regeneration from protoplasts of Gentiana straminea Maxim. via somatic embryogenesis. Protoplasts were isolated from embryogenic calli in an enzyme solution composed of 2% Cellulase Onozuka R-10, 0.5% Macerozyme R-10, 0.5% Hemicellulase, and 0.5 M sorbitol with a yield of 3.0 × 106 protoplasts per gram of fresh weight. Liquid, solid-liquid double layer (sLD and agar-pool (aPL culture systems were used for protoplast culture. The aPL culture was the only method that produced embryogenic, regenerative calli. With aPL culture, the highest frequencies of protoplast cell division and colony formation were 39.6% and 16.9%, respectively, on MS medium supplemented with 2 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D and 0.5 mg/L N6-benzylaminopurine (BA. Microcalli were transferred to solid MS medium containing a reduced concentration of 2,4-D (0.5 mg/L to promote the formation of embryogenic calli. Somatic embryos developed into plantlets on MS medium supplemented with 2 mg/L BA at a rate of 43.7%.

  12. Doubled haploid production from Spanish onion (Allium cepa L.) germplasm: embryogenesis induction, plant regeneration and chromosome doubling.

    Science.gov (United States)

    Fayos, Oreto; Vallés, María P; Garcés-Claver, Ana; Mallor, Cristina; Castillo, Ana M

    2015-01-01

    The use of doubled haploids in onion breeding is limited due to the low gynogenesis efficiency of this species. Gynogenesis capacity from Spanish germplasm, including the sweet cultivar Fuentes de Ebro, the highly pungent landrace BGHZ1354 and the two Valenciana type commercial varieties Recas and Rita, was evaluated and optimized in this study. The OH-1 population, characterized by a high gynogenesis induction, was used as control. Growing conditions of the donor plants were tested with a one-step protocol and field plants produced a slightly higher percentage of embryogenesis induction than growth chamber plants. A one-step protocol was compared with a two-step protocol for embryogenesis induction. Spanish germplasm produced a 2-3 times higher percentage of embryogenesis with the two-step protocol, Recas showing the highest percentage (2.09%) and Fuentes de Ebro the lowest (0.53%). These percentages were significantly lower than those from the OH-1 population, with an average of 15% independently of the protocol used. The effect of different containers on plant regeneration was tested using both protocols. The highest percentage of acclimated plants was obtained with the two-step protocol in combination with Eco2box (70%), whereas the lowest percentage was observed with glass tubes in the two protocols (20-23%). Different amiprofos-methyl (APM) treatments were applied to embryos for chromosome doubling. A similar number of doubled haploid plants were recovered with 25 or 50 μM APM in liquid medium. However, the application of 25 μM in solid medium for 24 h produced the highest number of doubled haploid plants. Somatic regeneration from flower buds of haploid and mixoploid plants proved to be a successful approach for chromosome doubling, since diploid plants were obtained from the four regenerated lines. In this study, doubled haploid plants were produced from the four Spanish cultivars, however further improvements are needed to increase their gynogenesis

  13. Doubled haploid production from Spanish onion (Allium cepa L. germplasm: embryogenesis induction, plant regeneration and chromosome doubling

    Directory of Open Access Journals (Sweden)

    Oreto eFayos

    2015-05-01

    Full Text Available The use of doubled haploids in onion breeding is limited due to the low gynogenesis efficiency of this species. Gynogenesis capacity from Spanish germplasm, including the sweet cultivar Fuentes de Ebro, the highly pungent landrace BGHZ1354 and the two Valenciana type commercial varieties Recas and Rita, was evaluated and optimized in this study. The OH-1 population, characterized by a high gynogenesis induction, was used as control. Growing conditions of the donor plants were tested with a one-step protocol and field plants produced a slightly higher percentage of embryogenesis induction than growth chamber plants. A one-step protocol was compared with a two-step protocol for embryogenesis induction. Spanish germplasm produced a 2 to 3 times higher percentage of embryogenesis with the two-step protocol, Recas showing the highest percentage (2.09% and Fuentes de Ebro the lowest (0.53%. These percentages were significantly lower than those from the OH-1 population, with an average of 15% independently of the protocol used. The effect of different containers on plant regeneration was tested using both protocols. The highest percentage of acclimated plants was obtained with the two-step protocol in combination with Eco2box (70%, whereas the lowest percentage was observed with glass tubes in the two protocols (20-23%. Different amiprofos-methyl (APM treatments were applied to embryos for chromosome doubling. A similar number of doubled haploid plants were recovered with 25 or 50 µM APM in liquid medium. However, the application of 25 µM in solid medium for 24 h produced the highest number of doubled haploid plants. Somatic regeneration from flower buds of haploid and mixoploid plants proved to be a successful approach for chromosome doubling, since diploid plants were obtained from the 4 regenerated lines. In this study, doubled haploid plants were produced from the four Spanish cultivars, however further improvements are needed to increase their

  14. Evaluation of somatic embryogenesis and plant regeneration in ...

    African Journals Online (AJOL)

    In an attempt to develop a successfully reproducible in vitro regeneration protocol for a group of diverse sorghum genotypes, 10 sorghum lines including locally adapted and commercially important elite genotypes were assessed for their regeneration potential on different culture media–containing adequate growth ...

  15. ECONOMIC COMPARATIVE EVALUATION OF COMBINATION OF ACTIVATED CARBON GENERATION AND SPENT ACTIVATED CARBON REGENERATION PLANTS

    Directory of Open Access Journals (Sweden)

    TINNABHOP SANTADKHA

    2017-12-01

    Full Text Available The purpose of this study was to investigate the maximum annual profit of proposed three project plants as follows: (i a generation process of activated carbon (AC prepared from coconut shells; (ii a regeneration process of spent AC obtained from petrochemical industries; and (iii a project combined the AC generation process with the regeneration process. The maximum annual profit obtained from the sole regeneration plant was about 1.2- and 15.4- fold higher than that obtained from the integrated and the generation plants, respectively. The sensitivity of selected variables to net present value (NPV, AC sales price was the most sensitive to NPV while fixed costs of generation and regeneration, and variable cost of regeneration were the least sensitive to NPV. Based on the optimal results of each project plant, the economic indicators namely NPV, return on investment (ROI, internal rate of return (IRR, and simple payback period (SPP were determined. Applying a rule of thumb of 12% IRR and 7-year SPP, the AC sales prices for the generation, regeneration, and integrated plants were 674.31, 514.66 and 536.66 USD/ton of product, respectively. The economic analysis suggested that the sole regeneration project yields more profitable.

  16. Plant regeneration from protoplasts ofVicia narbonensis via somatic embryogenesis and shoot organogenesis.

    Science.gov (United States)

    Tegeder, M; Kohn, H; Nibbe, M; Schieder, O; Pickardt, T

    1996-11-01

    Protoplasts ofVicia narbonensis isolated from epicotyls and shoot tips of etiolated seedlings were embedded in 1.4% sodium-alginate at a final density of 2.5×10(5) protoplasts/ml and cultivated in Kao and Michayluk-medium containing 0.5 mg/I of each of 2,4- dichlorophenoxyacetic acid, naphthylacetic acid and 6 -benzylaminopurine. A division frequency of 36% and a plating efficiency of 0.40-0.5% were obtained. Six weeks after embedding, protoplast-derived calluses were transferred onto gelrite-solidified Murashige and Skoog-media containing various growth regulators. Regeneration of plants was achieved via two morphologically distinguishable pathways. A two step protocol (initially on medium with a high auxin concentration followed by a culture phase with lowered auxin amount) was used to regenerate somatic embryos, whereas cultivation on medium containing thidiazuron and naphthylacetic acid resulted in shoot morphogenesis. Mature plants were recovered from both somatic embryos as well as from thidiazuron-induced shoots.

  17. Optimization of Multi-layer Active Magnetic Regenerator towards Compact and Efficient Refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein

    2016-01-01

    Magnetic refrigerators can theoretically be more efficient than current vapor compression systems and use no vapor refrigerants with global warming potential. The core component, the active magnetic regenerator (AMR) operates based on the magnetocaloric effect of magnetic materials and the heat r....... In addition, simulations are carried out to investigate the potential of applying nanofluid in future magnetic refrigerators.......Magnetic refrigerators can theoretically be more efficient than current vapor compression systems and use no vapor refrigerants with global warming potential. The core component, the active magnetic regenerator (AMR) operates based on the magnetocaloric effect of magnetic materials and the heat...... their Curie temperature. Simulations are implemented to investigate how to layer the FOPT materials for obtaining higher cooling capacity. Moreover, based on entropy generation minimization, optimization of the regenerator geometry and related operating parameters is presented for improving the AMR efficiency...

  18. Localization of QTLs for in vitro plant regeneration in tomato.

    Science.gov (United States)

    Trujillo-Moya, Carlos; Gisbert, Carmina; Vilanova, Santiago; Nuez, Fernando

    2011-10-20

    Low regeneration ability limits biotechnological breeding approaches. The influence of genotype in the regeneration response is high in both tomato and other important crops. Despite the various studies that have been carried out on regeneration genetics, little is known about the key genes involved in this process. The aim of this study was to localize the genetic factors affecting regeneration in tomato. We developed two mapping populations (F2 and BC1) derived from a previously selected tomato cultivar (cv. Anl27) with low regeneration ability and a high regeneration accession of the wild species Solanum pennellii (PE-47). The phenotypic assay indicated dominance for bud induction and additive effects for both the percentage of explants with shoots and the number of regenerated shoots per explant. Two linkage maps were developed and six QTLs were identified on five chromosomes (1, 3, 4, 7 and 8) in the BC1 population by means of the Interval Mapping and restricted Multiple QTL Mapping methods. These QTLs came from S. pennellii, with the exception of the minor QTL located on chromosome 8, which was provided by cv. Anl27. The main QTLs correspond to those detected on chromosomes 1 and 7. In the F2 population, a QTL on chromosome 7 was identified on a similar region as that detected in the BC1 population. Marker segregation distortion was observed in this population in those areas where the QTLs of BC1 were detected. Furthermore, we located two tomato candidate genes using a marker linked to the high regeneration gene: Rg-2 (a putative allele of Rg-1) and LESK1, which encodes a serine/threonine kinase and was proposed as a marker for regeneration competence. As a result, we located a putative allele of Rg-2 in the QTL detected on chromosome 3 that we named Rg-3. LESK1, which is also situated on chromosome 3, is outside Rg-3. In a preliminary exploration of the detected QTL peaks, we found several genes that may be related to regeneration. In this study we have

  19. Localization of QTLs for in vitro plant regeneration in tomato

    Directory of Open Access Journals (Sweden)

    Nuez Fernando

    2011-10-01

    Full Text Available Abstract Background Low regeneration ability limits biotechnological breeding approaches. The influence of genotype in the regeneration response is high in both tomato and other important crops. Despite the various studies that have been carried out on regeneration genetics, little is known about the key genes involved in this process. The aim of this study was to localize the genetic factors affecting regeneration in tomato. Results We developed two mapping populations (F2 and BC1 derived from a previously selected tomato cultivar (cv. Anl27 with low regeneration ability and a high regeneration accession of the wild species Solanum pennellii (PE-47. The phenotypic assay indicated dominance for bud induction and additive effects for both the percentage of explants with shoots and the number of regenerated shoots per explant. Two linkage maps were developed and six QTLs were identified on five chromosomes (1, 3, 4, 7 and 8 in the BC1 population by means of the Interval Mapping and restricted Multiple QTL Mapping methods. These QTLs came from S. pennellii, with the exception of the minor QTL located on chromosome 8, which was provided by cv. Anl27. The main QTLs correspond to those detected on chromosomes 1 and 7. In the F2 population, a QTL on chromosome 7 was identified on a similar region as that detected in the BC1 population. Marker segregation distortion was observed in this population in those areas where the QTLs of BC1 were detected. Furthermore, we located two tomato candidate genes using a marker linked to the high regeneration gene: Rg-2 (a putative allele of Rg-1 and LESK1, which encodes a serine/threonine kinase and was proposed as a marker for regeneration competence. As a result, we located a putative allele of Rg-2 in the QTL detected on chromosome 3 that we named Rg-3. LESK1, which is also situated on chromosome 3, is outside Rg-3. In a preliminary exploration of the detected QTL peaks, we found several genes that may be related

  20. Adsorption and desorption of Cd(II) onto titanate nanotubes and efficient regeneration of tubular structures

    International Nuclear Information System (INIS)

    Wang, Ting; Liu, Wen; Xu, Nan; Ni, Jinren

    2013-01-01

    Highlights: ► Satisfactory reuse of TNTs due to easy regeneration of tubular structures. ► TNTs regeneration using only 2% of NaOH needed for virgin TNTs preparation. ► Excellent regeneration attributed to steady TNTs skeleton and complex form of TNTs-OCd + OH − onto adsorbed TNTs. -- Abstract: Efficient regeneration of desorbed titanate nanotubes (TNTs) was investigated with cycled Cd(II) adsorption and desorption processes. After desorption of Cd (II) from TNTs using 0.1 M HNO 3 , regeneration could be simply achieved with only 0.2 M NaOH at ambient temperature, i.e. 2% of the NaOH needed for virgin TNTs preparation at 130 °C. The regenerated TNTs displayed similar adsorption capacity of Cd(II) even after six recycles, while significant reduction could be detected for desorbed TNTs without regeneration. The virgin TNTs, absorbed TNTs, desorbed TNTs and regenerated TNTs were systematically characterized. As results, the ion-exchange mechanism with Na + in TNTs was convinced with obvious change of -TiO(ONa) 2 by FTIR spectroscopy. The easy recovery of the damaged tubular structures proved by TEM and XRD was ascribed to asymmetric distribution of H + and Na + on the surface side and interlayer region of TNTs. More importantly, the cost-effective regeneration was found possibly related to complex form of TNTs-OCd + OH − onto the adsorbed TNTs, which was identified with help of X-ray photoelectron spectroscopy, and further indicated due to high relevance to an unexpected mole ratio of 1:1 between exchanged Na + and absorbed Cd(II)

  1. In vitro regeneration of a common medicinal plant, Ocimum sanctum ...

    African Journals Online (AJOL)

    aristo_team

    brings down circulatory strain, mitigates cardiovascular depressant, is antiulcer, fights .... DISCUSSION. Proficient regeneration systems are vital for hereditary. 0. 10. 20 .... Hao D, Xiao P (2015). Genomics and Evolution in Traditional Medicinal.

  2. Effects of chemical kinetics and starting material regeneration on the efficiency of an iodine laser amplifier

    International Nuclear Information System (INIS)

    Fisk, G.A.

    1977-05-01

    A model of the chemical kinetics occurring in an iodine laser amplifier is presented and used to calculate the degree to which the starting material is consumed as a result of laser operation. The cost of purchasing new starting material is estimated and shown to be prohibitive. A scheme for regenerating the starting material from the species present in the amplifier after lasing is proposed. It is shown that the estimated efficiency of this chemical regeneration process is appreciably higher than the projected optimum efficiency of the pumping process

  3. Plant regeneration from petiole segments of some species in tissue culture

    Directory of Open Access Journals (Sweden)

    Krystyna Klimaszewska

    2013-12-01

    Full Text Available The regeneration ability of 21 plant species belonging to 14 families was tested. The method of tissue culture in vitro was applied, on basic MS medium with an addition of growth regulators from the auxin and cytokinin groups. From among the investigated plant groups Peperomia scandens and Caladium × hortulanum were capable of plant regeneration, Passiilora coerulea regenerated shoots, Hedera helix, Begonia glabra, Coleus blumei, Fuchsia hybrida, Passiflora suberosa and Peperomia eburnea formed callus and roots, Kalanchoe blossfeldiana, Pelargonium grandiflorum, P. peltatum, P. radula, Coleus shirensis and Magnolia soulangeana produced callus, Philodendron scandens, Rhododendron smirnovii, Hibiscus rosa-sinensis, Coprosma baueri, Cestrum purpureum and Solanum rantonnetii did not exhibit any regeneration reactions.

  4. The plant efficiency of fusion power stations

    International Nuclear Information System (INIS)

    Darvas, J.; Foerster, S.

    1976-01-01

    Due to the circulating energy, lower efficiencies are to be expected with fusion power plants than with nuclear fission power plants. According to the systems analysis, the mirror machine is not very promising as a power plant. The plant efficiency of the laser fusion strongly depends on the laser efficiency about which one can only make speculative statements at present. The Tokamak requires a relatively low circulating energy and is certainly able to compete regarding efficiency as long as the consumption time can be kept large (> 100 sec) and the dead time between the power pulses small ( [de

  5. Optimization of Callus Induction and Regeneration in Two Fenugreek Landraces as a Medicinal Plant during in vitro Condition

    Directory of Open Access Journals (Sweden)

    Hasan Hasani Jifroudi

    2017-10-01

    Full Text Available Introduction: Fenugreek (Trigonella foenum- graecum is a medicinal plant extensively distributed in most regions of the world. Fenugreek is an annual plant from the family of papilionaceae, leguminosae. Fenugreek leaves and seeds have been used extensively to prepare extracts and powders for medicinal uses. Its root, leaf and seed contain a number of important medicinal compounds such as polysaccharide, galactomannan, different saponins such as diosgenin, yamogenin, mucilage, volatile oil and alkaloids such as choline and trigonelline. Plant tissue culture is fundamental to most aspects of biotechnology of plants. Establishment of an efficient callus induction and direct regeneration protocol is an essential prerequisite in harnessing the advantage of cell and tissue culture for genetic improvement. For the successful application of the tissue culture technique in plant breeding, callus induction and plant regeneration potential of each plant must be determined. The present study was performed in order to determine the optimum concentration of plant growth regulators (IBA + TDZ for producing of in vitro plantlet using cotyledon and hypocotyl as an explant for two different Iranian genotypes (Ardestani and Neyshabouri. Materials and Methods: In this investigation, Ardestani and Neyshabouri genotypes were used for callus induction and direct shoot regeneration. The medium used in this investigation was MS (Murashige and Skoog basal medium. Then seeds were germinated on MS medium. For callus induction and direct shoot regeneration, cotyledon and hypocotyl explants were excised from 8-day-old sterile seedlings and cultured on MS medium containing various concentrations of IBA and TDZ. In this experiment, two combinations (TDZ + IBA were used. In the first composition, IBA had four levels (0, 0.1, 0.3, 0.5 mg l-1 and TDZ had five levels (0, 0.2, 0.4, 0.6, 0.8 mg l-1 and in the second composition, IBA had four levels (0, 0.05, 0.1, 0.15 mg l-1 and TDZ

  6. Regenerator heat exchanger – calculation of heat recovery efficiency and pressure loss

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per Kvols

    Performance of heat exchangers is determined based on two main parameters: efficiency to exchange / recover heat and pressure loss due to friction between fluid and exchanger surfaces. These two parameters are contradicting each other which mean that the higher is efficiency the higher becomes...... pressure loss. The aim of the optimized design of heat exchanger is to reach the highest or the required heat efficiency and at the same time to keep pressure losses as low as possible keeping total exchanger size within acceptable size. In this report is presented analytical calculation method...... to calculate efficiency and pressure loss in the regenerator heat exchanger with a fixed matrix that will be used in the decentralized ventilation unit combined in the roof window. Moreover, this study presents sensitivity study of regenerator heat exchanger performance, taking into account, such parameters as...

  7. In vitro plant regeneration from Narbon Vetch (Vicia narbonensis L ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... regeneration from cotyledonary node explants obtained from, in vitro raised seeds of 4 - 5 and 14 - 15 days old .... shoots in Vicia faba using different concentrations of. BAP-TDZ. ... feed legume crop for dry areas in west Asia.

  8. In vitro regeneration of a common medicinal plant, Ocimum sanctum ...

    African Journals Online (AJOL)

    Embracing micro-propagation method for large scale production of plantlets and also for protection of appropriate germplasm is a prerequisite that needs to be undertaken in order to develop a rapid in vitro regeneration protocol for Ocimum sanctum L. Shoot tips as well as nodal segments were subjected to numerous ...

  9. TDZ-induced plant regeneration in Astragalus cicer L. | Basalma ...

    African Journals Online (AJOL)

    We developed a regeneration protocol using thidiazuron (TDZ) with a high frequency in vitro root induction in Astragalus cicer. High in vitro germination ratio (75%) for hard-seeds of A. cicer was also achieved. For this, hypocotyl and cotyledon explants were cultured on Murashige and Skoog medium supplemented with ...

  10. Contrasting natural regeneration and tree planting in fourteen North American cities

    Science.gov (United States)

    David J. Nowak

    2012-01-01

    Field data from randomly located plots in 12 cities in the United States and Canada were used to estimate the proportion of the existing tree population that was planted or occurred via natural regeneration. In addition, two cities (Baltimore and Syracuse) were recently re-sampled to estimate the proportion of newly established trees that were planted. Results for the...

  11. Plant growth regulator interactions in physiological processes for controlling plant regeneration and in vitro development of Tulbaghia simmleri

    Czech Academy of Sciences Publication Activity Database

    Kumari, A.; Baskaran, P.; Plačková, Lenka; Omámiková, Hana; Nisler, Jaroslav; Doležal, Karel; Van Staden, J.

    2018-01-01

    Roč. 223, APR (2018), s. 65-71 ISSN 0176-1617 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Endogenous hormone * Exogenous hormone application * In vitro regeneration * Ornamental and medicinal plant * Physiological process * Tulbaghia simmleri Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 3.121, year: 2016

  12. Ceramic or metallic? - material aspects of compact heat regenerator energy efficiency

    International Nuclear Information System (INIS)

    Wnek, M

    2012-01-01

    The metal industry cannot afford the financial mismanagement in the era of rising energy prices and thus, the high efficiency devices should be used. In the metallurgical thermal processes the combustion air temperature increasing is one of the methods for obtaining the heat transfer intensification and the furnaces efficiency rising. Therefore the new and effective heating technologies in thermal processes are demanded all the time. The regenerative systems are most effective in terms of the heated air level. The individual regenerators for burners are the newest solutions where the temperature of 1100 °C is reachable for the exhaust temperature of 1200 °C. Based on research results, performed for the assumed exhaust temperature of 1100 °C, the paper presents possibilities of changeable different materials using as a regenerator filling in the aspect of its operation efficiency. Such materials as high-temperature steel, Al 2 O 3 and SiC have been considered. The paper presents the selected data research, dealing with the air combustion temperature obtained for the same type of regenerator filling of considered materials. The fuel consumption reduction and reduction of CO 2 emission, for metal regenerator filling, have been presented finally as an economic and environmental aspect accordingly to the air preheated.

  13. Ceramic or metallic? - material aspects of compact heat regenerator energy efficiency

    Science.gov (United States)

    Wnek, M.

    2012-05-01

    The metal industry cannot afford the financial mismanagement in the era of rising energy prices and thus, the high efficiency devices should be used. In the metallurgical thermal processes the combustion air temperature increasing is one of the methods for obtaining the heat transfer intensification and the furnaces efficiency rising. Therefore the new and effective heating technologies in thermal processes are demanded all the time. The regenerative systems are most effective in terms of the heated air level. The individual regenerators for burners are the newest solutions where the temperature of 1100 °C is reachable for the exhaust temperature of 1200 °C. Based on research results, performed for the assumed exhaust temperature of 1100 °C, the paper presents possibilities of changeable different materials using as a regenerator filling in the aspect of its operation efficiency. Such materials as high-temperature steel, Al2O3 and SiC have been considered. The paper presents the selected data research, dealing with the air combustion temperature obtained for the same type of regenerator filling of considered materials. The fuel consumption reduction and reduction of CO2 emission, for metal regenerator filling, have been presented finally as an economic and environmental aspect accordingly to the air preheated.

  14. A valued Indian medicinal plant – Begonia malabarica Lam. : Successful plant regeneration through various explants and field performance

    Directory of Open Access Journals (Sweden)

    Sevanan Rajeshkumar

    2009-05-01

    Full Text Available A cost-effective and efficient protocol has been described in the present work for large-scale and rapid in vitro propagation of a valuable medicinal herb Begonia malabarica Lam. (Begoniaceae by shoot auxillary-bud proliferation and organogenesis on MS medium supplemented with 6-benzylaminopurine (BA; 0.0-8.8 mg/l and indole-3-acetic acid (IAA; 0.0-2.88 mg/l at different concentrations, either alone or in combinations. Initiation of callus formation from the base of the leaf lamina was observed on MS supplemented with BA, IAA and adenine sulphate. Root induction on shoots was achieved on full strength MS with IAA/ indole-3-butyric acid (IBA at different concentrations. MS medium with 4.4 mg/l BA and 1.4 mg/l IAA elicited the maximum number of shoots (10 multiple shoots from nodal explants. Leaf-based callus differentiated into more than 28 shoots on MS with 150 mg/l adenine sulphate. The regenerated shoots were rooted on MS with 1.2 mg/l IBA within ten days. Almost 95% of the rooted shoots survived hardening when transferred to the field. The regenerated plants did not show any morphological change and variation in levels of secondary metabolites when compared with the mother stock. Thus, a reproduction of B. malabarica was established through nodal and leaf explants. This protocol can be exploited for conservation and commercial propagation of this medical plant in the Indian subcontinent and might be useful for genetic improvement programs.

  15. The influence of vapor superheating on the level of heat regeneration in a subcritical ORC coupled with gas power plant

    Science.gov (United States)

    Wiśniewski, Sławomir; Borsukiewicz-Gozdur, Aleksandra

    2010-09-01

    The authors presented problems related to utilization of exhaust gases of the gas turbine unit for production of electricity in an Organic Rankine Cycle (ORC) power plant. The study shows that the thermal coupling of ORC cycle with a gas turbine unit improves the efficiency of the system. The undertaken analysis concerned four the so called "dry" organic fluids: benzene, cyclohexane, decane and toluene. The paper also presents the way how to improve thermal efficiency of Clausius-Rankine cycle in ORC power plant. This method depends on applying heat regeneration in ORC cycle, which involves pre-heating the organic fluid via vapour leaving the ORC turbine. As calculations showed this solution allows to considerably raise the thermal efficiency of Clausius-Rankine cycle.

  16. High Frequency Plant Regeneration System from Transverse Thin Cell Layer Section of In vitro Derived ‘Nadia’ Ginger Microrhizome

    Directory of Open Access Journals (Sweden)

    Dikash Singh THINGBAIJAM

    2014-03-01

    Full Text Available An efficient and reproducible procedure is outlined for rapid in vitro multiplication of Zingiber officinale var. ‘Nadia’ through high frequency shoot proliferation from transverse thin cell layer (tTCL sections of in vitro derived microrhizome. In vitro derived microrhizome of size 500 μm in thickness was used as initial explants for induction of somatic embryos. Among the different phytohormones tested, tTCL explants shows maximum calli proliferation in medium containing 2 mg/L 2,4-Dichlorophenoxyacetic acid (88.30±0.11%. Reduced concentration of 2,4 Dichlorophenoxyacetic acid was supplemented with different cytokinins for regeneration of callus. Among the different medium tested, optimum redifferentiation of somatic embryos were observed in medium containing 0.2 mg/L 2,4 Dichlorophenoxyacetic acid and 6.0 mg/L BAP (141.08±0.25. Clump of regenerated plantlets were further subculture and transfer into microrhizome inducing medium containing high sucrose concentration (8%. Plantlets with well developed microrhizome were successfully acclimatized and eventually transferred to the field. The application of studying embryo section for regeneration of plants might be useful alternative to ginger improvement programme. Histological analysis showed formation of somatic embryos and regenerated adventitious shoot.

  17. Callus induction and plant regeneration from different explant types of Miscanthus x ogiformis Honda 'Giganteus'

    DEFF Research Database (Denmark)

    Holme, Inger Bæksted; Petersen, Karen Koefoed

    1996-01-01

    . The explants were cultured on urashige and Skoog medium supplemented with 4.5, 13.6, 22.6 or 31.7 μM 2,4-dichlorophenoxyacetic acid. Three types of callus were formed but only one was embryogenic and regenerated plants. Callus induction and formation of embryogenic callus depended on the type and developmental......-propagated shoots and older leaves of greenhouse-grown plants. Immature inflorescences smaller than 2.5 cm produced a higher percentage of embryogenic callus than larger more mature inflorescences. Embryogenic callus derived from immature inflorescences had the highest regeneration capacity. Differences in 2......,4-dichlorophenoxyacetic acid concentrations had no significant effect on callus induction, embryogenic callus formation and plant regeneration....

  18. Prolific plant regeneration through organogenesis from scalps of ...

    African Journals Online (AJOL)

    Four types of potting media comprising of sand, peat, sand + top soil + goat dung (3:2:1 v/v) and top soil + sand (1:1 v/v) were evaluated during acclimatization of the plantlets. Prolific shoot regeneration from scalps was obtained on MS medium containing 2.5 mM BAP, at 9.61 and 40.6 shoots per explant after 4 and 8 weeks ...

  19. Derepression of the plant Chromovirus LORE1 induces germline transposition in regenerated plants.

    Directory of Open Access Journals (Sweden)

    Eigo Fukai

    2010-03-01

    Full Text Available Transposable elements represent a large proportion of the eukaryotic genomes. Long Terminal Repeat (LTR retrotransposons are very abundant and constitute the predominant family of transposable elements in plants. Recent studies have identified chromoviruses to be a widely distributed lineage of Gypsy elements. These elements contain chromodomains in their integrases, which suggests a preference for insertion into heterochromatin. In turn, this preference might have contributed to the patterning of heterochromatin observed in host genomes. Despite their potential importance for our understanding of plant genome dynamics and evolution, the regulatory mechanisms governing the behavior of chromoviruses and their activities remain largely uncharacterized. Here, we report a detailed analysis of the spatio-temporal activity of a plant chromovirus in the endogenous host. We examined LORE1a, a member of the endogenous chromovirus LORE1 family from the model legume Lotus japonicus. We found that this chromovirus is stochastically de-repressed in plant populations regenerated from de-differentiated cells and that LORE1a transposes in the male germline. Bisulfite sequencing of the 5' LTR and its surrounding region suggests that tissue culture induces a loss of epigenetic silencing of LORE1a. Since LTR promoter activity is pollen specific, as shown by the analysis of transgenic plants containing an LTR::GUS fusion, we conclude that male germline-specific LORE1a transposition in pollen grains is controlled transcriptionally by its own cis-elements. New insertion sites of LORE1a copies were frequently found in genic regions and show no strong insertional preferences. These distinctive novel features of LORE1 indicate that this chromovirus has considerable potential for generating genetic and epigenetic diversity in the host plant population. Our results also define conditions for the use of LORE1a as a genetic tool.

  20. A novel life cycle arising from leaf segments in plants regenerated from horseradish hairy roots.

    Science.gov (United States)

    Mano, Y; Matsuhashi, M

    1995-03-01

    Horseradish (Armoracia rusticana) hairy root clones were established from hairy roots which were transformed with the Ri plasmid in Agrobacterium rhizogenes 15834. The transformed plants, which were regenerated from hairy root clones, had thicker roots with extensive lateral branches and thicker stems, and grew faster compared with non-transformed horseradish plants. Small sections of leaves of the transformed plants generated adventitious roots in phytohormone-free G (modified Gamborg's) medium. Root proliferation was followed by adventitious shoot formation and plant regeneration. Approximately twenty plants were regenerated per square centimeter of leaf. The transformed plants were easily transferable from sterile conditions to soil. When leaf segments of the transformed plants were cultured in a liquid fertilizer under non-sterile conditions, adventitious roots were generated at the cut ends of the leaves. Adventitious shoots were generated at the boundary between the leaf and the adventitious roots and developed into complete plants. This novel life cycle arising from leaf segments is a unique property of the transformed plants derived from hairy root clones.

  1. Transformation of pecan and regeneration of transgenic plants.

    Science.gov (United States)

    McGranahan, G H; Leslie, C A; Dandekar, A M; Uratsu, S L; Yates, I E

    1993-09-01

    A gene transfer system developed for walnut (Juglans regia L.) was successfully applied to pecan (Carya illinoensis [Wang] K. Koch). Repetitively embryogenic somatic embryos derived from open-pollinated seed of 'Elliott', 'Wichita', and 'Schley' were co-cultivated with Agrobacterium strain EHA 101/pCGN 7001, which contains marker genes for beta-glucuronidase activity and resistance to kanamycin. Several modifications of the standard walnut transformation techniques were tested, including a lower concentration of kanamycin and a modified induction medium, but these treatments had no measurable effect on efficiency of transformation. Nineteen of the 764 viable inoculated embryos produced transgenic subclones; 13 of these were from the line 'Elliott'6, 3 from 'Schley'5/3, and 3 from 'Wichita'9. Transgenic embryos of 'Wichita'9 germinated most readily and three subclones were successfully micropropagated. Three transgenic plants of one of these subclones were obtained by grafting the tissue cultured shoots to seedling pecan rootstock in the greenhouse. Gene insertion, initially detected by GUS activity, was confirmed by detection of integrated T-DNA sequences using Southern analysis.

  2. An Integrated Strategy to Identify Key Genes in Almond Adventitious Shoot Regeneration

    Science.gov (United States)

    Plant genetic transformation usually depends on efficient adventitious regeneration systems. In almond (Prunus dulcis Mill.), regeneration of transgenic adventitious shoots was achieved but with low efficiency. Histological studies identified two main stages of organogenesis in almond explants that ...

  3. Assessment of genetic and epigenetic variation in hop plants regenerated from sequential subcultures of organogenic calli.

    Science.gov (United States)

    Peredo, Elena L; Revilla, M Angeles; Arroyo-García, Rosa

    2006-10-01

    Organogenic calli induced from internodal segments were subcultured three times. Regenerated plants obtained from each subculture were analysed by molecular methods. No major genetic rearrangements were detected in the callus-derived plants since none of the amplified fragment-length polymorphism (AFLP) loci were found to be polymorphic. However, epigenetic changes due to a demethylation process were detected by methylation-sensitive amplified polymorphism (MSAP) technique. The results allowed inference of the possible relationship among the plants derived from different calli subcultures and the in vitro control. The plants recovered from the first and second callus subcultures clustered with the in vitro control pools in the phenogram while the regenerants from the third callus subculture showed the highest genetic distance with the controls. This is the first study reporting data about the genetic stability of callus-derived Humulus lupulus L. plants.

  4. In vitro regeneration of Drosera burmannii Vahl.: a carnivorous plant of north-east India.

    Science.gov (United States)

    Yanthan, J Sureni; Kehie, Mechuselie; Kumaria, Suman; Tandon, Pramod

    2017-06-01

    An efficient in vitro regeneration protocol has been developed from shoot tips of Drosera burmannii Vahl., a carnivorous plant of north-east India. Various plant growth regulators were used to study their efficacy in the induction of multiple shoots and roots. Of the various treatments, the maximum number of shoots (28.8 ± 1.5) and roots (9.7 ± 0.6) was observed in one-fourth strength standard medium (MS with 50 mg/l citric acid and 10 mg/l ascorbic acid) supplemented with 4 mg/l 6-benzylaminopurine (BAP) and 4 mg/l α-naphthalene acetic acid (NAA) followed by 26.8 ± 1.4 shoots in one-fourth strength SM fortified with 4 mg/l kinetin (KN) and 4 mg/l NAA. The well-developed plantlets with shoots and roots were potted in small plastic glasses filled with a mixture of sand and farmyard manure (3:1); these plantlets when transferred to a glasshouse for hardening and acclimatization showed 90% survival.

  5. The effect of gamma radiation and N-ethyl-N-nitrosourea on cultured maize callus growth and plant regeneration

    International Nuclear Information System (INIS)

    Moustafa, R.A.K.; Duncan, D.R.; Widholm, J.M.

    1989-01-01

    Regenerable maize calli of two inbred lines were exposed to 0 to 100 Gy of gamma rays or treated with 0 to 30 mM of N-ethyl-N-nitrosourea (ENU) to determine their effect on growth and plant regeneration capability. Both growth and plant regeneration capacity decreased with increasing levels of either gamma radiation or ENU; however, plant regeneration capacity was more sensitive to either agent than growth. The 50% inhibition dose (I 50 ) for callus growth (fresh-weight gain) was approximately 100 Gy of gamma radiation and 30 mM ENU. The I 50 for plant regeneration capacity of treated callus was approximately 25 Gy of gamma radiation and 2.5 mM ENU. The decrease in plant regeneration capacity correlated with a change in tissue composition of the treated callus from a hard, yellow and opaque tissue to a soft, grayish-yellow and translucent tissue. This change was quantified by measuring the reduction of MnO 4 - to MnO 2 (PR assay) by the callus. These results suggest that the effect of gamma radiation or ENU on plant regeneration capacity must be taken into consideration if these potentially mutagenic agents are to be used on maize callus cultures, for the purpose of producing useful mutations at a whole plant level. The data also suggest that the PR assay may be useful for predicting the actual plant regeneration capacity of maize callus. (author)

  6. Regeneration of the cold trap of the PEC mechanism testing plant

    International Nuclear Information System (INIS)

    Caponetti, R.; Petrazzuolo, F.

    1984-01-01

    Experimentation on prototypes of PEC reactor blocking mechanisms is presently in course at Casaccia Cre in the experimental engineering division of the fast reactor department. After a brief description of the experimental cycle of the components, this repor shows the design criteria of a selected method for the regeneration of mechenism testing plant cold trap

  7. Study Of Plant Regeneration Potential In Tropical Moist Deciduous Forest In Northern India

    Directory of Open Access Journals (Sweden)

    Ashish K Mishra

    2013-12-01

    Full Text Available Regeneration patterns of species population can address climate change by adaptive evolution or by migrating association to survive in their favorable climate and finally decided to particular forest future. In this paper we examined the status of regeneration potential of tree species in tropical moist deciduous forest at Katerniaghat Wildlife Sanctuary, Northern India. To investigate tree, sapling and seedling population distribution, we examine regeneration status in 145 random plots in study area. Total 74 plant species of 60 genera belonging to 32 families out of which 71 species of trees, 56 of seedlings and 60 of saplings were found in the forest. On the basis of importance value index Mallotus philippensis, Tectona grandis, Shorea robusta, Syzygium cumini and Bombax ceiba have been found as dominant species in the study area. As far as the regeneration status is concerned, the maximum tree species (64% have been found in good regeneration category. Significant variations in species richness and population density, between three life form (i. e. tree, sapling and seedling have been found. In which only three new tree species Prosopis juliflora, Psidium guajava and Morus alba were added in sapling and seedling stage. It is major ecological concern that about 19 % economically important plant species like Madhuca longifolia, Terminalia elliptica, Buchanania cochinchinensis, some Ficus species etc. have been found in poor regeneration phage, whereas about 7% species found in no regeneration categories. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 153-163 DOI: http://dx.doi.org/10.3126/ije.v2i1.9218

  8. Development of an Efficient Regeneration and Transformation Method for Nicothiana tabacum L. through the Optimization of Growth Regulators and Sucrose Concentration

    Directory of Open Access Journals (Sweden)

    maria Beihaghi

    2018-03-01

    Full Text Available Introduction: Plant tissue culture is a collection of techniques used to maintain or grow plant cells, tissues or organs under sterile conditions on a nutrient culture medium of known composition and widely used to produce clones of a plant in a method known as micropropagation. Plant research often involves growing new plants in a controlled environment. These may be plants that we have genetically altered in some way or may be plants of which we need many copies all exactly alike. These things can be accomplished through tissue culture of small tissue pieces from the plant of interest. These small pieces may come from a single mother plant or they may be the result of genetic transformation of single plant cells which are then encouraged to grow and to ultimately develop into a whole plant. Tissue culture techniques are often used for commercial production of plants as well as for plant research. Tobacco (Nicotiana tabacum L. is one of the most important model plants used in the physiologic, genetic and tissue culture studies. The manipulation of tobacco genetic structure requires an efficient technique of gene transferring and regeneration. Whereas, the tobacco plant is a very effective bioreactor in the production of recombinant proteins, in this research we optimized the best tissue culture system and also, genetic transformation process of this plant. Materials and Methods: Our plant tissue culture protocols, Include helpful information for Murashige and Skoog media, plant growth regulators, plant growth hormones, plant transformation systems, and other products for plant tissue culture. For this purpose, different concentrations of sucrose and 4 combinations of growth regulators (BAP and NAA on callus induction, direct shoot regeneration and rooting were examined in a factorial experiment based on completely randomized design with 3 replications. The sensitivity of tobacco explants to kanamycin was examined through the cultivation of them

  9. Environmental efficiency among corn ethanol plants

    International Nuclear Information System (INIS)

    Sesmero, Juan P.; Perrin, Richard K.; Fulginiti, Lilyan E.

    2012-01-01

    Economic viability of the US corn ethanol industry depends on prices, technical and economic efficiency of plants and the extent of policy support. Public policy support is tied to the environmental efficiency of plants measured as their impact on emissions of greenhouse gases. This study evaluates the environmental efficiency of seven recently constructed ethanol plants in the North Central region of the US, using nonparametric data envelopment analysis (DEA). The minimum feasible level of GHG emissions per unit of ethanol is calculated for each plant and this level is decomposed into its technical and allocative sources. Results show that, on average, plants in our sample may be able to reduce GHG emissions by a maximum of 6% or by 2.94 Gg per quarter. Input and output allocations that maximize returns over operating costs (ROOC) are also found based on observed prices. The environmentally efficient allocation, the ROOC-maximizing allocation, and the observed allocation for each plant are combined to calculate economic (shadow) cost of reducing greenhouse gas emissions. These shadow costs gauge the extent to which there is a trade off or a complementarity between environmental and economic targets. Results reveal that, at current activity levels, plants may have room for simultaneous improvement of environmental efficiency and economic profitability. -- Highlights: ► Environmental efficiency of ethanol plants in the North Central US is evaluated. ► Economic (shadow) cost of reducing greenhouse gas emissions is calculated. ► Feasible changes in the mix of inputs and byproducts can reduce GHG emissions. ► On average plants may be able to reduce GHG emissions by 2.94 Gg per quarter. ► GHG reductions may be achieved at a moderate or zero operating cost.

  10. Plant regeneration from organ culture in white Guinea Yam

    International Nuclear Information System (INIS)

    Nwachukwu, E.C.; Mbanaso, E.N.A.; Sonnino, A.

    1997-01-01

    Explants from leaves, leaf segments, petioles and internodal stem of in vitro grown seedlings of white guinea yam, Dioscorea rotundata Poir, cv. 'Obiaoturugo' were cultured on defined media. NAA at concentrations of 0.5-1.0 mg/1 induced shoot regeneration from petiolar and inter-nodal stem pieces, and rooting occurred with little or no callusing from whole leaves or leaf segments. With concentration of 3.0-10.0 m/1 NAA, explants from petioles, inter-nodal stem, whole leaves and leaf segments formed callus which produced roots. These explants developed plantlets when subcultured on MS medium supplemented with 2.0 mg/1 BAP and 0.1 mg/1 NAA. (author). 11 refs, 1 tab

  11. Plant regeneration from organ culture in white Guinea Yam

    Energy Technology Data Exchange (ETDEWEB)

    Nwachukwu, E C; Mbanaso, E N.A. [National Root Crops Research Inst., Umudike, Umuahia, Abia State (Nigeria); Sonnino, A [Centro Recerche Energia, ENEA, Rome (Italy)

    1997-07-01

    Explants from leaves, leaf segments, petioles and internodal stem of in vitro grown seedlings of white guinea yam, Dioscorea rotundata Poir, cv. `Obiaoturugo` were cultured on defined media. NAA at concentrations of 0.5-1.0 mg/1 induced shoot regeneration from petiolar and inter-nodal stem pieces, and rooting occurred with little or no callusing from whole leaves or leaf segments. With concentration of 3.0-10.0 m/1 NAA, explants from petioles, inter-nodal stem, whole leaves and leaf segments formed callus which produced roots. These explants developed plantlets when subcultured on MS medium supplemented with 2.0 mg/1 BAP and 0.1 mg/1 NAA. (author). 11 refs, 1 tab.

  12. The effect of endogenous hydrogen peroxide induced by cold treatment in the improvement of tissue regeneration efficiency

    NARCIS (Netherlands)

    Szechynska-Hebda, M.; Skrzypek, E.; Dabrowska, G.; Wedzony, M.; Lammeren, van A.A.M.

    2012-01-01

    We propose that oxidative stress resulting from an imbalance between generation and scavenging hydrogen peroxide contributes to tissue regeneration efficiency during somatic embryogenesis of hexaploid winter wheat (Triticum aestivum cv. Kamila) and organogenesis of faba bean (Vicia faba ssp. minor

  13. An efficient plant regeneration protocol from petiole explants of ...

    African Journals Online (AJOL)

    The highest percentage of shoot buds induction (64.0%) was observed on MS medium supplemented with 0.52 mgL-1 TDZ with organic additives; adenine sulphate (50 mgL-1) + glutamine (100 mgL-1) + L-arginine (25 mgL-1) + citric acid (0.0025%) + ascorbic acid (0.005%). A maximum of six shoots per explant were ...

  14. Efficient callus induction and indirect plant regeneration from various ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-04-17

    Apr 17, 2012 ... that J. curcas oil can yield a high quality biodiesel has led ... manufacturing of soap and candles, illumination, fish poison, inhibitor of watermelon mosaic virus, and nuts collected from a non-toxic Mexican variety are roasted.

  15. Efficient regeneration of plants from shoot tip explants of ...

    African Journals Online (AJOL)

    samrat1765

    2013-03-20

    Mar 20, 2013 ... dish containing sterile filter paper and cut longitudinally with the help of sterile surgical blade to expose the tiny seeds. Seeds were scooped out by sterile spatula and spread over the surface of MS medium alone and supplemented with different combination and concentration of BAP and NAA.

  16. Regeneration of different plant functional types in a Masson pine forest following pine wilt disease.

    Science.gov (United States)

    Hu, Guang; Xu, Xuehong; Wang, Yuling; Lu, Gao; Feeley, Kenneth J; Yu, Mingjian

    2012-01-01

    Pine wilt disease is a severe threat to the native pine forests in East Asia. Understanding the natural regeneration of the forests disturbed by pine wilt disease is thus critical for the conservation of biodiversity in this realm. We studied the dynamics of composition and structure within different plant functional types (PFTs) in Masson pine forests affected by pine wilt disease (PWD). Based on plant traits, all species were assigned to four PFTs: evergreen woody species (PFT1), deciduous woody species (PFT2), herbs (PFT3), and ferns (PFT4). We analyzed the changes in these PFTs during the initial disturbance period and during post-disturbance regeneration. The species richness, abundance and basal area, as well as life-stage structure of the PFTs changed differently after pine wilt disease. The direction of plant community regeneration depended on the differential response of the PFTs. PFT1, which has a higher tolerance to disturbances, became dominant during the post-disturbance regeneration, and a young evergreen-broad-leaved forest developed quickly after PWD. Results also indicated that the impacts of PWD were dampened by the feedbacks between PFTs and the microclimate, in which PFT4 played an important ecological role. In conclusion, we propose management at the functional type level instead of at the population level as a promising approach in ecological restoration and biodiversity conservation.

  17. Establishment of a plant regeneration system from callus of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    . 2Department of Crop ... the development of this protocol, substantial necrosis of calli were observed when cultures were ... known to be emitted by plant growth regulators into the micro-climate of in vitro culture vessels, is the.

  18. Mixing of maize and wheat genomic DNA by somatic hybridization in regenerated sterile maize plants.

    Science.gov (United States)

    Szarka, B.; Göntér, I.; Molnár-Láng, M.; Mórocz, S.; Dudits, D.

    2002-07-01

    Intergeneric somatic hybridization was performed between albino maize ( Zea mays L.) protoplasts and mesophyll protoplasts of wheat ( Triticum aestivum L.) by polyethylene glycol (PEG) treatments. None of the parental protoplasts were able to produce green plants without fusion. The maize cells regenerated only rudimentary albino plantlets of limited viability, and the wheat mesophyll protoplasts were unable to divide. PEG-mediated fusion treatments resulted in hybrid cells with mixed cytoplasm. Six months after fusion green embryogenic calli were selected as putative hybrids. The first-regenerates were discovered as aborted embryos. Regeneration of intact, green, maize-like plants needed 6 months of further subcultures on hormone-free medium. These plants were sterile, although had both male and female flowers. The cytological analysis of cells from callus tissues and root tips revealed 56 chromosomes, but intact wheat chromosomes were not observed. Using total DNA from hybrid plants, three RAPD primer combinations produced bands resembling the wheat profile. Genomic in situ hybridization (GISH) using total wheat DNA as a probe revealed the presence of wheat DNA islands in the maize chromosomal background. The increased viability and the restored green color were the most-significant new traits as compared to the original maize parent. Other intermediate morphological traits of plants with hybrid origin were not found.

  19. Callus production and regeneration of the medicinal plant Papaver ...

    African Journals Online (AJOL)

    Administrator

    2011-09-19

    Sep 19, 2011 ... and morphinan alkaloids production in two species of opium poppy. Biomed. Biotechnol. 1(2): 70-78. Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15: 473-497. Rao AQ, Hussain SS, Shahzad MS, Bokhari SYA, Raza MH, Rakha ...

  20. Plant regeneration from immature embryos of Kenyan maize inbred ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... their respective single cross hybrids were evaluated for their ability form callus, somatic embryos and .... Callus was induced from embryos excised from ears at. 10, 15, 18, 21 and ..... Plant Cell Tissue Organ Cult., 18: 143-151.

  1. Regeneration of some monocotyledonous plants from subterranean organs in vitro

    OpenAIRE

    Krystyna D. Kromer

    2013-01-01

    The aim in view was investigation ofthe regenerative potential of rhizomes, bulbs and corms of ten monocotyledonous plant species from four families: Amaryllidaceae (Haemanthus katharinae, Crinum abyssinicum, Leucojum vernum), Araceae (Spathiphyllum wallisii), Iridaceae (Crocus vernus, Iris germanica), Liliaceae (Hosta lancifolia, Muscari racemosum, Scilla laxiflora, Veltheimia viridifolia) under conditions of in vitro culture. All the investigated species were capable of buld or, alternative...

  2. Plant regeneration protocol of Andrographis paniculata (Burm. f ...

    African Journals Online (AJOL)

    Gyana Sir

    2013-09-25

    Sep 25, 2013 ... Inclusion of 1.0 mg/l 1-naphthalene acetic acid. (NAA) in the culture medium along with BA + Ads ... The plant is distributed throughout tropical India and Sri. Lanka and is commonly known as Kalmegh. ..... Government of India, New Delhi for providing financial assistance under PG-teaching HRD program.

  3. High frequency plant regeneration from mature seed- derived callus ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... Ki-Won Lee, Gi Jun Choi, Ki-Yong Kim, Hee Chung Ji, Hyung Soo Park, Sei Hyung Yoon and ... Gramineae family plants (Ha et al., 2001; Dong and Qu, ..... Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, ...

  4. Development of an efficient regeneration protocol for three genotypes of brassica juncea

    International Nuclear Information System (INIS)

    Bano, R.; Khan, M.H.; Rashid, H.

    2010-01-01

    Two phytohormones, auxins (Naphthalene acetic acid and Indole acetic acid) and cytokinins (Benzyl aminopurine and Kinetin) with concentrations were used to develop an efficient regeneration protocol for 3 genotypes of Brassica juncea (UCD-635, RL-18 and NIFA RAYE). The explants were cultured on MS-medium supplemented with BAP 1.0 mgL/sup -1//NAA 0.1 mgL-1, BAP 2.0 mg L/sup -1//NAA 0.2 mg L/sup -1/, BAP 3.0 mgL/sup -1/ NAA 0.3 mg L-1 and Kinetin 1.0 mg L/sup -1/ IAA 0.1 mg L/sup -1/, Kinetin 2.0 mg L/sup -1//IAA 0.2 mg L/sup -1/, Kinetin 3.0mg L-1/IAA 0.3 mg L/sup -1/. Maximum callus production (65.55) was observed on MS medium containing with BAP 2.0 mgL-1/NAA 0.2 mg L/sup -1/. Maximum shooting (22.31) was observed BAP 3.0 mg L/sup -1//NAA 0.3 mg L/sup -1/ and KIN 3.0 mg L-1/IAA 0.3 mg L/sup -1/. Regeneration efficiency was found maximum (7.13) with BAP 3.0 mg L/sup -1//NAA 0.3 mg L/sup -1/. The three genotypes were found significantly different at p greater or equal to 0.05 in shoots production and regeneration efficiency. (author)

  5. Maximisation of Combined Cycle Power Plant Efficiency

    Directory of Open Access Journals (Sweden)

    Janusz Kotowicz

    2015-12-01

    Full Text Available The paper presents concepts for increasing the efficiency of a modern combined cycle power plant. Improvement of gas turbine performance indicators as well as recovering heat from the air cooling the gas turbine’s flow system enable reaching gross electrical efficiencies of around 65%. Analyses for a wide range of compressor pressure ratios were performed. Operating characteristics were developed for the analysed combined cycle plant, for different types of open air cooling arrangements of the gas turbine’s expander: convective, transpiration and film.

  6. Direct regeneration and efficient in vitro root development studies in lentil (lens culinaris medik)

    International Nuclear Information System (INIS)

    Sultana, T.; Majeed, N.; Naqvi, S.

    2016-01-01

    Lentil is a self-pollinating annual crop with increasing demand all over the world due to its high protein content and easy digestibility. However, like many other crops lentil too needs improvement for which conventional as well as biotechnological tools are to be employed. This study was aimed at development of tissue culture protocol especially targeting improved root development to ensure their establishment in soil in order to use their potential towards genetic manipulation. Two Pakistani lentil cultivars, Masoor-2002 and Manshera-89 were used to obtain cotyledonary nodes, epicotyl and hypocotyl explants. The explants were cultured on shoot regeneration medium containing different concentration of kinetin, BAP and tyrosine with the addition of GA3, with or without charcoal for shoot development. Masoor-2002, showed the highest frequency of shoot development on MS medium containing 5.5 mg/L tyrosine, 0.25 mg/L kinetin, 1.0 mg/L BAP, 0.1 mg/L GA3, using cotyledonary node as explant. The addition of 2 g/L of charcoal in shoot medium resulted in healthier plants, but the number of shoots were reduced. Regarding the effect of age of explants on regeneration frequency, cotyledonary nodes of age 4-6 days had higher regeneration potential. Well-developed shoots were shifted to rooting medium containing different concentration of auxin with or without charcoal. Healthier and more roots were observed on medium containing 4 mg/L IAA with addition of 2 g/L charcoal. Plants were better established (70% survival) in a soil mix containing perlite, vermiculite and peat moss in 1:1:1 ratio. (author)

  7. Plant regeneration of natural tetraploid Trifolium  Hum pratense L

    Directory of Open Access Journals (Sweden)

    HATICE ÇÖLGEÇEN

    2008-01-01

    Full Text Available The regeneration of natural tetraploid T. pratense, originated from Erzurum-Turkey, is reported in this study. This plant has low seed setting and hard seed problems due to polyploidy. Hypocotyl, cotyledon, apical meristems, epicotyl and young primary leaves were inoculated on MS and PC-L2 media containing different concentrations of BAP and NAA as growth regulators. The best shoot formation has been observed on explants initiated from apical meristem placed on PC-L2 medium that includes 2 mg dm-3 BAP and 1 mg dm-3 NAA. 94.4% of the shoots originated from calli were rooted on PC-L2 medium with 1 mg dm-3 NAA. In vitro organogénesis has been accomplished in the natural tetraploid T. pratense regenerated plants successively transferred to the field

  8. Postembryonic organogenesis and plant regeneration from tissues:two sides of the same coin?

    Directory of Open Access Journals (Sweden)

    Juan ePerianez-Rodriguez

    2014-05-01

    Full Text Available Plants have extraordinary developmental plasticity as they continuously form organs duringpostembryonic development. In addition they may regenerate organs upon in vitro hormonalinduction. Advances in the field of plant regeneration show that the first steps of de novoorganogenesis through in vitro culture in hormone containing media (via formation of aproliferating mass of cells or callus require root postembryonic developmental programs as wellas regulators of auxin and cytokinin signaling pathways. We review how hormonal regulation isdelivered during lateral root initiation and callus formation. Implications in reprograming, cellfate and pluripotency acquisition are discussed. Finally, we analyze the function of cell-cycleregulators and connections with epigenetic regulation. Future work dissecting plantorganogenesis driven by both endogenous and exogenous cues (upon hormonal induction mayreveal new paradigms of common regulation.

  9. Management of regenerant effluent waste at reprocessing plant, Tarapur- a new approach

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Munish; Bajpai, D D; Mudaiya, Avinash; Varadarajan, N [Power Reactor Fuel Reprocessing Plant, Tarapur (India)

    1994-06-01

    Power Reactor Fuel Reprocessing (PREFRE) Plant, Tarapur has been processing zircaloy clad spent fuel arising from PHWR namely RAPS and MAPS. The plant has been provided with a water pool to receive and store the irradiated fuel assemblies from the reactor site for an interim period before they are taken up for chop-leach and further reprocessing by PUREX process. This paper highlights the important and innovative modifications like introduction of a cation exchanger for water polishing and using nitric acid as regenerant. The regenerant effluent (nitric acid) is recycled to the main process cells where it is mixed and further treated along with process waste stream. This is a step towards minimising effluent generation. The paper describes the advantages of modified system like operational simplification, manpower, man-rem saving and minimising release of activity to environment. 3 figs., 4 tabs.

  10. Artificial intelligence aid to efficient plant operations

    International Nuclear Information System (INIS)

    Wildberger, A.M.; Pack, R.W.

    1987-01-01

    As the nuclear power industry matures, it is becoming more and more important that plants be operated in an efficient, cost-effective manner, without, of course, any decrease in the essential margins of safety. Indeed, most opportunities for improved efficiency have little or no relation to nuclear safety, but are based on trade-offs among operator controllable parameters both within and external to the reactor itself. While these trade-offs are describable in terms of basic physical theory, thermodynamics, and the mathematics of control systems, their actual application is highly plant specific and influenced even by the day-to-day condition of the various plant components. This paper proposes the use of artificial intelligence techniques to construct a computer-based expert assistant to the plant operator for the purpose of aiding him in improving the efficiency of plant operation on a routine basis. The proposed system, which only advises the human operator, seems more amenable to the current regulatory approach than a truly automated control system even if the latter provides for manual override

  11. Stimulation effects of γ-irradiation combined with colchicine on callus formation and green plant regeneration in rice anther culture

    International Nuclear Information System (INIS)

    Jin Wei; Chen Qiufang; Wang Cailian; Lu Yimei

    1999-09-01

    The ability of callus formation and green plant regeneration was very different for various rice types and varieties in rice anther culture. It was quite effective that rice anthers were irradiated with 10-40 Gy of γ-rays after 30 d incubation on induction medium and calli were treated on differentiation medium contained 10-75 mg/L of colchicine for increase of callus formation and green plant regeneration. Among these treatments, 10 Gy of γ-rats was the best for callus formation, and 20 Gy of γ-rays or 30 mg/L of colchicine was the most favourable for green plant regeneration. The simulation effect of 20 Gy of γ-irradiation combined with 30 mg/L of colchicine on green plant regeneration was much better than that of their separate use in rice anther culture

  12. Integrating environmental control for coal plant efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, M

    1986-01-01

    As emission control requirements for power plants have grown more stringent, utilities have added new environmental protection technology. As environmental controls have been added one after another, plant designers have rarely had the opportunity to integrate these components with each other and the balance of the plant. Consequently they often cost more to build and operate and can reduce power plant efficiency and availability. With the aim of lowering the cost of environmental systems, a design approach known as integrated environmental control (IEC) has emerged. This is based on the premise that environmental controls can function most economically if they are designed integrally with other power generation equipment. EPRI has established an IEC progam to develop integrated design strategies and evaluate their net worth to utilities. Various aspects of this program are described. (3 refs.)

  13. The IPRP (Integrated Pyrolysis Regenerated Plant) technology: From concept to demonstration

    International Nuclear Information System (INIS)

    D’Alessandro, Bruno; D’Amico, Michele; Desideri, Umberto; Fantozzi, Francesco

    2013-01-01

    Highlights: ► IPRP technology development for distributed conversion of biomass and wastes. ► IPRP demonstrative unit combines a rotary kiln pyrolyzer to a 80 kWe microturbine. ► Main performances and critical issues are pointed out for different residual fuels. -- Abstract: The concept of integrated pyrolysis regenerated plant (IPRP) is based on a Gas Turbine (GT) fuelled by pyrogas produced in a rotary kiln slow pyrolysis reactor, where waste heat from GT is used to sustain the pyrolysis process. The IPRP plant provides a unique solution for microscale (below 250 kW) power plants, opening a new and competitive possibility for distributed biomass or wastes to energy conversion systems. The paper summarizes the state of art of the IPRP technology, from preliminary numerical simulation to pilot plant facility, including some new available data on pyrolysis gas from laboratory and pilot plants.

  14. Regeneration and acclimatization of salt-tolerant arachis hypogaea plants through tissue culture

    International Nuclear Information System (INIS)

    Ghauri, E.G.

    2006-01-01

    Excised embryos of Arachis hypogaea were cultured on Murashige and Skoog's medium (MS medium) supplemented with different combinations of growth hormones. The highest frequency of callus proliferation (80%) was recorded on MS medium mixed with 1.0 mg/1 of 2,4-D and 0.5 mg/1 of BAP. These cultures were treated with 0.65 mg/l of trans-4-hydroxy-L-proline (HyP) a:1d various concentrations (0.1-0.5%) of NaCl. In all cases the presence of salt reduced the fresh mass of callus. Shoot regeneration in the cultures took place when transferred to MS medium supplemented with 1.0 mg/1 of kinetin (Kin) and 0.5 mg/1 of 6-benzyl aminopurine (BAP). Percentage of shoot regeneration decreased with the increase of NaCl (0.1- 0.5%) in the shoot regeneration medium. Root formation in these cultures took place when the cultures were nurtured on MS medium free of growth hormones. Regeneration, hardening and acclimatization of the salt tolerant plants was conducted. (author)

  15. Effect of in vitro mutagenesis on plant regeneration in Citrus aurantifolia S

    International Nuclear Information System (INIS)

    Srivastava, R.K.; Sandhu, A.S.; Gosal, S.S.

    2001-01-01

    Callus was induced from different explants excised from in vitro raised seedlings on MS medium enriched with naphthalene acetic acid (NAA) (10 mg/l) and kinetin (0.2 mg/l). The cultures were maintained on the same media for 30 days. Part of the 30-day-old calli were exposed to gamma radiation (5 and 10 Gy) and the rest were treated with ethyl methanesulphonate (EMS) (0.1 to 0.4%) for 8 hours. All the treated calli were immediately transferred to regeneration medium [1/2 MS+Benzyl Amino Purine (BAP) (5 mg/l)] along with the untreated control. The cultures were maintained under conditions of 25±2 deg. C, 16/8 hours day and night regime and 2500-3000 lux light intensity. The results indicated a significant effect of mutagenic agent on callus regeneration and regenerants' morphological features. The same phenomenon was observed in Triticum aestivum and Zea mays. Regenerated mutants showed variation in morphological traits like, plant height, leaf length and breadth. Moreover, the mutants are being screened for resistance against citrus canker. However, the genetic origin of the mutants has not been determined

  16. Agrobacterium-mediated genetic transformation and regeneration of transgenic plants using leaf midribs as explants in ramie [Boehmeria nivea (L.) Gaud].

    Science.gov (United States)

    An, Xia; Wang, Bo; Liu, Lijun; Jiang, Hui; Chen, Jie; Ye, Shengtuo; Chen, Leiyu; Guo, Pingan; Huang, Xing; Peng, Dingxiang

    2014-05-01

    In this study, leaf midribs, the elite explants, were used for the first time to develop an efficient regeneration and transformation protocol for ramie [Boehmeria nivea (L.) Gaud.] via Agrobacterium-mediated genetic transformation. Sensitivity of leaf midribs regeneration to kanamycin was evaluated, which showed that 40 mg l(-1) was the optimal concentration needed to create the necessary selection pressure. Factors affecting the ramie transformation efficiency were evaluated, including leaf age, Agrobacterium concentration, length of infection time for the Agrobacterium solution, acetosyringone concentration in the co-cultivation medium, and the co-cultivation period. The midrib explants from 40-day-old in vitro shoots, an Agrobacterium concentration at OD600 of 0.6, 10-min immersion in the bacteria solution, an acetosyringone concentration of 50 mg l(-1) in the co-cultivation medium and a 3-day co-cultivation period produced the highest efficiencies of regeneration and transformation. In this study, the average transformation rate was 23.25%. Polymerase chain reactions using GUS and NPTII gene-specific primers, Southern blot and histochemical GUS staining analyses further confirmed that the transgene was integrated into the ramie genome and expressed in the transgenic ramie. The establishment of this system of Agrobacterium-mediated genetic transformation and regeneration of transgenic plants will be used not only to introduce genes of interest into the ramie genome for the purpose of trait improvement, but also as a common means of testing gene function by enhancing or inhibiting the expression of target genes.

  17. Plant regeneration via direct somatic embryogenesis from leaf explants of Tolumnia Louise Elmore 'Elsa'.

    Science.gov (United States)

    Shen, Hui-Ju; Chen, Jen-Tsung; Chung, Hsiao-Hang; Chang, Wei-Chin

    2018-01-22

    Tolumnia genus (equitant Oncidium) is a group of small orchids with vivid flower color. Thousands of hybrids have been registered on Royal Horticulture Society and showed great potential for ornamental plant market. The aim of this study is to establish an efficient method for in vitro propagation. Leaf explants taken from in vitro-grown plants were used to induce direct somatic embryogenesis on a modified 1/2 MS medium supplemented with five kinds of cytokinins, 2iP, BA, kinetin, TDZ and zeatin at 0.3, 1 and 3 mg l -1 in darkness. TDZ at 3 mg l -1 gave the highest percentage of explants with somatic globular embryos after 90 days of culture. It was found that 2,4-D and light regime highly retarded direct somatic embryogenesis and showed 95-100% of explant browning. Histological observations revealed that the leaf cells divided into meristematic cells firstly, followed by somatic proembryos, and then somatic globular embryos. Eventually, somatic embryos developed a bipolar structure with the shoot apical meristem and the root meristem. Scanning electron microscopy observations showed that the direct somatic embryogenesis from leaf explants was asynchronously. The somatic embryos were found on the leaf tip, the adaxial surface and also the mesophyll through a cleft, and it reflected the heterogeneity of the explant. The 90-day-old globular embryos were detached from the parent explants and transferred onto a hormone-free 1/2 MS medium in light condition for about 1 month to obtain 1-cm-height plantlets. After another 3 months for growth, the plantlets were potted with Sphagnum moss and were acclimatized in a shaded greenhouse. After 1 month of culture, the survival rate was 100%. In this report, a protocol for efficient regenerating a Tolumnia orchid, Louise Elmore 'Elsa', was established via direct somatic embryogenesis and might reveal an alternative approach for mass propagation of Tolumnia genus in orchid industry.

  18. In vivo reprogramming for heart regeneration: A glance at efficiency, environmental impacts, challenges and future directions.

    Science.gov (United States)

    Ebrahimi, Behnam

    2017-07-01

    Replacing dying or diseased cells of a tissue with new ones that are converted from patient's own cells is an attractive strategy in regenerative medicine. In vivo reprogramming is a novel strategy that can circumvent the hurdles of autologous/allogeneic cell injection therapies. Interestingly, studies have demonstrated that direct injection of cardiac transcription factors or specific miRNAs into the infarct border zone of murine hearts following myocardial infarction converts resident cardiac fibroblasts into functional cardiomyocytes. Moreover, in vivo cardiac reprogramming not only drives cardiac tissue regeneration, but also improves cardiac function and survival rate after myocardial infarction. Thanks to the influence of cardiac microenvironment and the same developmental origin, cardiac fibroblasts seem to be more amenable to reprogramming toward cardiomyocyte fate than other cell sources (e.g. skin fibroblasts). Thus, reprogramming of cardiac fibroblasts to functional induced cardiomyocytes in the cardiac environment holds great promises for induced regeneration and potential clinical purposes. Application of small molecules in future studies may represent a major advancement in this arena and pharmacological reprogramming would convey reprogramming technology to the translational medicine paradigm. This study reviews accomplishments in the field of in vitro and in vivo mouse cardiac reprogramming and then deals with strategies for the enhancement of the efficiency and quality of the process. Furthermore, it discusses challenges ahead and provides suggestions for future research. Human cardiac reprogramming is also addressed as a foundation for possible application of in vivo cardiac reprogramming for human heart regeneration in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Efficient Regeneration of Physical and Chemical Solvents for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Tande, Brian [Univ. of North Dakota, Grand Forks, ND (United States); Seames, Wayne [Univ. of North Dakota, Grand Forks, ND (United States); Benson, Steve [Univ. of North Dakota, Grand Forks, ND (United States)

    2013-12-01

    The objective of this project was to evaluate the use of composite polymer membranes and porous membrane contactors to regenerate physical and chemical solvents for capture of carbon dioxide (CO2) from synthesis gas or flue gas, with the goal of improving the energy efficiency of carbon capture. Both a chemical solvent (typical for a post-combustion capture of CO2 from flue gas) and a physical solvent (typical for pre- combustion capture of CO2 from syngas) were evaluated using two bench-scale test systems constructed for this project. For chemical solvents, polytetrafluoroethylene and polypropylene membranes were found to be able to strip CO2 from a monoethanolamine (MEA) solution with high selectivity without significant degradation of the material. As expected, the regeneration temperature was the most significant parameter affecting the CO2 flux through the membrane. Pore size was also found to be important, as pores larger than 5 microns lead to excessive pore wetting. For physical solvents, polydimethyl-siloxane (PDMS)-based membranes were found to have a higher CO2 permeability than polyvinylalcohol (PVOH) based membranes, while also minimizing solvent loss. Overall, however, the recovery of CO2 in these systems is low – less than 2% for both chemical and physical solvents – primarily due to the small surface area of the membrane test apparatus. To obtain the higher regeneration rates needed for this application, a much larger surface area would be needed. Further experiments using, for example, a hollow fiber membrane module could determine if this process could be commercially viable.

  20. Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas

    Science.gov (United States)

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2012-11-06

    Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

  1. Enhancement of organ regeneration in animal models by a stem cell-stimulating plant mixture.

    Science.gov (United States)

    Kiss, István; Tibold, Antal; Halmosi, Róbert; Bartha, Eva; Koltai, Katalin; Orsós, Zsuzsanna; Bujdosó, László; Ember, István

    2010-06-01

    Adult stem cells play an important role in the regeneration of damaged organs. Attempts have already been made to enhance stem cell production by cytokines, in order to increase the improvement of cardiac functions after myocardial infarction. In our present study we investigated the possibility whether instead of cytokine injection dietary stimulation of stem cell production accelerates the organ regeneration in animals. A dietary supplement, Olimpiq StemXCell (Crystal Institute Ltd., Eger, Hungary), containing plant extracts (previously proved to increase the number of circulating CD34(+) cells) was consumed in human equivalent doses by the experimental animals. In the first experiment carbon tetrachloride was applied to CBA/Ca mice, to induce liver damage, and liver weights between StemXCell-fed and control animals were compared 10 days after the treatment. In the second model experimental diabetes was induced in F344 rats by alloxan. Blood sugar levels were measured for 5 weeks in the control and StemXCell-fed groups. The third part of the study investigated the effect of StemXCell on cardiac functions. Eight weeks after causing a myocardial infarction in Wistar rats by isoproterenol, left ventricular ejection fraction was determined as a functional parameter of myocardial regeneration. In all three animal models StemXCell consumption statistically significantly improved the organ regeneration (relative liver weights, 4.78 +/-0.06 g/100 g vs. 4.97 +/- 0.07 g/100 g; blood sugar levels at week 5, 16 +/- 1.30 mmol/L vs. 10.2 +/- 0.92 mmol/L; ejection fraction, 57.5 +/- 2.23 vs. 68.2 +/- 4.94; controls vs. treated animals, respectively). Our study confirms the hypothesis that dietary enhancement of stem cell production may protect against organ injuries and helps in the regeneration.

  2. Regeneration of the iodine isotope-exchange efficiency for nuclear-grade activated carbons

    International Nuclear Information System (INIS)

    Deitz, V.R.

    1985-01-01

    The removal of radioactive iodine from air flows passing through impregnated activated carbons depends on a minimum of three distinguishable reactions: (1) adsorption on the carbon networks of the activated carbons, (2) iodine isotope exchange with impregnated iodine-127, and (3) chemical combination with impregnated tertiary amines when present. When a carbon is new, all three mechanisms are at peak performance and it is not possible to distinguish among the three reactions by a single measurement; the retention of methyl iodide-127 is usually equal to the retention of methyl iodide-131. After the carbon is placed in service, the three mechanisms of iodine removal are degraded by the contaminants of the air at different rates; the adsorption process degrades faster than the other two. This behavior will be shown by comparisons of methyl iodide-127 and methyl iodide-131 penetration tests. It was found possible to regenerate the iodine isotope-exchange efficiency by reaction with airborne chemical reducing agents with little or no improvement in methyl iodine-127 retention. Examples will be given of the chemical regeneration of carbons after exhaustion with known contaminants as well as for many carbons removed from nuclear power operations. The depth profile of methyl iodide-131 penetration was determined in 2-inch deep layers before and after chemical treatments

  3. [EFFICIENCY OF HAEMOGLOBIN REGENERATION IN THE NUTRITIONAL FERROPENIC ANAEMIA RECOVERY WITH GOAT MILK-BASED DIETS].

    Science.gov (United States)

    Serrano Reina, José Antonio; Nestares Pleguezuelo, Teresa; Muñoz Alférez, Ma José; Díaz Castro, Javier; López Aliaga, Ma Inmaculada

    2015-10-01

    in spite of the high incidence/prevalence of iron deficiency anemia (IDA) and the beneficial effects derived from the consumption of goat milk, scarce is known about the recovery of the anemia following a balanced diet accompanied by the intake of goat milk of goat. The aim of the current study is to assess, in rats with experimentally induced nutritional iron deficiency anemia, the effects of goat or cow milk-based diets, supplied during 30 days, on the recovery of the anemia and the efficiency of regeneration of the hemoglobin. 40 male Wistar albino rats newly weaned were divided at random in two experimental groups and they were fed ad libitum for 40 days with AIN-93G diet, either with normal iron content (control group, 45 mg/kg diet), or low iron content (anaemic group, 5 mg/kg diet). Samples of blood form the caudal vein were collected for the hematologic control of the anemia. Later, both experimental groups (control and iron deficient) were fed for 30 days with goat or cow milk- based diets. After finishing the experimental period and previous anesthesia the animals were withdrawn by canulation of the abdominal aorta, and the obtained blood was gathered in tubes with EDTA as anticoagulant for the later determination of hematologic parameters and the efficiency of regeneration of the hemoglobin. after the consumption of a diet with low iron content during 40 days, the rats were anaemic, with a concentration of hemoglobin, hematocrit, serum iron, mean corpuscular volume (MCV), serum ferritin and low transferrin (p hemoglobin was higher in control and anaemic rats fed goat milk-based diet in comparison with those fed cow milk-based diet (p hemoglobin, and to the best nutritive utilization of iron in the animals that consumed the goat milk-based diet thanks to the excellent nutritional characteristics of this type of milk. the consumption during 30 days of goat or cow milk-based diets favors the recovery of the iron deficiency anemia, especially with the goat

  4. Influence of gamma ray treatment on in vitro regenerated plants of Atropa Belladonna L

    International Nuclear Information System (INIS)

    Toth, E.; Onisei, T.; Amariei, D.

    1994-01-01

    Regenerated plants were obtained through callus organogenesis after gamma ray treatment with 1 to 9 Krad doses. Vigorous shoots were regenerated on MS (1962) medium supplemented with 2 mg/l 6-benzylaminopurine. Shoot growth was inhibited with increasing irradiation doses. At 2 Krad dose root Primordia were observed after 18 days while 32 days were necessary to produce roots at 7-9 Krad. As compared to the control, the survival percent during acclimatization was 80 to 85% at 2-3 Krad, 65-70% at 4-6 Krad and 60-62% at 7-9 Krad. Approximately 330 plants were transferred to field conditions. Morphological and biochemical parameters were measured and the data were statistically processed. Plant height was negatively influenced by higher doses of irradiation. A chlorophyll deficient plant arose from the 6 Krad treatment which showed a different pattern of isoperoxidase and isoesterase as compared to the control. A yellow-flower mutant was obtained from the 3 Krad treatment and is assumed to be Atropa belladonna var. Flava Pater. (author)

  5. Shoot regeneration from cotyledonary leaf explants of jatropha curcas: A biodiesel plant

    KAUST Repository

    Kumar, Nitish Chandramohana

    2010-03-07

    A simple, high frequency, and reproducible method for plant regeneration through direct organogenesis from cotyledonary leaf explants of Jatropha curcas was developed using Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) or 6-benzyl aminopurine (BAP). Medium containing TDZ has greater influence on regeneration as compared to BAP. The induced shoot buds were transferred to MS medium containing 10 lM kinetin (Kn), 4.5 lM BAP, and 5.5 lM a-naphthaleneacetic acid (NAA) for shoot proliferation. The proliferated shoots could be elongated on MS medium supplemented with different concentrations and combinations of BAP, indole-3-acetic acid (IAA), NAA, and indole-3-butyric acid (IBA). MS medium with 2.25 lM BAP and 8.5 lM IAA was found to be the best combination for shoot elongation. However, significant differences in plant regeneration and shoot elongation were observed among the genotypes studied. Rooting was achieved when the basal cut end of elongated shoots were dipped in half strength MS liquid medium containing dif- ferent concentrations and combinations of IBA, IAA, and NAA for 4 days, followed by transfer to growth regulators free half strength MS medium supplemented 0.25 mg l-1 activated charcoal. Elongated shoot treated with 15 lM IBA, 5.7 lM IAA, and 11 lM NAA resulted in highest percent rooting. The rooted plants could be established in soil with more than 90% survival rate. The method developed may be useful in improvement of J. curcas through genetic modification. © Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2010.

  6. Shoot regeneration from cotyledonary leaf explants of jatropha curcas: A biodiesel plant

    KAUST Repository

    Kumar, Nitish Chandramohana; Vijay Anand, K. G.; Reddy, Muppala P.

    2010-01-01

    A simple, high frequency, and reproducible method for plant regeneration through direct organogenesis from cotyledonary leaf explants of Jatropha curcas was developed using Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) or 6-benzyl aminopurine (BAP). Medium containing TDZ has greater influence on regeneration as compared to BAP. The induced shoot buds were transferred to MS medium containing 10 lM kinetin (Kn), 4.5 lM BAP, and 5.5 lM a-naphthaleneacetic acid (NAA) for shoot proliferation. The proliferated shoots could be elongated on MS medium supplemented with different concentrations and combinations of BAP, indole-3-acetic acid (IAA), NAA, and indole-3-butyric acid (IBA). MS medium with 2.25 lM BAP and 8.5 lM IAA was found to be the best combination for shoot elongation. However, significant differences in plant regeneration and shoot elongation were observed among the genotypes studied. Rooting was achieved when the basal cut end of elongated shoots were dipped in half strength MS liquid medium containing dif- ferent concentrations and combinations of IBA, IAA, and NAA for 4 days, followed by transfer to growth regulators free half strength MS medium supplemented 0.25 mg l-1 activated charcoal. Elongated shoot treated with 15 lM IBA, 5.7 lM IAA, and 11 lM NAA resulted in highest percent rooting. The rooted plants could be established in soil with more than 90% survival rate. The method developed may be useful in improvement of J. curcas through genetic modification. © Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2010.

  7. Understory Structure and Vascular Plant Diversity in Naturally Regenerated Deciduous Forests and Spruce Plantations on Similar Clear-Cuts: Implications for Forest Regeneration Strategy Selection

    Directory of Open Access Journals (Sweden)

    ZhiQiang Fang

    2014-04-01

    Full Text Available The active effect of natural regeneration on understory vegetation and diversity on clear-cut forestlands, in contrast to conifer reforestation, is still controversial. Here we investigated differences in understory vegetation by comparing naturally regenerated deciduous forests (NR and reforested spruce plantations (SP aged 20–40 years on 12 similar clear-cuts of subalpine old-growth spruce-fir forests from the eastern Tibetan Plateau. We found that 283 of the 334 vascular plant species recorded were present in NR plots, while only 264 species occurred in SP plots. This was consistent with richer species, higher cover, and stem (or shoot density of tree seedlings, shrubs, and ferns in the NR plots than in the SP plots. Moreover, understory plant diversity was limited under dense canopy cover, which occurred more frequently in the SP plots. Our findings implied that natural deciduous tree regeneration could better preserve understory vegetation and biodiversity than spruce reforestation after clear-cutting. This result further informed practices to reduce tree canopy cover for spruce plantations or to integrate natural regeneration and reforestation for clear-cuts in order to promote understory vegetation and species diversity conservation.

  8. Efficiency improvement of thermal coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hourfar, D. [VEBA Kraftwerke Ruhr Ag, Gelsenkirchen (Germany)

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  9. Plant diversity and regeneration in a disturbed isolated dry Afromontane forest in northern Ethiopia

    DEFF Research Database (Denmark)

    Aynekulu, Ermias; Aerts, Raf; Denich, Manfred

    2016-01-01

    We studied the diversity, community composition and natural regeneration of woody species in an isolated but relatively large (> 1,000 ha) dry Afromontane forest in northern Ethiopia to assess its importance for regional forest biodiversity conservation. The principal human-induced disturbance...... in biodiversity through local extinction of indigenous tree species. Despite the problems associated with conserving plant species diversity in small and isolated populations, this relic forest is of particular importance for regional conservation of forest biodiversity, as species with high conservation value...

  10. OPTIMIZATION OF HORMONE COMPOSITION OF NUTRIENT MEDIUM FOR IN VITRO EFFICIENT REGENERATION OF BREAD WHEAT

    Directory of Open Access Journals (Sweden)

    E. D. Nikitina

    2016-08-01

    Full Text Available Optimal values of phytohormones in the differential nutrient medium providing the efficient realization of morphogenetic potencies of four spring bread wheat varieties (Skala, Spectr, Zarnitsa and Zhnitsa from immature embryo cultures have been determined. For callus induction explants 1.5 – 1.7 mmin size were used, which were subsequently passed to the medium by Linsmaier&Skoog possessing 0.8 % of agar, 3 % of sucrose and 2.0 mg l-1 dichlorophenoxyacetic acid (2,4-D. Cell cultures were incubated in darkness at the temperature 26±1 °С. 30 – 35 days after in accordance with the scheme of complete factorial experiment of 32 type calli were passed to differential medium supplemented with 2,4-D at levels 0.5; 2.5; 4.0 mg l-1 and with kinetin (6-furfurylaminopurine at levels 0.5; 2.25 and 4.0 mg l-1. Number of replications for each of 9 variants was four. As a result, 20 mathematic models (4 varieties × 5 stages of regeneration designed as polynomial quadric equation were obtained. On the ground of the analysis of models it was established that optimal values for factors are not equal both for cultures of genotypes analyzed and for different regeneration stages. For callus tissues of Skala and Spectr an optimal value of kinetin for all regeneration stages was 0.5 mg l-1 except for the frequency of morphogenesis. Optimal values of 2,4-D for the same varieties were within 2.3 – 3.2 mg l-1. For cell cultures of Zarnitsa and Zhnitsa recommended concentration intervals made up 1.3 – 2.2 mg l-1 on kinetin except for the frequency of rhizogenesis, and 1.9 – 2.7 on 2,4-D. The level of exogenous phytohormones necessary for stem differentiation was lower than the one for root formation. The dependence of morphogenesis results on the hormonal status of the explant has been discussed.

  11. Integrated bicarbonate-form ion exchange treatment and regeneration for DOC removal: Model development and pilot plant study.

    Science.gov (United States)

    Hu, Yue; Boyer, Treavor H

    2017-05-15

    The application of bicarbonate-form anion exchange resin and sodium bicarbonate salt for resin regeneration was investigated in this research is to reduce chloride ion release during treatment and the disposal burden of sodium chloride regeneration solution when using traditional chloride-form ion exchange (IX). The target contaminant in this research was dissolved organic carbon (DOC). The performance evaluation was conducted in a completely mixed flow reactor (CMFR) IX configuration. A process model that integrated treatment and regeneration was investigated based on the characteristics of configuration. The kinetic and equilibrium experiments were performed to obtain required parameters for the process model. The pilot plant tests were conducted to validate the model as well as provide practical understanding on operation. The DOC concentration predicted by the process model responded to the change of salt concentration in the solution, and showed a good agreement with pilot plant data with less than 10% difference in terms of percentage removal. Both model predictions and pilot plant tests showed over 60% DOC removal by bicarbonate-form resin for treatment and sodium bicarbonate for regeneration, which was comparable to chloride-form resin for treatment and sodium chloride for regeneration. Lastly, the DOC removal was improved by using higher salt concentration for regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Seismomorphogenesis: a novel approach to acclimatization of tissue culture regenerated plants.

    Science.gov (United States)

    Sarmast, Mostafa Khoshhal; Salehi, Hassan; Khosh-Khui, Morteza

    2014-12-01

    Plantlets under in vitro conditions transferred to ex vivo conditions are exposed to biotic and abiotic stresses. Furthermore, in vitro regenerated plants are typically frail and sometimes difficult to handle subsequently increasing their risk to damage and disease; hence acclimatization of these plantlets is the most important step in tissue culture techniques. An experiment was conducted under in vitro conditions to study the effects of shaking duration (twice daily at 6:00 a.m. and 9:00 p.m. for 2, 4, 8, and 16 min at 250 rpm for 14 days) on Sansevieria trifasciata L. as a model plant. Results showed that shaking improved handling, total plant height, and leaf characteristics of the model plant. Forty-eight hours after 14 days of shaking treatments with increasing shaking time, leaf length decreased but proline content of leaf increased. However, 6 months after starting the experiment different results were observed. In explants that received 16 min of shaking treatment, leaf length and area and photosynthesis rate were increased compared with control plantlets. Six months after starting the experiment, control plantlets had 12.5 % mortality; however, no mortality was observed in other treated explants. The results demonstrated that shaking improved the explants' root length and number and as a simple, cost-effective, and non-chemical novel approach may be substituted for other prevalent acclimatization techniques used for tissue culture regenerated plantlets. Further studies with sensitive plants are needed to establish this hypothesis.

  13. Increasing the thermal efficiency of boiler plant

    Directory of Open Access Journals (Sweden)

    Uyanchinov Evgeniy

    2017-01-01

    Full Text Available The thermal efficiency increase of boiler plant is actual task of scientific and technical researches. The optimization of boiler operating conditions is task complex, which determine by most probable average load of boiler, operating time and characteristics of the auxiliary equipment. The work purpose – the determination of thermodynamic efficiency increase ways for boiler plant with a gas-tube boiler. The tasks, solved at the research are the calculation of heat and fuel demand, the exergetic analysis of boilerhouse and heat network equipment, the determination of hydraulic losses and exergy losses due to restriction. The calculation was shown that the exergy destruction can be reduced by 2.39% due to excess air reducing to 10%; in addition the oxygen enrichment of air can be used that leads to reducing of the exergy destruction rate. The processes of carbon deposition from the side of flame and processes of scale formation on the water side leads to about 4.58% losses of fuel energy at gas-tube boiler. It was shown that the exergy losses may be reduced by 2.31% due to stack gases temperature reducing to 148 °C.

  14. Proposal of a combined heat and power plant hybridized with regeneration organic Rankine cycle: Energy-Exergy evaluation

    International Nuclear Information System (INIS)

    Anvari, Simin; Jafarmadar, Samad; Khalilarya, Shahram

    2016-01-01

    Highlights: • A new thermodynamic cogeneration system is proposed. • Energy and exergy analysis of the considered cycle were performed. • An enhancement of 2.6% in exergy efficiency compared to that of baseline cycle. - Abstract: Among Rankine cycles (simple, reheat and regeneration), regeneration organic Rankine cycle demonstrates higher efficiencies compared to other cases. Consequently, in the present work a regeneration organic Rankine cycle has been utilized to recuperate gas turbine’s heat using heat recovery steam generator. At first, this cogeneration system was subjected to energy and exergy analysis and the obtained results were compared with that of investigated cogeneration found in literature (a cogeneration system in which a reheat organic Rankine cycle for heat recuperation of gas turbine cycle was used with the aid of heat recovery steam generator). Results indicated that the first and second thermodynamic efficiencies in present cycle utilizing regeneration cycle instead of reheat cycle has increased 2.62% and 2.6%, respectively. In addition, the effect of thermodynamic parameters such as combustion chamber’s inlet temperature, gas turbine inlet temperature, evaporator and condenser temperature on the energetic and exergetic efficiencies of gas turbine-heat recovery steam generator cycle and gas turbine-heat recovery steam generator cycle with regeneration organic Rankine cycle was surveyed. Besides, parametric analysis shows that as gas turbine and combustion chamber inlet temperatures increase, energetic and exergetic efficiencies tend to increase. Moreover, once condenser and evaporator temperature raise, a slight decrement in energetic and exergetic efficiency is expected.

  15. Effects of mutagens on somatic embryogenesis and plant regeneration in groundnut

    International Nuclear Information System (INIS)

    Muthusamy, A.; Vasanth, K.; Sivasankari, D.; Chandrasekar, B.R.; Jayabalan, N.

    2007-01-01

    The embryogenic calli (EC) were obtained from hypocotyl explants of groundnut (Arachis hypogaea L.) cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) in combination with 0.5 mg dm −3 6-benzylaminopurine (BAP). The EC were exposed to γ-radiation (10–50 Gy) or treated with 1–5 mM of ethyl methane sulphonate (EMS) or sodium azide (SA). The mutated EC were subcultured on embryo induction medium containing 20 mg dm −3 2,4-D. Somatic embryos (SE) developed from these calli were transferred to MS medium supplemented with BAP (2.0 mg dm −3 ) and 0.5 mg dm −3 2,4-D for maturation. The well-developed embryos were cultured on germination medium consisting of MS salts with 2.0 mg dm −3 BAP and 0.25 mg dm −3 naphthaleneacetic acid (NAA). Well-developed plantlets were transferred for hardening and hardened plants produced normal flowers and set viable seeds. The fresh mass of the EC, mean number of SE per explant and regeneration percentage were higher at lower concentrations of mutagens (up to 30 Gy/3 mM). Some abnormalities in regenerated plants were observed, especially variations in leaf shape. (author)

  16. High Frequency Plant Regeneration System from Transverse Thin Cell Layer Section of In vitro Derived ‘Nadia’ Ginger Microrhizome

    Directory of Open Access Journals (Sweden)

    Dikash Singh THINGBAIJAM

    2014-03-01

    Full Text Available An efficient and reproducible procedure is outlined for rapid in vitro multiplication of Zingiber officinale var. ‘Nadia’ through high frequency shoot proliferation from transverse thin cell layer (tTCL sections of in vitro derived microrhizome. In vitro derived microrhizome of size 500 μm in thickness was used as initial explants for induction of somatic embryos. Among the different phytohormones tested, tTCL explants shows maximum calli proliferation in medium containing 2 mg/L 2,4-Dichlorophenoxyacetic acid (88.30±0.11%. Reduced concentration of 2,4 Dichlorophenoxyacetic acid was supplemented with different cytokinins for regeneration of callus. Among the different medium tested, optimum redifferentiation of somatic embryos were observed in medium containing 0.2 mg/L 2,4 Dichlorophenoxyacetic acid and 6.0 mg/L BAP (141.08±0.25. Clump of regenerated plantlets were further subculture and transfer into microrhizome inducing medium containing high sucrose concentration (8%. Plantlets with well developed microrhizome were successfully acclimatized and eventually transferred to the field. The application of studying embryo section for regeneration of plants might be useful alternative to ginger improvement programme. Histological analysis showed formation of somatic embryos and regenerated adventitious shoot.

  17. Plant Regeneration and Cellular Behaviour Studies in Celosia cristata Grown In Vivo and In Vitro

    Science.gov (United States)

    Taha, Rosna Mat; Wafa, Sharifah Nurashikin

    2012-01-01

    Tissue culture studies of Celosia cristata were established from various explants and the effects of various hormones on morphogenesis of this species were examined. It was found that complete plant regeneration occurred at highest percentage on MS medium supplemented with 2.0 mg/L NAA and 1.5 mg/L BAP, with the best response showed by shoot explants. In vitro flowering was observed on MS basal medium after six weeks. The occurrence of somaclonal variation and changes in cellular behavior from in vivo and in vitro grown plants were investigated through cytological studies and image analysis. It was observed that Mitotic Index (MI), mean chromosome numbers, and mean nuclear to cell area ratio of in vitro root meristem cells were slightly higher compared to in vivo values. However, in vitro plants produced lower mean cell areas but higher nuclear areas when compared to in vivo plants. Thus, no occurrence of somaclonal variation was detected, and this was supported by morphological features of the in vitro plants. PMID:22593677

  18. Effect of Plant Growth Regulators on Callogenesis and Regeneration Of Fritillaria imperialis L

    Directory of Open Access Journals (Sweden)

    Esmaeil Chamani

    2018-02-01

    Full Text Available Introduction: Crown imperial (Fritillariaimperialis L. is an ornamental and medicinal plant native to mountainous regions of Iran. This plant genetic resources is in danger of extinction, because of grazing livestock and pest outbreaks. However, due to slow reproduction in natural conditions and traditional multiplication methods such as scaling and Bulb division, many species of this genus are endangered. Using of biotechnology, namely in vitro plant propagation, is a solution to the problems of reproduction of rare and endangered plant species with difficult propagation and mass production of valuable genotypes. Therefore, micropropagation of F. imperialis through in vitro regeneration is essential for conservation and commercial production. Material and Methods: The bulbs of F. imperialis in dormancy stage obtained from Ilam mountainous regions in Iran and theywere placed in wet vermiculite at 4 °C for 4-6 weeks. Then, Bulbs were surface-sterilized with 70% ethanol for 60s followed by immersion in 5% (v/v NaOCl solution for 20min with gentle agitation, and they rinsed three times in sterile double distilled water. Explants prepared from the lower third of scales with basal plate and were placed in MS basal medium supplemented with different concentrations of NAA and 2,4-D for callus induction. Test tubes with bulb segments were maintained within 25±2°C in growth chamber at 16 hours light period by the illumination from white florescent tube light and 8 hours dark. After two months callus were transferred to MS basal medium without PGRs. Then, callus excised to 0.5 cm pieces and were transferred to MS basal medium supplemented with NAA in 0, 0.3 and 1 mg/l concentration.Three types of cytokinins with different concentrations were arranged in three seperated experiments. Thefirst experiment medium contained NAA with BA (0, 0.3, 0.5 and 1 mg/l, the second experiment NAA combined with 0, 0.1, 0.3 and 0.5 mg/l TDZ and the third experiment MS

  19. Effect of x-ray irradiation on maize inbred line B73 tissue cultures and regenerated plants

    International Nuclear Information System (INIS)

    Wang, A.S.; Cheng, D.S.K.; Milcic, J.B.; Yang, T.C.

    1988-01-01

    In order to enhance variation induced by the tissue culture process and to obtain agronomically desirable mutants, friable embryogenic tissue cultures of maize (Zea mays L.) inbred line B73 were x-ray irradiated with 11 doses [0-8.4 kilorads (kR)]. Reductions in callus growth rate and embryogenic callus formation occurred with increasing x-ray doses 20 d and 3 months after irradiation. Callus irradiated with 0.8 kR showed a significant increase in growth rate and a 20% increase in embryogenic callus 9 months after irradiation. A total of 230 R 0 plants were regenerated for evaluation. Pollen fertility and seed set of R 0 plants decreased with increasing x-ray dosage. Days to anthesis and plant height of R 0 plants varied among x-ray treatments but were generally reduced with higher dosages. The number of chromosomal aberrations increased with x-ray dosage. The R 1 seeds taken from R 0 plants were also grown and tested for mutant segregation. Plants regenerated from irradiated calli had a two- to 10-fold increase in mutations over plants regenerated from unirradiated control callus. Germination frequency of seeds from R 0 plants decreased with increasing x-ray dosage. Although chlorophyll mutants were most frequently observed, a number of vigorous plants with earlier anthesis date were also recovered

  20. Studies on Callus Induction and Regeneration of Medicinal Plant Chicory (Cichorium intybus L. from Leaf and Petiole Explants

    Directory of Open Access Journals (Sweden)

    H. Hadizadeh

    2016-07-01

    Full Text Available Introduction: Chicory (Cichorium intybus L. belongs to Asteraceae family is commonly known as witloof chicory. The leaves and the roots of this medicinal plant are edible and commonly used as salad. Some varieties are also cultivated as coffee substitute after roasting the roots. All parts of the plant contain these volatile oils, with the majority of the toxic components concentrated in the plant's root. In folk medicine, the plant is used for the treatment of diarrhea, spleen enlargement, fever, and vomiting. Antihepatotoxic activity on damaged rat’s liver sections and anti-bacterial activity of this crop has been recently reported. In vitro regeneration from leaf explants with various hormonal combinations has been reported previously. Moreover, in vitro regeneration of Chicory from cotyledon explants using different combinations of plant growth regulators has been studied. Also, a protocol for the regeneration of plantlets from leaf and petiole explants of witloof chicory has been developed. The aim of the present investigation was optimization of callus induction and shoot regeneration from leaf and petiole tissues of Chicory (Esfahan genotype. Materials and Methods: In this investigation, Esfahan genotype was used for callus induction and direct shoot regeneration. Seeds were first washed with running tap water for 30 min then seeds were surface sterilized by dipping in 70% ethanol for 90 s and rinsed with sterile distilled water, followed by immersing in 5% sodium hypochlorite solution for 25 min and thereafter rinsed for 30 min with sterile distilled water. The basal medium used in this investigation was MS. For shoot regeneration, leaf and petiole explants (5 mm segments were excised from 4-week-old sterile seedlings and cultured on MS medium containing different combinations of NAA / BA and KIN / BA in two separate experiments. Experiments were performed factorial based on completely randomized design. Cultures were incubated at 25

  1. Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests

    Science.gov (United States)

    Balch, Jennifer K.; Massad, Tara J.; Brando, Paulo M.; Nepstad, Daniel C.; Curran, Lisa M.

    2013-01-01

    Anthropogenic understorey fires affect large areas of tropical forest, yet their effects on woody plant regeneration post-fire remain poorly understood. We examined the effects of repeated experimental fires on woody stem (less than 1 cm at base) mortality, recruitment, species diversity, community similarity and regeneration mode (seed versus sprout) in Mato Grosso, Brazil. From 2004 to 2010, forest plots (50 ha) were burned twice (B2) or five times (B5), and compared with an unburned control (B0). Stem density recovered within a year after the first burn (initial density: 12.4–13.2 stems m−2), but after 6 years, increased mortality and decreased regeneration—primarily of seedlings—led to a 63 per cent and 85 per cent reduction in stem density in B2 and B5, respectively. Seedlings and sprouts across plots in 2010 displayed remarkable community similarity owing to shared abundant species. Although the dominant surviving species were similar across plots, a major increase in sprouting occurred—almost three- and fourfold greater in B2 and B5 than in B0. In B5, 29 species disappeared and were replaced by 11 new species often present along fragmented forest edges. By 2010, the annual burn regime created substantial divergence between the seedling community and the initial adult tree community (greater than or equal to 20 cm dbh). Increased droughts and continued anthropogenic ignitions associated with frontier land uses may promote high-frequency fire regimes that may substantially alter regeneration and therefore successional processes. PMID:23610167

  2. Idaho Chemical Processing Plant Process Efficiency improvements

    International Nuclear Information System (INIS)

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond

  3. Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas).

    Science.gov (United States)

    Mohd Din, Abd Rahman Jabir; Iliyas Ahmad, Fauziah; Wagiran, Alina; Abd Samad, Azman; Rahmat, Zaidah; Sarmidi, Mohamad Roji

    2016-01-01

    A new and rapid protocol for optimum callus production and complete plant regeneration has been assessed in Malaysian upland rice (Oryza sativa) cv. Panderas. The effect of plant growth regulator (PGR) on the regeneration frequency of Malaysian upland rice (cv. Panderas) was investigated. Mature seeds were used as a starting material for callus induction experiment using various concentrations of 2,4-D and NAA. Optimal callus induction frequency at 90% was obtained on MS media containing 2,4-D (3 mg L(-1)) and NAA (2 mg L(-1)) after 6 weeks while no significant difference was seen on tryptophan and glutamine parameters. Embryogenic callus was recorded as compact, globular and light yellowish in color. The embryogenic callus morphology was further confirmed with scanning electron microscopy (SEM) analysis. For regeneration, induced calli were treated with various concentrations of Kin (0.5-1.5 mg L(-1)), BAP, NAA and 0.5 mg L(-1) of TDZ. The result showed that the maximum regeneration frequency (100%) was achieved on MS medium containing BAP (0.5 mg L(-1)), Kin (1.5 mg L(-1)), NAA (0.5 mg L(-1)) and TDZ (0.5 mg L(-1)) within four weeks. Developed shoots were successfully rooted on half strength MS free hormone medium and later transferred into a pot containing soil for acclimatization. This cutting-edge finding is unique over the other existing publishable data due to the good regeneration response by producing a large number of shoots.

  4. Comparison of regeneration efficiency of strong base anion exchangers fouled by iron and humic acids

    Czech Academy of Sciences Publication Activity Database

    Kus, P.; Kunesova, K.; Šlouf, Miroslav

    2014-01-01

    Roč. 49, č. 15 (2014), s. 2352-2357 ISSN 0149-6395 Institutional support: RVO:61389013 Keywords : regeneration * iron * fouling Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.171, year: 2014

  5. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants.

    Science.gov (United States)

    Chen, M H; Wang, P J; Maeda, E

    1987-10-01

    The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.

  6. Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2).

    Science.gov (United States)

    Ganesan, M; Jayabalan, N

    2004-10-01

    Somatic embryogenesis in cotton (Gossypium hirsutum L.) is accelerated when the plant regeneration medium is supplemented with haemoglobin (erythrogen). In cotton SVPR 2 lines, a higher frequency of embryoid formation was observed when the medium contained 400 mg/l haemoglobin. Fresh weight of the callus, rate of embryoid induction, number of embryoids formed and the percentage of plant regeneration from somatic embryos were increased. Among the two different cultivars tested, MCU 11 showed no response to the presence of haemoglobin when compared to SVPR 2, and embryogenic callus formation was completely absent in the former. Medium containing MS salts, 100 mg/l myo-inositol , 0.3 mg/l thiamine-HCL, 0.3 mg/l Picloram (PIC), 0.1 mg/l kinetin and 400 mg/l haemoglobin effected a better response with respect to embryogenic callus induction. After 8 weeks of culture, a high frequency of embryoid induction was observed on medium containing MS basal salts, 100 mg/l myo-inositol, 0.3 mg/l PIC , 0.1 mg/l isopentenyl adenine, 1.0 g/l NH4NO3 and 400 mg/l haemoglobin. Plant regeneration was observed in 75.8% of the mature somatic embryos, and whole plant regeneration was achieved within 6-7 months of culture. The regenerated plantlets were fertile and similar to in vivo-grown, seed-derived plants except that they were phenotypically smaller. A positive influence of haemoglobin was observed at concentrations up to 400 mg/l at all stages of somatic embryogenesis. The increase in the levels of antioxidant enzyme activities, for example superoxide dismutase and peroxidase, indicated the presence of excess oxygen uptake and the stressed condition of the plant tissues that arose from haemoglobin supplementation. This increased oxygen uptake and haemoglobin-mediated stress appeared to accelerate somatic embryogenesis in cotton.

  7. Bottlenecks in the generation and maintenance of morphogenic banana cell suspensions and plant regeneration via somatic embryogenesis therefrom

    Czech Academy of Sciences Publication Activity Database

    Schoofs, H.; Panis, B.; Strosse, H.; Mosqueda, A. M.; Torres, J. L.; Roux, N.; Doležel, Jaroslav; Swennen, R.

    2001-01-01

    Roč. 8, č. 2 (2001), s. 3-7 ISSN 0989-8972 R&D Projects: GA MŠk ME 376 Institutional research plan: CEZ:AV0Z5038910 Keywords : banana cell suspensions * plant regeneration Subject RIV: EA - Cell Biology

  8. Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration.

    Science.gov (United States)

    Fei, Ji-Feng; Schuez, Maritta; Knapp, Dunja; Taniguchi, Yuka; Drechsel, David N; Tanaka, Elly M

    2017-11-21

    Salamanders exhibit extensive regenerative capacities and serve as a unique model in regeneration research. However, due to the lack of targeted gene knockin approaches, it has been difficult to label and manipulate some of the cell populations that are crucial for understanding the mechanisms underlying regeneration. Here we have established highly efficient gene knockin approaches in the axolotl ( Ambystoma mexicanum ) based on the CRISPR/Cas9 technology. Using a homology-independent method, we successfully inserted both the Cherry reporter gene and a larger membrane-tagged Cherry-ER T2 -Cre-ER T2 (∼5-kb) cassette into axolotl Sox2 and Pax7 genomic loci. Depending on the size of the DNA fragments for integration, 5-15% of the F0 transgenic axolotl are positive for the transgene. Using these techniques, we have labeled and traced the PAX7-positive satellite cells as a major source contributing to myogenesis during axolotl limb regeneration. Our work brings a key genetic tool to molecular and cellular studies of axolotl regeneration.

  9. Effect of 60Co γ-rays irradiation on plant regeneration from callus of sea dallisgrass (paspalum vaginatum Sw.)

    International Nuclear Information System (INIS)

    Ye Xiaoqing; She Jianming; Wang Songfeng; Zhang Xu; Liang Liufang; Dong Mingqiang; Wu Yingying

    2010-01-01

    The pellet embryonic calli of Paspalum vagiantum Sw. cv. Adalay were used for 60 Co γ-rays irradiation. In the callus subculture medium with 2, 4-D 2.0 mg /L and BAP 0.05 mg /L, calli were irradiated at the dose rate 1 Gy /min of 60 Co γ-rays. Results showed that the rate of shoot regeneration was from 94% to 85% when calli irradiated with 20 ∼ 50 Gy; the rate of shoot regeneration was from 76% to 30%, and the rate of plant regeneration was from 44.5% to 8.7% between 60 ∼ 80 Gy. By 60 Gy of 60 Co γ-rays irradiation, the rate of shoot regeneration was about 76% in the differentiation medium with BAP 2.0 mg /L, and the relative rate of plant regeneration was 44.5% in the rooting medium with NAA 0.5 mg /L. The result of sequence-related amplified polymorphism (SRAP) markers analysis showed that the specific SRAP markers were associated with the somatic mutants. The mutation technique of 60 Co γ-rays has been established in the somatic cell of Paspalum vaginatum Sw. (authors)

  10. Establishment of Cell Suspension Culture and Plant Regeneration in Abrus precatorius L., a Rare Medicinal Plant

    Directory of Open Access Journals (Sweden)

    Mohammad Serajur RAHMAN

    2012-02-01

    Full Text Available A new protocol has been developed for cell culture and in vitro regeneration of Abrus precatorius that holds enormous potentiality for preparation of medicines. In vitro grown calli were cultured in Murashige and Skoog (MS liquid media in agitated condition fortified with 0.5 mg/l 6-Benzylaminopurine. Growth curve of cells revealed that the cells continued to grow until 12 days of culture and got the highest peak from day 6-8. Isolated cell was found to produce highest 8.2% calli when suspended on MS medium supplemented with 0.5 mg/l 6-Benzylaminopurine and 0.1 mg/l 1-Naphthaleneacetic acid. Callus derived from single cell produced highest number of embryo (25-28% cultured on MS medium fortified with 2.0 mg/l 6-Benzylaminopurine and 0.2 mg/l 1-Naphthaleneacetic acid. The bipolar embryos were selected and optimum shoot formation was recorded on MS medium supplemented with 2.0 mg/l 6-Benzylaminopurine and 0.1 mg/l 1-Naphthaleneacetic acid. The optimum root induction was noticed in MS medium supplemented with 1.0 mg/l 3-Indolebutyric acid. Rooted plantlets were successfully transferred to potting soil and acclimatized to outdoor conditions.

  11. Combined cycle power plants: technological prospects for improving the efficiency

    International Nuclear Information System (INIS)

    Lauri, R.

    2009-01-01

    The combined cycle power plants characteristics are better than one course open to a closed loop presenting an electrical efficiency close to 60% do not reach for gas turbine engines for power plants and conventional steam engines. [it

  12. Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost.

    Science.gov (United States)

    Yashina, Svetlana; Gubin, Stanislav; Maksimovich, Stanislav; Yashina, Alexandra; Gakhova, Edith; Gilichinsky, David

    2012-03-06

    Whole, fertile plants of Silene stenophylla Ledeb. (Caryophyllaceae) have been uniquely regenerated from maternal, immature fruit tissue of Late Pleistocene age using in vitro tissue culture and clonal micropropagation. The fruits were excavated in northeastern Siberia from fossil squirrel burrows buried at a depth of 38 m in undisturbed and never thawed Late Pleistocene permafrost sediments with a temperature of -7 °C. Accelerator mass spectrometry (AMS) radiocarbon dating showed fruits to be 31,800 ± 300 y old. The total γ-radiation dose accumulated by the fruits during this time was calculated as 0.07 kGy; this is the maximal reported dose after which tissues remain viable and seeds still germinate. Regenerated plants were brought to flowering and fruiting and they set viable seeds. At present, plants of S. stenophylla are the most ancient, viable, multicellular, living organisms. Morphophysiological studies comparing regenerated and extant plants obtained from modern seeds of the same species in the same region revealed that they were distinct phenotypes of S. stenophylla. The first generation cultivated from seeds obtained from regenerated plants progressed through all developmental stages and had the same morphological features as parent plants. The investigation showed high cryoresistance of plant placental tissue in permafrost. This natural cryopreservation of plant tissue over many thousands of years demonstrates a role for permafrost as a depository for an ancient gene pool, i.e., preexisting life, which hypothetically has long since vanished from the earth's surface, a potential source of ancient germplasm, and a laboratory for the study of rates of microevolution.

  13. Efficient Greedy Randomized Adaptive Search Procedure for the Generalized Regenerator Location Problem

    Directory of Open Access Journals (Sweden)

    J.D. Quintana

    2016-12-01

    Full Text Available Over the years, there has been an evolution in the manner in which we perform traditional tasks. Nowadays, almost every simple action that we can think about involves the connection among two or more devices. It is desirable to have a high quality connection among devices, by using electronic or optical signals. Therefore, it is really important to have a reliable connection among terminals in the network. However, the transmission of the signal deteriorates when increasing the distance among devices. There exists a special piece of equipment that we can deploy in a network, called regenerator, which is able to restore the signal transmitted through it, in order to maintain its quality. Deploying a regenerator in a network is generally expensive, so it is important to minimize the number of regenerators used. In this paper we focus on the Generalized Regenerator Location Problem (GRLP, which tries to innd the minimum number of regenerators that must be deployed in a network in order to have a reliable communication without loss of quality. We present a GRASP metaheuristic in order to innd good solutions for the GRLP. The results obtained by the proposal are compared with the best previous methods for this problem. We conduct an extensive computational experience with 60 large and challenging instances, emerging the proposed method as the best performing one. This fact is innally supported by non-parametric statistical tests.

  14. Simulation Based Data Reconciliation for Monitoring Power Plant Efficiency

    International Nuclear Information System (INIS)

    Park, Sang Jun; Heo, Gyun Young

    2010-01-01

    Power plant efficiency is analyzed by using measured values, mass/energy balance principles, and several correlations. Since the measured values can have uncertainty depending on the accuracy of instrumentation, the results of plant efficiency should definitely have uncertainty. The certainty may occur due to either the randomness or the malfunctions of a process. In order to improve the accuracy of efficiency analysis, the data reconciliation (DR) is expected as a good candidate because the mathematical algorithm of the DR is based on the first principles such as mass and energy balance considering the uncertainty of instrumentation. It should be noted that the mass and energy balance model for analyzing power plant efficiency is equivalent to a steady-state simulation of a plant system. Therefore the DR for efficiency analysis necessitates the simulation which can deal with the uncertainty of instrumentation. This study will propose the algorithm of the simulation based DR which is applicable to power plant efficiency monitoring

  15. Somatic embryogenesis and plant regeneration from cell suspension cultures of Cucumis sativus L.

    Science.gov (United States)

    Chee, P P; Tricoli, D M

    1988-06-01

    A procedure for the regeneration of whole cucumber plants (Cucumis sativus L. cv. Poinsett 76) by embryogenesis from cell suspension cultures is described. Embryogenic callus was initiated from the primary leaves of 14-17 day old plants. Suspension cultures of embryogenic cells were grown in liquid Murashige and Skoog basal medium containing 5 uM 2,4,5-trichlorophenoxyacetic acid and 4 uM 6-benzylaminopurine. Suspension cultures were composed of a population of cells that were densely cytoplasmic and potentially embryogenic. Differentiation of embryos was enhanced by washing the suspension culture cells with MS basal medium containing 0.5% activated charcoal and twice with MS basal medium followed by liquid shake cultures in MS basal medium. Sixty to 70 percent of the embryos prewashed with activated charcoal germinated into plantlets with normal morphology. Embryos obtained from suspension cultured cells without prewashing with activated charcoal organized into plantlets with abnormal primary leaves. Morphologically normal plantlets were obtained by excising the shoot tips and transferring them to fresh medium.

  16. An efficient protocol for regeneration and transformation of Symphyotrichum novi-belgii

    DEFF Research Database (Denmark)

    Mørk, Eline Kirk; Henriksen, Karin; Brinch-Pedersen, Henrik

    2012-01-01

    ) fusion gene, and an enhanced green fluorescent protein gene. Pre-cultured hypocotyl explants were transformed in the presence of 100 μM acetosyringone using 90 s sonication plus 10 min vacuum-infiltration. Kanamycin at 20 mg l−1 was used for selecting transformed cells. Adventitious shoots regenerated......II genes in GUS-positive shoots were confirmed by PCR and copy number of the nptII gene in PCR-positive shoots was determined by Southern blotting. Three transgenic plantlets were acclimatized to the greenhouse. This transformation and regeneration system using hypocotyls provides a foundation...

  17. In vitro plant regeneration of two cucumber (Cucumis sativum L. genotypes: Effects of explant types and culture medium

    Directory of Open Access Journals (Sweden)

    Grozeva Stanislava

    2014-01-01

    Full Text Available The effect of different phytohormone concentrations on callusogenesis and organogenesis in two cucumber genotypes were studied. It was established that the rate of plant regeneration depends on genotype, explant type and culture medium. Hypocotyls were found to be more responsive than cotyledons in morphogenesis. In vitro planlet-regenerants have been obtained in hypocotyls explants on culture medium with 1.0 and 2.0 mgL-1 BA for cultivar Gergana and in 1.0 and 3.0 mgL-1K-line 15B. Induction of regeneration in cotyledons were established only in cultivar Gergana on culture medium supplemented with 3.0 mgL-1 BA and in combination of 0.5 mgL-1IAA.

  18. The regeneration of epidermal cells of Saintpaulia leaves as a new plant-tissue system for cellular radiation biology

    International Nuclear Information System (INIS)

    Engels, F.M.; Laan, F.M. van der; Leenhouts, H.P.; Chadwick, K.H.

    1980-01-01

    investigation of the nucleus of epidermal cells of the petioles of Saintpaulia leaves by cytofluorimetry revealed that all cells are in a non-cycling pre DNA synthesis phase. Cultivation of dissected leaves results in a synchronous regeneration process of a defined number of cells. Five days after onset of cultivation the cells reach the first mitosis. The nuclear development during the regeneration process is described. Irradiation of the leaves results in a directly visible inhibition of this regenerating capability which is used to quantify cell survival in a tissue. The data show that the radiation response has a similar shape to that of the survival of single cells in culture. This response can be observed before the first mitosis of the cells and its application as a new plant tissue system for cellular radiation research is discussed. (author)

  19. In vitro plant regeneration of Albizia lebbeck (L. from seed explants

    Directory of Open Access Journals (Sweden)

    S. Perveen

    2013-07-01

    Full Text Available Objectives: An efficient and reproducible regeneration protocol for rapid multiplication of Albizia lebbeck (L. was developed by using intact seed explants.Methods: Murashige and Skoog's (MS medium supplemented with different hormones (BA, Kn, GA3 and TDZ was used for the induction of multiple shoots from the seed explants. Ex-vitro rooting was performed by using pulse treatment method in auxins (IBA and NAA and the complete plantlets were transferred to the field.Results: High frequency direct shoot induction was found in aseptic seed cultures of A. lebbeck on Murashige and Skoog medium supplemented with 5.0 µM TDZ (Thiadiazuron. Seeds were germinated after 7 days of culture and induced maximum 8 shoots from the region adjacent to the apex of the primary shoot of the seedling upto 25 days of incubation. Proliferating shoot cultures with increased shoot length was established by sub-culture of excised sprouting epicotyls on MS medium supplied with reduced concentrations of TDZ. Maximum shoot regeneration frequency (76 % with  highest number of shoots (21 and shoot length (5.1 cm per sprouting epicotyl was observed in the MS medium supplemented with 0.5 µM TDZ after 8 weeks of culture. Different concentrations of Indole-3-butyric acid (IBA and α-naphthalene acetic acid (NAA were tested to determine the optimal conditions for ex-vitro rooting of the microshoots. The best treatment for maximum ex-vitro root induction frequency (81 % was accomplished with IBA (250 µM pulse treatment given to the basal end of the microshoots for 30 min followed by their transfer in plastic cups containing soilrite and eventually established in normal garden soil + soilrite (1:1 with 78 % survival rate. In addition, histological study was undertaken to gain a better understanding of the regenerated shoots from the epicotyl region.Conclusion: The findings will be fruitful in getting a time saving and cost effective protocol for the in vitro propagation of Albizia

  20. Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis dehn and histological study of organogenesis in vitro

    Directory of Open Access Journals (Sweden)

    Roberson Dibax

    2010-04-01

    Full Text Available The present work aimed at regenerating plants of Eucalyptus camaldulensis from the cotyledonary explants and describing the anatomy of the tissues during callogenesis and organogenesis processes, in order to determine the origin of the buds. The cotyledonary leaves of E. camaldulensis were cultured in Murashige and Skoog (MS, WPM and JADS media supplemented with 2.7 µM NAA and 4.44 µM BAP. The best results for bud regeneration were obtained on MS and WPM media (57.5 and 55% of calluses formed buds, respectively. Shoot elongation and rooting (80% were obtained on MS/2 medium (with half-strength salt concentration with 0.2% activated charcoal. Acclimatization was performed in the growth chamber for 48 h and then the plants were transferred to a soil:vermiculite mixture and cultured in a greenhouse. Histological studies revealed that the callogenesis initiated in palisade parenchyma cells and that the adventitious buds were formed from the calluses, indicating indirect organogenesis.Este trabalho teve como objetivo a obtenção de plantas de Eucalyptus camaldulensis a partir de folhas cotiledonares e o estudo da anatomia dos tecidos durante a calogênese e organogênese para determinar a origem das gemas. Folhas cotiledonares foram cultivadas em meios de cultura MS, WPM e JADS suplementados com 2,7 µM de ANA e 4,44 µM de BAP. Os melhores resultados para a regeneração de gemas foram obtidos com os meios MS e WPM. Para o alongamento e enraizamento, o meio de cultura MS/2 contendo 0,2% de carvão ativado apresentou-se eficiente para ambas as etapas. A aclimatização foi realizada mediante a abertura dos frascos na sala de crescimento por 48 horas, seguido da transferência para casa-de-vegetação com nebulização intermitente. Estudos histológicos foram conduzidos e revelaram que a calogênese teve início nas células do parênquima paliçádico e que as gemas adventícias formaram-se a partir dos calos, indicando a organogênese indireta.

  1. An efficient regeneration and rapid micropropagation protocol for Almond using dormant axillary buds as explants.

    Science.gov (United States)

    Choudhary, Ravish; Chaudhury, Rekha; Malik, Surendra Kumar; Sharma, Kailash Chandra

    2015-07-01

    An efficient in vitro protocol was standardized for Almond (Prunus dulcis) propagation using dormant axillary buds as explants. Explants were cultured on Murashige and Skoog (MS) and woody plant medium (WPM) supplemented with different concentration/combination(s) of phytohormones. MS basal medium showed lowest shoot induction and took longest duration for shoot initiation. Multiple shoots were induced in MS medium supplemented with the combination of BAP (0.5 mgL(-1)). Cultures showed poor response for rooting in all combinations of plant growth regulators (PGRs) and took 90 days for initiation. Rooting was higher in half strength of MS than in full-strength. The highest root induction (33.33%) was recorded in half MS medium supplemented with 0.1 mgL(-1) IBA (indole-3-butyric acid) followed by full strength of MS medium (20%) supplemented with IBA (0.1 mgL(-1)). α-Naphthalene acetic acid (NAA) was less effective for rooting than IBA. The highest root induction (25%) was found in half strength of MS medium supplemented with 0.1 mgL(-1) NAA followed by full strength of MS medium (20%). The protocol developed would be of use in mass propagation of almond and also support in vitro conservation.

  2. To the choice of the regeneration system of the K-1000-68/1500 turbine plant for the NPP with a vertical-type steam generator

    International Nuclear Information System (INIS)

    Kuznetsov, N.M.; Piskarev, A.A.; Grinman, M.I.; Kruglikov, P.A.

    1985-01-01

    Several variants of the heat regeneration system for the NPP with WWER-1000 type reactors using vertical steam generator (SG) generating saturated steam at 7.2 MPa pressure and 200 deg C feed water temperature at the SG inlet are considered. The results of comparison of variants in water and steam circuits of turbine plants are greatly influenced by integral economy account, i.e. efficiency indexes account under variable conditions of power unit operation. From variants of water and steam circuits of the K-1000-68/1500 turbine plant considered preference is given to the variant with four low pressure heaters with increased up to 1.25 MPa pressure in a deacrator without high pressure heater with pumping intermediate steam superheater condensate into feedwater circuit

  3. Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers.

    Science.gov (United States)

    Seguí-Simarro, José M; Nuez, Fernando

    2007-01-01

    In this work, some of the different in vitro developmental pathways into which tomato microspores or microsporocytes can be deviated experimentally were explored. The two principal ones are direct embryogenesis from isolated microspores and callus formation from meiocyte-containing anthers. By means of light and electron microscopy, the process of early embryogenesis from isolated microspores and the disruption of normal meiotic development and change of developmental fate towards callus proliferation, morphogenesis, and plant regeneration have been shown. From microspores isolated at the vacuolate stage, embryos can be directly induced, thus avoiding non-androgenic products. In contrast, several different morphogenic events can be triggered in cultures of microsporocyte-containing anthers under adequate conditions, including indirect embryogenesis, adventitious organogenesis, and plant regeneration. Both callus and regenerated plants may be haploid, diploid, and mostly mixoploid. The results demonstrate that both gametophytic and sporophytic calli occur in cultured tomato anthers, and point to an in vitro-induced disturbance of cytokinesis and subsequent fusion of daughter nuclei as a putative cause for mixoploidy and genome doubling during both tetrad compartmentalization and callus proliferation. The potential implications of the different alternative pathways are discussed in the context of their application to the production of doubled-haploid plants in tomato, which is still very poorly developed.

  4. Evaluation of drug uptake and deactivation in plant: Fate of albendazole in ribwort plantain (Plantago laceolata) cells and regenerants.

    Science.gov (United States)

    Stuchlíková Raisová, Lucie; Podlipná, Radka; Szotáková, Barbora; Syslová, Eliška; Skálová, Lenka

    2017-07-01

    Albendazole (ABZ) is a benzimidazole anthelmintic widely used especially in veterinary medicine. Along with other drugs, anthelmintics have become one of a new class of micro-pollutants that disturb the environment but the information about their fate in plants remains limited. The present study was designed to test the uptake and biotransformation of ABZ in the ribwort plantain (Plantago lancelota), a common meadow plant, which can come into contact with this anthelmintic through the excrements of treated animals in pastures. Two model systems were used and compared: cell suspensions and whole plant regenerants. In addition, time-dependent changes in occurrence of ABZ and its metabolites in roots, basal parts of the leaves and tops of the leaves were followed up. Ultrahigh-performance liquid chromatography coupled with high mass accuracy tandem mass spectrometry (UHPLC-MS/MS) led to the identification of 18 metabolites of ABZ formed in the ribwort. In both model systems, the same types of ABZ biotransformation reactions were found, but the spectrum and abundance of the ABZ metabolites detected in cell suspensions and regenerants differed significantly. Cell suspensions seem to be suitable only for qualitative estimations of drug biotransformation reactions while regenerants were shown to represent an adequate model for the qualitative as well as quantitative evaluation of drug uptake and metabolism in plants. Copyright © 2017. Published by Elsevier Inc.

  5. [Induction and in vitro culture of hairy roots of Dianthus caryophyllus and its plant regeneration].

    Science.gov (United States)

    Shi, Heping; Zhu, Yuanfeng; Wang, Bei; Sun, Jiangbing; Huang, Shengqin

    2014-11-01

    To use Agrobacterium rhizogenes-induced hairy roots to create new germplasm of Dianthus caryophyllus, we transformed D. caryophyllus with A. rhizogenes by leaf disc for plant regeneration from hairy roots. The white hairy roots could be induced from the basal surface of leaf explants of D. caryophyllus 12 days after inoculation with A. rhizogenes ATCC15834. The percentage of the rooting leaf explants was about 90% 21 days after inoculation. The hairy roots could grow rapidly and autonomously in liquid or solid phytohormone-free MS medium. The transformation was confirmed by PCR amplification of rol gene of Ri plasmid and silica gel thin-layer chromatography of opines from D. caryophyllus hairy roots. Hairy roots could form light green callus after cultured on MS+6-BA 1.0-3.0 mg/L + NAA 0.1-0.2 mg/L for 15 days. The optimum medium for adventitious shoots formation was MS + 6-BA 2.0 mg/L + NAA 0.02 mg/L, where the rate of adventitious shoot induction was 100% after cultured for 6 weeks. The mean number of adventitious shoot per callus was 30-40. The adventitious shoots can form roots when cultured on phytohormone-free 1/2 MS or 1/2 MS +0.5 mg/L NAA for 10 days. When the rooted plantlets transplanted in the substrate mixed with perlite sand and peat (volume ratio of 1:2), the survival rate was above 95%.

  6. Role of Demyelination Efficiency within Acellular Nerve Scaffolds during Nerve Regeneration across Peripheral Defects

    Directory of Open Access Journals (Sweden)

    Meiqin Cai

    2017-01-01

    Full Text Available Hudson’s optimized chemical processing method is the most commonly used chemical method to prepare acellular nerve scaffolds for the reconstruction of large peripheral nerve defects. However, residual myelin attached to the basal laminar tube has been observed in acellular nerve scaffolds prepared using Hudson’s method. Here, we describe a novel method of producing acellular nerve scaffolds that eliminates residual myelin more effectively than Hudson’s method through the use of various detergent combinations of sulfobetaine-10, sulfobetaine-16, Triton X-200, sodium deoxycholate, and peracetic acid. In addition, the efficacy of this new scaffold in repairing a 1.5 cm defect in the sciatic nerve of rats was examined. The modified method produced a higher degree of demyelination than Hudson’s method, resulting in a minor host immune response in vivo and providing an improved environment for nerve regeneration and, consequently, better functional recovery. A morphological study showed that the number of regenerated axons in the modified group and Hudson group did not differ. However, the autograft and modified groups were more similar in myelin sheath regeneration than the autograft and Hudson groups. These results suggest that the modified method for producing a demyelinated acellular scaffold may aid functional recovery in general after nerve defects.

  7. Factors affecting in vitro plant regeneration of the critically endangered Mediterranean knapweed ( Centaurea tchihatcheffii Fisch et. Mey)

    Science.gov (United States)

    Ozel, Cigdem Alev; Khawar, Khalid Mahmood; Mirici, Semra; Ozcan, Sebahattin; Arslan, Orhan

    2006-10-01

    Habitat destruction has resulted in the extinction of many plant species from the earth, and many more face extinction. Likely, the annual endemic Mediterranean knapweed ( Centaurea tchihatcheffii) growing in the Golbasi district of Ankara, Turkey is facing extinction and needs urgent conservation. Plant tissue culture, a potentially useful technique for ex situ multiplication, was used for the restoration of this ill-fated plant through seed germination, micropropagation from stem nodes, and adventitious shoot regeneration from immature zygotic embryos. The seeds were highly dormant and very difficult to germinate. No results were obtained from the micropropagation of stem nodes. However, immature zygotic embryos showed the highest adventitious shoot regeneration on Murashige and Skoog (MS) medium, containing 1 mg l-1 kinetin and 0.25 mg l-1 NAA. Regenerated shoots were best rooted on MS medium containing 1 mg l-1 IBA and transferred to the greenhouse for flowering and seed set. As such, the present work is the first record of in vitro propagation of critically endangered C. tchihatcheffii, using immature zygotic embryos, and is a step forward towards conservation of this indigenous species.

  8. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  9. Efficient transformation and regeneration of transgenic cassava using the neomycin phosphotransferase gene as aminoglycoside resistance marker gene.

    Science.gov (United States)

    Niklaus, Michael; Gruissem, Wilhelm; Vanderschuren, Hervé

    2011-01-01

    Cassava is one of the most important crops in the tropics. Its industrial use for starch and biofuel production is also increasing its importance for agricultural production in tropical countries. In the last decade cassava biotechnology has emerged as a valuable alternative to the breeding constraints of this highly heterozygous crop for improved trait development of cassava germplasm. Cassava transformation remains difficult and time-consuming because of limitations in selecting transgenic tissues and regeneration of transgenic plantlets. We have recently reported an efficient and robust cassava transformation protocol using the hygromycin phosphotransferase II (hptII) gene as selection marker and the aminoglycoside hygromycin at optimal concentrations to maximize the regeneration of transgenic plantlets. In the present work, we expanded the transformation protocol to the use of the neomycin phosphotransferase II (nptII) gene as selection marker. Several aminoglycosides compatible with the use of nptII were tested and optimal concentrations for cassava transformation were determined. Given its efficiency equivalent to hptII as selection marker with the described protocol, the use of nptII opens new possibilities to engineer transgenic cassava lines with multiple T-DNA insertions and to produce transgenic cassava with a resistance marker gene that is already deregulated in several commercial transgenic crops.

  10. Roots, plant production and nutrient use efficiency

    NARCIS (Netherlands)

    Willigen, de P.; Noordwijk, van M.

    1987-01-01

    The role of roots in obtaining high crop production levels as well as a high nutrient use efficiency is discussed. Mathematical models of diffusion and massflow of solutes towards roots are developed for a constant daily uptake requirement. Analytical solutions are given for simple and more

  11. Energy efficient control of a refrigeration plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2009-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. The new idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed and used in a backstepping design...... and the methods are evaluated with respect to energy efficiency....

  12. Review of 'plant available water' aspects of water use efficiency ...

    African Journals Online (AJOL)

    Review of 'plant available water' aspects of water use efficiency under ... model relating the water supply from a layered soil profile to water demand; the ... and management strategies to combat excessive water losses by deep drainage.

  13. Wastewater minimization in multipurpose batch plants with a regeneration unit: multiple contaminants

    CSIR Research Space (South Africa)

    Adekola, O

    2011-12-01

    Full Text Available Wastewater minimization can be achieved by employing water reuse opportunities. This paper presents a methodology to address the problem of wastewater minimization by extending the concept of water reuse to include a wastewater regenerator...

  14. System for processing ion exchange resin regeneration waste liquid in atomic power plant

    International Nuclear Information System (INIS)

    Onaka, Noriyuki; Tanno, Kazuo; Shoji, Saburo.

    1976-01-01

    Object: To reduce the quantity of radioactive waste to be solidified by recovering and repeatedly using sulfuric acid and sodium hydroxide which constitute the ion exchange resin regeneration waste liquid. Structure: Cation exchange resin regeneration waste liquid is supplied to an anion exchange film electrolytic dialyzer for recovering sulfuric acid through separation from impurity cations, while at the same time anion exchange resin regeneration waste liquid is supplied to a cation exchange film electrolytic dialyzer for recovering sodium hydroxide through separation from impurity anions. The sulfuric acid and sodium hydroxide thus recovered are condensed by a thermal condenser and then, after density adjustment, repeatedly used for the regeneration of the ion exchange resin. (Aizawa, K.)

  15. Study on VDI-2048 for Plant Efficiency Calculation

    International Nuclear Information System (INIS)

    Lee, Hanseol; Heo, Gyunyoung

    2014-01-01

    It is a representative example when main steam mass flow of a steam generator is measured lower than main feedwater mass flow of outlet, or when efficiency of low pressure turbine is analyzed excessively low or exceeds 100 percent. Therefore, we need to obtain measured data minimizing uncertainty to calculate thermal efficiency as exactly as possible. In calculating the efficiency of an Nuclear Power Plant(NPP), measurement uncertainty is the most difficult to be solved technically and data reconciliation methodology is one method of ensuring to minimize uncertainty. In this paper, the case study on previous nuclear power plants was carried out by using redundancy of measured data from measuring instrument for plant operation, so as to calculate nuclear power plant efficiency accurately. As explain above, we performed the case study on data reconciliation methodology by using measurement redundancy and physical redundancy. The former comes up because of installing multiple measuring instruments for plant operation, and the latter is acquired based on the physical association like the first law of thermodynamics (the law of conservation of mass and energy). Through this case study, we got the reconciled data, which satisfies the constraint and minimizes data uncertainty measured in the nuclear power plant secondary system at the same time. The expected effects from data reconciliation methodology provided in VDI-2048, are considered totally four. First, this method can contribute to monitoring on-line efficiency in the operating nuclear power plant. Second, it can also improve the reliability of calculated results, minimizing the measurement uncertainty

  16. Establishment of an Efficient and Reproducible Regeneration System for Potato Cultivars Grown in Pakistan

    International Nuclear Information System (INIS)

    Iqbal, A.; Rizwan, A.; Mukhtar, Z.; Mansoor, S.; Asad, S.; Khalid, Z. M.

    2016-01-01

    The present study was carried out to assess the effect of growth regulators in three different combinations on mass propagation of currently grown three potato cultivars cv. Desiree, Kuroda and Cardinal. Varietal response on In vitro regeneration under different hormonal combinations. For callus induction, internodes of potato cultivars were cultured on modified Murashige and Skoog (MS) medium, added with different growth hormonal combinations. Callusing frequency for all these treatments and cultivars were recorded and in callus induction medium (CIM1) explants showed significantly higher callus formation as compared to two other combinations. For shoot induction, calli were cultured on Murashige and Skoog (MS) modified medium, supplemented with different hormonal combinations. Shoot induction medium (SIM3) gave best shoot induction frequency as compared to other media combinations. On the same media, an average number of shoots per explant were obtained for cultivar Desiree which is significantly different from the other two media combinations. Overall, the In vitro regeneration and multiplication potential was highest in the variety Cardinal followed by Kuroda and Desiree. The interaction between different hormonal combinations and varietal response for all the parameters showed significant differences. (author)

  17. Effects of invasive alien kahili ginger (Hedychium gardnerianum) on native plant species regeneration in a Hawaiian rainforest

    Science.gov (United States)

    Minden, V.; Jacobi, J.D.; Porembski, S.; Boehmer, H.J.

    2010-01-01

    Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non-native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m. a.s.l.; precipitation approximately 2770mm yr-1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum-domimted herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using nonparametric H-tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger-dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure. ?? 2009 International Association for Vegetation Science.

  18. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis.

    Science.gov (United States)

    Masle, Josette; Gilmore, Scott R; Farquhar, Graham D

    2005-08-11

    Assimilation of carbon by plants incurs water costs. In the many parts of the world where water is in short supply, plant transpiration efficiency, the ratio of carbon fixation to water loss, is critical to plant survival, crop yield and vegetation dynamics. When challenged by variations in their environment, plants often seem to coordinate photosynthesis and transpiration, but significant genetic variation in transpiration efficiency has been identified both between and within species. This has allowed plant breeders to develop effective selection programmes for the improved transpiration efficiency of crops, after it was demonstrated that carbon isotopic discrimination, Delta, of plant matter was a reliable and sensitive marker negatively related to variation in transpiration efficiency. However, little is known of the genetic controls of transpiration efficiency. Here we report the isolation of a gene that regulates transpiration efficiency, ERECTA. We show that ERECTA, a putative leucine-rich repeat receptor-like kinase (LRR-RLK) known for its effects on inflorescence development, is a major contributor to a locus for Delta on Arabidopsis chromosome 2. Mechanisms include, but are not limited to, effects on stomatal density, epidermal cell expansion, mesophyll cell proliferation and cell-cell contact.

  19. Brewery cogeneration plant gives 82 per cent efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, P

    1982-04-01

    A combined heat and power diesel plant for a brewery in Ireland is achieving a genuine 82% thermal efficiency and payback well within its initial three-year projection. The plant, developed as a joint program of work between engineers from Harp Ireland Ltd and the British diesel engine manufacturers, Mirrlees Blackstone, cost less than $1 million. 5 figures, 3 tables.

  20. Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica

    NARCIS (Netherlands)

    van den Brink, J.; van Muiswinkel, G.C.; Theelen, B.; Hinz, S.W.; de Vries, R.P.

    2013-01-01

    Rapid and efficient enzymatic degradation of plant biomass into fermentable sugars is a major challenge for the sustainable production of biochemicals and biofuels. Enzymes that are more thermostable (up to 70 degrees C) use shorter reaction times for the complete saccharification of plant

  1. Improvement of operational efficiency based on fast startup plant concepts

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Harald; Meinecke, Gero; Ohresser, Sylvia; Pickard, Andreas

    2010-09-15

    One of the major global challenges of the present time is the reduction of CO2 emissions. Provisions for integration of a CO2 capture plant are already required today in new power plant construction projects in order to enable current plants to also benefit from the possibilities of carbon capture systems to be developed in the future. These provisions for integration should account for the fact that the scrubbing processes are still in the optimization phase. Requisite process parameters may still change in the future. In the development of a plant interface, the paper describes a concept developed by Siemens which ensures maximum flexibility with simultaneous optimization of the plant for the capture process. Emphasis was placed on the following points in the development of this interface and the associated connection concepts: Maximum plant efficiency before and after modification; Maximum flexibility with regard to future process parameters; Optimization of customer investment cash flow; and, Applicability also to existing plants. According to the paper, Siemens can offer a concept which enables future conversion in accordance with the specified criteria. This concept requires no compromises with regard to plant efficiency in process optimization for either current power plant operation without carbon capture or for future operation with carbon capture. The concept also enables retrofitting of existing plants which are not yet capture-ready. However, retrofitting of power plants which are not prepared for operation with carbon capture is considerably more elaborate in most cases, as corridors must frequently still be cleared for the connecting piping.

  2. Efficiency in Midwest US corn ethanol plants: A plant survey

    International Nuclear Information System (INIS)

    Perrin, Richard K.; Fretes, Nickolas F.; Sesmero, Juan Pablo

    2009-01-01

    Continuation of policy support for the US corn ethanol industry is being debated due to doubts about the greenhouse gas effects of the industry and the effects of the industry on food prices. Yet there is no publicly available data on the economic and technical performance of the current generation of plants, which constitute the overwhelming majority of the industry. This study helps to fill that gap. Seven recently constructed ethanol plants in seven Midwest US states provided details on input requirements and operating costs during 2006 and 2007. Results show that technical performance is substantially better than current estimates available in the literature. Average net operating returns exceeded capital costs during the survey period, but price changes by mid-2008 reduced these margins to near zero. While the economic performance of the industry is currently viable, this study demonstrates that it can be threatened by current price trends, and certainly would be in the absence of current subsidies

  3. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  4. Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants.

    Science.gov (United States)

    Acosta-Motos, José R; Alvarez, Sara; Barba-Espín, Gregorio; Hernández, José A; Sánchez-Blanco, María J

    2014-12-01

    The use of reclaimed water (RW) constitutes a valuable strategy for the efficient management of water and nutrients in landscaping. However, RW may contain levels of toxic ions, affecting plant production or quality, a very important aspect for ornamental plants. The present paper evaluates the effect of different quality RWs on physiological and biochemical parameters and the recovery capacity in Myrtus communis L. plants. M. communis plants were submitted to 3 irrigation treatments with RW from different sources (22 weeks): RW1 (1.7 dS m(-1)), RW2 (4.0 dS m(-1)) and RW3 (8.0 dS m(-1)) and one control (C, 0.8 dS m(-1)). During a recovery period of 11 weeks, all plants were irrigated with the control water. The RW treatments did not negatively affect plant growth, while RW2 even led to an increase in biomass. After recovery,only plants irrigated with RW3 showed some negative effects on growth, which was related to a decrease in the net photosynthesis rate, higher Na accumulation and a reduction in K levels. An increase in salinity was accompanied by decreases in leaf water potential, relative water content and gas exchange parameters, and increases in Na and Cl uptake. Plants accumulated Na in roots and restricted its translocation to the aerial part. The highest salinity levels produced oxidative stress, as seen from the rise in electrolyte leakage and lipid peroxidation. The use of regenerated water together with carefully managed drainage practices, which avoid the accumulation of salt by the substrate, will provide economic and environmental benefits.

  5. High efficiency USC power plant - present status and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. [Faelleskemikerne I/S Fynsvaerket (Denmark); Hald, J. [Elsam/Elkraft/TU Denmark (Denmark)

    1998-12-31

    Increasing demand for energy production with low impact on the environment and minimised fuel consumption can be met with high efficient coal fired power plants with advanced steam parameters. An important key to this improvement is the development of high temperature materials with optimised mechanical strength. Based on the results of more than ten years of development a coal fired power plant with an efficiency above 50 % can now be realised. Future developments focus on materials which enable an efficiency of 52-55 %. (orig.) 25 refs.

  6. High efficiency USC power plant - present status and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R [Faelleskemikerne I/S Fynsvaerket (Denmark); Hald, J [Elsam/Elkraft/TU Denmark (Denmark)

    1999-12-31

    Increasing demand for energy production with low impact on the environment and minimised fuel consumption can be met with high efficient coal fired power plants with advanced steam parameters. An important key to this improvement is the development of high temperature materials with optimised mechanical strength. Based on the results of more than ten years of development a coal fired power plant with an efficiency above 50 % can now be realised. Future developments focus on materials which enable an efficiency of 52-55 %. (orig.) 25 refs.

  7. Efficiency assessment and benchmarking of thermal power plants in India

    International Nuclear Information System (INIS)

    Shrivastava, Naveen; Sharma, Seema; Chauhan, Kavita

    2012-01-01

    Per capita consumption of electricity in India is many folds lesser than Canada, USA, Australia, Japan, Chaina and world average. Even though, total energy shortage and peaking shortage were recorded as 11.2% and 11.85%, respectively, in 2008–09 reflecting non-availability of sufficient supply of electricity. Performance improvement of very small amount can lead to large contribution in financial terms, which can be utilized for capacity addition to reduce demand supply gap. Coal fired thermal power plants are main sources of electricity in India. In this paper, relative technical efficiency of 60 coal fired power plants has been evaluated and compared using CCR and BCC models of data envelopment analysis. Target benchmark of input variables has also been evaluated. Performance comparison includes small versus medium versus large power plants and also state owned versus central owned versus private owned. Result indicates poor performance of few power plants due to over use of input resources. Finding reveals that efficiency of small power plants is lower in comparison to medium and large category and also performance of state owned power plants is comparatively lower than central and privately owned. Study also suggests different measures to improve technical efficiency of the plants. - Highlights: ► This study evaluates relative technical efficiency of 60 coal fired thermal power plants of India. ► Input oriented CCR and BCC models of data envelopment analysis have been used. ► Small, medium and large power plants have been compared. ► Study will help investor while setting up new power projects. ► Power plants of different ownerships have also been compared.

  8. Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis Regeneração de plantas de Eucalyptus camaldulensis a partir das explantes cotiledonares

    Directory of Open Access Journals (Sweden)

    Roberson Dibax

    2005-08-01

    Full Text Available Breeding methods based on genetic transformation techniques need to be implemented for Eucalyptus camaldulensis to shorten the long breeding cycles and avoid manipulation of adult trees; that requires the development of plant regeneration protocols enabling development of plants from transformed tissues. The present work aimed to optimise the regeneration process already established for the species. Cotyledonary leaves of E. camaldulensis were cultured in MS medium supplemented with naphthaleneacetic acid (NAA and 6-benzylaminopurine (BAP combinations. The most efficient treatment for bud indirect regeneration (2.7 µmol L-1 NAA and 4.44 µmol L-1 BAP was used for further experiments. When explants were kept in the dark during the first 30 days, the percentage of explants forming calluses increased and explant necrosis was reduced in comparison with light-cultured explants. Mineral medium modifications were compared and half-strength MS mineral medium turned out to be as efficient as full-strength medium, producing 54% and 47% of explants with buds, respectively. For shoot elongation, MS medium with half-strength nitrate and ammonium salts, and 0.2% activated charcoal yielded rooted shoots 1 to 8 cm high after one month. The procedure is an efficient protocol for E. camadulensis plant regeneration, reducing the stages necessary for the obtention of complete plants.A implementação, para espécies florestais, de técnicas de melhoramento baseadas em métodos de transformação genética, permitirá reduzir os longos ciclos de melhoramento e evitar a manipulação de árvores adultas. Isto implica dispor de um protocolo de regeneração que permita o desenvolvimento de plantas a partir de tecidos transformados. Este trabalho teve como objetivo otimizar este protocolo de regeneração para Eucalyptus camaldulensis. Folhas cotiledonares foram cultivadas em meio de cultura MS suplementado com combinações de ácido naftalenoacético (ANA e 6

  9. Insights into Resistance to Fe Deficiency Stress from a Comparative Study of In Vitro-Selected Novel Fe-Efficient and Fe-Inefficient Potato Plants

    Directory of Open Access Journals (Sweden)

    Georgina A. Boamponsem

    2017-09-01

    Full Text Available Iron (Fe deficiency induces chlorosis (IDC in plants and can result in reduced plant productivity. Therefore, development of Fe-efficient plants is of great interest. To gain a better understanding of the physiology of Fe-efficient plants, putative novel plant variants were regenerated from potato (Solanum tubersosum L. var. ‘Iwa’ callus cultures selected under Fe deficient or low Fe supply (0–5 μM Fe. Based on visual chlorosis rating (VCR, 23% of callus-derived regenerants were classified as Fe-efficient (EF and 77% as Fe-inefficient (IFN plant lines when they were grown under Fe deficiency conditions. Stem height was found to be highly correlated with internodal distance, leaf and root lengths in the EF plant lines grown under Fe deficiency conditions. In addition, compared to the IFN plant lines and control parental biotype, the EF plants including the lines named A1, B2, and B9, exhibited enhanced formation of lateral roots and root hairs as well as increased expression of ferritin (fer3 in the leaf and iron-regulated transporter (irt1 in the root. These morphological adaptations and changes in expression the fer3 and irt1 genes of the selected EF potato lines suggest that they are associated with resistance to low Fe supply stress.

  10. Efficient micropropagation and assessment of genetic fidelity of Boerhaavia diffusa L- High trade medicinal plant.

    Science.gov (United States)

    Patil, Kapil S; Bhalsing, Sanjivani R

    2015-07-01

    Boerhaavia diffusa L is a medicinal herb with immense pharmaceutical significance. The plant is used by many herbalist, Ayurvedic and pharmaceutical industries for production biopharmaceuticals. It is among the 46 medicinal plant species in high trade sourced mainly from wastelands and generally found in temperate regions of the world. However, the commercial bulk of this plant shows genetic variations which are the main constraint to use this plant as medicinal ingredient and to obtain high value products of pharmaceutical interest from this plant. In this study, we have regenerated the plant of Boerhaavia diffusa L through nodal explants and evaluated genetic fidelity of the micropropagated plants of Boerhaavia diffusa L with the help of random amplified polymorphic DNA (RAPD) markers. The results obtained using RAPD showed monomorphic banding pattern revealing genetic stability among the mother plant and in vitro regenerated plants of Boerhaavia diffusa L.

  11. Which stem parts of Slender speedwell (Veronica filiformis) are the most successful in plant regeneration?

    Czech Academy of Sciences Publication Activity Database

    Šerá, Božena

    2012-01-01

    Roč. 67, č. 1 (2012), s. 110-115 ISSN 0006-3088 R&D Projects: GA MŠk OC10032 Institutional research plan: CEZ:AV0Z60870520 Keywords : clonal * invasive species * regeneration * shoot * stem * terminal * vegetative reproduciton Subject RIV: EF - Botanics Impact factor: 0.506, year: 2012

  12. Regeneration and growth rates of allofragments in four common stream plants

    DEFF Research Database (Denmark)

    Riis, Tenna; Madsen, Tom Vindbæk; Sennels, R. S. H.

    2009-01-01

    perfoliatus L. and Ranunculus baudotii x pseudofluitans. The objectives of this study were to determine (1) if shoots with an apical tip have higher regeneration (growth of new shoots and rhizomes from allofragments) and colonisation (root attachment in sediment) abilities and higher relative growth rates...

  13. Limited native plant regeneration in novel, exotic-dominated forests on Hawaii

    Science.gov (United States)

    Joseph Mascaro; Kristen K. Becklund; R. Flint Hughes; Stefan A. Schnitzer

    2008-01-01

    Ecological invasions are amajor driver of global environmental change. When invasions are frequent and prolonged, exotic species can become dominant and ultimately create novel ecosystem types. These ecosystems are now widespread globally. Recent evidence from Puerto Rico suggests that exoticdominated forests can provide suitable regeneration sites for native species...

  14. Evaluation of Signal Regeneration Impact on the Power Efficiency of Long-Haul DWDM Systems

    Directory of Open Access Journals (Sweden)

    Pavlovs D.

    2017-10-01

    Full Text Available Due to potential economic benefits and expected environmental impact, the power consumption issue in wired networks has become a major challenge. Furthermore, continuously increasing global Internet traffic demands high spectral efficiency values. As a result, the relationship between spectral efficiency and energy consumption of telecommunication networks has become a popular topic of academic research over the past years, where a critical parameter is power efficiency. The present research contains calculation results that can be used by optical network designers and operators as guidance for developing more power efficient communication networks if the planned system falls within the scope of this paper. The research results are presented as average aggregated traffic curves that provide more flexible data for the systems with different spectrum availability. Further investigations could be needed in order to evaluate the parameters under consideration taking into account particular spectral parameters, e.g., the entire C-band.

  15. Evaluation of Signal Regeneration Impact on the Power Efficiency of Long-Haul DWDM Systems

    Science.gov (United States)

    Pavlovs, D.; Bobrovs, V.; Parfjonovs, M.; Alsevska, A.; Ivanovs, G.

    2017-10-01

    Due to potential economic benefits and expected environmental impact, the power consumption issue in wired networks has become a major challenge. Furthermore, continuously increasing global Internet traffic demands high spectral efficiency values. As a result, the relationship between spectral efficiency and energy consumption of telecommunication networks has become a popular topic of academic research over the past years, where a critical parameter is power efficiency. The present research contains calculation results that can be used by optical network designers and operators as guidance for developing more power efficient communication networks if the planned system falls within the scope of this paper. The research results are presented as average aggregated traffic curves that provide more flexible data for the systems with different spectrum availability. Further investigations could be needed in order to evaluate the parameters under consideration taking into account particular spectral parameters, e.g., the entire C-band.

  16. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  17. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Chen, Ziqian; Furbo, Simon

    2009-01-01

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  18. Enhanced regeneration in explants of tomato (Lycopersicon ...

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... The development of a cost effective and efficient protocol for mass propagation of high quality tomato seedlings via tissue culture could help to reduce the price per seedling. A good in vitro plant regeneration system may also assist in further improvement of the commercially important cultivars for disease.

  19. Regenerating degraded soils and increasing water use efficiency on vegetable farms in Uruguay through ecological intensification

    NARCIS (Netherlands)

    Alliaume, F.

    2016-01-01

    This thesis investigated alternative soil management strategies for vegetable crop systems and their hypothesized effects on increasing systems resilience by sequestering soil carbon, increasing the efficiency of water use, and reducing erosion. The goal was to contribute knowledge on and tools

  20. Genotype, explant, medium, light and radiation effects on the in vitro plant regeneration in alfalfa (Medicago Sativa L.)

    International Nuclear Information System (INIS)

    El-Fiki, A.A.; Abdel-Hameed, A.A.M.; Sayed, A.I.H.

    2005-01-01

    The relative importance of genotype, explants, radiation, medium and light and their interactions for in vitro plant regeneration via somatic embryogenesis in alfalfa (Medicago sativa L.) has been studied. Shoot and leaf explants of two commercially grown Egyptian cultivars, Al-Wadi Al-Gadid and Siwa Tarkibi, were used in the study. The effect of gamma radiation doses 40, 80, 120 and 160 Gy were negative on plant regeneration, in spite of increase with some treatments. The best results of plant regeneration were obtained with dose 40 Gy with control light regime (16 h) on MS + 0.5 mg NAA + 1.5 mg BAP in both shoot and leaf explants of cv. Al-Wadi. The shoot explant of cv. Siwa was sensitive for gamma radiation dose 40 Gy while affirmative effect was obtained in leaf explant on MS + 1.0 mg NAA + 0.5 mg BAP with control light regime. However, dose 80 Gy showed the best results on MS + 0.5 mg NAA + 0.5 mg BAP in shoot and leaf explants of both cultivars, with control light regime in shoot explant and dark/light (DL) and dark/dark (DD) in leaf explant of cv. Al-Wadi, while with light/dark (LD) in shoot explant and control light regime in leaf explant of cv. Siwa. On the other hand, the highest plant regeneration ratio observed with dose 120 Gy were on 1.5 mg NAA + 0.5 mg BAP with control light regime in shoot and leaf explants of cv. Al-Wadi but on 0.5 mg NAA + 0.5 mg BAP with control and dark/light (DL) light regime in shoot and leaf explants of cv. Siwa. Whereas, the radiation dose 160 Gy showed severe effect on plant regeneration in both cultivars but highest percentage was observed on MS + 0.5 mg NAA + 0.5 mg BAP with dark/light (DL) in shoot explant, MS + 0.5 mg NAA + 1.5 mg BAP with control light regime in leaf explant of cv. Al-Wadi, MS + 0.5 mg NAA + 1.5 mg BAP in shoot explant and MS + 0.5 mg NAA + 0.5 mg BAP in leaf explant with dark/light (DL) in cv. Siwa. However, the effects of the same doses on callus growth showed that the highest callus weight was

  1. [Clonal micropropagation of a rare species Hedysarum theinum Krasnob (Fabaceae) and assessment of the genetic stability of regenerated plants using ISSR markers].

    Science.gov (United States)

    Erst, A A; Svyagina, N S; Novikova, T I; Dorogina, O V

    2015-02-01

    In the present study, a protocol was developed for the in vitro propagation of a rare medicinal plant, Hedysarum theinum (tea sweetvetch), from axillary buds, and identification of the regenerants was performed with the use of ISSR markers. It was demonstrated that Gamborg and Eveleigh medium supplemented with 5 μM 6-benzylaminopurine was the best for H. theinum for initial multiplication. On the other hand, half-strength Murashige and Skoog (MS) basal medium supplemented with 7 μM α-naphthaleneacetic acid proved to be the best for explant rooting. Molecular genetic analysis of the H. theinum mother plants and the obtained regenerants was performed with six ISSR markers. Depending on the primer, four to ten amplified fragments with sizes ranging from 250 to 3000 bp were identified. Our results confirmed the genetic stability of regenerants obtained in five passages and their identity to the mother plant.

  2. Field evaluation of regenerated plants by somatic embryogenesis from shoots apexes of axillary buds in ´Navolean’ (Musa spp., AAB.

    Directory of Open Access Journals (Sweden)

    Jorge López

    2005-04-01

    Full Text Available The use of shoots apexes from axilary buds for callus induction with embryogenic structures in plantain ‘Navolean’ (Group AAB permitted to develop a plant regeneration method through out somatic embryogenesis. In order to know the phenotypic variants that may be produced with the previously mentioned method , 1000 plants were planted in field conditions in comparison to those coming from somatic embryos obtained from multibuds as initial explants and organogenesis-derived plants (shoot tipsand conventionally derived plants (corms, during two growing cycles. The main morphological characters and yield components were evaluated. The total frequency of somaclonal variation during the first growing cycle in plants coming from somatic embryos obtained from shoots apexes from axilary buds as initial explants were 1.1%, and 8,6% in regenerated plants from somatic embryos obtained from multi-buds as initial explants. Later, in this same growing cycle, plants regenerated from somatic embryos (both sources showed a similar performance between them and they were significantly superior in all evaluated variants in comparison to corm-derived plants. In the second growing cycle, significant differences were not observed in yield components of suckers from evaluated plants, in spite of the propagation method used. With regard to somaclonal variation, the best performance was obtained with shoots apexes from axilary buds as explants. Finally, the feasibility of using the new method was shown. Key words: embryogenic cell suspensions, somaclonal variation

  3. In vitro plant regeneration from leaf explants of Solanum pimpinellifolium L.

    Directory of Open Access Journals (Sweden)

    Shirley Valderrama-Alfaro

    2011-01-01

    Full Text Available Tomato is a species of agricultural importance. Besides, it is a source of vitamins, minerals and antioxidant compounds. Therefore it is essential to obtain varieties resistant to diseases. Solanum pimpinellifolium L. ‘Tomatillo wild’, one of the wild relatives of tomato, is considered multipurpose reservoir of genes. This characteristic must be exploited. In vitro plantlets from leaves of ‘wild tomatillo’ were regenerated with this objective. A system for in vitro germination of seeds obtained from ex vitro sources was created. The use of seed allowed obtaining adequate seedlings in a short time to start regeneration. Thein vitro response of explants was evaluated in four treatments. The Murashige and Skoog (MS basal culture medium supplemented with a-naphthaleneacetic acid (NAA and 6-benzyl aminopurine (BAP was used in different combinations. The higher percentage (30% of shoot induction was achieved with 0.1 mg l1 NAA / 1 mg l1 BAP. The presence of callus and roots was observed after seven days of culture in the combination treatment with 1 mg l1 NAA / 0.1 mg l1 BAP. Callus showed 1 or 2 adventitious shoots per explant after 30 days of culture and 3 to 6 shoots after seventy days. Furthermore, the presence of fully formed adventitious plantlets (shoot and root was observed after the fifth week of culture. Therefore, the best combination for in vitro regeneration is NAA 0.1 mg l1 / 1 mg l1 BAP. Keywords: auxin, cytokinins, indirect organogenesis

  4. Upgrading and efficiency improvement in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Improving the efficiencies of the large number of older coal-fired power plants operating around the world would give major savings in CO2 emissions together with significant other benefits. This report begins with a summary of the ways efficiency can become degraded and of the means available to combat the decrease in performance. These include improvements to operating and maintenance practices and more major techniques that are available, including boiler and turbine retrofits. There is also an update on fuel drying developments as a route to higher efficiency in plants firing high moisture lignites. The largest chapter of the report contains a number of descriptions of case study improvement projects, to illustrate measures that have been applied, benefits that have been achieved and identify best practices, which are summarised. Major national and international upgrading programmes are described.

  5. Evaluation of support matrices for immobilization of anaerobic consortia for efficient carbon cycling in waste regeneration.

    Science.gov (United States)

    Chauhan, Ashvini; Ogram, Andrew

    2005-02-18

    Efficient metabolism of fatty acids during anaerobic waste digestion requires development of consortia that include "fatty acid consuming H(2) producing bacteria" and methanogenic bacteria. The objective of this research was to optimize methanogenesis from fatty acids by evaluating a variety of support matrices for use in maintaining efficient syntrophic-methanogenic consortia. Tested matrices included clays (montmorillonite and bentonite), glass beads (106 and 425-600mum), microcarriers (cytopore, cytodex, cytoline, and cultispher; conventionally employed for cultivation of mammalian cell lines), BioSep beads (powdered activated carbon), and membranes (hydrophilic; nylon, polysulfone, and hydrophobic; teflon, polypropylene). Data obtained from headspace methane (CH(4)) analyses as an indicator of anaerobic carbon cycling efficiency indicated that material surface properties were important in maintenance and functioning of the anaerobic consortia. Cytoline yielded significantly higher CH(4) than other matrices as early as in the first week of incubation. 16S rRNA gene sequence analysis from crushed cytoline matrix showed the presence of Syntrophomonas spp. (butyrate oxidizing syntrophs) and Syntrophobacter spp. (propionate oxidizing syntrophs), with Methanosaeta spp. (acetate utilizing methanogen), and Methanospirillum spp. (hydrogen utilizing methanogen) cells. It is likely that the more hydrophobic surfaces provided a suitable surface for adherence of cells of syntrophic-methanogenic consortia. Cytoline also appeared to protect entrapped consortia from air, resulting in rapid methanogenesis after aerial exposure. Our study suggests that support matrices can be used in anaerobic digestors, pre-seeded with immobilized or entrapped consortia on support matrices, and may be of value as inoculant-adsorbents to rapidly initiate or recover proper system functioning following perturbation.

  6. Innovative-Simplified Nuclear Power Plant Efficiency Evaluation with High-Efficiency Steam Injector System

    International Nuclear Information System (INIS)

    Shoji, Goto; Shuichi, Ohmori; Michitsugu, Mori

    2006-01-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injectors (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condensers and extracted steam from turbines. It can get higher pressure than supplied steam pressure. The maintenance and reliability are still higher than the feedwater ones because SI has no movable parts. This paper describes the analysis of the heat balance, plant efficiency and the operation of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency and operation are compared with the electric power of 1100 MWe-class BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show that plant efficiencies of the Innovated-Simplified BWR system are almost equal to original BWR ones. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  7. High frequency plant regeneration from leaf explants derived callus of evening primrose (oenothera biennis)

    International Nuclear Information System (INIS)

    Ghauri, E.G.; Shafi, N.; Ghani, S.; Fatima, A.

    2008-01-01

    The seeds of Evening primrose were aseptically grown and leaf explants were used for establishment of callus culture. The Excellent growth in callus biomass was achieved on MS medium supplemented with 2, 4, -D and TDZ. For optimal growth of bud and shoot regeneration, fortification of IAA along with TDZ, or BAP was found to be essential. Rooting (70%) could be inducted on hormone free MS-medium. This percentage improved to 98 when NAA was added to the medium. The plantlets thus obtained were transferred to the field successfully after passing through the process of hardening. (author)

  8. Establishment of an efficient in vitro regeneration protocol for rapid and mass propagation of Dendrobium chrysotoxum Lindl. using seed culture.

    Science.gov (United States)

    Nongdam, Potshangbam; Tikendra, Leimapokpam

    2014-01-01

    An efficient in vitro regeneration protocol from seed culture has been established successfully for Dendrobium chrysotoxum, an epiphytic orchid having tremendous ornamental and medicinal values. Seed germination response was encouraging in Mitra (M) medium enriched with different combinations of auxins and cytokinins. Medium supplemented with 0.4% activated charcoal (AC), 2 mg/L 6-benzyl amino purine (BAP), and 2 mg/L indole-3-acetic acid (IAA) produced best seed germination percentage in 2 weeks of culture. Incorporation of higher concentration of kinetin (KN) or BAP in combination with low auxin in medium induced pronounced shooting and leaf formation. Reduction in leaf development was evident when cytokinins exist singly in medium indicating synergistic effect of auxin and cytokinin in leaf induction. Presence of elevated level of indole-3-butyric acid (IBA) or 1-naphthalene acetic acid (NAA) with low cytokinin content in medium generated more in vitro rooting, though IBA was found to be more effective in rooting induction as compared to NAA. The in vitro protocol for asymbiotic seed germination developed from the present investigation can be used for rapid mass propagation of this highly important Dendrobium orchid species.

  9. Establishment of an Efficient In Vitro Regeneration Protocol for Rapid and Mass Propagation of Dendrobium chrysotoxum Lindl. Using Seed Culture

    Science.gov (United States)

    2014-01-01

    An efficient in vitro regeneration protocol from seed culture has been established successfully for Dendrobium chrysotoxum, an epiphytic orchid having tremendous ornamental and medicinal values. Seed germination response was encouraging in Mitra (M) medium enriched with different combinations of auxins and cytokinins. Medium supplemented with 0.4% activated charcoal (AC), 2 mg/L 6-benzyl amino purine (BAP), and 2 mg/L indole-3-acetic acid (IAA) produced best seed germination percentage in 2 weeks of culture. Incorporation of higher concentration of kinetin (KN) or BAP in combination with low auxin in medium induced pronounced shooting and leaf formation. Reduction in leaf development was evident when cytokinins exist singly in medium indicating synergistic effect of auxin and cytokinin in leaf induction. Presence of elevated level of indole-3-butyric acid (IBA) or 1-naphthalene acetic acid (NAA) with low cytokinin content in medium generated more in vitro rooting, though IBA was found to be more effective in rooting induction as compared to NAA. The in vitro protocol for asymbiotic seed germination developed from the present investigation can be used for rapid mass propagation of this highly important Dendrobium orchid species. PMID:25401154

  10. Effect of γ-ray irradiation on in vitro culture and plant regeneration of alfalfa

    International Nuclear Information System (INIS)

    Zhang Xiaodong; Lin Tingan

    1992-01-01

    60 Co γ-ray irradiation ranged 0-16 kR was used to treat the cotyledons and hypocotyls of 5 cultivars of a alfalfa (Medicago sativa L.). The effects of irradiation on the frequency of callus, fresh weight of callus, the frequency of somatic embryo induction and plantlet regeneration were studied. The results showed as follows: the radiosensitivities of cotyledon was significantly higher than that of hypocotyl. Exposure of 2 kR could improve the growth of callus, embryogenesis and plantlet regeneration at various levels. Exposure of 12 kR completely inhibited the callus formation from explants of cotyledon. Callus from two cultivars, England 648 and Jining alfalfa, were irradiated with 0-8 kR. The results showed that exposure below 2 kR could promote the growth of callus and the formation of somatic embryo at different levels. The exposure of 8 kR had the effect of lethal. The optimum exposure for genetic improvement of alfalfa in vitro by inducing mutation was considered to be 4-6 kR

  11. Biodiversity influences plant productivity through niche-efficiency.

    Science.gov (United States)

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C; McGuire, A David; Reich, Peter B

    2015-05-05

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity-ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche-efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche-efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species' inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty.

  12. Biodiversity influences plant productivity through niche–efficiency

    Science.gov (United States)

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C.; McGuire, A. David; Reich, Peter B.

    2015-01-01

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity–ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche–efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche–efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species’ inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty.

  13. Biodiversity influences plant productivity through niche–efficiency

    Science.gov (United States)

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C.; McGuire, A. David; Reich, Peter B.

    2015-01-01

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity–ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche–efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche–efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species’ inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty. PMID:25901325

  14. Efficient genetic transformation of Lotus corniculatus L. using a direct shoot regeneration protocol, stepwise hygromycin B selection, and a super-binary Agrobacterium tumefaciens vector

    Directory of Open Access Journals (Sweden)

    Nikolić Radomirka

    2007-01-01

    Full Text Available Cotyledons from 6-day-old Lotus corniculatus cv. Bokor seedlings, transversally cut into two halves, were capa­ble of regenerating buds without intervening callus formation. The explants were co-cultivated with the Agrobacterium tumefaciens LBA4404/pTOK233 superbinary vector carrying the uidA-intron gene and the genes hpt and nptII. They were cultured for 14 days on a regeneration medium, then subjected to a stepwise hygromycin B selection procedure consisting of gradually increasing antibiotic concentrations (5-15 mg L-1 over 21 weeks. Transformed shoots were obtained within 5 months after co-cultivation. Out of 124 initially co-cultivated explants, 52 (42% plants survived hygromycin B selection. The presence of transgenes in regenerated plants was verified by β-glucuronidase histochemical assays and PCR analysis for the presence of uidA gene sequences. Hygromycin B-resistant and PCR-positive T0 plants were cultured in the greenhouse to produce flowers and seeds. The obtained data demonstrate that the reported transformation protocol could be useful for introducing agriculturally important genes into the new L. corniculatus cultivar Bokor.

  15. Carbon source dependent somatic embryogenesis and plant regeneration in cotton, Gossypium hirsutum L. cv. SVPR2 through suspension cultures.

    Science.gov (United States)

    Ganesan, M; Jayabalan, N

    2005-10-01

    Highly reproducible and simple protocol for cotton somatic embryogenesis is described here by using different concentrations of maltose, glucose, sucrose and fructose. Maltose (30 g/l) is the best carbon source for embryogenic callus induction and glucose (30 g/l) was suitable for induction, maturation of embryoids and plant regeneration. Creamy white embryogenic calli of hypocotyl explants were formed on medium containing MS basal salts, myo-inositol (100 mg/l), thiamine HCI (0.3 mg/l), picloram (0.3 mg/l), Kin (0.1 mg/l) and maltose (30 g/l). During embryo induction and maturation, accelerated growth was observed in liquid medium containing NH3NO4 (1 g/l), picloram (2.0 mg/l), 2 ip (0.2 mg/l), Kin (0.1 mg/l) and glucose (30 g/l). Before embryoid induction, large clumps of embryogenic tissue were formed. These tissues only produced viable embryoids. Completely matured somatic embryos were germinated successfully on the medium fortified with MS salts, myo-inositol (50 mg/l), thiamine HCl (0.2 mg/l), GA3 (0.2 mg/l), BA (1.0 mg/l) and glucose (30 g/l). Compared with earlier reports, 65% of somatic embryo germination was observed. The abnormal embryo formation was highly reduced by using glucose (30 g/l) compared to other carbon sources. The regenerated plantlets were fertile but smaller in height than the seed derived control plants.

  16. Efficient somatic embryogenesis and molecular marker based analysis as effective tools for conservation of red-listed plant Commiphora wightii

    Directory of Open Access Journals (Sweden)

    ASHOK KUMAR PARMAR

    2014-08-01

    Full Text Available A refined and high efficiency protocol for in vitro regeneration of Commiphora wightii, a red-listed medicinal plant of medicinal importance, has been developed through optimized somatic embryogenesis pathway. Cultures from immature fruits were induced and proliferated on B5 medium supplemented with 2.26 µM 2,4-D. Embryogenic calli were obtained and then maintained for extended periods by alternately subculturing on modified MS medium supplemented with 1.11 µM BAP, 0.57 µM IBA and with 0.5% activated charcoal or without PGR every 3-4 weeks. Cyclic embryogenesis was obtained. Late torpedo and early cotyledonary stages somatic embryos were regularly harvested from PGR-free modified MS medium. It was found that percent moisture available in culture containers play a critical role in maturation and subsequent germination of somatic embryos of C. wighti. Maximum germination of more than 80% was achieved through media recycling. Somatic embryo derived plants (emblings were acclimatized. After 5 months, acclimatized plants were out-planted in experimental field. These morphologically normal plants have been surviving for over 3 years. Molecular polymorphism was clearly evident when these plants were tested using RAPD primers, making the plants suitable for use in its species restoration program.

  17. Certification of materials for steam generator condensor and regeneration heat exchanger for nuclear plant

    International Nuclear Information System (INIS)

    Stevanovicj, M.V.; Jovashevicj, V.J.; Jovashevicj, V.D.J.; Spasicj, Zh.Lj.

    1977-01-01

    In the construction of a nuclear power plant almost all known materials are used. The choice depends on working conditions. In this work standard specifications of contemporary materials that take part in larger quantities in the following components of the secondary circuit of PWR-type nuclear power plant are proposed: steam generator with moisture separator, condensor and regenerative heat eXchanger

  18. Differential responses to isoprenoid, N-6-substituted aromatic cytokinins and indole-3-butyric acid in direct plant regeneration of Eriocephalus africanus

    Czech Academy of Sciences Publication Activity Database

    Madzikane-Mlungwana, O.; Moyo, M.; Aremu, A.O.; Plíhalová, Lucie; Doležal, Karel; Van Staden, J.; Finnie, J.F.

    2017-01-01

    Roč. 82, č. 1 (2017), s. 103-110 ISSN 0167-6903 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : in-vitro cultures * auxin transport * meta-topolin * antioxidant activity * biological-activity * arabidopsis roots * phenolic-acids * l. asteraceae * south-africa * flavonoids * Auxins * Cytokinins * Flavonoids * Plant regeneration * Phenolics Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 2.646, year: 2016

  19. Effects of N6-benzylaminopurine and Indole Acetic Acid on In Vitro Shoot Multiplication, Nodule-like Meristem Proliferation and Plant Regeneration of Malaysian Bananas (Musa spp.)

    Science.gov (United States)

    Sipen, Philip; Davey, Michael R

    2012-01-01

    Different concentrations of N6-benzylaminopurine (BAP) and indole acetic acid (IAA) in Murashige and Skoog based medium were assessed for their effects on shoot multiplication, nodule-like meristem proliferation and plant regeneration of the Malaysian banana cultivars Pisang Mas, Pisang Nangka, Pisang Berangan and Pisang Awak. BAP at 1–14 mg L−1 with or without 0.2 mg L−1 IAA, or BAP at 7–14 mg L−1 with the same concentration of IAA, was evaluated for shoot multiplication from shoot tips and the proliferation of nodule-like meristems from scalps, respectively. Plant regeneration from scalps was assessed using 1 mg L−1 BAP and 0.2 mg L−1 IAA separately, or a combination of these two growth regulators. Data on shoot multiplication, the proliferation of nodule-like meristems with associated plant regeneration were recorded after 30 days of culture. A maximum of 5 shoots per original shoot tip was achieved on medium supplemented with BAP at 5 mg L−1 (Pisang Nangka), 6 mg L−1 (Pisang Mas and Pisang Berangan), or 7 mg L−1 (Pisang Awak), with 0.2 mg L−1 IAA. BAP at 11 mg L−1 with 0.2 mg L−1 IAA induced the most highly proliferating nodule-like meristems in the four banana cultivars. Plant regeneration from scalps was optimum in all cases on medium containing 1 mg L−1 BAP and 0.2 mg L−1 IAA. This is the first report on the successful induction of highly proliferating nodule-like meristems and plant regeneration from scalps of the Malaysian banana cultivars Pisang Mas, Pisang Nangka, Pisang Berangan and Pisang Awak. PMID:24575235

  20. Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica.

    Science.gov (United States)

    van den Brink, Joost; van Muiswinkel, Gonny C J; Theelen, Bart; Hinz, Sandra W A; de Vries, Ronald P

    2013-02-01

    Rapid and efficient enzymatic degradation of plant biomass into fermentable sugars is a major challenge for the sustainable production of biochemicals and biofuels. Enzymes that are more thermostable (up to 70°C) use shorter reaction times for the complete saccharification of plant polysaccharides compared to hydrolytic enzymes of mesophilic fungi such as Trichoderma and Aspergillus species. The genus Myceliophthora contains four thermophilic fungi producing industrially relevant thermostable enzymes. Within this genus, isolates belonging to M. heterothallica were recently separated from the well-described species M. thermophila. We evaluate here the potential of M. heterothallica isolates to produce efficient enzyme mixtures for biomass degradation. Compared to the other thermophilic Myceliophthora species, isolates belonging to M. heterothallica and M. thermophila grew faster on pretreated spruce, wheat straw, and giant reed. According to their protein profiles and in vitro assays after growth on wheat straw, (hemi-)cellulolytic activities differed strongly between M. thermophila and M. heterothallica isolates. Compared to M. thermophila, M. heterothallica isolates were better in releasing sugars from mildly pretreated wheat straw (with 5% HCl) with a high content of xylan. The high levels of residual xylobiose revealed that enzyme mixtures of Myceliophthora species lack sufficient β-xylosidase activity. Sexual crossing of two M. heterothallica showed that progenies had a large genetic and physiological diversity. In the future, this will allow further improvement of the plant biomass-degrading enzyme mixtures of M. heterothallica.

  1. Study of wastewater treatment plants efficiency using radiotracers

    International Nuclear Information System (INIS)

    Dawi, W. D. A.

    2010-11-01

    This study was performed to investigate and diagnose hydrodynamic behavior of the Military Hospital wastewater treatment plant. The plant comprises two units of treatment, each of them has a separate system. The investigation was carried out using ''1''3''1I as a radiotracer. The concept of residence time distribution (RTD) was used to investigate the efficiency of the aeration tanks, secondary clarifiers and chlorine tanks. Preliminary treatment and modeling of the trace data was performed using two software package applied by the International Atomic Energy Agency (IAEA) namely 4621 counter version 1.0.0 and RTD software. Plug flow pattern (parallel flow) was detected in the aeration tank and secondary clarifier of system 1 in one unit, while no homogeneous mixing was observed in the chlorine tank. Short - circuiting (by - passing) was evident in the aeration tank of system 2 in the other unit, which significantly reduced the operating efficiency. The percentage of dead volumes clearly suggests that the aeration tank and secondary clarifier were well utilized in the whole plant. (Author)

  2. EFFICIENCY AND COST MODELLING OF THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Péter Bihari

    2010-01-01

    Full Text Available The proper characterization of energy suppliers is one of the most important components in the modelling of the supply/demand relations of the electricity market. Power generation capacity i. e. power plants constitute the supply side of the relation in the electricity market. The supply of power stations develops as the power stations attempt to achieve the greatest profit possible with the given prices and other limitations. The cost of operation and the cost of load increment are thus the most important characteristics of their behaviour on the market. In most electricity market models, however, it is not taken into account that the efficiency of a power station also depends on the level of the load, on the type and age of the power plant, and on environmental considerations. The trade in electricity on the free market cannot rely on models where these essential parameters are omitted. Such an incomplete model could lead to a situation where a particular power station would be run either only at its full capacity or else be entirely deactivated depending on the prices prevailing on the free market. The reality is rather that the marginal cost of power generation might also be described by a function using the efficiency function. The derived marginal cost function gives the supply curve of the power station. The load level dependent efficiency function can be used not only for market modelling, but also for determining the pollutant and CO2 emissions of the power station, as well as shedding light on the conditions for successfully entering the market. Based on the measurement data our paper presents mathematical models that might be used for the determination of the load dependent efficiency functions of coal, oil, or gas fuelled power stations (steam turbine, gas turbine, combined cycle and IC engine based combined heat and power stations. These efficiency functions could also contribute to modelling market conditions and determining the

  3. Succession influences wild bees in a temperate forest landscape: the value of early successional stages in naturally regenerated and planted forests.

    Science.gov (United States)

    Taki, Hisatomo; Okochi, Isamu; Okabe, Kimiko; Inoue, Takenari; Goto, Hideaki; Matsumura, Takeshi; Makino, Shun'ichi

    2013-01-01

    In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional

  4. Succession influences wild bees in a temperate forest landscape: the value of early successional stages in naturally regenerated and planted forests.

    Directory of Open Access Journals (Sweden)

    Hisatomo Taki

    Full Text Available In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create

  5. Growth of teak regenerated by coppice and stump planting in Mae Moh Plantation, Lampang province, Thailand

    Directory of Open Access Journals (Sweden)

    Anatta Auykim

    2017-08-01

    Full Text Available The current annual increment (CAIdbh and the mean annual increment (MAIdbh both for the diameter at breast height (1.3 m were investigated to compare the differences between coppice and stump-planted teak in Mae Moh Plantation. Forty-eight sample cores were collected from a 9 yr-old teak plantation using an increment borer; annual increments were analyzed using dendrochronological techniques. The results indicated that there was no significant (p > 0.05 difference in the average diameter at breast height (DBH between the coppice and stump-planted teak, whereas the total height of stump planting was significantly greater than that of coppice teak. The CAIdbh of coppice teak was in the range 0.316–2.371 cm and continuously decreased throughout the 9 yr period. The CAIdbh of stump planting was in the range 0.162–1.982 cm and continuously increased from the beginning of growth for 5 yr followed by a decline thereafter for 4 yr. The CAIdbh of coppice showed rapid growth in the years 1–4 and was greater than for the stump-planted teak even in years 5–8 after planting; however, the growth of the stump-planted teak in the ninth year was higher than for the coppice. The MAIdbh values of coppice and stump-planted teak were not significantly (p > 0.05 different. The results showed that CAIdbh at age 5 yr can be used as a silvicultural guide to increase the yield of teak coppice.

  6. An efficient immunodetection method for histone modifications in plants.

    Science.gov (United States)

    Nic-Can, Geovanny; Hernández-Castellano, Sara; Kú-González, Angela; Loyola-Vargas, Víctor M; De-la-Peña, Clelia

    2013-12-16

    Epigenetic mechanisms can be highly dynamic, but the cross-talk among them and with the genome is still poorly understood. Many of these mechanisms work at different places in the cell and at different times of organism development. Covalent histone modifications are one of the most complex and studied epigenetic mechanisms involved in cellular reprogramming and development in plants. Therefore, the knowledge of the spatial distribution of histone methylation in different tissues is important to understand their behavior on specific cells. Based on the importance of epigenetic marks for biology, we present a simplified, inexpensive and efficient protocol for in situ immunolocalization on different tissues such as flowers, buds, callus, somatic embryo and meristematic tissue from several plants of agronomical and biological importance. Here, we fully describe all the steps to perform the localization of histone modifications. Using this method, we were able to visualize the distribution of H3K4me3 and H3K9me2 without loss of histological integrity of tissues from several plants, including Agave tequilana, Capsicum chinense, Coffea canephora and Cedrela odorata, as well as Arabidopsis thaliana. There are many protocols to study chromatin modifications; however, most of them are expensive, difficult and require sophisticated equipment. Here, we provide an efficient protocol for in situ localization of histone methylation that dispenses with the use of expensive and sensitive enzymes. The present method can be used to investigate the cellular distribution and localization of a wide array of proteins, which could help to clarify the biological role that they play at specific times and places in different tissues of various plant species.

  7. Isozyme modifications and plant regeneration through somatic embryogenesis in sweet potato (Ipomoea batatas (L.) Lam.).

    Science.gov (United States)

    Cavalcante Alves, J M; Sihachakr, D; Allot, M; Tizroutine, S; Mussio, I; Servaes, A; Ducreux, G

    1994-05-01

    The potential of somatic embryogenesis was evaluated for 10 cultivars of sweet potato through extensive embryogenic response and isozyme analysis. Embryogenic callus was induced by incubating lateral buds on Murashige and Skoog medium containing 10 μM 2,4-dichlorophenoxyacetic acid for 6-8 weeks. The frequency of embryogenic response was low, and varied with genotypes, ranging from 0 to 17%. Embryo to plantlet formation could be enhanced by the use of the combination of 2,4-dichlorophenoxyacetic acid with kinetin, both used at 0.01 μM. Embryogenic callus with its potential of plantlet formation has constantly been maintained for over two years. However, after several subcultures, 0.5 to 12% of embryogenic callus reverted irreversibly into friable fast-growing non-embryogenic callus whose ability to regenerate shoots was then definitively lost. The isozymes of esterase, peroxidase, glutamate oxaloacetate transaminase and acid phosphatase investigated in this study were found appropriate to distinguish compact embryogenic from friable non-embryogenic callus in sweet potato. In fact, the callus reversion was associated with a loss of bands or a decline in isozyme activity. On the contrary, very small changes in isozyme activity or no specific changes at all were observed during the differentiation of embryogenic callus into globular embryos.

  8. Increasing operational efficiency in a radioactive waste processing plant - 16100

    International Nuclear Information System (INIS)

    Turner, T.W.; Watson, S.N.

    2009-01-01

    The solid waste plant at Harwell in Oxfordshire, contains a purpose built facility to input, assay, visually inspect and sort remote handled intermediate level radioactive waste (RHILW). The facility includes a suite of remote handling cells, known as the head-end cells (HEC), which waste must pass through in order to be repackaged. Some newly created waste from decommissioning works on site passes through the cells, but the vast majority of waste for processing is historical waste, stored in below ground tube stores. Existing containers are not suitable for long term storage, many are already badly corroded, so the waste must be efficiently processed and repackaged in order to achieve passive safety. The Harwell site is currently being decommissioned and the land is being restored. The site is being progressively de-licensed, and redeveloped as a business park, which can only be completed when all the nuclear liabilities have been removed. The recovery and processing of old waste in the solid waste plant is a key project linked to de-licensing of a section of the site. Increasing the operational efficiency of the waste processing plant could shorten the time needed to clear the site and has the potential to save money for the Nuclear Decommissioning Authority (NDA). The waste processing facility was constructed in the mid 1990's, and commissioned in 1999. Since operations began, the yearly throughput of the cells has increased significantly every year. To achieve targets set out in the lifetime plan (LTP) for the site, throughput must continue to increase. The operations department has measured the overall equipment effectiveness (OEE) of the process for the last few years, and has used continuous improvement techniques to decrease the average cycle time. Philosophies from operational management practices such as 'lean' and 'kaizen' have been employed successfully to drive out losses and increase plant efficiency. This paper will describe how the solid waste plant

  9. Gas fired engines for power plants - innovations and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, I. [Technology Division, Waertsilae (Finland)

    2001-07-01

    Waertsilae has recently introduced a range of completely new gas engines with their performance on record levels. High efficiency and low emission together with fuel and operation flexibility have been achieved. The progress is based on innovative engine design and advanced programmable control systems for fuel injection, combustion and the engine as a whole. The gas engine concept is particularly interesting for decentralised power production with fuel and/or power cycling. The Waertsilae 18V50DF dual fuel engine with a unit size of 17 MW will be a challenger also for bigger plants. (orig.)

  10. Enhanced efficiency steam turbine blading - for cleaner coal plant

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, A.; Bell, D.; Cao, C.; Fowler, R.; Oliver, P.; Greenough, C.; Timmis, P. [ALSTOM Power, Rugby (United Kingdom)

    2005-03-01

    The aim of this project was to increase the efficiency of the short height stages typically found in high pressure steam turbine cylinders. For coal fired power plant, this will directly lead to a reduction in the amount of fuel required to produce electrical power, resulting in lower power station emissions. The continual drive towards higher cycle efficiencies demands increased inlet steam temperatures and pressures, which necessarily leads to shorter blade heights. Further advances in blading for short height stages are required in order to maximise the benefit. To achieve this, an optimisation of existing 3 dimensional designs was carried out and a new 3 dimensional fixed blade for use in the early stages of the high pressure turbine was developed. 28 figs., 5 tabs.

  11. Infrared monitoring of power-plant effluents and heat sinks to optimize plant efficiency

    Science.gov (United States)

    Wurzbach, Richard N.; Seith, David A.

    2000-03-01

    Infrared imaging of the discharge canal and intake pond of the Peach Bottom Atomic Power Station was initiated to confirm a plant staff suspicion that high water intake temperatures were being influenced by recirculation of discharge flow. To minimize the angle of incidence to the water surface, the inspection was made from the top of the cooling towers. Although there was no evidence of recirculation from the plant discharge to the intake pond, two unexpected inputs of thermal energy were discovered during the inspection. A faulty sluice gate and a damaged cross-around pipe could be seen to be dumping thermal energy into the intake pond. The result was increased temperatures at the intake which threatened plant operation, decreased plant efficiency, and resulted in fewer megawatts available to sell to customers during the critical summer months.

  12. Efficient electrochemical regeneration of nicotinamide cofactors using a cyclopentadienyl-rhodium complex on functionalized indium tin oxide electrodes

    International Nuclear Information System (INIS)

    Kim, Soojin; Lee, Ga Ye; Lee, Jungha; Rajkumar, Eswaran; Baeg, Jin-Ook; Kim, Jinheung

    2013-01-01

    Functionalized ITO electrodes are used to regenerate NADH using [Cp*Rh(bpy)(H 2 O)] 2+ (Cp* = pentamethylcyclopentadienyl, bpy = 2,2′-bipyridine) electrochemically in a buffer solution. Amino- and mercapto-functionalized electrodes featured higher activity and stability for electrocatalytic generation of NADH than a bare ITO electrode. Effect of metal nanoparticles was also studied on modified ITO electrodes and the addition of platinum nanoparticles even resulted in improved activity. The electrochemical regeneration was somewhat affected in the presence of dioxygen, but not significantly. In addition, a conversion of carbon dioxide was carried out utilizing the electrochemically generated NADH and formate dehydrogenase to produce formic acid

  13. In vitro regeneration of Amazonian pineapple (Ananas comosus plants ecotype Gobernadora

    Directory of Open Access Journals (Sweden)

    Héctor Alexander Blanco Flores

    2017-01-01

    Full Text Available There are a number of pineapple (Ananas comosus cultivars and ecotypes of local commercial importance in Venezuela, among them the Amazonian ones, cultivated mainly by the aboriginal Piaroa, are of relevance. They sow the propagules, which restricts the availability of material for large-scale cultivation. This limitation was approached by plant tissue culture for in vitro propagation of Amazonian pineapple plants, Gobernadora ecotype, through somatic embryogenesis (ES and adventitious organogenesis (OA. Basal and intermediate sections of leaves were tested. Only the leaf base sections (FBS were morphogenically induced. The highest number of vitroplants (1.58 plants / explant was obtained from the embryogenic callus induced in MS medium with Picloram 10 mg.L-1 + Thidiazuron 2 mg.L-1, transferred to MS medium without hormones. In the organogenic process, the highest number of plants/explants (5 was obtained directly in MS with naphthaleneacetic acid 5 mg.L-1 + benzylaminopurine 0.25 mg.L-1, transferred to MS. The latter being the best in vitro culture system due to its productivity and for being a method that minimizes somaclonal variation.

  14. Stand characteristics of 65-year-old planted and naturally regenerated stands near Sequim, Washington.

    Science.gov (United States)

    Richard E. Miller; Harry W. Anderson

    1995-01-01

    Tree numbers, height, and volume were determined in six 63- to 66-year-old plantations of coast Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) in northwest Washington. These stands resulted from the first extensive plantings of this species in the Pacific Northwest. Data from 0.25-acre plots in these...

  15. C/sub 4/ photosynthesis in Euphorbia degeneri and E. remyi: a comparison of photosynthetic carbon metabolism in leaves, callus cultures and regenerated plants

    Energy Technology Data Exchange (ETDEWEB)

    Ruzin, S.E.

    1984-04-01

    Based on analysis of /sup 14/CO/sub 2/ fixation kinetics and assays of enzymes related to C/sub 4/ metabolism (NAD-ME, NADP-ME, NAD-MDH, NADP-MDH, AST, ALT), leaves and regenerated plants of Euphorbia degeneri exhibit a modified NADP-ME-type photosynthesis. Apparently, both aspartate and malate are used for transport of CO/sub 2/ to bundle sheath cells. Callus grown on either non-shoot-forming or shoot-forming media fixes CO/sub 2/ into RPP-cycle intermediates and sucrose, as well as malate and aspartate. /sup 14/CO/sub 2/ pulse/chase kinetics show no significant loss of label from C/sub 4/ acids throughout a one minute chase. Analysis of PEPCase revealed the presence of 2 isoenzymes in both leaf and regenerated plant tissues (K/sub m/ (PEP) = 0.080 and 0.550) but only one isoenzyme in callus (K/sub m/ = 0.100). It appears that C/sub 4/ photosynthesis does not occur in callus derived from this C/sub 4/ dicot but is regenerated concomitant with shoot regeneration, and ..beta..-carboxylation of PEP in callus, mediated by the low K/sub m/ isoenzyme of PEPCase, produces C/sub 4/ acids that are not involved in the CO/sub 2/ shuttle mechanism characteristic of C/sub 4/ photosynthesis. 161 references, 19 figures, 12 tables.

  16. C4 photosynthesis in Euphorbia degeneri and E. remyi: a comparison of photosynthetic carbon metabolism in leaves, callus cultures and regenerated plants

    International Nuclear Information System (INIS)

    Ruzin, S.E.

    1984-04-01

    Based on analysis of 14 CO 2 fixation kinetics and assays of enzymes related to C 4 metabolism (NAD-ME, NADP-ME, NAD-MDH, NADP-MDH, AST, ALT), leaves and regenerated plants of Euphorbia degeneri exhibit a modified NADP-ME-type photosynthesis. Apparently, both aspartate and malate are used for transport of CO 2 to bundle sheath cells. Callus grown on either non-shoot-forming or shoot-forming media fixes CO 2 into RPP-cycle intermediates and sucrose, as well as malate and aspartate. 14 CO 2 pulse/chase kinetics show no significant loss of label from C 4 acids throughout a one minute chase. Analysis of PEPCase revealed the presence of 2 isoenzymes in both leaf and regenerated plant tissues (K/sub m/ [PEP] = 0.080 and 0.550) but only one isoenzyme in callus (K/sub m/ = 0.100). It appears that C 4 photosynthesis does not occur in callus derived from this C 4 dicot but is regenerated concomitant with shoot regeneration, and β-carboxylation of PEP in callus, mediated by the low K/sub m/ isoenzyme of PEPCase, produces C 4 acids that are not involved in the CO 2 shuttle mechanism characteristic of C 4 photosynthesis. 161 references, 19 figures, 12 tables

  17. The Effect of Plant Growth Regulators on Callus Induction and Regeneration of Amygdalus communis

    Directory of Open Access Journals (Sweden)

    Naimeh SHARIFMOGHADAM

    2011-08-01

    Full Text Available The Almond (Amygdalus communis is one of the most important and oldest commercial nut crops, belonging to the Rosaceae family. Almond has been used as base material in pharmaceutical, cosmetic, hygienically and food industry. Propagation by tissue culture technique is the most important one in woody plants. In the current research, in vitro optimization of tissue culture and mass production of almond was investigated. In this idea, explants of actively growing shoots were collected and sterilized, then transferred to MS medium with different concentrations and combinations of plant growth regulators. The experiment was done in completely randomized blocks design, with 7 treatment and 30 replications. After 4 weeks, calli induction, proliferation, shoot length and number of shoot per explants were measured. Results showed that the best medium for shoot initiation and proliferation was MS + 0.5 mg/l IAA (Indol-3-Acetic Acid + 1 mg/l BA (Benzyl Adenine. Autumn was the best season for collecting explants. The shoots were transferred to root induction medium with different concentrations of plant growth regulators. The best root induction medium was MS + 0.5 mg/l IBA (Indol Butyric Acid.

  18. Biological regeneration of carrier material for the adsorption of halogen hydrocarbons in plants for cleaning up contaminated groundwater. Final report

    International Nuclear Information System (INIS)

    Ressel, K.

    1993-06-01

    Halogen hydrocarbons and above all chlorinated hydrocarbons are widespread harmful substances in soils and in groundwater. When cleaning up groundwater contamination, the contaminants are brought into the gas phase by strip processes. From the gas phase, the contaminants can be adsorbed on different carrier materials, mostly active carbon. One was searching for ways to regenerate this adsorption material. The mixed culture from a sea sediment most suitable for the decomposition of chlorinated hydrocarbons was optimized regarding its decomposition performance and was later used on the technical scale. In the decomposition experiments on the large technical scale, the cultures were lodged on filling bodies which has a much higher amount of gaps. In this case, an optimum supply of the micro-organisms with oxygen and methane is guaranteed, which is used as co-substrate. No intermediate product was found in a gas chromatography examination. The biologically occupied stage is situated between a desorption column and the active carbon filters, and reduces the load of harmful substances which can no longer be brought into the gas phase by stripping out. This has the advantage that it can be integrated in existing plants and can be adapted to any case of contamination by lodging adapted micro-organisms on it. The basis for each application must be separately researched. (orig.) [de

  19. Final report of the project 'Regeneration of activated carbon used in residual water treatment plants'

    International Nuclear Information System (INIS)

    Martinez M, I.; Hernandez M, V.

    1992-01-01

    Among the new methods used to reactivate carbon, its are the one that uses infrared light and the one that uses accelerated electrons. The technology in both processes is novel, the energy is used but efficiently, it doesn't get lost but of 5% of carbon and its are less polluting. This report presents the one method and results obtained in the irradiation of coal. (Author)

  20. Somatic Embryogenesis Induction and Plant Regeneration in Strawberry Tree (Arbutus unedo L.).

    Science.gov (United States)

    Martins, João F; Correia, Sandra I; Canhoto, Jorge M

    2016-01-01

    Somatic embryogenesis is a powerful tool both for cloning and studies of genetic transformation and embryo development. Most protocols for somatic embryogenesis induction start from zygotic embryos or embryonic-derived tissues which do not allow the propagation of elite trees. In the present study, a reliable protocol for somatic embryogenesis induction from adult trees of strawberry tree is described. Leaves from in vitro proliferating shoots were used to induce somatic embryo formation on a medium containing an auxin and a cytokinin. Somatic embryos germinated in a plant growth regulator-free medium.

  1. Efficient Absorption of Antibiotic from Aqueous Solutions over MnO2@SA/Mn Beads and Their In Situ Regeneration by Heterogeneous Fenton-Like Reaction

    Directory of Open Access Journals (Sweden)

    Yu Luo

    2017-01-01

    Full Text Available Alginate has been extensively used as absorbents due to its excellent properties. However, the practical application of pure alginate has been restricted since the saturated adsorbent has weak physical structure and could not be regenerated easily. In this study, a low-cost and renewable composite MnO2@alginate/Mn adsorbent has been prepared facilely for the absorptive removal of antibiotic wastewater. FE-SEM, FTIR, and XRD analyses were used to characterize the samples. The norfloxacin (NOR was used as an index of antibiotics. More specifically, the batch absorption efficiency of the adsorbents was evaluated by pH, contact time with different NOR concentration, and the temperature. Thus, the performance of absorption kinetic dynamics and isotherm equations were estimated for the adsorptive removal process. Parameters including ΔG0, ΔH0, and ΔS0 were utilized to describe the feasible adsorption process. To regenerate the saturated absorptive sites of the adsorbent, the heterogeneous Fenton-like reactions were trigged by introduction of H2O2. The results showed that the in situ regenerating has exhibited an excellent recycling stability. The high activity and the simple fabrication of the adsorbents make them attractive for the treatment of wastewater containing refractory organic compound and also provide fundamental basis and technology for further practical application.

  2. The impact of Cu treatment on phenolic and polyamine levels in plant material regenerated from embryos obtained in anther culture of carrot

    Czech Academy of Sciences Publication Activity Database

    Górecka, K.; Cvikrová, Milena; Kowalska, U.; Eder, Josef; Szafrańska, K.; Górecki, R.; Janas, K. M.

    2007-01-01

    Roč. 45, č. 1 (2007), s. 54-61 ISSN 0981-9428 R&D Projects: GA MŠk 1P05OC052 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : carrot culture * copper ions * embryo regeneration Subject RIV: GE - Plant Breeding Impact factor: 1.669, year: 2007

  3. Efficient sequential and parallel algorithms for planted motif search.

    Science.gov (United States)

    Nicolae, Marius; Rajasekaran, Sanguthevar

    2014-01-31

    Motif searching is an important step in the detection of rare events occurring in a set of DNA or protein sequences. One formulation of the problem is known as (l,d)-motif search or Planted Motif Search (PMS). In PMS we are given two integers l and d and n biological sequences. We want to find all sequences of length l that appear in each of the input sequences with at most d mismatches. The PMS problem is NP-complete. PMS algorithms are typically evaluated on certain instances considered challenging. Despite ample research in the area, a considerable performance gap exists because many state of the art algorithms have large runtimes even for moderately challenging instances. This paper presents a fast exact parallel PMS algorithm called PMS8. PMS8 is the first algorithm to solve the challenging (l,d) instances (25,10) and (26,11). PMS8 is also efficient on instances with larger l and d such as (50,21). We include a comparison of PMS8 with several state of the art algorithms on multiple problem instances. This paper also presents necessary and sufficient conditions for 3 l-mers to have a common d-neighbor. The program is freely available at http://engr.uconn.edu/~man09004/PMS8/. We present PMS8, an efficient exact algorithm for Planted Motif Search. PMS8 introduces novel ideas for generating common neighborhoods. We have also implemented a parallel version for this algorithm. PMS8 can solve instances not solved by any previous algorithms.

  4. Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors

    KAUST Repository

    Iloeje, Chukwunwike

    2015-10-01

    © 2015 Elsevier Ltd. The rotary reactor differs from most alternative chemical looping combustion (CLC) reactor designs because it maintains near-thermal equilibrium between the two stages of the redox process by thermally coupling channels undergoing oxidation and reduction. An earlier study showed that this thermal coupling between the oxidation and reduction reactors increases the efficiency by up to 2% points when implemented in a regenerative Brayton cycle. The present study extends this analysis to alternative CLC cycles with the objective of identifying optimal configurations and design tradeoffs. Results show that the increased efficiency from reactor thermal coupling applies only to cycles that are capable of exploiting the increased availability in the reduction reactor exhaust. Thus, in addition to the regenerative cycle, the combined CLC cycle and the combined-regenerative CLC cycle are suitable for integration with the rotary reactor. Parametric studies are used to compare the sensitivity of the different cycle efficiencies to parameters like pressure ratio, turbine inlet temperature, carrier-gas fraction and purge steam generation. One of the key conclusions from this analysis is that while the optimal efficiency for regenerative CLC cycle was the highest of the three (56% at 3. bars, 1200. °C), the combined-regenerative cycle offers a trade-off that combines a reasonably high efficiency (about 54% at 12. bars, 1200. °C) with much lower gas volumetric flow rate and consequently, smaller reactor size. Unlike the other two cycles, the optimal compressor pressure ratio for the regenerative cycle is weakly dependent on the design turbine inlet temperature. For the regenerative and combined regenerative cycles, steam production in the regenerator below 2× fuel flow rate improves exhaust recovery and consequently, the overall system efficiency. Also, given that the fuel side regenerator flow is unbalanced, it is more efficient to generate steam from the

  5. Retrofit of ammonia plant for improving energy efficiency

    International Nuclear Information System (INIS)

    Panjeshahi, M.H.; Ghasemian Langeroudi, E.; Tahouni, N.

    2008-01-01

    The aim of this work is to perform a retrofit study of an ammonia plant, in purpose of improving energy efficiency. As a common practice, one can divide an ammonia plant into two parts: the hot-end and the cold-end. In the hot section, two different options are investigated that both lead to a threshold condition and achieve maximum energy saving. The first option covers only process-to-process energy integration, while the second option considers some modification in the convection section of the primary reformer through a new arrangement of the heating coils. Thus, a considerable reduction in cooling water, HP steam and fuel gas consumption is achieved. In the cold section, retrofit study is dominated by reducing the amount of shaft work or power consumption in the refrigeration system. Application of the Combined Pinch and Exergy Analysis revealed that part of the shaft work, which was originally being used, was inefficient and could have been avoided in a well-integrated design. Therefore, by proposing optimum refrigeration levels, reasonable saving (15%) in power consumption was observed without the need for new investment

  6. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  7. Preparation of regenerable granular carbon nanotubes by a simple heating-filtration method for efficient removal of typical pharmaceuticals

    Science.gov (United States)

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Yu, Gang; Winglee, Judith; Wiesner, Mark R.

    2017-04-01

    A simple and convenient method was used to prepare novel granular carbon nanotubes (CNTs) for enhanced adsorption of pharmaceuticals. By heating CNTs powder at 450 degree centigrade in air, followed by filtration, the obtained granular adsorbent exhibited high surface area and pore volume since the heating process produced some oxygen-containing functional groups on CNT surface, making CNTs more dispersible in the formation of granular cake. The porous granular CNTs not only had more available surfaces for adsorption but also were more easily separated from solution than pristine CNTs (p-CNTs) powder. This adsorbent exhibited relatively fast adsorption for carbamazepine (CBZ), tetracycline (TC) and diclofe- nac sodium (DS), and the maximum adsorption capacity on the granular CNTs was 369.5 μmol/g for CBZ, 284.2 μmol/g for TC and 203.1 μmol/g for DS according to the Langmuir fitting, increasing by 42.4%, 37.8% and 38.0% in comparison with the pristine CNTs powder. Moreover, the spent granular CNTs were successfully regenerated at 400 degree centigrade in air without decreasing the adsorption capacity in five regeneration cycles. The adsorbed CBZ and DS were completely degraded, while the adsorbed TC was partially oxidized and the residual was favorable for the subsequent adsorption. This research develops an easy method to prepare and regenerate granular CNT adsorbent for the enhanced removal of organic pollutants from water or wastewater.

  8. Cryogenic regenerators

    International Nuclear Information System (INIS)

    Kush, P.; Joshi, S.C.; Thirumaleshwar, M.

    1986-01-01

    Importance of regenerators in cryogenic refrigerators is highlighted. Design aspects of regenerator are reviewed and the factors involved in the selection of regenerator material are enumerated. Various methods used to calculate the heat transfer coefficient and regenerator effectiveness are mentioned. Variation of effectiveness with various parameters is calculated by a computer programme using the ideal, Ackermann and Tipler formulae. Results are presented in graphical form. Listing of the computer programme is given in the Appendix. (author)

  9. An analysis of factors that influence the technical efficiency of Malaysian thermal power plants

    International Nuclear Information System (INIS)

    See, Kok Fong; Coelli, Tim

    2012-01-01

    The main objectives of this paper are to measure the technical efficiency levels of Malaysian thermal power plants and to investigate the degree to which various factors influence efficiency levels in these plants. Stochastic frontier analysis (SFA) methods are applied to plant-level data over an eight year period from 1998 to 2005. This is the first comprehensive analysis (to our knowledge) of technical efficiency in the Malaysian electricity generation industry using parametric method. Our empirical results indicate that ownership, plant size and fuel type have a significant influence on technical efficiency levels. We find that publicly-owned power plants obtain average technical efficiencies of 0.68, which is lower than privately-owned power plants, which achieve average technical efficiencies of 0.88. We also observe that larger power plants with more capacity and gas-fired power plants tend to be more technically efficient than other power plants. Finally, we find that plant age and peaking plant type have no statistically significant influence on the technical efficiencies of Malaysian thermal power plants. - Highlights: ► We examine the technical efficiency (TE) levels of Malaysian thermal power plants. ► We also investigate the degree to which various factors influence efficiency levels in these plants. ► Stochastic frontier analysis methods are used. ► Average plant would have to increase their TE level by 21% to reach the efficient frontier. ► Ownership, plant size and fuel type have a significant influence on the TE levels.

  10. Ejectors of power plants turbine units efficiency and reliability increasing

    Science.gov (United States)

    Aronson, K. E.; Ryabchikov, A. Yu.; Kuptsov, V. K.; Murmanskii, I. B.; Brodov, Yu. M.; Zhelonkin, N. V.; Khaet, S. I.

    2017-11-01

    The functioning of steam turbines condensation systems influence on the efficiency and reliability of a power plant a lot. At the same time, the condensation system operating is provided by basic ejectors, which maintain the vacuum level in the condenser. Development of methods of efficiency and reliability increasing for ejector functioning is an actual problem of up-to-date power engineering. In the paper there is presented statistical analysis of ejector breakdowns, revealed during repairing processes, the influence of such damages on the steam turbine operating reliability. It is determined, that 3% of steam turbine equipment breakdowns are the ejector breakdowns. At the same time, about 7% of turbine breakdowns are caused by different ejector malfunctions. Developed and approved design solutions, which can increase the ejector functioning indexes, are presented. Intercoolers are designed in separated cases, so the air-steam mixture can’t move from the high-pressure zones to the low-pressure zones and the maintainability of the apparatuses is increased. By U-type tubes application, the thermal expansion effect of intercooler tubes is compensated and the heat-transfer area is increased. By the applied nozzle fixing construction, it is possible to change the distance between a nozzle and a mixing chamber (nozzle exit position) for operating performance optimization. In operating conditions there are provided experimental researches of more than 30 serial ejectors and also high-efficient 3-staged ejector EPO-3-80, designed by authors. The measurement scheme of the designed ejector includes 21 indicator. The results of experimental tests with different nozzle exit positions of the ejector EPO-3-80 stream devices are presented. The pressure of primary stream (water steam) is optimized. Experimental data are well-approved by the calculation results.

  11. Have U.S. power plants become less technically efficient? The impact of carbon emission regulation

    International Nuclear Information System (INIS)

    Zhou, Yishu; Huang, Ling

    2016-01-01

    We estimate directional distance functions to measure the impact of carbon emission regulation, the Regional Greenhouse Gas Initiative (RGGI) in particular, on U.S. power plants' technical efficiency. The model shows that the average technical efficiency scores for coal and natural gas plants are 88.70% and 83.14% respectively, indicating a very technically efficient industry. We find no evidence of technical efficiency changes due to the RGGI regime in the RGGI area. In the same area, relatively less efficient coal plants exited the market and slightly more efficient natural gas plants entered, compared to the incumbent plants. In addition, some evidence of a spillover effect is found. Using a counterfactual analysis, the RGGI regulation leads to a 1.48% decline in the average technical efficiency for coal plants within neighboring states of RGGI during 2009–2013. - Highlights: • RGGI does not lead to a change in the technical efficiency of RGGI power plants. • Less efficient coal plants exit. • Entering natural gas plants are more efficient. • RGGI has a spillover effect on neighboring coal plants.

  12. Growing Arabidopsis in vitro: cell suspensions, in vitro culture, and regeneration.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2014-01-01

    An understanding of basic methods in Arabidopsis tissue culture is beneficial for any laboratory working on this model plant. Tissue culture refers to the aseptic growth of cells, organs, or plants in a controlled environment, in which physical, nutrient, and hormonal conditions can all be easily manipulated and monitored. The methodology facilitates the production of a large number of plants that are genetically identical over a relatively short growth period. Techniques, including callus production, cell suspension cultures, and plant regeneration, are all indispensable tools for the study of cellular biochemical and molecular processes. Plant regeneration is a key technology for successful stable plant transformation, while cell suspension cultures can be exploited for metabolite profiling and mining. In this chapter we report methods for the successful and highly efficient in vitro regeneration of plants and production of stable cell suspension lines from leaf explants of both Arabidopsis thaliana and Arabidopsis halleri.

  13. Improved Xylitol Production from D-Arabitol by Enhancing the Coenzyme Regeneration Efficiency of the Pentose Phosphate Pathway in Gluconobacter oxydans.

    Science.gov (United States)

    Li, Sha; Zhang, Jinliang; Xu, Hong; Feng, Xiaohai

    2016-02-10

    Gluconobacter oxydans is used to produce xylitol from D-arabitol. This study aims to improve xylitol production by increasing the coenzyme regeneration efficiency of the pentose phosphate pathway in G. oxydans. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were overexpressed in G. oxydans. Real-time PCR and enzyme activity assays revealed that G6PDH/6PGDH activity and coenzyme regeneration efficiency increased in the recombinant G. oxydans strains. Approximately 29.3 g/L xylitol was obtained, with a yield of 73.2%, from 40 g/L d-arabitol in the batch biotransformation with the G. oxydans PZ strain. Moreover, the xylitol productivity (0.62 g/L/h) was 3.26-fold of the wild type strain (0.19 g/L/h). In repetitive batch biotransformation, the G. oxydans PZ cells were used for five cycles without incurring a significant loss in productivity. These results indicate that the recombinant G. oxydans PZ strain is economically feasible for xylitol production in industrial bioconversion.

  14. The mass-retrofitting of an energy efficient-low carbon zone: Baselining the urban regeneration strategy, vision, masterplan and redevelopment scheme

    International Nuclear Information System (INIS)

    Deakin, Mark; Campbell, Fiona; Reid, Alasdair

    2012-01-01

    This paper examines a recent attempt to reduce energy consumption and the associated levels of carbon emissions by way of and through what has been termed: “an active and integrated institutional arrangement”. That is, by the integration of a mass retrofit proposal into an urban regeneration strategy, with the vision, master-plan, programme of renewal and redevelopment scheme which is capable of transforming into an energy efficient, low carbon zone. As a case study on how institutions can plan for low energy efficient redevelopments and the possibility of low carbon zones, the paper highlights the current state of the art on mass retrofits within the residential property sector and draws particular attention to the type of baseline assessments needed to legitimate, not only the strategic value of such arrangements, but their practical worth as measures capable of meeting emission targets set under the 2008 UK Climate Bill.

  15. Optimization of soybean (glycine max L.) regeneration for korean cultivars

    International Nuclear Information System (INIS)

    Phat, P.; Rehman, S. U.; Ju, H. J.; Jung, H. I.

    2015-01-01

    Tissue culture could provide key insights into the development of transgenic plants, production of good cultivars and secondary metabolites, conservation of endangered plants, and safeguarding of germplasms. In this study, the effects of shoot induction media, explants, cultivars, and phytohormone concentrations on the regeneration efficiency of Korean soybean cultivars were evaluated. Restricted dormancy and poor germination may affect regeneration, depending on the type of germination medium or initiation of phytohormone treatment. Therefore, we analyzed the effects of different germination media containing plant growth regulators, i.e. 6-benzyladenine (BAP), gibberellic acid 3 (GA /sub 3/), and naphthalene acetic acid (NAA), prior to investigating the influences of explant types, media with or without vitamins, cultivars, and different phytohormones (BAP and GA3). A high frequency of germination was observed in Murashige and Skooge (MS) medium with vitamins supplemented with 1 mg L /sup -1/ BAP and 0.25 mg L /sup -1/ GA /sub 3/. Cotyledonary node explants and Gamborg B5 with vitamins supplemented with 1 mg L /sup -1/ BAP and 0.17 mg L /sup -1/ GA /sub 3/ in callus induction medium (CIM) and 1 mg L /sup -1/ BAP in shoot induction medium (SIM) were found to be the most efficient conditions for induction of soybean regeneration, both in callus development and shoot regeneration. Two Korean soybean cultivars, cv. Daepung and Nampung, showed similar development of shoot regeneration efficiency, but significantly different shoot induction times. Therefore, the protocol reported here may be used for further development of regeneration efficiency and can be employed for efficient transformation in soybeans. (author)

  16. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the ...

    African Journals Online (AJOL)

    Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria that colonize plant roots and enhance plant growth by a wide variety of mechanisms. The use of PGPR is steadily increasing in agriculture and offers an attractive way to replace chemical fertilizers, pesticides, and supplements. Here, we have isolated and ...

  17. GENOMIC ANALYSIS OF PLANT-ASSOCIATED BACTERIA AND THEIR POTENTIAL IN ENHANCING PHYTOREMEDIATION EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Artur Piński

    2017-07-01

    Full Text Available Phytoremediation is an emerging technology that uses plants in order to cleanup pollutants including xenobiotics and heavy metals from soil, water and air. Inoculation of plants with plant growth promoting endophytic and rhizospheric bacteria can enhance efficiency of phytoremediation. Genomic analysis of four plant-associated strains belonging to the Stenotrophomonas maltophilia species revealed the presence of genes encoding proteins involved in plant growth promotion, biocontrol of phytopathogens, biodegradation of xenobiotics, heavy metals resistance and plant-bacteria-environment interaction. The results of this analysis suggest great potential of bacteria belonging to Stenotrophomonas maltophilia species in enhancing phytoremediation efficiency.

  18. Separating environmental efficiency into production and abatement efficiency. A nonparametric model with application to U.S. power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hampf, Benjamin

    2011-08-15

    In this paper we present a new approach to evaluate the environmental efficiency of decision making units. We propose a model that describes a two-stage process consisting of a production and an end-of-pipe abatement stage with the environmental efficiency being determined by the efficiency of both stages. Taking the dependencies between the two stages into account, we show how nonparametric methods can be used to measure environmental efficiency and to decompose it into production and abatement efficiency. For an empirical illustration we apply our model to an analysis of U.S. power plants.

  19. Pinch analysis for efficient energy utilization in IGCC plants: Incorporation of contact economiser

    CSIR Research Space (South Africa)

    Madzivhandila, VA

    2010-09-01

    Full Text Available plant demonstrated a 4% increase in the gross thermal efficiency of the plant from 47% to 51%. Despite this increase in gross efficiency, the flue gas stream en route to the stack still sits at a high enough temperature for heat to be recovered from it...

  20. Vegetative regeneration

    Science.gov (United States)

    George A. Schier; John R. Jones; Robert P. Winokur

    1985-01-01

    Aspen is noted for its ability to regenerate vegetatively by adventitious shoots or suckers that arise on its long lateral roots. It also produces sprouts from stumps and root collars; but they are not common. In a survey of regeneration after clearcutting mature aspen in Utah. Baker (1918b) found that 92% of the shoots originated from roots, 7% from root collars, and...

  1. Liver regeneration

    NARCIS (Netherlands)

    Chamuleau, R. A.; Bosman, D. K.

    1988-01-01

    Despite great advances in analysing hemodynamic, morphological and biochemical changes during the process of liver regeneration, the exact (patho)physiological mechanism is still unknown. A short survey of literature is given of the kinetics of liver regeneration and the significance of different

  2. Influence of Removal of a Non-native Tree Species Mimosa caesalpiniifolia Benth. on the Regenerating Plant Communities in a Tropical Semideciduous Forest Under Restoration in Brazil

    Science.gov (United States)

    Podadera, Diego S.; Engel, Vera L.; Parrotta, John A.; Machado, Deivid L.; Sato, Luciane M.; Durigan, Giselda

    2015-11-01

    Exotic species are used to trigger facilitation in restoration plantings, but this positive effect may not be permanent and these species may have negative effects later on. Since such species can provide a marketable product (firewood), their harvest may represent an advantageous strategy to achieve both ecological and economic benefits. In this study, we looked at the effect of removal of a non-native tree species ( Mimosa caesalpiniifolia) on the understory of a semideciduous forest undergoing restoration. We assessed two 14-year-old plantation systems (modified "taungya" agroforestry system; and mixed plantation using commercial timber and firewood tree species) established at two sites with contrasting soil properties in São Paulo state, Brazil. The experimental design included randomized blocks with split plots. The natural regeneration of woody species (height ≥0.2 m) was compared between managed (all M. caesalpiniifolia trees removed) and unmanaged plots during the first year after the intervention. The removal of M. caesalpiniifolia increased species diversity but decreased stand basal area. Nevertheless, the basal area loss was recovered after 1 year. The management treatment affected tree species regeneration differently between species groups. The results of this study suggest that removal of M. caesalpiniifolia benefited the understory and possibly accelerated the succession process. Further monitoring studies are needed to evaluate the longer term effects on stand structure and composition. The lack of negative effects of tree removal on the natural regeneration indicates that such interventions can be recommended, especially considering the expectations of economic revenues from tree harvesting in restoration plantings.

  3. Efficiency and cost optimization of a regenerative Organic Rankine Cycle power plant through the multi-objective approach

    International Nuclear Information System (INIS)

    Gimelli, A.; Luongo, A.; Muccillo, M.

    2017-01-01

    Highlights: • Multi-objective optimization method for ORC design has been addressed. • Trade-off between electric efficiency and overall heat exchangers area is evaluated. • The heat exchangers area was used as objective function to minimize the plant cost. • MDM was considered as organic working fluid for the thermodynamic cycle. • Electric efficiency: 14.1–18.9%. Overall heat exchangers area: 446–1079 m 2 . - Abstract: Multi-objective optimization could be, in the industrial sector, a fundamental strategic approach for defining the target design specifications and operating parameters of new competitive products for the market, especially in renewable energy and energy savings fields. Vector optimization mostly enabled the determination of a set of optimal solutions characterized by different costs, sizes, efficiencies and other key features. The designer can subsequently select the solution with the best compromise between the objective functions for the specific application and constraints. In this paper, a multi-objective optimization problem addressing an Organic Rankine Cycle system is solved with consideration for the electric efficiency and overall heat exchangers area as quantities that should be optimized. In fact, considering that the overall capital cost of the ORC system is dominated by the cost of the heat exchangers rather than that of the pump and turbine, this area is related to the cost of the plant and so it was used to indirectly optimize the economic system performance. For this reason, although cost data have not been used, the heat exchangers area was used as a second objective function to minimize the plant cost. Pareto optimal solutions highlighted a trade-off between the two conflicting objective functions. Octamethyltrisiloxane (MDM) was considered organic working fluid, while the following input parameters were used as decision variables: minimum and maximum pressure of the thermodynamic cycle; superheating and subcooling

  4. Effect of plant growth regulators, explants type and efficient plantlet ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... Plant Pathology, Tissue Culture and Biotechnology Laboratory, Department of Botany,. University of ... variability in response to growth regulators. In vitro rooting ..... an adult tree Wrightia tomentosa through enhanced axillary.

  5. An efficient DNA isolation method for tropical plants

    African Journals Online (AJOL)

    walkinnet

    2013-05-08

    May 8, 2013 ... 2Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, P. R. ... yielded high-quality DNA from 10 tropical plants including cassava, rubber tree, banana, etc. ..... Major Projects (GrantNo.

  6. Transparency and efficiency through plant operations management systems

    International Nuclear Information System (INIS)

    Ladage, L.

    2001-01-01

    Plant operations management systems, being IT application systems, provide integral support of the business processes making up plant operations management. The use of plant operations management systems improves mutually interdependent factors, such as high economic performance, high availability, and maximum safety. Since its commissioning in 1988, the Emsland nuclear power station (KKE) has been run with the IBFS plant operations management system. The work flow management system (WfMS), a module of IBFS, is described as an example of job order processing. IBFS-WfMS is to optimize all processes, thus cutting costs and ensuring that processes are run and documented reliably. Assessing the savings effect achieved through the use of IBFS-WfMS clearly reveals the savings in work/time achieved by the system. These savings are quoted as approx. 4 minutes and DM 10, respectively, per working step, which corresponds to several dozens of manyears or several million DM per annum in the KKE plant under consideration. This result can be extrapolated to other plants. (orig.) [de

  7. Efficient genetic transformation of okra (Abelmoschus esculentus (L.) Moench) and generation of insect-resistant transgenic plants expressing the cry1Ac gene.

    Science.gov (United States)

    Narendran, M; Deole, Satish G; Harkude, Satish; Shirale, Dattatray; Nanote, Asaram; Bihani, Pankaj; Parimi, Srinivas; Char, Bharat R; Zehr, Usha B

    2013-08-01

    Agrobacterium -mediated transformation system for okra using embryos was devised and the transgenic Bt plants showed resistance to the target pest, okra shoot, and fruit borer ( Earias vittella ). Okra is an important vegetable crop and progress in genetic improvement via genetic transformation has been impeded by its recalcitrant nature. In this paper, we describe a procedure using embryo explants for Agrobacterium-mediated transformation and tissue culture-based plant regeneration for efficient genetic transformation of okra. Twenty-one transgenic okra lines expressing the Bacillus thuringiensis gene cry1Ac were generated from five transformation experiments. Molecular analysis (PCR and Southern) confirmed the presence of the transgene and double-antibody sandwich ELISA analysis revealed Cry1Ac protein expression in the transgenic plants. All 21 transgenic plants were phenotypically normal and fertile. T1 generation plants from these lines were used in segregation analysis of the transgene. Ten transgenic lines were selected randomly for Southern hybridization and the results confirmed the presence of transgene integration into the genome. Normal Mendelian inheritance (3:1) of cry1Ac gene was observed in 12 lines out of the 21 T0 lines. We selected 11 transgenic lines segregating in a 3:1 ratio for the presence of one transgene for insect bioassays using larvae of fruit and shoot borer (Earias vittella). Fruit from seven transgenic lines caused 100 % larval mortality. We demonstrate an efficient transformation system for okra which will accelerate the development of transgenic okra with novel agronomically useful traits.

  8. IMPACT OF THE COLD END OPERATING CONDITIONS ON ENERGY EFFICIENCY OF THE STEAM POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Slobodan Laković

    2010-01-01

    Full Text Available The conventional steam power plant working under the Rankine Cycle and the steam condenser as a heat sink and the steam boiler as a heat source have the same importance for the power plant operating process. Energy efficiency of the coal fired power plant strongly depends on its turbine-condenser system operation mode. For the given thermal power plant configuration, cooling water temperature or/and flow rate change generate alterations in the condenser pressure. Those changes have great influence on the energy efficiency of the plant. This paper focuses on the influence of the cooling water temperature and flow rate on the condenser performance, and thus on the specific heat rate of the coal fired plant and its energy efficiency. Reference plant is working under turbine-follow mode with an open cycle cooling system. Analysis is done using thermodynamic theory, in order to define heat load dependence on the cooling water temperature and flow rate. Having these correlations, for given cooling water temperature it is possible to determine optimal flow rate of the cooling water in order to achieve an optimal condensing pressure, and thus, optimal energy efficiency of the plant. Obtained results could be used as useful guidelines in improving existing power plants performances and also in design of the new power plants.

  9. Improvement of operational efficiency based on fast startup plant concepts

    Energy Technology Data Exchange (ETDEWEB)

    Grumann, Ulrich; Kurz, Harald; Meinecke, Gero; Pickard, Andreas

    2010-09-15

    The power generation sector is currently confronted with new challenges relating to the conservation of dwindling fuel reserves. At the same time we must reduce CO2 emissions in order to counteract global warming. This paper shows that power plant operation, which employs shutdowns during periods of low load demand coupled with the optimization of startup procedures are a key to reducing CO2 emissions and to conserving resources. The startup technology developed by Siemens also offers grid support in the event of naturally occurring failures of renewable energy sources. Additionally, plant profitability is improved due to the resulting savings in fuel.

  10. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  11. Application of the thermal efficiency analysis software 'EgWin' at existing power plants

    International Nuclear Information System (INIS)

    Koda, E.; Takahashi, T.; Nakao, Y.

    2008-01-01

    'EgWin' is the general purpose software to analyze a thermal efficiency of power system developed in CRIEPI. This software has been used to analyze the existing power generation unit of 30 or more, and the effectiveness has been confirmed. In thermal power plants, it was used for the clarification of the thermal efficiency decrease factor and the quantitative estimation of the influence that each factor gave to the thermal efficiency of the plant. Also it was used for the quantitative estimation of the effect by the operating condition change and the facility remodeling in thermal power, atomic energy, and geothermal power plants. (author)

  12. Asymmetric reduction of ketopantolactone using a strictly (R)-stereoselective carbonyl reductase through efficient NADPH regeneration and the substrate constant-feeding strategy.

    Science.gov (United States)

    Zhao, Man; Gao, Liang; Zhang, Li; Bai, Yanbin; Chen, Liang; Yu, Meilan; Cheng, Feng; Sun, Jie; Wang, Zhao; Ying, Xiangxian

    2017-11-01

    To characterize a recombinant carbonyl reductase from Saccharomyces cerevisiae (SceCPR1) and explore its use in asymmetric synthesis of (R)-pantolactone [(R)-PL]. The NADPH-dependent SceCPR1 exhibited strict (R)-enantioselectivity and high activity in the asymmetric reduction of ketopantolactone (KPL) to (R)-PL. Escherichia coli, coexpressing SceCPR1 and glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH), was constructed to fulfill efficient NADPH regeneration. During the whole-cell catalyzed asymmetric reduction of KPL, the spontaneous hydrolysis of KPL significantly affected the yield of (R)-PL, which was effectively alleviated by the employment of the substrate constant-feeding strategy. The established whole-cell bioreduction for 6 h afforded 458 mM (R)-PL with the enantiomeric excess value of >99.9% and the yield of 91.6%. Escherichia coli coexpressing SceCPR1 and EsGDH efficiently catalyzed the asymmetric synthesis of (R)-PL through the substrate constant-feeding strategy.

  13. Numerical Research of Steam and Gas Plant Efficiency of Triple Cycle for Extreme North Regions

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2016-01-01

    Full Text Available The present work shows that temperature decrease of heat rejection in a cycle is necessary for energy efficiency of steam turbine plants. Minimum temperature of heat rejection at steam turbine plant work on water steam is 15°C. Steam turbine plant of triple cycle where lower cycle of steam turbine plant is organic Rankine cycle on low-boiling substance with heat rejection in air condenser, which safely allows rejecting heat at condensation temperatures below 0°C, has been offered. Mathematical model of steam and gas plant of triple cycle, which allows conducting complex researches with change of working body appearance and parameters defining thermodynamic efficiency of cycles, has been developed. On the basis of the model a program of parameters and index cycles design of steam and gas plants has been developed in a package of electron tables Excel. Numerical studies of models showed that energy efficiency of steam turbine plants of triple cycle strongly depend on low-boiling substance type in a lower cycle. Energy efficiency of steam and gas plants net 60% higher can be received for steam and gas plants on the basis of gas turbine plant NK-36ST on pentane and its condensation temperature below 0°C. It was stated that energy efficiency of steam and gas plants net linearly depends on condensation temperature of low-boiling substance type and temperature of gases leaving reco very boiler. Energy efficiency increases by 1% at 10% decrease of condensation temperature of pentane, and it increases by 0.88% at 15°C temperature decrease of gases leaving recovery boiler.

  14. Availability, efficiency and economy as criteria in power plant systems

    International Nuclear Information System (INIS)

    Marx, H.J.; Schoenert, D.

    1975-01-01

    Every plant planned, designed, and constructed for the solution of a clearly defined set of problems is a technological-economic system. Even the planning stage should already be seen from the point of view of system engineering, taking into consideration all components and their interdependences with the environment. Only then is an optimized design possible in view of the complexity of modern plants. If any factors are left out of the account or are not considered to their full extent, the use for the operator will be less than expected. Many disappointments of the last few decades would have been avoided if producers and operators had cooperated to achieve the optimum result, dividing the labour under the aspect of concerted system planning. (orig./AK) [de

  15. Natural gas cogeneration plants: considerations on energy efficiency

    International Nuclear Information System (INIS)

    Arcuri, P.; Florio, G.; Fragiacomo, P.

    1996-01-01

    Cogeneration is one of the most interesting solution to be adopted in order to achieve the goals of the Domestic Energy Plan. Besides the high primary energy savings, remarkable environmental benefits can be obtained. In the article, an energy analysis is carried out on the major cogeneration technologies depending on the parameters which define a generic user tipology. The energy indexes of a cogeneration plant are the shown in charts from which useful information on the achievable performances can be obtained

  16. EFFICIENCY OF PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR IN SUGARCANE

    Directory of Open Access Journals (Sweden)

    Antonio Morgado González

    2015-10-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR are an alternative for promoting sugarcane (Saccharum spp. development. Growth promotion was evaluated in sugarcane vitroplants inoculated separately with twenty-four strains of seven different bacterial species. Total indole synthesis and phosphate solubilization activity were determined in each strain. The experimental unit was one 5 L pot filled with a sterile mixture of farm soil-agrolite and one plant. The experimental design was completely random. Inoculation consisted of 1.0 mL of bacterial suspension (1 × 107 CFU. Plant height, stem diameter, number of shoots, leaf area and dry matter of shoot and root were determined every two weeks. The Ochrobactrum anthropi strains N208 and IMP311 and Pseudomonas luteola IMPCA244 had the highest production of total indoles (116.69, 115.70 and 117.34 µg mL-1, respectively. The Stenotrophomonas maltophilia strains CA158 and 79 exhibited the highest values of phosphate solubilization (222.43 and 216.38 µg mL-1, respectively. In general, plant height increased 27.75%, stem diameter 30.75%, number of tillers 38.5%, leaf area 49%, aerial dry matter 59.75% and root dry matter 59.5%. P. luteola, P. f luorescens, O. anthropi and S. maltophilia exhibited the highest values of the leaf area index, net assimilation, and relative and absolute growth rates. P. luteola IMPCA244, O. anthropi IMP311, Aeromonas salmonicida N264, Burkholderia cepacia N172, P. f luorescens N50 and S. maltophilia 79 promoted the highest values in different response variables throughout the study. Before using these strains as sugarcane biofertilizer, additional studies are required.

  17. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Rothstein, Steven J

    2011-02-01

    Development of genetic varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Generally, NUE can be divided into two parts. First, assimilation efficiency involves nitrogen (N) uptake and assimilation and second utilization efficiency involves N remobilization. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crop plants. One important approach is to develop an understanding of the plant response to different N regimes, especially to N limitation, using various methods including transcription profiling, analysing mutants defective in their normal response to N limitation, and studying plants that show better growth under N-limiting conditions. One can then attempt to improve NUE in crop plants using the knowledge gained from these studies. There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review. Increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required to achieve this.

  18. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Young-Deuk; Choon, Ng Kim

    2011-01-01

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling

  19. Low Cost, High Capacity Regenerable Sorbent for Carbon Dioxide Capture from Existing Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States); Jayaraman, Ambalavanan [TDA Research, Inc., Wheat Ridge, CO (United States); Dietz, Steven [TDA Research, Inc., Wheat Ridge, CO (United States)

    2016-03-03

    .90 and $39.71 per tonne compared to $65.46 and $66.56 per tonne for amine based system on 2011 $ basis, providing 40% lower cost of CO2 captured. In this analysis we have used a sorbent life of 4 years. If a longer sorbent life can be maintained (which is not unreasonable for fixed bed commercial PSA systems), this would lower the cost of CO2 captured by $0.05 per tonne (e.g., to $38.85 and $39.66 per tonne at 5 years sorbent replacement). These system analysis results suggest that TDA’s VSA-based post-combustion capture technology can substantially improve the power plant’s thermal performance while achieving near zero emissions, including greater than 90% carbon capture. The higher net plant efficiency and lower capital and operating costs results in a substantial reduction in the cost of carbon capture and cost of electricity for the power plant equipped with TDA’s technology.

  20. EFFICIENT MICROPROPAGATION FROM COTYLEDONARY NODE CULTURES OF COMMIPHORA WIGHTII (ARN. BHANDARI, AN ENDANGERED MEDICINALLY IMPORTANT DESERT PLANT

    Directory of Open Access Journals (Sweden)

    TARUN KANT

    2010-12-01

    Full Text Available Commiphora wightii (Arn. Bhandari, is a medicinal important desert species of the family Burseraceae. It is a well known for its valuable active principle found in its oleo-gum-resin (guggulsterone E and Z, which are used in drugs preparation for lowering the cholesterol level in human body. Due to its overexploitation, poor natural regeneration this valuable plant is on the verge of extinction and thus a IUCN Red listed species. In the present study we report development of an efficient micropropagation protocol from cotyledonary node of Commiphora wightii. Cotyledonary nodes were used as an explants and multiple microshoots were obtained on Murashige & Skoog (MS medium supplemented with 2.68 µM a-Naphthalene acetic acid (NAA and 4.44 µM 6-Benzylamino purine (BAP and on 2.68 µM NAA; 4.44 µM BAP with additives (glutamine 684.2 µM; thiamine 29.65 µM; activated charcoal 0.3% and various other hormonal combinations. Elongation of microshoot was significantly observed on the 2.46 µM Indole-3-butyric acid (IBA and 2.22 µM BAP supplemented MS medium. Efficient rooting was obtained on pretreated microshoot (4.92 µM IBA for 24 hours and followed by transfer to White’s medium without Plant Growth Regulators (PGR and high concentration of activated charcoal (AC. Rooted micro-shoots were transferred to vermiculite and wetted with Hoagland’s solution for primary hardening for 4-5 weeks and then finally transferred to plastic cups containing vermiculite, placed in mist chamber. Plantlets were transferred to soil: FYM 1:1 containing poly-bags, then to green shade house for complete acclimatization and finally transplanted to the experimental field.

  1. Increasing efficiency and optimizing thermoelectric power plant equipment. Povyshenie effektivnosti i optimizatsiia teploenergeticheskikh ustanovok

    Energy Technology Data Exchange (ETDEWEB)

    Andriushchenko, A.I.

    1981-01-01

    The problems of increasing the efficiency and optimizing the operational conditions of a thermoelectric power plant and providing efficient operational conditions of the primary and auxillary equipment at a thermoelectric power plant are examined. Methodologies and designs for optimizing the primary parameters of the power-generating equipment based on economic factors are given. A number of recommendations for designing equipment based on the research results are given.

  2. Biological regeneration of carrier material for the adsorption of halogen hydrocarbons in plants for cleaning up contaminated groundwater. Final report. Biologische Regeneration von Traegermaterial fuer die Adsorption von Halogenkohlenwasserstoffen in Anlagen zur Sanierung kontaminierten Grundwassers. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ressel, K

    1993-06-01

    Halogen hydrocarbons and above all chlorinated hydrocarbons are widespread harmful substances in soils and in groundwater. When cleaning up groundwater contamination, the contaminants are brought into the gas phase by strip processes. From the gas phase, the contaminants can be adsorbed on different carrier materials, mostly active carbon. One was searching for ways to regenerate this adsorption material. The mixed culture from a sea sediment most suitable for the decomposition of chlorinated hydrocarbons was optimized regarding its decomposition performance and was later used on the technical scale. In the decomposition experiments on the large technical scale, the cultures were lodged on filling bodies which has a much higher amount of gaps. In this case, an optimum supply of the micro-organisms with oxygen and methane is guaranteed, which is used as co-substrate. No intermediate product was found in a gas chromatography examination. The biologically occupied stage is situated between a desorption column and the active carbon filters, and reduces the load of harmful substances which can no longer be brought into the gas phase by stripping out. This has the advantage that it can be integrated in existing plants and can be adapted to any case of contamination by lodging adapted micro-organisms on it. The basis for each application must be separately researched. (orig.)

  3. Management Index Systems and Energy Efficiency Diagnosis Model for Power Plant: Cases in China

    Directory of Open Access Journals (Sweden)

    Jing-Min Wang

    2016-01-01

    Full Text Available In recent years, the energy efficiency of thermal power plant largely contributes to that of the industry. A thorough understanding of influencing factors, as well as the establishment of scientific and comprehensive diagnosis model, plays a key role in the operational efficiency and competitiveness for the thermal power plant. Referring to domestic and abroad researches towards energy efficiency management, based on Cloud model and data envelopment analysis (DEA model, a qualitative and quantitative index system and a comprehensive diagnostic model (CDM are construed. To testify rationality and usability of CDM, case studies of large-scaled Chinese thermal power plants have been conducted. In this case, CDM excavates such qualitative factors as technology, management, and so forth. The results shows that, compared with conventional model, which only considered production running parameters, the CDM bears better adaption to reality. It can provide entities with efficient instruments for energy efficiency diagnosis.

  4. Application and efficiency of scintillation for autoradiography of plant cells

    International Nuclear Information System (INIS)

    Olszewska, M.J.; Bilecka, A.; Kuran, H.; Marciniak, K.

    1981-01-01

    The effect of scintillators 2,5-diphenyl-oxazole (PPO) and 1,4-bis[2-(5-phenyl)-oxazolyl]- benzene (POPOP) mixed with PPO at -70 0 C and 22 0 C on the exposure time for the autoradiograms of plant cells incubated with 3 H-thymidine (30 min) or 3 H-uridine (30 min) were compared. The number of grains was greatly enhanced by the scintilliation fluids. The best results were obtained with PPO + POPOP mixture at -70 0 C. (orig.)

  5. A highly efficient machine planting system for forestry research plantations—the Wright-MSU method

    Science.gov (United States)

    James R. McKenna; Oriana Rueda-Krauss; Brian. Beheler

    2011-01-01

    For forestry research purposes, grid planting with uniform tree spacing is superior to planting with nonuniform spacing because it controls density across the plantation and facilitates accurate repeat measurements. The ability to cross-check tree positions in a grid-type plantation avoids problems associated with dead or missing trees and increases the efficiency and...

  6. An Efficient Power Regeneration and Drive Method of an Induction Motor by Means of an Optimal Torque Derived by Variational Method

    Science.gov (United States)

    Inoue, Kaoru; Ogata, Kenji; Kato, Toshiji

    When the motor speed is reduced by using a regenerative brake, the mechanical energy of rotation is converted to the electrical energy. When the regenerative torque is large, the corresponding current increases so that the copper loss also becomes large. On the other hand, the damping effect of rotation increases according to the time elapse when the regenerative torque is small. In order to use the limited energy effectively, an optimal regenerative torque should be discussed in order to regenerate electrical energy as much as possible. This paper proposes a design methodology of a regenerative torque for an induction motor to maximize the regenerative electric energy by means of the variational method. Similarly, an optimal torque for acceleration is derived in order to minimize the energy to drive. Finally, an efficient motor drive system with the proposed optimal torque and the power storage system stabilizing the DC link voltage will be proposed. The effectiveness of the proposed methods are illustrated by both simulations and experiments.

  7. A study on the boiler efficiency influenced by the boiler operation parameter in fossil power plant

    International Nuclear Information System (INIS)

    Kwon, Y. S.; Suh, J. S.

    2002-01-01

    The main reason to analyze the boiler operation parameter in fossil power plant is to increase boiler high efficiency and energy saving movement in the government. This study intends to have trend and analyze the boiler efficiency influenced by the boiler parameter in sub-critical and super-critical type boiler

  8. The development and chemistry of high efficiency combined cycle plants

    International Nuclear Information System (INIS)

    Svoboda, Robert

    1999-01-01

    This paper presents a boiler concept based on the combination of a low-pressure drum-type boiler with high-pressure once-through boiler and the appropriate water/steam cycle. An all volatile treatment is used in the low-pressure boiler and oxygenated treatment for the once-through high pressure system. Impurity control is achieved by adapted system design and materials, high quality make-up, an appropriate cleanliness concept and clean-up procedures for a cold start. Cycle refreshing is realized by blowdown from the high-pressure water-separator. This concept utilizes simper and less equipment than traditional solutions, resulting in increased power plant reliability and less requirement on maintenance and on capital cost [it

  9. Application of digital solutions to help the safe and efficient operation of nuclear power plants

    International Nuclear Information System (INIS)

    Ortega P, F.; Fernandez F, S.

    2017-09-01

    In the search for excellence, the emergence of solutions to digitize nuclear power plants is an opportunity to optimize the operation and safety of them. The new technologies available today in the market, applied under a global vision of the operation, can contribute to the excellent operation of nuclear power plants in terms of efficiency and effectiveness. Tecnatom has a long experience in various areas related to the operation of the plants, giving the aforementioned global vision, essential to develop global solutions that pursue the safe and efficient operation of the operation. (Author)

  10. Acoustic field modulation in regenerators

    Science.gov (United States)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  11. Robust regeneration protocol for the Agrobacterium tumefaciens mediated transformation of Solanum tuberosum

    International Nuclear Information System (INIS)

    Abbasi, A.; Bilal, M.; Hussain, J.; Shah, M. M.; Hassan, A.

    2016-01-01

    Plant genetic transformation requires robust regeneration system. Plant growth regulators (PGRs) such as cytokinins (CKs) play a pivotal role in organogenesis; however, CKs are the most expensive PGRs. In the current study, an efficient yet economical protocol for regeneration of potato plant was developed. Stem inter-nodal and leaf explants were cultured on different regeneration media supplemented with varying concentration of different CKs such as kinetin and zeatin. Murashige- Skoog media added with zeatin (1, 1.5 mg/L) was designated as RZ1, RZ1.5, respectively or kinetin (1.5, 2 mg/L) was designated as RK1.5 and RK2, respectively, however, concentrations of other hormones such as NAA (1-Naphthaleneacetic acid) and GA3 (Gibberellic acid A3) were kept same. RZ1 and RZ1.5 gave significantly better Results as compared to RK-type media in all aspects studied such as callus initiation, days to first shoot emergence, number of shoots per explants. RZ1 medium was then selected as regeneration media for Agrobacterium-mediated transformation of potato plants with cyanobacterial phosphoenol pyruvate carboxylase gene, which provided multiple putative transformants on selection media. The transformants were further confirmed through PCR. The current protocol is found to be cost effective and efficient for the regeneration of Solanum tuberosum and can be successfully implied for the Agrobacterium-mediated transformation. (author)

  12. High quality, high efficiency welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Aoki, Shigeyuki; Nagura, Yasumi

    1996-01-01

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  13. My Regeneration:

    DEFF Research Database (Denmark)

    Carter, Dale

    2017-01-01

    and cultural referents shows that it offers an index to the album. Using its frontier setting and a variety of sacred and secular myths, symbols and icons, ‘Heroes and Villains,’ like Smile as a whole, offers historically-informed visions of national decline, crisis and regeneration that are at once critical...

  14. Formosa Plastics Corporation: Plant-Wide Assessment of Texas Plant Identifies Opportunities for Improving Process Efficiency and Reducing Energy Costs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-01-01

    At Formosa Plastics Corporation's plant in Point Comfort, Texas, a plant-wide assessment team analyzed process energy requirements, reviewed new technologies for applicability, and found ways to improve the plant's energy efficiency. The assessment team identified the energy requirements of each process and compared actual energy consumption with theoretical process requirements. The team estimated that total annual energy savings would be about 115,000 MBtu for natural gas and nearly 14 million kWh for electricity if the plant makes several improvements, which include upgrading the gas compressor impeller, improving the vent blower system, and recovering steam condensate for reuse. Total annual cost savings could be $1.5 million. The U.S. Department of Energy's Industrial Technologies Program cosponsored this assessment.

  15. In vitro propagation of critically endangered species Scilla autumnalis L. – biochemical analyses of the regenerants

    Directory of Open Access Journals (Sweden)

    Cristian BANCIU

    2010-11-01

    Full Text Available The present study belongs to the international efforts for plant conservation from the areas threatened by human activities. The saline soils areas are restricting for agriculture and in some cases for fishery facilities and the plant species are extinct from those areas. Scilla autumnalis L. is one of the threatened plants (rare on the national red list of vascular plants from Romania that grows in the Natural Park Comana, Giurgiu County, South Romania. Seeds from plants grown in the natural habitat have been used for in vitro plant regeneration and multiplication. After successfully rooting and acclimatization of the regenerated plantlets from germinated seeds, biochemical studies have been performed in order to compare the regenerants from in vitro cultures with native plants from genetically point of view. Peroxydase and esterase’s spectra were the biochemical markers used.The results indicated that this plant species can be multiplicated, rooted and acclimatized on synthetic medium (MS supplemented with NAA, IBA, IAA, kinetin and BAP with a good efficiency and the regenerants had no genetic alterations determinated by culture conditions.

  16. A simple and efficient method for isolating small RNAs from different plant species

    Directory of Open Access Journals (Sweden)

    de Folter Stefan

    2011-02-01

    Full Text Available Abstract Background Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and efficient method to isolate small RNAs from different plant species. Results We developed a simple and efficient method to isolate small RNAs from different plant species by first comparing different total RNA extraction protocols, followed by streamlining the best one, finally resulting in a small RNA extraction method that has no need of first total RNA extraction and is not based on the commercially available TRIzol® Reagent or columns. This small RNA extraction method not only works well for plant tissues with high polysaccharide content, like cactus, agave, banana, and tomato, but also for plant species like Arabidopsis or tobacco. Furthermore, the obtained small RNA samples were successfully used in northern blot assays. Conclusion Here we provide a simple and efficient method to isolate small RNAs from different plant species, such as cactus, agave, banana, tomato, Arabidopsis, and tobacco, and the small RNAs from this simplified and low cost method is suitable for downstream handling like northern blot assays.

  17. Method for modifying trigger level for adsorber regeneration

    Science.gov (United States)

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  18. Efficient in vitro propagation of Artemisia nilagirica var. nilagirica (Indian wormwood) and assessment of genetic fidelity of micropropagated plants.

    Science.gov (United States)

    Shinde, Smita; Sebastian, Joseph Kadanthottu; Jain, Jyothi Ramesh; Hanamanthagouda, Manohar Shirugumbi; Murthy, Hosakatte Niranjana

    2016-10-01

    A reliable protocol has been established for in vitro propagation of Artemisia nilagirica var. nilagirica (Indian wormwood), a valuable medicinal plant from India. A highly proliferating organogenic callus was obtained on Murashige and Skoog (MS) medium supplemented with 2.5 µM IAA when nodal explants were cultured on MS medium supplemented with various growth regulators. Further, highest regeneration frequency (83.3 %) of adventitious shoots was observed, when the callus was sub-cultured on MS medium supplemented with 6-benzylaminopurine (BAP; 2.5 µM) along with 7.5 µM 2-isopentenyl adenine (2-iP). An optimal of 10.16 ± 2.24 shoots were regenerated on medium supplemented with 2.5 µM BAP + 7.5 µM 2-iP. Quarter strength MS medium supplemented with 10 µM IBA was effective for rooting of the shoots. Ex-vitro plants were normal and were established successfully. Cytological and molecular marker studies showed that regenerated plants showed genetic stability in micro-propagated plants.

  19. Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency

    Directory of Open Access Journals (Sweden)

    Fan Qiuling

    2012-05-01

    Full Text Available Abstract Background Whole plants or plant cell cultures can serve as low cost bioreactors to produce massive amounts of a specific protein for pharmacological or industrial use. To maximize protein expression, translation of mRNA must be optimized. Many plant viral RNAs harbor extremely efficient translation enhancers. However, few of these different translation elements have been compared side-by-side. Thus, it is unclear which are the most efficient translation enhancers. Here, we compare the effects of untranslated regions (UTRs containing translation elements from six plant viruses on translation in wheat germ extract and in monocotyledenous and dicotyledenous plant cells. Results The highest expressing uncapped mRNAs contained viral UTRs harboring Barley yellow dwarf virus (BYDV-like cap-independent translation elements (BTEs. The BYDV BTE conferred the most efficient translation of a luciferase reporter in wheat germ extract and oat protoplasts, while uncapped mRNA containing the BTE from Tobacco necrosis virus-D translated most efficiently in tobacco cells. Capped mRNA containing the Tobacco mosaic virus omega sequence was the most efficient mRNA in tobacco cells. UTRs from Satellite tobacco necrosis virus, Tomato bushy stunt virus, and Crucifer-infecting tobamovirus (crTMV did not stimulate translation efficiently. mRNA with the crTMV 5′ UTR was unstable in tobacco protoplasts. Conclusions BTEs confer the highest levels of translation of uncapped mRNAs in vitro and in vivo, while the capped omega sequence is most efficient in tobacco cells. These results provide a basis for understanding mechanisms of translation enhancement, and for maximizing protein synthesis in cell-free systems, transgenic plants, or in viral expression vectors.

  20. Measurement of N uptake efficiency at various age of tea plant using isotope technique

    International Nuclear Information System (INIS)

    Wibowo, Z.S.; Rachmiati, Y.

    1988-01-01

    Three months experiment to determine the efficiency of N uptake by tea plant of various age was conducted. The experiment was carried out on Andosols soil and the chosen plants were groupen in 1-5, 6-15, 16-30, 31-60 and 60 years old. The experiment used urea fertilizer enriched by 2% 15-N atom, excess. Urea of the rate of 23 kg N/ha was given in one application in the form of solution. The 15-N assay was done weekly for young shoots, old leaves, stalks, and branches. Results of the experiment showed that N uptake of tea plant increased significantly after two weeks upto five weeks of N application. The efficiency of N uptake accumulated in the plucked leaves was the highest in the plant of 6-15 years old. The N uptake efficiency of the other groups of plant was nearly equal. The uptake of N-fertilizer accumulated in pruning materials of the older plant was higher than in the younger one. It proved that the absorbed N in the older plant was mostly used for old leaves and wood development. (author). 4 refs.; 1 fig.; 3 tabs

  1. Biomass Allocation Patterns Are Linked to Genotypic Differences in Whole-Plant Transpiration Efficiency in Sunflower

    Directory of Open Access Journals (Sweden)

    Luciano Velázquez

    2017-11-01

    Full Text Available Increased transpiration efficiency (the ratio of biomass to water transpired, TE could lead to increased drought tolerance under some water deficit scenarios. Intrinsic (i.e., leaf-level TE is usually considered as the primary source of variation in whole-plant TE, but empirical data usually contradict this assumption. Sunflower has a significant variability in TE, but a better knowledge of the effect of leaf and plant-level traits could be helpful to obtain more efficient genotypes for water use. The objective of this study was, therefore, to assess if genotypic variation in whole-plant TE is better related to leaf- or plant-level traits. Three experiments were conducted, aimed at verifying the existence of variability in whole-plant TE and whole-plant and leaf-level traits, and to assess their correlation. Sunflower public inbred lines and a segregating population of recombinant inbred lines were grown under controlled conditions and subjected to well-watered and water-deficit treatments. Significant genotypic variation was found for TE and related traits. These differences in whole-plant transpiration efficiency, both between genotypes and between plants within each genotype, showed no association to leaf-level traits, but were significantly and negatively correlated to biomass allocation to leaves and to the ratio of leaf area to total biomass. These associations are likely of a physiological origin, and not only a consequence of genetic linkage in the studied population. These results suggest that genotypic variation for biomass allocation could be potentially exploited as a source for increased transpiration efficiency in sunflower breeding programmes. It is also suggested that phenotyping for TE in this species should not be restricted to leaf-level measurements, but also include measurements of plant-level traits, especially those related to biomass allocation between photosynthetic and non-photosynthetic organs.

  2. Biomass Allocation Patterns Are Linked to Genotypic Differences in Whole-Plant Transpiration Efficiency in Sunflower.

    Science.gov (United States)

    Velázquez, Luciano; Alberdi, Ignacio; Paz, Cosme; Aguirrezábal, Luis; Pereyra Irujo, Gustavo

    2017-01-01

    Increased transpiration efficiency (the ratio of biomass to water transpired, TE) could lead to increased drought tolerance under some water deficit scenarios. Intrinsic (i.e., leaf-level) TE is usually considered as the primary source of variation in whole-plant TE, but empirical data usually contradict this assumption. Sunflower has a significant variability in TE, but a better knowledge of the effect of leaf and plant-level traits could be helpful to obtain more efficient genotypes for water use. The objective of this study was, therefore, to assess if genotypic variation in whole-plant TE is better related to leaf- or plant-level traits. Three experiments were conducted, aimed at verifying the existence of variability in whole-plant TE and whole-plant and leaf-level traits, and to assess their correlation. Sunflower public inbred lines and a segregating population of recombinant inbred lines were grown under controlled conditions and subjected to well-watered and water-deficit treatments. Significant genotypic variation was found for TE and related traits. These differences in whole-plant transpiration efficiency, both between genotypes and between plants within each genotype, showed no association to leaf-level traits, but were significantly and negatively correlated to biomass allocation to leaves and to the ratio of leaf area to total biomass. These associations are likely of a physiological origin, and not only a consequence of genetic linkage in the studied population. These results suggest that genotypic variation for biomass allocation could be potentially exploited as a source for increased transpiration efficiency in sunflower breeding programmes. It is also suggested that phenotyping for TE in this species should not be restricted to leaf-level measurements, but also include measurements of plant-level traits, especially those related to biomass allocation between photosynthetic and non-photosynthetic organs.

  3. Plant water use efficiency over geological time--evolution of leaf stomata configurations affecting plant gas exchange.

    Science.gov (United States)

    Assouline, Shmuel; Or, Dani

    2013-01-01

    Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss). Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d) and size (s), and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws , A and E and maximal relative transpiring leaf area, (amax ⋅d), exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle.

  4. Efficiency of Trichome-Based Plant Defense in Phaseolus vulgaris Depends on Insect Behavior, Plant Ontogeny, and Structure

    Directory of Open Access Journals (Sweden)

    Zhenlong Xing

    2017-11-01

    Full Text Available Plant trichomes often function as physical barriers in preventing arthropod feeding and oviposition. Even though insects are frequently reported being entrapped and killed by trichome traps, the actual trapping behavior has not yet been described in detail. Capture experiments showed that capture efficiency during the plant's vegetative stage was considerably higher than in the fruiting and cotyledon stages. The ventral surface of the leaf was more effective in trapping flies than other parts of the plant. Capture-events monitoring showed that the mouthparts, legs, and ovipositor of Liriomyza trifolii adults are the body parts involved in entrapment by surface trichomes on Phaseolus vulgaris plants, and subsequently, deter their ability to feed, walk, and oviposit. Of the three main body parts normally affected, mouthparts was found to be the body part most susceptible to the trichomes. Entrapments were most often caused by landing, followed by puncturing or feeding, and occasionally by walking or fighting. Using scanning electron microscopy (SEM and optical microscopy, we determined the susceptible positions of each body part and found that the flies were all trapped by hooked trichomes. This study revealed the process by which leafminer flies are entrapped by surface trichomes of the host plant and evaluated the capture efficiency. The results will contribute to our understanding of physical defenses against herbivores.

  5. Impact of inlet fogging and fuels on power and efficiency of gas turbine plants

    Directory of Open Access Journals (Sweden)

    Basha Mehaboob

    2013-01-01

    Full Text Available A computational study to assess the performance of different gas turbine power plant configurations is presented in this paper. The work includes the effect of humidity, ambient inlet air temperature and types of fuels on gas turbine plant configurations with and without fogger unit. Investigation also covers economic analysis and effect of fuels on emissions. GT frames of various sizes/ratings are being used in gas turbine power plants in Saudi Arabia. 20 MWe GE 5271RA, 40 MWe GE-6561B and 70 MWe GE-6101FA frames are selected for the present study. Fogger units with maximum mass flow rate of 2 kg/s are considered for the present analysis. Reverse Osmosis unit of capacity 4 kg/s supplies required water to the fogger units. GT PRO software has been used for carrying out the analysis including; net plant output and net efficiency, break even electricity price and break even fuel LHV price etc., for a given location of Saudi Arabia. The relative humidity and temperature have been varied from 30 to 45 % and from 80 to 100° F, respectively. Fuels considered in the study are natural gas, diesel and heavy bunker oil. Simulated gas turbine plant output from GT PRO has been validated against an existing gas turbine plant output. It has been observed that the simulated plant output is less than the existing gas turbine plant output by 5%. Results show that variation of humidity does not affect the gas turbine performance appreciably for all types of fuels. For a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to increase by 5 and 2 %, respectively for all fuels, for GT only situation. However, for GT with Fogger scenario, for a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to further increase by 3.2 and 1.2 %, respectively for all fuels. For all GT frames with fogger, the net plant output and efficiency are relatively higher as compared to GT only case for all

  6. Influence of spaceflight on the efficiency of tomatoes quality and plant resistance to viral infection

    Science.gov (United States)

    Dashchenko, Anna; Mishchenko, Lidiya

    Tomatoes are an important agricultural crop. The use of plants for life support in long-term space flight advances multiple problems - an adaptation to microgravity and taste. Conditions of microgravity are stressful for plants and they cause them adaptation syndrome to protect and preserve homeostasis (Kordyum, 2010, 2012;. Hasenstein, 1999). Tomatoes are also a product of the diet of astronauts, which is an important part of their life - the regeneration gas environment (photosynthesis), the relaxation factor in psychological people and a powerful antioxidant. In 2007, the tomato seeds, genetically created by scientists from the University of North Carolina, was placed on the International Space Station. But the experiment failed because the seedlings died (Khodakovskaya). Although researchers do not bind this fact with microgravity, it is clear that the study of this factor on plants is rather important. Therefore, the study of the effect of space flight conditions on plant species continues. The aim of our study was to investigate the effect of space flight on tomato plant resistance to viral infection and quality products. Seeds of tomato plants (Lycopersicon esculentum Mill., Sort Podmoskovny early) 6 years (1992-1998) were in terms of long-term space flight on the Russian space station "Mir". Then the seeds germinated in the spring of 2011 and grew up in the Earth's field on the natural infectious background. Part of the plants underwent 5 reproductive phase, resulting in 2011 investigated tomatoes from seed 1st and 5th reproduction, in 2012 - the second and sixth, respectively, and in 2013 - as the second and sixth (sow seeds obtained by us in the Ukraine in 2011.) In our research we used two controls: 1 (stationary control) - plants of the first generation seeds which were not in outer space; 2 - five plants from seed reproduction that exhibited in space and were grown in parallel under the same conditions of the studied plants. Defining of β-carotene and

  7. The determinants of cost efficiency of hydroelectric generating plants: A random frontier approach

    International Nuclear Information System (INIS)

    Barros, Carlos P.; Peypoch, Nicolas

    2007-01-01

    This paper analyses the technical efficiency in the hydroelectric generating plants of a main Portuguese electricity enterprise EDP (Electricity of Portugal) between 1994 and 2004, investigating the role played by increase in competition and regulation. A random cost frontier method is adopted. A translog frontier model is used and the maximum likelihood estimation technique is employed to estimate the empirical model. We estimate the efficiency scores and decompose the exogenous variables into homogeneous and heterogeneous. It is concluded that production and capacity are heterogeneous, signifying that the hydroelectric generating plants are very distinct and therefore any energy policy should take into account this heterogeneity. It is also concluded that competition, rather than regulation, plays the key role in increasing hydroelectric plant efficiency

  8. Efficient and equitable spatial allocation of renewable power plants at the country scale

    Science.gov (United States)

    Drechsler, Martin; Egerer, Jonas; Lange, Martin; Masurowski, Frank; Meyerhoff, Jürgen; Oehlmann, Malte

    2017-09-01

    Globally, the production of renewable energy is undergoing rapid growth. One of the most pressing issues is the appropriate allocation of renewable power plants, as the question of where to produce renewable electricity is highly controversial. Here we explore this issue through analysis of the efficient and equitable spatial allocation of wind turbines and photovoltaic power plants in Germany. We combine multiple methods, including legal analysis, economic and energy modelling, monetary valuation and numerical optimization. We find that minimum distances between renewable power plants and human settlements should be as small as is legally possible. Even small reductions in efficiency lead to large increases in equity. By considering electricity grid expansion costs, we find a more even allocation of power plants across the country than is the case when grid expansion costs are neglected.

  9. Manganese Loading and Photosystem II Stability are Key Components of Manganese Efficiency in Plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund

    Manganese (Mn) deficiency constitutes a major plant nutritional problem in commercial crop production of winter cereals. In plants, Mn has an indispensable role in the oxygen evolving complex (OEC) of photosystem II (PSII). Hence, the consequences of Mn deficiency are reduced plant growth......, and eventually substantial yield losses. It is well known, that genotypes within plant species differ considerably in tolerance to growth under Mn limiting conditions, a phenomenon designated as Mn efficiency. However, the physiological responses reflecting the underlying mechanisms of Mn efficiency are still...... not fully understood. In this PhD study, a new method for determination and characterization of metal binding in size-fractionated photosynthetic protein complexes from barley thylakoids was established. The applicability of the method was shown by quantification of Mn binding in PSII from thylakoids of two...

  10. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process.

    Science.gov (United States)

    Jia, Yuying; Yao, Xingdong; Zhao, Mingzhe; Zhao, Qiang; Du, Yanli; Yu, Cuimei; Xie, Futi

    2015-08-07

    The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert) with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman), which showed a relatively weak susceptibility. Gibberellin (GA) levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA). Higher zeatin riboside (ZR) content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA) content, polyphenol oxidase (PPO) and peroxidase (POD) activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively.

  11. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process

    Directory of Open Access Journals (Sweden)

    Yuying Jia

    2015-08-01

    Full Text Available The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman, which showed a relatively weak susceptibility. Gibberellin (GA levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA. Higher zeatin riboside (ZR content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA content, polyphenol oxidase (PPO and peroxidase (POD activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively.

  12. Conditional Order-m Efficiency of Wastewater Treatment Plants: The Role of Environmental Factors

    Directory of Open Access Journals (Sweden)

    Ramón Fuentes

    2015-10-01

    Full Text Available The growing economic and environmental importance of managing water resources at a global level also entails greater efforts and interest in improving the functioning and efficiency of the increasingly more numerous wastewater treatment plants (WWTPs. In this context, this study analyzes the efficiency of a uniform sample of plants of this type located in the region of Valencia (Spain. The type of efficiency measure used for this (conditional order-m efficiency allows continuous and discrete contextual variables to be directly involved in the analysis and enables the assessment of their statistical significance and effect (positive or negative. The main findings of the study showed that the quality of the influent water and also the size and age of the plants had a significant influence on their efficiency levels. In particular, as regards the effect of such variables, the findings pointed to the existence of an inverse relationship between the quality of the influent water and the efficiency of the WWTPs. Also, a lower annual volume of treated water and more modern installations showed a positive influence. Additionally, the average efficiency levels observed turned out to be higher than those reported in previous studies.

  13. Efficient micropropagation of highly economic, medicinal and ornamental plant Lallemantia iberica (Bieb.) Fisch. and C. A. Mey.

    Science.gov (United States)

    Ozdemir, Fethi Ahmet; Yildirim, Mehmet Ugur; Pourali Kahriz, Mahsa

    2014-01-01

    Lallemantia iberica (Bieb.) Fisch. and C. A. Mey is high valued annual ornamental and medicinal plant from Lamiaceae family that prefers dry sunny hillsides, roadsides, slopes, and fallow fields over an altitude of 500-2150 m. It bears beautiful white flowers and bloom from April to June each year. This study reports L. iberica micropropagation using cotyledon node explants isolated from 15-day-old in vitro regenerated plantlets. The cotyledon node explants were cultured on MS medium containing 0.50, 1.00 plus 2.00 mg/L BAP, 0.00, 0.01, and 0.02 mg/L NAA. Maximum shoot regeneration was noted on MS medium containing 0.50 mg/L BAP. Well-developed micropropagated shoots were rooted on MS medium containing 1.00 mg/L IBA. The rooted plants were easily hardened in the growth chamber and acclimatised in greenhouse.

  14. Soft Sensors: Chemoinformatic Model for Efficient Control and Operation in Chemical Plants.

    Science.gov (United States)

    Funatsu, Kimito

    2016-12-01

    Soft sensor is statistical model as an essential tool for controlling pharmaceutical, chemical and industrial plants. I introduce soft sensor, the roles, the applications, the problems and the research examples such as adaptive soft sensor, database monitoring and efficient process control. The use of soft sensor enables chemical industrial plants to be operated more effectively and stably. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Estimating the power efficiency of the thermal power plant modernization by using combined-cycle technologies

    International Nuclear Information System (INIS)

    Hovhannisyan, L.S.; Harutyunyan, N.R.

    2013-01-01

    The power efficiency of the thermal power plant (TPP) modernization by using combined-cycle technologies is introduced. It is shown that it is possible to achieve the greatest decrease in the specific fuel consumption at modernizing the TPP at the expense of introducing progressive 'know-how' of the electric power generation: for TPP on gas, it is combined-cycle, gas-turbine superstructures of steam-power plants and gas-turbines with heat utilization

  16. Model-Based Analysis and Efficient Operation of a Glucose Isomerization Reactor Plant

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Madsen, Ulrich; Pedersen, Sven

    2015-01-01

    efficiency. The objective of this study is the application of the developed framework on an industrial case study of a glucose isomerization (GI) reactor plant that is part of a corn refinery, with the objective to improve the productivity of the process. Therefore, a multi-scale reactor model...... is developedfor use as a building block for the GI reactor plant simulation. An optimal operation strategy is proposed on the basis of the simulation results...

  17. Plant-Wide Energy Efficiency Assessment at the Arizona Portland Cement Plant in Rillito, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Stephen J. Coppinger, P.E.; Bruce Colburn, Ph.D., P.E., CEM

    2007-05-17

    A Department of Energy Plant-wide Assessment was undertaken by Arizona Portland Cement (APC) beginning in May 2005. The assessment was performed at APC’s cement production facility in Rillito, Arizona. The assessment included a compressed air evaluation along with a detailed process audit of plant operations and equipment. The purpose of this Energy Survey was to identify a series of energy cost savings opportunities at the Plant, and provide preliminary cost and savings estimates for the work. The assessment was successful in identifying projects that could provide annual savings of over $2.7 million at an estimated capital cost of $4.3 million. If implemented, these projects could amount to a savings of over 4.9 million kWh/yr and 384,420 MMBtu/year.

  18. New Source Review and coal plant efficiency gains: How new and forthcoming air regulations affect outcomes

    International Nuclear Information System (INIS)

    Adair, Sarah K.; Hoppock, David C.; Monast, Jonas J.

    2014-01-01

    Forthcoming carbon dioxide (CO 2 ) regulations for existing power plants in the United States have heightened interest in thermal efficiency gains for coal-fired power plants. Plant modifications to improve thermal efficiency can trigger New Source Review (NSR), a Clean Air Act requirement to adopt of state-of-the-art pollution controls. This article explores whether existing coal plants would likely face additional pollution control requirements if they undertake modifications that trigger NSR. Despite emissions controls that are or will be installed under the Mercury and Air Toxics Standards (MATS) and Clean Air Interstate Rule (CAIR) or its replacement, 80% of coal units (76% of capacity) that are expected to remain in operation are not projected to meet the minimum NSR requirements for at least one pollutant: nitrogen oxides or sulfur dioxide. This is an important consideration for the U.S. Environmental Protection Agency and state policymakers as they determine the extent to which CO 2 regulation will rely on unit-by-unit thermal efficiency gains versus potential flexible compliance strategies such as averaging, trading, energy efficiency, and renewable energy. NSR would likely delay and add cost to thermal efficiency projects at a majority of coal units, including projects undertaken to comply with forthcoming CO 2 regulation. - Highlights: • We explore the status of the U.S. coal-fired fleet relative to New Source Review (NSR) requirements. • Modifications to improve thermal efficiency can trigger NSR. • Thermal efficiency gains may also be an important strategy for forthcoming CO 2 regulation. • 80% Of non-retiring coal-fired units are projected not to meet minimum NSR requirements. • NSR is an important consideration for the design of CO 2 regulations for existing plants

  19. LiBr absorption systems integrated with high–efficiency IGSG plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Bellomare, Filippo

    2015-01-01

    vapor compression inverse cycles; waste heat from other systems can in fact be used as an efficient input instead of electrical energy. The opportunity to integrate Li-Br absorption systems with a high-efficiency energy plant was studied; rejected heat from a Municipal Solid Waste Gasification Plant......Over the last few years, the energy demand for cooling systems is increasing; different solutions in fact have been proposed in order to minimize the energetic and environmental impact of this trend. In this direction, absorption cooling systems are recognized as a valid alternative to traditional...

  20. Factors that are influencing the economical efficiency of the CHP plants

    International Nuclear Information System (INIS)

    Ruieneanu, Liviu; Ion, Mircea

    2004-01-01

    This paper presents some factors that might influence the economical efficiency of a cogeneration plant. These factors are: the understanding of the fuel economy at consumers; - the influence of the electricity production efficiency; - the influence of exergy losses. The statistical data for different countries of Europe show that under the conditions of a deregulated liberalized market of energy the cogeneration plants have numerous financial difficulties. Even if the use of cogeneration ensures a fuel saving, if this economy it is not obvious for the consumers, those consumers might prefer for the production of heat the use of a heat only generating plant. This trend might spread rapidly if the increase of the electricity will not be present immediately in the bill of the consumers that renounce to the heat produced by the CHP plant. The method used for cost allocation on both types of energy has also a great importance, because it might facilitate the rehabilitation measures and doing so it might allow lower prices for both types of energy. Perhaps the most important factor for the economical efficiency of the plant are the exergy losses. The analysis presented above shows two things, namely: - that the electricity production has a very high price, and this cost might be lowered down by some rehabilitation measures (for example repowering); - and that the heat only plants (boilers) are not affected by the exergy losses and that's why if we analyse only the heat production, the use of cogeneration might seem inappropriate

  1. Periodontal regeneration.

    Science.gov (United States)

    Ivanovski, S

    2009-09-01

    The ultimate goal of periodontal therapy is the regeneration of the tissues destroyed as a result of periodontal disease. Currently, two clinical techniques, based on the principles of "guided tissue regeneration" (GTR) or utilization of the biologically active agent "enamel matrix derivative" (EMD), can be used for the regeneration of intrabony and Class II mandibular furcation periodontal defects. In cases where additional support and space-making requirements are necessary, both of these procedures can be combined with a bone replacement graft. There is no evidence that the combined use of GTR and EMD results in superior clinical results compared to the use of each material in isolation. Great variability in clinical outcomes has been reported in relation to the use of both EMD and GTR, and these procedures can be generally considered to be unpredictable. Careful case selection and treatment planning, including consideration of patient, tooth, site and surgical factors, is required in order to optimize the outcomes of treatment. There are limited data available for the clinical effectiveness of other biologically active molecules, such as growth factors and platelet concentrates, and although promising results have been reported, further clinical trials are required in order to confirm their effectiveness. Current active areas of research are centred on tissue engineering and gene therapy strategies which may result in more predictable regenerative outcomes in the future.

  2. General Analysis of System Efficiency in Application of Combined Power Plants for Gas-Distribution Station

    Directory of Open Access Journals (Sweden)

    A. D. Kachan

    2004-01-01

    Full Text Available The paper proposes utilization of discharged heat of gas-piston engine (GPE or contact steam-gas plants (SGP with the purpose to heat up gas at gas-distribution stations (GDS of combined power plants with turbine and gas-expansion units. Calculations prove significant economic efficiency of the proposed variant in comparison with the application of ordinary gas- turbine units. Technical and economic calculation is used to determine gas-piston engine or contact steam-gas plant power for specific operational conditions of gas-distribution stations and utilization rate of discharged heat.

  3. HyPEP-FY 07 Annual Report: A Hydrogen Production Plant Efficiency Calculation Program

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2007-09-01

    The Very High Temperature Gas-Cooled Reactor (VHTR) coupled to the High Temperature Steam Electrolysis (HTSE) process is one of two reference integrated systems being investigated by the U.S. Department of Energy and Idaho National Laboratory for the production of hydrogen. In this concept the VHTR outlet temperature of 900 °C provides thermal energy and high efficiency electricity for the electrolysis of steam in the HTSE process. In the second reference system the Sulfur Iodine (SI) process is coupled to the VHTR to produce hydrogen thermochemically. In the HyPEP project we are investigating and characterizing these two reference systems with respect to production, operability, and safety performance criteria. Under production, plant configuration and working fluids are being studied for their effect on efficiency. Under operability, control strategies are being developed with the goal of maintaining equipment within operating limits while meeting changes in demand. Safety studies are to investigate plant response for equipment failures. Specific objectives in FY07 were (1) to develop HyPEP Beta and verification and validation (V&V) plan, (2) to perform steady state system integration, (3) to perform parametric studies with various working fluids and power conversion unit (PCU) configurations, (4) the study of design options such as pressure, temperature, etc. (5) to develop a control strategy and (6) to perform transient analyses for plant upsets, control strategy, etc for hydrogen plant with PCU. This report describes the progress made in FY07 in each of the above areas. (1) The HyPEP code numeric scheme and Graphic User Interface have been tested and refined since the release of the alpha version a year ago. (2) The optimal size and design condition for the intermediate heat exchanger, one of the most important components for integration of the VHTR and HTSE plants, was estimated. (3) Efficiency calculations were performed for a variety of working fluids for

  4. Lean Maintenance Applied to Improve Maintenance Efficiency in Thermoelectric Power Plants

    OpenAIRE

    Orlando Duran; Andrea Capaldo; Paulo Andrés Duran Acevedo

    2017-01-01

    Thermoelectric power plants consist of a set of critical equipment that require high levels of availability and reliability. Due to this, maintenance of these physical assets is gaining momentum in industry. Maintenance is considered as an activity that contributes to improving the availability, efficiency and productivity of each piece of equipment. Several techniques have been used to achieve greater efficiencies in maintenance, among which we can find the lean maintenance philosophy. Despi...

  5. EFFECTS OF PLANTING DENSITYAND ORGANIC FERTILIZATION DOSES ON PRODUCTIVE EFFICIENCY OF CACTUS PEAR

    Directory of Open Access Journals (Sweden)

    NALÍGIA GOMES DE MIRANDA E SILVA

    2016-01-01

    Full Text Available Cactus is crucial for the livestock of semi - arid regions in Brazil. This plant has shown the high productivity of forage, which is influenced by several management factors. This study aimed to evaluate the effect of organic fertilization doses (20, 40 and 80 t/ ha of bovine manure/ha/two years and planting densities (20, 40, 80 and 160 thousand plants/ha on the productivity of cactus pear Clone IPA - 20 ( Opuntia ficus - indica Mill. At the Experimental Station of Caruaru at the Agronomic Institute of Pernambuco, IPA has conducted the experiment. The experimental design was randomized blocks, with split plot arrangements. Higher shoot productivity was observed with increased population density and the application of manure at 80 t ha - 1two years - 1 with values of 61, 90, 117 and 139 t DM ha - 1 two years - 1 at densities of 20, 40, 80 and 160,000 plants ha - 1. The planting density influenced the productivity of cladode - plant and root dry weight, showing exponential responses, with higher cladode - plant and roots weight by area observed with increased plant density. The efficiency of organic fertilization decreased with the increase in manure doses. For increase cactus productivity, 40 t of bovine manure ha - 1 two years - 1 for plantations with 160,000 plants/ha is recommended.

  6. Tariff-based incentives for improving coal-power-plant efficiencies in India

    International Nuclear Information System (INIS)

    Chikkatur, Ananth P.; Sagar, Ambuj D.; Abhyankar, Nikit; Sreekumar, N.

    2007-01-01

    Improving the efficiency of coal-based power plants plays an important role in improving the performance of India's power sector. It allows for increased consumer benefits through cost reduction, while enhancing energy security and helping reduce local and global pollution through more efficient coal use. A focus on supply-side efficiency also complements other ongoing efforts on end-use efficiency. The recent restructuring of the Indian electricity sector offers an important route to improving power plant efficiency, through regulatory mechanisms that allow for an independent tariff setting process for bulk purchases of electricity from generators. Current tariffs based on normative benchmarks for performance norms are hobbled by information asymmetry (where regulators do not have access to detailed performance data). Hence, we propose a new incentive scheme that gets around the asymmetry problem by setting performance benchmarks based on actual efficiency data, rather than on a normative basis. The scheme provides direct tariff-based incentives for efficiency improvements, while benefiting consumers by reducing electricity costs in the long run. This proposal might also be useful for regulators in other countries to incorporate similar incentives for efficiency improvement in power generation

  7. Resource use efficiency of closed plant production system with artificial light: concept, estimation and application to plant factory.

    Science.gov (United States)

    Kozai, Toyoki

    2013-01-01

    Extensive research has recently been conducted on plant factory with artificial light, which is one type of closed plant production system (CPPS) consisting of a thermally insulated and airtight structure, a multi-tier system with lighting devices, air conditioners and fans, a CO2 supply unit, a nutrient solution supply unit, and an environment control unit. One of the research outcomes is the concept of resource use efficiency (RUE) of CPPS.This paper reviews the characteristics of the CPPS compared with those of the greenhouse, mainly from the viewpoint of RUE, which is defined as the ratio of the amount of the resource fixed or held in plants to the amount of the resource supplied to the CPPS.It is shown that the use efficiencies of water, CO2 and light energy are considerably higher in the CPPS than those in the greenhouse. On the other hand, there is much more room for improving the light and electric energy use efficiencies of CPPS. Challenging issues for CPPS and RUE are also discussed.

  8. Measuring and explaining eco-efficiencies of wastewater treatment plants in China: An uncertainty analysis perspective.

    Science.gov (United States)

    Dong, Xin; Zhang, Xinyi; Zeng, Siyu

    2017-04-01

    In the context of sustainable development, there has been an increasing requirement for an eco-efficiency assessment of wastewater treatment plants (WWTPs). Data envelopment analysis (DEA), a technique that is widely applied for relative efficiency assessment, is used in combination with the tolerances approach to handle WWTPs' multiple inputs and outputs as well as their uncertainty. The economic cost, energy consumption, contaminant removal, and global warming effect during the treatment processes are integrated to interpret the eco-efficiency of WWTPs. A total of 736 sample plants from across China are assessed, and large sensitivities to variations in inputs and outputs are observed for most samples, with only three WWTPs identified as being stably efficient. Size of plant, overcapacity, climate type, and influent characteristics are proven to have a significant influence on both the mean efficiency and performance sensitivity of WWTPs, while no clear relationships were found between eco-efficiency and technology under the framework of uncertainty analysis. The incorporation of uncertainty quantification and environmental impact consideration has improved the liability and applicability of the assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Some perspective decisions for the regeneration system equipment of the thermal and nuclear power plants decreasing the probability of water ingress into the turbine and rotor acceleration by return steam flow

    Science.gov (United States)

    Trifonov, N. N.; Svyatkin, F. A.; Sintsova, T. G.; Ukhanova, M. G.; Yesin, S. B.; Nikolayenkova, E. K.; Yurchenko, A. Yu.; Grigorieva, E. B.

    2016-03-01

    The regeneration system heaters are one of the sources of possible ingress of the water into the turbine. The water penetrates into the turbine either at the heaters overflow or with the return flow of steam generated when the water being in the heater boils up in the dynamic operation modes or at deenergization of the power-generating unit. The return flow of steam and water is dangerous to the turbine blades and can result in the rotor acceleration. The known protective devices used to prevent the overflow of the low-pressure and high-pressure heaters (LPH and HPH), of the horizontal and vertical heaters of heating-system water (HWH and VWH), as well as of the deaerators and low-pressure mixing heaters (LPMH) were considered. The main protective methods of the steam and water return flows supplied by the heaters in dynamic operation modes or at deenergization of the power-generating unit are described. Previous operating experience shows that the available protections do not fully prevent water ingress into the turbine and the rotor acceleration and, therefore, the development of measures to decrease the possibility of ingress of the water into the turbine is an actual problem. The measures allowing eliminating or reducing the water mass in the heaters are expounded; some of them were designed by the specialists of OAO Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO CKTI) and are efficiently introduced at heat power plants and nuclear power plants. The suggested technical solutions allow reducing the possibility of the water ingress into the turbine and rotor acceleration by return steam flow in the dynamic operation modes or in the case of power generating unit deenergization. Some of these solutions have been tested in experimental-industrial exploitation and can be used in industry.

  10. Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water

    Science.gov (United States)

    Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin

    2018-02-01

    The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.

  11. Examination of Energy Efficiency Increasing Measures in an Automobile Assembly Plant

    Directory of Open Access Journals (Sweden)

    Fatma ÇANKA KILIÇ

    2018-03-01

    Full Text Available In this study, energy consumption analysis was performed in a car assembly plant (Body-inWhite (BiW productions, painting processes, chassis and accessory assembly processes. Examined automobile assembly plant has a production capacity of 200,000 vehicles per year by working six days a week and three shifts a day. Highly energy consuming processes are determined. Energy efficiency increasing opportunities in energy consuming systems (paint shop, drying ovens, compressed air, heating and cooling systems and effects of current automotive assembly techniques on energy efficiency are examined. Most of the total energy in the studied plant is consumed in the paint shop. Considering annual energy consumption; paint shop is responsible for the %50 of total electrical energy and %70 of total natural gas consumption. Specific energy consumption of plant is calculated as 853 kWh (SET; 275 kWh for electricity consumption (SETe , and 578 kWh for natural gas (SETdg . By performing determined energy efficiency measures; SET of plant will reduce %1 for the SETe , and %5,7 for SETdg

  12. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system.

    Science.gov (United States)

    Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van Den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin

    2017-08-01

    In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees. © 2017 John Wiley & Sons Ltd.

  13. EFFICIENCY OF THE USE OF HEAT PUMPS ON THE CHP PLANTS

    Directory of Open Access Journals (Sweden)

    Juravleov A.A.

    2007-04-01

    Full Text Available The work is dedicated to the calculus of the efficiency of the use of heat pumps on the CHP plants. There are presented the interdependences between the pay-back period and NPV of heat pump and the price of 1 kWt of thermal power of heat pump and of the tariff of electricity.

  14. Evaluation of Power Generation Efficiency of Cascade Hydropower Plants: A Case Study

    Directory of Open Access Journals (Sweden)

    Jiahua Wei

    2013-02-01

    Full Text Available Effective utilization of scarce water resources has presented a significant challenge to respond to the needs created by rapid economic growth in China. In this study, the efficiency of the joint operation of the Three Gorges and Gezhouba cascade hydropower plants in terms of power generation was evaluated on the basis of a precise simulation-optimization technique. The joint operation conditions of the Three Gorges and Gezhouba hydropower plants between 2004 and 2010 were utilized in this research in order to investigate the major factors that could affect power output of the cascade complex. The results showed that the current power output of the Three Gorges and Gezhouba cascade complex had already reached around 90% of the maximum theoretical value. Compared to other influencing factors evaluated in this study, the accuracy of hydrological forecasts and flood control levels can have significant impact on the power generating efficiency, whereas the navigation has a minor influence. This research provides a solid quantitative-based methodology to assess the operation efficiency of cascade hydropower plants, and more importantly, proposes potential methods that could improve the operation efficiency of cascade hydropower plants.

  15. Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency.

    Science.gov (United States)

    Meng, Lai-Sheng

    2018-04-11

    Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.

  16. Linking plant functional trait plasticity and the large increase in forest water use efficiency

    Science.gov (United States)

    Mastrotheodoros, Theodoros; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo; Keenan, Trevor F.; Gentine, Pierre; Gough, Christopher M.; Fatichi, Simone

    2017-09-01

    Elevated atmospheric CO2 concentrations are expected to enhance photosynthesis and reduce stomatal conductance, thus increasing plant water use efficiency. A recent study based on eddy covariance flux observations from Northern Hemisphere forests showed a large increase in inherent water use efficiency (IWUE). Here we used an updated version of the same data set and robust uncertainty quantification to revisit these contemporary IWUE trends. We tested the hypothesis that the observed IWUE increase could be attributed to interannual trends in plant functional traits, potentially triggered by environmental change. We found that IWUE increased by 1.3% yr-1, which is less than previously reported but still larger than theoretical expectations. Numerical simulations with the Tethys-Chloris ecosystem model using temporally static plant functional traits cannot explain this increase. Simulations with plant functional trait plasticity, i.e., temporal changes in model parameters such as specific leaf area and maximum Rubisco capacity, match the observed trends in IWUE. Our results show that trends in plant functional traits, equal to 1.0% yr-1, can explain the observed IWUE trends. Thus, at decadal or longer time scales, trait plasticity could potentially influence forest water, carbon, and energy fluxes with profound implications for both the monitoring of temporal changes in plant functional traits and their representation in Earth system models.

  17. Changes in plant water use efficiency over the recent past reconstructed using palaeo plant records from the boreal forest

    Science.gov (United States)

    Gagen, M.; Finsinger, W.; McCarroll, D.; Wagner, F.

    2009-04-01

    The Boreal forests contains 33% of the earth's forest cover and are located at the latitude where most of the estimated global warming is predicted to occur. Warming as a consequence of rising carbon dioxide will affect evapotranspiration within the biome, with significant consequences given that water vapour is an important greenhouse gas. However, there is also a physiological forcing associated with the effects of rising carbon dioxide on plants. Higher atmospheric carbon dioxide will reduce evapotraspiration because tree stomata tend to close under elevated carbon dioxide. The warming associated with reduced evapotranspiration is known as carbon dioxide physiological forcing and it is not well constrained. Here we suggest that future predictions of evapotranspiration flux within the Boreal forest zone might be more accurately gauged by taking account of palaeo evidence of changing plant water use efficiency and stomatal density in the two most important Boreal plant species: Pinus sylvestris and Betula nana. Stable carbon isotope ratios in tree ring cellulose and stomatal density measurements, from preserved leaves falling on the forest floor, hold a record of the plant physiological changes associated with adjustment to rising carbon dioxide. We present evidence that, rather than plants simply closing their stomatal apertures under recent elevated carbon dioxide, over the last 150 years reduced evapotranspiration in the northern Boreal forest has been associated with a powerful plastic response including reductions in stomatal conductance via changes in stomatal density and pore length. Furthermore we present evidence that trees may be reaching the limits of their ability to respond plastically to rising carbon dioxide by increasing their water use efficiency.

  18. Improving the Efficiency of a Nucler Power Plant Using a Thermoelectric Cogeneration System

    Directory of Open Access Journals (Sweden)

    Rauf Terzi

    2018-02-01

    Full Text Available The efficiencies of nuclear power plants are rather poor having the ratio %30 by using the conventional energy/exergy tools. According to that information, large amount of energy is wasted during condensation and thrown out to the environment. Thermoelectric generator (TEG system has a potential to be used as a heat exchanging technology to produce power with a relatively low efficiency (about 5% and it can transform the temperature difference into electricity and generate clean electrical energy. In the present study, we offer a novel system to recover the waste heat from a VVER-1000 nuclear power plant. The heat transfer of the TEG is analyzed numerically with respect to the various temperature ranges and constant mass flow rate of the exhaust steam entering the system. In the analyses, different hot temperature ranges (35ºC, 45ºC and 55ºC and a constant cold temperature (i.e. 18ºC are used for a HZ-20 thermoelectric module and it has been proven that the designed TEG can produce the maximum output power of 76,956 MW for a temperature difference ∆T=37 and the conversion efficiency of 3,854% sits. The TEG is designed for the condenser of a 1000 MW nuclear power plant. It's shown that about 2,0% increasing in the power plant efficiency is expected by using the selected thermoelectric generator in the condensation cycle. Article History: Received: July 15th 2017; Received:  October 17th 2017; Accepted: February 13rd 2018; Available online How to Cite This Article: Terzi, R. and Kurt, E. (2018, Improving the efficiency of a nuclear power plant using a thermoelectric cogeneration system, Int. Journal of Renewable Energy Development, 7(1, 77-84. https://doi.org/10.14710/ijred.7.1.77-84

  19. Improving energy efficiency of an Olefin plant – A new approach

    International Nuclear Information System (INIS)

    Tahouni, Nassim; Bagheri, Narges; Towfighi, Jafar; Hassan Panjeshahi, M.

    2013-01-01

    Highlights: • The retrofit of an Olefin plant is studied to improve the overall energy efficiency. • Three levels of retrofit and optimization of this process are suggested. • A simultaneous method is presented to optimize low-temperature separation processes. - Abstract: Low-temperature gas separation processes are the most important gas separation routes. There is a complex interaction between core process (separation columns), associated heat exchanger network and refrigeration cycles in sub ambient processes. The aim of this paper is performing a comprehensive retrofit study of an Olefin plant (as an industrial example) to improve the overall energy efficiency. In this regard, the effect of improving column operating parameters and refrigeration cycles are first evaluated separately. Then, column operating parameters and refrigeration cycles as well as heat exchanger network are optimized simultaneously using genetic algorithm or simulated annealing. Having compared all results, one can conclude that simultaneous optimization leads to higher efficiency of the overall system

  20. A new perspective about recovering SO{sub 2} offgas in coal power plants: Energy saving. Part I. Regenerable wet methods

    Energy Technology Data Exchange (ETDEWEB)

    Tomas-Alonso, F. [University of Murcia, Murcia (Spain). Dept. of Chemical Engineering

    2005-08-01

    The removal of SO{sub 2} from coal gas combustion in power plants has become a compulsory process with stricter emission limits in order to preserve the environment and the human health (EC 96/62 Directive, 2000). This article is the first of a series of three devoted to the analyses of the current methods for SO{sub 2} removal. These methods are traditionally classified as wet and dry methods. The comparative testing of them is done from the point of view of the energy demand associated with the sorbent regeneration system used for hot coal gas desulfurisation. Although it is clear that this energy related comparison could not be applied to the wet methods, they have been included in the study because of their broad industrial implementation. A total of five processes were analyzed. One of the most promising is the well-established Wellman-Lord process, although the Linde-Solinox process also has good advantages, such as no environmental impact, reduced costs and higher simplicity.

  1. Plant regeneration of bananas Ambon kuning and Barangan mutant lines were carried out by using female organ and shoot-tip as explants source

    International Nuclear Information System (INIS)

    Dewi, Azri K; Ishak

    1998-01-01

    Plant regeneration of bananas Ambon Kuning and Barangan mutant lines were carried out by using female organ and shoot-tip as explants source. Female organ was taken from heart of banana stem, while shoot-tip taken from sucker in banana plantation at Pasar Jumat, Jakarta. Those explants were cultured on MS medium containing 3 mg/l BAP, 0.5 mg/l IAA and supplemented by 100 tyrosin and 80 mg/l adenin hemisulphate. Observation showed that 180 and 42 buds were obtained from JBR 02 mutant lines respectively, while 84 and 79 buds for JAK 01 and JAK 02 respectively. The highest shoot formation was 1.013 shoots were obtained from BRC variety and lowest one was JBR 01 mutant line. statistical data analysis indicated that shoot formation between BRC variety and another mutant lines were significant difference using LSD test at level 0.05. Plantlet formation derived from female organ as well as shoot-tip showed that BRC variety produced number of plantlets per bottle was higher that another one. (author)

  2. Efficient regeneration of NADPH in a 3-enzyme cascade reaction by in situ generation of glucose 6-phosphate from glucose and pyrophosphate

    NARCIS (Netherlands)

    Hartog, A.F.; van Herk, T.; Wever, R.

    2011-01-01

    We report here a promising method to regenerate NADPH (nicotinamide adenine dinucleotide phosphate) using the intermediate formation of glucose 6-phosphate (G6P) from glucose and pyrophosphate (PPi) catalyzed by the acid phosphatase from Shigella flexneri (PhoN-Sf). The G6P formed is used in turn by

  3. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency.

    Science.gov (United States)

    Kant, Surya

    2018-02-01

    The majority of terrestrial plants use nitrate as their main source of nitrogen. Nitrate also acts as an important signalling molecule in vital physiological processes required for optimum plant growth and development. Improving nitrate uptake and transport, through activation by nitrate sensing, signalling and regulatory processes, would enhance plant growth, resulting in improved crop yields. The increased remobilisation of nitrate, and assimilated nitrogenous compounds, from source to sink tissues further ensures higher yields and quality. An updated knowledge of various transporters, genes, activators, and microRNAs, involved in nitrate uptake, transport, remobilisation, and nitrate-mediated root growth, is presented. An enhanced understanding of these components will allow for their orchestrated fine tuning in efforts to improving nitrogen use efficiency in plants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Micro-Tom Tomato as an Alternative Plant Model System: Mutant Collection and Efficient Transformation.

    Science.gov (United States)

    Shikata, Masahito; Ezura, Hiroshi

    2016-01-01

    Tomato is a model plant for fruit development, a unique feature that classical model plants such as Arabidopsis and rice do not have. The tomato genome was sequenced in 2012 and tomato is becoming very popular as an alternative system for plant research. Among many varieties of tomato, Micro-Tom has been recognized as a model cultivar for tomato research because it shares some key advantages with Arabidopsis including its small size, short life cycle, and capacity to grow under fluorescent lights at a high density. Mutants and transgenic plants are essential materials for functional genomics research, and therefore, the availability of mutant resources and methods for genetic transformation are key tools to facilitate tomato research. Here, we introduce the Micro-Tom mutant database "TOMATOMA" and an efficient transformation protocol for Micro-Tom.

  5. Efficiency analysis of hydroelectric generating plants: A case study for Portugal

    International Nuclear Information System (INIS)

    Barros, Carlos Pestana

    2008-01-01

    This paper estimates changes in total productivity, breaking this down into technically efficient change and technological change, by means of data envelopment analysis (DEA) applied to the hydroelectric energy generating plants of EDP - the Portugal Electricity Company. The aim of this procedure is to seek out those best practices that will lead to improved performance in the energy market. We rank the plants according to their change in total productivity for the period 2001-2004, concluding that some plants experienced productivity growth while others experienced a decrease in productivity. The implications arising from the study are that EDP should adopt an internal benchmark management procedure in order to evaluate the relative position of each hydroelectric generating plant and to adopt managerial strategies designed to catch up with the frontier of 'best practices'. As the frontier is shifting along the time, constant efforts are needed in this respect along the time. (author)

  6. Effect of plant growth regulators on callus induction and plant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... toum state and later spread to other part of the country ..... Effect of different concentrations of IBA and MS salt strength on rooting percentage, ... study for tissue culture of potato can get enough callus and plant regeneration efficiency to perform transgenic operation. Moreover, as the potentiality of shoot ...

  7. Biological regeneration of para-nitrophenol loaded activated carbon

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.; Martin, R.J.

    1997-01-01

    Biological regeneration is one of several methods that may be used to restore the adsorptive capacity of exhausted granular activated carbon (GAC). This study deals with in-situ biological regeneration on a pilot scale. The principal objective of this research was to ascertain whether biological regeneration of GAC could occur under conditions typical of water treatment. The important parameters which may have the greatest impact on bio regeneration of a given adsorbate were studied. The research investigated the extent of bio regeneration for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in the total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in he total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated with a mixed culture of bacteria, and lastly the carbon was re-saturated. In the totally exhausted GAC system, the bio regeneration was enhanced by increasing the during of regeneration for a fixed initial biomass content of the bioreactor. The bio regeneration efficiency of the totally exhausted (with PNP) GAC the empty bed contact time (EBCT) and the initial concentration of the substrate had a profound effect on the bio regeneration efficiency. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. (author)

  8. Analysis of IGCC-based plants with carbon capture for an efficient and flexible electric power generation

    International Nuclear Information System (INIS)

    Sorgenfrei, Max

    2016-01-01

    In this work, systems based on the Integrated gasification combined cycle (IGCC) technology with carbon capture are analyzed regarding an efficient and flexible electric power generation. All analysis are related to a high-efficiency or low-cost IGCC base case with carbon capture which are both commercially available. In the high-efficiency base case, thermodynamic inefficiencies are determined based on a conventional exergy analysis. The gasifier followed by the combustion chamber of the gas turbine running on syngas are rated to the largest inefficiencies. Based on an advanced exergy analysis, the inefficiencies are split into an avoidable and unavoidable part as well as an endogenous and exogenous part. For example, it was found that about half of the inefficiencies within the gasifier are caused by other components of the overall system(exogenous part). Further investigations on the combination of both splitting types are presented. The gas turbine system is identified to be a major component and therefore a detailed model was developed using state-of-the-art technologies. Based on this model, 12 types of characteristic inefficiencies were determined and rated by their exergy destruction. Chemical-Looping Combustion (CLC) is one of the most promising technologies to enhance the available IGCC design. CLC uses composite metal particles acting as an oxygen carrier to transport oxygen from the air to the fuel gas through a redox-cycle. Thus, the inefficiencies associated with the combustion process decrease and the application of physical absorption for capturing CO 2 is replaced by an inherent CO 2 -capture. In this work, the most suitable oxygen carriers for CLC using syngas (nickel oxide and iron oxide) are analyzed at different temperatures. Moreover, different types of gasifier as well as CLC reactor designs are analyzed. Regenerating the oxygen carrier by steam and air, produces additional hydrogen from the reduction of steam which is further combusted

  9. New insight into regenerated air heat pump cycle

    International Nuclear Information System (INIS)

    Zhang, Chun-Lu; Yuan, Han; Cao, Xiang

    2015-01-01

    Regenerated air (reverse Brayton) cycle has unique potentials in heat pump applications compared to conventional vapor-compression cycles. To better understand the regenerated air heat pump cycle characteristics, a thermodynamic model with new equivalent parameters was developed in this paper. Equivalent temperature ratio and equivalent isentropic efficiency of expander were introduced to represent the effect of regenerator, which made the regenerated air cycle in the same mathematical expressions as the basic air cycle and created an easy way to prove some important features that regenerated air cycle inherits from the basic one. Moreover, we proved in theory that the regenerator does not always improve the air cycle efficiency. Larger temperature ratio and lower effectiveness of regenerator could make the regenerated air cycle even worse than the basic air cycle. Lastly, we found that only under certain conditions the cycle could get remarkable benefits from a well-sized regenerator. These results would enable further study of the regenerated air cycle from a different perspective. - Highlights: • A thermodynamic model for regenerated air heat pump cycle was developed. • Equivalent temperature ratio and equivalent expander efficiency were introduced. • We proved regenerated air cycle can make heating capacity in line with heating load. • We proved the regenerator does not always improve the air cycle efficiency.

  10. Diagnosis of Thermal Efficiency of Nuclear Power Plants Using Optical Torque Sensors

    International Nuclear Information System (INIS)

    Shuichi Umezawa; Jun Adachi

    2006-01-01

    A new optical torque measuring method was applied to diagnosis of thermal efficiency of nuclear power plants. The sensor allows torque deformation of the rotor caused by power transmission to be measured without contact. Semiconductor laser beams and small pieces of stainless reflector that have bar-code patterns are employed. The intensity of the reflected laser beam is measured and then input into a computer through an APD and an A/D converter having high frequency sampling rates. The correlation analysis technique can translate these data into the torque deformation angle. This angle allows us to obtain the turbine output along with the torsional rigidity and the rotating speed of the rotor. The sensor was applied to a nuclear plant of Tokyo Electric Power Company, TEPCO, following its application success to the early combined cycle plants and the advanced combined cycle plants of TEPCO. As the turbine rotor of the nuclear power plant is less exposed than that of the combined cycle plants, the measurement position is confined to a narrow gap. In order to overcome the difficulty in installation, the shape of the sensor is modified to be long and thin. Sensor performance of the nuclear power plant was inspected over a year. The value of the torsional rigidity was analyzed by the finite element method at first. Accuracy was improved by correcting the torsional rigidity so that the value was consistent with the generator output. As a result, it is considered that the sensor performance has reached a practical use level. (authors)

  11. Completion of high-efficiency BWR turbine plant 'Hamaoka unit No. 4'

    International Nuclear Information System (INIS)

    Tsuji, Kunio; Hamaura, Norikazu; Shibashita, Naoaki; Kazama, Seiichi

    1995-01-01

    Accompanying the increase of capacity of nuclear power plants in Japan, the plants having heightened economical efficiency, which are supported by the improvement of thermal efficiency and the reduction of dose, are demanded. Hitachi Ltd. has completed No. 4 turbine unit of 1137 MW output in Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., which is the largest capacity machine in Japanese BWR plants. In this unit, the moisture separator heater, the steam turbine with high efficiency, and the hollow thread film condensate filter which treats the total flow rate of condensate are used as the reheating type BWR plant for the first time in Japan, and the plan of heightened economy and operation was adopted. It was confirmed by the trial for about 10 months that the planned performance was sufficiently satisfied, and the commercial operation was started in September, 1993. The features of the 1137 MW turbine unit are explained. The turbine is of tandem six-flow exhaust condensation type. Diffuser type low pressure turbine exhaust chambers, butterfly type combination intermediate valve are adopted. The stages with the blades having moisture-separating grooves were corrected. The reliability of the shaft system was improved. The adoption of the moisture separator heater and the application of the hollow thread film type condensate filter are explained. (K.I.)

  12. Methods of increasing thermal efficiency of steam and gas turbine plants

    Science.gov (United States)

    Vasserman, A. A.; Shutenko, M. A.

    2017-11-01

    Three new methods of increasing efficiency of turbine power plants are described. Increasing average temperature of heat supply in steam turbine plant by mixing steam after overheaters with products of combustion of natural gas in the oxygen. Development of this idea consists in maintaining steam temperature on the major part of expansion in the turbine at level, close to initial temperature. Increasing efficiency of gas turbine plant by way of regenerative heating of the air by gas after its expansion in high pressure turbine and before expansion in the low pressure turbine. Due to this temperature of air, entering combustion chamber, is increased and average temperature of heat supply is consequently increased. At the same time average temperature of heat removal is decreased. Increasing efficiency of combined cycle power plant by avoiding of heat transfer from gas to wet steam and transferring heat from gas to water and superheated steam only. Steam will be generated by multi stage throttling of the water from supercritical pressure and temperature close to critical, to the pressure slightly higher than condensation pressure. Throttling of the water and separation of the wet steam on saturated water and steam does not require complicated technical devices.

  13. Evaluation of energy efficiency opportunities of a typical Moroccan cement plant: Part I. Energy analysis

    International Nuclear Information System (INIS)

    Fellaou, S.; Bounahmidi, T.

    2017-01-01

    Highlights: • We have analyzed the degree of freedom of the overall system. • We validated the redundant measurements by the Lagrange multipliers technique. • We have analyzed the mass and the energy balances by two approaches. • We identified the factors that penalize the energetic performance of the whole plant. • We assessed options to improve energy efficiency of the entire cement plant. - Abstract: The cement industry is one of Morocco’s most highly energy intensive economic sectors. It suffers from abnormally high cost of energy supplies, representing more than two thirds of the cost of cement; the first item of expenditure is electricity and fuel with 40% and 30% respectively. Herefor, much more effort is needed to make the cement sector reach energy saving targets set by the Moroccan energy efficiency strategy. The present work aims to evaluate energy performance of an existing Moroccan cement plant based on a detailed mass and energy balances analysis. Redundant measurements were validated by the Lagrange multipliers technique before being used for the calculation of unmeasured variables. The values for energy consumption and related losses through the whole production line are reported, and the results obtained have been used to assess the energy performance of the process. The evaluation was completed by both an analysis of possible energy loss sources and important solutions described in the international literature to improve the energy efficiency of the entire cement plant.

  14. A Meta-analysis of Plant Photosynthetic Traits and Water-use efficiency Responses to Drought

    Science.gov (United States)

    Zhang, J.

    2017-12-01

    Drought is predicted to become more intense and frequent in many regions of the world in the context of climate change, especially in the semi-arid regions of the Northern Hemisphere. Understanding the plant photosynthetic traits (Pn, Gs and Tr) and water use efficiency (WUE) response to drought is very important with regard to plant growth and productivity, which could reflect the terrestrial primary productivity worldwide. We used a meta-analysis based on studies of a worldwide range and full plant species Pn, Gs, Tr and WUE under drought condition and aimed to determine the responses of Pn, Gs, Tr and WUE of different drought intensities (mild, moderate and severe), different photosynthetic pathways (C3 and C4) and growth forms (herbs, shrubs, trees and lianas). Furthermore, reveal the differences from different plant groups (e.g. C3 and C4 plants; annual (A-herbs) and perennial (P-herbs) herbs; conifer, deciduous and evergreen trees) under the same drought intensities. Additionally, we analyzed the relationship between stomatal conductance (Gs) with Pn, Tr and WUE. Our results were as follows: 1) drought decreased the photosynthetic traits with the drought stress increasing, but increased the water use efficiency, and increased to the greatest extent in lianas, compared with herbs, shrubs and trees. 2) Furthermore, C4 plants had an advantage in photosynthesis compared to C3 plants under the same drought conditions. However, the WUE in C4 plants was not promoted as in C3 plants. The photosynthesis traits showed a more substantial decrease in P-herbs than in A-herbs. The drought promoted the WUE in P-herbs, but inhibited it in A-herbs. Compared with conifer and deciduous trees, the photosynthesis traits declined the most in evergreen tree. The WUE in deciduous trees showed a more obvious increase among the three leaf habits. 3) Finally, the Gs showed a close relationship with photosynthesis rate (Pn) and transpiration rate (Tr), which could explain 50% of the

  15. Recloning of regenerated plantlets from elite oil palm ( Elaeis ...

    African Journals Online (AJOL)

    Plant regeneration in oil palm cv. Tenera via somatic embryogenesis was conducted using regenerated plantlets as an explant source. Explants from different positions – apex, middle and basal segments of regenerated plantlets – were cultured in N6 medium supplemented with 100, 120 and 140 mg/L 2 ...

  16. Nucleated regeneration of semiarid sclerophyllous forests close to remnant vegetation

    NARCIS (Netherlands)

    Fuentes-Castillo, T.; Miranda, A.; Rivera-Hutinel, A.; Smith-Ramirez, C.; Holmgren, M.

    2012-01-01

    Natural regeneration of mediterranean plant communities has proved difficult in all continents. In this paper we assess whether regeneration of sclerophyllous forests shows nucleated patterns indicative of a positive effect of vegetation remnants at the landscape level and compare the regeneration

  17. ANALYSIS OF THE ENERGY SYSTEM BALANCE EFFICIENCY PROVIDED WITH THE DIFFERENT GROUPS OF GENERATING PLANTS

    Directory of Open Access Journals (Sweden)

    O. Maksymovа

    2017-12-01

    Full Text Available Currently methods of efficiency analysis are being developed and applied, based on optimization tasks for various types and modes. Usually, the optimization criterion for these objectives is efficiency that can be calculated in various ways, for which there is no concurrent views. The target function based on minimization of given cost that allows comparing options with the same useful effect is used to search for the best indicators of power plants operated within the system. Marginal costs on the amount of difference in the useful effect are introduced to the target function in case of various useful effects. The criterion of selecting the best power plant from an economic point of view is the difference between the reduced costs of the considered and the basic options, but this approach does not allow using the results for long-term projections. Such approach depends on the situation and does not reflect the real costs. The value of the target function to optimize the effectiveness of the technical-economic method is not "marginal" and does not allow assessing the impact of various processes on the overall option efficiency. Therefore, the development of the efficiency criterion that considers the changing needs of the energy system is relevant for analyzing the power plant.

  18. OBTENÇÃO DE PLANTAS DE LIMÃO CRAVO (Citrus limonia Osbeck E TANGERINA CLEÓPATRA (Citrus reshni Hort. A PARTIR DO CULTIVO DE PROTOPLASTOS DE SUSPENSÃO CELULAR PLANT REGENERATION OF 'RANGPUR' LIME (Citrus limonia Osbeck AND 'CLEÓPATRA' MANDARIN (Citrus reshni Hort. THROUGH PROTOPLASTS OF CELL SUSPENSION

    Directory of Open Access Journals (Sweden)

    Rodrigo Rocha Latado

    1999-01-01

    Full Text Available Este trabalho descreve uma metodologia para a regeneração de plantas de tangerina 'Cleópatra' e limão 'Cravo', a partir do cultivo de protoplastos de suspensão celular. Para tal, calos nucelares foram induzidos em meio contendo BAP e cultivados em meio sem reguladores de crescimento. Protoplastos foram isolados de suspensões celulares e cultivados em gotas de agarose, com densidade de 2 X 105 protoplastos.ml-1. O meio MT, contendo ácido giberélico e água de coco, foi eficiente na germinação de embriões somáticos. Os métodos de aclimatação de plantas testados apresentaram baixa eficiência. Como resultado final, 17 plantas adaptadas de tangerina e 8 de limão foram obtidas.The present research describes the regeneration of 'Cleópatra' mandarin and 'Rangpur' lime plants from cell suspension protoplasts. Nucelar calli were induced on a medium containing BAP and maintained on growth regulator free medium. Protoplasts were isolated from embryogenic suspension and plated at a concentration of 2 X 105 protoplasts.ml-1, on agarose droplets. The MT medium with gibberellic acid and coconut water was efficient to stimulate somatic embryo conversion. Rooted plants acclimation had low efficiency. Seventeen mandarin plants and eight lime plants were obtained.

  19. Combined cycle versus one thousand diesel power plants: pollutant emissions, ecological efficiency and economic analysis

    International Nuclear Information System (INIS)

    Silveira, Jose Luz; de Carvalho, Joao Andrade; de Castro Villela, Iraides Aparecida

    2007-01-01

    The increase in the use of natural gas in Brazil has stimulated public and private sectors to analyse the possibility of using combined cycle systems for generation of electrical energy. Gas turbine combined cycle power plants are becoming increasingly common due to their high efficiency, short lead times, and ability to meet environmental standards. Power is produced in a generator linked directly to the gas turbine. The gas turbine exhaust gases are sent to a heat recovery steam generator to produce superheated steam that can be used in a steam turbine to produce additional power. In this paper a comparative study between a 1000 MW combined cycle power plant and 1000kW diesel power plant is presented. In first step, the energetic situation in Brazil, the needs of the electric sector modification and the needs of demand management and integrated means planning are clarified. In another step the characteristics of large and small thermoelectric power plants that use natural gas and diesel fuel, respectively, are presented. The ecological efficiency levels of each type of power plant is considered in the discussion, presenting the emissions of particulate material, sulphur dioxide (SO 2 ), carbon dioxide (CO 2 ) and nitrogen oxides (NO x ). (author)

  20. Efficiency and environmental impacts of electricity restructuring on coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chan, H. Ron [Maryland Univ., College Park, MD (United States). Dept. of Economics; Fell, Harrison [Colorado School of Mines, Golden, CO (United States). Division of Economics and Business; Lange, Ian [Stirling Univ. (United Kingdom). Division of Economics; Li, Shanjun [Cornell Univ., Ithaca, NY (United States). Dyson School of Applied Economics and Management

    2013-03-15

    We investigate the impacts of electricity market restructuring on fuel efficiency, utilization and, new to this area, cost of coal purchases among coal-fired power plants using a panel data set from 1991 to 2005. Our study focuses exclusively on coal-fired power plants and uses panel data covering several years after implementation of restructuring. The estimation compares how investor-owned (IOs) plants in states with restructuring changed their behavior relative to IOs in states without. Our analysis finds that restructuring led to: (1) a two percent improvement in fuel efficiency for IOs, (2) a ten percent decrease in unit cost of heat input, and (3) a lower capacity factor even after adjusting for cross-plant generation re-allocation due to cost reductions. Based on these estimates, back-of-the-envelope calculations find that restructuring has led to about 6.5 million dollars in annual cost savings or nearly 12 percent of operating expenses and up to a 7.6 percent emissions reduction per plant.

  1. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  2. GTHTR300—A nuclear power plant design with 50% generating efficiency

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Yan, Xing L.; Tachibana, Yukio; Kunitomi, Kazuhiko

    2014-01-01

    Highlights: • GTHTR300 reported 10 years ago is updated. • Cycle and reactor core designs as well as turbine blade material are improved. • The study showed that GTHTR300 is able to yield a net plant efficiency of 50.4%. - Abstract: GTHTR300 is a gas turbine high temperature reactor power generation plant design. The baseline design reported by Japan Atomic Energy Agency a decade ago attained 45.6% net efficiency. Technological improvements have since been made that make further increase in efficiency practical: first, the cycle parameters are upgraded by utilizing the newly acquired design data including those from component tests. Next, the core design is optimized to raise the reactor outlet coolant temperature from the baseline of 850 °C to the level of 950 °C demonstrated on the long-term test reactor operation. Both core physics and thermal hydraulics are investigated to demonstrate the corresponding temperature rise is within the design limit so that the existing fuel design can continue to apply. Finally, an advanced type of turbine blade material that has only recently entered in commercial service in aircraft engine is found to be useable for this design to realize a turbine inlet temperature of 950 °C without requiring blade cooling. As detailed in this paper, these design improvements result in a nearly 5% gain in overall plant efficiency and enable the GTHTR300 to break the 50% efficiency barrier of nuclear plant while using only the existing technologies. This result is expected to contribute to the early market deployment of high temperature gas-cooled reactor

  3. GTHTR300—A nuclear power plant design with 50% generating efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Hiroyuki, E-mail: sato.hiroyuki09@jaea.go.jp; Yan, Xing L.; Tachibana, Yukio; Kunitomi, Kazuhiko

    2014-08-15

    Highlights: • GTHTR300 reported 10 years ago is updated. • Cycle and reactor core designs as well as turbine blade material are improved. • The study showed that GTHTR300 is able to yield a net plant efficiency of 50.4%. - Abstract: GTHTR300 is a gas turbine high temperature reactor power generation plant design. The baseline design reported by Japan Atomic Energy Agency a decade ago attained 45.6% net efficiency. Technological improvements have since been made that make further increase in efficiency practical: first, the cycle parameters are upgraded by utilizing the newly acquired design data including those from component tests. Next, the core design is optimized to raise the reactor outlet coolant temperature from the baseline of 850 °C to the level of 950 °C demonstrated on the long-term test reactor operation. Both core physics and thermal hydraulics are investigated to demonstrate the corresponding temperature rise is within the design limit so that the existing fuel design can continue to apply. Finally, an advanced type of turbine blade material that has only recently entered in commercial service in aircraft engine is found to be useable for this design to realize a turbine inlet temperature of 950 °C without requiring blade cooling. As detailed in this paper, these design improvements result in a nearly 5% gain in overall plant efficiency and enable the GTHTR300 to break the 50% efficiency barrier of nuclear plant while using only the existing technologies. This result is expected to contribute to the early market deployment of high temperature gas-cooled reactor.

  4. A new framework to increase the efficiency of large-scale solar power plants.

    Science.gov (United States)

    Alimohammadi, Shahrouz; Kleissl, Jan P.

    2015-11-01

    A new framework to estimate the spatio-temporal behavior of solar power is introduced, which predicts the statistical behavior of power output at utility scale Photo-Voltaic (PV) power plants. The framework is based on spatio-temporal Gaussian Processes Regression (Kriging) models, which incorporates satellite data with the UCSD version of the Weather and Research Forecasting model. This framework is designed to improve the efficiency of the large-scale solar power plants. The results are also validated from measurements of the local pyranometer sensors, and some improvements in different scenarios are observed. Solar energy.

  5. Commonalty initiatives in US nuclear power plants to improve radiation protection culture and worker efficiency

    International Nuclear Information System (INIS)

    Wood, W.; Miller, D.

    2003-01-01

    Many US nuclear power plants have learned that common procedures, policies, instrumentation, tools and work practices achieve improvements to the radiation protection culture. Significant worker efficiency achievements are accomplished especially during refuelling outages. This paper discusses commonalty initiatives currently being implemented at many US Plants to address management challenges presented by deregulation of the US electric industry, reduction in the pool of outage contractors and aging of the experienced radiation worker population. The new INPO 2005 dose goals of 650 person-mSv/year for PWRs and 1200 person-mSv/yr for PWRs will require new approaches to radiation protection management to achieve these challenging goals by 2005. (authors)

  6. Improvement of performance operation and cycle efficiency of Al Anbar combined power plant

    International Nuclear Information System (INIS)

    Jabbar, Mohammed Q.

    2014-01-01

    The present work will be focusing on available solution which can serve to increase total efficiency of Al Anbar combined cycle power plant - CCPP, and thus to improve the operation performance as much as possible in order to decrease hydrocarbon, CO2, NOx emissions to environment.The simulation and calculations were performed by program software cycle-tempo software. The results were compared with basic design of Alanbar power plant after making modernization with solar tower receiver system-STRS, which represented a heat source in preheat process for a compressor air. Key Words: CCPP, STRS, Solar potential energy, fuel consumption, hydrocarbon emission

  7. ADAPTATION OF REGENERANTS OF Vaccinium Corymbosum L

    African Journals Online (AJOL)

    Kutas

    2011-05-09

    May 9, 2011 ... Adaptation of regenerants of Vaccinium corymbosum ... functions of the sheet plants growing in an aseptic culture, in hothouses or open ground .... L. (Koralle) were preserved in alcohol-acetic acid (3:1). ..... and soil moisture.

  8. Optimization of chemical regeneration procedures of spent activated carbon

    Directory of Open Access Journals (Sweden)

    Naser Ghasemzadeh

    2017-01-01

    Full Text Available The chemical regeneration of granular activated carbon exhausted in a petrochemical wastewater unit was investigated. Gas chromatography and energy-dispersive X-ray spectroscopy demonstrated that spent activated carbon carries large types of organic and inorganic materials. Diverse chemical solvents were adopted in comparison with traditional chemical solvents and regeneration efficiency was investigated for each approach. The optimum procedure and optimum condition including temperature, concentration of solvent, and time were determined. The regenerated activated carbon was used in the adsorption of methylene blue (MB in order to find its regeneration efficiency. The regeneration efficiency can be identified by comparing of amount of MB absorbed by the fresh and regenerated activated carbon. The best acidic regenerator was hydrofluoric acid. The higher the temperature causes the faster desorption rate and consequently, the higher regeneration efficiency. The regeneration efficiency increased by means of an increase in the time of regeneration and solvent concentration, but there was an optimum time and solvent concentration for regeneration. The optimum temperature, solvent concentration and regeneration time obtained was 80 ⁰C, 3 molar and 3 hours, respectively.

  9. PID-controller with predictor and auto-tuning algorithm: study of efficiency for thermal plants

    Science.gov (United States)

    Kuzishchin, V. F.; Merzlikina, E. I.; Hoang, Van Va

    2017-09-01

    The problem of efficiency estimation of an automatic control system (ACS) with a Smith predictor and PID-algorithm for thermal plants is considered. In order to use the predictor, it is proposed to include an auto-tuning module (ATC) into the controller; the module calculates parameters for a second-order plant module with a time delay. The study was conducted using programmable logical controllers (PLC), one of which performed control, ATC, and predictor functions. A simulation model was used as a control plant, and there were two variants of the model: one of them was built on the basis of a separate PLC, and the other was a physical model of a thermal plant in the form of an electrical heater. Analysis of the efficiency of the ACS with the predictor was carried out for several variants of the second order plant model with time delay, and the analysis was performed on the basis of the comparison of transient processes in the system when the set point was changed and when a disturbance influenced the control plant. The recommendations are given on correction of the PID-algorithm parameters when the predictor is used by means of using the correcting coefficient k for the PID parameters. It is shown that, when the set point is changed, the use of the predictor is effective taking into account the parameters correction with k = 2. When the disturbances influence the plant, the use of the predictor is doubtful, because the transient process is too long. The reason for this is that, in the neighborhood of the zero frequency, the amplitude-frequency characteristic (AFC) of the system with the predictor has an ascent in comparison with the AFC of the system without the predictor.

  10. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk.

    Science.gov (United States)

    Pan, Chang-Gui; Liu, You-Sheng; Ying, Guang-Guo

    2016-12-01

    Perfluoroalkyl substances (PFASs) are a group of chemicals with wide industrial and commercial applications, and have been received great attentions due to their persistence in the environment. The information about their presence in urban water cycle is still limited. This study aimed to investigate the occurrence and removal efficiency of eighteen PFASs in wastewater treatment plants (WWTPs) and drinking water plants (DWTPs) with different treatment processes. The results showed that both perfluorobutane sulfonic acid (PFBS) and perfluorooctane sulfonic acid (PFOS) were the predominant compounds in the water phase of WWTPs and DWTPs, while PFOS was dominant in dewatered sludge of WWTPs. The average total PFASs concentrations in the three selected WWTPs were 19.6-232 ng/L in influents, 15.5-234 ng/L in effluents, and 31.5-49.1 ng/g dry weight in sludge. The distribution pattern of PFASs differed between the wastewater and sludge samples, indicating strong partition of PFASs with long carbon chains to sludge. In the WWTPs, most PFASs were not eliminated efficiently in conventional activated sludge treatment, while the membrane bio-reactor (MBR) and Unitank removed approximately 50% of long chain (C ≥ 8) perfluorocarboxylic acids (PFCAs). The daily mass loads of total PFASs in WWTPs were in the range of 1956-24773 mg in influent and 1548-25085 mg in effluent. PFASs were found at higher concentrations in the wastewater from plant A with some industrial wastewater input than from the other two plants (plant B and plant C) with mainly domestic wastewater sources. Meanwhile, the average total PFASs concentrations in the two selected DWTPs were detected at 4.74-14.3 ng/L in the influent and 3.34-13.9 ng/L in the effluent. In DWTPs, only granular activated carbon (GAC) and powder activated carbon (PAC) showed significant removal of PFASs. The PFASs detected in the tap water would not pose immediate health risks in the short term exposure. The findings from this

  11. Cardiomyocyte Regeneration

    Directory of Open Access Journals (Sweden)

    Toshio Nakanishi

    2013-01-01

    Full Text Available The heart was initially believed to be a terminally differentiated organ; once the cardiomyocytes died, no recovery could be made to replace the dead cells. However, around a decade ago, the concept of cardiac stem cells (CSCs in adult hearts was proposed. CSCs differentiate into cardiomyocytes, keeping the heart functioning. Studies have proved the existence of stem cells in the heart. These somatic stem cells have been studied for use in cardiac regeneration. Moreover, recently, induced pluripotent stem cells (iPSCs were invented, and methodologies have now been developed to induce stable cardiomyocyte differentiation and purification of mature cardiomyocytes. A reprogramming method has also been applied to direct reprogramming using cardiac fibroblasts into cardiomyocytes. Here, we address cardiomyocyte differentiation of CSCs and iPSCs. Furthermore, we describe the potential of CSCs in regenerative biology and regenerative medicine.

  12. Heart regeneration.

    Science.gov (United States)

    Breckwoldt, Kaja; Weinberger, Florian; Eschenhagen, Thomas

    2016-07-01

    Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effect of turbine materials on power generation efficiency from free water vortex hydro power plant

    International Nuclear Information System (INIS)

    Sritram, P; Treedet, W; Suntivarakorn, R

    2015-01-01

    The objective of this research was to study the effect of turbine materials on power generation efficiency from the water free vortex hydro power plant made of steel and aluminium. These turbines consisted of five blades and were twisted with angles along the height of water. These blades were the maximum width of 45 cm. and height of 32 cm. These turbines were made and experimented for the water free vortex hydro power plant in the laboratory with the water flow rate of 0.68, 1.33, 1.61, 2.31, 2.96 and 3.63 m 3 /min and an electrical load of 20, 40, 60, 80 and 100 W respectively. The experimental results were calculated to find out the torque, electric power, and electricity production efficiency. From the experiment, the results showed that the maximum power generation efficiency of steel and aluminium turbine were 33.56% and 34.79% respectively. From the result at the maximum water flow rate of 3.63 m 3 /min, it was found that the torque value and electricity production efficiency of aluminium turbine was higher than that of steel turbine at the average of 8.4% and 8.14%, respectively. This result showed that light weight of water turbine can increase the torque and power generation efficiency. (paper)

  14. Antioxidant potential in regenerated tissues of medicinally important atropa accuminata

    International Nuclear Information System (INIS)

    Khan, F. A.; Abbasi, B. H.; Shinwari, Z. K.; Shah, S. H.

    2017-01-01

    Due to random exploitation from natural resources, an efficient regeneration system of medicinally important but rare plant species, Atropa acuminata for conservation was inevitable. Leaf explants were incubated on MS medium with different level of various plant growth regulators (PGRs) alone and in combination for callus induction and induced organogenesis. After 4 weeks of culture, callus induction was recorded with the highest frequency with 1.0 mg/l thidiazuron (TDZ) supplement. After 5 weeks of subsequent sub-culturing, optimum shoot induction frequency of 89% was achieved with 1.0 mg/l TDZ and 1.0 mg/l a-naphthaleneacetic acid (NAA) supplement. Highest number of shoots/explant (8.2) were recorded on MS medium with 2.0 mg/l 6-benzyladenine (BA)+1.0 mg/l NAA supplement. Shoots in elongation medium was recorded 5.8 cm long in two medium i.e., 1.0 mg/l TDZ supplement and 1.0 mg/l TDZ+1.0 mg/l NAA supplement. Successful In vitro rooting was induced on MS medium with all applied level of indole butyric acid (IBA). The regenerated shoots with well developed roots were successfully acclimatized in sterilized soil and transferred to greenhouse conditions. Furthermore higher activity for detoxifying DPPH free radical was shown by regenerated shoots in this medicinally important plant species. (author)

  15. Transformation of medicinal plants using Agrobacterium tumefaciens.

    Science.gov (United States)

    Bandurska, Katarzyna; Berdowska, Agnieszka; Król, Małgorzata

    2016-12-20

    For many years attempts are made to develop efficient methods for transformation of medicinal plants via Agrobacterium tumefaciens. It is a soil bacteria which possess a natural ability to infect plants in places of injures which results in arise of cancerous growths (crown gall). This is possible thanks a transfer of fragment of Ti plasmid into plant cells and stable integration with a plant genome. Efficiency of medicinal plant transformation depends on many factors for example: Agrobacterium strain, methods and procedures of transformation as well as on plant species, type and age of the explants and regeneration conditions. The main goal of plant transformation is to increase the amount of naturally occurring bioactive compounds and the production of biopharmaceuticals. Genetic plant transformation via bacteria of the genus Agrobacterium is a complex process which requires detailed analysis of incorporated transgene expression and occurs only in the case when the plant cell acquires the ability to regenerate. In many cases, the regeneration efficiency observed in medicinal plants are inefficient after applied transformation procedures. To date there have been attempts of genetic transformation by using A. tumefaciens of medicinal plants belonging to the families: Apocynaceae, Araceae, Araliaceae, Asphodelaceae, Asteraceae, Begoniaceae, Crassulaceae, Fabaceae, Lamiaceae, Linaceae, Papaveraceae, Plantaginaceae, Scrophulariaceae and Solanaceae.

  16. Transformation of medicinal plants using Agrobacterium tumefaciens

    Directory of Open Access Journals (Sweden)

    Katarzyna Bandurska

    2016-12-01

    Full Text Available For many years attempts are made to develop efficient methods for transformation of medicinal plants via Agrobacterium tumefaciens. It is a soil bacteria which possess a natural ability to infect plants in places of injures which results in arise of cancerous growths (crown gall. This is possible thanks a transfer of fragment of Ti plasmid into plant cells and stable integration with a plant genome. Efficiency of medicinal plant transformation depends on many factors for example: Agrobacterium strain, methods and procedures of transformation as well as on plant species, type and age of the explants and regeneration conditions. The main goal of plant transformation is to increase the amount of naturally occurring bioactive compounds and the production of biopharmaceuticals. Genetic plant transformation via bacteria of the genus Agrobacterium is a complex process which requires detailed analysis of incorporated transgene expression and occurs only in the case when the plant cell acquires the ability to regenerate. In many cases, the regeneration efficiency observed in medicinal plants are inefficient after applied transformation procedures. To date there have been attempts of genetic transformation by using A. tumefaciens of medicinal plants belonging to the families: Apocynaceae, Araceae, Araliaceae, Asphodelaceae, Asteraceae, Begoniaceae, Crassulaceae, Fabaceae, Lamiaceae, Linaceae, Papaveraceae, Plantaginaceae, Scrophulariaceae and Solanaceae.

  17. Evaluation of home-made teas efficiency from medicinal plants used on childish diarrhea treatment

    International Nuclear Information System (INIS)

    Pinto, Magda Moreira; Silva, Maria Jose de Sousa Ferreira da

    1996-01-01

    The objective of this work is to verify whether the home-made teas form Brazilian plants, used for control of childish diarrhea have been efficient reaching the composition recommended by World Health Organizations (WHO). This work has been carried out using the neutron activation analysis and the TRIGA MARK I reactor, the IPR-R1, in the Centro de Desenvolvimento da Tecnologia Nuclear - CDTN. (author). 4 refs., 2 tabs

  18. Economic efficiency substantiation of information products practical online promotion on the mechanical engineering plants

    OpenAIRE

    Roman Oksentyuk

    2015-01-01

    The profitability ratio ROI and its adaptation to calculate the economic efficiency of online advertising campaign has been analyzed. Investment profitability factor enables to estimate to what extent the advertising costs in the global network are justified and profitable for your business. The ratio use on the Ternopil mechanical engineering plants websites as a case study has been investigated by the author of the article. Such indices as the number...

  19. Efficient production of electricity and water in cogeneration systems. [Desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Tadros, S.K.

    1981-11-01

    This paper discusses two topping cycle steam turbine cogeneration systems. The water desalination plant selected is the multistage flash evaporator cycle which uses brine recirculation and high temperature additives for scale protection and 233F maximum brine temperature. The paper mentions briefly the impact of future fuel prices on design and factors which would further improve thermal efficiency. The fuel chargeable to power is determined. 6 refs.

  20. Modernisation of the Olkiluoto nuclear power plant increases the power production efficiency under safe limits

    International Nuclear Information System (INIS)

    Valkeapaeae, R.

    1995-01-01

    Teollisuuden Voima Oy published the efficiency increment plans as a part of the modernisation of the Olkiluoto nuclear power plant. The power of the reactor units, originally designed for 660 MW will now be increased for a second time. The former improvements were made in 1994. The power of the units was increased to 710 MW. After this new renovation the power of the both units will be 830-840 MW. (2 figs.)

  1. On economic efficiency of nuclear power unit life extension using steam-gas topping plant

    International Nuclear Information System (INIS)

    Kuznetsov, Y.N.; Lisitsa, F.D.; Smirnov, V.G.

    2001-01-01

    The different options for life extension of the operating nuclear power units have been analyzed in the report with regard for their economic efficiency. A particular attention is given to the option envisaging the reduction of reactor power output and its subsequent compensation with a steam-gas topping plant. Steam generated at its heat-recovery boilers is proposed to be used for the additional loading of the nuclear plant turbine so as to reach its nominal output. It would be demonstrated that the implementation of this option allows to reduce total costs in the period of power plant life extension by 24-29% as compared with the alternative use of the replacing steam-gas unit and the saved resources could be directed, for instance, for decommissioning of a reactor facility. (authors)

  2. Modernization and efficiency of heat treatment and heating up plants; Modernisierung und Effizienz von Thermoprozessanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Peter [LOI Thermprocess GmbH, Essen (Germany); Kuehn, Friedhelm [Ingenieurbuero fuer Waermebehandlung, Industrieoefen und Energieberatung, Muelheim (Germany)

    2010-10-15

    A goal of this contribution is to show, using examples of the thermal heat treatment industry and the thermal processing units used there (Beltype plants, routary hearth, walking hearth, walking beam, pusher type furnaces and gas carburizing plants as well as case hardening plants), which increases in efficiency within and outside of the actual thermal treatment process and the necessary thermal processing units for the order are available today. From the possibilities of the reduction of energy employment resulting from that, a high potential for the discharge of the environment can be derived. The economic effect concerning energy employment and saving possibilities will also be considered. Concluding, examples of case-hardening show which variants of a change of process present themselves partially in the future, in order to achieve substantial production increases and thus energy cost reductions. (orig.)

  3. CRISPR-Cas9; an efficient tool for precise plant genome editing.

    Science.gov (United States)

    Islam, Waqar

    2018-04-03

    Efficient plant genome editing is dependent upon induction of double stranded DNA breaks (DSBs) through site specified nucleases. These DSBs initiate the process of DNA repair which can either base upon homologous recombination (HR) or non-homologous end jointing (NHEJ). Recently, CRISPR-Cas9 mechanism got highlighted as revolutionizing genetic tool due to its simpler frame work along with the broad range of adaptability and applications. So, in this review, I have tried to sum up the application of this biotechnological tool in plant genome editing. Furthermore, I have tried to explain successful adaptation of CRISPR in various plant species where it is used for the successful generation of stable mutations in a steadily growing number of species through NHEJ. The review also sheds light upon other biotechnological approaches relying upon single DNA lesion induction such as genomic deletion or pair wise nickases for evasion of offsite effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. OVERVIEW OF A NEW METHOD FOR DESIGNING HIGH EFFICIENCY SMALL HYDRO POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Milun Babić

    2010-01-01

    Full Text Available Significant number of research projects in the area of renewable energy sources (especially for small hydro power plants has been made within the Department for Energy and Process Engineering and Regional Euro Energy Efficiency Center at Faculty of Mechanical Engineering (University of Kragujevac, Serbia since early eighties. The results are various; numerous domestic and international recognition and technical performance tell about the success of the research. Research projects have been following the technical and technological development of research equipment and economy growth. This has led to the development of software for designing turbines of SHP plants. In order to notify the public about possibilities of our software, in this paper is briefly described a mathematical model and procedures for calculating and designing of SHPP for known conditions. As an argument for assessing the validity and potential of our research results is shown constructed SHP plant "Bosnia 1", 2 x 100 kW power.

  5. Operational safety performance and economical efficiency evaluation for nuclear power plants

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang

    2012-01-01

    The economical efficiency of nuclear power includes a series of environmental parameters, for example, cleanliness. Nuclear security is the precondition and guarantee for its economy, and both are the direct embodiment of the social benefits of nuclear power. Through analyzing the supervision and management system on the effective operation of nuclear power plants, which has been put forward by the International Atomic Energy Agency (IAEA), the World Association of Nuclear Operators (WANO), the U.S. Nuclear Regulatory Commission (NRC), and other organizations, a set of indexs on the safety performance and economical efficiency of nuclear power are explored and established; Based on data envelopment analysis, a DEA approach is employed to evaluate the efficiency of the operation performance of several nuclear power plants, Some primary conclusion are achieved on the basis of analyzing the threshold parameter's sensitivity and relativity which affected operational performance. To address the conflicts between certain security and economical indicators, a multi-objective programming model is established, where top priority is given to nuclear safety, and the investment behavior of nuclear power plant is thereby optimized. (authors)

  6. Lean Maintenance Applied to Improve Maintenance Efficiency in Thermoelectric Power Plants

    Directory of Open Access Journals (Sweden)

    Orlando Duran

    2017-10-01

    Full Text Available Thermoelectric power plants consist of a set of critical equipment that require high levels of availability and reliability. Due to this, maintenance of these physical assets is gaining momentum in industry. Maintenance is considered as an activity that contributes to improving the availability, efficiency and productivity of each piece of equipment. Several techniques have been used to achieve greater efficiencies in maintenance, among which we can find the lean maintenance philosophy. Despite the wide diffusion of lean maintenance, there is no structured method that supports the prescription of lean tools applied to the maintenance function. This paper presents the experience gathered in two lean maintenance projects in thermoelectric power plants. The application of lean techniques was based on using a previously developed multicriterial decision making process that uses the Fuzzy Analytic Hierarchy Process (AHP methodology to carry out a diagnosis and prescription tasks. That methodology allowed the prescription of the appropriated lean techniques to resolve the main deficiencies in maintenance function. The results of applying such lean tools show that important results can be obtained, making the maintenance function in thermoelectric power plants more efficient and lean.

  7. Increasing Water System Efficiency with Ultrafiltration Pre-treatment in Power Plants

    International Nuclear Information System (INIS)

    Majamaa, Katariina; Suarez, Javier; Gasia Eduard

    2012-09-01

    Water demineralization with reverse osmosis (RO) membranes has a long and successful history in water treatment for power plants. As the industry strives for more efficient, reliable and compact water systems, pressurized hollow-fiber ultrafiltration (UF) has become an increasingly appealing pre-treatment technology. Compared to conventional, non- membrane based pretreatments, ultrafiltration offers higher efficiency in the removal of suspended solids, microorganisms and colloidal matter, which are all common causes for operational challenges experienced in the RO systems. In addition, UF is more capable of handling varying feed water qualities and removes the risk of particle carry-over often seen with conventional filtration techniques. Ultrafiltration is a suitable treatment technology for various water types from surface waters to wastewater, and the more fluctuating or challenging the feed water source is, the better the benefits of UF are seen compared to conventional pretreatments. Regardless of the feed water type, ultrafiltration sustains a constant supply of high quality feed water to downstream RO, allowing a more compact and cost efficient RO system design with improved operational reliability. A detailed focus on the design and operational aspects and experiences of two plants is provided. These examples demonstrate both economical UF operation and tangible impact of RO process improvement. Experience from these plants can be leveraged to new projects. (authors)

  8. Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses

    Directory of Open Access Journals (Sweden)

    Hironobu Yanagisawa

    2016-03-01

    Full Text Available The presence of high molecular weight double-stranded RNA (dsRNA within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV, a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as “DECS-C,” is a powerful method for detecting novel plant viruses.

  9. Human reliability and plant operating efficiency: Are 12-hour work schedules cause for concern?

    International Nuclear Information System (INIS)

    Baker, T.L.

    1992-01-01

    Since the introduction of 12-h shifts to the US nuclear power industry only 8 yr ago, compressed workweek schedules have proliferated among operations departments at a phenomenal rate. Many plants that continue to use 8-h shifts during normal operations routinely change to scheduled 12-h shifts during refueling or maintenance outages. The most critical issue in the use of extended work shifts is whether alertness, physical stamina, or mental performance are compromised to the point of reducing safety or efficiency of nuclear power plant operation. Laboratory and field research sponsored by the National Institute of Occupational Safety and Health suggests that alertness, measured by self-ratings, and mental performance, measured by computer-based performance tests, are impaired on 12-h shifts compared with 8-h shifts. In contrast to these findings, plant operating efficiency and operator performance have been rated as improved in two field studies conducted in operating nuclear power plants (Fast Flux Test Facility, Washington and Ontario Hydro, Canada). A recent Electric Power Research Institute review of nuclear industry experience with 12-h shifts also suggests an overwhelmingly positive rating of 12-h schedules from both control room operators and management

  10. Hyperaccumulator straw improves the cadmium phytoextraction efficiency of emergent plant Nasturtium officinale.

    Science.gov (United States)

    Li, Keqiang; Lin, Lijin; Wang, Jin; Xia, Hui; Liang, Dong; Wang, Xun; Liao, Ming'an; Wang, Li; Liu, Li; Chen, Cheng; Tang, Yi

    2017-08-01

    With the development of economy, the heavy metal contamination has become an increasingly serious problem, especially the cadmium (Cd) contamination. The emergent plant Nasturtium officinale R. Br. is a Cd-accumulator with low phytoremediation ability. To improve Cd phytoextraction efficiency of N. officinale, the straw from Cd-hyperaccumulator plants Youngia erythrocarpa, Galinsoga parviflora, Siegesbeckia orientalis, and Bidens pilosa was applied to Cd-contaminated soil and N. officinale was then planted; the study assessed the effect of hyperaccumulator straw on the growth and Cd accumulation of N. officinale. The results showed that application of hyperaccumulator species straws increased the biomass and photosynthetic pigment content and reduced the root/shoot ratio of N. officinale. All straw treatments significantly increased Cd content in roots, but significantly decreased Cd content in shoots of N. officinale. Applying hyperaccumulator straw significantly increased the total Cd accumulation in the roots, shoots, and whole plants of N. officinale. Therefore, application of straw from four hyperaccumulator species promoted the growth of N. officinale and improved the phytoextraction efficiency of N. officinale in Cd-contaminated paddy field soil; the straw of Y. erythrocarpa provided the most improvement.

  11. A study on the efficiency improvement of the plant secondary System in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Ho; Song Jong Sun [Chosun Univ., Kwangju (Korea, Republic of)

    2012-10-15

    The ultimate objective of the diagnostic test for thermal performance of generation facilities is to assist in making an economic decision on operation optimization of power plants by understanding the degree of heat aging due to operation of relevant facilities and planning on this basis the maintenance and repair. In this thesis, the trend in performance change was analyzed against the acceptance performance test conducted after the replacement of the high pressure turbine in 2007, through thermal performance diagnosis conducted at 100 % reactor thermal output after the 19th planned preventive maintenance of Yonggwang Nuclear Units 1 and 2, and the power plant operation was optimized by acquiring base line data for management of performance record for each major facility of the secondary system and by improving efficiency of unit instruments and peripheral instruments of the secondary system. As a result derived from the thermal performance analysis, the increase in electric output of the power plants was achieved through such operation optimizations of efficiency affecting instruments as optimization of the continuous exhaust flow rate for water supply heaters, vacuum improvement of condensers due to opening the upper/lower screens of heat transfer pipe washing system for condensers during summer, and flow rate optimization of the water vapor supplied to MSR (Moisture Separator Re heater) high pressure re heaters. This improves operation of the existing power plants without additional expense and so requires expert review by responsible personnel for practical application.

  12. Performance analysis of US coal-fired power plants by measuring three DEA efficiencies

    International Nuclear Information System (INIS)

    Sueyoshi, Toshiyuki; Goto, Mika; Ueno, Takahiro

    2010-01-01

    Data Envelopment Analysis (DEA) has been widely used for performance evaluation of many organizations in private and public sectors. This study proposes a new DEA approach to evaluate the operational, environmental and both-unified performance of coal-fired power plants that are currently operating under the US Clean Air Act (CAA). The economic activities of power plants examined by this study are characterized by four inputs, a desirable (good) output and three undesirable (bad) outputs. This study uses Range-Adjusted Measure (RAM) because it can easily incorporate both desirable and undesirable outputs in the unified analytical structure. The output unification proposed in this study has been never investigated in the previous DEA studies even though such a unified measure is essential in guiding policy makers and corporate leaders. Using the proposed DEA approach, this study finds three important policy implications. First, the CAA has been increasingly effective on their environmental protection. The increased environmental performance leads to the enhancement of the unified efficiency. Second, the market liberalization/deregulation was an important business trend in the electric power industry. Such a business trend was legally prepared by US Energy Policy Act (EPAct). According to the level of the market liberalization, the United States is classified into regulated and deregulated states. This study finds that the operational and unified performance of coal-fired power plants in the regulated states outperforms those of the deregulated states because the investment on coal-fired power plants in the regulated states can be utilized as a financial tool under the rate-of-return criterion of regulation. The power plants in the deregulated states do not have such a regulation premium. Finally, plant managers need to balance between their environmental performance and operational efficiency.

  13. Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill. under salt stress

    Directory of Open Access Journals (Sweden)

    Alharby Hesham F.

    2016-01-01

    Full Text Available The properties of nanomaterials and their potential applications have been given considerable attention by researchers in various fields, especially agricultural biotechnology. However, not much has been done to evaluate the role or effect of zinc oxide nanoparticles (ZnO-NP in regulating physiological and biochemical processes in response to salt-induced stress. For this purpose, some callus growth traits, plant regeneration rate, mineral element (sodium, potassium, phosphorous and nitrogen contents and changes in the activity of superoxide dismutase (SOD and glutathione peroxidase (GPX in tissues of five tomato cultivars were investigated in a callus culture exposed to elevated concentrations of salt (3.0 and 6.0 g L-1NaCl, and in the presence of zinc oxide nanoparticles (15 and 30 mg L-1. The relative callus growth rate was inhibited by 3.0 g L-1 NaCl; this was increased dramatically at 6.0 g L-1. Increasing exposure to NaCl was associated with a significantly higher sodium content and SOD and GPX activities. Zinc oxide nanoparticles mitigated the effects of NaCl, and in this application of lower concentrations (15 mg L-1 was more effective than a higher concentration (30 mg L-1. This finding indicates that zinc oxide nanoparticles should be investigated further as a potential anti-stress agent in crop production. Different tomato cultivars showed different degrees of tolerance to salinity in the presence of ZnO-NP. The cultivars Edkawy, followed by Sandpoint, were less affected by salt stress than the cultivar Anna Aasa.

  14. Enhanced energy efficiency in waste water treatment plants; Steigerung der Energieeffizienz auf kommunalen Klaeranlagen

    Energy Technology Data Exchange (ETDEWEB)

    Haberkern, Bernd; Maier, Werner; Schneider, Ursula [iat - Ingenieurberatung fuer Abwassertechnik, Darmstadt und Stuttgart, Darmstadt (Germany)

    2008-03-15

    In order to implement the requests of EU-IPCC-directive in a new decree for waste water treatment in Germany, best available techniques have to be defined to optimize energy efficiency in waste water treatment plants (WWTP). Therefore energy efficiency was investigated for common treatment processes and new technologies like membrane filtration, co-digestion or phosphorus recycling. In addition, the occurrence of different technologies for waste water and sludge treatment was evaluated for different size ranges of treatment plants (in population equivalents, PE) nationwide in Germany. The definition of actual and aimed values for specific energy consumption (in kWh/(PE.a)) allowed to calculate the potential energy savings in WWTP and the additional consumption due to new processes on a national level. Under consideration of the reciprocations between optimized energy consumption in WWTP and operation practice, toe-holds to increase energy efficiency according to their relevancy for the national balance could be listed. Case studies prove the feasibility of the investigated techniques and allow proposals for minimum requirements in legal regulation concerning energy efficiency in WWTP. (orig.)

  15. Optimization of power plants management structure based on the generalized criteria of the efficiency

    Directory of Open Access Journals (Sweden)

    Salov Aleksey

    2017-01-01

    Full Text Available In the article, the analysis of the operation of power plants in the conditions of economic restructuring to ensure successful entry into the market is carried out. The analysis of the five management structures, including current, typical structure and re-designed by the authors is presented. There are developed the partial efficiency criteria of the management structures that characterize the most important properties - the balance, integrity, controllability and stability. Local criteria of the analyzed structures do not allow to make a definite conclusion about the effectiveness of one of the structures analyzed, formulated global efficiency criterion. There is developed the global criterion of the comparative effectiveness of the management systems based on the DEA method (Data envelopment analysis, taking into account the complex of the proposed local criteria. The considered management structures are ranked based on the generalized criterion of efficiency.

  16. A laboratory method to estimate the efficiency of plant extract to neutralize soil acidity

    Directory of Open Access Journals (Sweden)

    Marcelo E. Cassiolato

    2002-06-01

    Full Text Available Water-soluble plant organic compounds have been proposed to be efficient in alleviating soil acidity. Laboratory methods were evaluated to estimate the efficiency of plant extracts to neutralize soil acidity. Plant samples were dried at 65ºC for 48 h and ground to pass 1 mm sieve. Plant extraction procedure was: transfer 3.0 g of plant sample to a becker, add 150 ml of deionized water, shake for 8 h at 175 rpm and filter. Three laboratory methods were evaluated: sigma (Ca+Mg+K of the plant extracts; electrical conductivity of the plant extracts and titration of plant extracts with NaOH solution between pH 3 to 7. These methods were compared with the effect of the plant extracts on acid soil chemistry. All laboratory methods were related with soil reaction. Increasing sigma (Ca+Mg+K, electrical conductivity and the volume of NaOH solution spent to neutralize H+ ion of the plant extracts were correlated with the effect of plant extract on increasing soil pH and exchangeable Ca and decreasing exchangeable Al. It is proposed the electrical conductivity method for estimating the efficiency of plant extract to neutralize soil acidity because it is easily adapted for routine analysis and uses simple instrumentations and materials.Tem sido proposto que os compostos orgânicos de plantas solúveis em água são eficientes na amenização da acidez do solo. Foram avaliados métodos de laboratório para estimar a eficiência dos extratos de plantas na neutralização da acidez do solo. Os materiais de plantas foram secos a 65º C por 48 horas, moídos e passados em peneira de 1mm. Utilizou-se o seguinte procedimento para obtenção do extrato de plantas: transferir 3.0 g da amostra de planta para um becker, adicionar 150 ml de água deionizada, agitar por 8h a 175 rpm e filtrar. Avaliaram-se três métodos de laboratório: sigma (Ca + Mg + K do extrato de planta, condutividade elétrica (CE do extrato de planta e titulação do extrato de planta com solu

  17. Efficiency of portable chlorophyll meters in assessing the nutritional status of wheat plants

    Directory of Open Access Journals (Sweden)

    Alessana F. Schlichting

    2015-12-01

    Full Text Available ABSTRACT The objective of this study was to verify the efficiency of two portable chlorophyll meters (Minolta SPAD® 502 and Falker ClorofiLOG® 1030 in assessing the nutritional status of wheat plants, correlating the indices from the devices and the direct determination of chlorophyll content with the concentration of nitrogen (N in the plant. The experiment was conducted in a greenhouse, in pots with 5 dm3 of Oxisol, in a completely randomized design, with six N doses (0, 80, 160, 240, 320 and 400 mg dm-3 and five replicates. At 47 days after emergence, the readings of SPAD and Falker indices and the quantification of chlorophyll content and N concentration in wheat plants were performed, as well as analysis of variance and correlation test, both at 0.05 probability level. The chlorophyll meters Minolta SPAD® 502 and Falker ClorofiLOG® 1030 do not differ with respect to the indirect determination of chlorophyll in wheat plants. The Falker chlorophyll index was statistically equal to the chlorophyll content. Indirect chlorophyll indices and chlorophyll content showed a high correlation with the N concentration in the plant.

  18. The regeneration test of the secondary loop condensate polishing mixed bed resin in Qinshan NPP

    International Nuclear Information System (INIS)

    Xu Meijing; Dong Liming

    1995-12-01

    There are four condensate polishing mixed beds in the water chemical treatment plant of Qinshan NPP. 2125 kg of D001-TR type cation exchange resin, 2000 kg of D201-TR type anion exchange resin, and 375 kg of S-TR type inert resin are filled into each mixed bed. The bed height of resin is 1.2 m and the volume is about 2.7 m 3 . In order to regenerate the exhausted resin out of the bed, the pre-designed condensate polishing mixed bed regeneration process was used to regenerate the first exhausted resin. After the resin was scrubbed and separated, cation resin and anion resin were respectively regenerated, rinsed to resume the exchange capability of the resin. The regenerated mixed bed is able to keep higher efficiency for condensate polishing. The outlet water quality and the resin service-life are able to meet the design requirements or more favorable than that. During the test, some main cations and anions in the blow-off water at each procedure were analyzed. The analyzed results were used to make pre-designed regeneration process better. The test results proved that pre-designed process is reasonable and effective. (6 refs., 6 figs., 7 tabs.)

  19. Radiation use efficiency of rice under different planting methods and environmental conditions

    International Nuclear Information System (INIS)

    Apakupakul, R.

    1995-01-01

    Radiation use efficiency is an important parameter which has often been used in many crop growth models to estimate total biomass and yield. Studies of the relationships between above-ground biomass and accumulative absorbed photosynthetically active radiation (PARa, MJ/square m) of rice were examined both on-farms and on-station in Phatthalung. Planting methods were wet-sown and transplanted rice for Suphanburi 90 in the 1993 dry season and Chieng in the 1993-94 wet season. Solar radiation of the two growing seasons were calculated from climatic data. The objectives of this experiment were (1) to know the pattern of relationship between above-ground biomass and accumulative absorbed PAR of rice cultivars grown in South Thailand, (2) to compare the radiation use efficiency of rice cultivars under different planting methods and (3) to obtain the primary data for rice growth modelling in the southern climate. Results presented that only the duration of first growing period up to stem elongation in both cultivars, above-ground biomass and leaf area index were higher in wet-sown than in transplanted rice. Relationship between above-ground biomass accumulation through growing period and accumulative absorbed PAR was in positive linear regression with R*[2)0.85. Erect leaf of Suphanburi 90 had a radiation use efficiency (RUE, g/MJ) higher than non-erect leaf of Chieng. A problem of weed infestation in wet-sown rice in both cultivars had an effect on the RUE which were highly significant lower than transplanted rice. The Rue of wet-sown and transplanted rice were 2.77 and 3.20 g/MJ, respectively for Suphanburi 90, 2.13 and 2.67 g/MJ for Chieng. These results suggest that when dealing with radiation use efficiency in the rice growth modelling the differences of cultivars and planting methods should be taken into consideration

  20. Application of high temperature phase change materials for improved efficiency in waste-to-energy plants.

    Science.gov (United States)

    Dal Magro, Fabio; Xu, Haoxin; Nardin, Gioacchino; Romagnoli, Alessandro

    2018-03-01

    This study reports the thermal analysis of a novel thermal energy storage based on high temperature phase change material (PCM) used to improve efficiency in waste-to-energy plants. Current waste-to-energy plants efficiency is limited by the steam generation cycle which is carried out with boilers composed by water-walls (i.e. radiant evaporators), evaporators, economizers and superheaters. Although being well established, this technology is subjected to limitations related with high temperature corrosion and fluctuation in steam production due to the non-homogenous composition of solid waste; this leads to increased maintenance costs and limited plants availability and electrical efficiency. The proposed solution in this paper consists of replacing the typical refractory brick installed in the combustion chamber with a PCM-based refractory brick capable of storing a variable heat flux and to release it on demand as a steady heat flux. By means of this technology it is possible to mitigate steam production fluctuation, to increase temperature of superheated steam over current corrosion limits (450°C) without using coated superheaters and to increase the electrical efficiency beyond 34%. In the current paper a detailed thermo-mechanical analysis has been carried out in order to compare the performance of the PCM-based refractory brick against the traditional alumina refractory bricks. The PCM considered in this paper is aluminium (and its alloys) whereas its container consists of high density ceramics (such as Al 2 O 3 , AlN and Si 3 N 4 ); the different coefficient of linear thermal expansion for the different materials requires a detailed thermo-mechanical analysis to be carried out to ascertain the feasibility of the proposed technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Improving energy efficiency of cyclone circuits in coal beneficiation plants by pump-storage systems

    International Nuclear Information System (INIS)

    Zhang, Lijun; Xia, Xiaohua; Zhang, Jiangfeng

    2014-01-01

    Highlights: • A pump-storage system (PSS) is introduced in a coal washing plant to reduce energy consumption and cost. • Optimal operation of the PSS under TOU tariff is formulated and solved. Life cycle cost analysis of the design is done. • Simulation results show the effectiveness of energy efficiency improvement and load shifting effect of the proposed approach. • An annual 38% reduction of overall cost of the coal washing plant with 2.86 years payback period is achieved. • Capacity improvement of power plants contracted to the coal mine is expected as less electricity is required to get fuel. - Abstract: A pump storage system (PSS) is introduced to the coal preparation dense medium cyclone (DMC) plants to improve their energy efficiency while maintaining the required medium supply. The DMC processes are very energy intensive and inefficient because the medium supply pumps are constantly over-pumping. The PSS presented is to reduce energy consumption and cost by introducing an addition medium circulation loop. The corresponding pump operation optimization problem in the PSS scheme under time-based electricity tariff is formulated and solved, based on which the financial benefits of the design is investigated using life cycle cost analysis. A case study based on the operation status of a South African coal mine is carried out to verify the effectiveness of the proposed approach. It is demonstrated that the energy cost can be reduced by more than 50% in the studied case by introducing a 160 m 3 storage tank. According to life cycle analysis, the PSS Option 1 yields an annual 38% reduction of the overall cost for the beneficiation plant with a payback period of 2.68 years

  2. Improved electrical efficiency and bottom ash quality on waste combustion plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Peter A.; Nesterov, I.; Boejer, M.; Hyks, J.; Astrup, T.; Kloeft, H.; Dam-Johansen, K.; Lundtorp, K.; Hedegaard Madsen, O.; Frandsen, F. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. (Author)

  3. Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation.

    Science.gov (United States)

    García-Sogo, Begoña; Pineda, Benito; Castelblanque, Lourdes; Antón, Teresa; Medina, Mónica; Roque, Edelín; Torresi, Claudia; Beltrán, José Pío; Moreno, Vicente; Cañas, Luis Antonio

    2010-01-01

    Engineered male sterility in ornamental plants has many applications such as facilitate hybrid seed production, eliminate pollen allergens, reduce the need for deadheading to extend the flowering period, redirect resources from seeds to vegetative growth, increase flower longevity and prevent gene flow between genetically modified and related native plants. We have developed a reliable and efficient Agrobacterium-mediated protocol for the genetic transformation of different Kalanchoe blossfeldiana commercial cultivars. Transformation efficiency for cv. 'Hillary' was 55.3% whereas that of cv. 'Tenorio' reached 75.8%. Selection was carried out with the nptII gene and increasing the kanamycin concentration from 25 to 100 mg l(-1) allowed to reduced escapes from 50 to 60% to virtually 0%. This method was used to produce male-sterile plants through engineered anther ablation. In our approach, we tested a male sterility chimaeric gene construct (PsEND1::barnase) to evaluate its effectiveness and effect on phenotype. No significant differences were found in the growth patterns between the transgenic lines and the wild-type plants. No viable pollen grains were observed in the ablated anthers of any of the lines carrying the PsEND1::barnase construct, indicating that the male sterility was complete. In addition, seed set was completely abolished in all the transgenic plants obtained. Our engineered male-sterile approach could be used, alone or in combination with a female-sterility system, to reduce the invasive potential of new ornamentals, which has become an important environmental problem in many countries.

  4. One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts.

    Science.gov (United States)

    Xu, Shengjie; Yong, Liu; Wu, Peiyi

    2013-02-01

    Flowerlike gold nanoparticles (Au NPs)/reduced graphene oxide (RGO) composites were fabricated by a facile, one-pot, environmentally friendly method in the presence of regenerated silk fibroin (RSF). The influences of reaction time, temperature, and HAuCl(4): RGO ratio on the morphology of Au NPs loaded on RGO sheets were discussed and a tentative mechanism for the formation of flowerlike Au NPs/RGO composite was proposed. In addition, the flowerlike Au NPs/RGO composite showed superior catalytic performance for oxygen reduction reaction (ORR) to Au/RGO composites with other morphologies. Our work provides an alternative facile and green approach to synthesize functional metal/RGO composites.

  5. Nitrogen Removal Efficiency at Centralized Domestic Wastewater Treatment Plants in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsak Noophan

    2009-07-01

    Full Text Available In this study, influents and effluents from centralized domestic wastewater treatment systems in Bangkok (Rattanakosin, Dindaeng, Chongnonsi, Nongkhaem, and Jatujak were randomly collected in order to measure organic nitrogen plus ammonium-nitrogen (total Kjeldahl nitrogen, total organic carbon, total suspended solids, and total volatile suspended solids by using Standard Methods for the Examination of Water and Wastewater 1998. Characteristics of influent and effluent (primary data of the centralized domestic wastewater treatment system from the Drainage and Sewerage Department of Bangkok Metropolitan Administration were used to analyze efficiency of systems. Fluorescent in situ hybridization (FISH was used to identify specific nitrifying bacteria (ammonium oxidizing bacteria specific for Nitrosomonas spp. and nitrite oxidizing bacteria specific for Nitrobacter spp. and Nitrospira spp.. Although Nitrosomonas spp. and Nitrobacter spp. were found, Nitrospira spp. was most prevalent in the aeration tank of centralized wastewater treatment systems. Almost all of the centralized domestic wastewater treatment plants in Bangkok are designed for activated sludge type biological nutrient removal (BNR. However, low efficiency nitrogen removal was found at centralized wastewater treatment plants in Bangkok. Influent ratio of TOC:N at centralized treatment plant is less than 2.5. Centralized wastewater treatment systems have not always been used suitability and used successfully in some areas of Bangkok Thailand.

  6. Treatment of landfill leachate by irrigation of willow coppice - Plant response and treatment efficiency

    International Nuclear Information System (INIS)

    Aronsson, Paer; Dahlin, Torleif; Dimitriou, Ioannis

    2010-01-01

    Landfill leachates usually need to be treated before discharged, and using soil-plant systems for this has gained substantial interest in Sweden and in the UK. A three-year field study was conducted in central Sweden to quantify plant response, treatment efficiency and impact on groundwater quality of landfill leachate irrigation of short-rotation willow coppice (Salix). Two willow varieties were tested and four irrigation regimes in sixteen 400-m 2 plots. The willow plants did not react negatively, despite very high annual loads of nitrogen (≤2160 kg N/ha), chloride (≤8600 kg Cl/ha) and other elements. Mean annual growth was 1.5, 9.8 and 12.6 tonnes DM/ha during years 1-3. For one of two willow varieties tested, relative leaf length accurately predicted growth rate. Irrigation resulted in elevated groundwater concentrations of all elements applied. Treatment efficiency varied considerably for different elements, but was adequate when moderate loads were applied. - Short-rotation willow coppice was successfully used for treating a strong landfill leachate in central Sweden over three years.

  7. Highly Efficient Single-Step Enrichment of Low Abundance Phosphopeptides from Plant Membrane Preparations

    Directory of Open Access Journals (Sweden)

    Xu Na Wu

    2017-09-01

    Full Text Available Mass spectrometry (MS-based large scale phosphoproteomics has facilitated the investigation of plant phosphorylation dynamics on a system-wide scale. However, generating large scale data sets for membrane phosphoproteins usually requires fractionation of samples and extended hands-on laboratory time. To overcome these limitations, we developed “ShortPhos,” an efficient and simple phosphoproteomics protocol optimized for research on plant membrane proteins. The optimized workflow allows fast and efficient identification and quantification of phosphopeptides, even from small amounts of starting plant materials. “ShortPhos” can produce label-free datasets with a high quantitative reproducibility. In addition, the “ShortPhos” protocol recovered more phosphorylation sites from membrane proteins, especially plasma membrane and vacuolar proteins, when compared to our previous workflow and other membrane-based data in the PhosPhAt 4.0 database. We applied “ShortPhos” to study kinase-substrate relationships within a nitrate-induction experiment on Arabidopsis roots. The “ShortPhos” identified significantly more known kinase-substrate relationships compared to previous phosphoproteomics workflows, producing new insights into nitrate-induced signaling pathways.

  8. Efficiency of an emissions payment system for nitrogen in sewage treatment plants - a case study.

    Science.gov (United States)

    Malmaeus, J Mikael; Ek, Mats; Åmand, Linda; Roth, Susanna; Baresel, Christian; Olshammar, Mikael

    2015-05-01

    An emissions payment system for nitrogen in Swedish sewage treatment plants (STPs) was evaluated using a semi-empirical approach. The system was based on a tariff levied on each unit of nitrogen emitted by STPs, and profitable measures to reduce nitrogen emissions were identified for twenty municipal STPs. This was done through direct involvement with the plant personnel and the results were scaled up to cover all treatment plants larger than 2000 person equivalents in the Swedish tributary areas of the Kattegat and the Baltic Proper. The sum of costs and nitrogen reductions were compared with an assumed command-and-control regulation requiring all STPs to obtain 80% total nitrogen reduction in their effluents. Costs for the latter case were estimated using a database containing standard estimates for reduction costs by six specified measures. For both cases a total reduction target of 3000 tonnes of nitrogen was set. We did not find that the emissions payment system was more efficient in terms of total reduction costs, although some practical and administrative advantages could be identified. Our results emphasize the need to evaluate the performance of policy instruments on a case-by-case basis since the theoretical efficiency is not always reflected in practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Improving the ecohydrological and economic efficiency of Small Hydropower Plants with water diversion

    Science.gov (United States)

    Razurel, Pierre; Gorla, Lorenzo; Tron, Stefania; Niayifar, Amin; Crouzy, Benoît; Perona, Paolo

    2018-03-01

    Water exploitation for energy production from Small Hydropower Plant (SHP) is increasing despite human pressure on freshwater already being very intense in several countries. Preserving natural rivers thus requires deeper understanding of the global (i.e., ecological and economic) efficiency of flow-diversion practice. In this work, we show that the global efficiency of SHP river intakes can be improved by non-proportional flow-redistribution policies. This innovative dynamic water allocation defines the fraction of water released to the river as a nonlinear function of river runoff. Three swiss SHP case studies are considered to systematically test the global performance of such policies, under both present and future hydroclimatic regimes. The environmental efficiency is plotted versus the economic efficiency showing that efficient solutions align along a (Pareto) frontier, which is entirely formed by non-proportional policies. On the contrary, other commonly used distribution policies generally lie below the Pareto frontier. This confirms the existence of better policies based on non-proportional redistribution, which should be considered in relation to implementation and operational costs. Our results recommend abandoning static (e.g., constant-minimal-flow) policies in favour of non-proportional dynamic ones towards a more sustainable use of the water resource, also considering changing hydroclimatic scenarios.

  10. Efficiency enhancement of GT-MHRs applied on ship propulsion plants

    Energy Technology Data Exchange (ETDEWEB)

    Ferreiro Garcia, Ramon, E-mail: ferreiro@udc.es [Dept. Industrial Engineering, University of A Coruna, ETSNM, C/Paseo de Ronda, 51, 15011 A Coruna (Spain); Carril, Jose Carbia; Catoira, Alberto DeMiguel; Romero Gomez, Javier [Dept. Energy and Propulsion, University of A Coruna ETSNM, C/Paseo de Ronda, 51, 15011 A Coruna (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Efficient ship propulsion system powered by HTRs. Black-Right-Pointing-Pointer A conventional Rankine cycle renders high efficiency. Black-Right-Pointing-Pointer The intermediate heat exchanger isolates the nuclear reactor from the process heat application. Black-Right-Pointing-Pointer An intermediate heat exchanger allows the system to be built to non-nuclear standards. - Abstract: High temperature reactors including gas cooled fast reactors and gas turbine modular helium reactors (GT-MHR) may operate as electric power suppliers to be applied on ship propulsion plants. In such propulsion systems performance enhancement can be achieved at effective cost under safety conditions using alternative cycles to the conventional Brayton cycle. Mentioned improvements concern the implementation of an ultra supercritical Rankine cycle, in which water is used as working fluid. The proposed study is carried out in order to achieve performance enhancement on the basis of turbine temperature increasing. The helium cooled high temperature reactor supplies thermal energy to the Rankine cycle via an intermediate heat exchanger (IHE) under safety conditions. The results of the study show that the efficiency of the propulsion plant using a multi-reheat Rankine cycle is significantly improved (from actual 48% to more than 55%) while keeping safety standards.

  11. Increase in the rate of recombinants in tomato (Lycopersicon esculentum L.) after in vitro regeneration.

    Science.gov (United States)

    Sibi, M; Biglary, M; Demarly, Y

    1984-07-01

    Modification to the cross-over (C. O.) rate of tomato (Lycopersicon esculentum) was attempted by using in vitro plant regeneration. F1 hybrids with the same genetical homozygous background were compared at two loci: "bs-ms32" on chromosome I, and "aa-d" on chromosome II. For each, the genetic distance separating the two markers was about 20 to 30 map units. One cotyledon of each F2 hybrid seedling was used as in vitro tissue culture material, while the rest of the plantlet was grown as a control. Recombination rates of the selfed progenies from each regenerated and matched control couple were compared. For the first set of markers 59,000 seeds were analysed (5 controls' and 7 regenerated progenies), and for the second, 11,000 (5 controls' and 8 regenerated progenies). There were significant increases in the genetic distance between markers in about half the regenerated individuals. For the first set the increases ranged from 6.07 to 6.91 units out of a control distance of the 19.84 to 25.65, corresponding to lengthenings of 30.59 to 35.29%. For the second set they ranged from 4.92 to 6.04 out of a control distance of 25.05 to 26.57, representing increases of 19.64 to 22.75%. Such a phenomenon can be important either from a fundamental or practical viewpoint, regarding selection efficiency in plants, and potential for gene reassortment.

  12. Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency

    Science.gov (United States)

    Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet

    2018-01-01

    Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.

  13. Nuclear power plants electrical retrofitting for cost effectiveness, reliability and operating efficiency

    International Nuclear Information System (INIS)

    Ciufu, L.; Popescu, M. O.

    2016-01-01

    In the context of continuous fast growing of the energy demand the current power plants retrofitting concept may represent an important step in the emission reduction, being able to offer in the same time a maximum operating efficiency. This desideratum can be obtained by implementing a rigorous energy management plan, based on an increased energy production capacity of non-pollutant electrical power plants and future-oriented frame on extending their lifetime operation. This management is focused on using state-of-art electronic, electrical and industrial control equipments, which can represent a real key factor. Thus, in this paper an analysis of the electrical system retrofitting is presented. As a part of this research the authors propose and simulate ambitious ways to upgrade actual control and command of the electrical operating systems, by promoting variable speed for large pumps and also computer software, as SCADA, for an intelligent control and monitoring of these studied processes. (authors)

  14. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    Science.gov (United States)

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  15. Advanced control systems to improve nuclear power plant reliability and efficiency

    International Nuclear Information System (INIS)

    1997-07-01

    The TECDOC is the result of a series of an advisory and consultants meetings held by the IAEA in 1995-1996 in Vienna (March 1995), in Erlangen Germany (December 1995), in Garching, Germany (June 1996) and in Vienna (November 1996). It was prepared with the participation and contributions of experts from Austria, Canada, Finland, France, Germany, the Republic of Korea, Norway, the Russian Federation, the United Kingdom and the United States of America. The publication not only describes advanced control systems for the improvement of nuclear power plant reliability and efficiency, but also provides a road map to guide interested readers to plan and execute an advanced instrumentation and control project. The subjects include: identification of needs and requirements, justification for safety and user acceptance, and the development of an engineering process. The report should be of interest to nuclear power plant staff, I and C system designers and integrators as well as regulators and researchers. Refs, figs, tabs

  16. An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles.

    Science.gov (United States)

    Santi, Luca; Batchelor, Lance; Huang, Zhong; Hjelm, Brooke; Kilbourne, Jacquelyn; Arntzen, Charles J; Chen, Qiang; Mason, Hugh S

    2008-03-28

    Virus-like particles (VLPs) derived from enteric pathogens like Norwalk virus (NV) are well suited to study oral immunization. We previously described stable transgenic plants that accumulate recombinant NV-like particles (rNVs) that were orally immunogenic in mice and humans. The transgenic approach suffers from long generation time and modest level of antigen accumulation. We now overcome these constraints with an efficient tobacco mosaic virus (TMV)-derived transient expression system using leaves of Nicotiana benthamiana. We produced properly assembled rNV at 0.8 mg/g leaf 12 days post-infection (dpi). Oral immunization of CD1 mice with 100 or 250 microg/dose of partially purified rNV elicited systemic and mucosal immune responses. We conclude that the plant viral transient expression system provides a robust research tool to generate abundant quantities of rNV as enriched, concentrated VLP preparations that are orally immunogenic.

  17. Advanced control systems to improve nuclear power plant reliability and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The TECDOC is the result of a series of an advisory and consultants meetings held by the IAEA in 1995-1996 in Vienna (March 1995), in Erlangen Germany (December 1995), in Garching, Germany (June 1996) and in Vienna (November 1996). It was prepared with the participation and contributions of experts from Austria, Canada, Finland, France, Germany, the Republic of Korea, Norway, the Russian Federation, the United Kingdom and the United States of America. The publication not only describes advanced control systems for the improvement of nuclear power plant reliability and efficiency, but also provides a road map to guide interested readers to plan and execute an advanced instrumentation and control project. The subjects include: identification of needs and requirements, justification for safety and user acceptance, and the development of an engineering process. The report should be of interest to nuclear power plant staff, I and C system designers and integrators as well as regulators and researchers. Refs, figs, tabs.

  18. Development of a PF fired high efficiency power plant (AD700)

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R.; Kjaer, S.; Bugge, J. [DONG Energy Generation, Fredericia (Denmark)

    2007-05-15

    European efforts to start substantial improvements of the performance of well established supercritical coal-fired power technology named the AD700 project began in 1998. Major targets were development of austenitic materials and nickel-based superalloys for the hottest sections of boilers, steam lines and turbines. Other targets were development of boiler and turbine designs for the more advanced conditions and finally economic viability of the AD700 technology has been investigated. The project has been very successful and 40 partners from the European power industry have worked together in several projects co-funded by the European Commission for nearly years. Procurement of mature and commercially optimised AD700 plant could take place around 2015. The investigated nickel-based materials have shown very high creep strengths but they have also shown to be very hard to manufacture, and more efforts to define new machining lines are being started. Ongoing tests indicate that the developed austenitic material will fulfil its creep strength target and is now ready for commercialisation. Development works on boiler and turbine designs for the advanced steam conditions have also been successfully completed but they also clearly indicate that further development work on improved ferritic steel for furnace walls is important. Conventional development of the steam cycles is based on new improved materials, which open for higher steam temperatures and efficiencies whereas other thermodynamic tools are only slowly being accepted. However, in the present paper a proposal for steam cycle improvements not based on higher steam temperatures is presented. The improved cycle is named the Master Cycle (MC) and it is based on a revision of the double reheat steam cycle where the bleeds of the IP turbines have been moved to a feed pump turbine bleeding on the first cold reheat line. Elsam has established protection of a patent for the MC in a number of countries. At constant main

  19. Plutonium Finishing Plant (PFP) Waste Composition and High Efficiency Particulate Air Filter Loading

    Energy Technology Data Exchange (ETDEWEB)

    ZIMMERMAN, B.D.

    2000-12-11

    This analysis evaluates the effect of the Plutonium Finishing Plant (PFP) waste isotopic composition on Tank Farms Final Safety Analysis Report (FSAR) accidents involving high-efficiency particulate air (HEPA) filter failure in Double-Contained Receiver Tanks (DCRTs). The HEPA Filter Failure--Exposure to High Temperature or Pressure, and Steam Intrusion From Interfacing Systems accidents are considered. The analysis concludes that dose consequences based on the PFP waste isotopic composition are bounded by previous FSAR analyses. This supports USQD TF-00-0768.

  20. Reproducible and expedient rice regeneration system using in vitro ...

    African Journals Online (AJOL)

    Inevitable prerequisite for expedient regeneration in rice is the selection of totipotent explant and developing an apposite combination of growth hormones. Here, we reported a reproducible regeneration protocol in which basal segments of the stem of the in vitro grown rice plants were used as ex-plant. Using the protocol ...

  1. Regeneration of Sudanese maize inbred lines and open pollinated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... Callus induction capacity was highest in inbred lines IL3, IL15 and IL1. The. Varieties Hudiba-2 and ... Maize plant regeneration can take place through two avenues, that is ..... regenerants were tussel ear formation and dwarfism. These abnormalities are typical of tissue-cultured cells, plants derived from ...

  2. PLETHORA genes control regeneration by a two-step mechanism

    NARCIS (Netherlands)

    Kareem, Abdul; Durgaprasad, Kavya; Sugimoto, Kaoru; Du, Yujuan; Pulianmackal, Ajai J.; Trivedi, Zankhana B.; Abhayadev, Pazhoor V.; Pinon, Violaine; Meyerowitz, Elliot M.; Scheres, Ben; Prasad, Kalika

    2015-01-01

    Summary Regeneration, a remarkable example of developmental plasticity displayed by both plants and animals, involves successive developmental events driven in response to environmental cues. Despite decades of study on the ability of the plant tissues to regenerate a complete fertile shoot

  3. Regeneration of Algerian germplasm by stigma/style somatic ...

    African Journals Online (AJOL)

    ... days in most of the cultured genotypes. Formed embryos were cultured in a single tube before in vivo acclimatization. After sanitary assays, regenerated plants were shown to be free from the agents detected in the mother trees. Key words: Algeria, citrus germplasm, plant regeneration, sanitation, somatic embryogenesis.

  4. The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants

    International Nuclear Information System (INIS)

    Zhang, Ning; Kong, Fanbin; Choi, Yongrok; Zhou, P.

    2014-01-01

    This paper examines the effect of size control policy on the energy and carbon efficiency for Chinese fossil fuel power industry. For this purpose, we propose two non-radial directional distance functions for energy/carbon efficiency analysis of fossil fuel electricity generation. One is named a total-factor directional distance function that incorporates the inefficiency of all input and output factors to measure the unified (operational and environmental) efficiency of fossil fuel power plants, and the other is called an energy–environmental directional distance function that can be used to measure the energy–environmental performance of fossil fuel electric power plants. Several standardized indicators for measuring unified efficiency and energy–environmental performance are derived from the two directional distance functions. An empirical study of 252 fossil fuel power plants in China is conducted by using the proposed approach. Our empirical results show that there exists a significant positive relationship between the plant size and unified efficiency, the five state-owned companies show lower unified efficiency and energy–environmental performance than other companies. It is suggested that Chinese government might need to consider private incentives and deregulation for its state-owned enterprises to improve their performance proactively. - Highlights: • Two non-radial directional distance functions are presented for energy/carbon efficiency analysis. • An empirical study of 252 fossil fuel power plants in China is conducted. • The five state-owned companies show lower unified efficiency and energy–environmental performance

  5. Mercury Emissions Capture Efficiency with Activated Carbon Injection at a Russian Coal-Fired Thermal Power Plant

    Science.gov (United States)

    This EPA-led project, conducted in collaboration with UNEP, the Swedish Environmental Institute and various Russian Institutes, that demonstrates that the mercury emission control efficiencies of activated carbon injection technologies applied at a Russian power plant burning Rus...

  6. Techno-economical efficiency and productivity change of wastewater treatment plants: the role of internal and external factors.

    Science.gov (United States)

    Hernández-Sancho, F; Molinos-Senante, M; Sala-Garrido, R

    2011-12-01

    Efficiency and productivity are important measures for identifying best practice in businesses and optimising resource-use. This study analyses how these two measures change across the period 2003-2008 for 196 wastewater treatment plants (WWTPs) in Spain, by using the benchmarking methods of Data Envelopment Analysis and the Malmquist Productivity Index. To identify which variables contribute to the sustainability of the WWTPs, differences in efficiency scores and productivity indices for external factors are also investigated. Our results indicate that both efficiency and productivity decreased over the five years. We verify that the productivity drop is primarily explained by technical change. Furthermore, certain external variables affected WWTP efficiency, including plant size, treatment technology and energy consumption. However, plants with low energy consumption are the only ones which improve their productivity. Finally, the benchmarking analyses proved to be useful as management tools in the wastewater sector, by providing vital information for improving the sustainability of plants.

  7. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    Science.gov (United States)

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  8. A treatment of thermal efficiency improvement in the Brayton cycle

    International Nuclear Information System (INIS)

    Fujii, Terushige; Akagawa, Koji; Nakanishi, Shigeyasu; Inoue, Kiyoshi; Ishigai, Seikan.

    1982-01-01

    So far, as the working fluid for power-generating plants, mainly water and air (combustion gas) have been used. In this study, in regeneration and isothermal compression processes being considered as the means for the efficiency improvement in Brayton cycle, the investigation of equivalent graphical presentation method with T-S diagrams, the introduction of the new characteristic number expressing the possibility of thermal efficiency improvement by regeneration, and the investigation of the effect of the difference of working fluid on thermal efficiency were carried out. Next, as the cycle approximately realizing isothermal compression process with condensation process, the super-critical pressure cycle with liquid phase compression was rated, and four working fluids, NH 3 , SO 2 , CO 2 and H 2 O were examined as perfect gas and real gas. The advantage of CO 2 regeneration for the thermal efficiency improvement was clarified by using the dimensionless characteristic number. The graphical presentation of effective work, the thermal efficiency improvement by regeneration, the thermal efficiency improvement by making compression process isothermal, the effect on thermal efficiency due to various factors and working fluids, the characteristic number by regeneration, and the application to real working fluids are reported. (Kako, I.)

  9. Regeneration of hair cells in the mammalian vestibular system.

    Science.gov (United States)

    Li, Wenyan; You, Dan; Chen, Yan; Chai, Renjie; Li, Huawei

    2016-06-01

    Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicininduced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atoh1. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.

  10. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress.

    Science.gov (United States)

    LeBlanc, Chantal; Zhang, Fei; Mendez, Josefina; Lozano, Yamile; Chatpar, Krishna; Irish, Vivian F; Jacob, Yannick

    2018-01-01

    The CRISPR/Cas9 system has greatly improved our ability to engineer targeted mutations in eukaryotic genomes. While CRISPR/Cas9 appears to work universally, the efficiency of targeted mutagenesis and the adverse generation of off-target mutations vary greatly between different organisms. In this study, we report that Arabidopsis plants subjected to heat stress at 37°C show much higher frequencies of CRISPR-induced mutations compared to plants grown continuously at the standard temperature (22°C). Using quantitative assays relying on green fluorescent protein (GFP) reporter genes, we found that targeted mutagenesis by CRISPR/Cas9 in Arabidopsis is increased by approximately 5-fold in somatic tissues and up to 100-fold in the germline upon heat treatment. This effect of temperature on the mutation rate is not limited to Arabidopsis, as we observed a similar increase in targeted mutations by CRISPR/Cas9 in Citrus plants exposed to heat stress at 37°C. In vitro assays demonstrate that Cas9 from Streptococcus pyogenes (SpCas9) is more active in creating double-stranded DNA breaks at 37°C than at 22°C, thus indicating a potential contributing mechanism for the in vivo effect of temperature on CRISPR/Cas9. This study reveals the importance of temperature in modulating SpCas9 activity in eukaryotes, and provides a simple method to increase on-target mutagenesis in plants using CRISPR/Cas9. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Regeneration limit of classical Shannon capacity

    Science.gov (United States)

    Sorokina, M. A.; Turitsyn, S. K.

    2014-05-01

    Since Shannon derived the seminal formula for the capacity of the additive linear white Gaussian noise channel, it has commonly been interpreted as the ultimate limit of error-free information transmission rate. However, the capacity above the corresponding linear channel limit can be achieved when noise is suppressed using nonlinear elements; that is, the regenerative function not available in linear systems. Regeneration is a fundamental concept that extends from biology to optical communications. All-optical regeneration of coherent signal has attracted particular attention. Surprisingly, the quantitative impact of regeneration on the Shannon capacity has remained unstudied. Here we propose a new method of designing regenerative transmission systems with capacity that is higher than the corresponding linear channel, and illustrate it by proposing application of the Fourier transform for efficient regeneration of multilevel multidimensional signals. The regenerative Shannon limit—the upper bound of regeneration efficiency—is derived.

  12. Cooling Tower Optimization A Simple Way to Generate Green Megawatts and to Increase the Efficiency of a Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.

    2014-07-01

    The profitability of nuclear power plants is worldwide challenged by low electricity prices. One hand low cost shale gas is offering a low price electricity production , other hand additional taxes on fuel are reducing the operating income of nuclear power stations. The optimization of cooling towers can help to increase the efficiency and profit of a nuclear power plant. (Author)

  13. Microbial Removal Efficiency of UV in Tehran Shahid Mahallati Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Reza Dabbagh

    2009-03-01

    Full Text Available Shahid Mahallati Wastewater Treatment Plant was selected for installing a UV disinfection unit to investigate its germicidal effect on microbial removal. Low pressure mercury lamps were used to generate germicidal ultraviolet radiation (UV-C. The UV system was operated over a period of 6 months that included both warm and cold seasons. A maximum UV disinfection efficiency of 14.4m3/h was recorded for the system on the basis of design criteria within turbidity ranges of 9 to 32 NTU. The minimum UV dose applied in the UV unit was 40000 µW.s/cm2 and the highest bacterial density in the UV unit influent was 5.6*107. Effluent total coliform or fecal coliform enumeration after exposure to UV ray showed the microbial density decreasing from four logs, or 99.99%, to as high as six logs, or 99.9999% removal efficiency, under different conditions. Effluent microbial densities in terms of total and fecal coliforms were below 1000MPN/100mL and 400MPN/100mL, respectively. These values comply with wastewater discharge or agricultural irrigation standards according to Iran Department of Environment. From our results, it is concluded that UV disinfection may be an effective technique for wastewater disinfection in Iranian wastewater treatment plants.

  14. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung

    2011-10-03

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity, a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments, both part load and full load, of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

  15. Thermodynamic analysis of a Stirling engine including regenerator dead volume

    Energy Technology Data Exchange (ETDEWEB)

    Puech, Pascal; Tishkova, Victoria [Universite de Toulouse, UPS, CNRS, CEMES, 29 rue Jeanne Marvig, F-31055 Toulouse (France)

    2011-02-15

    This paper provides a theoretical investigation on the thermodynamic analysis of a Stirling engine with linear and sinusoidal variations of the volume. The regenerator in a Stirling engine is an internal heat exchanger allowing to reach high efficiency. We used an isothermal model to analyse the net work and the heat stored in the regenerator during a complete cycle. We show that the engine efficiency with perfect regeneration doesn't depend on the regenerator dead volume but this dead volume strongly amplifies the imperfect regeneration effect. An analytical expression to estimate the improvement due to the regenerator has been proposed including the combined effects of dead volume and imperfect regeneration. This could be used at the very preliminary stage of the engine design process. (author)

  16. Air purification in industrial plants producing automotive rubber components in terms of energy efficiency

    Directory of Open Access Journals (Sweden)

    Grzebielec Andrzej

    2017-04-01

    Full Text Available In automotive industry plants, which use injection molding machines for rubber processing, tar contaminates air to such an extent that air fails to enter standard heat recovery systems. Accumulated tar clogs ventilation heat recovery exchangers in just a few days. In the plant in which the research was conducted, tar contamination causes blockage of ventilation ducts. The effect of this phenomenon was that every half year channels had to be replaced with new ones, since the economic analysis has shown that cleaning them is not cost-efficient. Air temperature inside such plants is often, even in winter, higher than 30°C. The air, without any means of heat recovery, is discharged outside the buildings. The analyzed plant uses three types of media for production: hot water, cold water at 14°C (produced in a water chiller, and compressed air, generated in a unit with a rated power consumption of 180 kW. The aim of the study is to determine the energy efficiency improvement of this type of manufacturing plant. The main problem to solve is to provide an air purification process so that air can be used in heat recovery devices. The next problem to solve is to recover heat at such a temperature level that it would be possible to produce cold for technological purposes without air purification. Experimental studies have shown that air purification is feasible. By using one microjet head, a total of 75% of tar particles was removed from the air; by using 4 heads, a purification efficiency of 93% was obtained. This method of air purification causes air temperature to decrease from 35°C to 20°C, which significantly reduces the potential for heat recovery. The next step of the research was designing a cassette-plate heat exchanger to exchange heat without air purification. The economic analysis of such a solution revealed that replacing the heat exchanger with a new one even once a year was not cost-efficient. Another issue examined in the context of

  17. Development of Efficient Screening Methods for Resistant Cucumber Plants to Meloidogyne incognita

    Directory of Open Access Journals (Sweden)

    Sung Min Hwang

    2014-06-01

    Full Text Available Root-knot nematodes represent a significant problem in cucumber, causing reduction in yield and quality. To develop screening methods for resistance of cucumber to root-knot nematode Meloidogyne incognita, development of root-knot nematode of four cucumber cultivars (‘Dragonsamchuk’, ‘Asiastrike’, ‘Nebakja’ and ‘Hanelbakdadaki’ according to several conditions such as inoculum concentration, plant growth stage and transplanting period was investigated by the number of galls and egg masses produced in each seedling 45 days after inoculation. There was no difference in galls and egg masses according to the tested condition except for inoculum concentration. Reproduction of the nematode on all the tested cultivars according to inoculum concentration increased in a dose-dependent manner. On the basis of the result, the optimum conditions for root-knot development on the cultivars is to transplant period of 1 week, inoculum concentration of 5,000 eggs/plant and plant growth stage of 3-week-old in a greenhouse (25 ± 5°C. In addition, under optimum conditions, resistance of 45 commercial cucumber cultivars was evaluated. One rootstock cultivar, Union was moderately resistant to the root-knot nematode. However, no significant difference was in the resistance of the others cultivar. According to the result, we suggest an efficient screening method for new resistant cucumber to the root-knot nematode, M. incognita.

  18. Removal efficiencies of constructed wetland and efficacy of plant on treating benzene

    Directory of Open Access Journals (Sweden)

    Florencio Ballesteros, Jr.

    2016-03-01

    Full Text Available Leaking underground petroleum storage poses human and environmental health risks as it contaminates the soil and the groundwater. Of the many contaminants, benzene – a major constituent of gasoline, is of primary concern. It is an identified carcinogen with a permissible limit set at a low level of 0.005 mg L−1. This poses technical and regulatory challenge to remediation of contaminated sites. Various specialized treatment methods are available, but despite of the high removal efficiencies of sophisticated treatments, the residual level still poses health risks. Thus, additional alternative ways that are cost effective and require minimum technical expertise are necessary, and a constructed wetland (CW is a potential alternative. This study evaluates the performance of a surface flow type CW for the removal of benzene from the contaminated water. It further determines the efficacy of a common reed plant Phragmites karka in treating benzene. Planted and unplanted CW were acclimated with benzene for 16 wk and tested for an 8-d hydraulic retention time at benzene levels of 66 and 45 mg L−1. Results indicate that the planted CW performed better and gave reliable and stable results.

  19. Plant delta 15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees.

    Science.gov (United States)

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2009-11-01

    Based upon considerations of a theoretical model of (15)N/(14)N fractionation during steady-state nitrate uptake from soil, we hypothesized that, for plants grown in a common soil environment, whole-plant delta(15)N (deltaP) should vary as a function of the transpiration efficiency of nitrogen acquisition (F(N)/v) and the difference between deltaP and root delta(15)N (deltaP - deltaR). We tested these hypotheses with measurements of several tropical tree and liana species. Consistent with theoretical expectations, both F(N)/v and deltaP - deltaR were significant sources of variation in deltaP, and the relationship between deltaP and F(N)/v differed between non-N(2)-fixing and N(2)-fixing species. We interpret the correlation between deltaP and F(N)/v as resulting from variation in mineral nitrogen efflux-to-influx ratios across plasma membranes of root cells. These results provide a simple explanation of variation in delta(15)N of terrestrial plants and have implications for understanding nitrogen cycling in ecosystems.

  20. Treatment efficiency in wastewater treatment plant of Hat Yai Municipality by quantitative removal of microbial indicators

    Directory of Open Access Journals (Sweden)

    Duangporn Kantachote

    2009-11-01

    Full Text Available The efficiency of treatment in a wastewater treatment plant of Hat Yai Municipality through stabilization ponds and constructed wetlands was monitored by using the bacterial indicators, total coliforms (TC, fecal coliforms (FC, Escherichia coli and fecal streptococci (FS, and photosynthetic microbes. The sequence of water flow in the wastewater treatment plant is as follows: primary or anaerobic pond (P, facultative pond (F, maturation pond (M, constructed wetlands (W1, W2 and W3, and an effluent storage pond (S for the treated wastewater. The wastewater treatment plant has an approximate area of 3,264,000 m2 (2,040 rai and its dry weather flow was running at only 40,000 m3/ day. There were 10 sampling times used for all the 7 ponds during July-October, 2006.Statistical analysis using a Two-Factorial Design model, indicated that pond types significantly affected temperature, dissolved oxygen (DO, and pH (p<0.05, whereas the time of sampling during the day had a significant effect (p<0.05 only on the temperature and light intensity available to the ponds. There were also significant different removal efficiencies of the different bacterial indicator groups tested (p<0.05. The overall performance of the wastewater treatment plant effectively removed TC, FC, E. coli, and FS as follows, 99.8%, 99.8%, 75.8% and 98.8%, respectively. The amounts of bacterial indicators, except for E. coli, showed a negative correlation with levels of light intensity and DO, whereas there was no correlation between the pH and the different indicator bacteria. There was a positive middle level correlation between pHand chlorophyll a.There were five different divisions of photosynthetic organisms detected throughout the plant as follows, Cyanophyta, Chlorophyta, Bacillariophyta, Euglenophyta, and Pyrrhophyta. The least diversity was found in the anaerobic pond (P as there were only 15 genera. Euglena, an indicator of dirty water, was detected only in this pond. The