WorldWideScience

Sample records for efficient expansion cycle

  1. Fuel conversion efficiency improvements in a highly boosted spark-ignition engine with ultra-expansion cycle

    International Nuclear Information System (INIS)

    Li, Tie; Zheng, Bin; Yin, Tao

    2015-01-01

    Highlights: • Ultra-expansion cycle SI engine is investigated. • An improvement of 9–26% in BSFC at most frequently operated conditions is obtained. • At high and medium loads, BSFC improvement is attributed to the increased combustion efficiency and reduced exhaust energy. • At low loads, reduction in pumping loss and exhaust energy is the primary contributors to BSFC improvement. • Technical challenge in practical application of this type of engine is discussed. - Abstract: A four-cylinder, intake boosted, port fuel injection (PFI), spark-ignition (SI) engine is modified to a three-cylinder engine with the outer two cylinders working in the conventional four stroke cycle and with the inner cylinder working only with the expansion and exhausting strokes. After calibration and validation of the engine cycle simulation models using the experimental data in the original engine, the performance of the three-cylinder engine with the ultra-expansion cycle is numerically studied. Compared to the original engine, the fuel consumptions under the most-frequently operated conditions are improved by 9–26% and the low fuel consumption area on the operating map are drastically enlarged for the ultra-expansion cycle engine with the proper design. Nonetheless, a higher intake boosting is needed for the ultra-expansion cycle engine to circumvent the significant drop in the wide-open-throttle (WOT) performance, and compression ratio of the combustion cylinder must be reduced to avoid knocking combustion. Despite of the reduced compression ratio, however, the total expansion ratio is increased to 13.8 with the extra expansion of the working gas in the inner cylinder. Compared to the conventional engine, the theoretical thermal efficiency is therefore increased by up to above 4.0% with the ultra-expansion cycle over the most load range. The energy balance analysis shows that the increased combustion efficiency, reduced exhaust energy and the extra expansion work in the

  2. New high expansion ratio gasoline engine for the TOYOTA hybrid system. Improving engine efficiency with high expansion ratio cycle; Hybrid system yo kobochohi gasoline engine. Kobochohi cycle ni yoru engine no kokoritsuka

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, K; Takaoka, T; Ueda, T; Kobayashi, Y [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    50% reduction of CO2 and fuel consumption have been achieved with the newly developed gasoline engine for the Toyota Hybrid System. This is achieved due to the combination of electric motors and the internal combustion engine which is optimized in the size, swept volume and heat cycle. By delaying the intake valve close timing a high expansion ratio (13.5:1) cycle has been realized. Electricmotor assist enable to cut the maximum engine speed, and friction loss. A best fuel consumption figure better than 230 g/kWh has been achieved. Elimination of lightload firing, motor assisted quick start and improvement of catalyst warm up makes to achieve the clean emission level such as 1/10 of Japanese `78 regulation limit. 10 refs., 16 figs., 1 tab.

  3. Stirling Engine Cycle Efficiency

    OpenAIRE

    Naddaf, Nasrollah

    2012-01-01

    ABSTRACT This study strives to provide a clear explanation of the Stirling engine and its efficiency using new automation technology and the Lab View software. This heat engine was invented by Stirling, a Scottish in 1918. The engine’s working principles are based on the laws of thermodynamics and ability of volume expansion of ideal gases at different temperatures. Basically there are three types of Stirling engines: the gamma, beta and alpha models. The commissioner of the thesis ...

  4. Cycle expansions: From maps to turbulence

    Science.gov (United States)

    Lan, Y.

    2010-03-01

    We present a derivation, a physical explanation and applications of cycle expansions in different dynamical systems, ranging from simple one-dimensional maps to turbulence in fluids. Cycle expansion is a newly devised powerful tool for computing averages of physical observables in nonlinear chaotic systems which combines many innovative ideas developed in dynamical systems, such as hyperbolicity, invariant manifolds, symbolic dynamics, measure theory and thermodynamic formalism. The concept of cycle expansion has a deep root in theoretical physics, bearing a close analogy to cumulant expansion in statistical physics and effective action functional in quantum field theory, the essence of which is to represent a physical system in a hierarchical way by utilizing certain multiplicative structures such that the dominant parts of physical observables are captured by compact, maneuverable objects while minor detailed variations are described by objects with a larger space and time scale. The technique has been successfully applied to many low-dimensional dynamical systems and much effort has recently been made to extend its use to spatially extended systems. For one-dimensional systems such as the Kuramoto-Sivashinsky equation, the method turns out to be very effective while for more complex real-world systems including the Navier-Stokes equation, the method is only starting to yield its first fruits and much more work is needed to enable practical computations. However, the experience and knowledge accumulated so far is already very useful to a large set of research problems. Several such applications are briefly described in what follows. As more research effort is devoted to the study of complex dynamics of nonlinear systems, cycle expansion will undergo a fast development and find wide applications.

  5. Review of low-temperature vapour power cycle engines with quasi-isothermal expansion

    OpenAIRE

    Igobo, Opubo N.; Davies, Philip A.

    2014-01-01

    External combustion heat cycle engines convert thermal energy into useful work. Thermal energy resources include solar, geothermal, bioenergy, and waste heat. To harness these and maximize work output, there has been a renaissance of interest in the investigation of vapour power cycles for quasi-isothermal (near constant temperature) instead of adiabatic expansion. Quasi-isothermal expansion has the advantage of bringing the cycle efficiency closer to the ideal Carnot efficiency, but it requi...

  6. Feasibility of Ericsson type isothermal expansion/compression gas turbine cycle for nuclear energy use

    International Nuclear Information System (INIS)

    Shimizu, Akihiko

    2007-01-01

    A gas turbine with potential demand for the next generation nuclear energy use such as HTGR power plants, a gas cooled FBR, a gas cooled nuclear fusion reactor uses helium as working gas and with a closed cycle. Materials constituting a cycle must be set lower than allowable temperature in terms of mechanical strength and radioactivity containment performance and so expansion inlet temperature is remarkably limited. For thermal efficiency improvement, isothermal expansion/isothermal compression Ericsson type gas turbine cycle should be developed using wet surface of an expansion/compressor casing and a duct between stators without depending on an outside heat exchanger performing multistage re-heat/multistage intermediate cooling. Feasibility of an Ericsson cycle in comparison with a Brayton cycle and multi-stage compression/expansion cycle was studied and technologies to be developed were clarified. (author)

  7. Health impact assessment of cycling network expansions in European cities.

    Science.gov (United States)

    Mueller, Natalie; Rojas-Rueda, David; Salmon, Maëlle; Martinez, David; Ambros, Albert; Brand, Christian; de Nazelle, Audrey; Dons, Evi; Gaupp-Berghausen, Mailin; Gerike, Regine; Götschi, Thomas; Iacorossi, Francesco; Int Panis, Luc; Kahlmeier, Sonja; Raser, Elisabeth; Nieuwenhuijsen, Mark

    2018-04-01

    We conducted a health impact assessment (HIA) of cycling network expansions in seven European cities. We modeled the association between cycling network length and cycling mode share and estimated health impacts of the expansion of cycling networks. First, we performed a non-linear least square regression to assess the relationship between cycling network length and cycling mode share for 167 European cities. Second, we conducted a quantitative HIA for the seven cities of different scenarios (S) assessing how an expansion of the cycling network [i.e. 10% (S1); 50% (S2); 100% (S3), and all-streets (S4)] would lead to an increase in cycling mode share and estimated mortality impacts thereof. We quantified mortality impacts for changes in physical activity, air pollution and traffic incidents. Third, we conducted a cost-benefit analysis. The cycling network length was associated with a cycling mode share of up to 24.7% in European cities. The all-streets scenario (S4) produced greatest benefits through increases in cycling for London with 1,210 premature deaths (95% CI: 447-1,972) avoidable annually, followed by Rome (433; 95% CI: 170-695), Barcelona (248; 95% CI: 86-410), Vienna (146; 95% CI: 40-252), Zurich (58; 95% CI: 16-100) and Antwerp (7; 95% CI: 3-11). The largest cost-benefit ratios were found for the 10% increase in cycling networks (S1). If all 167 European cities achieved a cycling mode share of 24.7% over 10,000 premature deaths could be avoided annually. In European cities, expansions of cycling networks were associated with increases in cycling and estimated to provide health and economic benefits. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Thermodynamic analysis on a modified ejector expansion refrigeration cycle with zeotropic mixture (R290/R600a) for freezers

    International Nuclear Information System (INIS)

    Yan, Gang; Bai, Tao; Yu, Jianlin

    2016-01-01

    This study presents a modified ejector expansion cycle with zeotropic mixtures (R290/R600a) for freezers, in which an ejector and a phase-separator are employed to enhance the cycle performance. Energetic and exergetic methods are used to theoretically investigate the system operating characteristics. In addition, comparative research among the modified cycle, conventional ejector expansion cycle and basic throttling cycle is carried out. The results demonstrate that the modified cycle exhibits higher refrigeration COP (coefficient of performance), volumetric refrigeration capacity and system exergy efficiency than conventional ejector expansion cycle and basic throttling cycle. Under the given operation conditions, the system performance improvements of the modified cycle in terms of the COP, refrigeration capacity and system exergy efficiency over the basic throttling cycle could reach about 56.0%, 4.5% and 77.7%, respectively. The performance characteristics of the proposed cycle show its potential practical advantages in freezer applications. - Highlights: • A zeotropic mixture based ejector refrigeration cycle with a separator is proposed. • Comparative research among the different cycles is carried out. • Energetic and exergetic methods are used to investigate the system performance. • The COP and system exergy efficiency are improved by 56.0% and 77.7%, respectively.

  9. Preliminary thermodynamic study of regenerative Otto based cycles with zero NOx emissions operating with adiabatic and polytropic expansion

    International Nuclear Information System (INIS)

    Garcia, Ramon Ferreiro; Carril, Jose Carbia; Romero Gomez, Javier; Romero Gomez, Manuel

    2016-01-01

    Highlights: • Efficient polytropic expansion based Otto cycle. • Thermal efficiency is due to the inherent regeneration. • Low temperature combustion with zero NOx emissions. - Abstract: The aim of the paper is to demonstrate that a regenerative Otto cycle with adiabatic or polytropic expansion can achieve improved performance over traditional Otto engines, even exceeding the Carnot factor. Thus, the work deals with a novel regenerative Otto based internal combustion engine which differs from the conventional Otto thermal cycles in that the process of heat conversion into mechanical work is performed obeying a polytropic path function instead of the conventional adiabatic expansion without regeneration. Design characteristics concern the fact that combustion at constant volume is carried out undergoing large air excess so that the top combustion temperature is significantly lower than in conventional Otto cycles and consequently NOx emissions are neglected. Furthermore, during the polytropic expansion based path function, heat is absorbed by being submitted to a controlled heat flow rate, to achieve the desired polytropic expansion. The analysis of the regenerative Otto based on polytropic expansion is presented and results are compared with a regenerative Otto based on the adiabatic expansion and CF. The results show that a relevant advantage of the proposed regenerative Otto with polytropic expansion over the regenerative Otto cycle with adiabatic expansion involves performance enhancement within a wide range of combustion pressures, temperatures and regeneration capacities. Thus, thermal efficiency and specific work as function of the top combustion pressure ranges are of 71.95–58.43% and 143.5–173.6 kJ/kg respectively, when combustion pressures vary between 105 kPa and 200 kPa and CF is 60.8% (lower than the thermal efficiency). The successful results involving a compact engine structure, technically and economically viable, promises a new generation

  10. Energy and entropy analysis of closed adiabatic expansion based trilateral cycles

    International Nuclear Information System (INIS)

    Garcia, Ramon Ferreiro; Carril, Jose Carbia; Gomez, Javier Romero; Gomez, Manuel Romero

    2016-01-01

    Highlights: • The adiabatic expansion based TC surpass Carnot factor at low temperatures. • The fact of surpassing Carnot factor doesn’t violate the 2nd law. • An entropy analysis is applied to verify the fulfilment of the second law. • Correction of the exergy transfer associated with heat transferred to a cycle. - Abstract: A vast amount of heat energy is available at low cost within the range of medium and low temperatures. Existing thermal cycles cannot make efficient use of such available low grade heat because they are mainly based on conventional organic Rankine cycles which are limited by Carnot constraints. However, recent developments related to the performance of thermal cycles composed of closed processes have led to the exceeding of the Carnot factor. Consequently, once the viability of closed process based thermal cycles that surpass the Carnot factor operating at low and medium temperatures is globally accepted, research work will aim at looking into the consequences that lead from surpassing the Carnot factor while fulfilling the 2nd law, its impact on the 2nd law efficiency definition as well as the impact on the exergy transfer from thermal power sources to any heat consumer, including thermal cycles. The methodology used to meet the proposed objectives involves the analysis of energy and entropy on trilateral closed process based thermal cycles. Thus, such energy and entropy analysis is carried out upon non-condensing mode trilateral thermal cycles (TCs) characterised by the conversion of low grade heat into mechanical work undergoing closed adiabatic path functions: isochoric heat absorption, adiabatic heat to mechanical work conversion and isobaric heat rejection. Firstly, cycle energy analysis is performed to determine the range of some relevant cycle parameters, such as the operating temperatures and their associated pressures, entropies, internal energies and specific volumes. In this way, the ranges of temperatures within which

  11. Effects of combustion efficiency on a Dual cycle

    International Nuclear Information System (INIS)

    Ozsoysal, Osman Azmi

    2009-01-01

    This paper studies a Dual cycle model containing irreversibilities coming exclusively from expansion and compression processes. It is assumed that any fraction of the fuel's chemical energy can not fully released inside the engine because of the incomplete combustion. Utilizing the combustion efficiency is found to be more useful to realize the cycle feasibility. Amount of the released energy from fuel into the cylinder restricts the compression ratio. It is presented how the upper limit of compression ratio is evaluated by means of using some constraints for realizing a Dual cycle. Valid ranges of the constraints given in literature seriously affect the feasibility of cycle. Developed mathematical model leads to a qualitative understanding of how engine loss can be reduced. Thermal efficiency-work curves cannot have a closed loop shape because there is a close relationship between the fuel energy, air-fuel mass ratio, combustion efficiency, maximum cycle temperature and the heat losses into the cylinder wall. If these are all omitted, while heat losses are determined independently without establishing any relationship between the released fuel energy, the thermal efficiency versus work curves will just be able to have a closed loop shape. This is the original perspective and contribution of paper.

  12. Energy efficiency resource modeling in generation expansion planning

    International Nuclear Information System (INIS)

    Ghaderi, A.; Parsa Moghaddam, M.; Sheikh-El-Eslami, M.K.

    2014-01-01

    Energy efficiency plays an important role in mitigating energy security risks and emission problems. In this paper, energy efficiency resources are modeled as efficiency power plants (EPP) to evaluate their impacts on generation expansion planning (GEP). The supply curve of EPP is proposed using the production function of electricity consumption. A decision making framework is also presented to include EPP in GEP problem from an investor's point of view. The revenue of EPP investor is obtained from energy cost reduction of consumers and does not earn any income from electricity market. In each stage of GEP, a bi-level model for operation problem is suggested: the upper-level represents profit maximization of EPP investor and the lower-level corresponds to maximize the social welfare. To solve the bi-level problem, a fixed-point iteration algorithm is used known as diagonalization method. Energy efficiency feed-in tariff is investigated as a regulatory support scheme to encourage the investor. Results pertaining to a case study are simulated and discussed. - Highlights: • An economic model for energy efficiency programs is presented. • A framework is provided to model energy efficiency resources in GEP problem. • FIT is investigated as a regulatory support scheme to encourage the EPP investor. • The capacity expansion is delayed and reduced with considering EPP in GEP. • FIT-II can more effectively increase the energy saving compared to FIT-I

  13. Effect of Suction Nozzle Pressure Drop on the Performance of an Ejector-Expansion Transcritical CO2 Refrigeration Cycle

    Directory of Open Access Journals (Sweden)

    Zhenying Zhang

    2014-08-01

    Full Text Available The basic transcritical CO2 systems exhibit low energy efficiency due to their large throttling loss. Replacing the throttle valve with an ejector is an effective measure for recovering some of the energy lost in the expansion process. In this paper, a thermodynamic model of the ejector-expansion transcritical CO2 refrigeration cycle is developed. The effect of the suction nozzle pressure drop (SNPD on the cycle performance is discussed. The results indicate that the SNPD has little impact on entrainment ratio. There exists an optimum SNPD which gives a maximum recovered pressure and COP under a specified condition. The value of the optimum SNPD mainly depends on the efficiencies of the motive nozzle and the suction nozzle, but it is essentially independent of evaporating temperature and gas cooler outlet temperature. Through optimizing the value of SNPD, the maximum COP of the ejector-expansion cycle can be up to 45.1% higher than that of the basic cycle. The exergy loss of the ejector-expansion cycle is reduced about 43.0% compared with the basic cycle.

  14. Maximisation of Combined Cycle Power Plant Efficiency

    Directory of Open Access Journals (Sweden)

    Janusz Kotowicz

    2015-12-01

    Full Text Available The paper presents concepts for increasing the efficiency of a modern combined cycle power plant. Improvement of gas turbine performance indicators as well as recovering heat from the air cooling the gas turbine’s flow system enable reaching gross electrical efficiencies of around 65%. Analyses for a wide range of compressor pressure ratios were performed. Operating characteristics were developed for the analysed combined cycle plant, for different types of open air cooling arrangements of the gas turbine’s expander: convective, transpiration and film.

  15. Development of an empirical model of turbine efficiency using the Taylor expansion and regression analysis

    International Nuclear Information System (INIS)

    Fang, Xiande; Xu, Yu

    2011-01-01

    The empirical model of turbine efficiency is necessary for the control- and/or diagnosis-oriented simulation and useful for the simulation and analysis of dynamic performances of the turbine equipment and systems, such as air cycle refrigeration systems, power plants, turbine engines, and turbochargers. Existing empirical models of turbine efficiency are insufficient because there is no suitable form available for air cycle refrigeration turbines. This work performs a critical review of empirical models (called mean value models in some literature) of turbine efficiency and develops an empirical model in the desired form for air cycle refrigeration, the dominant cooling approach in aircraft environmental control systems. The Taylor series and regression analysis are used to build the model, with the Taylor series being used to expand functions with the polytropic exponent and the regression analysis to finalize the model. The measured data of a turbocharger turbine and two air cycle refrigeration turbines are used for the regression analysis. The proposed model is compact and able to present the turbine efficiency map. Its predictions agree with the measured data very well, with the corrected coefficient of determination R c 2 ≥ 0.96 and the mean absolute percentage deviation = 1.19% for the three turbines. -- Highlights: → Performed a critical review of empirical models of turbine efficiency. → Developed an empirical model in the desired form for air cycle refrigeration, using the Taylor expansion and regression analysis. → Verified the method for developing the empirical model. → Verified the model.

  16. Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion

    Science.gov (United States)

    Xu, Hang; Pasini, Damiano

    2016-01-01

    The coefficient of thermal expansion (CTE) of architected materials, as opposed to that of conventional solids, can be tuned to zero by intentionally altering the geometry of their structural layout. Existing material architectures, however, achieve CTE tunability only with a sacrifice in structural efficiency, i.e. a drop in both their stiffness to mass ratio and strength to mass ratio. In this work, we elucidate how to resolve the trade-off between CTE tunability and structural efficiency and present a lightweight bi-material architecture that not only is stiffer and stronger than other 3D architected materials, but also has a highly tunable CTE. Via a combination of physical experiments on 3D fabricated prototypes and numeric simulations, we demonstrate how two distinct mechanisms of thermal expansion appearing in a tetrahedron, can be exploited in an Octet lattice to generate a large range of CTE values, including negative, zero, or positive, with no loss in structural efficiency. The novelty and simplicity of the proposed design as well as the ease in fabrication, make this bi-material architecture well-suited for a wide range of applications, including satellite antennas, space optical systems, precision instruments, thermal actuators, and MEMS. PMID:27721437

  17. Study on expansion power recovery in CO2 trans-critical cycle

    International Nuclear Information System (INIS)

    Tian Hua; Ma Yitai; Li Minxia; Wang Wei

    2010-01-01

    Due to the ozone depletion potential and global warming potential of CFCs and HCFCs, CO 2 is considered as most potential alternative refrigerant. However, there are serious throttle losses and low system efficiency to CO 2 trans-critical cycle because of its low critical temperature and high operating pressure. The aim of this paper is to design an expander to recover expansion power in CO 2 trans-critical cycle. The theoretical analysis and calculation show that 14-23% of input power of compressor can be recovered. A prototype of rolling piston expander is designed and manufactured and its test facility is established. The test facility consists of CO 2 trans-critical cycle, the expander, the chilling water system and the cooling water system. The experimental results show that the recovery ratio and expander efficiency are affected by rotational speed, inlet temperature and mass flow of expander. The highest recovery ratio can reach to 0.145, which means 14.5% of input power of compressor can be recovered. The expander efficiency can reach to 45%.

  18. Cycles of Expansion in Higher Education 1870-1985: An International Comparison.

    Science.gov (United States)

    Windolf, Paul

    1992-01-01

    The relationship between business cycles and expansion in higher education in 1870-1985 is analyzed and compared for Germany, Italy, France, the United States, and Japan. In most countries, expansion corresponded to economic recession. Spectral analysis, used to explore the cyclical character of the phenomenon, was found to be a powerful…

  19. Model of the expansion process for R245fa in an Organic Rankine Cycle (ORC)

    International Nuclear Information System (INIS)

    Luján, J.M.; Serrano, J.R.; Dolz, V.; Sánchez, J.

    2012-01-01

    An Organic Rankine Cycle (ORC) is considered as one of the most environmental-friendly ways to convert different kinds of low temperature energies, i.e. solar, geothermal, biomass and thermal energy of exhaust gases into electrical energy. Two important facts about the ORC must be considered: An organic fluid is selected as the working fluid and a high expansion ratio is usually presented in the machinery due to thermodynamic and efficiency factors. In the past, the pre-design of turbomachinery has been based on the usage of ideal fluid laws, but the real gas effects have a significant influence in the ORC working condition, due to its proximity to the saturation vapor line. In this article, the Equations of State (EoS) (Ideal gas, Redlich-Kwong-Soave and Peng–Robinson) have been evaluated in a typical ORC expansion in order to observe the inaccuracies of the ideal gas model with different thermodynamic variables. Finally an isothermal process followed by an isochoric process is proposed to reproduce the thermodynamic process of the organic fluid expansion by means of simpler equations. In the last point of this paper, several examples of this expansion process have been calculated, in order to analyze the proposed methodologies. It has been concluded that in typical expansion process of ORC (2.5 MPa-0.1 MPa and 1.6MPa-0.1 MPa), the PR and RKS equations show deviations between 6% and 8% in specific energy. These deviations are very low compared with the ideal gas equation whose deviations are above 100%. - Highlights: ► Evaluate the ideal gas behaviour of R245fa in typical working conditions of an Organic Rankine Cycle (ORC). ► Compare the ideal behaviour with other simple equations of state for real gas. ► Decide which equation of state has the highest precision in typical working conditions of an ORC. ► Derive the most important thermodynamic variables in each equation of state and decide the most accurate equation. ► Evaluate the speci c output

  20. Critical review of the first-law efficiency in different power combined cycle architectures

    International Nuclear Information System (INIS)

    Iglesias Garcia, Steven; Ferreiro Garcia, Ramon; Carbia Carril, Jose; Iglesias Garcia, Denis

    2017-01-01

    Highlights: • The adiabatic expansion based TC can improve the energy efficiency of CCs. • A revolutionary TC can be a starting point to develop high-performance CCs. • A theoretical thermal efficiency of 83.7% was reached in a Nuclear Power Plant using a TC as bottoming cycle. - Abstract: This critical review explores the potential of an innovative trilateral thermodynamic cycle used to transform low-grade heat into mechanical work and compares its performance with relevant traditional thermodynamic cycles in combined cycles. The aim of this work is to show that combined cycles use traditional low efficiency power cycles in their bottoming cycle, and to evaluate theoretically the implementation of alternative power bottoming cycles. Different types of combined cycles have been reviewed, highlighting their relevant characteristics. The efficiencies of power plants using combined cycles are reviewed and compared. The relevance of researching thermodynamic cycles for combined cycle applications is that a vast amount of heat energy is available at negligible cost in the bottoming cycle of a combined cycle, with the drawback that existing thermal cycles cannot make efficient use of such available low temperature heat due to their low efficiency. The first-law efficiency is used as a parameter to compare and suggest improvements in the combined cycles (CCs) reviewed. The analysis shows that trilateral cycles using closed processes are by far the most efficient published thermal cycles for combined cycles to transform low-grade heat into mechanical work. An innovative trilateral bottoming cycle is proposed to show that the application of non-traditional power cycles can increase significantly the first-law efficiency of CCs. The highest first-law efficiencies achieved are: 85.55% in a CC using LNG cool, 73.82% for a transport vehicle CC, 74.40% in a marine CC, 83.07% in a CC for nuclear power plants, 73.82% in a CC using Brayton and Rankine cycles, 78.31% in a CC

  1. Comparative evaluation of a natural gas expansion plant integrated with an IC engine and an organic Rankine cycle

    International Nuclear Information System (INIS)

    Kostowski, Wojciech J.; Usón, Sergio

    2013-01-01

    Highlights: • Comparison of natural gas expansion systems integrated with gas boiler, ICE and ORC. • Expansion systems replace the throttling process in pressure regulating stations. • 5 System performance indicators based on the 1st and 2nd law are defined. • Exergy efficiency was calculated from the fuel-product approach. • ORC system yields highest exergy efficiency 52.6% and performance ratio of 0.771. - Abstract: The aim of the paper is to propose and evaluate an innovative exergy recovery system for natural gas expansion, based on the integration of an internal combustion engine (ICE) and an organic Rankine cycle (ORC), and to compare it with other alternatives. Natural gas expansion plants are a substantial improvement to the conventional gas pressure reduction stations, based on the throttling process, since the available physical exergy of pressurized gas is converted into mechanical energy by means of an expansion machine (turbine or piston expander) instead of being lost in the throttling process. However, due to the hydrate formation problem the gas has to be pre-heated prior to the expansion, which diminishes the system performance. An efficient method for performing this pre-heating is by the proposed system that comprises an ICE and an ORC: Pre-heating of natural gas is carried out partially directly by the co-generation module, via the engine cooling cycle, and partially indirectly, by means of the engine exhaust gases, which supply heat for the ORC, while the ORC condenser is connected with the lowest stage of natural gas pre-heating. Other alternatives are the use of an ICE without ORC, the use of a boiler, and even expansion in a throttling valve. The paper evaluates the performance of the aforementioned four configurations by means of both energy and exergy analysis. Several alternative performance indicators have been defined, calculated and discussed. Sources of irreversibilities have been identified by means of exergy analysis

  2. Magnus expansion for laser-matter interaction: Application to generic few-cycle laser pulses

    DEFF Research Database (Denmark)

    Klaiber, Michael; Dimitrovski, Darko; Briggs, John S.

    2009-01-01

    We treat the interaction of an atom with a short intense few-cycle laser pulse by the use of the Magnus expansion of the time-evolution operator. Terms of the Magnus expansion up to the third order in the pulse duration are evaluated explicitly, and expressions for the transition probability...... of the Magnus approximation are in excellent agreement with time-dependent transition probabilities obtained from accurate ab initio numerical calculations. However, the limitation of the Magnus expansion for pulses having both vanishing momentum and position shifts is demonstrated also....

  3. Double Compression Expansion Engine: A Parametric Study on a High-Efficiency Engine Concept

    KAUST Repository

    Bhavani Shankar, Vijai Shankar; Johansson, Bengt; Andersson, Arne

    2018-01-01

    The Double compression expansion engine (DCEE) concept has exhibited a potential for achieving high brake thermal efficiencies (BTE). The effect of different engine components on system efficiency was evaluated in this work using GT Power

  4. Highly efficient 6-stroke engine cycle with water injection

    Science.gov (United States)

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  5. DYNAMIC PROGRAMMING – EFFICIENT TOOL FOR POWER SYSTEM EXPANSION PLANNING

    Directory of Open Access Journals (Sweden)

    SIMO A.

    2015-03-01

    Full Text Available The paper isfocusing on dynamic programming use for power system expansion planning (EP – transmission network (TNEP and distribution network (DNEP. The EP problem has been approached from the retrospective and prospective point of view. To achieve this goal, the authors are developing two software-tools in Matlab environment. Two techniques have been tackled: particle swarm optimization (PSO and genetic algorithms (GA. The case study refers to Test 25 buses test power system developed within the Power Systems Department.

  6. Efficiency considerations in the expansion of radiation therapy services

    International Nuclear Information System (INIS)

    Smith, Richard D.; Jan, Stephen; Shiell, Alan

    1995-01-01

    Purpose: An economic option appraisal to determine whether early investment in capital is an efficient means of expanding radiation therapy services. Methods and Materials: Costs were based on 1991 data from a center in western Sydney. Two options were costed: Option 1 based on an increase in overtime performed by existing staff, using capital more intensively and possible use of shifts; Option 2 based on an investment in new capital and associated increases in levels of staffing. The health sector costs of both options were determined in one center at workloads of between 70,940 and 98,525 fields per year to assess relative efficiency. Results: There was very little difference in cost between both options, with Option 1 slightly cheaper at workloads up to 98,525 fields per year. Conclusions: The results suggest that capital investment may be introduced at a fairly early stage without efficiency loss. Sensitivity analysis reinforces these conclusions and the generalizability of the results

  7. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    Science.gov (United States)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.

    2018-04-01

    Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.

  8. Efficiency Wages and the Business Cycle

    NARCIS (Netherlands)

    Canton, E.J.F.

    1995-01-01

    This paper presents a simple efficiency wage model to explain the transmission from exogenous productivity shocks to levels of economic activity. Higher real wages and rising unemployment induce workers to increase their effort. The disciplining effect of unemployment on the effort level has an

  9. Organic flash cycles for efficient power production

    Science.gov (United States)

    Ho, Tony; Mao, Samuel S.; Greif, Ralph

    2016-03-15

    This disclosure provides systems, methods, and apparatus related to an Organic Flash Cycle (OFC). In one aspect, a modified OFC system includes a pump, a heat exchanger, a flash evaporator, a high pressure turbine, a throttling valve, a mixer, a low pressure turbine, and a condenser. The heat exchanger is coupled to an outlet of the pump. The flash evaporator is coupled to an outlet of the heat exchanger. The high pressure turbine is coupled to a vapor outlet of the flash evaporator. The throttling valve is coupled to a liquid outlet of the flash evaporator. The mixer is coupled to an outlet of the throttling valve and to an outlet of the high pressure turbine. The low pressure turbine is coupled to an outlet of the mixer. The condenser is coupled to an outlet of the low pressure turbine and to an inlet of the pump.

  10. Life cycle and economic efficiency analysis: durable pavement markings.

    Science.gov (United States)

    2009-07-01

    This project examined the life cycle and economic efficiency of two pavement marking : materials inlaid tape and thermoplastic to find the most economical product for specific : traffic and weather conditions. Six locations in the state of Ma...

  11. Combined cycle power plants: technological prospects for improving the efficiency

    International Nuclear Information System (INIS)

    Lauri, R.

    2009-01-01

    The combined cycle power plants characteristics are better than one course open to a closed loop presenting an electrical efficiency close to 60% do not reach for gas turbine engines for power plants and conventional steam engines. [it

  12. Dynamic modelling of the expansion cylinder of an open Joule cycle Ericsson engine: A bond graph approach

    International Nuclear Information System (INIS)

    Creyx, M.; Delacourt, E.; Morin, C.; Desmet, B.

    2016-01-01

    A dynamic model using the bond graph formalism of the expansion cylinder of an open Joule cycle Ericsson engine intended for a biomass-fuelled micro-CHP system is presented. Dynamic phenomena, such as the thermodynamic evolution of air, the instantaneous air mass flow rates linked to pressure drops crossing the valves, the heat transferred through the expansion cylinder wall and the mechanical friction losses, are included in the model. The influence on the Ericsson engine performances of the main operating conditions (intake air pressure and temperature, timing of intake and exhaust valve closing, rotational speed, mechanical friction losses and heat transfer at expansion cylinder wall) is studied. The operating conditions maximizing the performances of the Ericsson engine used in the a biomass-fuelled micro-CHP unit are an intake air pressure between 6 and 8 bar, a maximized intake air temperature, an adjustment of the intake and exhaust valve closing corresponding to an expansion cycle close to the theoretical Joule cycle, a rotational speed close to 800 rpm. The heat transfer at the expansion cylinder wall reduces the engine performances. - Highlights: • A bond graph dynamic model of the Ericsson engine expansion cylinder is presented. • Dynamic aspects are modelled: pressure drops, friction losses, wall heat transfer. • Influent factors and phenomena on the engine performances are investigated. • Expansion cycles close to the theoretical Joule cycle maximize the performances. • The heat transfer at the expansion chamber wall reduces the performances.

  13. A comparison between Miller and five-stroke cycles for enabling deeply downsized, highly boosted, spark-ignition engines with ultra expansion

    International Nuclear Information System (INIS)

    Li, Tie; Wang, Bin; Zheng, Bin

    2016-01-01

    Highlights: • Deeply downsized, highly boosted SI engine with ultra-expansion cycle is studied. • The Miller and five stroke cycles are compared on BSFC improvements and WOT performance. • The mechanism of fuel conversion efficiency improvement at various loads is discussed. • Performance of the two-stage boosting system for the downsized SI engine is investigated. • A unique strategy using the bypass for the five-stroke engine is proposed. - Abstract: It has been well known that the engine downsizing combined with intake boosting is an effective way to improve the fuel conversion efficiency without penalizing the engine torque performance. However, the potential of engine downsizing is not yet fully explored, and the major hurdles include the knocking combustion and the pre-turbine temperature limit, owing to the aggressive intake boosting. Using the engine cycle simulation, this paper compares the effects of the Miller and five stroke cycles on the performance of the deeply downsized and highly boosted SI engine, taking the engine knock and pre-turbine temperature into consideration. In the simulation, the downsizing is implemented by reducing the combustion cylinder number from four to two, while a two stage boosting system is designed for the deeply downsized engine to ensure the wide-open-throttle (WOT) performance comparable to the original four cylinder engine. The Miller cycle is realized by varying the intake valve timing and lift, while the five stroke cycle is enabled with addition of an extra expansion cylinder between the two combustion cylinders. After calibration and validation of the engine cycle simulation models using the experimental data in the original engine, the performances of the deeply downsized engines with both the Miller and five stroke cycles are numerically studied. For the most frequently operated points on the torque-speed map, at low loads the Miller cycle exhibits superior performance over the five-stroke cycle in terms

  14. Power and efficiency optimization for combined Brayton and inverse Brayton cycles

    International Nuclear Information System (INIS)

    Zhang Wanli; Chen Lingen; Sun Fengrui

    2009-01-01

    A thermodynamic model for open combined Brayton and inverse Brayton cycles is established considering the pressure drops of the working fluid along the flow processes and the size constraints of the real power plant using finite time thermodynamics in this paper. There are 11 flow resistances encountered by the gas stream for the combined Brayton and inverse Brayton cycles. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, combustion inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances control the air flow rate and the net power output. The relative pressure drops associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle. The analytical formulae about the relations between power output, thermal conversion efficiency, and the compressor pressure ratio of the top cycle are derived with the 11 pressure drop losses in the intake, compression, combustion, expansion, and flow process in the piping, the heat transfer loss to the ambient, the irreversible compression and expansion losses in the compressors and the turbines, and the irreversible combustion loss in the combustion chamber. The performance of the model cycle is optimized by adjusting the compressor inlet pressure of the bottom cycle, the air mass flow rate and the distribution of pressure losses along the flow path. It is shown that the power output has a maximum with respect to the compressor inlet pressure of the bottom cycle, the air mass flow rate or any of the overall pressure drops, and the maximized power output has an additional maximum with respect to the compressor pressure

  15. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.

    2018-04-05

    Hybrid-perovskite based high-performance optoelectronic devices and clues from their operation has led to the realization that light-induced structural dynamics play a vital role on their physical properties, device performance and stability. Here, we report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin-films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in-situ structural and device characterizations reveal that light-induced lattice expansion significantly benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5% to 20.5%. This is a direct consequence of the relaxation of local lattice strains during lattice expansion, which results in the reduction of the energetic barriers at the perovskite/contact interfaces in devices, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion stabilizes these high-efficiency photovoltaic devices under continuous operation of full-spectrum 1-Sun illumination for over 1500 hours. One Sentence Summary: Light-induced lattice expansion improves crystallinity, relaxes lattice strain, which enhances photovoltaic performance in hybrid perovskite device.

  16. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    Science.gov (United States)

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  17. A treatment of thermal efficiency improvement in the Brayton cycle

    International Nuclear Information System (INIS)

    Fujii, Terushige; Akagawa, Koji; Nakanishi, Shigeyasu; Inoue, Kiyoshi; Ishigai, Seikan.

    1982-01-01

    So far, as the working fluid for power-generating plants, mainly water and air (combustion gas) have been used. In this study, in regeneration and isothermal compression processes being considered as the means for the efficiency improvement in Brayton cycle, the investigation of equivalent graphical presentation method with T-S diagrams, the introduction of the new characteristic number expressing the possibility of thermal efficiency improvement by regeneration, and the investigation of the effect of the difference of working fluid on thermal efficiency were carried out. Next, as the cycle approximately realizing isothermal compression process with condensation process, the super-critical pressure cycle with liquid phase compression was rated, and four working fluids, NH 3 , SO 2 , CO 2 and H 2 O were examined as perfect gas and real gas. The advantage of CO 2 regeneration for the thermal efficiency improvement was clarified by using the dimensionless characteristic number. The graphical presentation of effective work, the thermal efficiency improvement by regeneration, the thermal efficiency improvement by making compression process isothermal, the effect on thermal efficiency due to various factors and working fluids, the characteristic number by regeneration, and the application to real working fluids are reported. (Kako, I.)

  18. Perceptual scale expansion: an efficient angular coding strategy for locomotor space.

    Science.gov (United States)

    Durgin, Frank H; Li, Zhi

    2011-08-01

    Whereas most sensory information is coded on a logarithmic scale, linear expansion of a limited range may provide a more efficient coding for the angular variables important to precise motor control. In four experiments, we show that the perceived declination of gaze, like the perceived orientation of surfaces, is coded on a distorted scale. The distortion seems to arise from a nearly linear expansion of the angular range close to horizontal/straight ahead and is evident in explicit verbal and nonverbal measures (Experiments 1 and 2), as well as in implicit measures of perceived gaze direction (Experiment 4). The theory is advanced that this scale expansion (by a factor of about 1.5) may serve a functional goal of coding efficiency for angular perceptual variables. The scale expansion of perceived gaze declination is accompanied by a corresponding expansion of perceived optical slants in the same range (Experiments 3 and 4). These dual distortions can account for the explicit misperception of distance typically obtained by direct report and exocentric matching, while allowing for accurate spatial action to be understood as the result of calibration.

  19. In Vitro Efficient Expansion of Tumor Cells Deriving from Different Types of Human Tumor Samples

    Directory of Open Access Journals (Sweden)

    Ilaria Turin

    2014-03-01

    Full Text Available Obtaining human tumor cell lines from fresh tumors is essential to advance our understanding of antitumor immune surveillance mechanisms and to develop new ex vivo strategies to generate an efficient anti-tumor response. The present study delineates a simple and rapid method for efficiently establishing primary cultures starting from tumor samples of different types, while maintaining the immuno-histochemical characteristics of the original tumor. We compared two different strategies to disaggregate tumor specimens. After short or long term in vitro expansion, cells analyzed for the presence of malignant cells demonstrated their neoplastic origin. Considering that tumor cells may be isolated in a closed system with high efficiency, we propose this methodology for the ex vivo expansion of tumor cells to be used to evaluate suitable new drugs or to generate tumor-specific cytotoxic T lymphocytes or vaccines.

  20. Heat Transfer and Fluid Dynamics Measurements in the Expansion Space of a Stirling Cycle Engine

    Science.gov (United States)

    Jiang, Nan; Simon, Terrence W.

    2006-01-01

    The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.

  1. Examining the role of shrub expansion and fire in Arctic plant silica cycling

    Science.gov (United States)

    Carey, J.; Fetcher, N.; Parker, T.; Rocha, A. V.; Tang, J.

    2017-12-01

    All terrestrial plants accumulate silica (SiO2) to some degree, although the amount varies by species type, functional group, and environmental conditions. Silica improves overall plant fitness, providing protection from a variety of biotic and abiotic stressors. Plant silica uptake serves to retain silica in terrestrial landscapes, influencing silica export rates from terrestrial to marine systems. These export rates are important because silica is often the limiting nutrient for primary production by phytoplankton in coastal waters. Understanding how terrestrial plant processes influence silica export rates to oceanic systems is of interest on the global scale, but nowhere is this issue more important than in the Arctic, where marine diatoms rely on silica for production in large numbers and terrestrial runoff largely influences marine biogeochemistry. Moreover, the rapid rate of change occurring in the Arctic makes understanding plant silica dynamics timely, although knowledge of plant silica cycling in the region is in its infancy. This work specifically examines how shrub expansion, permafrost thaw, and fire regimes influence plant silica behavior in the Alaskan Arctic. We quantified silica accumulation in above and belowground portions of three main tundra types found in the Arctic (wet sedge, moist acidic, moist non-acidic tundra) and scaled these values to estimate how shrub expansion alters plant silica accumulation rates. Results indicate that shrub expansion via warming will increase silica storage in Arctic land plants due to the higher biomass associated with shrub tundra, whereas conversion of tussock to wet sedge tundra via permafrost thaw would produce the opposite effect in the terrestrial plant BSi pool. We also examined silica behavior in plants exposed to fire, finding that post-fire growth results in elevated plant silica uptake. Such changes in the size of the terrestrial vegetation silica reservoir could have direct consequences for the rates

  2. An experimental investigation on reverse-cycle defrosting performance for an air source heat pump using an electronic expansion valve

    International Nuclear Information System (INIS)

    Qu, Minglu; Xia, Liang; Deng, Shiming; Jiang, Yiqiang

    2012-01-01

    Highlights: ► We experimentally studied the defrost performance under two EEV control strategies. ► The two EEV control strategies were fully open and controlled by a DS controller. ► When the EEV was under the DS controller, higher defrosting efficiency was obtained. -- Abstract: When an air source heat pump (ASHP) operates in heating mode, frost can be accumulated on the surface of its finned outdoor coil. Frosting deteriorates the operation and energy efficiency of the ASHP and periodic defrosting becomes necessary. Currently the most widely used standard defrosting method for ASHPs is reverse cycle defrost. On the other hand, electronic expansion valves (EEVs) are commonly used in heat pump/refrigeration systems, including ASHP units, as throttle regulators of refrigerant flow. This paper reports on an experimental investigation of the performance of a reverse cycle defrost operation for a 6.5 kW experimental heating capacity residential ASHP whose outdoor coil had four-parallel refrigerant circuits, and with an EEV as the refrigerant flow throttle regulator. The detailed descriptions of the experimental ASHP unit and the experimental procedures of ASHP are firstly presented. This is followed by reporting the comparative experiments of two control strategies for the EEV to investigate their effects on defrosting performance: the EEV being fully open and the EEV being regulated by a degree of refrigerant superheat (DS) controller. Experimental results revealed that when the EEV was regulated by the DS controller during defrosting, a higher defrosting efficiency and less heat wastage would be resulted in.

  3. Increasing thermal efficiency of Rankine cycles by using refrigeration cycles: A theoretical analysis

    International Nuclear Information System (INIS)

    Sarr, Joachim-André Raymond; Mathieu-Potvin, François

    2016-01-01

    Highlights: • A new stratagem is proposed to improve thermal efficiency of Rankine cycles. • Three new configurations are optimized by means of numerical simulations. • The Rankine-1SCR design is advantageous for 1338 different fluid combinations. • The Rankine-2SCR design is advantageous for 772 different fluid combinations. • The Rankine-3SCR design is advantageous for 768 different fluid combinations. - Abstract: In this paper, three different modifications of the basic Rankine thermodynamic cycle are proposed. The objective is to increase the thermal efficiency of power systems based on Rankine cycles. The three new systems are named “Rankine-1SCR”, “Rankine-2SCR”, and “Rankine-3SCR” cycles, and they consist of linking a refrigeration cycle to the basic Rankine cycle. The idea is to use the refrigeration cycle to create a low temperature heat sink for the Rankine cycle. These three new power plant configurations are modeled and optimized with numerical tools, and then they are compared with the basic Rankine cycle. The objective function is the thermal efficiency of the systems (i.e., net power output (kW) divided by heat rate (kW) entering the system), and the design variables are the operating temperatures within the systems. Among the 84 × 84 (i.e., 7056) possible combinations of working and cooling fluids investigated in this paper, it is shown that: (i) the Rankine-1SCR system is advantageous for 1338 different fluid combinations, (ii) the Rankine-2SCR system is advantageous for 772 different fluid combinations, and (iii) the Rankine-3SCR system is advantageous for 768 different fluid combinations.

  4. Relationship between efficiency and pedal rate in cycling

    DEFF Research Database (Denmark)

    Hansen, E A; Sjøgaard, G

    2007-01-01

    Cycling was performed to test the following two hypotheses: (1) muscular efficiency is unrelated to pedal rate (61, 88, and 115 r.p.m.) for a group of subjects with a wide range of slow twitch (ST) fibers in spite of decreasing whole-body efficiency and (2) muscular efficiency correlates positively...... with % ST muscle fibers, and this correlation is more pronounced at low pedal rates than at high pedal rates. Whole-body gross efficiency decreased from 20-22% at 61 r.p.m. to 15-18% at 115 r.p.m. Mean muscular efficiency for all subjects (n=16) was approximately 26%, with delta efficiency being constant...... and muscular efficiency (taking internal power into account) slightly increasing with pedal rate. Muscular efficiency correlated positively (R(2)=0.25) with % ST fibers (21-97% ST in m. vastus lateralis) at 115 r.p.m. while not at 61 and 88 r.p.m. In conclusion, the decrease in whole-body gross efficiency...

  5. Efficiency optimization potential in supercritical Organic Rankine Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, A.; Aumann, R. [Technische Universitaet Muenchen Institute of Energy Systems Boltzmannstr. 15, 85748 Garching (Germany); Karellas, S. [National Technical University of Athens Laboratory of Steam Boilers and Thermal Plants Heroon Polytechniou 9, 15780 Athens (Greece)

    2010-02-15

    Nowadays, the use of Organic Rankine Cycle (ORC) in decentralised applications is linked with the fact that this process allows the use of low temperature heat sources and offers an advantageous efficiency in small-scale concepts. Many state-of-the-art and innovative applications can successfully use the ORC process. In this process, according to the heat source level, special attention must be drawn to the choice of the appropriate working fluid, which is a factor that affects the thermal and exergetic efficiency of the cycle. The investigation of supercritical parameters of various working fluids in ORC applications seems to bring promising results concerning the efficiency of the application. This paper presents the results from a simulation of the ORC and the optimization potential of the process when using supercritical parameters. In order to optimize the process, various working fluids are considered and compared concerning their thermal efficiency and the usable percentage of heat. The reduction of exergy losses is discussed based on the need of surplus heat exchanger surface. (author)

  6. Efficient expansion of mesenchymal stromal cells in a disposable fixed bed culture system.

    Science.gov (United States)

    Mizukami, Amanda; Orellana, Maristela D; Caruso, Sâmia R; de Lima Prata, Karen; Covas, Dimas T; Swiech, Kamilla

    2013-01-01

    The need for efficient and reliable technologies for clinical-scale expansion of mesenchymal stromal cells (MSC) has led to the use of disposable bioreactors and culture systems. Here, we evaluate the expansion of cord blood-derived MSC in a disposable fixed bed culture system. Starting from an initial cell density of 6.0 × 10(7) cells, after 7 days of culture, it was possible to produce of 4.2(±0.8) × 10(8) cells, which represents a fold increase of 7.0 (±1.4). After enzymatic retrieval from Fibra-Cell disks, the cells were able to maintain their potential for differentiation into adipocytes and osteocytes and were positive for many markers common to MSC (CD73, CD90, and CD105). The results obtained in this study demonstrate that MSC can be efficiently expanded in the culture system. This novel approach presents several advantages over the current expansion systems, based on culture flasks or microcarrier-based spinner flasks and represents a key element for MSC cellular therapy according to GMP compliant clinical-scale production system. Copyright © 2013 American Institute of Chemical Engineers.

  7. A robust and efficient stepwise regression method for building sparse polynomial chaos expansions

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Simon, E-mail: Simon.Abraham@ulb.ac.be [Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels (Belgium); Raisee, Mehrdad [School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran (Iran, Islamic Republic of); Ghorbaniasl, Ghader; Contino, Francesco; Lacor, Chris [Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels (Belgium)

    2017-03-01

    Polynomial Chaos (PC) expansions are widely used in various engineering fields for quantifying uncertainties arising from uncertain parameters. The computational cost of classical PC solution schemes is unaffordable as the number of deterministic simulations to be calculated grows dramatically with the number of stochastic dimension. This considerably restricts the practical use of PC at the industrial level. A common approach to address such problems is to make use of sparse PC expansions. This paper presents a non-intrusive regression-based method for building sparse PC expansions. The most important PC contributions are detected sequentially through an automatic search procedure. The variable selection criterion is based on efficient tools relevant to probabilistic method. Two benchmark analytical functions are used to validate the proposed algorithm. The computational efficiency of the method is then illustrated by a more realistic CFD application, consisting of the non-deterministic flow around a transonic airfoil subject to geometrical uncertainties. To assess the performance of the developed methodology, a detailed comparison is made with the well established LAR-based selection technique. The results show that the developed sparse regression technique is able to identify the most significant PC contributions describing the problem. Moreover, the most important stochastic features are captured at a reduced computational cost compared to the LAR method. The results also demonstrate the superior robustness of the method by repeating the analyses using random experimental designs.

  8. Efficient 3D frequency response modeling with spectral accuracy by the rapid expansion method

    KAUST Repository

    Chu, Chunlei

    2012-07-01

    Frequency responses of seismic wave propagation can be obtained either by directly solving the frequency domain wave equations or by transforming the time domain wavefields using the Fourier transform. The former approach requires solving systems of linear equations, which becomes progressively difficult to tackle for larger scale models and for higher frequency components. On the contrary, the latter approach can be efficiently implemented using explicit time integration methods in conjunction with running summations as the computation progresses. Commonly used explicit time integration methods correspond to the truncated Taylor series approximations that can cause significant errors for large time steps. The rapid expansion method (REM) uses the Chebyshev expansion and offers an optimal solution to the second-order-in-time wave equations. When applying the Fourier transform to the time domain wavefield solution computed by the REM, we can derive a frequency response modeling formula that has the same form as the original time domain REM equation but with different summation coefficients. In particular, the summation coefficients for the frequency response modeling formula corresponds to the Fourier transform of those for the time domain modeling equation. As a result, we can directly compute frequency responses from the Chebyshev expansion polynomials rather than the time domain wavefield snapshots as do other time domain frequency response modeling methods. When combined with the pseudospectral method in space, this new frequency response modeling method can produce spectrally accurate results with high efficiency. © 2012 Society of Exploration Geophysicists.

  9. Energy efficiency as a resource in state portfolio standards: Lessons for more expansive policies

    International Nuclear Information System (INIS)

    Thoyre, Autumn

    2015-01-01

    In this paper, state electricity portfolio standards in the U.S. are analyzed to examine how energy efficiency is being created as a particular kind of resource through this type of climate change governance. Such policies can incentivize energy efficiency by requiring or encouraging electricity providers to meet a certain percentage of their demand through energy efficiency measures. North Carolina’s portfolio standard is used as an in-depth case study to identify factors that are then compared across all 36 states that include energy efficiency as part of a portfolio requirement or goal. The main finding of this study is that state portfolio standards tend to emphasize demand-side energy efficiency, or energy efficiency on the customer’s side of the electricity meter, and only rarely incentivize a full range of both demand-side and supply-side efficiency changes. As a result, the amount of energy efficiency and climate change mitigation benefits that are likely to result from this type of portfolio standard policy tool are limited. From this analysis, lessons are drawn out for crafting stronger portfolio standards that incentivize a wider range of efficiency changes across electricity networks. - Highlights: • Energy efficiency in 36 U.S. state portfolio standard policies was analyzed. • Such standards were found to incentivize mainly demand-side energy efficiency. • Supply-side energy efficiency was rarely incentivized by portfolio standards. • Such framings likely limit the carbon mitigation potential of these policies. • Recommendations are made for more expansive portfolio standard policies.

  10. Differential response of cell-cycle and cell-expansion regulators to heat stress in apple (Malus domestica) fruitlets.

    Science.gov (United States)

    Flaishman, Moshe A; Peles, Yuval; Dahan, Yardena; Milo-Cochavi, Shira; Frieman, Aviad; Naor, Amos

    2015-04-01

    Temperature is one of the most significant factors affecting physiological and biochemical aspects of fruit development. Current and progressing global warming is expected to change climate in the traditional deciduous fruit tree cultivation regions. In this study, 'Golden Delicious' trees, grown in a controlled environment or commercial orchard, were exposed to different periods of heat treatment. Early fruitlet development was documented by evaluating cell number, cell size and fruit diameter for 5-70 days after full bloom. Normal activities of molecular developmental and growth processes in apple fruitlets were disrupted under daytime air temperatures of 29°C and higher as a result of significant temporary declines in cell-production and cell-expansion rates, respectively. Expression screening of selected cell cycle and cell expansion genes revealed the influence of high temperature on genetic regulation of apple fruitlet development. Several core cell-cycle and cell-expansion genes were differentially expressed under high temperatures. While expression levels of B-type cyclin-dependent kinases and A- and B-type cyclins declined moderately in response to elevated temperatures, expression of several cell-cycle inhibitors, such as Mdwee1, Mdrbr and Mdkrps was sharply enhanced as the temperature rose, blocking the cell-cycle cascade at the G1/S and G2/M transition points. Moreover, expression of several expansin genes was associated with high temperatures, making them potentially useful as molecular platforms to enhance cell-expansion processes under high-temperature regimes. Understanding the molecular mechanisms of heat tolerance associated with genes controlling cell cycle and cell expansion may lead to the development of novel strategies for improving apple fruit productivity under global warming. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Double Compression Expansion Engine: A Parametric Study on a High-Efficiency Engine Concept

    KAUST Repository

    Bhavani Shankar, Vijai Shankar

    2018-04-03

    The Double compression expansion engine (DCEE) concept has exhibited a potential for achieving high brake thermal efficiencies (BTE). The effect of different engine components on system efficiency was evaluated in this work using GT Power simulations. A parametric study on piston insulation, convection heat transfer multiplier, expander head insulation, insulation of connecting pipes, ports and tanks, and the expander intake valve lift profiles was conducted to understand the critical parameters that affected engine efficiency. The simulations were constrained to a constant peak cylinder pressure of 300 bar, and a fixed combustion phasing. The results from this study would be useful in making technology choices that will help realise the potential of this engine concept.

  12. High efficiency Dual-Cycle Conversion System using Kr-85.

    Science.gov (United States)

    Prelas, Mark A; Tchouaso, Modeste Tchakoua

    2018-04-26

    This paper discusses the use of one of the safest isotopes known isotopes, Kr-85, as a candidate fuel source for deep space missions. This isotope comes from 0.286% of fission events. There is a vast quantity of Kr-85 stored in spent fuel and it is continually being produced by nuclear reactors. In using Kr-85 with a novel Dual Cycle Conversion System (DCCS) it is feasible to boost the system efficiency from 26% to 45% over a single cycle device while only increasing the system mass by less than 1%. The Kr-85 isotope is the ideal fuel for a Photon Intermediate Direct Energy Conversion (PIDEC) system. PIDEC is an excellent choice for the top cycle in a DCCS. In the top cycle, ionization and excitation of the Kr-85:Cl gas mixture (99% Kr and 1% Cl) from beta particles creates KrCl* excimer photons which are efficiently absorbed by diamond photovoltaic cells on the walls of the pressure vessels. The benefit of using the DCCS is that Kr-85 is capable of operating at high temperatures in the primary cycle and the residual heat can then be converted into electrical power in the bottom cycle which uses a Stirling Engine. The design of the DCCS begins with a spherical pressure vessel of radius 13.7 cm with 3.7 cm thick walls and is filled with a Kr-85:Cl gas mixture. The inner wall has diamond photovoltaic cells attached to it and there is a sapphire window between the diamond photovoltaic cells and the Kr-85:Cl gas mixture which shields the photovoltaic cells from beta particles. The DCCS without a gamma ray shield has specific power of 6.49 W/kg. A removable 6 cm thick tungsten shield is used to safely limit the radiation exposure levels of personnel. A shadow shield remains in the payload to protect the radiation sensitive components in the flight package. The estimated specific power of the unoptimized system design in this paper is about 2.33 W/kg. The specific power of an optimized system should be higher. The Kr-85 isotope is relatively safe because it

  13. Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, Claudia, E-mail: c.filippi@utwente.nl [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Assaraf, Roland, E-mail: assaraf@lct.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Chimie Théorique CC 137-4, place Jussieu F-75252 Paris Cedex 05 (France); Moroni, Saverio, E-mail: moroni@democritos.it [CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, and SISSA Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy)

    2016-05-21

    We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital parameters. Furthermore, for a large multi-determinant expansion, the significant computational gain afforded by a recently introduced table method is here extended to the local value of any one-body operator and to its derivatives, in both all-electron and pseudopotential calculations.

  14. Analysis of combustion performance and emission of extended expansion cycle and iEGR for low heat rejection turbocharged direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Shabir Mohd F.

    2014-01-01

    Full Text Available Increasing thermal efficiency in diesel engines through low heat rejection concept is a feasible technique. In LHR engines the high heat evolution is achieved by insulating the combustion chamber surfaces and coolant side of the cylinder with partially stabilized zirconia of 0.5 mm thickness and the effective utilization of this heat depend on the engine design and operating conditions. To make the LHR engines more suitable for automobile and stationary applications, the extended expansion was introduced by modifying the inlet cam for late closing of intake valve through Miller’s cycle for extended expansion. Through the extended expansion concept the actual work done increases, exhaust blow-down loss reduced and the thermal efficiency of the LHR engine is improved. In LHR engines, the formation of nitric oxide is more, to reduce the nitric oxide emission, the internal EGR is incorporated using modified exhaust cam with secondary lobe. Modifications of gas exchange with internal EGR resulted in decrease in nitric oxide emissions. In this work, the parametric studies were carried out both theoretically and experimentally. The combustion, performance and emission parameters were studied and were found to be satisfactory.

  15. A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery

    International Nuclear Information System (INIS)

    Conklin, James C.; Szybist, James P.

    2010-01-01

    A concept adding two strokes to the Otto or Diesel engine cycle to increase fuel efficiency is presented here. It can be thought of as a four-stroke Otto or Diesel cycle followed by a two-stroke heat recovery steam cycle. A partial exhaust event coupled with water injection adds an additional power stroke. Waste heat from two sources is effectively converted into usable work: engine coolant and exhaust gas. An ideal thermodynamics model of the exhaust gas compression, water injection and expansion was used to investigate this modification. By changing the exhaust valve closing timing during the exhaust stroke, the optimum amount of exhaust can be recompressed, maximizing the net mean effective pressure of the steam expansion stroke (MEP steam ). The valve closing timing for maximum MEP steam is limited by either 1 bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens. The range of MEP steam calculated for the geometry of a conventional gasoline engine and is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEP combustion ) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy.

  16. Process Cycle Efficiency Improvement Through Lean: A Case Study

    Directory of Open Access Journals (Sweden)

    P.V. Mohanram

    2011-06-01

    Full Text Available Lean manufacturing is an applied methodology of scientific, objective techniques that cause work tasks in a process to be performed with a minimum of non-value adding activities resulting in greatly reduced wait time, queue time, move time, administrative time, and other delays. This work addresses the implementation of lean principles in a construction equipment company. The prime objective is to evolve and test several strategies to eliminate waste on the shop floor. This paper describes an application of value stream mapping (VSM. Consequently, the present and future states of value stream maps are constructed to improve the production process by identifying waste and its sources. A noticeable reduction in cycle time and increase in cycle efficiency is confirmed. The production flow was optimized thus minimizing several non-value added activities/times such as bottlenecking time, waiting time, material handling time, etc. This case study can be useful in developing a more generic approach to design lean environment.

  17. Equivalent isentropic expansion efficiency of real fluid subject to concurrent pressure drop and heat transfer

    Science.gov (United States)

    Knudsen, P.; Ganni, V.

    2017-12-01

    Concurrent pressure drop and cooling of a super-critical or sub-cooled liquid stream can have the same effect as adiabatic expansion even though there is no work extraction. A practical implementation is as straight forward as counter-flow heat exchange with a colder fluid. The concurrent pressure drop need not be continuous with respect to the heat exchange, but may occur in a step-wise manner, in between heat exchange. Two aspects of this effect of pressure drop with heat transfer are examined; a thermodynamic and a practical process equivalent isentropic expansion efficiency. This real fluid phenomenon is useful to understand in applications where work extraction is either not practical or has not been developed. A super-critical helium supply, often around 3 bar and 4.5 K, being ultimately used as a superfluid (usually around 1.8 to 2.1 K) to cool a Niobium superconducting radio frequency cavity or a superconducting magnet is one such particular application. This paper examines the thermodynamic nature of this phenomenon.

  18. Induced motor vehicle travel from improved fuel efficiency and road expansion

    Energy Technology Data Exchange (ETDEWEB)

    Su Qing, E-mail: suq1@nku.edu [Department of Marketing, Economics and Sports Business, Northern Kentucky University, AST Center, Office 338, Nunn Drive, Highland Heights, KY 41099 (United States)

    2011-11-15

    This paper investigates the impact of improved fuel efficiency and road network expansion on motor vehicle travel using a system dynamic panel data estimator and panel data at the state level for the 2001-2008 period. Our model accounts for endogenous changes in fuel efficiency, congestion, fuel cost per mile, and vehicle stock. Our regression results suggest that the short run rebound effect is 0.0276 while the long run rebound effect is 0.11. The short run effect of road capacity per capita is 0.066 while the long run effect is 0.26. - Highlights: > We estimate two effects: the rebound effect and induced travel effect at the state level. > System dynamic panel data approach is used to address endogeneity issue. > In the period of 2001-2008, the rebound effect is 0.0276 in the short run and 0.11 in the long run. > Increase in road capacity induces motor vehicle travel. > Induced travel effect is 0. 0.066 in the short run and 0.26 in the long run.

  19. Induced motor vehicle travel from improved fuel efficiency and road expansion

    International Nuclear Information System (INIS)

    Su Qing

    2011-01-01

    This paper investigates the impact of improved fuel efficiency and road network expansion on motor vehicle travel using a system dynamic panel data estimator and panel data at the state level for the 2001-2008 period. Our model accounts for endogenous changes in fuel efficiency, congestion, fuel cost per mile, and vehicle stock. Our regression results suggest that the short run rebound effect is 0.0276 while the long run rebound effect is 0.11. The short run effect of road capacity per capita is 0.066 while the long run effect is 0.26. - Highlights: → We estimate two effects: the rebound effect and induced travel effect at the state level. → System dynamic panel data approach is used to address endogeneity issue. → In the period of 2001-2008, the rebound effect is 0.0276 in the short run and 0.11 in the long run. → Increase in road capacity induces motor vehicle travel. → Induced travel effect is 0. 0.066 in the short run and 0.26 in the long run.

  20. Epithelial organization and cyst lumen expansion require efficient Sec13–Sec31-driven secretion

    Science.gov (United States)

    Townley, Anna K.; Schmidt, Katy; Hodgson, Lorna; Stephens, David J.

    2012-01-01

    Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13–Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture. PMID:22331354

  1. Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion.

    Science.gov (United States)

    Townley, Anna K; Schmidt, Katy; Hodgson, Lorna; Stephens, David J

    2012-02-01

    Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13-Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture.

  2. Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode

    Science.gov (United States)

    Zhang, Jianqiang; Wang, Zhenguo; Li, Qinglian

    2017-09-01

    The efficiency calculation and cycle optimization were carried out for the Synergistic Air-Breathing Rocket Engine (SABRE) with deeply precooled combined cycle. A component-level model was developed for the engine, and exergy efficiency analysis based on the model was carried out. The methods to improve cycle efficiency have been proposed. The results indicate cycle efficiency of SABRE is between 29.7% and 41.7% along the flight trajectory, and most of the wasted exergy is occupied by the unburned hydrogen in exit gas. Exergy loss exists in each engine component, and the sum losses of main combustion chamber(CC), pre-burner(PB), precooler(PC) and 3# heat exchanger(HX3) are greater than 71.3% of the total loss. Equivalence ratio is the main influencing factor of cycle, and it can be regulated by adjusting parameters of helium loop. Increase the maximum helium outlet temperature of PC by 50 K, the total assumption of hydrogen will be saved by 4.8%, and the cycle efficiency is advanced by 3% averagely in the trajectory. Helium recirculation scheme introduces a helium recirculation loop to increase local helium flow rate of PC. It turns out the total assumption of hydrogen will be saved by 9%, that's about 1740 kg, and the cycle efficiency is advanced by 5.6% averagely.

  3. High efficiency, quasi-instantaneous steam expansion device utilizing fossil or nuclear fuel as the heat source

    International Nuclear Information System (INIS)

    Claudio Filippone

    1999-01-01

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency

  4. Efficiency analysis of alternative refrigerants for ejector cooling cycles

    International Nuclear Information System (INIS)

    Gil, Bartosz; Kasperski, Jacek

    2015-01-01

    Highlights: • Advantages of using alternative refrigerants as ejector refrigerants were presumed. • Computer software basing on theoretical model of Huang et al. (1999) was prepared. • Optimal temperature range of primary vapor for each working fluid was calculated. - Abstract: Computer software, basing on the theoretical model of Huang et al. with thermodynamic properties of selected refrigerants, was prepared. Investigation was focused on alternative refrigerants that belong to two groups of substances: common solvents (acetone, benzene, cyclopentane, cyclohexane and toluene) and non-flammable synthetic refrigerants applied in Organic Rankine Cycle (ORC) (R236ea, R236fa, R245ca, R245fa, R365mfc and RC318). Refrigerants were selected to detect a possibility to use them in ejector cooling system powered by a high-temperature heat source. A series of calculations were carried out for the generator temperature between 70 and 200 °C, with assumed temperatures of evaporation 10 °C and condensation 40 °C. Investigation revealed that there is no single refrigerant that ensures efficient operation of the system in the investigated temperature range of primary vapor. Each substance has its own maximum entrainment ratio and COP at its individual temperature of the optimum. The use of non-flammable synthetic refrigerants allows obtaining higher COP in the low primary vapor temperature range. R236fa was the most beneficial among the non-flammable synthetic refrigerants tested. The use of organic solvents can be justified only for high values of motive steam temperature. Among the solvents, the highest values of entrainment ratio and COP throughout the range of motive temperature were noted for cyclopentane. Toluene was found to be an unattractive refrigerant from the ejector cooling point of view

  5. Efficient linear precoding for massive MIMO systems using truncated polynomial expansion

    KAUST Repository

    Müller, Axel

    2014-06-01

    Massive multiple-input multiple-output (MIMO) techniques have been proposed as a solution to satisfy many requirements of next generation cellular systems. One downside of massive MIMO is the increased complexity of computing the precoding, especially since the relatively \\'antenna-efficient\\' regularized zero-forcing (RZF) is preferred to simple maximum ratio transmission. We develop in this paper a new class of precoders for single-cell massive MIMO systems. It is based on truncated polynomial expansion (TPE) and mimics the advantages of RZF, while offering reduced and scalable computational complexity that can be implemented in a convenient parallel fashion. Using random matrix theory we provide a closed-form expression of the signal-to-interference-and-noise ratio under TPE precoding and compare it to previous works on RZF. Furthermore, the sum rate maximizing polynomial coefficients in TPE precoding are calculated. By simulation, we find that to maintain a fixed peruser rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and signal-to-noise ratio. © 2014 IEEE.

  6. Efficient Pricing of European-Style Asian Options under Exponential Lévy Processes Based on Fourier Cosine Expansions

    NARCIS (Netherlands)

    Zhang, B.; Oosterlee, C.W.

    2013-01-01

    We propose an efficient pricing method for arithmetic and geometric Asian options under exponential Lévy processes based on Fourier cosine expansions and Clenshaw–Curtis quadrature. The pricing method is developed for both European style and American-style Asian options and for discretely and

  7. Efficiency of an air-cooled thermodynamic cycle

    International Nuclear Information System (INIS)

    Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

    1979-01-01

    The application of air, nitrogen, helium and the chemically reacting N 2 O 4 reversible 2NO 2 reversible 2NO + O 2 system as working agents and coolants for a low capacity nuclear power plant is investigated. The above system due to its physico-chemical and thermo-physical properties allows both a gaseous cycle and a cycle with condensation. The analysis has shown that a thermodynamic air-cooled cycle with the dissociating nitrogen tetroxide in the temperature range from 500 to 600 deg C has an advantage over cycles with air and nitrogen. To identify the chemical reaction kinetics in the thermodynamic processes, thermodynamic calculations of the gas-liquid cycle with N 2 O 4 both with simple and intermediate heat regeneration at different pressures over hot side were performed. At gas pressures lower than 12 - 15 atm, the cycle with a simple regeneration is more effective, and at pressure increase, the cycle with an intermediate regeneration is preferable

  8. Mapping palm oil expansion using SAR to study the impact on the CO2 cycle

    Science.gov (United States)

    Pohl, Christine

    2014-06-01

    With Malaysia being the second largest palm oil producer in the world and the fact that palm oil ranks first in vegetable oil production on the world market the palm oil industry became an important factor in the country. Along with the expansion of palm oil across the nation causing deforestation of natural rain forest and conversion of peat land into plantation land there are several factors causing a tremendous increase in carbon dioxide (CO2) emissions. Main causes of CO2 emission apart from deforestation and peat-land conversion are the fires to create plantation land plus the fires burning waste products of the plantations itself. This paper describes a project that aims at the development of a remote sensing monitoring system to allow a continuous observation of oil palm plantation activities and expansion in order to be able to quantify CO2 emissions. The research concentrates on developing a spaceborne synthetic aperture radar information extraction system for palm oil plantations in the Tropics. This will lead to objective figures that can be used internationally to create a policy implementation plan to sustainably reduce CO2 emission in the future.

  9. Mapping palm oil expansion using SAR to study the impact on the CO2 cycle

    International Nuclear Information System (INIS)

    Pohl, Christine

    2014-01-01

    With Malaysia being the second largest palm oil producer in the world and the fact that palm oil ranks first in vegetable oil production on the world market the palm oil industry became an important factor in the country. Along with the expansion of palm oil across the nation causing deforestation of natural rain forest and conversion of peat land into plantation land there are several factors causing a tremendous increase in carbon dioxide (CO 2 ) emissions. Main causes of CO 2 emission apart from deforestation and peat-land conversion are the fires to create plantation land plus the fires burning waste products of the plantations itself. This paper describes a project that aims at the development of a remote sensing monitoring system to allow a continuous observation of oil palm plantation activities and expansion in order to be able to quantify CO 2 emissions. The research concentrates on developing a spaceborne synthetic aperture radar information extraction system for palm oil plantations in the Tropics. This will lead to objective figures that can be used internationally to create a policy implementation plan to sustainably reduce CO 2 emission in the future

  10. The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles

    CERN Document Server

    Qin Xiao Yong; Sun Feng Rui; Wu Chih

    2003-01-01

    The performance of irreversible reciprocating heat engine cycles with heat transfer loss and friction-like term loss is analysed using finite-time thermodynamics. The universal relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, and the optimal relation between power output and the efficiency of the cycles are derived. Moreover, analysis and optimization of the model were carried out in order to investigate the effect of cycle processes on the performance of the cycle using numerical examples. The results obtained herein include the performance characteristics of irreversible reciprocating Diesel, Otto, Atkinson and Brayton cycles.

  11. Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes

    Directory of Open Access Journals (Sweden)

    Coukos George

    2011-08-01

    Full Text Available Abstract Background Development of a standardized platform for the rapid expansion of tumor-infiltrating lymphocytes (TILs with anti-tumor function from patients with limited TIL numbers or tumor tissues challenges their clinical application. Methods To facilitate adoptive immunotherapy, we applied genetically-engineered K562 cell-based artificial antigen presenting cells (aAPCs for the direct and rapid expansion of TILs isolated from primary cancer specimens. Results TILs outgrown in IL-2 undergo rapid, CD28-independent expansion in response to aAPC stimulation that requires provision of exogenous IL-2 cytokine support. aAPCs induce numerical expansion of TILs that is statistically similar to an established rapid expansion method at a 100-fold lower feeder cell to TIL ratio, and greater than those achievable using anti-CD3/CD28 activation beads or extended IL-2 culture. aAPC-expanded TILs undergo numerical expansion of tumor antigen-specific cells, remain amenable to secondary aAPC-based expansion, and have low CD4/CD8 ratios and FOXP3+ CD4+ cell frequencies. TILs can also be expanded directly from fresh enzyme-digested tumor specimens when pulsed with aAPCs. These "young" TILs are tumor-reactive, positively skewed in CD8+ lymphocyte composition, CD28 and CD27 expression, and contain fewer FOXP3+ T cells compared to parallel IL-2 cultures. Conclusion Genetically-enhanced aAPCs represent a standardized, "off-the-shelf" platform for the direct ex vivo expansion of TILs of suitable number, phenotype and function for use in adoptive immunotherapy.

  12. Thermal cycle efficiency of the indirect combined HTGR-GT power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    High thermal efficiency of 50% could be expected in a power generation system coupling a high temperature gas-cooled reactor(HTGR) with a closed cycle gas turbine(GT). There are three candidate systems such as a direct cycle(DC), an indirect cycle(ICD) and an indirect combined cycle(IDCC). The IDCC could solve many problems in both the DC and the IDC and consists of a primary circuit and a secondary circuit where a topping cycle is a Brayton cycle and a bottoming cycle is a steam cycle. In this report, the thermal cycle efficiency of the IDCC is examined regarding configurations of components and steam pressure. It has been shown that there are two types of configurations, that is, a perfect cascade type and a semi-cascade one and the latter can be further classified into Case A, Case B and Case C. The conditions achieving the maximum thermal cycle efficiency were revealed for these cases. In addition, the optimum system configurations were proposed considering the thermal cycle efficiency, safety and plant arrangement. (author).

  13. Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors

    KAUST Repository

    Iloeje, Chukwunwike

    2015-10-01

    © 2015 Elsevier Ltd. The rotary reactor differs from most alternative chemical looping combustion (CLC) reactor designs because it maintains near-thermal equilibrium between the two stages of the redox process by thermally coupling channels undergoing oxidation and reduction. An earlier study showed that this thermal coupling between the oxidation and reduction reactors increases the efficiency by up to 2% points when implemented in a regenerative Brayton cycle. The present study extends this analysis to alternative CLC cycles with the objective of identifying optimal configurations and design tradeoffs. Results show that the increased efficiency from reactor thermal coupling applies only to cycles that are capable of exploiting the increased availability in the reduction reactor exhaust. Thus, in addition to the regenerative cycle, the combined CLC cycle and the combined-regenerative CLC cycle are suitable for integration with the rotary reactor. Parametric studies are used to compare the sensitivity of the different cycle efficiencies to parameters like pressure ratio, turbine inlet temperature, carrier-gas fraction and purge steam generation. One of the key conclusions from this analysis is that while the optimal efficiency for regenerative CLC cycle was the highest of the three (56% at 3. bars, 1200. °C), the combined-regenerative cycle offers a trade-off that combines a reasonably high efficiency (about 54% at 12. bars, 1200. °C) with much lower gas volumetric flow rate and consequently, smaller reactor size. Unlike the other two cycles, the optimal compressor pressure ratio for the regenerative cycle is weakly dependent on the design turbine inlet temperature. For the regenerative and combined regenerative cycles, steam production in the regenerator below 2× fuel flow rate improves exhaust recovery and consequently, the overall system efficiency. Also, given that the fuel side regenerator flow is unbalanced, it is more efficient to generate steam from the

  14. A high efficiency 10 kWe microcogenerator based on an Atkinson cycle internal combustion engine

    International Nuclear Information System (INIS)

    Capaldi, Pietro

    2014-01-01

    The paper focuses on the design and the overall performance of a 10 kW electric power microcogeneration plant suitable for local energy production, based on an Atkinson-cycle internal combustion engine prototype and entirely set by Istituto Motori of the Italian National Research Council. The engine was originally a wide-spread Diesel automotive unit, then converted into a methane spark ignition system and finally modified to perform an Atkinson/Miller cycle with an extended expansion, capable of a higher global efficiency and low gaseous emissions. The paper starts by defining the ratio which leaded to this specific choice among many other automotive and industrial engines, in order to obtain a reliable, long endurance, cost effective, high efficiency base, suitable for microcogeneration in residential or commercial applications. The new engine has been coupled with a liquid cooled induction generator, a set of heat exchangers and finally placed in a sealed containing case, to reduce both noise emission and heat losses. Then the plant has been tested as an electricity and heat production system, ready for grid connection thanks to a new designed management/control system. During endurance test a complete description of its functioning behaviour has been given. - Highlights: • A new high efficiency microcogenerator based on an Atkinson/Miller cycle engine. • Atkinson cycle together with stoichiometric operation deliver better performance. • A cost-effective microcogenerator based on widespread elements (automotive engine). • The chosen automotive engine has heavy duty characteristics (Diesel derived). • A conversion criteria from a Diesel to an Atkinson cycle engine was individuated

  15. The development and chemistry of high efficiency combined cycle plants

    International Nuclear Information System (INIS)

    Svoboda, Robert

    1999-01-01

    This paper presents a boiler concept based on the combination of a low-pressure drum-type boiler with high-pressure once-through boiler and the appropriate water/steam cycle. An all volatile treatment is used in the low-pressure boiler and oxygenated treatment for the once-through high pressure system. Impurity control is achieved by adapted system design and materials, high quality make-up, an appropriate cleanliness concept and clean-up procedures for a cold start. Cycle refreshing is realized by blowdown from the high-pressure water-separator. This concept utilizes simper and less equipment than traditional solutions, resulting in increased power plant reliability and less requirement on maintenance and on capital cost [it

  16. Stochastic coupled cluster theory: Efficient sampling of the coupled cluster expansion

    Science.gov (United States)

    Scott, Charles J. C.; Thom, Alex J. W.

    2017-09-01

    We consider the sampling of the coupled cluster expansion within stochastic coupled cluster theory. Observing the limitations of previous approaches due to the inherently non-linear behavior of a coupled cluster wavefunction representation, we propose new approaches based on an intuitive, well-defined condition for sampling weights and on sampling the expansion in cluster operators of different excitation levels. We term these modifications even and truncated selections, respectively. Utilising both approaches demonstrates dramatically improved calculation stability as well as reduced computational and memory costs. These modifications are particularly effective at higher truncation levels owing to the large number of terms within the cluster expansion that can be neglected, as demonstrated by the reduction of the number of terms to be sampled when truncating at triple excitations by 77% and hextuple excitations by 98%.

  17. Power and efficiency in a regenerative gas-turbine cycle with multiple reheating and intercooling stages

    Science.gov (United States)

    Calvo Hernández, A.; Roco, J. M. M.; Medina, A.

    1996-06-01

    Using an improved Brayton cycle as a model, a general analysis accounting for the efficiency and net power output of a gas-turbine power plant with multiple reheating and intercooling stages is presented. This analysis provides a general theoretical tool for the selection of the optimal operating conditions of the heat engine in terms of the compressor and turbine isentropic efficiencies and of the heat exchanger efficiency. Explicit results for the efficiency, net power output, optimized pressure ratios, maximum efficiency, maximum power, efficiency at maximum power, and power at maximum efficiency are given. Among others, the familiar results of the Brayton cycle (one compressor and one turbine) and of the corresponding Ericsson cycle (infinite compressors and infinite turbines) are obtained as particular cases.

  18. Study on the effect of driving cycles on energy efficiency of electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ji Fenzhu; Xu Licong [School of Transportation Science and Engineering of Beihang Univ., BJ (China); Wu Zhixin [Tianjin Qing Yuan Electric Vehicle Corp. Ltd., TJ (China)

    2009-07-01

    The energy usage efficiency of electric vehicles (EVS) and evaluation index of electromotor efficiency were studied. The idea of ''interval usage percentage of energy efficiency'' and ''exertion degree of energy efficiency'' of electromotor was brought forward. The effect of driving cycles on the distribution of running status of electromotor and its efficiency was investigated. The electromotor efficiency and the variety trend of average driving force at different driving cycles were discussed. Based on several typical domestic and foreign driving cycles, the exertion degree of energy efficiency and the whole efficiency of power train on some types of EVS were analyzed and calculated. The result indicates that there is a difference of 9.64% in exertion degree of energy efficiency of electromotor at different driving cycles. The efficiency distribution of electromotor and control system is different, and the average driving force is different, too. That cause the great variety in driving range. The idiographic reference data are provided to the establishment of driving cycles' criterion of EVS in our country. (orig.)

  19. Determining the Life Cycle Energy Efficiency of Six Biofuel Systems in China: A Data Envelopment Analysis

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun

    2014-01-01

    This aim of this study was to use Data Envelopment Analysis (DEA) to assess the life cycle energy efficiency of six biofuels in China. DEA can differentiate efficient and non-efficient scenarios, and it can identify wasteful energy losses in biofuel production. More specifically, the study has...

  20. A Biologically Inspired Energy-Efficient Duty Cycle Design Method for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jie Zhou

    2017-01-01

    Full Text Available The recent success of emerging wireless sensor networks technology has encouraged researchers to develop new energy-efficient duty cycle design algorithm in this field. The energy-efficient duty cycle design problem is a typical NP-hard combinatorial optimization problem. In this paper, we investigate an improved elite immune evolutionary algorithm (IEIEA strategy to optimize energy-efficient duty cycle design scheme and monitored area jointly to enhance the network lifetimes. Simulation results show that the network lifetime of the proposed IEIEA method increased compared to the other two methods, which means that the proposed method improves the full coverage constraints.

  1. Hydrological cycle and water use efficiency of veld in different ...

    African Journals Online (AJOL)

    Hydraulic non-floating lysimeters were used to determine the evapotranspiration (Et) and water use efficiency (W.U.E.) of veld in different successional stages for the period September 1978 to June 1979. In addition runoff of the various successional stages was recorded on runoff plots.Averages of 1,018 litres, 1,258 litres ...

  2. Effort and the Cycle : Cyclical Implications of Efficiency Wages

    NARCIS (Netherlands)

    Uhlig, H.F.H.V.S.; Xu, Y.

    1996-01-01

    A number of authors have proposed theories of efficiency wages to explain the behaviour of aggregate labor markets. According to these theories, firms do not adjust wages downwards despite available unemployed job seekers, because lower wages would induce hired workers to shirk more often, which in

  3. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  4. Fusion blanket for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Taussig, R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperature (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by Ar) utilizing Li 2 O for tritium breeding. In this design, approx. 60% of the fusion energy is deposited in the high-temperature interior. The maximum Ar temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  5. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1981-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 deg C) of conventional structural materials such as stainless steels. In this project 'two-zone' blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 deg C leading to an overall efficiency estimate of 55 to 60% for this reference case. (author)

  6. Detailed analysis of the effect of the turbine and compressor isentropic efficiency on the thermal and exergy efficiency of a Brayton cycle

    Directory of Open Access Journals (Sweden)

    Živić Marija

    2014-01-01

    Full Text Available Energy and exergy analysis of a Brayton cycle with an ideal gas is given. The irreversibility of the adiabatic processes in turbine and compressor is taken into account through their isentropic efficiencies. The net work per cycle, the thermal efficiency and the two exergy efficiencies are expressed as functions of the four dimensionless variables: the isentropic efficiencies of turbine and compressor, the pressure ratio, and the temperature ratio. It is shown that the maximal values of the net work per cycle, the thermal and the exergy efficiency are achieved when the isentropic efficiencies and temperature ratio are as high as possible, while the different values of pressure ratio that maximize the net work per cycle, the thermal and the exergy efficiencies exist. These pressure ratios increase with the increase of the temperature ratio and the isentropic efficiency of compressor and turbine. The increase of the turbine isentropic efficiency has a greater impact on the increase of the net work per cycle and the thermal efficiency of a Brayton cycle than the same increase of compressor isentropic efficiency. Finally, two goal functions are proposed for thermodynamic optimization of a Brayton cycle for given values of the temperature ratio and the compressor and turbine isentropic efficiencies. The first maximizes the sum of the net work per cycle and thermal efficiency while the second the net work per cycle and exergy efficiency. In both cases the optimal pressure ratio is closer to the pressure ratio that maximizes the net work per cycle.

  7. Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors

    KAUST Repository

    Iloeje, Chukwunwike; Zhao, Zhenlong; Ghoniem, Ahmed F.

    2015-01-01

    undergoing oxidation and reduction. An earlier study showed that this thermal coupling between the oxidation and reduction reactors increases the efficiency by up to 2% points when implemented in a regenerative Brayton cycle. The present study extends

  8. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon; Thu, Kyaw; Oh, Seungjin; Ang, Li; Shahzad, Muhammad Wakil; Ismail, Azhar Bin

    2015-01-01

    -driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent

  9. Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers

    Science.gov (United States)

    Monson, D. J.

    1976-01-01

    Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.

  10. Numerical Research of Steam and Gas Plant Efficiency of Triple Cycle for Extreme North Regions

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2016-01-01

    Full Text Available The present work shows that temperature decrease of heat rejection in a cycle is necessary for energy efficiency of steam turbine plants. Minimum temperature of heat rejection at steam turbine plant work on water steam is 15°C. Steam turbine plant of triple cycle where lower cycle of steam turbine plant is organic Rankine cycle on low-boiling substance with heat rejection in air condenser, which safely allows rejecting heat at condensation temperatures below 0°C, has been offered. Mathematical model of steam and gas plant of triple cycle, which allows conducting complex researches with change of working body appearance and parameters defining thermodynamic efficiency of cycles, has been developed. On the basis of the model a program of parameters and index cycles design of steam and gas plants has been developed in a package of electron tables Excel. Numerical studies of models showed that energy efficiency of steam turbine plants of triple cycle strongly depend on low-boiling substance type in a lower cycle. Energy efficiency of steam and gas plants net 60% higher can be received for steam and gas plants on the basis of gas turbine plant NK-36ST on pentane and its condensation temperature below 0°C. It was stated that energy efficiency of steam and gas plants net linearly depends on condensation temperature of low-boiling substance type and temperature of gases leaving reco very boiler. Energy efficiency increases by 1% at 10% decrease of condensation temperature of pentane, and it increases by 0.88% at 15°C temperature decrease of gases leaving recovery boiler.

  11. Thermodynamic analysis of engineering solutions aimed at raising the efficiency of integrated gasification combined cycle

    Science.gov (United States)

    Gordeev, S. I.; Bogatova, T. F.; Ryzhkov, A. F.

    2017-11-01

    Raising the efficiency and environmental friendliness of electric power generation from coal is the aim of numerous research groups today. The traditional approach based on the steam power cycle has reached its efficiency limit, prompted by materials development and maneuverability performance. The rival approach based on the combined cycle is also drawing nearer to its efficiency limit. However, there is a reserve for efficiency increase of the integrated gasification combined cycle, which has the energy efficiency at the level of modern steam-turbine power units. The limit of increase in efficiency is the efficiency of NGCC. One of the main problems of the IGCC is higher costs of receiving and preparing fuel gas for GTU. It would be reasonable to decrease the necessary amount of fuel gas in the power unit to minimize the costs. The effect can be reached by raising of the heat value of fuel gas, its heat content and the heat content of cycle air. On the example of the process flowsheet of the IGCC with a power of 500 MW, running on Kuznetsk bituminous coal, by means of software Thermoflex, the influence of the developed technical solutions on the efficiency of the power plant is considered. It is received that rise in steam-air blast temperature to 900°C leads to an increase in conversion efficiency up to 84.2%. An increase in temperature levels of fuel gas clean-up to 900°C leads to an increase in the IGCC efficiency gross/net by 3.42%. Cycle air heating reduces the need for fuel gas by 40% and raises the IGCC efficiency gross/net by 0.85-1.22%. The offered solutions for IGCC allow to exceed net efficiency of analogous plants by 1.8-2.3%.

  12. Efficiency of single-family houses and harmonisation of their life cycle participants’ interests

    Directory of Open Access Journals (Sweden)

    Nerija Kvederyte

    2000-01-01

    Full Text Available An efficient single-family house is the main purpose of the life cycle. It determines the necessity to evaluate various decisions of the life cycle of single-family houses and possibilities to satisfy objectives and requirements of the participants of that process. To design and achieve an effective process of the life cycle of a single-family house, it is necessary to take care of its efficiency starting from the determination of needs and objectives and ending with the usage of a building.

  13. Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Pierobon, Leonardo; Wronski, Jorrit

    2014-01-01

    Much attention is focused on increasing the energy efficiency to decrease fuel costs and CO2 emissions throughout industrial sectors. The ORC (organic Rankine cycle) is a relatively simple but efficient process that can be used for this purpose by converting low and medium temperature waste heat ...

  14. Optimization of a regenerative Brayton cycle by maximization of a newly defined second law efficiency

    NARCIS (Netherlands)

    Haseli, Y.

    2013-01-01

    The idea is to find out whether 2nd law efficiency optimization may be a suitable trade-off between maximum work output and maximum 1st law efficiency designs for a regenerative gas turbine engine operating on the basis of an open Brayton cycle. The primary emphasis is placed on analyzing the ideal

  15. Electromechanical conversion efficiency for dielectric elastomer generator in different energy harvesting cycles

    Science.gov (United States)

    Cao, Jian-Bo; E, Shi-Ju; Guo, Zhuang; Gao, Zhao; Luo, Han-Pin

    2017-11-01

    In order to improve electromechanical conversion efficiency for dielectric elastomer generators (DEG), on the base of studying DEG energy harvesting cycles of constant voltage, constant charge and constant electric field intensity, a new combined cycle mode and optimization theory in terms of the generating mechanism and electromechanical coupling process have been built. By controlling the switching point to achieve the best energy conversion cycle, the energy loss in the energy conversion process is reduced. DEG generating test bench which was used to carry out comparative experiments has been established. Experimental results show that the collected energy in constant voltage cycle, constant charge cycle and constant electric field intensity energy harvesting cycle decreases in turn. Due to the factors such as internal resistance losses, electrical losses and so on, actual energy values are less than the theoretical values. The electric energy conversion efficiency by combining constant electric field intensity cycle with constant charge cycle is larger than that of constant electric field intensity cycle. The relevant conclusions provide a basis for the further applications of DEG.

  16. Thermal efficiency improvement in high output diesel engines a comparison of a Rankine cycle with turbo-compounding

    International Nuclear Information System (INIS)

    Weerasinghe, W.M.S.R.; Stobart, R.K.; Hounsham, S.M.

    2010-01-01

    Thermal management, in particular, heat recovery and utilisation in internal combustion engines result in improved fuel economy, reduced emissions, fast warm up and optimized cylinder head temperatures. turbo-compounding is a heat recovery technique that has been successfully used in medium and large scale engines. Heat recovery to a secondary fluid and expansion is used in large scale engines, such as in power plants in the form of heat recovery steam generators (HRSG) . The present paper presents a thermodynamic analysis of turbo-compounding and heat recovery and utilisation through a fluid power cycle, a technique that is also applicable to medium and small scale engines. In a fluid power cycle, the working fluid is stored in a reservoir and expanded subsequently. The reservoir acts as an energy buffer that improves the overall efficiency, significantly. This paper highlights the relative advantage of exhaust heat secondary power cycles over turbo-compounding with the aid of MATLAB based QSS Toolbox simulation results. Steam has been selected as the working fluid in this work for its superior heat capacity over organic fluids and gases.

  17. Best Practices for Water Conservation and Efficiency as an Alternative for Water Supply Expansion

    Science.gov (United States)

    EPA released a document that provides water conservation and efficiency best practices for evaluating water supply projects. The document can help water utilities and federal and state governments carry out assessments of the potential for future

  18. Expansion of environmental impact assessment for eco-efficiency evaluation of China's economic sectors: An economic input-output based frontier approach.

    Science.gov (United States)

    Xing, Zhencheng; Wang, Jigan; Zhang, Jie

    2018-09-01

    Due to the increasing environmental burdens caused by dramatic economic expansion, eco-efficiency indicating how efficient the economic activity is with respect to its environmental impacts has become a topic of considerable interest in China. In this context, Economic Input-output Life Cycle Assessment (EIO-LCA) and Data Envelopment Analysis (DEA) are combined to assess the environmental impacts and eco-efficiency of China's 26 economic sectors. The EIO-LCA results indicate that Electricity Production and Supply sector is the largest net exporter in energy usage, CO 2 emission and exhaust emission categories, while Construction sector is the largest net importer for five impact categories except for water withdrawal. Moreover, Construction sector is found to be the destination of the largest sector-to-sector environmental impact flows for the five impact categories and make the most contributions to the total environmental impacts. Another key finding is that Agriculture sector is both the largest net exporter and the greatest contributor for water withdrawal category. DEA results indicate that seven sectors are eco-efficient while over 70% of China's economic sectors are inefficient and require significant improvements. The average target improvements range between 23.30% and 35.06% depending on the impact category. Further sensitivity analysis reveals that the average sensitivity ratios vary from 7.7% to 15.7% among the six impact categories, which are found to be negatively correlated with their improvement potentials. Finally, several policy recommendations are made to mitigate environmental impacts of China's economic sectors and improve their eco-efficiency levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. First and Second-Law Efficiency Analysis and ANN Prediction of a Diesel Cycle with Internal Irreversibility, Variable Specific Heats, Heat Loss, and Friction Considerations

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2014-04-01

    Full Text Available The variability of specific heats, internal irreversibility, heat and frictional losses are neglected in air-standard analysis for different internal combustion engine cycles. In this paper, the performance of an air-standard Diesel cycle with considerations of internal irreversibility described by using the compression and expansion efficiencies, variable specific heats, and losses due to heat transfer and friction is investigated by using finite-time thermodynamics. Artificial neural network (ANN is proposed for predicting the thermal efficiency and power output values versus the minimum and the maximum temperatures of the cycle and also the compression ratio. Results show that the first-law efficiency and the output power reach their maximum at a critical compression ratio for specific fixed parameters. The first-law efficiency increases as the heat leakage decreases; however the heat leakage has no direct effect on the output power. The results also show that irreversibilities have depressing effects on the performance of the cycle. Finally, a comparison between the results of the thermodynamic analysis and the ANN prediction shows a maximum difference of 0.181% and 0.194% in estimating the thermal efficiency and the output power. The obtained results in this paper can be useful for evaluating and improving the performance of practical Diesel engines.

  20. Cycling efficiency and energy cost of walking in young and older adults.

    Science.gov (United States)

    Gaesser, Glenn A; Tucker, Wesley J; Sawyer, Brandon J; Bhammar, Dharini M; Angadi, Siddhartha S

    2018-02-01

    To determine whether age affects cycling efficiency and the energy cost of walking (Cw), 190 healthy adults, ages 18-81 yr, cycled on an ergometer at 50 W and walked on a treadmill at 1.34 m/s. Ventilation and gas exchange at rest and during exercise were used to calculate net Cw and net efficiency of cycling. Compared with the 18-40 yr age group (2.17 ± 0.33 J·kg -1 ·m -1 ), net Cw was not different in the 60-64 yr (2.20 ± 0.40 J·kg -1 ·m -1 ) and 65-69 yr (2.20 ± 0.28 J·kg -1 ·m -1 ) age groups, but was significantly ( P 60 yr, net Cw was significantly correlated with age ( R 2  = 0.123; P = 0.002). Cycling net efficiency was not different between 18-40 yr (23.5 ± 2.9%), 60-64 yr (24.5 ± 3.6%), 65-69 yr (23.3 ± 3.6%) and ≥70 yr (24.7 ± 2.7%) age groups. Repeat tests on a subset of subjects (walking, n = 43; cycling, n = 37) demonstrated high test-retest reliability [intraclass correlation coefficients (ICC), 0.74-0.86] for all energy outcome measures except cycling net energy expenditure (ICC = 0.54) and net efficiency (ICC = 0.50). Coefficients of variation for all variables ranged from 3.1 to 7.7%. Considerable individual variation in Cw and efficiency was evident, with a ~2-fold difference between the least and most economical/efficient subjects. We conclude that, between 18 and 81 yr, net Cw was only higher for ages ≥70 yr, and that cycling net efficiency was not different across age groups. NEW & NOTEWORTHY This study illustrates that the higher energy cost of walking in older adults is only evident for ages ≥70 yr. For older adults ages 60-69 yr, the energy cost of walking is similar to that of young adults. Cycling efficiency, by contrast, is not different across age groups. Considerable individual variation (∼2-fold) in cycling efficiency and energy cost of walking is observed in young and older adults.

  1. Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods

    International Nuclear Information System (INIS)

    Lin, Meng; Haussener, Sophia

    2015-01-01

    Solar-driven non-stoichiometric thermochemical redox cycling of ceria for the conversion of solar energy into fuels shows promise in achieving high solar-to-fuel efficiency. This efficiency is significantly affected by the operating conditions, e.g. redox temperatures, reduction and oxidation pressures, solar irradiation concentration, or heat recovery effectiveness. We present a thermodynamic analysis of five redox cycle designs to investigate the effects of working conditions on the fuel production. We focused on the influence of approaches to reduce the partial pressure of oxygen in the reduction step, namely by mechanical approaches (sweep gassing or vacuum pumping), chemical approaches (chemical scavenger), and combinations thereof. The results indicated that the sweep gas schemes work more efficient at non-isothermal than isothermal conditions, and efficient gas phase heat recovery and sweep gas recycling was important to ensure efficient fuel processing. The vacuum pump scheme achieved best efficiencies at isothermal conditions, and at non-isothermal conditions heat recovery was less essential. The use of oxygen scavengers combined with sweep gas and vacuum pump schemes further increased the system efficiency. The present work can be used to predict the performance of solar-driven non-stoichiometric redox cycles and further offers quantifiable guidelines for system design and operation. - Highlights: • A thermodynamic analysis was conducted for ceria-based thermochemical cycles. • Five novel cycle designs and various operating conditions were proposed and investigated. • Pressure reduction method affects optimal operating conditions for maximized efficiency. • Chemical oxygen scavenger proves to be promising in further increasing efficiency. • Formulation of quantifiable design guidelines for economical competitive solar fuel processing

  2. Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo

    NARCIS (Netherlands)

    Filippi, Claudia; Assaraf, R.; Moroni, S.

    2016-01-01

    We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the

  3. Efficient Pricing of Early : Exercise and Exotic Options Based on Fourier Cosine Expansions

    NARCIS (Netherlands)

    Zhang, B.

    2012-01-01

    In the financial world, two tasks are of prime importance: model calibration and portfolio hedging. For both tasks, efficient option pricing is necessary, particularly for the calibration where many options with different strike prices and different maturities need to be priced at the same time.

  4. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions

    International Nuclear Information System (INIS)

    Blatman, Geraud; Sudret, Bruno

    2010-01-01

    Global sensitivity analysis aims at quantifying the relative importance of uncertain input variables onto the response of a mathematical model of a physical system. ANOVA-based indices such as the Sobol' indices are well-known in this context. These indices are usually computed by direct Monte Carlo or quasi-Monte Carlo simulation, which may reveal hardly applicable for computationally demanding industrial models. In the present paper, sparse polynomial chaos (PC) expansions are introduced in order to compute sensitivity indices. An adaptive algorithm allows the analyst to build up a PC-based metamodel that only contains the significant terms whereas the PC coefficients are computed by least-square regression using a computer experimental design. The accuracy of the metamodel is assessed by leave-one-out cross validation. Due to the genuine orthogonality properties of the PC basis, ANOVA-based sensitivity indices are post-processed analytically. This paper also develops a bootstrap technique which eventually yields confidence intervals on the results. The approach is illustrated on various application examples up to 21 stochastic dimensions. Accurate results are obtained at a computational cost 2-3 orders of magnitude smaller than that associated with Monte Carlo simulation.

  5. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions

    Energy Technology Data Exchange (ETDEWEB)

    Blatman, Geraud, E-mail: geraud.blatman@edf.f [Clermont Universite, IFMA, EA 3867, Laboratoire de Mecanique et Ingenieries, BP 10448, F-63000 Clermont-Ferrand (France); EDF, R and D Division - Site des Renardieres, F-77818 Moret-sur-Loing (France); Sudret, Bruno, E-mail: sudret@phimeca.co [Clermont Universite, IFMA, EA 3867, Laboratoire de Mecanique et Ingenieries, BP 10448, F-63000 Clermont-Ferrand (France); Phimeca Engineering, Centre d' Affaires du Zenith, 34 rue de Sarlieve, F-63800 Cournon d' Auvergne (France)

    2010-11-15

    Global sensitivity analysis aims at quantifying the relative importance of uncertain input variables onto the response of a mathematical model of a physical system. ANOVA-based indices such as the Sobol' indices are well-known in this context. These indices are usually computed by direct Monte Carlo or quasi-Monte Carlo simulation, which may reveal hardly applicable for computationally demanding industrial models. In the present paper, sparse polynomial chaos (PC) expansions are introduced in order to compute sensitivity indices. An adaptive algorithm allows the analyst to build up a PC-based metamodel that only contains the significant terms whereas the PC coefficients are computed by least-square regression using a computer experimental design. The accuracy of the metamodel is assessed by leave-one-out cross validation. Due to the genuine orthogonality properties of the PC basis, ANOVA-based sensitivity indices are post-processed analytically. This paper also develops a bootstrap technique which eventually yields confidence intervals on the results. The approach is illustrated on various application examples up to 21 stochastic dimensions. Accurate results are obtained at a computational cost 2-3 orders of magnitude smaller than that associated with Monte Carlo simulation.

  6. Estimating the power efficiency of the thermal power plant modernization by using combined-cycle technologies

    International Nuclear Information System (INIS)

    Hovhannisyan, L.S.; Harutyunyan, N.R.

    2013-01-01

    The power efficiency of the thermal power plant (TPP) modernization by using combined-cycle technologies is introduced. It is shown that it is possible to achieve the greatest decrease in the specific fuel consumption at modernizing the TPP at the expense of introducing progressive 'know-how' of the electric power generation: for TPP on gas, it is combined-cycle, gas-turbine superstructures of steam-power plants and gas-turbines with heat utilization

  7. Asymmetries of cattle and crop productivity and efficiency during Brazil’s agricultural expansion from 1975 to 2006

    Directory of Open Access Journals (Sweden)

    Gerd Sparovek

    2018-03-01

    Full Text Available Brazil has global importance for food production and conservation of natural resources. The country has plans to increase yields and commitments to decrease deforestation that require higher productivity. Plans and policies for the growth of Brazilian agriculture, however, have been made without an integrated analysis of the harvest and not supported by a universal metric regarding its efficiency. Applying methods to model flows of energy and matter along food supply chains for agricultural production from 1975 to 2006, we found that crop and cattle harvests and their productivity have increased during the last four decades in consolidated and deforestation frontier regions. Yet in 2006, crop protein production was 20 times larger than cattle protein, using an area 2.6 times smaller than pastures. Crop protein productivity was 0.25 ton.ha–1 with emissions of 2 ton GHG per ton of protein, while cattle productivity was 0.01 ton.ha–1 with emissions of 283 ton GHG per ton of protein. From 1975 to 2006, the portion of crop protein and energy going to feed increased while the portion going to direct human consumption decreased. Our findings suggest that more efficient food systems would be achieved by a combination of intensification of cattle systems, optimization of feed-meat systems and an increase in the share of the consumption of crops as a source of protein. We suggest an initial road map to the expansion of the cultivated area and intensification of agriculture for zero deforestation, efficient and sustainable land use and food systems where cattle pasture intensification is a transition that will last until the expansion of crops replace all pasture present on suitable arable land. During this transition, pasture area will decrease until it is limited only to marginal non-arable lands. Such change could be achieved by a robust strategy that combines penalties and incentives and prevents the risks of a rebound effect for the

  8. Efficient generation of series expansions for ±J Ising spin glasses in a classical or a quantum field

    Science.gov (United States)

    Singh, R. R. P.; Young, A. P.

    2017-12-01

    We discuss generation of series expansions for Ising spin glasses with a symmetric ±J (i.e., bimodal) distribution on d -dimensional hypercubic lattices using linked-cluster methods. Simplifications for the bimodal distribution allow us to go to higher order than for a general distribution. We discuss two types of problems, one classical and one quantum. The classical problem is that of the Ising spin glass in a longitudinal magnetic field h , for which we obtain high temperature series expansions in variables tanh(J /T ) and tanh(h /T ) . The quantum problem is a T =0 study of the Ising spin glass in a transverse magnetic field hT for which we obtain a perturbation theory in powers of J /hT . These methods require (i) enumeration and counting of all connected clusters that can be embedded in the lattice up to some order n , and (ii) an evaluation of the contribution of each cluster for the quantity being calculated, known as the weight. We discuss a general method that takes the much smaller list (and count) of all no free-end (NFE) clusters on a lattice up to some order n and automatically generates all other clusters and their counts up to the same order. The weights for finite clusters in both cases have a simple graphical interpretation that allows us to proceed efficiently for a general configuration of the ±J bonds and at the end perform suitable disorder averaging. The order of our computations is limited by the weight calculations for the high-temperature expansions of the classical model, while they are limited by graph counting for the T =0 quantum system. Details of the calculational methods are presented.

  9. Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Prawisudha, Pandji; Prabowo, Bayu; Budiman, Bentang Arief

    2015-01-01

    Highlights: • Novel integrated drying, gasification and combined cycle for empty fruit bunch. • Application of enhanced process integration to achieve high total energy efficiency. • The technology covers exergy recovery and process integration. • High overall energy efficiency can be achieved (about 44% including drying). - Abstract: A high-energy-efficient process for empty fruit bunch drying with integration to gasification and combined cycle processes is proposed. The enhancement is due to greater exergy recovery and more efficient process integration. Basically, the energy/heat involved in a single process is recovered as much as possible, leading to minimization of exergy destruction. In addition, the unrecoverable energy/heat is utilized for other processes through process integration. During drying, a fluidized bed dryer with superheated steam is used as the main evaporator. Exergy recovery is performed through exergy elevation via compression and effective heat coupling in a dryer and heat exchangers. The dried empty fruit bunches are gasified in a fluidized bed gasifier using air as the fluidizing gas. Furthermore, the produced syngas is utilized as fuel in the combined cycle module. From process analysis, the proposed integrated processes can achieve a relatively high energy efficiency. Compared to a standalone drying process employing exergy recovery, the proposed integrated drying can reduce consumed energy by about 1/3. In addition, the overall integrated processes can reach a total power generation efficiency of about 44%

  10. Energy Efficient Pico Cell Range Expansion and Density Joint Optimization for Heterogeneous Networks with eICIC

    Directory of Open Access Journals (Sweden)

    Yanzan Sun

    2018-03-01

    Full Text Available Heterogeneous networks, constituted by conventional macro cells and overlaying pico cells, have been deemed a promising paradigm to support the deluge of data traffic with higher spectral efficiency and Energy Efficiency (EE. In order to deploy pico cells in reality, the density of Pico Base Stations (PBSs and the pico Cell Range Expansion (CRE are two important factors for the network spectral efficiency as well as EE improvement. However, associated with the range and density evolution, the inter-tier interference within the heterogeneous architecture will be challenging, and the time domain Enhanced Inter-cell Interference Coordination (eICIC technique becomes necessary. Aiming to improve the network EE, the above factors are jointly considered in this paper. More specifically, we first derive the closed-form expression of the network EE as a function of the density of PBSs and pico CRE bias based on stochastic geometry theory, followed by a linear search algorithm to optimize the pico CRE bias and PBS density, respectively. Moreover, in order to realize the pico CRE bias and PBS density joint optimization, a heuristic algorithm is proposed to achieve the network EE maximization. Numerical simulations show that our proposed pico CRE bias and PBS density joint optimization algorithm can improve the network EE significantly with low computational complexity.

  11. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J.; Lekov, A.; Chan, P.; Dunham Whitehead, C.; Meyers, S.; McMahon, J. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Environmental Energy Technologies Div.

    2006-03-01

    In 2001, the US Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered. (author)

  12. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    International Nuclear Information System (INIS)

    Lutz, James; Lekov, Alex; Chan, Peter; Whitehead, Camilla Dunham; Meyers, Steve; McMahon, James

    2006-01-01

    In 2001, the US Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered

  13. Enhancement of the efficiency of the Open Cycle Phillips Optimized Cascade LNG process

    International Nuclear Information System (INIS)

    Fahmy, M.F.M.; Nabih, H.I.; El-Nigeily, M.

    2016-01-01

    Highlights: • Expanders replaced JT valves in the Phillips Optimized Cascade liquefaction process. • Improvement in plant liquefaction efficiency was evaluated in presence of expanders. • Comparison of the different optimum cases for the liquefaction process was presented. - Abstract: This study aims to improve the performance of the Open Cycle Phillips Optimized Cascade Process for the production of liquefied natural gas (LNG) through the replacement of Joule–Thomson (JT) valves by expanders. The expander has a higher thermodynamic efficiency than the JT valve. Moreover, the produced shaft power from the expander is integrated into the process. The study is conducted using the Aspen HYSYS-V7 simulation software for simulation of the Open Cycle Phillips Optimized Cascade Process having the JT valves. Simulation of several proposed cases in which expanders are used instead of JT valves at different locations in the process as at the propane cycle, ethylene cycle, methane cycle and the upstream of the heavies removal column is conducted. The optimum cases clearly indicate that expanders not only produce power, but also offer significant improvements in the process performance as shown by the total plant power consumption, LNG production, thermal efficiency, plant specific power and CO_2 emissions reduction. Results also reveal that replacing JT valves by expanders in the methane cycle has a dominating influence on all performance criteria and hence, can be considered as the main key contributor affecting the Phillips Optimized Cascade Process leading to a notable enhancement in its efficiency. This replacement of JT valves by liquid expanders at different locations of the methane cycle encounters power savings in the range of 4.92–5.72%, plant thermal efficiency of 92.64–92.97% and an increase in LNG production of 5.77–7.04%. Moreover, applying liquid expanders at the determined optimum cases for the different cycles, improves process performance and

  14. Fuel Application Efficiency in Ideal Cycle of Gas Turbine Plant with Isobaric Heat Supply

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2013-01-01

    Full Text Available The paper reveals expediency to use in prospect fuels with maximum value  Qнр∑Vi and minimum theoretical burning temperature in order to obtain maximum efficiency of the ideal cycle in GTP with isobaric heat supply.

  15. The effect of ambient temperature on gross-efficiency in cycling

    NARCIS (Netherlands)

    Hettinga, F.J.; Koning, J.J. de; Vrijer, A. de; Wüst, R.C.I.; Daanen, H.A.M.; Foster, C.

    2007-01-01

    Time-trial performance deteriorates in the heat. This might potentially be the result of a temperature-induced decrease in gross-efficiency (GE). The effect of high ambient temperature on GE during cycling will be studied, with the intent of determining if a heat-induced change in GE could account

  16. Life cycle and economic efficiency analysis phase II : durable pavement markings.

    Science.gov (United States)

    2011-04-01

    This report details the Phase II analysis of the life cycle and economic efficiency of inlaid tape : and thermoplastic. Waterborne paint was included as a non-durable for comparison purposes : only. In order to find the most economical product for sp...

  17. Real-space quadrature: A convenient, efficient representation for multipole expansions

    International Nuclear Information System (INIS)

    Rogers, David M.

    2015-01-01

    Multipoles are central to the theory and modeling of polarizable and nonpolarizable molecular electrostatics. This has made a representation in terms of point charges a highly sought after goal, since rotation of multipoles is a bottleneck in molecular dynamics implementations. All known point charge representations are orders of magnitude less efficient than spherical harmonics due to either using too many fixed charge locations or due to nonlinear fitting of fewer charge locations. We present the first complete solution to this problem—completely replacing spherical harmonic basis functions by a dramatically simpler set of weights associated to fixed, discrete points on a sphere. This representation is shown to be space optimal. It reduces the spherical harmonic decomposition of Poisson’s operator to pairwise summations over the point set. As a corollary, we also shows exact quadrature-based formulas for contraction over trace-free supersymmetric 3D tensors. Moreover, multiplication of spherical harmonic basis functions translates to a direct product in this representation

  18. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  19. The Misselhorn Cycle: Batch-Evaporation Process for Efficient Low-Temperature Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Moritz Gleinser

    2016-05-01

    Full Text Available The concept of the Misselhorn cycle is introduced as a power cycle that aims for efficient waste heat recovery of temperature sources below 100 °C. The basic idea shows advantages over a standard Organic Rankine Cycle (ORC in overall efficiency and utilization of the heat source. The main characteristic of this cycle is the use of at least three parallel batch evaporators instead of continuous heat exchangers. The operational phases of the evaporators are shifted so that there is always one vaporizer in discharge mode. A transient MATLAB® model (The MathWorks: Natick, MA, USA is used to simulate the achievable performance of the Misselhorn cycle. The calculations of the thermodynamic states of the system are based on the heat flux, the equations for energy conservation and the equations of state found in the NIST Standard Reference Database 23 (Reference Fluid Thermodynamic and Transport Properties - REFPROP, National Institute of Standards and Technology: Gaithersburg, MD, USA. In the isochoric batch evaporation, the pressure and the corresponding boiling temperature rise over time. With a gradually increasing boiling temperature, no pinch point limitation occurs. Furthermore, the heat source medium is passed through the evaporators in serial order to obtain a quasi-counter flow setup. It could be shown that these features offer the possibility to gain both high thermal efficiencies and an enhanced utilization of the heat source at the same time. A basic model with a fixed estimated heat transfer coefficient promises a possible system exergy efficiency of 44.4%, which is an increase of over 60% compared to a basic ORC with a system exergy efficiency of only 26.8%.

  20. Thermodynamic modelling and efficiency analysis of a class of real indirectly fired gas turbine cycles

    Directory of Open Access Journals (Sweden)

    Ma Zheshu

    2009-01-01

    Full Text Available Indirectly or externally-fired gas-turbines (IFGT or EFGT are novel technology under development for small and medium scale combined power and heat supplies in combination with micro gas turbine technologies mainly for the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass or 'dirty' fuel by employing a high temperature heat exchanger to avoid the combustion gases passing through the turbine. In this paper, by assuming that all fluid friction losses in the compressor and turbine are quantified by a corresponding isentropic efficiency and all global irreversibilities in the high temperature heat exchanger are taken into account by an effective efficiency, a one dimensional model including power output and cycle efficiency formulation is derived for a class of real IFGT cycles. To illustrate and analyze the effect of operational parameters on IFGT efficiency, detailed numerical analysis and figures are produced. The results summarized by figures show that IFGT cycles are most efficient under low compression ratio ranges (3.0-6.0 and fit for low power output circumstances integrating with micro gas turbine technology. The model derived can be used to analyze and forecast performance of real IFGT configurations.

  1. Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Mehrabipour, Reza

    2012-01-01

    A simple gas turbine cycle namely as the Kraftwerk Union AG unit including a Siemens gas turbine model V93.1 with 60 MW nominal power and 26.0% thermal efficiency utilized in the Fars power plant located is considered for the efficiency enhancement. A typical tubular vertical recuperative heat exchanger is designed in order to integrate into the cycle as an air pre-heater for thermal efficiency improvement. Thermal and geometric specifications of the recuperative heat exchanger are obtained in a multi-objective optimization process. The exergetic efficiency of the gas cycle is maximized while the payback time for the capital investment of the recuperator is minimized. Combination of these objectives and decision variables with suitable engineering and physical constraints makes a set of the MINLP optimization problem. Optimization programming is performed using the NSGA-II algorithm and Pareto optimal frontiers are obtained in three cases including the minimum, average and maximum ambient air temperatures. In each case, the final optimal solution has been selected using three decision-making approaches including the fuzzy Bellman-Zadeh, LINMAP and TOPSIS methods. It has been shown that the TOPSIS and LINMAP decision-makers when applied on the Pareto frontier which is obtained at average ambient air temperature yields best results in comparison to other cases. -- Highlights: ► A simple Brayton gas cycle is considered for the efficiency improvement by integrating of a recuperator. ► Objective functions based on thermodynamic and economic analysis are obtained. ► The payback time for the capital investment is minimized and the exergetic efficiency of the system is maximized. ► Pareto optimal frontiers at various site conditions are obtained. ► A final optimal configuration is found using various decision-making approaches.

  2. Development of a control system for compression and expansion cycles of critical valve for high vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Jyoti, E-mail: jagarwal@ipr.res.in; Sharma, H.; Patel, Haresh; Gangradey, R.; Lambade, Vrushabh

    2016-11-15

    Highlights: • Control system with feedback loop of pressure gauge is developed for measuring the life cycle of vacuum isolation valve. • GUI based software developed for easy use and handling of control system. • Control system tested with an experiment showcasing the capability of the control system. • Control system can operate valve based on pressure inside the chamber, which helps to know the degradation of sealing capabilities of valve. • Control system can monitor the total closing and opening time of valve, cycles and pressure inside the vessel. - Abstract: A control system with feedback loop is designed, developed and tested to monitor the life cycles of the axial valve and bellows used in vacuum valves. The control system monitors number of compression cycles of any bellow or closing and opening cycle of a valve. It also interfaces vacuum gauges or pressure gauges to get pressure values inside the system. To find life cycle of valve, the developed control and monitoring system is integrated with an axial valve experimental test set up. In this system, feedback from the vacuum gauge attached to valve enclosure, is given and the life cycle test is automated. This paper describes the control and monitoring system in details and briefs the experiment carried out for valve life cycle. The same system can be used for life cycle estimate for bellows. A suitable GUI is also developed to control the function of the components and resister the number of cycles.

  3. Improvement of performance operation and cycle efficiency of Al Anbar combined power plant

    International Nuclear Information System (INIS)

    Jabbar, Mohammed Q.

    2014-01-01

    The present work will be focusing on available solution which can serve to increase total efficiency of Al Anbar combined cycle power plant - CCPP, and thus to improve the operation performance as much as possible in order to decrease hydrocarbon, CO2, NOx emissions to environment.The simulation and calculations were performed by program software cycle-tempo software. The results were compared with basic design of Alanbar power plant after making modernization with solar tower receiver system-STRS, which represented a heat source in preheat process for a compressor air. Key Words: CCPP, STRS, Solar potential energy, fuel consumption, hydrocarbon emission

  4. A genetic algorithm applied to a PWR turbine extraction optimization to increase cycle efficiency

    International Nuclear Information System (INIS)

    Sacco, Wagner F.; Schirru, Roberto

    2002-01-01

    In nuclear power plants feedwater heaters are used to heat feedwater from its temperature leaving the condenser to final feedwater temperature using steam extracted from various stages of the turbines. The purpose of this process is to increase cycle efficiency. The determination of the optimal fraction of mass flow rate to be extracted from each stage of the turbines is a complex optimization problem. This kind of problem has been efficiently solved by means of evolutionary computation techniques, such as Genetic Algorithms (GAs). GAs, which are systems based upon principles from biological genetics, have been successfully applied to several combinatorial optimization problems in nuclear engineering, as the nuclear fuel reload optimization problem. We introduce the use of GAs in cycle efficiency optimization by finding an optimal combination of turbine extractions. In order to demonstrate the effectiveness of our approach, we have chosen a typical PWR as case study. The secondary side of the PWR was simulated using PEPSE, which is a modeling tool used to perform integrated heat balances for power plants. The results indicate that the GA is a quite promising tool for cycle efficiency optimization. (author)

  5. Thermodynamic analysis of combined cycle under design/off-design conditions for its efficient design and operation

    International Nuclear Information System (INIS)

    Zhang, Guoqiang; Zheng, Jiongzhi; Xie, Angjun; Yang, Yongping; Liu, Wenyi

    2016-01-01

    Highlights: • Based on the PG9351FA gas turbine, two gas-steam combined cycles are redesigned. • Analysis of detailed off-design characteristics of the combined cycle main parts. • Suggestions for improving design and operation performance of the combined cycle. • Higher design efficiency has higher off-design efficiency in general PR range. • High pressure ratio combined cycles possess good off-design performance. - Abstract: To achieve a highly efficient design and operation of combined cycles, this study analyzed in detail the off-design characteristics of the main components of three combined cycles with different compressor pressure ratios (PRs) based on real units. The off-design model of combined cycle was built consisting of a compressor, a combustor, a gas turbine, and a heat recovery steam generator (HRSG). The PG9351FA unit is selected as the benchmark unit, on the basis of which the compressor is redesigned with two different PRs. Then, the design/off-design characteristics of the three units with different design PRs and the interactive relations between topping and bottoming cycles are analyzed with the same turbine inlet temperature (TIT). The results show that the off-design characteristics of the topping cycle affect dramatically the combined cycle performance. The variation range of the exergy efficiency of the topping cycle for the three units is between 11.9% and 12.4% under the design/off-design conditions. This range is larger than that of the bottoming cycle (between 9.2% and 9.5%). The HRSG can effectively recycle the heat/heat exergy of the gas turbine exhaust. Comparison among the three units shows that for a traditional gas-steam combined cycle, a high design efficiency results in a high off-design efficiency in the usual PR range. The combined cycle design efficiency of higher pressure ratio is almost equal to that of the PG9351FA, but its off-design efficiency is higher (maximum 0.42%) and the specific power decreases. As for

  6. Energy-efficiency-oriented cascade control for vapor compression refrigeration cycle systems

    International Nuclear Information System (INIS)

    Yin, Xiaohong; Wang, Xinli; Li, Shaoyuan; Cai, Wenjian

    2016-01-01

    The vapor compression refrigeration cycle (VCC) system plays an important role and accounts for a large proportion of energy consumption from the heating, ventilating, and air-conditioning (HVAC) system. The traditional control approaches, for example PID control method, however, cannot meet the cooling demands with the satisfactory energy efficiency as well. This paper presents a novel energy-efficiency-oriented cascade control strategy for the VCC systems to improve the energy efficiency and fulfill the cooling requirements of indoor occupants simultaneously. In outer loop, a mathematic model is developed to determine the set point of superheat by a PI controller based on the nonlinear correlation between cooling demands and superheat degree. In inner loop, the pressure difference and superheat degree of evaporator are controlled by a model predictive control (MPC) strategy to track the values which are determined in the outer loop, simultaneously to enhance system efficiency of the VCC systems. Simulation and experiments studies are carried out to show the effectiveness of this proposed cascade control strategy and the results indicate significant tracking performance and energy efficiency improvements on VCC system. Compared to other schemes, the proposed cascade control strategy can improve energy efficiency by up to 5.8%. - Highlights: • Energy-efficiency-oriented cascade control strategy for VCC system is presented. • The correlation between cooling requirements and superheat is analyzed. • A MPC-based controller is developed to maximize system energy efficiency. • Experimental results confirm the effectiveness of the proposed control strategy.

  7. The Tracer Gas Method of Determining the Charging Efficiency of Two-stroke-cycle Diesel Engines

    Science.gov (United States)

    Schweitzer, P H; Deluca, Frank, Jr

    1942-01-01

    A convenient method has been developed for determining the scavenging efficiency or the charging efficiency of two-stroke-cycle engines. The method consists of introducing a suitable tracer gas into the inlet air of the running engine and measuring chemically its concentration both in the inlet and exhaust gas. Monomethylamine CH(sub 3)NH(sub 2) was found suitable for the purpose as it burns almost completely during combustion, whereas the "short-circuited" portion does not burn at all and can be determined quantitatively in the exhaust. The method was tested both on four-stroke and on two-stroke engines and is considered accurate within 1 percent.

  8. Generating power at high efficiency combined cycle technology for sustainable energy production

    CERN Document Server

    Jeffs, E

    2008-01-01

    Combined cycle technology is used to generate power at one of the highest levels of efficiency of conventional power plants. It does this through primary generation from a gas turbine coupled with secondary generation from a steam turbine powered by primary exhaust heat. Generating power at high efficiency thoroughly charts the development and implementation of this technology in power plants and looks to the future of the technology, noting the advantages of the most important technical features - including gas turbines, steam generator, combined heat and power and integrated gasification com

  9. The troika of business cycle, efficiency and volatility. An East Asian perspective

    Science.gov (United States)

    Arshad, Shaista; Rizvi, Syed Aun R.

    2015-02-01

    The EMH has been the subject of much debate over the past few decades, with a recent surge in interest in Asian markets. Asian markets which traditionally comprise of many emerging markets are more volatile and speculative in nature. The heart of our study focuses on the East Asian economies, which have experienced massive capital inflows. This begs the question of whether or not the stock markets are efficient enough for further investment and development. Our paper differs from existing literature as it focuses on deriving weak form efficiency rankings during different business cycle phases. We endeavour further to assess the volatility and business cycle phases. Taking Malaysia, Indonesia, Singapore and South Korea owing to their economic and financial development, we use MF-DFA to derive efficiency rankings and find firstly, the overall efficiency has improved over the past two decades and secondly, markets are more efficient in growth phases in comparison to its preceding decline. Similarly, employing wavelet decomposition in conjunction with EGARCH, we obtain volatility of stock markets in two distinct time horizons, i.e. short term and long term. We find the markets to be more stable during economic boom than its preceding bust. Our results confer with mainstream literature.

  10. Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery

    International Nuclear Information System (INIS)

    Lapp, J.; Davidson, J.H.; Lipiński, W.

    2012-01-01

    Improvements in the effectiveness of solid phase heat recovery and in the thermodynamic properties of metal oxides are the most important paths to achieving unprecedented thermal efficiencies of 10% and higher in non-stoichiometric solar redox reactors. In this paper, the impact of solid and gas phase heat recovery on the efficiency of a non-stoichiometric cerium dioxide-based H 2 O/CO 2 splitting cycle realized in a solar-driven reactor are evaluated in a parametric thermodynamic analysis. Application of solid phase heat recovery to the cycling metal oxide allows for lower reduction zone operating temperatures, simplifying reactor design. An optimum temperature for metal oxide reduction results from two competing phenomena as the reduction temperature is increased: increasing re-radiation losses from the reactor aperture and decreasing heat loss due to imperfect solid phase heat recovery. Additionally, solid phase heat recovery increases the efficiency gains made possible by gas phase heat recovery. -- Highlights: ► Both solid and gas phase heat recovery are essential to achieve high thermal efficiency in non-stoichiometric ceria-based solar redox reactors. ► Solid phase heat recovery allows for lower reduction temperatures and increases the gains made possible by gas phase heat recovery. ► The optimum reduction temperature increases with increasing concentration ratio and decreasing solid phase heat recovery effectiveness. ► Even moderate levels of heat recovery dramatically improve reactor efficiency from 3.5% to 16%.

  11. Accurate expressions for the power efficiency of a class-D power amplifier in a limit-cycle transmitter configuration

    NARCIS (Netherlands)

    Sarkeshi, M.; Mahmoudi, R.; Roermund, van A.H.M.

    2009-01-01

    Limit-cycle based, self-oscillating amplifiers are promising candidates for linear amplification of complex signals with high peak-to-average ratio, while maintaining high power efficiency. Limit-cycle transmitters employ switch class-D power amplifiers in order to achieve high Efficiency. In this

  12. Life cycle efficiency of beef production: VIII. Relationship between residual feed intake of heifers and subsequent cow efficiency ratios.

    Science.gov (United States)

    Davis, M E; Lancaster, P A; Rutledge, J J; Cundiff, L V

    2016-11-01

    Data were collected from 1953 through 1980 from identical and fraternal twin beef and dairy females born in 1953, 1954, 1959, 1964, and 1969, and from crossbred females born as singles in 1974, and their progeny. Numbers of dams that weaned at least 1 calf and were included in the first analysis were 37, 45, and 56 in the 1964, 1969, and 1974 data sets, respectively. Respective numbers of dams that weaned 3 calves and were included in a second analysis were 6, 8, 8, 22, 33, and 33 in the 1953, 1954, 1959, 1964, 1969, and 1974 experiments. Individual feed consumption was measured at 28-d intervals from the time females were placed on the experiment until 3 calves were weaned or the dams had reached 5 yr of age. Residual feed intake (RFI) and residual gain (RG) of the heifers that subsequently became the dams in this study were determined based on ADG and DMI from 240 d of age to first calving. Various measures of cow efficiency were calculated on either a life cycle or actual lifetime basis using ratios of progeny and dam weight outputs to progeny and dam feed inputs. Residual feed intake was phenotypically independent of ADG and metabolic midweight (MMW), whereas the correlation between RFI and DMI was positive and highly significant ( = 0.67; calving had superior efficiency ratios as cows. Residual feed intake was not significantly correlated with age at puberty, age at calving, or milk production. Results of this study do not indicate any serious antagonisms of postweaning heifer RFI with subsequent cow and progeny performance traits or with life cycle or actual lifetime cow efficiency. In addition, selection for increased RG would result in earlier ages at calving, but would also tend to result in taller and heavier cows.

  13. REDISCOVERING MISES-HAYEK MONETARY AND BUSINESS CYCLE THEORY IN LIGHT OF THE CURRENT CRISIS: CREDIT EXPANSION AS A SOURCE OF ECONOMIC BOOM AND BUST

    Directory of Open Access Journals (Sweden)

    Marcin Mrowiec

    2013-10-01

    Full Text Available The article starts with a brief description of Mises’ monetary theory, with emphasis on the Misesian differentiation of two kinds of credit: commodity and circulation credit, and with the description of the impact of circulation credit expansion on the business cycle. Further on it is described how Mises’ insights constituted the kernel of Austrian Business Cycle Theory, and how the same observations on the nature of credit constituted the kernel of the Chicago Plan (though Mises’ views on the nature of credit led him to different conculsions than it led the authors of the Chicago Plan, and how this plan is being “rediscovered” now. The following sections deal with observations of one of the preeminent current macroeconomic researches, Mr. Claudio Borio, on the elasticity of credit as the source of the current crisis, and on the importance of the financial cycle in analysing the current economic crisis. The author of this text demonstrates that Austrian Business Cycle Theory gave the same answer regarding the sources of economic crises that now modern macroeconomic theory seems to be approaching, and that the postulates for successful financial cycle modeling are already included in the ABCT. Finally, some observations on the current crisis, as well as proposals of avenues of further research are proposed.

  14. THE INFLUENCE OF THE ENTERPRISE LIFE CYCLE ON THE EFFICIENCY OF INVESTMENT

    Directory of Open Access Journals (Sweden)

    Viktor Koval

    2017-12-01

    Full Text Available The article presents results of the study of relations between the enterprise life cycle and the efficiency of investment in the context of dynamic, rapid changes in the conditions of enterprises operation and development. It is determined that one of the main factors of success is the introduction of innovative technologies in the production process, which cannot be carried out without attracting investments. It is the investment activity of enterprises that determines the dynamics of their development, the level of competitiveness and the growth of productive resources, which affects the efficiency of their activities. It is proved that it is relevant to take into account the possible negative effects of the influence of factors divergence. The purpose of the study is to analyse possibilities of determining the impact of life cycle stages on the efficiency of investing in an enterprise. The methodological basis of the research is grounded on the general scientific methods of dialectics, observation, measurement, and formalization; methods of the system and statistical analysis. In particular, to determine the influence of internal factors on the indicators of the efficiency of investment activity of the enterprise at the stages of its life cycle, deterministic factor analysis is applied; methods of systematization and synthesis, analysis and synthesis are also used. It is determined that the construction industry plays a special role in the national economy since its development creates a synergistic effect for the development of other industries, increases the standard of living of the society through solving certain socioeconomic problems. The analytical data of construction enterprises activity in Dnipropetrovsk and Odesa regions of Ukraine became the basis for the approbation of the proposed approach. The use of the life cycle model of the enterprise, which includes the stage of growth (slow and rapid growth, stability stage and the stage

  15. Efficient pricing of Asian options under Lévy processes based on Fourier cosine expansions Part I : European-style products

    NARCIS (Netherlands)

    Zhang, B.; Oosterlee, C.W.

    2011-01-01

    We propose an efficient pricing method for arithmetic, and geometric, Asian options under Levy processes, based on Fourier cosine expansions and Clenshaw–Curtis quadrature. The pricing method is developed for both European–style and American–style Asian options, and for discretely and continuously

  16. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.

    Science.gov (United States)

    Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

    2013-04-01

    The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste.

  17. Combined cycle versus one thousand diesel power plants: pollutant emissions, ecological efficiency and economic analysis

    International Nuclear Information System (INIS)

    Silveira, Jose Luz; de Carvalho, Joao Andrade; de Castro Villela, Iraides Aparecida

    2007-01-01

    The increase in the use of natural gas in Brazil has stimulated public and private sectors to analyse the possibility of using combined cycle systems for generation of electrical energy. Gas turbine combined cycle power plants are becoming increasingly common due to their high efficiency, short lead times, and ability to meet environmental standards. Power is produced in a generator linked directly to the gas turbine. The gas turbine exhaust gases are sent to a heat recovery steam generator to produce superheated steam that can be used in a steam turbine to produce additional power. In this paper a comparative study between a 1000 MW combined cycle power plant and 1000kW diesel power plant is presented. In first step, the energetic situation in Brazil, the needs of the electric sector modification and the needs of demand management and integrated means planning are clarified. In another step the characteristics of large and small thermoelectric power plants that use natural gas and diesel fuel, respectively, are presented. The ecological efficiency levels of each type of power plant is considered in the discussion, presenting the emissions of particulate material, sulphur dioxide (SO 2 ), carbon dioxide (CO 2 ) and nitrogen oxides (NO x ). (author)

  18. Effect of Curing Conditions and Freeze-Thaw Cycles on the Strength of an Expansive Soil Stabilized with a Combination of Lime, Jaggery, and Gallnut Powder

    Directory of Open Access Journals (Sweden)

    Jijo James

    2018-01-01

    Full Text Available This investigation involved the utilization of the combination of lime, jaggery, and gallnut powder, adopted in South India traditionally. This combination of materials, used for the manufacture of lime-based mortars, was adopted in stabilization of an expansive soil. Three combinations of lime, jaggery, and gallnut powder (LJG in the ratios of 8 : 2 : 2, 8 : 2 : 1, and 8 : 1 : 2 were put into use. The effect of subjecting the combinations to alternate cycles of freeze-thaw (up to 3 cycles and three different curing conditions of air, moisture, and heat was also investigated. In addition, a mineralogical investigation for studying the reaction products was also carried out. The investigation proceeded with the determination of the unconfined compression strength (UCS of stabilized specimens of dimensions 38 mm × 76 mm, cured for periods of 3, 7, 14, and 28 days. The results of the investigation revealed that the addition of LJG resulted in an increase in the strength of the stabilized soil. Freeze-thaw cycles resulted in a reduction in strength with LJG821 proving to be the most optimal combination developing the maximum strength and least strength loss due to freeze-thaw cycles. Thermal curing proved to be the most optimal curing condition out of all curing conditions evaluated.

  19. High-Efficiency Small-Scale Combined Heat and Power Organic Binary Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Costante Mario Invernizzi

    2018-04-01

    Full Text Available Small-CHP (Combined Heat and Power systems are generally considered a valuable technological option to the conventional boilers, in a technology developed context. If small-CHP systems are associated with the use of renewable energies (biomass, for example they could play an important role in distributed generation even in developing countries or, in any case, where there are no extensive electricity networks. Traditionally the considered heat engines for micro- or mini-CHP are: the gas engine, the gas turbine (with internal combustion, the steam engine, engine working according to the Stirling and to the Rankine cycles, the last with organic fluids. In principle, also fuel cells could be used. In this paper, we focus on small size Rankine cycles (10–15 k W with organic working fluids. The assumed heat source is hot combustion gases at high temperature (900–950 ∘ C and we assume to use only single stages axial turbines. The need to work at high temperatures, limits the choice of the right organic working fluids. The calculation results show the limitation in the performances of simple cycles and suggest the opportunity to resort to complex (binary cycle configurations to achieve high net conversion efficiencies (15–16%.

  20. Life cycle biological efficiency of mice divergently selected for heat loss.

    Science.gov (United States)

    Bhatnagar, A S; Nielsen, M K

    2014-08-01

    Divergent selection in mice for heat loss was conducted in 3 independent replicates creating a high maintenance, high heat loss (MH) and low maintenance, low heat loss (ML) line and unselected control (MC). Improvement in feed efficiency was observed in ML mice due to a reduced maintenance energy requirement but there was also a slight decline in reproductive performance, survivability, and lean content, particularly when compared to MC animals. The objective of this study was to model a life cycle scenario similar to a livestock production system and calculate total inputs and outputs to estimate overall biological efficiency of these lines and determine if reduced feed intake resulted in improved life cycle efficiency. Feed intake, reproductive performance, growth, and body composition were recorded on 21 mating pairs from each line × replicate combination, cohabitated at 7 wk of age and maintained for up to 1 yr unless culled. Proportion of animals at each parity was calculated from survival rates estimated from previous research when enforcing a maximum of 4, 8, or 12 allowed parities. This parity distribution was then combined with values from previous studies to calculate inputs and outputs of mating pairs and offspring produced in a single cycle at equilibrium. Offspring output was defined as kilograms of lean output of offspring at 49 d. Offspring input was defined as megacalories of energy intake for growing offspring from 21 to 49 d. Parent output was defined as kilograms of lean output of culled parents. Parent input was defined as megacalories of energy intake for mating pairs from weaning of one parity to weaning of the next. Offspring output was greatest in MC mice due to superior BW and numbers weaned, while output was lowest in ML mice due to smaller litter sizes and lean content. Parent output did not differ substantially between lines but was greatest in MH mice due to poorer survival rates resulting in more culled animals. Input was greatest in

  1. THE EFFICIENCY OF PROMOTIONAL INSTRUMENTS RELATED TO THE PRODUCT LIFE CYCLE STAGES

    Directory of Open Access Journals (Sweden)

    MIHAELA MARCU

    2010-01-01

    Full Text Available Regarded as a planning tool, PLC (product life cycle strongly contributes to the identification of the main marketing challenges that may arise throughout the life of a product/service. Thus, the marketing management has the opportunity to develop and implement those solutions designed to optimize each of the 4P of marketing mix: product (quality, price, distribution (placement and promotion. The communication program has an essential role, because the company presents through it its "product" to actual or potential customers in order to convince them of the benefits of purchasing/using it. The efficiency of the promotional instruments involves an appropriate allocation of funds needed to promote the product/service in relation to the stage of its life cycle.

  2. Preliminary thermodynamic study for an efficient turbo-blower external combustion Rankine cycle

    Science.gov (United States)

    Romero Gómez, Manuel; Romero Gómez, Javier; Ferreiro Garcia, Ramón; Baaliña Insua, Álvaro

    2014-08-01

    This research paper presents a preliminary thermodynamic study of an innovative power plant operating under a Rankine cycle fed by an external combustion system with turbo-blower (TB). The power plant comprises an external combustion system for natural gas, where the combustion gases yield their thermal energy, through a heat exchanger, to a carbon dioxide Rankine cycle operating under supercritical conditions and with quasi-critical condensation. The TB exploits the energy from the pressurised exhaust gases for compressing the combustion air. The study is focused on the comparison of the combustion system's conventional technology with that of the proposed. An energy analysis is carried out and the effect of the flue gas pressure on the efficiency and on the heat transfer in the heat exchanger is studied. The coupling of the TB results in an increase in efficiency and of the convection coefficient of the flue gas with pressure, favouring a reduced volume of the heat exchanger. The proposed innovative system achieves increases in efficiency of around 12 % as well as a decrease in the heat exchanger volume of 3/5 compared with the conventional technology without TB.

  3. Useful work and the thermal efficiency in the ideal Lenolr cycle with regenerative preheating

    Science.gov (United States)

    Georgiou, Demos P.

    2000-11-01

    In the existing thermal engine concepts negative work transfer (usually needed to drive a compression process) is supplied by the work produced by the engine itself. The remaining difference (i.e., the net work transfer) becomes the useful work, since it is available for external consumption. The thermal efficiency is the parameter that compares this against the heat input into the system. It forms the main optimization parameter in any engine design. The objective of the present study is to show that for the case of the Lenoir cycle with regenerative preheating the entire positive work is available for external consumption, since the negative (i.e., the compression) work is supplied by the atmospheric air. Not only this, but, during the compression process and due to the pressure difference across the two sides of the moving piston, an additional (useful) work transfer may be generated. Thus, the proposed power plant may be considered as a combination of a thermal engine and a wind turbine. In the ideal cycle limit (at least), the total amount of useful work exceeds the heat entering the system. This leads to the definition of a new parameter for the efficiency (called the technical efficiency), which compares the combined positive work transfer (i.e., the useful one) against the heat entering the system and which may exceed the 100% level.

  4. An artificially induced follicle stimulating hormone surge at the time of human chorionic gonadotrophin administration in controlled ovarian stimulation cycles has no effect on cumulus expansion, fertilization rate, embryo quality and implantation rate

    NARCIS (Netherlands)

    Vermeiden, J. P.; Roseboom, T. J.; Goverde, A. J.; Suchartwatnachai, C.; Schoute, E.; Braat, D. D.; Schats, R.

    1997-01-01

    In the spontaneous menstrual cycle, the mid-cycle gonadotrophin surge causes maturation of the cumulus-oocyte complex, mucification of cumulus cells and expansion of the cumulus oophorus, resumption of meiosis and maturation of the cytoplasm of the oocyte. Whether this is an effect purely of

  5. Assessing eco-efficiency: A metafrontier directional distance function approach using life cycle analysis

    International Nuclear Information System (INIS)

    Beltrán-Esteve, Mercedes; Reig-Martínez, Ernest; Estruch-Guitart, Vicent

    2017-01-01

    Sustainability analysis requires a joint assessment of environmental, social and economic aspects of production processes. Here we propose the use of Life Cycle Analysis (LCA), a metafrontier (MF) directional distance function (DDF) approach, and Data Envelopment Analysis (DEA), to assess technological and managerial differences in eco-efficiency between production systems. We use LCA to compute six environmental and health impacts associated with the production processes of nearly 200 Spanish citrus farms belonging to organic and conventional farming systems. DEA is then employed to obtain joint economic-environmental farm's scores that we refer to as eco-efficiency. DDF allows us to determine farms' global eco-efficiency scores, as well as eco-efficiency scores with respect to specific environmental impacts. Furthermore, the use of an MF helps us to disentangle technological and managerial eco-inefficiencies by comparing the eco-efficiency of both farming systems with regards to a common benchmark. Our core results suggest that the shift from conventional to organic farming technology would allow a potential reduction in environmental impacts of 80% without resulting in any decline in economic performance. In contrast, as regards farmers' managerial capacities, both systems display quite similar mean scores.

  6. Assessing eco-efficiency: A metafrontier directional distance function approach using life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán-Esteve, Mercedes, E-mail: mercedes.beltran@uv.es [Department of Applied Economics II, University of Valencia (Spain); Reig-Martínez, Ernest [Department of Applied Economics II, University of Valencia, Ivie (Spain); Estruch-Guitart, Vicent [Department of Economy and Social Sciences, Polytechnic University of Valencia (Spain)

    2017-03-15

    Sustainability analysis requires a joint assessment of environmental, social and economic aspects of production processes. Here we propose the use of Life Cycle Analysis (LCA), a metafrontier (MF) directional distance function (DDF) approach, and Data Envelopment Analysis (DEA), to assess technological and managerial differences in eco-efficiency between production systems. We use LCA to compute six environmental and health impacts associated with the production processes of nearly 200 Spanish citrus farms belonging to organic and conventional farming systems. DEA is then employed to obtain joint economic-environmental farm's scores that we refer to as eco-efficiency. DDF allows us to determine farms' global eco-efficiency scores, as well as eco-efficiency scores with respect to specific environmental impacts. Furthermore, the use of an MF helps us to disentangle technological and managerial eco-inefficiencies by comparing the eco-efficiency of both farming systems with regards to a common benchmark. Our core results suggest that the shift from conventional to organic farming technology would allow a potential reduction in environmental impacts of 80% without resulting in any decline in economic performance. In contrast, as regards farmers' managerial capacities, both systems display quite similar mean scores.

  7. Molecular Entropy, Thermal Efficiency, and Designing of Working Fluids for Organic Rankine Cycles

    Science.gov (United States)

    Wang, Jingtao; Zhang, Jin; Chen, Zhiyou

    2012-06-01

    A shortage of fossil energy sources boosts the utilization of renewable energy. Among numerous novel techniques, recovering energy from low-grade heat sources through power generation via organic Rankine cycles (ORCs) is one of the focuses. Properties of working fluids are crucial for the ORC's performance. Many studies have been done to select proper working fluids or to design new working fluids. However, no researcher has systematically investigated the relationship between molecular structures and thermal efficiencies of various working fluids for an ideal ORC. This paper has investigated the interrelations of molecular structures, molecular entropies, and thermal efficiencies of various working fluids for an ideal ORC. By calculating thermal efficiencies and molecular entropies, we find that the molecular entropy is the most appropriate thermophysical property of a working fluid to determine how much energy can be converted into work and how much cannot in a system. Generally speaking, working fluids with low entropies will generally have high thermal efficiency for an ideal ORC. Based on this understanding, the direct interrelations of molecular structures and entropies provide an explicit interrelation between molecular structures and thermal efficiencies, and thus provide an insightful direction for molecular design of novel working fluids for ORCs.

  8. Astronomically-Forced Lake Expansion and Contraction Cycles: Sr Isotopic Evidence from the Eocene Green River Formation, Western USA

    Science.gov (United States)

    Baddouh, M.; Meyers, S. R.; Carroll, A.; Beard, B. L.; Johnson, C.

    2014-12-01

    87Sr/86Sr ratio from ancient lake deposits offer a unique insight into the astronomical forcing of lake expansion and contraction, by recording changes in runoff/groundwater provenance. We present new high-resolution 87Sr/86Sr data from the upper Wilkins Peak Member, to investigate linkages between astronomical forcing, water sources, and lake level in a classic rhythmic succession. Fifty-one 87Sr/86Sr ratios from White Mountain core #1 were acquired with a sampling interval of ~30 cm starting from the top of alluvial "I" bed to the lower Laney Member. The 87Sr/86Sr data show a strong and significant negative correlation with oil-yield, a traditional proxy for paleolake level and organic productivity. Application of a radioisotopic time scale, using previously dated ash beds, reveals that both 87Sr/86Sr and oil yield have a strong 20 kyr rhythm. The 87Sr/86Sr data more clearly express a longer period 100 kyr signal, similar to the Laskar 10D eccentricity solution. Using our nominal radioisotopic time scale, the Laskar 10D solution and 87Sr/86Sr data suggest that highest lake levels and greatest organic enrichment are attained during greatest precession and eccentricity. Regional geologic studies and modern river water analyses have shown that less radiogenic waters mostly originate west of the basin, where drainage is strongly influenced by thick Paleozoic and Mesozoic marine carbonate units. Decreased in 87Sr/86Sr therefore imply greater relative water contributions from the Sevier orogenic highlands, relative to lower relief, more radiogenic ranges lying to the east. We therefore propose that highstands of Lake Gosiute record increased penetration of Pacific moisture, related either to increased El Niño frequency or southward displacement of major storm tracks. We hypothesize that the occurrence of wetter winters caused expansion of Lake Gosiute, deposition of organic carbon rich facies, and decreased lake water 87Sr/86Sr.

  9. How to Achieve Supply Chain Sustainability Efficiently? Taming the Triple Bottom Line Split Business Cycle

    Directory of Open Access Journals (Sweden)

    Matthias Klumpp

    2018-02-01

    Full Text Available For sustainable supply chains, specific concepts regarding how to efficiently improve sustainability are needed in a global comprehensive triple bottom line (TBL approach, especially for forwarders as central actors in supply chain design. Such specific advice is provided by reporting empirical DEA Malmquist index findings from seven large European forwarders regarding a TBL sustainability analysis from 2006 to 2016. A major obstacle in improving sustainability consists in the newly discovered fact that with the business cycle, the three TBL areas of economic, ecologic and social objectives for logistics are undergoing different up- and down-ward trends, making it very hard to improve all three simultaneously. Additional factors are identified in the characteristics of size and government influence regarding the sustainability efficiency of forwarders. This has important impacts on supply chain design like e.g., with selection criteria.

  10. Cycle affects imidacloprid efficiency by mediating cytochrome P450 expression in the brown planthopper Nilaparvata lugens.

    Science.gov (United States)

    Kang, K; Yang, P; Pang, R; Yue, L; Zhang, W

    2017-10-01

    Circadian clocks influence most behaviours and physiological activities in animals, including daily fluctuations in metabolism. However, how the clock gene cycle influences insects' responses to pesticides has rarely been reported. Here, we provide evidence that cycle affects imidacloprid efficacy by mediating the expression of cytochrome P450 genes in the brown planthopper (BPH) Nilaparvata lugens, a serious insect pest of rice. Survival bioassays showed that the susceptibility of BPH adults to imidacloprid differed significantly between the two time points tested [Zeitgeber Time 8 (ZT8) and ZT4]. After cloning the cycle gene in the BPH (Nlcycle), we found that Nlcycle was expressed at higher levels in the fat body and midgut, and its expression was rhythmic with two peaks. Knockdown of Nlcycle affected the expression levels and rhythms of cytochrome P450 genes as well as susceptibility to imidacloprid. The survival rates of BPH adults after treatment with imidacloprid did not significantly differ between ZT4 and ZT8 after double-stranded Nlcycle treatment. These findings can be used to improve pesticide use and increase pesticide efficiency in the field. © 2017 The Royal Entomological Society.

  11. Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling.

    Science.gov (United States)

    Milton, Margarita; Cheng, Qian; Yang, Yuan; Nuckolls, Colin; Hernández Sánchez, Raúl; Sisto, Thomas J

    2017-12-13

    This manuscript presents a working redox battery in organic media that possesses remarkable cycling stability. The redox molecules have a solubility over 1 mol electrons/liter, and a cell with 0.4 M electron concentration is demonstrated with steady performance >450 cycles (>74 days). Such a concentration is among the highest values reported in redox flow batteries with organic electrolytes. The average Coulombic efficiency of this cell during cycling is 99.868%. The stability of the cell approaches the level necessary for a long lifetime nonaqueous redox flow battery. For the membrane, we employ a low cost size exclusion cellulose membrane. With this membrane, we couple the preparation of nanoscale macromolecular electrolytes to successfully avoid active material crossover. We show that this cellulose-based membrane can support high voltages in excess of 3 V and extreme temperatures (-20 to 110 °C). These extremes in temperature and voltage are not possible with aqueous systems. Most importantly, the nanoscale macromolecular platforms we present here for our electrolytes can be readily tuned through derivatization to realize the promise of organic redox flow batteries.

  12. Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles

    Energy Technology Data Exchange (ETDEWEB)

    Banjac, Titina [AVL-AST d.o.o., Trg Leona Stuklja 5, SI-2000 Maribor (Slovenia); Trenc, Ferdinand; Katrasnik, Tomaz [Faculty of Mechanical Engineering, Univ. of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2009-12-15

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of their components and applied control strategy. Combined analytical and simulation approach was applied to analyze energy conversion efficiency of different HEV topologies. Analytical approach is based on the energy balance equations and considers all energy paths in the HEVs from the energy sources to the wheels and to other energy sinks. Simulation approach is based on a fast forward-facing simulation model for simulating parallel and series HEVs as well as for conventional internal combustion engine vehicles, and considers all components relevant for modeling energy conversion phenomena. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the fuel economy. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components for targeted vehicle application, since it reveals and quantifies the mechanisms that could lead to improved energy conversion efficiency of particular HEV. The paper exposes characteristics of the test cycles that lead to improved energy conversion efficiency of HEVs. Mechanisms leading to improved fuel economy of parallel HEVs through drive-away and vehicle propulsion at low powertrain loads by electric motor are also analyzed. It was also shown that control strategies managing energy flow through electric storage devices significantly influence energy conversion efficiency of series HEVs. (author)

  13. No differences in cycling efficiency between world-class and recreational cyclists.

    Science.gov (United States)

    Moseley, L; Achten, J; Martin, J C; Jeukendrup, A E

    2004-07-01

    The aim of this experiment was to compare the efficiency of elite cyclists with that of trained and recreational cyclists. Male subjects (N = 69) performed an incremental exercise test to exhaustion on an electrically braked cycle ergometer. Cadence was maintained between 80 - 90 rpm. Energy expenditure was estimated from measures of oxygen uptake (VO (2)) and carbon dioxide production (VCO(2)) using stoichiometric equations. Subjects (age 26 +/- 7 yr, body mass 74.0 +/- 6.3 kg, Wpeak 359 +/- 40 W and VO(2)peak 62.3 +/- 7.0 mL/kg/min) were divided into 3 groups on the basis of their VO (2)peak ( 70 (High, N = 16) mL/kg/min). All data are mean +/- SE. Despite the wide range in aerobic capacities gross efficiency (GE) at 165 W (GE (165)), GE at the same relative intensity (GE (final)), delta efficiency (DE) and economy (EC) were similar between all groups. Mean GE (165) was 18.6 +/- 0.3 %, 18.8 +/- 0.4 % and 17.9 +/- 0.3 % while mean DE was 22.4 +/- 0.4 %, 21.6 +/- 0.4 % and 21.2 +/- 0.5 % (for Low, Medium and High, respectively). There was no correlation between GE (165), GE (final), DE or EC and VO(2)peak. Based on these data, we conclude that there are no differences in efficiency and economy between elite cyclists and recreational level cyclists.

  14. Life cycle analysis of small scale pellet boilers characterized by high efficiency and low emissions

    International Nuclear Information System (INIS)

    Monteleone, B.; Chiesa, M.; Marzuoli, R.; Verma, V.K.; Schwarz, M.; Carlon, E.; Schmidl, C.; Ballarin Denti, A.

    2015-01-01

    Highlights: • LCA was performed on innovative small scale pellet boilers. • Pellet boilers impacts were compared to oil and natural gas boilers impacts. • Both literature and experimental data were used for life cycle analysis. • The environmental impact due to all life cycle phases was envisaged. • Sensitivity tests evidenced realistic ways for pellet boilers impact reduction. - Abstract: This study focuses on the environmental impact assessment through Life Cycle Analysis (LCA) of two innovative 10 kW pellet boilers. In particular, the second boiler represents a technological evolution of the first one developed to improve its performance in terms of efficiency and environmental impact. For both boilers, emission factors measured during laboratory tests (full load tests and specific load cycle tests representative of real life boiler operation) have been used as input data in the life cycle analysis. The SimaPro software (v.8.0.4.30) was used for the LCA and the ReCiPe Midpoint method (European version H) was chosen to assess the environmental impact of all boilers (according to LCA ISO standards). In addition, the ReCiPe Endpoint method was used to compare the final results of all 5 boilers with literature data. The pelletisation process represented the most relevant share of the overall environmental impact followed by the operational phase, the manufacturing phase and the disposal phase. A sensitivity analysis performed on the most efficient pellet boiler evidenced the variation of the boiler’s environmental impact as a function of PM10 and NO X emission factors with respect to emission factors monitored during boiler full load operation. Moreover, the reduction of the boiler’s weight and the adoption of new electronic components led to a consistent reduction (−18%) of its environmental impact with respect to the previous technology. A second LCA has been carried on for a 15 kW oil boiler, a 15 kW natural gas boiler and a 15 kW pellet boiler

  15. Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors.

    Directory of Open Access Journals (Sweden)

    Eleonora Sforza

    Full Text Available Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently.

  16. Cycling capacity recovery effect: A coulombic efficiency and post-mortem study

    Science.gov (United States)

    Wilhelm, Jörn; Seidlmayer, Stefan; Keil, Peter; Schuster, Jörg; Kriele, Armin; Gilles, Ralph; Jossen, Andreas

    2017-10-01

    The analysis of lithium-ion battery aging relies on correct differentiation between irreversible and reversible capacity changes. Anode overhang regions have been observed to influence Coulombic Efficiency (CE) measurements through lithium diffusion into and out of these areas, complicating precise capacity determination. This work presents an analysis of the extent of graphite anode overhang lithiation after calendar storage by means of local X-ray diffraction (XRD), CE measurements, and color change analysis. We found LiC12 lithiation of the anode overhang area after 20 month storage at 40 °C at high state of charge (SoC) and partial lithiation (LiC18) at medium SoC storage at 40 °C and 25 °C. Graphite color changes in the overhang areas are observed and consistent with the state of lithiation measured by XRD. Coulombic efficiencies greater than unity and increasing capacity during 1200 h of cycling are detected for high SoC storage cells. The capacity difference between high and low storage SoC batteries decreases by up to 40 mAh (3.6% of nominal capacity) after cycling compared to tests directly after storage. Consequently, the size of the anode overhang areas as well as the battery storage temperature and duration need to be considered in CE analysis and state of health assessment.

  17. Sizing models and performance analysis of volumetric expansion machines for waste heat recovery through organic Rankine cycles on passenger cars

    OpenAIRE

    Guillaume, Ludovic; Legros, Arnaud; Quoilin, Sylvain; Declaye, Sébastien; Lemort, Vincent

    2013-01-01

    This paper aims at helping designers of waste heat recovery organic (or non-organic) Rankine cycles on internal combustion engines to best select the expander among the piston, scroll and screw machines, and the working fluids among R245fa, ethanol and water. The first part of the paper presents the technical constraints inherent to each machine through a state of the art of the three technologies. The second part of the paper deals with the modeling of such expanders. Finally, in the last pa...

  18. CANDU fuel cycle economic efficiency assessments using the IAEA-MESSAGE-V code

    International Nuclear Information System (INIS)

    Prodea, Iosif; Margeanu, Cristina Alice; Aioanei, Corina; Prisecaru, Ilie; Danila, Nicolae

    2007-01-01

    The main goal of the paper is to evaluate different electricity generation costs in a CANDU Nuclear Power Plant (NPP) using different nuclear fuel cycles. The IAEA-MESSAGE code (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts) will be used to accomplish these assessments. This complex tool was supplied by International Atomic Energy Agency (IAEA) in 2002 at 'IAEA-Regional Training Course on Development and Evaluation of Alternative Energy Strategies in Support of Sustainable Development' held in Institute for Nuclear Research Pitesti. It is worthy to remind that the sustainable development requires satisfying the energy demand of present generations without compromising the possibility of future generations to meet their own needs. Based on the latest public information in the next 10-15 years four CANDU-6 based NPP could be in operation in Romania. Two of them will have some enhancements not clearly specified, yet. Therefore we consider being necessary to investigate possibility to enhance the economic efficiency of existing in-service CANDU-6 power reactors. The MESSAGE program can satisfy these requirements if appropriate input models will be built. As it is mentioned in the dedicated issues, a major inherent feature of CANDU is its fuel cycle flexibility. Keeping this in mind, some proposed CANDU fuel cycles will be analyzed in the paper: Natural Uranium (NU), Slightly Enriched Uranium (SEU), Recovered Uranium (RU) with and without reprocessing. Finally, based on optimization of the MESSAGE objective function an economic hierarchy of CANDU fuel cycles will be proposed. The authors used mainly public information on different costs required by analysis. (authors)

  19. Back-end fuel cycle efficiencies with respect to improved uranium utilization

    International Nuclear Information System (INIS)

    Kuczera, B.; Hennies, H.H.

    1983-01-01

    The world-wide nuclear power plant (NPP) capacity is at present 160 GW(e). If one adds the power stations under construction and ordered, a plant capacity of approximately 480 GW(e) is obtained for 1990, with the share of LWRs making up more than 80%. A modern LWR consumes in the open fuel cycle about 4400 metric tonnes of natural uranium per GW(e), assuming a lifetime of 30 years and a load factor of 70%. Considering the natural uranium reserves known at present and exploitable under economic conditions, it can be conveniently estimated that, with the present NPP capacity extension perspective, the natural uranium resources may be exhausted in a few decades. This trend can be counteracted in a flexible manner by various approaches in fuel cycle technology and strategy: (i) by steady further development of the established LWR technology the uranium consumption can be reduced by about 15%; (ii) closing the nuclear fuel cycle on the basis of LWRs (i.e. thermal uranium and plutonium recycling) implies up to 40% savings in natural uranium consumption; (iii) more recent considerations include the advanced pressurized water reactor (APWR). The APWR combines the proven PWR technology with a newly developed tight lattice core with greatly improved conversion characteristics (conversion ratio = 0.90 to 0.95). In terms of uranium utilization, the APWR has an efficiency three to five times higher than a PWR; (iv) Commercial introduction of FBR systems results in an optimal utilization of uranium which, at the same time, guarantees the supply of nuclear fuel well beyond the present century. For a corresponding transition period an energy supply system can be conceived which relies essentially on extended back-end fuel cycle capacities. These would facilitate a symbiosis of PWR, APWR and FBR, characterized by high flexibility with respect to long-term developments on the energy market. (author)

  20. The Athlete’s Brain: Cross-Sectional Evidence for Neural Efficiency during Cycling Exercise

    Directory of Open Access Journals (Sweden)

    Sebastian Ludyga

    2016-01-01

    Full Text Available The “neural efficiency” hypothesis suggests that experts are characterized by a more efficient cortical function in cognitive tests. Although this hypothesis has been extended to a variety of movement-related tasks within the last years, it is unclear whether or not neural efficiency is present in cyclists performing endurance exercise. Therefore, this study examined brain cortical activity at rest and during exercise between cyclists of higher (HIGH; n=14; 55.6 ± 2.8 mL/min/kg and lower (LOW; n=15; 46.4 ± 4.1 mL/min/kg maximal oxygen consumption (VO2MAX. Male and female participants performed a graded exercise test with spirometry to assess VO2MAX. After 3 to 5 days, EEG was recorded at rest with eyes closed and during cycling at the individual anaerobic threshold over a 30 min period. Possible differences in alpha/beta ratio as well as alpha and beta power were investigated at frontal, central, and parietal sites. The statistical analysis revealed significant differences between groups (F=12.04; p=0.002, as the alpha/beta ratio was increased in HIGH compared to LOW in both the resting state (p≤0.018 and the exercise condition (p≤0.025. The present results indicate enhanced neural efficiency in subjects with high VO2MAX, possibly due to the inhibition of task-irrelevant cognitive processes.

  1. Energy efficiency analysis of Organic Rankine Cycles with scroll expanders for cogenerative applications

    International Nuclear Information System (INIS)

    Clemente, Stefano; Micheli, Diego; Reini, Mauro; Taccani, Rodolfo

    2012-01-01

    Highlights: ► We present an ORC model composed of a scroll 1D model and a cycle thermodynamic one. ► High-series production components from HVAC field are considered to reduce costs. ► Couplings of the micro-CHP with low-temperature heat sources are analyzed. ► Small and low-cost CHP systems with acceptable electrical efficiency are realizable. ► Higher electrical efficiency are possible modifying the scroll geometry. -- Abstract: Small scale Organic Rankine Cycle (ORC) systems has been the object of a large number of studies in the last decade, because of their suitability for energy recovery and cogenerative applications. The paper presents an ORC numerical model and its applications to two different case studies; the code has been obtained by combining a one-dimensional model of a scroll machine and a thermodynamic model of a whole ORC system. Series production components, such as scroll compressors, from HVAC field, have been first considered in order to reduce costs, because this is a critical issue for small scale energy recovery and cogeneration systems. The detailed model of the scroll machine is capable to calculate the performances of both a compressor and an expander, as function of the geometry of the device and of the working fluid. The model has been first tested and validated by comparing its outputs with experimental tests on a commercial scroll compressor, then used to calculate the working curves of commercial scroll machines originally designed as compressors in the HVAC field, but operating as expanders. The model of the expander has been then integrated in the thermodynamic model of the ORC system. A series of comparisons have been carried out in order to evaluate how the performances are influenced by cycle parameters, scroll geometry and working fluid for different applications. The results confirm the feasibility of small scale CHP systems with acceptable electrical efficiency, taking into account the low-temperature thermal source

  2. Cell fiber-based three-dimensional culture system for highly efficient expansion of human induced pluripotent stem cells.

    Science.gov (United States)

    Ikeda, Kazuhiro; Nagata, Shogo; Okitsu, Teru; Takeuchi, Shoji

    2017-06-06

    Human pluripotent stem cells are a potentially powerful cellular resource for application in regenerative medicine. Because such applications require large numbers of human pluripotent stem cell-derived cells, a scalable culture system of human pluripotent stem cell needs to be developed. Several suspension culture systems for human pluripotent stem cell expansion exist; however, it is difficult to control the thickness of cell aggregations in these systems, leading to increased cell death likely caused by limited diffusion of gases and nutrients into the aggregations. Here, we describe a scalable culture system using the cell fiber technology for the expansion of human induced pluripotent stem (iPS) cells. The cells were encapsulated and cultured within the core region of core-shell hydrogel microfibers, resulting in the formation of rod-shaped or fiber-shaped cell aggregations with sustained thickness and high viability. By encapsulating the cells with type I collagen, we demonstrated a long-term culture of the cells by serial passaging at a high expansion rate (14-fold in four days) while retaining its pluripotency. Therefore, our culture system could be used for large-scale expansion of human pluripotent stem cells for use in regenerative medicine.

  3. Multiway simple cycle separators and I/O-efficient algorithms for planar graphs

    DEFF Research Database (Denmark)

    Arge, L.; Walderveen, Freek van; Zeh, Norbert

    2013-01-01

    memory, where sort(N) is the number of I/Os needed to sort N items in external memory. The key, and the main technical contribution of this paper, is a multiway version of Miller's simple cycle separator theorem. We show how to compute these separators in linear time in internal memory, and using O...... in internal memory, thereby completely negating the performance gain achieved by minimizing the number of disk accesses. In this paper, we show how to make these algorithms simultaneously efficient in internal and external memory so they achieve I/O complexity O(sort(N)) and take O(N log N) time in internal......(sort(N)) I/Os and O(N log N) (internal-memory computation) time in external memory....

  4. High-efficiency intracavity second-harmonic enhancement for a few-cycle laser pulse train

    International Nuclear Information System (INIS)

    Cai, Yi; Xu, Shixiang; Zeng, Xuanke; Zou, Da; Li, Jingzhen

    2012-01-01

    This paper presents an intracavity second-harmonic (SH) enhancement technology without the need of input impedance-matching for optimal coupling between the cavity and its input frequency comb. More than 10% SH energy conversion efficiency is available, thus the power of the SH frequency comb can be enhanced beyond 100 relative to single-pass SH generation. Compared with a conventional passive enhancing cavity, for the purpose of high power enhancement, our scheme can operate at much lower finesse and thus broader bandwidth so that it can support several-optical-cycle pulses more easily. If they have the same finesse, both methods perform with similar operating stability. The results show that our novel design is suitable for some applications which need a short wavelength, high intensity, and ultra-broad bandwidth pulse train. (paper)

  5. The effect of firing temperature on the irreversible expansion, water absorption and pore structure of a brick body during freeze-thaw cycles

    Directory of Open Access Journals (Sweden)

    Mikuláš ŠVEDA

    2013-12-01

    Full Text Available The paper deals with the monitoring of brick body in the process of volumetric freezing and thawing. The samples were fired at temperatures of 900, 1000 and 1060 °C. Attention is focused on monitoring of the irreversible expansion, water absorption and pore structure of a brick body. We found that in all cases the endpoints take place continuously, where the amount firing temperature plays a crucial role. The greatest influence of freeze/thaw cycles on the change of the pore structure was also observed at the lowest temperature. The change of the pore system during the freeze-thaw cycles occurs in such a way, that the pore volume of small pores further decreases and conversely, the pore volume of large pores increases. The knowledge gained can be used not only in the production of new but also in predicting the remaining durability of older clay roofing tiles. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2741

  6. Abelian color cycles: A new approach to strong coupling expansion and dual representations for non-abelian lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Marchis, Carlotta, E-mail: carla.marchis@uni-graz.at

    2017-03-15

    We propose a new approach to strong coupling series and dual representations for non-abelian lattice gauge theories using the SU(2) case as an example. The Wilson gauge action is written as a sum over “abelian color cycles” (ACC) which correspond to loops in color space around plaquettes. The ACCs are complex numbers which can be commuted freely such that the strong coupling series and the dual representation can be obtained as in the abelian case. Using a suitable representation of the SU(2) gauge variables we integrate out all original gauge links and identify the constraints for the dual variables in the SU(2) case. We show that the construction can be generalized to the case of SU(2) gauge fields with staggered fermions. The result is a strong coupling series where all gauge integrals are known in closed form and we discuss its applicability for possible dual simulations. The abelian color cycle concept can be generalized to other non-abelian gauge groups such as SU(3).

  7. Millennial timescale carbon cycle and climate change in an efficient Earth system model

    Energy Technology Data Exchange (ETDEWEB)

    Lenton, T.M. [University of East Anglia, Tyndall Centre, UK and School of Environmental Sciences, Norwich (United Kingdom); Williamson, M.S. [University of East Anglia, Tyndall Centre, UK and School of Environmental Sciences, Norwich (United Kingdom); UK and National Oceanography Centre, Tyndall Centre, Southampton (United Kingdom); Edwards, N.R. [Open University, Earth Sciences, Milton Keynes (United Kingdom); Marsh, R.; Shepherd, J.G. [UK and National Oceanography Centre, Tyndall Centre, Southampton (United Kingdom); Price, A.R.; Cox, S.J. [University of Southampton, Southampton e-Science Centre, Southampton (United Kingdom); Ridgwell, A.J. [University of British Columbia, Department of Earth and Ocean Sciences, Vancouver (Canada)

    2006-06-15

    A new Earth system model, GENIE-1, is presented which comprises a 3-D frictional geostrophic ocean, phosphate-restoring marine biogeochemistry, dynamic and thermodynamic sea-ice, land surface physics and carbon cycling, and a seasonal 2-D energy-moisture balance atmosphere. Three sets of model climate parameters are used to explore the robustness of the results and for traceability to earlier work. The model versions have climate sensitivity of 2.8-3.3 C and predict atmospheric CO{sub 2} close to present observations. Six idealized total fossil fuel CO{sub 2} emissions scenarios are used to explore a range of 1,100-15,000 GtC total emissions and the effect of rate of emissions. Atmospheric CO{sub 2} approaches equilibrium in year 3000 at 420-5,660 ppmv, giving 1.5-12.5 C global warming. The ocean is a robust carbon sink of up to 6.5 GtC year{sup -1}. Under 'business as usual', the land becomes a carbon source around year 2100 which peaks at up to 2.5 GtC year{sup -1}. Soil carbon is lost globally, boreal vegetation generally increases, whilst under extreme forcing, dieback of some tropical and sub-tropical vegetation occurs. Average ocean surface pH drops by up to 1.15 units. A Greenland ice sheet melt threshold of 2.6 C local warming is only briefly exceeded if total emissions are limited to 1,100 GtC, whilst 15,000 GtC emissions cause complete Greenland melt by year 3000, contributing 7 m to sea level rise. Total sea-level rise, including thermal expansion, is 0.4-10 m in year 3000 and ongoing. The Atlantic meridional overturning circulation shuts down in two out of three model versions, but only under extreme emissions including exotic fossil fuel resources. (orig.)

  8. A New Superalloy Enabling Heavy Duty Gas Turbine Wheels for Improved Combined Cycle Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Detor, Andrew [General Electric Company, Niskayuna, NY (United States). GE Global Research; DiDomizio, Richard [General Electric Company, Niskayuna, NY (United States). GE Global Research; McAllister, Don [The Ohio State Univ., Columbus, OH (United States); Sampson, Erica [General Electric Company, Niskayuna, NY (United States). GE Global Research; Shi, Rongpei [The Ohio State Univ., Columbus, OH (United States); Zhou, Ning [General Electric Company, Niskayuna, NY (United States). GE Global Research

    2017-01-03

    The drive to increase combined cycle turbine efficiency from 62% to 65% for the next-generation advanced cycle requires a new heavy duty gas turbine wheel material capable of operating at 1200°F and above. Current wheel materials are limited by the stability of their major strengthening phase (gamma double prime), which coarsens at temperatures approaching 1200°F, resulting in a substantial reduction in strength. More advanced gamma prime superalloys, such as those used in jet engine turbine disks, are also not suitable due to size constraints; the gamma prime phase overages during the slow cooling rates inherent in processing thick-section turbine wheels. The current program addresses this need by screening two new alloy design concepts. The first concept exploits a gamma prime/gamma double prime coprecipitation reaction. Through manipulation of alloy chemistry, coprecipitation is controlled such that gamma double prime is used only to slow the growth of gamma prime during slow cooling, preventing over-aging, and allowing for subsequent heat treatment to maximize strength. In parallel, phase field modeling provides fundamental understanding of the coprecipitation reaction. The second concept uses oxide dispersion strengthening to improve on two existing alloys that exhibit excellent hold time fatigue crack growth resistance, but have insufficient strength to be considered for gas turbine wheels. Mechanical milling forces the dissolution of starting oxide powders into a metal matrix allowing for solid state precipitation of new, nanometer scale oxides that are effective at dispersion strengthening.

  9. Efficiency Study of a Commercial Thermoelectric Power Generator (TEG) Under Thermal Cycling

    Science.gov (United States)

    Hatzikraniotis, E.; Zorbas, K. T.; Samaras, I.; Kyratsi, Th.; Paraskevopoulos, K. M.

    2010-09-01

    Thermoelectric generators (TEGs) make use of the Seebeck effect in semiconductors for the direct conversion of heat to electrical energy. The possible use of a device consisting of numerous TEG modules for waste heat recovery from an internal combustion (IC) engine could considerably help worldwide efforts towards energy saving. However, commercially available TEGs operate at temperatures much lower than the actual operating temperature range in the exhaust pipe of an automobile, which could cause structural failure of the thermoelectric elements. Furthermore, continuous thermal cycling could lead to reduced efficiency and lifetime of the TEG. In this work we investigate the long-term performance and stability of a commercially available TEG under temperature and power cycling. The module was subjected to sequential hot-side heating (at 200°C) and cooling for long times (3000 h) in order to measure changes in the TEG’s performance. A reduction in Seebeck coefficient and an increase in resistivity were observed. Alternating-current (AC) impedance measurements and scanning electron microscope (SEM) observations were performed on the module, and results are presented and discussed.

  10. Improving metabolic efficiency of the reverse beta-oxidation cycle by balancing redox cofactor requirement.

    Science.gov (United States)

    Wu, Junjun; Zhang, Xia; Zhou, Peng; Huang, Jiaying; Xia, Xiudong; Li, Wei; Zhou, Ziyu; Chen, Yue; Liu, Yinghao; Dong, Mingsheng

    2017-11-01

    Previous studies have made many exciting achievements on pushing the functional reversal of beta-oxidation cycle (r-BOX) to more widespread adoption for synthesis of a wide variety of fuels and chemicals. However, the redox cofactor requirement for the efficient operation of r-BOX remains unclear. In this work, the metabolic efficiency of r-BOX for medium-chain fatty acid (C 6 -C 10 , MCFA) production was optimized by redox cofactor engineering. Stoichiometric analysis of the r-BOX pathway and further experimental examination identified NADH as a crucial determinant of r-BOX process yield. Furthermore, the introduction of formate dehydrogenase from Candida boidinii using fermentative inhibitor byproduct formate as a redox NADH sink improved MCFA titer from initial 1.2g/L to 3.1g/L. Moreover, coupling of increasing the supply of acetyl-CoA with NADH to achieve fermentative redox balance enabled product synthesis at maximum titers. To this end, the acetate re-assimilation pathway was further optimized to increase acetyl-CoA availability associated with the new supply of NADH. It was found that the acetyl-CoA synthetase activity and intracellular ATP levels constrained the activity of acetate re-assimilation pathway, and 4.7g/L of MCFA titer was finally achieved after alleviating these two limiting factors. To the best of our knowledge, this represented the highest titer reported to date. These results demonstrated that the key constraint of r-BOX was redox imbalance and redox engineering could further unleash the lipogenic potential of this cycle. The redox engineering strategies could be applied to acetyl-CoA-derived products or other bio-products requiring multiple redox cofactors for biosynthesis. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. The efficiency of the heat pump water heater, during DHW tapping cycle

    Science.gov (United States)

    Gużda, Arkadiusz; Szmolke, Norbert

    2017-10-01

    This paper discusses one of the most effective systems for domestic hot water (DHW) production based on air-source heat pump with an integrated tank. The operating principle of the heat pump is described in detail. Moreover, there is an account of experimental set-up and results of the measurements. In the experimental part, measurements were conducted with the aim of determining the energy parameters and measures of the economic efficiency related to the presented solution. The measurements that were conducted are based on the tapping cycle that is similar to the recommended one in EN-16147 standard. The efficiency of the air source heat pump during the duration of the experiment was 2.43. In the end of paper, authors conducted a simplified ecological analysis in order to determine the influence of operation of air-source heat pump with integrated tank on the environment. Moreover the compression with the different source of energy (gas boiler with closed combustion chamber and boiler fired by the coal) was conducted. The heat pump is the ecological friendly source of the energy.

  12. The efficiency of the heat pump water heater, during DHW tapping cycle

    Directory of Open Access Journals (Sweden)

    Gużda Arkadiusz

    2017-01-01

    Full Text Available This paper discusses one of the most effective systems for domestic hot water (DHW production based on air-source heat pump with an integrated tank. The operating principle of the heat pump is described in detail. Moreover, there is an account of experimental set-up and results of the measurements. In the experimental part, measurements were conducted with the aim of determining the energy parameters and measures of the economic efficiency related to the presented solution. The measurements that were conducted are based on the tapping cycle that is similar to the recommended one in EN-16147 standard. The efficiency of the air source heat pump during the duration of the experiment was 2.43. In the end of paper, authors conducted a simplified ecological analysis in order to determine the influence of operation of air-source heat pump with integrated tank on the environment. Moreover the compression with the different source of energy (gas boiler with closed combustion chamber and boiler fired by the coal was conducted. The heat pump is the ecological friendly source of the energy.

  13. Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication.

    Directory of Open Access Journals (Sweden)

    Giuseppe Balistreri

    2016-02-01

    Full Text Available Kaposi's sarcoma herpesvirus (KSHV causes Kaposi's sarcoma and certain lymphoproliferative malignancies. Latent infection is established in the majority of tumor cells, whereas lytic replication is reactivated in a small fraction of cells, which is important for both virus spread and disease progression. A siRNA screen for novel regulators of KSHV reactivation identified the E3 ubiquitin ligase MDM2 as a negative regulator of viral reactivation. Depletion of MDM2, a repressor of p53, favored efficient activation of the viral lytic transcription program and viral reactivation. During lytic replication cells activated a p53 response, accumulated DNA damage and arrested at G2-phase. Depletion of p21, a p53 target gene, restored cell cycle progression and thereby impaired the virus reactivation cascade delaying the onset of virus replication induced cytopathic effect. Herpesviruses are known to reactivate in response to different kinds of stress, and our study now highlights the molecular events in the stressed host cell that KSHV has evolved to utilize to ensure efficient viral lytic replication.

  14. Environmental impact efficiency of natural gas combined cycle power plants: A combined life cycle assessment and dynamic data envelopment analysis approach.

    Science.gov (United States)

    Martín-Gamboa, Mario; Iribarren, Diego; Dufour, Javier

    2018-02-15

    The energy sector is still dominated by the use of fossil resources. In particular, natural gas represents the third most consumed resource, being a significant source of electricity in many countries. Since electricity production in natural gas combined cycle (NGCC) plants provides some benefits with respect to other non-renewable technologies, it is often seen as a transitional solution towards a future low‑carbon power generation system. However, given the environmental profile and operational variability of NGCC power plants, their eco-efficiency assessment is required. In this respect, this article uses a novel combined Life Cycle Assessment (LCA) and dynamic Data Envelopment Analysis (DEA) approach in order to estimate -over the period 2010-2015- the environmental impact efficiencies of 20 NGCC power plants located in Spain. A three-step LCA+DEA method is applied, which involves data acquisition, calculation of environmental impacts through LCA, and the novel estimation of environmental impact efficiency (overall- and term-efficiency scores) through dynamic DEA. Although only 1 out of 20 NGCC power plants is found to be environmentally efficient, all plants show a relatively good environmental performance with overall eco-efficiency scores above 60%. Regarding individual periods, 2011 was -on average- the year with the highest environmental impact efficiency (95%), accounting for 5 efficient NGCC plants. In this respect, a link between high number of operating hours and high environmental impact efficiency is observed. Finally, preliminary environmental benchmarks are presented as an additional outcome in order to further support decision-makers in the path towards eco-efficiency in NGCC power plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Evaluation of support matrices for immobilization of anaerobic consortia for efficient carbon cycling in waste regeneration.

    Science.gov (United States)

    Chauhan, Ashvini; Ogram, Andrew

    2005-02-18

    Efficient metabolism of fatty acids during anaerobic waste digestion requires development of consortia that include "fatty acid consuming H(2) producing bacteria" and methanogenic bacteria. The objective of this research was to optimize methanogenesis from fatty acids by evaluating a variety of support matrices for use in maintaining efficient syntrophic-methanogenic consortia. Tested matrices included clays (montmorillonite and bentonite), glass beads (106 and 425-600mum), microcarriers (cytopore, cytodex, cytoline, and cultispher; conventionally employed for cultivation of mammalian cell lines), BioSep beads (powdered activated carbon), and membranes (hydrophilic; nylon, polysulfone, and hydrophobic; teflon, polypropylene). Data obtained from headspace methane (CH(4)) analyses as an indicator of anaerobic carbon cycling efficiency indicated that material surface properties were important in maintenance and functioning of the anaerobic consortia. Cytoline yielded significantly higher CH(4) than other matrices as early as in the first week of incubation. 16S rRNA gene sequence analysis from crushed cytoline matrix showed the presence of Syntrophomonas spp. (butyrate oxidizing syntrophs) and Syntrophobacter spp. (propionate oxidizing syntrophs), with Methanosaeta spp. (acetate utilizing methanogen), and Methanospirillum spp. (hydrogen utilizing methanogen) cells. It is likely that the more hydrophobic surfaces provided a suitable surface for adherence of cells of syntrophic-methanogenic consortia. Cytoline also appeared to protect entrapped consortia from air, resulting in rapid methanogenesis after aerial exposure. Our study suggests that support matrices can be used in anaerobic digestors, pre-seeded with immobilized or entrapped consortia on support matrices, and may be of value as inoculant-adsorbents to rapidly initiate or recover proper system functioning following perturbation.

  16. The use of polybenzimidazole membranes in vanadium redox flow batteries leading to increased coulombic efficiency and cycling performance

    International Nuclear Information System (INIS)

    Zhou, X.L.; Zhao, T.S.; An, L.; Wei, L.; Zhang, C.

    2015-01-01

    An issue with conventional vanadium redox flow batteries (VRFB) with Nafion membranes is the crossover of vanadium ions, resulting in low coulombic efficiency and rapid decay in capacity. In this work, a VRFB with a polybenzimidazole (PBI) membrane is tested and compared with the Nafion system. Results show that the PBI-based VRFB exhibits a substantially higher coulombic efficiency of up to 99% at current densities ranging from 20 mA cm −2 to 80 mA cm −2 . More importantly, it is demonstrated that the PBI-based VRFB has a capacity decay rate of as low as 0.3% per cycle, which is four times lower than that of the Nafion system (1.3% per cycle). The improved coulombic efficiency and cycling performance are attributed to the low crossover of vanadium ions through the PBI membrane

  17. Evaluation of the energy efficiency of combined cycle gas turbine. Case study of Tashkent thermal power plant, Uzbekistan

    International Nuclear Information System (INIS)

    Aminov, Zarif; Nakagoshi, Nobukazu; Xuan, Tran Dang; Higashi, Osamu; Alikulov, Khusniddin

    2016-01-01

    Highlights: • The combined cycle power plant (CCPP) has a steam turbine and a gas turbine. • Fossil fuel savings and reduction of the CCGT of was evaluated. • The performance of a three pressure CCGT is modelled under different modes. • Energy efficiency of the combined cycle was 58.28%. • An annual reduction of 1760.18 tNO_x/annum and 981.25 ktCO_2/annum can be achieved. - Abstract: The power generation of Tashkent Thermal Power Plant (TPP) is based on conventional power units. Moreover, the facility suffers from limited efficiency in electricity generation. The plant was constructed during the Soviet era. Furthermore, the power plant is being used for inter-hour power generation regulation. As a result, the efficiency can be reduced by increasing specific fuel consumption. This research focuses on the evaluation of the energy efficiency of the combined cycle gas turbine (CCGT) for the Tashkent TPP. Specifically, the objective is an evaluation of fossil fuel savings and reduction of CO_2 and NO_x emissions with the using CCGT technology at conventional power plant. The proposed combined cycle power plant (CCPP) includes an existing steam turbine (ST) with 160 MW capacity, heat recovery steam generator (HRSG), and gas turbine (GT) technology with 300 MW capacity. The performance of a three pressure CCGT is modelled under different modes. As a result, the efficiency of the combined cycle was evaluated at 58.28%, while the conventional cycle had an efficiency of 34.5%. We can achieve an annual reduction of 1760.18 tNO_x/annum and 981.25 ktCO_2/annum.

  18. Oxygen blast furnace and combined cycle (OBF-CC) - an efficient iron-making and power generation process

    International Nuclear Information System (INIS)

    Jianwei, Y.; Guolong, S.; Cunjiang, K.; Tianjun, Y.

    2003-01-01

    A new iron and power generating process, oxygen blast furnace and combined cycle (OBF-CC), is presented. In order to support the opinion, the features of the oxygen blast furnace and integrated coal gasification and combined cycle (IGCC) are summarized. The relation between the blasting parameters and the output gas quantity, as well as caloric value is calculated based on mass and energy balance. Analysis and calculation indicate that the OBF-CC will be an efficient iron-making and power generation process with higher energy efficiency and less pollution

  19. The Expansion and Functional Diversification of the Mammalian Ribonuclease A Superfamily Epitomizes the Efficiency of Multigene Families at Generating Biological Novelty

    Science.gov (United States)

    Goo, Stephen M.; Cho, Soochin

    2013-01-01

    The ribonuclease (RNase) A superfamily is a vertebrate-specific gene family. Because of a massive expansion that occurred during the early mammalian evolution, extant mammals in general have much more RNase genes than nonmammalian vertebrates. Mammalian RNases have been associated with diverse physiological functions including digestion, cytotoxicity, angiogenesis, male reproduction, and host defense. However, it is still uncertain when their expansion occurred and how a wide array of functions arose during their evolution. To answer these questions, we generate a compendium of all RNase genes identified in 20 complete mammalian genomes including the platypus, Ornithorhynchus anatinus. Using this, we delineate 13 ancient RNase gene lineages that arose before the divergence between the monotreme and the other mammals (∼220 Ma). These 13 ancient gene lineages are differentially retained in the 20 mammals, and the rate of protein sequence evolution is highly variable among them, which suggest that they have undergone extensive functional diversification. In addition, we identify 22 episodes of recent expansion of RNase genes, many of which have signatures of adaptive functional differentiation. Exemplifying this, bursts of gene duplication occurred for the RNase1, RNase4, and RNase5 genes of the little brown bat (Myotis lucifugus), which might have contributed to the species’ effective defense against heavier pathogen loads caused by its communal roosting behavior. Our study illustrates how host-defense systems can generate new functions efficiently by employing a multigene family, which is crucial for a host organism to adapt to its ever-changing pathogen environment. PMID:24162010

  20. Exergy efficiency analysis of ORC (Organic Rankine Cycle) and ORC-based combined cycles driven by low-temperature waste heat

    International Nuclear Information System (INIS)

    Sun, Wenqiang; Yue, Xiaoyu; Wang, Yanhui

    2017-01-01

    Highlights: • ORC-ARC and ORC-ERC driven by low-temperature waste heat are investigated. • Thermodynamic models of basic ORC, ORC-ARC, and ORC-ERC are developed. • Exergy efficiencies of ORC, ORC-ARC, and ORC-ERC are parametrically simulated. • Suitable application conditions of ORC-ARC and ORC-ERC are reported. - Abstract: There is large amount of waste heat resources in industrial processes. However, most low-temperature waste heat is directly discharged into the environment. With the advantages of being energy-efficient, enabling investment-savings and being environmentally friendly, the Organic Rankine Cycle (ORC) plays an important role in recycling energy from low-temperature waste heat. In this study, the ORC system driven by industrial low-temperature waste heat was analyzed and optimized. The impacts of the operational parameters, including evaporation temperature, condensation temperature, and degree of superheat, on the thermodynamic performances of ORC system were conducted, with R113 used as the working fluid. In addition, the ORC-based cycles, combined with the Absorption Refrigeration Cycle (ARC) and the Ejector Refrigeration Cycle (ERC), were investigated to recover waste heat from low-temperature flue gas. The uncoupled ORC-ARC and ORC-ERC systems can generate both power and cooling for external uses. The exergy efficiency of both systems decreases with the increase of the evaporation temperature of the ORC. The net power output, the refrigerating capacity and the resultant exergy efficiency of the uncoupled ORC-ARC are all higher than those of the ORC-ERC for the evaporation temperature of the basic ORC >153 °C, in the investigated application. Finally, suitable application conditions over other temperature ranges are also given.

  1. Gas turbine with heating during the expansion in the stator blades

    International Nuclear Information System (INIS)

    Abd El-Maksoud, Rafea Mohamed

    2014-01-01

    Highlights: • A new cycle is herein introduced with a concept of heating during the expansion. • Turbine overheating is avoided by reducing significantly the cycle temperature. • Comparison is done with a reheat cycle having a higher maximum cycle temperature. • The cycle performance is higher than the reheat cycle. • Regeneration is used to boost the present cycle efficiency. - Abstract: Reheat is used in the gas turbine to achieve higher power output. However, the reheat process is constrained by the heat quantity given to it and the choice of reheat point. Consequently, this paper introduces a new gas turbine cycle to overcome the reheat drawbacks and having superior features. In this cycle, the reheat process is replaced by processes of heating the expanded gases while passing through different turbine stator blades. Small amount of combusted gases is utilized to flow inside such blades for heating and mixing with the expanded gases. Nevertheless, this is performed with precautions of turbine overheating by reducing significantly the maximum temperature of the present cycle. The simulated results demonstrate that the cycle performance is increased by raising the quantity of heating during the expansion. Additionally, this cycle achieves greater efficient output than the traditional reheat Brayton cycle operating with higher maximum cycle temperature. To boost the present cycle efficiency, regeneration is used making the possibility of such cycle to be competitive to the combined cycle

  2. Multiscale Interfacial Strategy to Engineer Mixed Metal-Oxide Anodes toward Enhanced Cycling Efficiency.

    Science.gov (United States)

    Ma, Yue; Tai, Cheuk-Wai; Li, Shaowen; Edström, Kristina; Wei, Bingqing

    2018-06-13

    Interconnected macro/mesoporous structures of mixed metal oxide (MMO) are developed on nickel foam as freestanding anodes for Li-ion batteries. The sustainable production is realized via a wet chemical etching process with bio-friendly chemicals. By means of divalent iron doping during an in situ recrystallization process, the as-developed MMO anodes exhibit enhanced levels of cycling efficiency. Furthermore, this atomic-scale modification coherently synergizes with the encapsulation layer across a micrometer scale. During this step, we develop a quasi-gel-state tri-copolymer, i.e., F127-resorcinol-melamine, as the N-doped carbon source to regulate the interfacial chemistry of the MMO electrodes. Electrochemical tests of the modified Fe x Ni 1- x O@NC-NiF anode in both half-cell and full-cell configurations unravel the favorable suppression of the irreversible capacity loss and satisfactory cyclability at the high rates. This study highlights a proof-of-concept modification strategy across multiple scales to govern the interfacial chemical process of the electrodes toward better reversibility.

  3. Life cycle cost analysis of commercial buildings with energy efficient approach

    Directory of Open Access Journals (Sweden)

    Nilima N. Kale

    2016-09-01

    Full Text Available In any construction project, cost effectiveness plays a crucial role. The Life Cycle Cost (LCC analysis provides a method of determining entire cost of a structure over its expected life along with operational and maintenance cost. LCC can be improved by adopting alternative modern techniques without much alteration in the building. LCC effectiveness can be calculated at various stages of entire span of the building. Moreover this provides decision makers with the financial information necessary for maintaining, improving, and constructing facilities. Financial benefits associated with energy use can also be calculated using LCC analysis. In the present work, case study of two educational buildings has been considered. The LCC of these buildings has been calculated with existing condition and with proposed energy efficient approach (EEA using net present value method. A solar panel having minimum capacity as well as solar panel with desired capacity as per the requirements of the building has been suggested. The comparison of LCC of existing structure with proposed solar panel system shows that 4% of cost can be reduced in case of minimum capacity solar panel and 54% cost can be reduced for desired capacity solar panel system, along with other added advantages of solar energy.

  4. Efficient cycle jumping techniques for the modelling of materials and structures under cyclic mechanical and thermal loading

    International Nuclear Information System (INIS)

    Dunne, F.P.E.; Hayhurst, D.R.

    1994-01-01

    Highly efficient cycle jumping algorithms have been developed for the calculation of stress and damage histories for both cyclic mechanical and cycle thermal loading. The techniques have been shown to be suitable for cyclic plasticity; creep-cyclic plasticity interaction; and creep dominated material behaviour. The cycle jumping algorithms have been validated by comparison of the predictions made using both the cycle jumping technique, and the full calculation involving the integration of the equations around all cycles. Excellent agreement has been achieved, and significant reductions in computer processing time of up to 90% have been obtained by using the cycle jumping technique. A further cycle jumping technique has been developed for full component analysis, using a viscoplastic damage finite element solver, which enables stress redistribution to be modelled. The behaviour and lifetime of a slag tap component has been predicted when subjected to cyclic thermal loading. Cyclic plasticity damage and micro-crack initiation is predicted to occur at the water cooling duct after 2.974 cycles, with damage and micro-crack evolution arresting after 60.000. (author). 18 refs., 13 figs., 4 photos

  5. Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermoeconomic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC)

    International Nuclear Information System (INIS)

    Feng, Yongqiang; Zhang, Yaning; Li, Bingxi; Yang, Jinfu; Shi, Yang

    2015-01-01

    Highlights: • The thermoeconomic comparison of regenerative RORC and BORC is investigated. • The Pareto frontier solution with bi-objective compares with the corresponding single-objective solutions. • The three-objective optimization of the RORC and BORC is studied. • The RORC owns 8.1% higher exergy efficiency and 21.1% more LEC than the BORC under the Pareto-optimal solution. - Abstract: Based on the thermoeconomic multi-objective optimization by using non-dominated sorting genetic algorithm (NSGA-II), considering both thermodynamic performance and economic factors, the thermoeconomic comparison of regenerative organic Rankine cycles (RORC) and basic organic Rankine cycles (BORC) are investigated. The effects of five key parameters including evaporator outlet temperature, condenser temperature, degree of superheat, pinch point temperature difference and degree of supercooling on the exergy efficiency and levelized energy cost (LEC) are examined. Meanwhile, the Pareto frontier solution with bi-objective for maximizing exergy efficiency and minimizing LEC is obtained and compared with the corresponding single-objective solutions. Research demonstrates that there is a significant negative correlation between thermodynamic performance and economic factors. And the optimum exergy efficiency and LEC for the Pareto-optimal solution of the RORC are 55.97% and 0.142 $/kW h, respectively, which are 8.1% higher exergy efficiency and 21.1% more LEC than that of the BORC under considered condition. Highest exergy and thermal efficiencies are accompanied with lowest net power output and worst economic performance. Furthermore, taking the net power output into account, detailed investigation on the three-objective optimization for maximizing exergy efficiency, maximizing net power output and minimizing LEC is discussed

  6. EXPRESSION OF THE TRANSPORT SECTOR OPERATIONAL EFFICIENCY EVALUATION METHODOLOGY (TRENDS AT DIFFERENT STAGES OF THE ECONOMIC CYCLE

    Directory of Open Access Journals (Sweden)

    Deimena KIYAK

    2017-12-01

    Full Text Available It is important to evaluate the impact of economic fluctuations on the transport sector operational efficiency, since such an analysis is a source of economic information which contributes to the identification of the sector's potential and advantages, the establishment of the risky areas of activity, and the exploration of the opportunities to increase its effectiveness. The aim of the study was to apply mathematical evaluation methods to the exploration of the operational efficiency of the Lithuanian transport sector companies and, based on the outcomes, to validate the opportunity of predicting a potential change of the economic cycle. The operational efficiency of the Lithuanian transport sector was analysed in the context of the cyclical national economy, and not in individual economic boom or recession periods, as that allowed for more detailed evaluation of the specific activities of the sector and its impact on Lithuanian economy. To achieve the aim, three different stages of the economic cycle in Lithuania were identified, and calculations were made during them. Based on the aggregate financial data, four different economic efficiency indicators were developed that reflected the efficiency level of the entire transport sector, and the sensitivity of the transport sector to economic fluctuations was identified. The comparison of the changes in the transport sector and in Lithuanian economy made it obvious that the level of the sector's operational efficiency could be regarded as a leading indicator of the economic cycle.

  7. Nonlinear Effect of Financial Efficiency and Financial Competition on Heterogeneous Firm R&D: A Study on the Combined Perspective of Financial Quantity Expansion and Quality Development

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2018-05-01

    Full Text Available Manufacturing firm data and district financial quantity and quality indicators for 2005–2007 combined with heterogeneous firm characteristics were used with a threshold panel to study the effect of financial inefficiency on firm R&D and the financial boundaries of efficiency improvement. The results show that: (1 extensive financial quantity expansion cannot support high innovation efficiency R&D (Research and Development activities in private enterprises, low- and medium-technology enterprises, and underdeveloped area enterprises, as it causes financial inefficiency problems and a shortage of R&D inputs; and (2 financial efficiency and financial competition have nonlinear effects on firm R&D. Financial inefficiency and either low or excessive financial competition result in a lack of highly efficient firm R&D. Only improvements in financial efficiency and moderate competition can significantly promote firm R&D. The results of this study reveal an important way to improve the influence of financial inefficiency on firm R&D by moving away from simply expanding financial quantity to promoting quality instead.

  8. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    International Nuclear Information System (INIS)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-01-01

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study

  9. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon

    2015-01-01

    The energy, water and environment nexus is a crucial factor when considering the future development of desalination plants or industry in the water-stressed economies. New generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increase around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available thermally-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent of MED with AD cycles, or simply called the MEDAD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-steam at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60 and 80. °C. In this paper, the authors have reported their pioneered research on aspects of AD and related hybrid MEDAD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concept, the authors examined the cost apportionment of fuel cost by the quality or exergy of working steam for such cogeneration configurations.

  10. Potential pyrolysis pathway assessment for microalgae-based aviation fuel based on energy conversion efficiency and life cycle

    International Nuclear Information System (INIS)

    Guo, Fang; Wang, Xin; Yang, Xiaoyi

    2017-01-01

    Highlights: • High lipid content in microalgae increases energy conversion efficiency. • Indirect pathway has the highest mass ratio, energy ratio and energy efficiency. • The Isochrysis indirect pathway produces most kerosene component precursor. • The Isochrysis indirect pyrolysis pathway shows the best performance in LCA. - Abstract: Although the research of microalgae pyrolysis has been conducted for many years, there is a lack of investigations on energy efficiency and life cycle assessment. In this study, we investigated the biocrude yield and energy efficiency of direct pyrolysis, microalgae residue pyrolysis after lipid extraction (indirect pyrolysis), and different microalgae co-pyrolysis. This research also investigated the life cycle assessment of the three different pyrolysis pathways. A system boundary of Well-to-Wake (WTWa) was defined and included sub-process models, such as feedstock production, fuel production and pump-to-wheels (PTW) stages. The pathway of Isochrysis indirect pyrolysis shows the best performance in the mass ratio and energy ratio, produces the most kerosene component precursor, has the lowest WTWa total energy input, fossil fuel consumption and greenhouse gas emissions, and resultes in the best energy efficiency. All the evidence indicates that Isochrysis R2 pathway is a potential and optimal pyrolysis pathway to liquid biofuels. The mass ratio of pyrolysis biocrude is shown to be the decisive factor for different microalgae species. The sensitivity analysis results also indicates that the life cycle indicators are particularly sensitive to the mass ratio of pyrolysis biocrude for microalgae-based hydrotreated pyrolysis aviation fuel.

  11. Prospects for energy efficiency improvement and reduction of emissions and life cycle costs for natural gas vehicles

    Science.gov (United States)

    Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.

    2017-01-01

    This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.

  12. The relationship between house size and life cycle energy demand: Implications for energy efficiency regulations for buildings

    International Nuclear Information System (INIS)

    Stephan, André; Crawford, Robert H.

    2016-01-01

    House size has significantly increased over the recent decades in many countries. Larger houses often have a higher life cycle energy demand due to their increased use of materials and larger area to heat, cool and light. Yet, most energy efficiency regulations for buildings fail to adequately include requirements for addressing the energy demand associated with house size. This study quantifies the effect of house size on life cycle energy demand in order to inform future regulations. It uses a parametric model of a typical detached house in Melbourne, Australia and varies its floor area from 100 to 392 m"2 for four different household sizes. Both initial and recurrent embodied energy requirements are quantified using input-output-based hybrid analysis and operational energy is calculated in primary energy terms over 50 years. Results show that the life cycle energy demand increases at a slower rate compared to house size. Expressing energy efficiency per m"2 therefore favours large houses while these require more energy. Also, embodied energy represents 26–50% across all variations. Building energy efficiency regulations should incorporate embodied energy, correct energy intensity thresholds for house size and use multiple functional units to measure efficiency. These measures may help achieve greater net energy reductions. - Highlights: • The life cycle energy demand (LCE) is calculated for 90 house sizes and 4 household sizes. • The LCE is sublinearly correlated with house size. • Larger houses appear to be more energy efficient per m"2 while they use more energy overall. • Embodied energy (EE) represents up to 52% of the LCE over 50 years. • Building energy efficiency regulations need to consider house size and EE.

  13. Efficiencies of subcritical and transcritical CO2 inverse cycles with and without an internal heat exchanger

    International Nuclear Information System (INIS)

    Zhang, F.Z.; Jiang, P.X.; Lin, Y.S.; Zhang, Y.W.

    2011-01-01

    An internal heat exchanger (IHX) is often used to improve the coefficient of performance (COP) of CO 2 inverse cycles. This paper presents a detailed analysis of the IHX's effect in CO 2 inverse cycles and finds suitable operating conditions for the IHX from a thermodynamic performance point of view. The results indicate that the COP is slightly reduced by an IHX in a CO 2 subcritical inverse cycle, so an IHX is not justified. However, for transcritical CO 2 inverse cycles, the compressor discharge pressures and CO 2 gas cooler outlet temperatures both have significant impacts on system performance. The analysis results for transcritical CO 2 inverse cycles show that a transition discharge pressure and a transition CO 2 gas cooler outlet temperature are objective existence above which the IHX improves the cycle performance. - Research highlights: → Find suitable operating conditions for the IHX. → Above transition CO2 gas cooler outlet temperature IHX improves cycle performance. → The IHX is not very useful for optimized space heating and refrigerating cycles.

  14. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

    International Nuclear Information System (INIS)

    Chang H. Oh

    2006-01-01

    Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for state-of-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency

  15. Workshop Summary Proceedings Document: G7 Alliance on Resource Efficiency: U.S.-hosted Workshop on the Use of Life Cycle Concepts in Supply Chain Management to Achieve Resource Efficiency

    Science.gov (United States)

    This proceedings document summarizes prepared remarks, presentations and discussions from the G7 Alliance on Resource Efficiency: U.S.-hosted Workshop on the Use of Life Cycle Concepts in Supply Chain Management to Achieve Resource Efficiency.

  16. Efficient propagation-inside-layer expansion algorithm for solving the scattering from three-dimensional nested homogeneous dielectric bodies with arbitrary shape.

    Science.gov (United States)

    Bellez, Sami; Bourlier, Christophe; Kubické, Gildas

    2015-03-01

    This paper deals with the evaluation of electromagnetic scattering from a three-dimensional structure consisting of two nested homogeneous dielectric bodies with arbitrary shape. The scattering problem is formulated in terms of a set of Poggio-Miller-Chang-Harrington-Wu integral equations that are afterwards converted into a system of linear equations (impedance matrix equation) by applying the Galerkin method of moments (MoM) with Rao-Wilton-Glisson basis functions. The MoM matrix equation is then solved by deploying the iterative propagation-inside-layer expansion (PILE) method in order to obtain the unknown surface current densities, which are thereafter used to handle the radar cross-section (RCS) patterns. Some numerical results for various structures including canonical geometries are presented and compared with those of the FEKO software in order to validate the PILE-based approach as well as to show its efficiency to analyze the full-polarized RCS patterns.

  17. Efficient generation of sum-of-products representations of high-dimensional potential energy surfaces based on multimode expansions

    Science.gov (United States)

    Ziegler, Benjamin; Rauhut, Guntram

    2016-03-01

    The transformation of multi-dimensional potential energy surfaces (PESs) from a grid-based multimode representation to an analytical one is a standard procedure in quantum chemical programs. Within the framework of linear least squares fitting, a simple and highly efficient algorithm is presented, which relies on a direct product representation of the PES and a repeated use of Kronecker products. It shows the same scalings in computational cost and memory requirements as the potfit approach. In comparison to customary linear least squares fitting algorithms, this corresponds to a speed-up and memory saving by several orders of magnitude. Different fitting bases are tested, namely, polynomials, B-splines, and distributed Gaussians. Benchmark calculations are provided for the PESs of a set of small molecules.

  18. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion.

    Science.gov (United States)

    Thompson, Andrew J; Andrews, John; Mulholland, Barry J; McKee, John M T; Hilton, Howard W; Horridge, Jon S; Farquhar, Graham D; Smeeton, Rachel C; Smillie, Ian R A; Black, Colin R; Taylor, Ian B

    2007-04-01

    Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in delta(13)C and delta(18)O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.

  19. Efficiency of the life cycle of the gasification of residues in the sawmill 'El Brujo'

    International Nuclear Information System (INIS)

    Lesme Jaén, René; Rodriguez Ortiz, Leandro Alexei; Oliva Ruiz, Luis Oscar; Peralta Campos, Leonel Grave de; Iglesias Vaillant, Yuniel

    2017-01-01

    Poor gas, the result of biomass gasification with air, can be used in internal combustion engines to generate electricity, however it is necessary to evaluate the net energy production, as well as environmental impacts and in this sense the life cycle analysis is a tool that allows quantifying the potentialities of any technology. In this work, taking as a reference 1682 hours of operation, a life cycle inventory of the waste gasification plant for the generation of electricity at the 'El Brujo' sawmill is carried out. As a result of the work, a ratio between the produced renewable energy and the fossil energy consumed of 4,18 was obtained, showing that the fuel used is renewable and energy efficiency of the life cycle of 11,07 %, with a positive balance of 18 tons of CO2 ceased to emit into the atmosphere. (author)

  20. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery.

    Science.gov (United States)

    Assegie, Addisu Alemayehu; Cheng, Ju-Hsiang; Kuo, Li-Ming; Su, Wei-Nien; Hwang, Bing-Joe

    2018-03-29

    The practical implementation of an anode-free lithium-metal battery with promising high capacity is hampered by dendrite formation and low coulombic efficiency. Most notably, these challenges stem from non-uniform lithium plating and unstable SEI layer formation on the bare copper electrode. Herein, we revealed the homogeneous deposition of lithium and effective suppression of dendrite formation using a copper electrode coated with a polyethylene oxide (PEO) film in an electrolyte comprising 1 M LiTFSI, DME/DOL (1/1, v/v) and 2 wt% LiNO3. More importantly, the PEO film coating promoted the formation of a thin and robust SEI layer film by hosting lithium and regulating the inevitable reaction of lithium with the electrolyte. The modified electrode exhibited stable cycling of lithium with an average coulombic efficiency of ∼100% over 200 cycles and low voltage hysteresis (∼30 mV) at a current density of 0.5 mA cm-2. Moreover, we tested the anode-free battery experimentally by integrating it with an LiFePO4 cathode into a full-cell configuration (Cu@PEO/LiFePO4). The new cell demonstrated stable cycling with an average coulombic efficiency of 98.6% and capacity retention of 30% in the 200th cycle at a rate of 0.2C. These impressive enhancements in cycle life and capacity retention result from the synergy of the PEO film coating, high electrode-electrolyte interface compatibility, stable polar oligomer formation from the reduction of 1,3-dioxolane and the generation of SEI-stabilizing nitrite and nitride upon lithium nitrate reduction. Our result opens up a new route to realize anode-free batteries by modifying the copper anode with PEO to achieve ever more demanding yet safe interfacial chemistry and control of dendrite formation.

  1. The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2014-01-01

    Highlights: • Results show efficiencies of a low-cost stainless steel tubular cavity receiver. • Optimum ratio of 0.0035 is found for receiver aperture area to concentrator area. • Smaller receiver tube and higher mass flow rate increase receiver efficiency. • Larger tube and smaller mass flow rate increase second law efficiency. • Large-tube receiver performs better in the small-scale solar thermal Brayton cycle. - Abstract: The first law and second law efficiencies are determined for a stainless steel closed-tube open rectangular cavity solar receiver. It is to be used in a small-scale solar thermal Brayton cycle using a micro-turbine with low compressor pressure ratios. There are many different variables at play to model the air temperature increase of the air running through such a receiver. These variables include concentrator shape, concentrator diameter, concentrator rim angle, concentrator reflectivity, concentrator optical error, solar tracking error, receiver aperture area, receiver material, effect of wind, receiver tube diameter, inlet temperature and mass flow rate through the receiver. All these variables are considered in this paper. The Brayton cycle requires very high receiver surface temperatures in order to be successful. These high temperatures, however, have many disadvantages in terms of heat loss from the receiver, especially radiation heat loss. With the help of ray-tracing software, SolTrace, and receiver modelling techniques, an optimum receiver-to-concentrator-area ratio of A′ ≈ 0.0035 was found for a concentrator with 45° rim angle, 10 mrad optical error and 1° tracking error. A method to determine the temperature profile and net heat transfer rate along the length of the receiver tube is presented. Receiver efficiencies are shown in terms of mass flow rate, receiver tube diameter, pressure drop, maximum receiver surface temperature and inlet temperature of the working fluid. For a 4.8 m diameter parabolic dish, the

  2. Performance characterization of a power generation unit–organic Rankine cycle system based on the efficiencies of the system components

    International Nuclear Information System (INIS)

    Knizley, Alta; Mago, Pedro J.; Tobermann, James; Warren, Harrison R.

    2015-01-01

    Highlights: • Use of waste heat from a power generation unit to generate electricity is explored. • An organic Rankine cycle is used to recover the waste heat. • The system may lower cost, primary energy consumption, and carbon dioxide emission. • A parameter was established to show when the proposed system would provide savings. • The proposed system was evaluated in different locations in the US. - Abstract: This paper analyzes the potential of using the waste heat from a power generation unit to generate additional electricity using an organic Rankine cycle to reduce operational cost, primary energy consumption, and carbon dioxide emissions in different locations in the U.S. The power generation unit–organic Rankine cycle system is compared with a conventional system in terms of operational cost, primary energy consumption, and carbon dioxide emissions reduction. A parameter (R_m_i_n), which is based on system efficiencies, is established to determine when the proposed power generation unit–organic Rankine cycle system would potentially provide savings versus the conventional system in which electricity is purchased from the utility grid. The effect on the R_m_i_n parameter with variation of each system efficiency is also analyzed in this paper. Results indicated that savings in one parameter, such as primary energy consumption, did not imply savings in the other two parameters. Savings in the three parameters (operational cost, primary energy consumption, and carbon dioxide emissions) varied widely based on location due to prices of natural gas and electricity, source-to-site conversion factors, and carbon dioxide emissions conversion factors for electricity and natural gas. Variations in each system efficiency affected R_m_i_n, but varying the power generation unit efficiency had the most dramatic effect in the overall savings potential from the proposed system.

  3. Advanced cycle efficiency: Generating 40% more power from the nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, Romney B.; Leung, Laurence

    2010-09-15

    The introduction of supercritical water (SCW) nuclear power plants (NPPs) would improve the overall plant efficiency significantly compared to currently deployed systems. This improvement is attributed to the increase in plant operating conditions. In addition, the implementation of the reheat-channel option into the CANDU SCW NPPs would further enhance the efficiency. Overall, the combination of higher operating conditions and reheat-channel option would lead to overall plant efficiency of about 50% for the CANDU SCW NPPs, compared to 33--35% for currently deployed systems. This represents a whopping 40% improvement in efficiency.

  4. Low temperature heat from natural gas. Life cycle analysis for efficient systems

    International Nuclear Information System (INIS)

    Zogg, M.

    2000-01-01

    A life cycle analysis drawn up on behalf of the Swiss Federal Office of Energy shows that the combined cycle power plant + heat pump (GuD-WP) combination produces less greenhouse effect and makes only about half the contribution to summer smog formation as the operation of heat pumps with the power mix habitually used in Western Europe today. In the co-generation unit + heat pump (BHKW-WP) combination, the environmental impact shows the same values as in current West European power generation

  5. To Estimation of Efficient Usage of Organic Fuel in the Cycle of Steam Power Installations

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2013-01-01

    Full Text Available Tendencies of power engineering development in the world were shown in this article. There were carried out the thermodynamic Analysis of efficient usage of different types of fuel. This article shows the obtained result, which reflects that low-calorie fuel (from the point of thermodynamics is more efficient to use at steam power stations then high-energy fuel.

  6. A cost-efficient expansion of renewable energy sources in the European electricity system. An integrated modelling approach with a particular emphasis on diurnal and seasonal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Golling, Christiane

    2012-11-01

    This thesis determines a cost-efficient expansion of electricity generated by renewable energy sources (RES-E) in the European power generation system. It is an integrated modelling approach with a particular emphasis on diurnal and seasonal patterns of renewable energy sources (RES). An integrated modelling approach optimizes the overall European electricity system while comprising fossil, nuclear, and renewable generation as well as storage capacities. The integrated model approach corresponds to a situation in which renewable generation is subject to electricity price signals. In sensitivity scenarios cases of the integrated model approach are compared to situations in which renewable generation is granted priority feed-in and is decoupled from electricity price signals. In addition, the role of different flexibility options, which can be provided by storage capacities and grid expansion are scrutinized. The methodology of the thesis consists of two parts. First, it develops an integrative model approach by extending an existing European electricity model only comprising conventional power generating technologies. Second, an appropriate representation of intermittent RES for electricity market models is established by the determination of corresponding typedays. The typeday modelling takes the spatial correlation of RES and the correlation between wind and solar power into account. Moreover, the typeday modelling captures average dispatch-relevant, diurnal and seasonal RES characteristics such as the level, the variance, and the gradient. The scenario analysis shows that separate developments of renewable and conventional technologies imply several inefficiencies. These increase with higher RES-E penetration. Inefficiencies such as an increased wind power curtailment, an augmented capital turnover, or a higher cumulative installed power generating capacity are revealed and quantified.

  7. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.

    Science.gov (United States)

    Subramaniam, Chandramouli; Yasuda, Yuzuri; Takeya, Satoshi; Ata, Seisuke; Nishizawa, Ayumi; Futaba, Don; Yamada, Takeo; Hata, Kenji

    2014-03-07

    Increasing functional complexity and dimensional compactness of electronic devices have led to progressively higher power dissipation, mainly in the form of heat. Overheating of semiconductor-based electronics has been the primary reason for their failure. Such failures originate at the interface of the heat sink (commonly Cu and Al) and the substrate (silicon) due to the large mismatch in thermal expansion coefficients (∼300%) of metals and silicon. Therefore, the effective cooling of such electronics demands a material with both high thermal conductivity and a similar coefficient of thermal expansion (CTE) to silicon. Addressing this demand, we have developed a carbon nanotube-copper (CNT-Cu) composite with high metallic thermal conductivity (395 W m(-1) K(-1)) and a low, silicon-like CTE (5.0 ppm K(-1)). The thermal conductivity was identical to that of Cu (400 W m(-1) K(-1)) and higher than those of most metals (Ti, Al, Au). Importantly, the CTE mismatch between CNT-Cu and silicon was only ∼10%, meaning an excellent compatibility. The seamless integration of CNTs and Cu was achieved through a unique two-stage electrodeposition approach to create an extensive and continuous interface between the Cu and CNTs. This allowed for thermal contributions from both Cu and CNTs, resulting in high thermal conductivity. Simultaneously, the high volume fraction of CNTs balanced the thermal expansion of Cu, accounting for the low CTE of the CNT-Cu composite. The experimental observations were in good quantitative concurrence with the theoretically described 'matrix-bubble' model. Further, we demonstrated identical in-situ thermal strain behaviour of the CNT-Cu composite to Si-based dielectrics, thereby generating the least interfacial thermal strain. This unique combination of properties places CNT-Cu as an isolated spot in an Ashby map of thermal conductivity and CTE. Finally, the CNT-Cu composite exhibited the greatest stability to temperature as indicated by its low

  8. Methods of modeling TCO residential real estate in the life cycles of buildings as a promising energy efficiency management tool

    Directory of Open Access Journals (Sweden)

    Kulakov Kirill

    2017-01-01

    Full Text Available Building and developing an affordable housing market is a huge challenge for Russia’s national economy. Today, the housing construction industry finds itself in a situation torn by a conflict caused by the simultaneous needs to minimize the housing construction costs in order to make housing more affordable for Russians and to increase the energy efficiency of the housing projects, which is associated with additional costs for developers. To find solutions to this contradictory situation, one needs new theoretical and practical approaches and economic tools. The global economic trend of managing goods and services on the basis of the value of goods and services over the life cycle is also manifested in the construction industry in Russia. The problem of forming a new economic thinking in the housing sector predetermines the perception of the value of housing not only as the price of purchased real estate, but as the equivalent of the total cost of ownership of real estate throughout its life cycle. This approach allows to compensate the initial rise in the cost of construction resulting from the introduction of energy-efficient technologies by savings in the operational phase of the life cycle of the property. In this regard, management of the total cost of real estate ownership based on energy modeling is of high research and practical relevance.

  9. Eco-efficiency Analysis of Furniture Product Using Life Cycle Assessment

    Science.gov (United States)

    Rinawati, Dyah Ika; Sriyanto; Sari, Diana Puspita; Prayodha, Andana Cantya

    2018-02-01

    Furniture is one of Indonesia's main commodities strategically role in economic growth and employment in Indonesia. In their production process there many wastes resulted, such as such as sawdust, cuttings - pieces of wood, components that do not conform to specifications and the edges of wood from a log. Contrast with requirement of timber for furniture industries, availability of raw material sources decrease because of limited forest areas. Beside that, using electricity and chemical material in furniture production process have impact to environment. This study aim to assess the eco-cost and eco-efficiency ratio of the product so strategic recommendations to improve the eco-efficiency of products can be designed. The results of data processing showed the environmental costs of the furniture production process amount Rp 30.887.84. Eco-efficiency index of furniture products studied was 4,79 with the eco-efficiency ratio of 79,12%. This result means that the measured furniture products already profitable and sustainable, as well as its production process is already fairly efficient. However, improved performance of the production process can still be done to improve the eco-efficiency by minimizing the use of raw materials.

  10. Eco-efficiency Analysis of Furniture Product Using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Ika Rinawati Dyah

    2018-01-01

    Full Text Available Furniture is one of Indonesia’s main commodities strategically role in economic growth and employment in Indonesia. In their production process there many wastes resulted, such as such as sawdust, cuttings - pieces of wood, components that do not conform to specifications and the edges of wood from a log. Contrast with requirement of timber for furniture industries, availability of raw material sources decrease because of limited forest areas. Beside that, using electricity and chemical material in furniture production process have impact to environment. This study aim to assess the eco-cost and eco-efficiency ratio of the product so strategic recommendations to improve the eco-efficiency of products can be designed. The results of data processing showed the environmental costs of the furniture production process amount Rp 30.887.84. Eco-efficiency index of furniture products studied was 4,79 with the eco-efficiency ratio of 79,12%. This result means that the measured furniture products already profitable and sustainable, as well as its production process is already fairly efficient. However, improved performance of the production process can still be done to improve the eco-efficiency by minimizing the use of raw materials.

  11. Thermal expansion

    International Nuclear Information System (INIS)

    Yun, Y.

    2015-01-01

    Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)

  12. Distributed photovoltaic architecture powering a DC bus: Impact of duty cycle and load variations on the efficiency of the generator

    Science.gov (United States)

    Allouache, Hadj; Zegaoui, Abdallah; Boutoubat, Mohamed; Bokhtache, Aicha Aissa; Kessaissia, Fatma Zohra; Charles, Jean-Pierre; Aillerie, Michel

    2018-05-01

    This paper focuses on a photovoltaic generator feeding a load via a boost converter in a distributed PV architecture. The principal target is the evaluation of the efficiency of a distributed photovoltaic architecture powering a direct current (DC) PV bus. This task is achieved by outlining an original way for tracking the Maximum Power Point (MPP) taking into account load variations and duty cycle on the electrical quantities of the boost converter and on the PV generator output apparent impedance. Thereafter, in a given sized PV system, we analyze the influence of the load variations on the behavior of the boost converter and we deduce the limits imposed by the load on the DC PV bus. The simultaneous influences of 1- the variation of the duty cycle of the boost converter and 2- the load power on the parameters of the various components of the photovoltaic chain and on the boost performances are clearly presented as deduced by simulation.

  13. Efficiency and cost optimization of a regenerative Organic Rankine Cycle power plant through the multi-objective approach

    International Nuclear Information System (INIS)

    Gimelli, A.; Luongo, A.; Muccillo, M.

    2017-01-01

    Highlights: • Multi-objective optimization method for ORC design has been addressed. • Trade-off between electric efficiency and overall heat exchangers area is evaluated. • The heat exchangers area was used as objective function to minimize the plant cost. • MDM was considered as organic working fluid for the thermodynamic cycle. • Electric efficiency: 14.1–18.9%. Overall heat exchangers area: 446–1079 m 2 . - Abstract: Multi-objective optimization could be, in the industrial sector, a fundamental strategic approach for defining the target design specifications and operating parameters of new competitive products for the market, especially in renewable energy and energy savings fields. Vector optimization mostly enabled the determination of a set of optimal solutions characterized by different costs, sizes, efficiencies and other key features. The designer can subsequently select the solution with the best compromise between the objective functions for the specific application and constraints. In this paper, a multi-objective optimization problem addressing an Organic Rankine Cycle system is solved with consideration for the electric efficiency and overall heat exchangers area as quantities that should be optimized. In fact, considering that the overall capital cost of the ORC system is dominated by the cost of the heat exchangers rather than that of the pump and turbine, this area is related to the cost of the plant and so it was used to indirectly optimize the economic system performance. For this reason, although cost data have not been used, the heat exchangers area was used as a second objective function to minimize the plant cost. Pareto optimal solutions highlighted a trade-off between the two conflicting objective functions. Octamethyltrisiloxane (MDM) was considered organic working fluid, while the following input parameters were used as decision variables: minimum and maximum pressure of the thermodynamic cycle; superheating and subcooling

  14. High-Efficiency Low-Cost Solar Receiver for Use Ina a Supercritical CO2 Recompression Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Shaun D. [Brayton Energy, LLC, Portsmouth, NH (United States); Kesseli, James [Brayton Energy, LLC, Portsmouth, NH (United States); Nash, James [Brayton Energy, LLC, Portsmouth, NH (United States); Farias, Jason [Brayton Energy, LLC, Portsmouth, NH (United States); Kesseli, Devon [Brayton Energy, LLC, Portsmouth, NH (United States); Caruso, William [Brayton Energy, LLC, Portsmouth, NH (United States)

    2016-04-06

    This project has performed solar receiver designs for two supercritical carbon dioxide (sCO2) power cycles. The first half of the program focused on a nominally 2 MWe power cycle, with a receiver designed for test at the Sandia Solar Thermal Test Facility. This led to an economical cavity-type receiver. The second half of the program focused on a 10 MWe power cycle, incorporating a surround open receiver. Rigorous component life and performance testing was performed in support of both receiver designs. The receiver performance objectives are set to conform to the US DOE goals of 6¢/kWh by 2020 . Key findings for both cavity-type and direct open receiver are highlighted below: A tube-based absorber design is impractical at specified temperatures, pressures and heat fluxes for the application; a plate-fin architecture however has been shown to meet performance and life targets; the $148/kWth cost of the design is significantly less than the SunShot cost target with a margin of 30%; the proposed receiver design is scalable, and may be applied to both modular cavity-type installations as well as large utility-scale open receiver installations; the design may be integrated with thermal storage systems, allowing for continuous high-efficiency electrical production during off-sun hours; costs associated with a direct sCO2 receiver for a sCO2 Brayton power cycle are comparable to those of a typical molten salt receiver; lifetimes in excess of the 90,000 hour goal are achievable with an optimal cell geometry; the thermal performance of the Brayton receiver is significantly higher than the industry standard, and enables at least a 30% efficiency improvement over the performance of the baseline steam-Rankine boiler/cycle system; brayton’s patent-pending quartz tube window provides a greater than five-percent efficiency benefit to the receiver by reducing both convection and radiation losses.

  15. Selective data extension for full-waveform inversion: An efficient solution for cycle skipping

    KAUST Repository

    Wu, Zedong

    2017-12-29

    Standard full-waveform inversion (FWI) attempts to minimize the difference between observed and modeled data. However, this difference is obviously sensitive to the amplitude of observed data, which leads to difficulties because we often do not process data in absolute units and because we usually do not consider density variations, elastic effects, or more complicated physical phenomena. Global correlation methods can remove the amplitude influence for each trace and thus can mitigate such difficulties in some sense. However, this approach still suffers from the well-known cycle-skipping problem, leading to a flat objective function when observed and modeled data are not correlated well enough. We optimize based on maximizing not only the zero-lag global correlation but also time or space lags of the modeled data to circumvent the half-cycle limit. We use a weighting function that is maximum value at zero lag and decays away from zero lag to balance the role of the lags. The resulting objective function is less sensitive to the choice of the maximum lag allowed and has a wider region of convergence compared with standard FWI. Furthermore, we develop a selective function, which passes to the gradient calculation only positive correlations, to mitigate cycle skipping. Finally, the resulting algorithm has better convergence behavior than conventional methods. Application to the Marmousi model indicates that this method converges starting with a linearly increasing velocity model, even with data free of frequencies less than 3.5 Hz. Application to the SEG2014 data set demonstrates the potential of our method.

  16. Efficient theory of dipolar recoupling in solid-state nuclear magnetic resonance of rotating solids using Floquet-Magnus expansion: application on BABA and C7 radiofrequency pulse sequences.

    Science.gov (United States)

    Mananga, Eugene S; Reid, Alicia E; Charpentier, Thibault

    2012-02-01

    This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described using the Floquet theory (FT). Here, we present the first report highlighting the basics of the Floquet-Magnus expansion (FME) scheme and hint at its application on recoupling sequences that excite more efficiently double-quantum coherences, namely BABA and C7 radiofrequency pulse sequences. The use of Λ(n)(t) functions available only in the FME scheme, allows the comparison of the efficiency of BABA and C7 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Design of a high-efficiency seven-port beam splitter using a dual duty cycle grating structure.

    Science.gov (United States)

    Wen, Fung Jacky; Chung, Po Sheun

    2011-07-01

    In this paper, we propose a compact seven-port beam splitter which is constructed using only a single-layer high-density grating with a dual duty cycle structure. The properties of this grating are investigated by a simplified modal method. The diffraction efficiency can be achieved around 10% more than conventional Dammann gratings while the uniformity can still be maintained at less than 1%. The effect of deviations from the design parameters on the performance of the grating is also presented.

  18. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  19. Computational efficiency improvement with Wigner rotation technique in studying atoms in intense few-cycle circularly polarized pulses

    International Nuclear Information System (INIS)

    Yuan, Minghu; Feng, Liqiang; Lü, Rui; Chu, Tianshu

    2014-01-01

    We show that by introducing Wigner rotation technique into the solution of time-dependent Schrödinger equation in length gauge, computational efficiency can be greatly improved in describing atoms in intense few-cycle circularly polarized laser pulses. The methodology with Wigner rotation technique underlying our openMP parallel computational code for circularly polarized laser pulses is described. Results of test calculations to investigate the scaling property of the computational code with the number of the electronic angular basis function l as well as the strong field phenomena are presented and discussed for the hydrogen atom

  20. Ethanol-fueled low temperature combustion: A pathway to clean and efficient diesel engine cycles

    International Nuclear Information System (INIS)

    Asad, Usman; Kumar, Raj; Zheng, Ming; Tjong, Jimi

    2015-01-01

    Highlights: • Concept of ethanol–diesel fueled Premixed Pilot Assisted Combustion (PPAC). • Ultra-low NOx and soot with diesel-like thermal efficiency across the load range. • Close to TDC pilot injection timing for direct combustion phasing control. • Minimum pilot quantity (15% of total energy input) for clean, stable operation. • Defined heat release profile distribution (HRPD) to optimize pilot-ethanol ratio. - Abstract: Low temperature combustion (LTC) in diesel engines offers the benefits of ultra-low NOx and smoke emissions but suffers from lowered energy efficiency due to the high reactivity and low volatility of diesel fuel. Ethanol from renewable biomass provides a viable alternate to the petroleum based transportation fuels. The high resistance to auto-ignition (low reactivity) and its high volatility make ethanol a suitable fuel for low temperature combustion (LTC) in compression-ignition engines. In this work, a Premixed Pilot Assisted Combustion (PPAC) strategy comprising of the port fuel injection of ethanol, ignited with a single diesel pilot injection near the top dead centre has been investigated on a single-cylinder high compression ratio diesel engine. The impact of the diesel pilot injection timing, ethanol to diesel quantity ratio and exhaust gas recirculation on the emissions and efficiency are studied at 10 bar IMEP. With the lessons learnt, successful ethanol–diesel PPAC has been demonstrated up to a load of 18 bar IMEP with ultra-low NOx and soot emissions across the full load range. The main challenge of PPAC is the reduced combustion efficiency especially at low loads; therefore, the authors have presented a combustion control strategy to allow high efficiency, clean combustion across the load range. This work entails to provide a detailed framework for the ethanol-fueled PPAC to be successfully implemented.

  1. Experimental study on Rankine cycle evaporator efficiency intended for exhaust waste heat recovery of a diesel engine

    Directory of Open Access Journals (Sweden)

    Milkov Nikolay

    2017-01-01

    Full Text Available The paper pressents an experimental study of Rankine cycle evaporator efficiency. Water was chosen as the working fluid in the system. The experimental test was conducted on a test bench equipped with a burner charged by compressed fresh air. Generated exhaust gases parameters were previously determined over the diesel engine operating range (28 engine operating points were studied. For each test point the working fluid parameters (flow rate and evaporating pressure were varied. Thus, the enthalpy flow through the heat exchanger was determined. Heat exchanger was designed as 23 helical tubes are inserted. On the basis of the results, it was found out that efficiency varies from 25 % to 51,9 %. The optimal working fluid pressure is 20 bar at most of the operating points while the optimum fluid mass flow rate varies from 2 g/s to 10 g/s.

  2. Field test of radioactive high efficiency filter and filter exchange techniques of fuel cycle examination facility

    International Nuclear Information System (INIS)

    Hwang, Yong Hwa; Lee, Hyung Kwon; Chun, Young Bum; Park, Dae Gyu; Ahn, Sang Bok; Chu, Yong Sun; Kim, Eun Ka.

    1997-12-01

    The development of high efficiency filter was started to protect human beings from the contamination of radioactive particles, toxic gases and bacillus, and its gradual performance increment led to the fabrication of Ultra Low Penetration Air Filter (ULPA) today. The application field of ULPA has been spread not only to the air conditioning of nuclear power facilities, semiconductor industries, life science, optics, medical care and general facilities but also to the core of ultra-precision facilities. Periodic performance test on the filters is essential to extend its life-time through effective maintenance. Especially, the bank test on HEPA filter of nuclear facilities handling radioactive materials is required for environmental safety. Nowadays, the bank test technology has been reached to the utilization of a minimized portable detecting instruments and the evaluation techniques can provide high confidence in the area of particle distribution and leakage test efficiency. (author). 16 refs., 13 tabs., 14 figs

  3. Life cycle analysis of retrofitting with high energy efficiency air-conditioner and fluorescent lamp in existing buildings

    International Nuclear Information System (INIS)

    Techato, Kua-anan; Watts, Daniel J.; Chaiprapat, Sumate

    2009-01-01

    Life cycle analysis of mercury in discarded low energy efficiency fluorescent lamps (36 W) and of HCFC in air-conditioners (12,000 Btu) removed from service has been conducted in this study. The objective was to find out the environmental impact (EDIP 1997 category, waste evaluation) of the products that appear in the waste stream as a result of facility upgrades. The scope of the study starts from retrofitting of the lamps and air-conditioners through recycling and disposal. For a 36 W fluorescent lamp, the bulk waste 1.64E-5 kg, hazardous waste 1.11E-4 kg, radioactive waste 1.09E-9 kg, and slag-ash 6.02E-7 kg occurred at the end of life of the retrofitting cycle. For a 12,000 Btu air-conditioner, the bulk waste 0.58 kg, hazardous waste 0.11 kg, radioactive waste 0.0002 kg, and slag-ash 0.01 kg also occurred at the end of life of the retrofitting cycle. These small amounts become important when viewed at the country level. These quantities imply that the policy makers who deal with hazardous waste should be aware of this waste-generating characteristic before issuing any pertinent policy. Consideration of this characteristic and planning for appropriate waste management methods at the beginning stage will reduce any future problem of contamination by the hazardous waste

  4. Life cycle analysis of retrofitting with high energy efficiency air-conditioner and fluorescent lamp in existing buildings

    Energy Technology Data Exchange (ETDEWEB)

    Techato, Kua-anan [International Postgraduate Programs in Environmental Management (Hazardous Waste Management) and ERI (Energy Research Institute), Chulalongkorn University, Bangkok 10330 (Thailand); Watts, Daniel J. [Otto H. York Center for Environmental Engineering and Science, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Chaiprapat, Sumate [Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla 90112 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management-Satellite Center at Prince of Songkla University (Thailand)

    2009-01-15

    Life cycle analysis of mercury in discarded low energy efficiency fluorescent lamps (36 W) and of HCFC in air-conditioners (12,000 Btu) removed from service has been conducted in this study. The objective was to find out the environmental impact (EDIP 1997 category, waste evaluation) of the products that appear in the waste stream as a result of facility upgrades. The scope of the study starts from retrofitting of the lamps and air-conditioners through recycling and disposal. For a 36 W fluorescent lamp, the bulk waste 1.64E-5 kg, hazardous waste 1.11E-4 kg, radioactive waste 1.09E-9 kg, and slag-ash 6.02E-7 kg occurred at the end of life of the retrofitting cycle. For a 12,000 Btu air-conditioner, the bulk waste 0.58 kg, hazardous waste 0.11 kg, radioactive waste 0.0002 kg, and slag-ash 0.01 kg also occurred at the end of life of the retrofitting cycle. These small amounts become important when viewed at the country level. These quantities imply that the policy makers who deal with hazardous waste should be aware of this waste-generating characteristic before issuing any pertinent policy. Consideration of this characteristic and planning for appropriate waste management methods at the beginning stage will reduce any future problem of contamination by the hazardous waste. (author)

  5. Rapid and Efficient Protein Digestion using Trypsin Coated Magnetic Nanoparticles under Pressure Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoungsoo; Lopez-Ferrer, Daniel; Kim, Byoung Chan; Na, Hyon Bin; Park, Yong Il; Weitz, Karl K.; Warner, Marvin G.; Hyeon, Taeghwan; Lee, Sang-Won; Smith, Richard D.; Kim, Jungbae

    2011-01-01

    Trypsin-coated magnetic nanoparticles (EC-TR/NPs), prepared via a simple crosslinking of the enzyme to magnetic nanoparticles, were highly stable and could be easily captured using a magnet after the digestion was complete. EC-TR/NPs showed a negligible loss of trypsin activity after multiple uses and continuous shaking, while a control sample of covalently-attached trypsin on NPs resulted in a rapid inactivation under the same conditions due to the denaturation and autolysis of trypsin. Digestions were carried out on a single model protein, a five protein mixture, and a whole mouse brain proteome, and also compared for digestion at atmospheric pressure and 37 ºC for 12 h, and in combination with pressure cycling technology (PCT) at room temperature for 1 min. In all cases, the EC-TR/NPs performed equally as well or better than free trypsin in terms of the number of peptide/protein identifications and reproducibility across technical replicates. However, the concomitant use of EC-TR/NPs and PCT resulted in very fast (~1 min) and more reproducible digestions.

  6. Rotary Stirling-Cycle Engine And Generator

    Science.gov (United States)

    Chandler, Joseph A.

    1990-01-01

    Proposed electric-power generator comprises three motor generators coordinated by microprocessor and driven by rotary Stirling-cycle heat engine. Combination offers thermodynamic efficiency of Stirling cycle, relatively low vibration, and automatic adjustment of operating parameters to suit changing load on generator. Rotary Stirling cycle engine converts heat to power via compression and expansion of working gas between three pairs of rotary pistons on three concentric shafts in phased motion. Three motor/generators each connected to one of concentric shafts, can alternately move and be moved by pistons. Microprocessor coordinates their operation, including switching between motor and generator modes at appropriate times during each cycle.

  7. Comparison of second-generation processes for the conversion of sugarcane bagasse to liquid biofuels in terms of energy efficiency, pinch point analysis and Life Cycle Analysis

    International Nuclear Information System (INIS)

    Petersen, A.M.; Melamu, Rethabi; Knoetze, J.H.; Görgens, J.F.

    2015-01-01

    Highlights: • Process evaluation of thermochemical and biological routes for bagasse to fuels. • Pinch point analysis increases overall efficiencies by reducing utility consumption. • Advanced biological route increased efficiency and local environmental impacts. • Thermochemical routes have the highest efficiencies and low life cycle impacts. - Abstract: Three alternative processes for the production of liquid transportation biofuels from sugar cane bagasse were compared, on the perspective of energy efficiencies using process modelling, Process Environmental Assessments and Life Cycle Assessment. Bio-ethanol via two biological processes was considered, i.e. Separate Hydrolysis and Fermentation (Process 1) and Simultaneous Saccharification and Fermentation (Process 2), in comparison to Gasification and Fischer Tropsch synthesis for the production of synthetic fuels (Process 3). The energy efficiency of each process scenario was maximised by pinch point analysis for heat integration. The more advanced bio-ethanol process was Process 2 and it had a higher energy efficiency at 42.3%. Heat integration was critical for the Process 3, whereby the energy efficiency was increased from 51.6% to 55.7%. For both the Process Environmental and Life Cycle Assessment, Process 3 had the least potential for detrimental environmental impacts, due to its relatively high energy efficiency. Process 2 had the greatest Process Environmental Impact due to the intensive use of processing chemicals. Regarding the Life Cycle Assessments, Process 1 was the most severe due to its low energy efficiency

  8. Method for customizing an organic Rankine cycle to a complex heat source for efficient energy conversion, demonstrated on a Fischer Tropsch plant

    International Nuclear Information System (INIS)

    DiGenova, Kevin J.; Botros, Barbara B.; Brisson, J.G.

    2013-01-01

    Highlights: ► Methods for customizing organic Rankine cycles are proposed. ► A set of cycle modifications help to target available heat sources. ► Heat sources with complex temperature–enthalpy profiles can be matched. ► Significant efficiency improvements can be achieved over basic ORC’s. -- Abstract: Organic Rankine cycles (ORCs) provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources into power, where conventional steam power cycles are known to be inefficient. A large processing plant often has multiple low temperature waste heat streams available for conversion to electricity by a low temperature cycle, resulting in a composite heat source with a complex temperature–enthalpy profile. This work presents a set of ORC design concepts: reheat stages, multiple pressure levels, and balanced recuperators; and demonstrates the use of these design concepts as building blocks to create a customized cycle that matches an available heat source. Organic fluids are modeled using a pure substance database. The pinch analysis technique of forming composite curves is applied to analyze the effect of each building block on the temperature–enthalpy profile of the ORC heat requirement. The customized cycle is demonstrated on a heat source derived from a Fischer Tropsch reactor and its associated processes. Analysis shows a steam Rankine cycle can achieve a 20.6% conversion efficiency for this heat source, whereas a simple organic Rankine cycle using hexane as the working fluid can achieve a 20.9% conversion efficiency. If the ORC building blocks are combined into a cycle targeted to match the temperature–enthalpy profile of the heat source, this customized ORC can achieve 28.5% conversion efficiency.

  9. Predictive control strategy of a gas turbine for improvement of combined cycle power plant dynamic performance and efficiency.

    Science.gov (United States)

    Mohamed, Omar; Wang, Jihong; Khalil, Ashraf; Limhabrash, Marwan

    2016-01-01

    This paper presents a novel strategy for implementing model predictive control (MPC) to a large gas turbine power plant as a part of our research progress in order to improve plant thermal efficiency and load-frequency control performance. A generalized state space model for a large gas turbine covering the whole steady operational range is designed according to subspace identification method with closed loop data as input to the identification algorithm. Then the model is used in developing a MPC and integrated into the plant existing control strategy. The strategy principle is based on feeding the reference signals of the pilot valve, natural gas valve, and the compressor pressure ratio controller with the optimized decisions given by the MPC instead of direct application of the control signals. If the set points for the compressor controller and turbine valves are sent in a timely manner, there will be more kinetic energy in the plant to release faster responses on the output and the overall system efficiency is improved. Simulation results have illustrated the feasibility of the proposed application that has achieved significant improvement in the frequency variations and load following capability which are also translated to be improvements in the overall combined cycle thermal efficiency of around 1.1 % compared to the existing one.

  10. Life cycle energy efficiency and environmental impact assessment of bioethanol production from sweet potato based on different production modes

    Science.gov (United States)

    Zhang, Jun; Jia, Chunrong; Wu, Yi; Xi, Beidou; Wang, Lijun; Zhai, Youlong

    2017-01-01

    The bioethanol is playing an increasingly important role in renewable energy in China. Based on the theory of circular economy, integration of different resources by polygeneration is one of the solutions to improve energy efficiency and to reduce environmental impact. In this study, three modes of bioethanol production were selected to evaluate the life cycle energy efficiency and environmental impact of sweet potato-based bioethanol. The results showed that, the net energy ratio was greater than 1 and the value of net energy gain was positive in the three production modes, in which the maximum value appeared in the circular economy mode (CEM). The environment emission mainly occurred to bioethanol conversion unit in the conventional production mode (CPM) and the cogeneration mode (CGM), and eutrophication potential (EP) and global warming potential (GWP) were the most significant environmental impact category. While compared with CPM and CGM, the environmental impact of CEM significantly declined due to increasing recycling, and plant cultivation unit mainly contributed to EP and GWP. And the comprehensive evaluation score of environmental impact decreased by 73.46% and 23.36%. This study showed that CEM was effective in improving energy efficiency, especially in reducing the environmental impact, and it provides a new method for bioethanol production. PMID:28672044

  11. Life cycle energy efficiency and potentials of biodiesel production from palm oil in Thailand

    International Nuclear Information System (INIS)

    Papong, Seksan; Chom-In, Tassaneewan; Noksa-nga, Soottiwan

    2010-01-01

    Biodiesel production from palm oil has been considered one of the most promising renewable resources for transportation fuel in Thailand. The objective of this study was to analyze the energy performance and potential of the palm oil methyl ester (PME) production in Thailand. The PME system was divided into four stages: the oil palm plantation, transportation, crude palm oil (CPO) production, and transesterification into biodiesel. The results showed that the highest fossil-based energy consumption was in the transesterification process, followed by the plantation, transportation, and CPO production. A net energy value and net energy ratio (NER) of 24.0 MJ/FU and 2.5, respectively, revealed that the PME system was quite energy efficient. In addition, if all the by-products from the CPO production (such as empty fruit branches, palm kernel shells, and biogas) were considered in terms of energy sources, the NER would be more than 3.0. The PME can be a viable substitute for diesel and can decrease the need for oil imports. Based on B100 demand in 2008, PME can be substituted for 478 million liters of diesel. Moreover, with palm oil output potential and B5 implementation, it can be substituted for 1134 million liters of diesel. (author)

  12. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  13. Systems Analyses of Advanced Brayton Cycles For High Efficiency Zero Emission Plants

    Energy Technology Data Exchange (ETDEWEB)

    A. D. Rao; J. Francuz; H. Liao; A. Verma; G. S. Samuelsen

    2006-11-01

    Table 1 shows that the systems efficiency, coal (HHV) to power, is 35%. Table 2 summarizes the auxiliary power consumption within the plant. Thermoflex was used to simulate the power block and Aspen Plus the balance of plant. The overall block flow diagram is presented in Figure A1.3-1 and the key unit process flow diagrams are shown in subsequent figures. Stream data are given in Table A1.3-1. Equipment function specifications are provided in Tables A1.3-2 through 17. The overall plant scheme consists of a cryogenic air separation unit supplying 95% purity O{sub 2} to GE type high pressure (HP) total quench gasifiers. The raw gas after scrubbing is treated in a sour shift unit to react the CO with H{sub 2}O to form H{sub 2} and CO{sub 2}. The gas is further treated to remove Hg in a sulfided activated carbon bed. The syngas is desulfurized and decarbonized in a Selexol acid gas removal unit and the decarbonized syngas after humidification and preheat is fired in GE 7H type steam cooled gas turbines. Intermediate pressure (IP) N{sub 2} from the ASU is also supplied to the combustors of the gas turbines as additional diluent for NOx control. A portion of the air required by the ASU is extracted from the gas turbines. The plant consists of the following major process units: (1) Air Separation Unit (ASU); (2) Gasification Unit; (3) CO Shift/Low Temperature Gas Cooling (LTGC) Unit; (4) Acid Gas Removal Unit (AGR) Unit; (5) Fuel Gas Humidification Unit; (6) Carbon Dioxide Compression/Dehydration Unit; (7) Claus Sulfur Recovery/Tail Gas Treating Unit (SRU/TGTU); and (8) Power Block.

  14. A Wireless Sensor Network with Enhanced Power Efficiency and Embedded Strain Cycle Identification for Fatigue Monitoring of Railway Bridges

    Directory of Open Access Journals (Sweden)

    Glauco Feltrin

    2016-01-01

    Full Text Available Wireless sensor networks have been shown to be a cost-effective monitoring tool for many applications on civil structures. Strain cycle monitoring for fatigue life assessment of railway bridges, however, is still a challenge since it is data intensive and requires a reliable operation for several weeks or months. In addition, sensing with electrical resistance strain gauges is expensive in terms of energy consumption. The induced reduction of battery lifetime of sensor nodes increases the maintenance costs and reduces the competitiveness of wireless sensor networks. To overcome this drawback, a signal conditioning hardware was designed that is able to significantly reduce the energy consumption. Furthermore, the communication overhead is reduced to a sustainable level by using an embedded data processing algorithm that extracts the strain cycles from the raw data. Finally, a simple software triggering mechanism that identifies events enabled the discrimination of useful measurements from idle data, thus increasing the efficiency of data processing. The wireless monitoring system was tested on a railway bridge for two weeks. The monitoring system demonstrated a good reliability and provided high quality data.

  15. Energy efficiency assessment by life cycle simulation of cassava-based fuel ethanol for automotive use in Chinese Guangxi context

    International Nuclear Information System (INIS)

    Yu Suiran; Tao Jing

    2009-01-01

    Interest has been renewed in bio-ethanol products for their contributions in moderating oil crises. So far, most research on bio-ethanol in China is based on pilot-level experimental studies. But this work only discloses information regarding material balances and reached yields without any further energy analysis. This paper aims to assess the energy efficiency of the cassava-based fuel ethanol (KFE) product from southwest China. For the purpose of a life cycle study of the KFE product as replacement transportation fuel, the study chose a 'vehicle fueled by cassava-based E10 (a blend of 10% ethanol and 90% gasoline by volume)' as the subject and accordingly defined the scope of this study. Then, the life cycle model of the KFE product concerning energetically relevant in- and outputs was built. Due to variations in data collected, as well as some estimates and assumptions used in this study, the Monte Carlo method was introduced to develop the statistical dispersion of calculated outputs of the assessing model. Assessment results show that, within the boundary of this study, KFE has a positive net energy value, with an energy ratio of around 0.70 MJ/MJ, which means 7 MJ into the processing for each MJ of KFE output

  16. Iron control on global productivity: an efficient inverse model of the ocean's coupled phosphate and iron cycles.

    Science.gov (United States)

    Pasquier, B.; Holzer, M.; Frants, M.

    2016-02-01

    We construct a data-constrained mechanistic inverse model of the ocean's coupled phosphorus and iron cycles. The nutrient cycling is embedded in a data-assimilated steady global circulation. Biological nutrient uptake is parameterized in terms of nutrient, light, and temperature limitations on growth for two classes of phytoplankton that are not transported explicitly. A matrix formulation of the discretized nutrient tracer equations allows for efficient numerical solutions, which facilitates the objective optimization of the key biogeochemical parameters. The optimization minimizes the misfit between the modelled and observed nutrient fields of the current climate. We systematically assess the nonlinear response of the biological pump to changes in the aeolian iron supply for a variety of scenarios. Specifically, Green-function techniques are employed to quantify in detail the pathways and timescales with which those perturbations are propagated throughout the world oceans, determining the global teleconnections that mediate the response of the global ocean ecosystem. We confirm previous findings from idealized studies that increased iron fertilization decreases biological production in the subtropical gyres and we quantify the counterintuitive and asymmetric response of global productivity to increases and decreases in the aeolian iron supply.

  17. Thermoeconomic analysis of a novel zero-CO{sub 2}-emission high-efficiency power cycle using LNG coldness

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Meng [China National Institute of Standardization, Beijing 100088 (China); Lior, Noam [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315 (United States); Zhang, Na; Han, Wei [Institute of Engineering Thermophysics, Chinese Academy of Sciences, P.O. Box 2706, Beijing 100190 (China)

    2009-11-15

    This paper presents a thermoeconomic analysis aimed at the optimization of a novel zero-CO{sub 2} and other emissions and high-efficiency power and refrigeration cogeneration system, COOLCEP-S (Patent pending), which uses the liquefied natural gas (LNG) coldness during its revaporization. It was predicted that at the turbine inlet temperature (TIT) of 900 C, the energy efficiency of the COOLCEP-S system reaches 59%. The thermoeconomic analysis determines the specific cost, the cost of electricity, the system payback period and the total net revenue. The optimization started by performing a thermodynamic sensitivity analysis, which has shown that for a fixed TIT and pressure ratio, the pinch point temperature difference in the recuperator, {delta}T{sub p1}, and that in the condenser, {delta}T{sub p2} are the most significant unconstrained variables to have a significant effect on the thermal performance of novel cycle. The payback period of this novel cycle (with fixed net power output of 20 MW and plant life of 40 years) was {proportional_to}5.9 years at most, and would be reduced to {proportional_to}3.1 years at most when there is a market for the refrigeration byproduct. The capital investment cost of the economically optimized plant is estimated to be about 1000 /kWe, and the cost of electricity is estimated to be 0.34-0.37 CNY/kWh ({proportional_to}0.04 USD/kWh). These values are much lower than those of conventional coal power plants being installed at this time in China, which, in contrast to COOLCEP-S, do produce CO{sub 2} emissions at that. (author)

  18. Thermoeconomic analysis of a novel zero-CO{sub 2}-emission high-efficiency power cycle using LNG coldness

    Energy Technology Data Exchange (ETDEWEB)

    Liu Meng [China National Institute of Standardization, Beijing 100088 (China)], E-mail: liumeng@cnis.gov.cn; Lior, Noam [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315 (United States)], E-mail: lior@seas.upenn.edu; Zhang Na; Han Wei [Institute of Engineering Thermophysics, Chinese Academy of Sciences, P.O. Box 2706, Beijing 100190 (China)

    2009-11-15

    This paper presents a thermoeconomic analysis aimed at the optimization of a novel zero-CO{sub 2} and other emissions and high-efficiency power and refrigeration cogeneration system, COOLCEP-S (Patent pending), which uses the liquefied natural gas (LNG) coldness during its revaporization. It was predicted that at the turbine inlet temperature (TIT) of 900 deg. C, the energy efficiency of the COOLCEP-S system reaches 59%. The thermoeconomic analysis determines the specific cost, the cost of electricity, the system payback period and the total net revenue. The optimization started by performing a thermodynamic sensitivity analysis, which has shown that for a fixed TIT and pressure ratio, the pinch point temperature difference in the recuperator, {delta}T{sub p1}, and that in the condenser, {delta}T{sub p2} are the most significant unconstrained variables to have a significant effect on the thermal performance of novel cycle. The payback period of this novel cycle (with fixed net power output of 20 MW and plant life of 40 years) was {approx}5.9 years at most, and would be reduced to {approx}3.1 years at most when there is a market for the refrigeration byproduct. The capital investment cost of the economically optimized plant is estimated to be about 1000 $/kWe, and the cost of electricity is estimated to be 0.34-0.37 CNY/kWh ({approx}0.04 $/kWh). These values are much lower than those of conventional coal power plants being installed at this time in China, which, in contrast to COOLCEP-S, do produce CO{sub 2} emissions at that.

  19. Thermoeconomic analysis of a novel zero-CO2-emission high-efficiency power cycle using LNG coldness

    International Nuclear Information System (INIS)

    Liu, Meng; Lior, Noam; Zhang, Na; Han, Wei

    2009-01-01

    This paper presents a thermoeconomic analysis aimed at the optimization of a novel zero-CO 2 and other emissions and high-efficiency power and refrigeration cogeneration system, COOLCEP-S (Patent pending), which uses the liquefied natural gas (LNG) coldness during its revaporization. It was predicted that at the turbine inlet temperature (TIT) of 900 C, the energy efficiency of the COOLCEP-S system reaches 59%. The thermoeconomic analysis determines the specific cost, the cost of electricity, the system payback period and the total net revenue. The optimization started by performing a thermodynamic sensitivity analysis, which has shown that for a fixed TIT and pressure ratio, the pinch point temperature difference in the recuperator, (delta)T p1 , and that in the condenser, (delta)T p2 are the most significant unconstrained variables to have a significant effect on the thermal performance of novel cycle. The payback period of this novel cycle (with fixed net power output of 20 MW and plant life of 40 years) was ∝5.9 years at most, and would be reduced to ∝3.1 years at most when there is a market for the refrigeration byproduct. The capital investment cost of the economically optimized plant is estimated to be about 1000 /kWe, and the cost of electricity is estimated to be 0.34-0.37 CNY/kWh (∝0.04 USD/kWh). These values are much lower than those of conventional coal power plants being installed at this time in China, which, in contrast to COOLCEP-S, do produce CO 2 emissions at that. (author)

  20. Expansion dynamics

    International Nuclear Information System (INIS)

    Knoll, J.

    1985-10-01

    A quantum dynamical model is suggested which describes the expansion and disassembly phase of highly excited compounds formed in energetic heavy-ion collisions. First applications in two space and one time dimensional model world are discussed and qualitatively compared to standard freeze-out concepts. (orig.)

  1. expansion method

    Indian Academy of Sciences (India)

    of a system under investigation is to model the system in terms of some ... The organization of the paper is as follows: In §2, a brief account of the (G /G)- expansion ...... It is interesting to note that from the general results, one can easily recover.

  2. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  3. Efficient algorithms for construction of recurrence relations for the expansion and connection coefficients in series of Al-Salam-Carlitz I polynomials

    International Nuclear Information System (INIS)

    Doha, E H; Ahmed, H M

    2005-01-01

    Two formulae expressing explicitly the derivatives and moments of Al-Salam-Carlitz I polynomials of any degree and for any order in terms of Al-Salam-Carlitz I themselves are proved. Two other formulae for the expansion coefficients of general-order derivatives D p q f(x), and for the moments x l D p q f(x), of an arbitrary function f(x) in terms of its original expansion coefficients are also obtained. Application of these formulae for solving q-difference equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Al-Salam-Carlitz I polynomials and any system of basic hypergeometric orthogonal polynomials, belonging to the q-Hahn class, is described

  4. Expansion joints for LMFBR

    International Nuclear Information System (INIS)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1980-01-01

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of the development reviewed. Large Na (sodium)-heat transfer systems require a lot of valuable space if the component lay-out does not include compensation devices. So, in order to condense the spatial requirement as much as possible, expansion joints must be integrated into the pipe system. There are two basic types to suit the purpose: axial expansion joints and angular expansion joints. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows. Expansion joints must be designed and mounted in a manner to completely withstand seismic forces. The design must exclude any damage to the bellows during intermittent operations, that is, when sodium is drained the bellows' folds must be completely empty; otherwise residual solidified sodium could destroy the bellows when restarting. The expansion joints must be engineered on the basis of the following design data for the secondary system of the SNR project: working pressure: 16 bar; failure mode pressure: 5 events; failure mode: 5 sec., 28.5 bar, 520 deg. C; working temperature: 520 deg. C; temperature transients: 30 deg. C/sec.; service life: 200,000 h; number of load cycles: 10 4 ; material: 1.4948 or 1.4919; layer thickness of folds: 0.5 mm; angular deflection (DN 800): +3 deg. C or; axial expansion absorption (DN 600): ±80 mm; calculation: ASME class. The bellows' development work is not handled within this scope. The bellows are supplied by leading manufacturers, and warrant highest quality. Multiple bellows were selected on the basis of maximum elasticity - a property

  5. How Reducing was the Late Devonian Ocean? The Role of Extensive Expansion of Anoxia in Marine Biogeochemical Cycles of Redox Sensitive Metals.

    Science.gov (United States)

    Sahoo, S. K.; Jin, H.

    2017-12-01

    The evolution of Earth's biogeochemical cycles is intimately linked to the oxygenation of the oceans and atmosphere. The Late Devonian is no exception as its characterized with mass extinction and severe euxinia. Here we use concentrations of Molybdenum (Mo), Vanadium (V), Uranium (U) and Chromium (Cr) in organic rich black shales from the Lower Bakken Formation of the Williston Basin, to explore the relationship between extensive anoxia vs. euxinia and it's relation with massive release of oxygen in the ocean atmosphere system. XRF data from 4 core across the basin shows that modern ocean style Mo, U and Cr enrichments are observed throughout the Lower Bakken Formation, yet V is not enriched until later part of the formation. Given the coupling between redox-sensitive-trace element cycles and ocean redox, various models for Late Devonian ocean chemistry imply different effects on the biogeochemical cycling of major and trace nutrients. Here, we examine the differing redox behavior of molybdenum and vanadium under an extreme anoxia and relatively low extent of euxinia. The model suggests that Late Devonian was perhaps extensively anoxic- 40-50% compared to modern seafloor area, and a very little euxinia. Mo enrichments extend up to 500 p.p.m. throughout the section, representative of a modern reducing ocean. However, coeval low V enrichments only support towards anoxia, where anoxia is a source of V, and a sink for Mo. Our model suggests that the oceanic V reservoir is extremely sensitive to perturbations in the extent of anoxic condition, particularly during post glacial times.

  6. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 9: Closed-cycle MHD. [energy conversion efficiency of electric power plants using magnetohydrodynamics

    Science.gov (United States)

    Tsu, T. C.

    1976-01-01

    A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.

  7. Eco-efficient production of spring barley in a changed climate: A Life Cycle Assessment including primary data from future climate scenarios

    DEFF Research Database (Denmark)

    Niero, Monia; Ingvordsen, Cathrine Heinz; Peltonen-Sainio, Pirjo

    2015-01-01

    The paper has two main objectives: (i) to assess the eco-efficiency of spring barley cultivation for malting in Denmark in a future changed climate (700 ppm [CO2] and +5 °C) through Life Cycle Assessment (LCA) and (ii) to compare alternative future cultivation scenarios, both excluding and includ......The paper has two main objectives: (i) to assess the eco-efficiency of spring barley cultivation for malting in Denmark in a future changed climate (700 ppm [CO2] and +5 °C) through Life Cycle Assessment (LCA) and (ii) to compare alternative future cultivation scenarios, both excluding...

  8. Transpiration efficiency over an annual cycle, leaf gas exchange and wood carbon isotope ratio of three tropical tree species.

    Science.gov (United States)

    Cernusak, Lucas A; Winter, Klaus; Aranda, Jorge; Virgo, Aurelio; Garcia, Milton

    2009-09-01

    Variation in transpiration efficiency (TE) and its relationship with the stable carbon isotope ratio of wood was investigated in the saplings of three tropical tree species. Five individuals each of Platymiscium pinnatum (Jacq.) Dugand, Swietenia macrophylla King and Tectona grandis Linn. f. were grown individually in large (760 l) pots over 16 months in the Republic of Panama. Cumulative transpiration was determined by repeatedly weighing the pots with a pallet truck scale. Dry matter production was determined by destructive harvest. The TE, expressed as experiment-long dry matter production divided by cumulative water use, averaged 4.1, 4.3 and 2.9 g dry matter kg(-1) water for P. pinnatum, S. macrophylla and T. grandis, respectively. The TE of T. grandis was significantly lower than that of the other two species. Instantaneous measurements of the ratio of intercellular to ambient CO(2) partial pressures (c(i)/c(a)), taken near the end of the experiment, explained 66% of variation in TE. Stomatal conductance was lower in S. macrophylla than in T. grandis, whereas P. pinnatum had similar stomatal conductance to T. grandis, but with a higher photosynthetic rate. Thus, c(i)/c(a) and TE appeared to vary in response to both stomatal conductance and photosynthetic capacity. Stem-wood delta(13)C varied over a relatively narrow range of just 2.2 per thousand, but still explained 28% of variation in TE. The results suggest that leaf-level processes largely determined variation among the three tropical tree species in whole-plant water-use efficiency integrated over a full annual cycle.

  9. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 4: Open recuperated and bottomed gas turbine cycles. [performance prediction and energy conversion efficiency of gas turbines in electric power plants (thermodynamic cycles)

    Science.gov (United States)

    Amos, D. J.; Grube, J. E.

    1976-01-01

    Open-cycle recuperated gas turbine plant with inlet temperatures of 1255 to 1644 K (1800 to 2500 F) and recuperators with effectiveness values of 0, 70, 80 and 90% are considered. A 1644 K (2500 F) gas turbine would have a 33.5% plant efficiency in a simple cycle, 37.6% in a recuperated cycle and 47.6% when combined with a sulfur dioxide bottomer. The distillate burning recuperated plant was calculated to produce electricity at a cost of 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost $170 to 200 $/kW, the open cycle gas turbine plant should see duty for peaking and intermediate load duty.

  10. Selected Issues of the Indicating Measurements in a Spark Ignition Engine with an Additional Expansion Process

    Directory of Open Access Journals (Sweden)

    Marcin Noga

    2017-03-01

    Full Text Available The paper presents the results of research on the turbocharged spark ignition engine with additional exhaust expansion in a separate cylinder, which is commonly known as the five-stroke engine. The research engine has been constructed based on the four cylinder engine in which two outer cylinders work as the fired cylinders, while two internally connected inner cylinders constitute the volume of the additional expansion process. The engine represents a powertrain realizing an ultra-expansion cycle. The purpose of the study was to find an effective additional expansion process in the five-stroke engine. Cylinder-pressure indicating measurements were carried out for one of the fired cylinders and the additional expansion cylinder. The study was performed for over 20 different points on the engine operation map. This allowed us to determine a dependence between the pressure indicated in the fired cylinders and in the additional expansion cylinders. A function of the mean pressure indicated in the additional expansion cylinder versus a brake mean effective pressure was also presented. This showed a load threshold from which the work of the cylinders of additional expansion produced benefits for the output of the experimental engine. The issues of mechanical efficiency and effective efficiency of this engine were also discussed.

  11. Dynamic Contractility and Efficiency Impairments in Stretch-Shortening Cycle Are Stretch-Load-Dependent After Training-Induced Muscle Damage

    NARCIS (Netherlands)

    Vaczi, Mark; Racz, Levente; Hortobagyi, Tibor; Tihanyi, Jozsef

    Vaczi, M, Racz, L, Hortobagyi, T, and Tihanyi, J. Dynamic contractility and efficiency impairments in stretch-shortening cycle are stretch-load-dependent after training-induced muscle damage. J Strength Cond Res 27(8): 2171-2179, 2013To determine the acute task and stretch-load dependency of

  12. [Benefits of nursing care service in the assisted reproduction clinic to self-cycle-management and self-efficiency of infertility patients].

    Science.gov (United States)

    Li, Xiao-Qin; Sun, Chao-Feng; Guo, Mei

    2017-06-01

    To investigate the benefits of nursing care service in the assisted reproduction clinic to self-cycle-management and self-efficiency of the outpatients with infertility. We randomly divided 600 females preliminarily diagnosed with infertility into a control and an experimental group, 288 in the former and 285 in the latter group excluding those whose husbands had azoospermia. For the women patients of the experimental group, we conducted nursing care intervention concerning related knowledge, skills, diet, excise, medication, and psychology, by one-to-one consultation, individualized or group communication, establishing files, telephone follow-up, and wechat guidance. After 3 months of intervention, we compared the compliance of medical visits, effectiveness of cycle management, sense of self-efficiency, satisfaction, and anxiety score between the two groups of patients. In comparison with the controls, the patients of the experimental group showed significantly better knowledge about assisted reproduction and higher effectiveness of self-cycle-management, self-efficiency, and satisfaction (P <0.05), but a markedly lower degree of anxiety (P <0.05). Nursing care service in the assisted reproduction clinic can improve the compliance of medical visits, effectiveness of self-cycle-management, self-efficiency, and satisfaction and reduce the anxiety of the patients.

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  14. Research of impact of kind resuperheat and structure of system regenerative feed water to thermodynamic efficiency of cycle with steam-coolant reactor

    Directory of Open Access Journals (Sweden)

    Maykova Svetlana

    2017-01-01

    Full Text Available The first key problems of modern nuclear reactors are inability of closed nuclear cycle, problems with spent nuclear fuel, poor effectiveness of nuclear fuel and heat-exchange equipment usage. Dealing with problems consists in usage of fast-neutron reactors with steam coolant. Scientific men analyzed neutron-physical processes in steam-cooled fast reactor and consulted that creation of the reactor is viable. In consequence of low steam activation a single-loop steam cycle may be create. The cycle is easy and fool-proof. Core thermomechanical equipment has mastered and has relatively low metal content. Results of calculation are showing that nuclear unit with steam-coolant fast neutron reactor is more efficient than widely used unit with reactor VVER. Usage of simple scheme with four regenerative feedwater heaters the absolute efficiency ratio is more than 43%.

  15. NERI Quarterly Progress Report -- April 1 - June 30, 2005 -- Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    International Nuclear Information System (INIS)

    Chang Oh

    2005-01-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas-Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future

  16. FY-05 Second Quarter Report On Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    International Nuclear Information System (INIS)

    Chang Oh

    2005-01-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas-Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future

  17. Experimental Investigation of the Performance of a Hermetic Screw-Expander Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Sung-Wei Hsu

    2014-09-01

    Full Text Available In this study, the authors experimentally investigate the performance of the organic Rankine cycle (ORC and screw expander under the influence of supply pressure and pressure ratio over the expander. Three tests were performed with expander pressure ratios of 2.4–3.5, 3.0–4.6, and 3.3–6.1, which cover the over-expansion and under-expansion operating modes. The test results show a maximum expander isentropic efficiency of 72.4% and a relative cycle efficiency of 10.5% at an evaporation temperature of 101 °C and condensation temperature of 45 °C. At a given pressure ratio over the expander, a higher supply pressure to the expander causes a higher expander isentropic efficiency and higher cycle efficiency in the over-expansion mode. However, in the under-expansion mode, the higher supply pressure results in a lower expander isentropic efficiency and adversely affects the cycle efficiency. The results also show that under the condition of operation at a given pressure ratio, a higher supply pressure yields a larger power output owing to the increased mass flow rate at the higher supply pressure. The study results demonstrate that a screw-expander ORC can be operated with a wide range of heat sources and heat sinks with satisfactory cycle efficiency.

  18. A systematic method to customize an efficient organic Rankine cycle (ORC) to recover waste heat in refineries

    International Nuclear Information System (INIS)

    Yu, Haoshui; Feng, Xiao; Wang, Yufei; Biegler, Lorenz T.; Eason, John

    2016-01-01

    Highlights: • Multiple waste heat streams in refinery are recovered for an ORC using a hot water intermediate. • WHCC and GCC are used to identify opportunities to save utility and/or upgrade waste heat. • The methods consider the interaction between the HEN and ORC in an integrated manner. - Abstract: Organic Rankine cycles (ORCs) convert low temperature waste heat into power. When there are multiple waste heat sources in a refinery, operability and safety considerations may make it more practical to use hot water as the medium to recover waste heat. The hot water stream can then release the heat to the organic working fluid in an ORC system. In this paper, how to customize an efficient ORC for a heat exchanger network (HEN) to optimally recover multiple strands of waste heat is investigated. Because the heat exchanger network structure, the hot water loop, and ORC system interact with each other, the coordination and synthesis of these systems ought to be considered simultaneously to maximize the energy performance. A methodology is proposed using the waste heat composite curve (WHCC) and grand composite curve (GCC) to diagnose inefficiencies in an existing heat exchanger network. In addition, the WHCC can be used to solve the problem of the tradeoff between waste heat quality and quantity recovered with an intermediate stream. WHCCs are classified into two types, and procedures for designing the recovery network for each type are presented while considering the interaction with working fluid selection. The methods proposed in this paper can help engineers diagnose problems with the original heat exchanger network, and determine the flowrate of hot water, the structure of the waste heat recovery network, the best working fluid and the operating conditions of ORC system in an integrated manner. The ideas are applied to an illustrative case study in collaboration with Sinopec. The case study shows the effectiveness of this method and compares different

  19. ESTIMATION OF LONG-TERM INVESTMENT PROJECTS WITH ENERGY-EFFICIENT SOLUTIONS BASED ON LIFE CYCLE COSTS INDICATOR

    Directory of Open Access Journals (Sweden)

    Bazhenov Viktor Ivanovich

    2015-09-01

    Full Text Available The starting stage of the tender procedures in Russia with the participation of foreign suppliers dictates the feasibility of the developments for economical methods directed to comparison of technical solutions on the construction field. The article describes the example of practical Life Cycle Cost (LCC evaluations under respect of Present Value (PV determination. These create a possibility for investor to estimate long-term projects (indicated as 25 years as commercially profitable, taking into account inflation rate, interest rate, real discount rate (indicated as 5 %. For economic analysis air-blower station of WWTP was selected as a significant energy consumer. Technical variants for the comparison of blower types are: 1 - multistage without control, 2 - multistage with VFD control, 3 - single stage double vane control. The result of LCC estimation shows the last variant as most attractive or cost-effective for investments with economy of 17,2 % (variant 1 and 21,0 % (variant 2 under adopted duty conditions and evaluations of capital costs (Cic + Cin with annual expenditure related (Ce+Co+Cm. The adopted duty conditions include daily and seasonal fluctuations of air flow. This was the reason for the adopted energy consumption as, kW∙h: 2158 (variant 1,1743...2201 (variant 2, 1058...1951 (variant 3. The article refers to Europump guide tables in order to simplify sophisticated factors search (Cp /Cn, df, which can be useful for economical analyses in Russia. Example of evaluations connected with energy-efficient solutions is given, but this reference involves the use of materials for the cases with resource savings, such as all types of fuel. In conclusion follows the assent to use LCC indicator jointly with the method of determining discounted cash flows, that will satisfy the investor’s need for interest source due to technical and economical comparisons.

  20. Sustainability Efficiency Factor: Measuring Sustainability in Advanced Energy Systems through Exergy, Exergoeconomic, Life Cycle, and Economic Analyses

    Science.gov (United States)

    Boldon, Lauren

    The Encyclopedia of Life Support Systems defines sustainability or industrial ecology as "the wise use of resources through critical attention to policy, social, economic, technological, and ecological management of natural and human engineered capital so as to promote innovations that assure a higher degree of human needs fulfilment, or life support, across all regions of the world, while at the same time ensuring intergenerational equity" (Encyclopedia of Life Support Systems 1998). Developing and integrating sustainable energy systems to meet growing energy demands is a daunting task. Although the technology to utilize renewable energies is well understood, there are limited locations which are ideally suited for renewable energy development. Even in areas with significant wind or solar availability, backup or redundant energy supplies are still required during periods of low renewable generation. This is precisely why it would be difficult to make the switch directly from fossil fuel to renewable energy generation. A transition period in which a base-load generation supports renewables is required, and nuclear energy suits this need well with its limited life cycle emissions and fuel price stability. Sustainability is achieved by balancing environmental, economic, and social considerations, such that energy is produced without detriment to future generations through loss of resources, harm to the environment, etcetera. In essence, the goal is to provide future generations with the same opportunities to produce energy that the current generation has. This research explores sustainability metrics as they apply to a small modular reactor (SMR)-hydrogen production plant coupled with wind energy and storage technologies to develop a new quantitative sustainability metric, the Sustainability Efficiency Factor (SEF), for comparison of energy systems. The SEF incorporates the three fundamental aspects of sustainability and provides SMR or nuclear hybrid energy system

  1. Railway networks 2025/2030. Expansion concept for an efficient rail cargo traffic in Germany; Schienennetz 2025/2030. Ausbaukonzeption fuer einen leistungsfaehigen Schienengueterverkehr in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Holzhey, Michael [KCW GmbH, Berlin (Germany)

    2010-08-15

    This study investigated the need for the construction of new railway lines and expansion of the existing railway network in Germany. The target to be achieved was based on the UBA strategy of being able to absorb 213 billion tkm on the rail by 2025. The time factor is not really that important, however; what counts is the selection of a target that forces all parties concerned to make infrastructural plans and think ahead if they are convinced in principle of the advantages of railway cargo transport. (orig.)

  2. Thermodynamic analysis and system design of a novel split cycle engine concept

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert E.; Heikal, Morgan R.

    2016-01-01

    The split cycle engine is a new reciprocating internal combustion engine with a potential of a radical efficiency improvement. In this engine, the compression and combustion–expansion processes occur in different cylinders. In the compression cylinder, the charge air is compressed through a quasi-isothermal process by direct cooling of the air. The high pressure air is then heated in a recuperator using the waste heat of exhaust gas before induction to the combustion cylinder. The combustion process occurs during the expansion stroke, in a quasi-isobaric process. In this paper, a fundamental theoretical cycle analysis and one-dimensional engine simulation of the split cycle engine was undertaken. The results show that the thermal efficiency (η) is mainly decided by the CR (compression ratio) and ER (expansion ratio), the regeneration effectiveness (σ), and the temperature rising ratio (N). Based on the above analysis, a system optimization of the engine was conducted. The results showed that by increasing CR from 23 to 25, the combustion and recuperation processes could be improved. By increasing the expansion ratio to 26, the heat losses during the gas exchange stroke were further reduced. Furthermore, the coolant temperatures of the compression and expansion chambers can be controlled separately to reduce the wall heat transfer losses. Compared to a conventional engine, a 21% total efficiency improvement was achieved when the split cycle was applied. It was concluded that through the system optimization, a total thermal efficiency of 53% can be achieved on split cycle engine. - Highlights: • Fundamental mechanism of the split cycle engine is investigated. • The key affecting factors of the thermodynamic cycle efficiency are identified. • The practical efficiency of split cycle applying on diesel engine is analysed. • The design optimization on the split cycle engine concept is conducted.

  3. Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chin-Hsiang; Yu, Ying-Ju [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, Ta-Shieh Road, Tainan 70101, Taiwan (China)

    2010-11-15

    This study is aimed at development of a numerical model for a beta-type Stirling engine with rhombic-drive mechanism. By taking into account the non-isothermal effects, the effectiveness of the regenerative channel, and the thermal resistance of the heating head, the energy equations for the control volumes in the expansion chamber, the compression chamber, and the regenerative channel can be derived and solved. Meanwhile, a fully developed flow velocity profile in the regenerative channel, in terms of the reciprocating velocity of the displacer and the instantaneous pressure difference between the expansion and the compression chambers, is derived for calculation of the mass flow rate through the regenerative channel. In this manner, the internal irreversibility caused by pressure difference in the two chambers and the viscous shear effects due to the motion of the reciprocating displacer on the fluid flow in the regenerative channel gap are included. Periodic variation of pressures, volumes, temperatures, masses, and heat transfers in the expansion and the compression chambers are predicted. A parametric study of the dependence of the power output and thermal efficiency on the geometrical and physical parameters, involving regenerative gap, distance between two gears, offset distance from the crank to the center of gear, and the heat source temperature, has been performed. (author)

  4. Thermodynamic and economic studies of two new high efficient power-cooling cogeneration systems based on Kalina and absorption refrigeration cycles

    International Nuclear Information System (INIS)

    Rashidi, Jouan; Ifaei, Pouya; Esfahani, Iman Janghorban; Ataei, Abtin; Yoo, Chang Kyoo

    2016-01-01

    Highlights: • Proposing two new power and cooling cogeneration systems based on absorption chillers and Kalina cycles. • Model-based comparison through thermodynamic and economic standpoints. • Investigating sensitivity of system performance and costs to the key parameters. • Reducing total annual costs of the base system up to 8% by cogeneration. • Increasing thermal efficiency up to 4.9% despite of cooling generation. - Abstract: Two new power and cooling cogeneration systems based on Kalina cycle (KC) and absorption refrigeration cycle (AC) are proposed and studied from thermodynamic and economic viewpoints. The first proposed system, Kalina power-cooling cycle (KPCC), combines the refrigerant loop of the water-ammonia absorption chiller, consisting of an evaporator and two throttling valves with the KC. A portion of the KC mass flow enters the evaporator to generate cooling after being condensed in the KPCC system. KPCC is a flexible system adapting power and cooling cogeneration to the demand. The second proposed system, Kalina lithium bromide absorption chiller cycle (KLACC), consists of the KC and a single effect lithium bromide-water absorption chiller (AC_L_i_B_r_-_w_a_t_e_r). The KC subsystem discharges heat to the AC_L_i_B_r_-_w_a_t_e_r desorber before condensing in the condenser. The performance and economic aspects of both proposed systems are analyzed and compared with the stand alone KC. A parametric analysis is conducted to evaluate the sensitivity of efficiencies and the generated power and cooling quantities to the key operating variables. The results showed that, thermal efficiency and total annual costs decreased by 5.6% and 8% for KPCC system but increased 4.9% and 58% for KLACC system, respectively. Since the power-cooling efficiency of KLACC is 42% higher than KPCC it can be applied where the aim is cooling generation without considering economic aspects.

  5. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  6. Influence of the radial-inflow turbine efficiency prediction on the design and analysis of the Organic Rankine Cycle (ORC) system

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei; Ren, Xiaodong

    2016-01-01

    Highlights: • The efficiency prediction is based on the velocity triangle and loss models. • The efficiency selection has a big influence on the working fluid selection. • The efficiency selection has a big influence on system parameter determination. - Abstract: The radial-inflow turbine is a common choice for the power output in the Organic Rankine Cycle (ORC) system. Its efficiency is related to the working fluid property and the system operating condition. Generally, the radial-inflow turbine efficiency is assumed to be a constant value in the conventional ORC system analysis. Few studies focus on the influence of the radial-inflow turbine efficiency selection on the system design and analysis. Actually, the ORC system design and the radial-inflow turbine design are coupled with each other. Different thermal parameters of the ORC system would lead to different radial-inflow turbine design and then different turbine efficiency, and vice versa. Therefore, considering the radial-inflow turbine efficiency prediction in the ORC system design can enhance its reliability and accuracy. In this paper, a one-dimensional analysis model for the radial-inflow turbine in the ORC system is presented. The radial-inflow turbine efficiency prediction in this model is based on the velocity triangle and loss models, rather than a constant efficiency assumption. The influence of the working fluid property and the system operating condition on the turbine performance is evaluated. The thermodynamic analysis of the ORC system with a model predicted turbine efficiency and a constant turbine efficiency is conducted and the results are compared with each other. It indicates that the turbine efficiency selection has a significant influence on the working fluid selection and the system parameter determination.

  7. Thermal expansion of doped lanthanum gallates

    Indian Academy of Sciences (India)

    Administrator

    Since the components are in intimate mechanical contact, any stress generated due to their thermal expansion mis- match during thermal cycling could lead to catastrophic failure of the cell. The functional materials must have similar thermal expansions to avoid mechanical stresses. Hence it is useful to study the thermal ...

  8. Removal Efficiency of Nitrogen, Phosphorus and Heavy Metal by Intermittent Cycle Extended Aeration System from Municipal Wastewater (Yazd-ICEAS

    Directory of Open Access Journals (Sweden)

    Seyed Vahid Ghelmani

    2016-09-01

    Conclusion: The high removal efficiency of BOD5, TKN, and NH4+ showed that this advanced SBR system had an appropriate efficiency for nitrification. Phosphorus removal (TP had a lower efficiency than those of NH4+ and TKN, but it was within the environmental standard limits. On the other hand, in the advanced SBR the removal efficiency of heavy metals for Cd was not within the standard limits.

  9. Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle (TCRC) system

    International Nuclear Information System (INIS)

    Bao, Junjiang; Lin, Yan; Zhang, Ruixiang; Zhang, Ning; He, Gaohong

    2017-01-01

    Highlights: • A two-stage condensation Rankine cycle (TCRC) system is proposed. • Net power output and thermal efficiency increases by 45.27% and 42.91%. • The effects of the condensation temperatures are analyzed. • 14 working fluids (such as propane, butane etc.) are compared. - Abstract: For the low efficiency of the traditional power generation system with liquefied natural gas (LNG) cold energy utilization, by improving the heat transfer characteristic between the working fluid and LNG, this paper has proposed a two-stage condensation Rankine cycle (TCRC) system. Using propane as working fluid, compared with the combined cycle in the conventional LNG cold energy power generation method, the net power output, thermal efficiency and exergy efficiency of the TCRC system are respectively increased by 45.27%, 42.91% and 52.31%. Meanwhile, the effects of the first-stage and second-stage condensation temperature and LNG vaporization pressure on the performance and cost index of the TCRC system (net power output, thermal efficiency, exergy efficiency and UA) are analyzed. Finally, using the net power output as the objective function, with 14 organic fluids (such as propane, butane etc.) as working fluids, the first-stage and second-stage condensation temperature at different LNG vaporization pressures are optimized. The results show that there exists a first-stage and second-stage condensation temperature making the performance of the TCRC system optimal. When LNG vaporization pressure is supercritical pressure, R116 has the best economy among all the investigated working fluids, and while R150 and R23 are better when the vaporization pressure of LNG is subcritical.

  10. Prospects for and problems of using light-water supercritical-pressure coolant in nuclear reactors in order to increase the efficiency of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Alekseev, P. N.; Semchenkov, Yu. M.; Sedov, A. A.; Subbotin, S. A.; Chibinyaev, A. V.

    2011-01-01

    Trends in the development of the power sector of the Russian and world power industries both at present time and in the near future are analyzed. Trends in the rise of prices for reserves of fossil and nuclear fuels used for electricity production are compared. An analysis of the competitiveness of electricity production at nuclear power plants as compared to the competitiveness of electricity produced at coal-fired and natural-gas-fired thermal power plants is performed. The efficiency of the open nuclear fuel cycle and various versions of the closed nuclear fuel cycle is discussed. The requirements on light-water reactors under the scenario of dynamic development of the nuclear power industry in Russia are determined. Results of analyzing the efficiency of fuel utilization for various versions of vessel-type light-water reactors with supercritical coolant are given. Advantages and problems of reactors with supercritical-pressure water are listed.

  11. Defined Essential 8™ Medium and Vitronectin Efficiently Support Scalable Xeno-Free Expansion of Human Induced Pluripotent Stem Cells in Stirred Microcarrier Culture Systems

    Science.gov (United States)

    Badenes, Sara M.; Fernandes, Tiago G.; Cordeiro, Cláudia S. M.; Boucher, Shayne; Kuninger, David; Vemuri, Mohan C.; Diogo, Maria Margarida; Cabral, Joaquim M. S.

    2016-01-01

    Human induced pluripotent stem (hiPS) cell culture using Essential 8™ xeno-free medium and the defined xeno-free matrix vitronectin was successfully implemented under adherent conditions. This matrix was able to support hiPS cell expansion either in coated plates or on polystyrene-coated microcarriers, while maintaining hiPS cell functionality and pluripotency. Importantly, scale-up of the microcarrier-based system was accomplished using a 50 mL spinner flask, under dynamic conditions. A three-level factorial design experiment was performed to identify optimal conditions in terms of a) initial cell density b) agitation speed, and c) to maximize cell yield in spinner flask cultures. A maximum cell yield of 3.5 is achieved by inoculating 55,000 cells/cm2 of microcarrier surface area and using 44 rpm, which generates a cell density of 1.4x106 cells/mL after 10 days of culture. After dynamic culture, hiPS cells maintained their typical morphology upon re-plating, exhibited pluripotency-associated marker expression as well as tri-lineage differentiation capability, which was verified by inducing their spontaneous differentiation through embryoid body formation, and subsequent downstream differentiation to specific lineages such as neural and cardiac fates was successfully accomplished. In conclusion, a scalable, robust and cost-effective xeno-free culture system was successfully developed and implemented for the scale-up production of hiPS cells. PMID:26999816

  12. How Hinge Positioning in Cross-Country Ski Bindings Affect Exercise Efficiency, Cycle Characteristics and Muscle Coordination during Submaximal Roller Skiing

    Science.gov (United States)

    Bolger, Conor M.; Sandbakk, Øyvind; Ettema, Gertjan; Federolf, Peter

    2016-01-01

    The purposes of the current study were to 1) test if the hinge position in the binding of skating skis has an effect on gross efficiency or cycle characteristics and 2) investigate whether hinge positioning affects synergistic components of the muscle activation in six lower leg muscles. Eleven male skiers performed three 4-min sessions at moderate intensity while cross-country ski-skating and using a klapskate binding. Three different positions were tested for the binding’s hinge, ranging from the front of the first distal phalange to the metatarsal-phalangeal joint. Gross efficiency and cycle characteristics were determined, and the electromyographic (EMG) signals of six lower limb muscles were collected. EMG signals were wavelet transformed, normalized, joined into a multi-dimensional vector, and submitted to a principle component analysis (PCA). Our results did not reveal any changes to gross efficiency or cycle characteristics when altering the hinge position. However, our EMG analysis found small but significant effects of hinge positioning on muscle coordinative patterns (P skating klapskates. Finally, the within-subject results of the EMG analysis suggested that in addition to the between-subject effects, further forms of muscle coordination patterns appear to be employed by some, but not all participants. PMID:27203597

  13. How Hinge Positioning in Cross-Country Ski Bindings Affect Exercise Efficiency, Cycle Characteristics and Muscle Coordination during Submaximal Roller Skiing.

    Directory of Open Access Journals (Sweden)

    Conor M Bolger

    Full Text Available The purposes of the current study were to 1 test if the hinge position in the binding of skating skis has an effect on gross efficiency or cycle characteristics and 2 investigate whether hinge positioning affects synergistic components of the muscle activation in six lower leg muscles. Eleven male skiers performed three 4-min sessions at moderate intensity while cross-country ski-skating and using a klapskate binding. Three different positions were tested for the binding's hinge, ranging from the front of the first distal phalange to the metatarsal-phalangeal joint. Gross efficiency and cycle characteristics were determined, and the electromyographic (EMG signals of six lower limb muscles were collected. EMG signals were wavelet transformed, normalized, joined into a multi-dimensional vector, and submitted to a principle component analysis (PCA. Our results did not reveal any changes to gross efficiency or cycle characteristics when altering the hinge position. However, our EMG analysis found small but significant effects of hinge positioning on muscle coordinative patterns (P < 0.05. The changed patterns in muscle activation are in alignment with previously described mechanisms that explain the effects of hinge positioning in speed-skating klapskates. Finally, the within-subject results of the EMG analysis suggested that in addition to the between-subject effects, further forms of muscle coordination patterns appear to be employed by some, but not all participants.

  14. LCA-ship. Design tool for energy efficient ships. A Life Cycle Analysis Program for Ships. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jiven, Karl; Sjoebris, Anders [MariTerm AB, Goeteborg (Sweden); Nilsson, Maria [Lund Univ. (Sweden). Stiftelsen TEM; Ellis, Joanne; Traegaardh, Peter; Nordstroem, Malin [SSPA Sweden AB, Goeteborg (Sweden)

    2004-05-01

    In order to make it easier to include aspects during ship design that will improve environmental performance, general methods for life cycle calculations and a prototype tool for LCA calculations of ships and marine transportation have been developed. The base of the life cycle analyses is a comprehensive set of life cycle data that was collected for the materials and consumables used in ship construction and vessel operations. The computer tool developed makes it possible to quickly and simply specify (and calculate) the use of consumables over the vessel's life time cycle. Special effort has been made to allow the tool to be used for different types of vessels and sea transport. The main result from the project is the computer tool LCA ship, which incorporates collected and developed life cycle data for some of the most important materials and consumables used in ships and their operation. The computer application also contains a module for propulsion power calculations and a module for defining and optimising the energy system onboard the vessel. The tool itself is described in more detail in the Computer application manual. The input to the application should, as much as possible, be the kind of information that is normally found in a shipping company concerning vessel data and vessel movements. It all starts with defining the ship to be analysed and continues with defining how the ship is used over the lifetime. The tool contains compiled and processed background information about specific materials and processes (LCA data) connected to shipping operations. The LCA data is included in the tool in a processed form. LCA data for steel will for example include the environmental load from the steel production, the process to build the steel structure of the ship, the scrapping and the recycling phase. To be able to calculate the environmental load from the use of steel the total amount of steel used over the life cycle of the ship is also needed. The

  15. Accounting for land-use efficiency and temporal variations between brownfield remediation alternatives in life-cycle assessment

    NARCIS (Netherlands)

    Beames, A.; Broekx, S.; Heijungs, R.; Lookman, R.; Boonen, K.; van Geert, Y.; Dendoncker, K.; Seuntjes, P.

    2015-01-01

    Abstract The latest life-cycle assessment methods account for land use, due to the production, use and disposal of products and services, in terms of ecosystem damage. The process of brownfield remediation converts otherwise idle urban space into productive space. The value to ecosystems in this

  16. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    International Nuclear Information System (INIS)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER

  17. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-10-10

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

  18. An Exploration of the Relationship between Improvements in Energy Efficiency and Life-Cycle Energy and Carbon Emissions using the BIRDS Low-Energy Residential Database.

    Science.gov (United States)

    Kneifel, Joshua; O'Rear, Eric; Webb, David; O'Fallon, Cheyney

    2018-02-01

    To conduct a more complete analysis of low-energy and net-zero energy buildings that considers both the operating and embodied energy/emissions, members of the building community look to life-cycle assessment (LCA) methods. This paper examines differences in the relative impacts of cost-optimal energy efficiency measure combinations depicting residential buildings up to and beyond net-zero energy consumption on operating and embodied flows using data from the Building Industry Reporting and Design for Sustainability (BIRDS) Low-Energy Residential Database. Results indicate that net-zero performance leads to a large increase in embodied flows (over 40%) that offsets some of the reductions in operational flows, but overall life-cycle flows are still reduced by over 60% relative to the state energy code. Overall, building designs beyond net-zero performance can partially offset embodied flows with negative operational flows by replacing traditional electricity generation with solar production, but would require an additional 8.34 kW (18.54 kW in total) of due south facing solar PV to reach net-zero total life-cycle flows. Such a system would meet over 239% of operational consumption of the most energy efficient design considered in this study and over 116% of a state code-compliant building design in its initial year of operation.

  19. Improving the efficiency of heat supply systems on the basis of plants operating on organic Rankine cycle

    Science.gov (United States)

    Solomin, I. N.; Daminov, A. Z.; Sadykov, R. A.

    2017-11-01

    Results of experimental and analytical studies of the plant main element - plant turbomachine (turbo-expander) operating on organic Rankine cycle were obtained for facilities of the heat supply systems of small-scale power generation. At simultaneous mathematical modeling and experimental studies it was found that the best working medium to be used in the turbomachines of these plants is Freon R245fa which has the most suitable calorimetric properties to be used in the cycle. The mathematical model of gas flow in the turbomachine was developed. The main engineering dependencies to calculate the optimal design parameters of the turbomachine were obtained. The engineering problems of providing the minimum axial size of the turbomachine impeller were solved and the main design elements were unified.

  20. Summary of workshop on materials issues in low emission boilers and high efficiency coal-fired cycles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The purpose of the workshop was to review with experts in the field the materials issues associated with two of the primary coal power systems being developed by the DOE Office of Fossil Energy. The DOE-FE Advanced Power Systems Program includes natural gas-based and coal-based power systems. Major activities in the natural gas-based power systems area include the Advanced Turbine Systems (ATS) Program, the Fuel Cells Program, and Hybrid Cycles. The coal-based power systems projects include the Low Emissions Boiler Systems (LEBS) Program, the High-Performance Power Systems Program (HIPPS), the Integrated (Coal) Gasification Combined-Cycle Program, and the Fluidized-Bed Combustion Program. This workshop focused on the materials issues associated with the LEBS and HIPPS technologies.

  1. A Wireless Sensor Network with Enhanced Power Efficiency and Embedded Strain Cycle Identification for Fatigue Monitoring of Railway Bridges

    OpenAIRE

    Feltrin, Glauco; Popovic, Nemanja; Flouri, Kallirroi; Pietrzak, Piotr

    2016-01-01

    Wireless sensor networks have been shown to be a cost-effective monitoring tool for many applications on civil structures. Strain cycle monitoring for fatigue life assessment of railway bridges, however, is still a challenge since it is data intensive and requires a reliable operation for several weeks or months. In addition, sensing with electrical resistance strain gauges is expensive in terms of energy consumption. The induced reduction of battery lifetime of sensor nodes increases the mai...

  2. High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture

    OpenAIRE

    Chakroun, Nadim Walid; Ghoniem, Ahmed F

    2015-01-01

    The growing concerns over global warming and carbon dioxide emissions have driven extensive research into novel ways of capturing carbon dioxide in power generation plants. In this regard, oxy-fuel combustion has been considered as a promising technology. One unconventional fuel that is considered is sour gas, which is a mixture of methane, hydrogen sulfide and carbon dioxide. In this paper, carbon dioxide is used as the dilution medium in the combustor and different combined cycle configurat...

  3. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today's CHP systems

    DEFF Research Database (Denmark)

    Chen, Min; Lund, Henrik; Rosendahl, Lasse

    2010-01-01

    benefits, together with the environmental impact of this deployment, will then be estimated. By using the Danish thermal energy system as a paradigm, this paper will consider the TEG application to district heating systems and power plants through the EnergyPLAN model, which has been created to design......High efficiency thermoelectric generators (TEG) can recover waste heat from both industrial and private sectors. Thus, the development and deployment of TEG may represent one of the main drives for technological change and fuel substitution. This paper will present an analysis of system efficiency...... configurations for combustion systems. The feasible deployment of TEG in various CHP plants will be examined in terms of heat source temperature range, influences on CHP power specification and thermal environment, as well as potential benefits. The overall conversion efficiency improvements and economic...

  4. IoT gateways, cloud and the last mile for energy efficiency and sustainability in the era of CPS expansion: "A bot is irrigating my farm.. "

    Science.gov (United States)

    Papageorgas, Panagiotis G.; Agavanakis, Kyriakos; Dogas, Ioannis; Piromalis, Dimitrios D.

    2018-05-01

    A cloud-based architecture is presented for the internetworking of sensors and actuators through a universal gateway, network server and application user interface design. The proposed approach targets to Energy Efficiency and sustainability in a holistic way, by integrating an open-source test bed prototype based on long-range low-bandwidth wireless networking technology for sensing and actuation as the elementary block of a viable, cost-effective and reliable solution. The prototype presented is capable of supporting both sensors and actuators, processing data locally and transmitting the results of the imposed computations to a higher level node. Additionally, it is combined with a service-oriented architecture and involves publish/subscribe middleware protocols and cloud technology to confront with the system needs in terms of data volume and processing power. In this context, the integration of instant message (chat) services is demonstrated so that they can be part of an emerging global-scope eco-system of Cyber-Physical Systems to support a wide variety of IoT applications, with strong advantages such as usability, scalability and security, while adopting a unified gateway design and a simple - yet powerful - user interface.

  5. CO{sub 2} capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J.; Zhao, C.S.; Chen, H.C.; Ren, Q.Q.; Duan, L.B. [Southeast University, Nanjing (China). School of Energy & Environment

    2011-03-15

    This paper examines the average carbonation conversion, CO{sub 2} capture efficiency and energy requirement for post-combustion CO{sub 2} capture system during the modified calcium-based sorbent looping cycle. The limestone modified with acetic acid solution, i.e. calcium acetate is taken as an example of the modified calcium-based sorbents. The modified limestone exhibits much higher average carbonation conversion than the natural sorbent under the same condition. The CO{sub 2} capture efficiency increases with the sorbent flow ratios. Compared with the natural limestone, much less makeup mass flow of the recycled and the fresh sorbent is needed for the system when using the modified limestone at the same CO{sub 2} capture efficiency. Achieving 0.95 of CO{sub 2} capture efficiency without sulfation, 272 kJ/mol CO{sub 2} is required in the calciner for the natural limestone, whereas only 223 kJ/mol CO{sub 2} for the modified sorbent. The modified limestone possesses greater advantages in CO{sub 2} capture efficiency and energy consumption than the natural sorbent. When the sulfation and carbonation of the sorbents take place simultaneously, more energy is required. It is significantly necessary to remove SO{sub 2} from the flue gas before it enters the carbonator in order to reduce energy consumption in the calciner.

  6. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  7. Eco-efficience et analyse des couts du cycle de vie: Developpement d'un outil d'aide a la conception dans l'industrie aeronautique

    Science.gov (United States)

    Mami, Fares

    The aeronautical sector, responsible for about 3 % of the world emissions of greenhouse gases, predict a 70 % growth in 2025 and 300 % to 500 % in 2050 of its emissions compared to the level of 2005. The decision-makers must thus be supported in their choice of conception to integrate the environmental aspect into the decision-making. Our industrial partner in the aeronautical sector developed an expertise in Life Cycle Assessment (LCA) and seeks to integrate the costs and the environmental impacts in a systematic way into the ecodesign of products. Based on the literature review and the objectives of this research we propose a model of eco-efficiency, which integrates LCA with Life Cycle Costing (LCC). This model is consistent with defined cost cutting and environmental impacts reduction targets and allows a simple interpretation of the results while minimizing the efforts during data collection. The model is applied for 3D printing as an alternative production process in the manufacturing of an aircraft blocker door. 3D printing is a new technology of production working by addition of material and present interesting opportunities of cost cutting and environmental impacts, particularly in the aeronautical domain. The results showed that 3D printing, when associated with improvement in the topology of the part, allows an improvement both on costs and environmental impacts of the part life cycle. Nevertheless, the results are sensitive to the productivity of the 3D printing machine, in particular with costs when the productivity of the 3D printing is reduced. This eco-efficiency model presents several opportunities of improvement. A more elaborate definition of the objectives in reduction of environmental impacts would allow to direct the choices in design to considerations of eco-efficiency at a macro level. Moreover, the integration of the social dimension in the model constitutes an important stage to operationalize the stakes of environmental and social

  8. Computer simulation of the heavy-duty turbo-compounded diesel cycle for studies of engine efficiency and performance

    Science.gov (United States)

    Assanis, D. N.; Ekchian, J. A.; Heywood, J. B.; Replogle, K. K.

    1984-01-01

    Reductions in heat loss at appropriate points in the diesel engine which result in substantially increased exhaust enthalpy were shown. The concepts for this increased enthalpy are the turbocharged, turbocompounded diesel engine cycle. A computer simulation of the heavy duty turbocharged turbo-compounded diesel engine system was undertaken. This allows the definition of the tradeoffs which are associated with the introduction of ceramic materials in various parts of the total engine system, and the study of system optimization. The basic assumptions and the mathematical relationships used in the simulation of the model engine are described.

  9. Importance of food waste pre-treatment efficiency for global warming potential in life cycle assessment of anaerobic digestion systems

    DEFF Research Database (Denmark)

    Carlsson, My; Naroznova, Irina; Møller, Jacob

    2015-01-01

    treatment of the refuse. The objective of this study was to investigate how FW pre-treatment efficiency impacts the environmental performance of waste management, with respect to global warming potential (GWP). The modeling tool EASETECH was used to perform consequential LCA focusing on the impact...

  10. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 8: Open-cycle MHD. [energy conversion efficiency and design analysis of electric power plants employing magnetohydrodynamics

    Science.gov (United States)

    Hoover, D. Q.

    1976-01-01

    Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.

  11. An artificial TCA cycle selects for efficient α-ketoglutarate dependent hydroxylase catalysis in engineered Escherichia coli.

    Science.gov (United States)

    Theodosiou, Eleni; Breisch, Marina; Julsing, Mattijs K; Falcioni, Francesco; Bühler, Bruno; Schmid, Andreas

    2017-07-01

    Amino acid hydroxylases depend directly on the cellular TCA cycle via their cosubstrate α-ketoglutarate (α-KG) and are highly useful for the selective biocatalytic oxyfunctionalization of amino acids. This study evaluates TCA cycle engineering strategies to force and increase α-KG flux through proline-4-hydroxylase (P4H). The genes sucA (α-KG dehydrogenase E1 subunit) and sucC (succinyl-CoA synthetase β subunit) were alternately deleted together with aceA (isocitrate lyase) in proline degradation-deficient Escherichia coli strains (ΔputA) expressing the p4h gene. Whereas, the ΔsucCΔaceAΔputA strain grew in minimal medium in the absence of P4H, relying on the activity of fumarate reductase, growth of the ΔsucAΔaceAΔputA strictly depended on P4H activity, thus coupling growth to proline hydroxylation. P4H restored growth, even when proline was not externally added. However, the reduced succinyl-CoA pool caused a 27% decrease of the average cell size compared to the wildtype strain. Medium supplementation partially restored the morphology and, in some cases, enhanced proline hydroxylation activity. The specific proline hydroxylation rate doubled when putP, encoding the Na + /l-proline transporter, was overexpressed in the ΔsucAΔaceAΔputA strain. This is in contrast to wildtype and ΔputA single-knock out strains, in which α-KG availability obviously limited proline hydroxylation. Such α-KG limitation was relieved in the ΔsucAΔaceAΔputA strain. Furthermore, the ΔsucAΔaceAΔputA strain was used to demonstrate an agar plate-based method for the identification and selection of active α-KG dependent hydroxylases. This together with the possibility to waive selection pressure and overcome α-KG limitation in respective hydroxylation processes based on living cells emphasizes the potential of TCA cycle engineering for the productive application of α-KG dependent hydroxylases. Biotechnol. Bioeng. 2017;114: 1511-1520. © 2017 Wiley Periodicals, Inc.

  12. Reconstitution of TCA cycle with DAOCS to engineer Escherichia coli into an efficient whole cell catalyst of penicillin G.

    Science.gov (United States)

    Lin, Baixue; Fan, Keqiang; Zhao, Jian; Ji, Junjie; Wu, Linjun; Yang, Keqian; Tao, Yong

    2015-08-11

    Many medically useful semisynthetic cephalosporins are derived from 7-aminodeacetoxycephalosporanic acid (7-ADCA), which has been traditionally made by the polluting chemical method. Here, a whole-cell biocatalytic process based on an engineered Escherichia coli strain expressing 2-oxoglutarate-dependent deacetoxycephalosporin C synthase (DAOCS) for converting penicillin G to G-7-ADCA is developed. The major engineering strategy is to reconstitute the tricarboxylic acid (TCA) cycle of E. coli to force the metabolic flux to go through DAOCS catalyzed reaction for 2-oxoglutarate to succinate conversion. Then the glyoxylate bypass was disrupted to eliminate metabolic flux that may circumvent the reconstituted TCA cycle. Additional engineering steps were taken to reduce the degradation of penicillin G and G-7-ADCA in the bioconversion process. These steps include engineering strategies to reduce acetate accumulation in the biocatalytic process and to knock out a host β-lactamase involved in the degradation of penicillin G and G-7-ADCA. By combining these manipulations in an engineered strain, the yield of G-7-ADCA was increased from 2.50 ± 0.79 mM (0.89 ± 0.28 g/L, 0.07 ± 0.02 g/gDCW) to 29.01 ± 1.27 mM (10.31 ± 0.46 g/L, 0.77 ± 0.03 g/gDCW) with a conversion rate of 29.01 mol%, representing an 11-fold increase compared with the starting strain (2.50 mol%).

  13. Analysis of Refrigeration Cycle Performance with an Ejector

    Directory of Open Access Journals (Sweden)

    Wani J. R.

    2016-01-01

    Full Text Available A conventional refrigeration cycle uses expansion device between the condenser and the evaporator which has losses during the expansion process. A refrigeration cycle with ejector is a promising modification to improve the performance of conventional refrigeration cycle. The ejector is used to recover some of the available work so that the compressor suction pressure increases. To investigate the enhancement a model with R134a refrigerant was developed. To solve the set of equations and simulate the cycle performance a subroutine was written on engineering equation solver (EES environment. At specific conditions, the refrigerant properties are obtained from EES. At the design conditions the ejector refrigeration cycle achieved 5.141 COP compared to 4.609 COP of the conventional refrigeration cycle. This means that ejector refrigeration cycle offers better COP with 10.35% improvement compared to conventional refrigeration cycle. Parametric analysis of ejector refrigeration cycle indicated that COP was influenced significantly by evaporator and condenser temperatures, entrainment ratio and diffuser efficiency.

  14. Efficiency of SBR Process with a Six Sequence Aerobic-Anaerobic Cycle for Phosphorus and Organic Material Removal from Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    Nadiya Shahandeh

    2018-02-01

    Full Text Available Background: Various chemical, physical and biologic treatment methods are being used to remove nitrogen and phosphorus from wastewater. Sequencing batch reactor (SBR is a modified activated sludge process that removes phosphorus and organic material from sanitary wastewater, biologically. Methods: This study was conducted in 2016.The performance of an aerobic-anaerobic SBR pilot device, located at Ahwaz West Wastewater Treatment Plant, Ahwaz, southern Iran in phosphorus and organic material removal was evaluated to determine the effect of the aerobic-anaerobic step time on the efficiency of nitrogen and phosphorus removal, the effect of changing the sequence of steps and the effect of time ratio on phosphorus removal efficiency. A reactor of 8 L was used. Influent contained 397 and 10.7 mg/l COD and phosphorus, respectively. The pilot plant started with a 24 h cycle including four cycles of 6 h, as follows: 1- Loading (15 min, 2-Anaerobic (2 h-Aerobic (2 h, 3- Settling (1 h, Idleness (30 min and 5- decant (15 min. Results: After reaching steady conditions (6 months, Removal percentages of phosphorus, BOD5, COD, and TSS in The SBR over a period of 6 months was 79%, 86%, 89% and 83%, respectively. Conclusion: Result of this study can be used for designing and optimum operation of sequencing batch reactors.

  15. Isobaric Expansion Engines: New Opportunities in Energy Conversion for Heat Engines, Pumps and Compressors

    Directory of Open Access Journals (Sweden)

    Maxim Glushenkov

    2018-01-01

    Full Text Available Isobaric expansion (IE engines are a very uncommon type of heat-to-mechanical-power converters, radically different from all well-known heat engines. Useful work is extracted during an isobaric expansion process, i.e., without a polytropic gas/vapour expansion accompanied by a pressure decrease typical of state-of-the-art piston engines, turbines, etc. This distinctive feature permits isobaric expansion machines to serve as very simple and inexpensive heat-driven pumps and compressors as well as heat-to-shaft-power converters with desired speed/torque. Commercial application of such machines, however, is scarce, mainly due to a low efficiency. This article aims to revive the long-known concept by proposing important modifications to make IE machines competitive and cost-effective alternatives to state-of-the-art heat conversion technologies. Experimental and theoretical results supporting the isobaric expansion technology are presented and promising potential applications, including emerging power generation methods, are discussed. It is shown that dense working fluids with high thermal expansion at high process temperature and low compressibility at low temperature make it possible to operate with reasonable thermal efficiencies at ultra-low heat source temperatures (70–100 °C. Regeneration/recuperation of heat can increase the efficiency notably and extend the area of application of these machines to higher heat source temperatures. For heat source temperatures of 200–600 °C, the efficiency of these machines can reach 20–50% thus making them a flexible, economical and energy efficient alternative to many today’s power generation technologies, first of all organic Rankine cycle (ORC.

  16. Does Avicennia germinans expansion alter salt marsh nitrogen removal capacity?

    Science.gov (United States)

    Tatariw, C.; Kleinhuizen, A.; Rajan, S.; Flournoy, N.; Sobecky, P.; Mortazavi, B.

    2017-12-01

    Plant species expansion poses risks to ecosystem services through alterations to plant-microbiome interactions associated with changes to key microbial drivers such as organic carbon (C) substrates, nitrogen (N) availability, and rhizosphere-associated microbial communities. In the northern Gulf of Mexico (GOM), warming winter temperatures associated with climate change have promoted Avicennia germinans (black mangrove) expansion into salt marshes. To date, there is limited knowledge regarding the effects of mangrove expansion on vital ecosystem services such as N cycling in the northern GOM. We designed a field-based study to determine the potential effects of mangrove expansion on salt marsh N biogeochemical cycling in the Spartina alterniflora dominated Chandeleur Islands (LA, USA). We used a combination of process rate measurements and metadata to: 1) Determine the impact of mangrove expansion on salt marsh denitrification and dissimilatory nitrate reduction to ammonium (DNRA), with the goal of quantifying losses or gains in ecosystem services; and 2) identify the mechanisms driving changes in ecosystem services to improve predictions about the impacts of mangrove expansion on salt marsh functional resiliency. The pneumatophore root structure of A. germinans is efficient at delivering oxygen (O2) to sediment, which can promote coupled nitrification-denitrification and decrease sulfide inhibition. We hypothesized that increased sediment O2, when coupled with cooler soil temperatures caused by plant shading, will favor denitrification instead of the DNRA process. An increase in sediment O2, as well as higher N content of A. germinans litter, will also result in a shift in the microbial community. Initial findings indicated that the denitrification pathway dominates over DNRA regardless of vegetation type, with average denitrification rates of 30.1 µmol N kg-1 h-1 versus average DNRA rates of 8.5 µmol N kg-1 h-1. However, neither denitrification nor DNRA rates

  17. Efficiency calculations and optimization analysis of a solar reactor for the high temperature step of the zinc/zinc-oxide thermochemical redox cycle

    Energy Technology Data Exchange (ETDEWEB)

    Haussener, S.

    2007-03-15

    A solar reactor for the first step of the zinc/zinc-oxide thermochemical redox cycle is analysed and dimensioned in terms of maximization of efficiency and reaction conversion. Zinc-oxide particles carried in an inert carrier gas, in our case argon, enter the reactor in absorber tubes and are heated by concentrated solar radiation mainly due to radiative heat transfer. The particles dissociate and, in case of complete conversion, a gas mixture of argon, zinc and oxygen leaves the reactor. The aim of this study is to find an optimal design of the reactor regarding efficiency, materials and economics. The number of absorber tubes and their dimensions, the cavity dimension and its material as well as the operating conditions should be determined. Therefore 2D and 3D simulations of an 8 kW reactor are implemented. The gases are modeled as ideal gases with temperature-dependent properties. Absorption and scattering of the particle gas mixture are calculated by Mie-theory. Radiative heat transfer is included in the simulation and implemented with the aid of the discrete ordinates (DO) method. The mixture is modeled as ideal mixture and the reaction with an Arrhenius-type ansatz. Temperature distribution, reaction efficiency (heat used for zinc-oxide reaction divided by input) and tube efficiency (heat going into absorber tubes divided by input) as well as reaction conversion are analyzed to find the most promising reactor design. The results show that the most significant factors for efficiencies, conversion and absorber fluid temperature are concentration of the solar incoming radiation, zinc-oxide mass flow, the number of tubes and their dimension. Higher concentration leads to solely positive effects. Zinc-oxide mass flow variations indicate the existence of an optimal flow rate for each reactor design which maximizes efficiencies and conversion. Higher zinc-oxide mass flow leads, on one hand, to higher tube efficiency but on the other hand to lower temperatures in

  18. A non-conventional interpretation of thermal regeneration in steam cycles

    International Nuclear Information System (INIS)

    Bracco, Stefano; Damiani, Lorenzo

    2012-01-01

    Highlights: ► A better understanding of the concept of thermal regeneration in steam cycles. ► Use of a system composed by a non-regenerative cycle and several reverse cycles. ► Calculation of the heat pumps coefficients of performance. ► New interesting formulations of the regenerative cycle efficiency. -- Abstract: The paper aims to contribute to a better understanding of the thermodynamic concept of heat regeneration in steam power plants with a finite number of bleedings. A regenerative Rankine cycle is compared to a complex system (CHC – complete hybrid cycle) composed by one non-regenerative Rankine cycle (HEC – hybrid engine cycle) and more reverse cycles (RCs – reverse cycles), as many as the number of the bleedings, able to pump heat from the condenser to a series of surface feedwater heaters, disposed upstream of the steam plant boiler. The COPs (coefficients of performance) of the heat pumps are evaluated, and new interesting formulations of the efficiency of the regenerative steam cycle are proposed. In particular a steam cycle with two bleedings is analyzed, neglecting heat losses and pressure drops in the boiler and considering irreversibility only along the expansion line of the steam turbine and into the feedwater heaters. The efficiency and the work of the regenerative cycle are compared to the analogous values of the CHC cycle composed by one simple steam cycle (HEC) and two heat pump cycles (RCs), with steam as the working fluid. The two reverse cycles are considered completely reversible and raising heat from the condenser temperature to the bled steam condensing temperature. The paper shows the most significant results of the study in order to analyze the regenerative cycle and the CHC cycle in comparison with the non-regenerative Rankine cycle; in particular, the analysis is focused on the evaluation of the useful work, the heat supplied and the heat rejected for the examined cycles.

  19. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B

    DEFF Research Database (Denmark)

    La Seta, Angelo; Meroni, Andrea; Andreasen, Jesper Graa

    2016-01-01

    Organic Rankine cycle (ORC) power systems have recently emerged as promising solutions for waste heat recovery in low- and medium-size power plants. Their performance and economic feasibility strongly depend on the expander. The design process and efficiency estimation are particularly challenging...... due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly...... is the preliminary design of an organic Rankine cycle turbogenerator to increase the overall energy efficiency of an offshore platform. For an increase in expander pressure ratio from 10 to 35, the results indicate up to 10% point reduction in expander performance. This corresponds to a relative reduction in net...

  20. Decennial plan of expansion 1994-2003

    International Nuclear Information System (INIS)

    1993-12-01

    The Decennial Plan of Expansion 1994-2003 of Electric sector reproduces the results of the studies occurred during the planning cycle of 1992/93 from the Coordinator Groups of the Electric System Planning. Based in the market forecasting, economic-financier and time for finishing the the works, the Decennial Plan of Expansion presents the schedule of the main generation and transmission works for the next ten years, the annual spend in generation, transmission and distribution, the costs of expansion and the evaluation of attending conditions in electric system in Brazil. (C.G.C.)

  1. Evaluation of a multiple-cycle, recombinant virus, growth competition assay that uses flow cytometry to measure replication efficiency of human immunodeficiency virus type 1 in cell culture.

    Science.gov (United States)

    Dykes, Carrie; Wang, Jiong; Jin, Xia; Planelles, Vicente; An, Dong Sung; Tallo, Amanda; Huang, Yangxin; Wu, Hulin; Demeter, Lisa M

    2006-06-01

    Human immunodeficiency virus type 1 (HIV-1) replication efficiency or fitness, as measured in cell culture, has been postulated to correlate with clinical outcome of HIV infection, although this is still controversial. One limitation is the lack of high-throughput assays that can measure replication efficiency over multiple rounds of replication. We have developed a multiple-cycle growth competition assay to measure HIV-1 replication efficiency that uses flow cytometry to determine the relative proportions of test and reference viruses, each of which expresses a different reporter gene in place of nef. The reporter genes are expressed on the surface of infected cells and are detected by commercially available fluorescence-labeled antibodies. This method is less labor-intensive than those that require isolation and amplification of nucleic acids. The two reporter gene products are detected with similar specificity and sensitivity, and the proportion of infected cells in culture correlates with the amount of viral p24 antigen produced in the culture supernatant. HIV replication efficiencies of six different drug-resistant site-directed mutants were reproducibly quantified and were similar to those obtained with a growth competition assay in which the relative proportion of each variant was measured by sequence analysis, indicating that recombination between the pol and reporter genes was negligible. This assay also reproducibly quantified the relative fitness conferred by protease and reverse transcriptase sequences containing multiple drug resistance mutations, amplified from patient plasma. This flow cytometry-based growth competition assay offers advantages over current assays for HIV replication efficiency and should prove useful for the evaluation of patient samples in clinical trials.

  2. Hybrid Combined Cycles with Biomass and Waste Fired Bottoming Cycle - a Literature Study

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Miroslav P.

    2002-02-01

    Biomass is one of the main natural resources in Sweden. The present low-CO{sub 2} emission characteristics of the Swedish electricity production system (hydro and nuclear) can be retained only by expansion of biofuel applications for energy purposes. Domestic Swedish biomass resources are vast and renewable, but not infinite. They must be utilized as efficiently as possible, in order to make sure that they meet the conditions for sustainability in the future. Application of efficient power generation cycles at low costs is essential for meeting this challenge. This applies also to municipal solid waste incineration with energy extraction, which should be preferred to its dumping in landfills. Hybrid dual-fuel combined cycle units are a simple and affordable way to increase the electric efficiency of biofuel energy utilization, without big investments, uncertainties or loss of reliability arising from complicated technologies. Configurations of such power cycles are very flexible and reliable. Their potential for high electric efficiency in condensing mode, high total efficiency in combined heat and power mode and unrivalled load flexibility is explored in this project. The present report is a literature study that concentrates on certain biomass utilization technologies, in particular the design and performance of hybrid combined cycle power units of various configurations, with gas turbines and internal combustion engines as topping cycles. An overview of published literature and general development trends on the relevant topic is presented. The study is extended to encompass a short overview of biomass utilization as an energy source (focusing on Sweden), history of combined cycles development with reference especially to combined cycles with supplementary firing and coal-fired hybrid combined cycles, repowering of old steam units into hybrid ones and combined cycles for internal combustion engines. The hybrid combined cycle concept for municipal solid waste

  3. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  4. Parametric analysis of blade configurations for a small-scale nitrogen axial expander with hybrid open-Rankine cycle

    International Nuclear Information System (INIS)

    Khalil, Khalil M.; Mahmoud, S.; Al- Dadah, R.K.; AL-Mousawi, Fadhel

    2017-01-01

    Highlights: • Develop cryogenic energy storage and efficient recovery technologies. • Integrate small scale closed and cryogenic open-Rankine cycles. • Investigate blade configuration on small-scale axial expander performance. • Use mean line and 3D CFD simulation for expander robust design procedure. • Predict effects of expander efficiency on hybrid open-Rankine cycle efficiency. - Abstract: During the last few decades, low-grade energy sources such as solar energy and wind energy have enhanced the efficiency of the advanced renewable technologies such as the combined Rankine. Furthermore, these heat sources have contributed to a reduction in CO2 emissions. To address the problem of the intermittent nature of such renewable sources, energy storage technologies have been used to balance the power demand and smooth out energy production. In this study, the direct expansion cycle (open Rankine cycle) is combined with a closed loop Rankine cycle to generate power more efficiently and address the problem of discontinuous renewable sources. The topping cycle of this system is a closed looped Rankine cycle and propane is used as a hydrocarbon fluid, while the direct expansion cycle is considered to be the bottoming cycle utilizing nitrogen as cryogen fluid. Small-scale expanders are the most important parts in many thermal power cycles, such as the Rankine cycle, due to the significant impact on the overall cycle’s efficiency. This work investigated the effect of using a number of blade configurations on the cycle’s performance using a small-scale axial expander. A three-dimensional Computational Fluid Dynamic (CFD) simulation was used to examine four proposed blade configurations (lean, sweep, twist, bowl) with three hub- tip ratios (0.83, 0.75, 0.66). In addition, a numerical simulation model of the hybrid open expansion- Rankine cycle was designed and modeled in order to estimate the cycle’s performance. The results show that when the expander

  5. First and Second Law Analyses of Trans-critical N2O Refrigeration Cycle Using an Ejector

    Directory of Open Access Journals (Sweden)

    Damoon Aghazadeh Dokandari

    2018-04-01

    Full Text Available An ejector-expansion refrigeration cycle using nitrous oxide was assessed. Thermodynamic analyses, including energy and exergy analyses, were carried out to investigate the effects on performance of several key factors in the system. The results show that the ejector-expansion refrigeration cycle (EERC has a higher maximum coefficient of performance and exergy efficiency than the internal heat exchanger cycle (IHEC, by 12% and 15%, respectively. The maximum coefficient of performance and exergy efficiency are 14% and 16.5% higher than the corresponding values for the vapor-compression refrigeration cycle (VCRC, respectively. The total exergy destruction for the N2O ejector-expansion cycle is 63% and 53% less than for IHEC and VCRC, respectively. Furthermore, the highest COPs for the vapor-compression refrigeration, the internal heat exchanger and the ejector-expansion refrigeration cycles correspond to a high side pressure of 7.3 MPa, and the highest COPs for the three types of CO2 refrigeration cycles correspond to a high side pressure of 8.5 MPa. Consequently, these lead to a lower electrical power consumption by the compressor.

  6. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle.

    Science.gov (United States)

    Collins, Christine R; Das, Sujaan; Wong, Eleanor H; Andenmatten, Nicole; Stallmach, Robert; Hackett, Fiona; Herman, Jean-Paul; Müller, Sylke; Meissner, Markus; Blackman, Michael J

    2013-05-01

    Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes. © 2013 John Wiley & Sons Ltd.

  7. The realization and analysis of a new thermodynamic cycle for internal combustion engine

    Directory of Open Access Journals (Sweden)

    Dorić Jovan Ž.

    2011-01-01

    Full Text Available This paper presents description and thermodynamic analysis of a new thermodynamic cycle. Realization of this new cycle is possible to achieve with valveless internal combustion engine with more complete expansion. The main purpose of this new IC engine is to increase engines’ thermal efficiency. The engine was designed so that the thermodynamic changes of the working fluid are different than in conventional engines. Specific differences are reflected in a more complete expansion of the working fluid (the expansion stroke is larger than compression stroke, valveless gas flowing and complete discharge of residual combustion products from the combustion chamber. In this concept, the movement of the piston is different than in conventional piston mechanisms. The results obtained herein include the efficiency characteristics of irreversible reciprocating new engine cycle which is very similar to Miller cycle. The results show that with this thermodynamic cycle engine has higher efficiency than with the standard Otto cycle. In this article, the patent application material under number 2008/607 at the Intellectual Property Office of the Republic of Serbia was used.

  8. Expansion joints for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1979-10-15

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of development reviewed. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows.

  9. A combined thermodynamic cycle based on methanol dissociation for IC (internal combustion) engine exhaust heat recovery

    International Nuclear Information System (INIS)

    Fu, Jianqin; Liu, Jingping; Xu, Zhengxin; Ren, Chengqin; Deng, Banglin

    2013-01-01

    In this paper, a novel approach for exhaust heat recovery was proposed to improve IC (internal combustion) engine fuel efficiency and also to achieve the goal for direct usage of methanol as IC engine fuel. An open organic Rankine cycle system using methanol as working medium is coupled to IC engine exhaust pipe for exhaust heat recovery. In the bottom cycle, the working medium first undergoes dissociation and expansion processes, and is then directed back to IC engine as fuel. As the external bottom cycle and the IC engine main cycle are combined together, this scheme forms a combined thermodynamic cycle. Then, this concept was applied to a turbocharged engine, and the corresponding simulation models were built for both of the external bottom cycle and the IC engine main cycle. On this basis, the energy saving potential of this combined cycle was estimated by parametric analyses. Compared to the methanol vapor engine, IC engine in-cylinder efficiency has an increase of 1.4–2.1 percentage points under full load conditions, while the external bottom cycle can increase the fuel efficiency by 3.9–5.2 percentage points at the working pressure of 30 bar. The maximum improvement to the IC engine global fuel efficiency reaches 6.8 percentage points. - Highlights: • A combined thermodynamic cycle using methanol as working medium for IC engine exhaust heat recovery is proposed. • The external bottom cycle of exhaust heat recovery and IC engine working cycle are combined together. • IC engine fuel efficiency could be improved from both in-cylinder working cycle and external bottom cycle. • The maximum improvement to the IC engine global fuel efficiency reaches 6.8 percentage points at full load

  10. Convergence of mayer expansions

    International Nuclear Information System (INIS)

    Brydges, D.C.

    1986-01-01

    The tree graph bound of Battle and Federbush is extended and used to provide a simple criterion for the convergence of (iterated) Mayer expansions. As an application estimates on the radius of convergence of the Mayer expansion for the two-dimensional Yukawa gas (nonstable interaction) are obtained

  11. Skills, sunspots and cycles

    DEFF Research Database (Denmark)

    Busato, Francesco; Marchetti, Enrico

    This paper explores the ability of a class of one-sector,multi-input models to generate indeterminate equilibrium paths, andendogenous cycles, without relying on factors' hoarding. The modelpresents a novel theoretical economic mechanism that supportssunspot-driven expansions without requiring...

  12. REGENERATIVE GAS TURBINES WITH DIVIDED EXPANSION

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Qvale, Einar Bjørn

    2004-01-01

    Recuperated gas turbines are currently drawing an increased attention due to the recent commercialization of micro gas turbines with recuperation. This system may reach a high efficiency even for the small units of less than 100 kW. In order to improve the economics of the plants, ways to improve...... their efficiency are always of interest. Recently, two independent studies have proposed recuperated gas turbines to be configured with the turbine expansion divided, in order to obtain higher efficiency. The idea is to operate the system with a gas generator and a power turbine, and use the gas from the gas...... divided expansion can be advantageous under certain circumstances. But, in order for todays micro gas turbines to be competitive, the thermodynamic efficiencies will have to be rather high. This requires that all component efficiencies including the recuperator effectiveness will have to be high...

  13. An improved wave rotor refrigerator using an outside gas flow for recycling the expansion work

    Science.gov (United States)

    Zhao, J.; Hu, D.

    2017-03-01

    To overcome the bottleneck of traditional gas wave refrigeration, an improved wave rotor refrigerator (WRR) cycle has been proposed, in which the expansion work was recycled during the process of refrigeration. Thermodynamic analysis of the two cycles shows that the refrigeration efficiency of the improved WRR cycle has been greatly increased compared with the traditional WRR. The performance of an improved WRR was investigated by adjusting the major operational parameters, such as the rotational speed of the wave rotor, port size, and inflow overpressure. The experimental results show that pressure loss can be reduced by nearly 40 % in this improved refrigeration system. Meanwhile, a two-dimensional numerical simulation was performed to understand the wave interactions that take place inside the rotor channels.

  14. FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE

    Directory of Open Access Journals (Sweden)

    Yanlin Ge

    2010-01-01

    Full Text Available Performance of an air-standard Atkinson cycle is analyzed by using finite-time thermodynamics. The irreversible cycle model which is more close to practice is founded. In this model, the non-linear relation between the specific heats of working fluid and its temperature, the friction loss computed according to the mean velocity of the piston, the internal irreversibility described by using the compression and expansion efficiencies, and heat transfer loss are considered. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between power output and the efficiency of the cycle are derived by detailed numerical examples. Moreover, the effects of internal irreversibility, heat transfer loss and friction loss on the cycle performance are analyzed. The results obtained in this paper may provide guidelines for the design of practical internal combustion engines.

  15. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  16. World's first ejector cycle for mobile refrigerators to stop global warming

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Hirotsugu [Denso Corporation, Kariya (Japan); Gyoeroeg, Tibor [DENSO AUTOMOTIVE Deutschland GmbH, Eching (Germany)

    2010-07-01

    The development of energy-saving technologies is in great demand recently to stop global warming. We are committed to developing the Ejector Cycle as an energy-saving technology for refrigerators and air conditioners. The ejector, which is an energy-saving technological innovation, improves the efficiency of the refrigeration cycle by effectively using the expansion energy that is lost in the conventional vapor-compression cycle, and is applicable to almost all vapor-compression refrigerating air conditioners, thus improving the efficiency of the refrigeration cycle. Concerning the application of the Ejector Cycle in truck-transport refrigerators, we released Ejector Cycle products for large and medium-size freezer trucks, which have been favorably accepted by customers in 2003. Simultaneously we also developed the domestic water supply system using heat pump with natural refrigerant (CO{sub 2}). We developed a new Ejector Cycle, completed in 2007 a cool box which uses the refrigeration cycle of the mobile air-conditioning system to cool drinks and the commercial compact refrigerator. In 2008 a domestic water supply heat pump system using a heat pump with the natural refrigerant CO{sub 2} and the next-generation Ejector Cycle II that substantially improves performance was brought to the market. A new generation of Ejector Cycle is under development which will significantly improve the efficiency of mobile air conditioning systems (orig.)

  17. Fuel Thermal Expansion (FTHEXP)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1978-07-01

    A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO 2 and PuO 2 in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO 2 , and the fraction of fuel which is molten

  18. The closed fuel cycle

    International Nuclear Information System (INIS)

    Froment, Antoine; Gillet, Philippe

    2007-01-01

    Available in abstract form only. Full text of publication follows: The fast growth of the world's economy coupled with the need for optimizing use of natural resources, for energy security and for climate change mitigation make energy supply one of the 21. century most daring challenges. The high reliability and efficiency of nuclear energy, its competitiveness in an energy market undergoing a new oil shock are as many factors in favor of the 'renaissance' of this greenhouse gas free energy. Over 160,000 tHM of LWR1 and AGR2 Used Nuclear Fuel (UNF) have already been unloaded from the reactor cores corresponding to 7,000 tons discharged per year worldwide. By 2030, this amount could exceed 400,000 tHM and annual unloading 14,000 tHM/year. AREVA believes that closing the nuclear fuel cycle through the treatment and recycling of Used Nuclear Fuel sustains the worldwide nuclear power expansion. It is an economically sound and environmentally responsible choice, based on the preservation of natural resources through the recycling of used fuel. It furthermore provides a safe and secure management of wastes while significantly minimizing the burden left to future generations. (authors)

  19. Efficient Interplay Effect Mitigation for Proton Pencil Beam Scanning by Spot-Adapted Layered Repainting Evenly Spread out Over the Full Breathing Cycle.

    Science.gov (United States)

    Poulsen, Per Rugaard; Eley, John; Langner, Ulrich; Simone, Charles B; Langen, Katja

    2018-01-01

    To develop and implement a practical repainting method for efficient interplay effect mitigation in proton pencil beam scanning (PBS). A new flexible repainting scheme with spot-adapted numbers of repainting evenly spread out over the whole breathing cycle (assumed to be 4 seconds) was developed. Twelve fields from 5 thoracic and upper abdominal PBS plans were delivered 3 times using the new repainting scheme to an ion chamber array on a motion stage. One time was static and 2 used 4-second, 3-cm peak-to-peak sinusoidal motion with delivery started at maximum inhalation and maximum exhalation. For comparison, all dose measurements were repeated with no repainting and with 8 repaintings. For each motion experiment, the 3%/3-mm gamma pass rate was calculated using the motion-convolved static dose as the reference. Simulations were first validated with the experiments and then used to extend the study to 0- to 5-cm motion magnitude, 2- to 6-second motion periods, patient-measured liver tumor motion, and 1- to 6-fraction treatments. The effect of the proposed method was evaluated for the 5 clinical cases using 4-dimensional (4D) dose reconstruction in the planning 4D computed tomography scan. The target homogeneity index, HI = (D 2 - D 98 )/D mean , of a single-fraction delivery is reported, where D 2 and D 98 is the dose delivered to 2% and 98% of the target, respectively, and D mean is the mean dose. The gamma pass rates were 59.6% ± 9.7% with no repainting, 76.5% ± 10.8% with 8 repaintings, and 92.4% ± 3.8% with the new repainting scheme. Simulations reproduced the experimental gamma pass rates with a 1.3% root-mean-square error and demonstrated largely improved gamma pass rates with the new repainting scheme for all investigated motion scenarios. One- and two-fraction deliveries with the new repainting scheme had gamma pass rates similar to those of 3-4 and 6-fraction deliveries with 8 repaintings. The mean HI for the 5 clinical cases was 14.2% with no

  20. Progress in high duty cycle, highly efficient fiber coupled 940-nm pump modules for high-energy class solid-state lasers

    Science.gov (United States)

    Platz, R.; Frevert, C.; Eppich, B.; Rieprich, J.; Ginolas, A.; Kreutzmann, S.; Knigge, S.; Erbert, G.; Crump, P.

    2018-03-01

    Diode lasers pump sources for future high-energy-class laser systems based on Yb-doped solid state amplifiers must deliver high optical intensities, high conversion efficiency (ηE = > 50%) at high repetition rates (f = 100 Hz) and long pulse widths (τ = 0.5…2 ms). Over the last decade, a series of pump modules has been developed at the Ferdinand-BraunInstitut to address these needs. The latest modules use novel wide-aperture single emitter diode lasers in passively side cooled stacks, operate at τ = 1 ms, f = 100…200 Hz and deliver 5…6 kW optical output power from a fiber with 1.9 mm core diameter and NA of 0.22, for spatial brightness BΩ > 1 MW/cm2 sr. The performance to date and latest developments in these high brightness modules are summarized here with recent work focusing on extending operation to other pumping conditions, as needed for alternative solid state laser designs. Specifically, the electro-optic, spectral and beam propagation characteristics of the module and its components are studied as a function of τ for a fixed duty cycle DC = 10% for τ = 1...100 ms, and first data is shown for continuous wave operation. Clear potential is seen to fulfill more demanding specifications without design changes. For example, high power long-pulse operation is demonstrated, with a power of > 5 kW at τ = 100 ms. Higher brightness operation is also confirmed at DC = 10% and τ = 1 ms, with > 5 kW delivered in a beam with BΩ > 4 MW/cm2 sr.

  1. Resonant state expansions

    International Nuclear Information System (INIS)

    Lind, P.

    1993-02-01

    The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.)

  2. Multi-objective thermodynamic optimization of combined Brayton and inverse Brayton cycles using genetic algorithms

    International Nuclear Information System (INIS)

    Besarati, S.M.; Atashkari, K.; Jamali, A.; Hajiloo, A.; Nariman-zadeh, N.

    2010-01-01

    This paper presents a simultaneous optimization study of two outputs performance of a previously proposed combined Brayton and inverse Brayton cycles. It has been carried out by varying the upper cycle pressure ratio, the expansion pressure of the bottom cycle and using variable, above atmospheric, bottom cycle inlet pressure. Multi-objective genetic algorithms are used for Pareto approach optimization of the cycle outputs. The two important conflicting thermodynamic objectives that have been considered in this work are net specific work (w s ) and thermal efficiency (η th ). It is shown that some interesting features among optimal objective functions and decision variables involved in the Baryton and inverse Brayton cycles can be discovered consequently.

  3. Accelerating the loop expansion

    International Nuclear Information System (INIS)

    Ingermanson, R.

    1986-01-01

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi 4 theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs

  4. Virial Expansion Bounds

    Science.gov (United States)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  5. Conformal expansions and renormalons

    Energy Technology Data Exchange (ETDEWEB)

    Rathsman, J.

    2000-02-07

    The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients. As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.

  6. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    Science.gov (United States)

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  7. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31

    Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project

  8. Theoretical study on a novel dual-nozzle ejector enhanced refrigeration cycle for household refrigerator-freezers

    International Nuclear Information System (INIS)

    Zhou, Mengliu; Wang, Xiao; Yu, Jianlin

    2013-01-01

    Highlights: • A novel dual-nozzle ejector enhanced refrigeration cycle is proposed. • The novel cycle is evaluated by using the developed mathematical model. • The results show the performances of the novel cycle could be significantly improved. • The novel cycle shows its promise in household refrigerator-freezers applications. - Abstract: In this study, a novel dual-nozzle ejector enhanced refrigeration cycle is presented for dual evaporator household refrigerator-freezers. The proposed ejector equipped with two nozzles can efficiently recover the expansion work from cycle throttling processes and enhance cycle performances. The performances of the novel cycle are evaluated by using the developed mathematical model, and then compared with that of the conventional ejector enhanced refrigeration cycle and basic vapor-compression refrigeration cycle. The simulation results show that for the given operating conditions, the coefficient of performance (COP) of the novel cycle using refrigerant R134a is improved by 22.9–50.8% compared with that of the basic vapor-compression refrigeration cycle, and the COP improvement is 10.5–30.8% larger than that of the conventional ejector enhanced refrigeration cycle. The further simulation results of the novel cycle using refrigerant R600a indicate that the cycle COP and volumetric refrigeration capacity could be significantly improved

  9. Energy and exergy analysis of a new ejector enhanced auto-cascade refrigeration cycle

    International Nuclear Information System (INIS)

    Yan, Gang; Chen, Jiaheng; Yu, Jianlin

    2015-01-01

    Highlights: • A new ejector enhanced auto-cascade refrigeration cycle using R134a/R23 is proposed. • The performance of new and basic cycles is compared by simulation method. • The new cycle outperforms the basic cycle in both energetic and exergy aspects. • Both cycles have optimum mixture compositions to obtain optimal performance. - Abstract: A new ejector enhanced auto-cascade refrigeration cycle using R134a/R23 refrigerant mixture is proposed in this paper. In the new cycle, an ejector is used to recover part of the work that would otherwise be lost in the throttling processes. The performance comparison between the new cycle and a basic auto-cascade refrigeration cycle is carried out based on the first and second laws of thermodynamics. The simulation results show that both the coefficient of performance and exergy efficiency of the new cycle can be improved by 8.42–18.02% compared with those of the basic cycle at the same operation conditions as the ejector has achieved pressure lift ratios of 1.12–1.23. It is found that in the new cycle, the highest exergy destruction occurs in the compressor followed by the condenser, cascade condenser, expansion valve, ejector and evaporator. The effect of some main parameters on the cycle performance is further investigated. The results show that for the new cycle, the achieved performance improvement over the basic cycle is also dependent on the mixture composition and the vapor quality at the condenser outlet. The coefficient of performance improvement of the new cycle over the basic cycle degrades with increasing vapor quality. In addition, there exists an optimum mixture composition to obtain the maximum coefficient of performance for the new cycle when other operation conditions are given. The optimum mixture composition of both cycles may be fixed at about 0.5 under the given evaporating temperature.

  10. Thermal expansion data

    International Nuclear Information System (INIS)

    Taylor, D.

    1984-01-01

    This paper gives regression data for a modified second order polynomial fitted to the expansion data of, and percentage expansions for dioxides with (a) the fluorite and antifluorite structure: AmO 2 , BkO 2 , CeO 2 , CmO 2 , HfO 2 , Li 2 O, NpO 2 , PrO 2 , PuO 2 , ThO 2 , UO 2 , ZrO 2 , and (b) the rutile structure: CrO 2 , GeO 2 , IrO 2 , MnO 2 , NbO 2 , PbO 2 , SiO 2 , SnO 2 , TeO 2 , TiO 2 and VO 2 . Reduced expansion curves for the dioxides showed only partial grouping into iso-electronic series for the fluorite structures and showed that the 'law of corresponding states' did not apply to the rutile structures. (author)

  11. Exergy Analysis of a Subcritical Refrigeration Cycle with an Improved Impulse Turbo Expander

    Directory of Open Access Journals (Sweden)

    Zhenying Zhang

    2014-08-01

    Full Text Available The impulse turbo expander (ITE is employed to replace the throttling valve in the vapor compression refrigeration cycle to improve the system performance. An improved ITE and the corresponding cycle are presented. In the new cycle, the ITE not only acts as an expansion device with work extraction, but also serves as an economizer with vapor injection. An increase of 20% in the isentropic efficiency can be attained for the improved ITE compared with the conventional ITE owing to the reduction of the friction losses of the rotor. The performance of the novel cycle is investigated based on energy and exergy analysis. A correlation of the optimum intermediate pressure in terms of ITE efficiency is developed. The improved ITE cycle increases the exergy efficiency by 1.4%–6.1% over the conventional ITE cycle, 4.6%–8.3% over the economizer cycle and 7.2%–21.6% over the base cycle. Furthermore, the improved ITE cycle is also preferred due to its lower exergy loss.

  12. Thermodynamic analysis of the heat regenerative cycle in porous medium engine

    International Nuclear Information System (INIS)

    Liu Hongsheng; Xie Maozhao; Wu Dan

    2009-01-01

    The advantages of homogeneous combustion in internal combustion engines are well known all over the world. Recent years, porous medium (PM) engine has been proposed as a new type engine based on the technique of combustion in porous medium, which can fulfils all requirements to perform homogeneous combustion. In this paper, working processes of a PM engine are briefly introduced and an ideal thermodynamic model of the PM heat regeneration cycle in PM engine is developed. An expression for the relation between net work output and thermal efficiency is derived for the cycle. In order to evaluate of the cycle, the influences of the expansion ratio, initial temperature and limited temperature on the net work and efficiency are discussed, and the availability terms of the cycle are analyzed. Comparing the PM heat regenerative cycle of the PM engine against Otto cycle and Diesel cycle shows that PM heat regenerative cycle can improve net work output greatly with little drop of efficiency. The aim of this paper is to predict the thermodynamic performance of PM heat regeneration cycle and provide a guide to further investigations of the PM engine

  13. Energy-Efficient Routes for the Production of Gasoline from Biogas and Pyrolysis Oil-Process Design and Life-Cycle Assessment.

    Science.gov (United States)

    Sundaram, Smitha; Kolb, Gunther; Hessel, Volker; Wang, Qi

    2017-03-29

    Two novel routes for the production of gasoline from pyrolysis oil (from timber pine) and biogas (from ley grass) are simulated, followed by a cradle-to-gate life-cycle assessment of the two production routes. The main aim of this work is to conduct a holistic evaluation of the proposed routes and benchmark them against the conventional route of producing gasoline from natural gas. A previously commercialized method of synthesizing gasoline involves conversion of natural gas to syngas, which is further converted to methanol, and then as a last step, the methanol is converted to gasoline. In the new proposed routes, the syngas production step is different; syngas is produced from a mixture of pyrolysis oil and biogas in the following two ways: (i) autothermal reforming of pyrolysis oil and biogas, in which there are two reactions in one reactor (ATR) and (ii) steam reforming of pyrolysis oil and catalytic partial oxidation of biogas, in which there are separated but thermally coupled reactions and reactors (CR). The other two steps to produce methanol from syngas, and gasoline from methanol, remain the same. The purpose of this simulation is to have an ex-ante comparison of the performance of the new routes against a reference, in terms of energy and sustainability. Thus, at this stage of simulations, nonrigorous, equilibrium-based models have been used for reactors, which will give the best case conversions for each step. For the conventional production route, conversion and yield data available in the literature have been used, wherever available.The results of the process design showed that the second method (separate, but thermally coupled reforming) has a carbon efficiency of 0.53, compared to the conventional route (0.48), as well as the first route (0.40). The life-cycle assessment results revealed that the newly proposed processes have a clear advantage over the conventional process in some categories, particularly the global warming potential and primary

  14. Uniform gradient expansions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  15. Simplified Technique for Predicting Offshore Pipeline Expansion

    Science.gov (United States)

    Seo, J. H.; Kim, D. K.; Choi, H. S.; Yu, S. Y.; Park, K. S.

    2018-06-01

    In this study, we propose a method for estimating the amount of expansion that occurs in subsea pipelines, which could be applied in the design of robust structures that transport oil and gas from offshore wells. We begin with a literature review and general discussion of existing estimation methods and terminologies with respect to subsea pipelines. Due to the effects of high pressure and high temperature, the production of fluid from offshore wells is typically caused by physical deformation of subsea structures, e.g., expansion and contraction during the transportation process. In severe cases, vertical and lateral buckling occurs, which causes a significant negative impact on structural safety, and which is related to on-bottom stability, free-span, structural collapse, and many other factors. In addition, these factors may affect the production rate with respect to flow assurance, wax, and hydration, to name a few. In this study, we developed a simple and efficient method for generating a reliable pipe expansion design in the early stage, which can lead to savings in both cost and computation time. As such, in this paper, we propose an applicable diagram, which we call the standard dimensionless ratio (SDR) versus virtual anchor length (L A ) diagram, that utilizes an efficient procedure for estimating subsea pipeline expansion based on applied reliable scenarios. With this user guideline, offshore pipeline structural designers can reliably determine the amount of subsea pipeline expansion and the obtained results will also be useful for the installation, design, and maintenance of the subsea pipeline.

  16. Low-temperature thermal expansion

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    This chapter discusses the thermal expansion of insulators and metals. Harmonicity and anharmonicity in thermal expansion are examined. The electronic, magnetic, an other contributions to low temperature thermal expansion are analyzed. The thermodynamics of the Debye isotropic continuum, the lattice-dynamical approach, and the thermal expansion of metals are discussed. Relative linear expansion at low temperatures is reviewed and further calculations of the electronic thermal expansion coefficient are given. Thermal expansions are given for Cu, Al and Ti. Phenomenologic thermodynamic relationships are also discussed

  17. Mapping Brazilian Cropland Expansion, 2000-2013

    Science.gov (United States)

    Zalles, V.; Hansen, M.; Potapov, P.

    2016-12-01

    Brazil is one of the world's leading producers and exporters of agricultural goods. Despite undergoing significant increases in its cropland area in the last decades, it remains one of the countries with the most potential for further agricultural expansion. Most notably, the expansion in production areas of commodity crops such as soybean, corn, and sugarcane has become the leading cause of land cover conversion in Brazil. Natural land covers, such as the Amazon and Cerrado forests, have been negatively affected by this agricultural expansion, causing carbon emissions, biodiversity loss, altered water cycles, and many other disturbances to ecosystem services. Monitoring of change in cropland area extent can provide relevant information to decision makers seeking to understand and manage land cover change drivers and their impacts. In this study, the freely-available Landsat archive was leveraged to produce a large-scale, methodologically consistent map of cropland cover at 30 m. resolution for the entire Brazilian territory in the year 2000. Additionally, we mapped cropland expansion from 2000 to 2013, and used statistical sampling techniques to accurately estimate cropland area per Brazilian state. Using the Global Forest Change product produced by Hansen et al. (2013), we can disaggregate forest cover loss due to cropland expansion by year, revealing spatiotemporal trends that could advance our understanding of the drivers of forest loss.

  18. Lace expansion for dummies

    NARCIS (Netherlands)

    Bolthausen, Erwin; Van Der Hofstad, Remco; Kozma, Gady

    2018-01-01

    We show Green's function asymptotic upper bound for the two-point function of weakly self-Avoiding walk in d >4, revisiting a classic problem. Our proof relies on Banach algebras to analyse the lace-expansion fixed point equation and is simpler than previous approaches in that it avoids Fourier

  19. OPEC future capacity expansions

    International Nuclear Information System (INIS)

    Sandrea, I.

    2005-01-01

    This conference presentation examined OPEC future capacity expansions including highlights from 2000-2004 from the supply perspective and actions by OPEC; OPEC spare capacity in 2005/2006; medium-term capacity expansion and investments; long-term scenarios, challenges and opportunities; and upstream policies in member countries. Highlights from the supply perspective included worst than expected non-OPEC supply response; non-OPEC supply affected by a number of accidents and strikes; geopolitical tensions; and higher than expected demand for OPEC crude. OPEC's actions included closer relationship with other producers and consumers; capacity expansions in 2004 and 2005/2006; and OPEC kept the market well supplied with crude in 2004. The presentation also provided data using graphical charts on OPEC net capacity additions until 2005/2006; OPEC production versus spare capacity from 2003 to 2005; OPEC production and capacity to 2010; and change in required OPEC production from 2005-2020. Medium term expansion to 2010 includes over 60 projects. Medium-term risks such as project execution, financing, costs, demand, reserves, depletion, integration of Iraq, and geopolitical tensions were also discussed. The presentation concluded that in the long term, large uncertainties remain; the peak of world supply is not imminent; and continued and enhanced cooperation is essential to market stability. tabs., figs

  20. AUTO-EXPANSIVE FLOW

    Science.gov (United States)

    Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...

  1. Spherical-wave expansions of piston-radiator fields.

    Science.gov (United States)

    Wittmann, R C; Yaghjian, A D

    1991-09-01

    Simple spherical-wave expansions of the continuous-wave fields of a circular piston radiator in a rigid baffle are derived. These expansions are valid throughout the illuminated half-space and are useful for efficient numerical computation in the near-field region. Multipole coefficients are given by closed-form expressions which can be evaluated recursively.

  2. Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction

    International Nuclear Information System (INIS)

    Mousapour, Ashkan; Hajipour, Alireza; Rashidi, Mohammad Mehdi; Freidoonimehr, Navid

    2016-01-01

    In this paper, the first and second-laws efficiencies are applied to performance analysis of an irreversible Miller cycle. In the irreversible cycle, the linear relation between the specific heat of the working fluid and its temperature, the internal irreversibility described using the compression and expansion efficiencies, the friction loss computed according to the mean velocity of the piston and the heat-transfer loss are considered. The effects of various design parameters, such as the minimum and maximum temperatures of the working fluid and the compression ratio on the power output and the first and second-laws efficiencies of the cycle are discussed. In the following, a procedure named ANN is used for predicting the thermal efficiency values versus the compression ratio, and the minimum and maximum temperatures of the Miller cycle. Nowadays, Miller cycle is widely used in the automotive industry and the obtained results of this study will provide some significant theoretical grounds for the design optimization of the Miller cycle. - Highlights: • The performance of an irreversible Miller cycle is investigated using FFT. • The effects of design parameters on the performance of the cycle are investigated. • ANN is applied to predict the thermal efficiency and the power output values. • There is an excellent correlation between FTT and ANN data. • ANN can be applied to predict data where FTT analysis has not been performed.

  3. Radial expansion for spinning conformal blocks

    CERN Document Server

    Costa, Miguel S.; Penedones, João; Trevisani, Emilio

    2016-07-12

    This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.

  4. Energy and exergy analyses of a bi-evaporator compression/ejection refrigeration cycle

    International Nuclear Information System (INIS)

    Geng, Lihong; Liu, Huadong; Wei, Xinli; Hou, Zhonglan; Wang, Zhenzhen

    2016-01-01

    Highlights: • A bi-evaporator compression/ejection refrigeration cycle was studied experimentally. • Experiments were operated at the same external conditions and cooling capacities. • COP improvement was 16.94–30.59% higher than that of the conventional system. • The exergy efficiency of the R134a cycle was improved by 7.57–28.29%. - Abstract: Aiming to reduce the throttling loss in the vapor compression refrigeration cycle, a bi-evaporator compression/ejection refrigeration cycle (BCERC) using an ejector as the expansion device was experimentally investigated with R134a refrigerant. The effects of the compressor frequency and the operating conditions on the coefficient of performance (COP) and the amount of exergy destruction of each component were studied. The results were compared with that of the conventional vapor compression refrigeration cycle under the same external operating conditions and cooling capacities. Results showed that the refrigeration cycle with an ejector as the expansion device exhibited lower irreversibility for each component and total system in comparison with the conventional vapor compression refrigeration cycle. The COP and the exergy efficiency of the BCERC were higher than that of the conventional system. The COP and exergy efficiency improvements became more significant as the condenser water temperature increased, the evaporator water temperature decreased and the compressor frequency increased. In the BCERC with a constant frequency compressor, the COP and the exergy efficiency could be improved by 16.94–30.59%, 7.57–28.29%, respectively. The COP and the exergy efficiency of the BCERC with a variable frequency compressor could increase by around 32.64% and 23.32%, respectively.

  5. Expansion at Olympic Dam

    International Nuclear Information System (INIS)

    Lewis, C.

    1997-01-01

    The Olympic Dam orebody is the 6th largest copper and the single largest uranium orebody in the world. Mine production commenced in June 1988, at an annual production rate of around 45,000 tonnes of copper and 1,000 tonnes of uranium. Western Mining Corporation announced in 1996 a proposed $1.25 billion expansion of the Olympic Dam operation to raise the annual production capacity of the mine to 200,000 tonnes of copper, approximately 3,700 tonnes of uranium, 75,000 ounces of gold and 950,000 ounces of silver by 2001. Further optimisation work has identified a faster track expansion route, with an increase in the capital cost to $1.487 billion but improved investment outcome, a new target completion date of end 1999, and a new uranium output of 4,600 tonnes per annum from that date

  6. Financing electricity expansion

    International Nuclear Information System (INIS)

    Hyman, L.S.

    1994-01-01

    Expansion of electricity supply is associated with economic development. The installation and enlargement of power systems in developing countries entails a huge financial burden, however. Energy consumers in such countries must pay not only for supplies but for the cost of raising the capital for expansion on the international markets. Estimates are presented for the capital expenditure for electricity supply over the period 1990 to 2020 for the major world regions, using approximations for the cost of plant and capital and for the returns earned. These data lead to the conclusion that the five regions with the lowest per capita incomes are those which will need the major part of the capital expenditure and the highest percentage of external finance. (6 tables) (UK)

  7. Bigravity from gradient expansion

    International Nuclear Information System (INIS)

    Yamashita, Yasuho; Tanaka, Takahiro

    2016-01-01

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.

  8. Expansion of magnetic clouds

    International Nuclear Information System (INIS)

    Suess, S.T.

    1987-01-01

    Magnetic clouds are a carefully defined subclass of all interplanetary signatures of coronal mass ejections whose geometry is thought to be that of a cylinder embedded in a plane. It has been found that the total magnetic pressure inside the clouds is higher than the ion pressure outside, and that the clouds are expanding at 1 AU at about half the local Alfven speed. The geometry of the clouds is such that even though the magnetic pressure inside is larger than the total pressure outside, expansion will not occur because the pressure is balanced by magnetic tension - the pinch effect. The evidence for expansion of clouds at 1 AU is nevertheless quite strong so another reason for its existence must be found. It is demonstrated that the observations can be reproduced by taking into account the effects of geometrical distortion of the low plasma beta clouds as they move away from the Sun

  9. IKEA's International Expansion

    OpenAIRE

    Harapiak, Clayton

    2013-01-01

    This case concerns a global retailing firm that is dealing with strategic management and marketing issues. Applying a scenario of international expansion, this case provides a thorough analysis of the current business environment for IKEA. Utilizing a variety of methods (e.g. SWOT, PESTLE, McKinsey Matrix) the overall objective is to provide students with the opportunity to apply their research skills and knowledge regarding a highly competitive industry to develop strategic marketing strateg...

  10. Symmetric eikonal expansion

    International Nuclear Information System (INIS)

    Matsuki, Takayuki

    1976-01-01

    Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)

  11. Series expansions without diagrams

    International Nuclear Information System (INIS)

    Bhanot, G.; Creutz, M.; Horvath, I.; Lacki, J.; Weckel, J.

    1994-01-01

    We discuss the use of recursive enumeration schemes to obtain low- and high-temperature series expansions for discrete statistical systems. Using linear combinations of generalized helical lattices, the method is competitive with diagrammatic approaches and is easily generalizable. We illustrate the approach using Ising and Potts models. We present low-temperature series results in up to five dimensions and high-temperature series in three dimensions. The method is general and can be applied to any discrete model

  12. Nutrient cycling strategies.

    NARCIS (Netherlands)

    Breemen, van N.

    1995-01-01

    This paper briefly reviews pathways by which plants can influence the nutrient cycle, and thereby the nutrient supply of themselves and of their competitors. Higher or lower internal nutrient use efficiency positively feeds back into the nutrient cycle, and helps to increase or decrease soil

  13. Performance research on modified KCS (Kalina cycle system) 11 without throttle valve

    International Nuclear Information System (INIS)

    He, Jiacheng; Liu, Chao; Xu, Xiaoxiao; Li, Yourong; Wu, Shuangying; Xu, Jinliang

    2014-01-01

    Two modified systems based on a KCS (Kalina cycle system) 11 with a two-phase expander to substitute a throttle valve are proposed. The two-phase expander is located between the regenerator and the absorber in the B-modified cycle and between the separator and the regenerator in the C-modified cycle. A thermodynamic performance analysis of both the original KCS 11 and the modified systems is carried out. The optimization of two key parameters (the concentration of working fluid and the temperature of cooling water) is also conducted. It is shown that the two modified cycles have different performance under the investigated conditions. Results also indicate that the C-modified cycle can obtain better thermodynamic effect than the B-modified cycle. The temperature of cooling water plays an important role in improving the system performance. When the cooling water temperature drops from 303 K to 278 K, the C-modified cycle thermal efficiency can be improved by 27%. - Highlights: • Throttling valve is replaced by a two-phase expander to recover the expansion work. • Thermodynamic performance of two modified cycle systems is very different. • The maximum increase of work output by C-modified cycle compared with KCS (Kalina cycle system) 11 is 9.4%. • The ranges of ammonia content of B-modified cycle are rather larger

  14. Considering FACTS in Optimal Transmission Expansion Planning

    Directory of Open Access Journals (Sweden)

    K. Soleimani

    2017-10-01

    Full Text Available The expansion of power transmission systems is an important part of the expansion of power systems that requires enormous investment costs. Since the construction of new transmission lines is very expensive, it is necessary to choose the most efficient expansion plan that ensures system security with a minimal number of new lines. In this paper, the role of Flexible AC Transmission System (FACTS devices in the effective operation and expansion planning of transmission systems is examined. Effort was taken to implement a method based on sensitivity analysis to select the optimal number and location of FACTS devices, lines and other elements of the transmission system. Using this method, the transmission expansion plan for a 9 and a 39 bus power system was performed with and without the presence of FACTS with the use of DPL environment in Digsilent software 15.1. Results show that the use of these devices reduces the need for new transmission lines and minimizes the investment cost.

  15. Energy-efficient routes for the production of gasoline from biogas and pyrolysis oil—process design and life-cycle assessment

    NARCIS (Netherlands)

    Sundaram, S.; Kolb, G.A.; Hessel, V.; Wang, Q.

    2017-01-01

    Two novel routes for the production of gasoline from pyrolysis oil (from timber pine) and biogas (from ley grass) are simulated, followed by a cradle-to-gate life-cycle assessment of the two production routes. The main aim of this work is to conduct a holistic evaluation of the proposed routes and

  16. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin

    2011-01-01

    When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the λ = 2...

  17. Study on the Influence of Refreshment/Activation Cycles and Irrigants on Mechanical Cleaning Efficiency During Ultrasonic Activation of the Irrigant

    NARCIS (Netherlands)

    van der Sluis, Lucas W. M.; Vogels, Maikel P. J. M.; Verhaagen, Bram; Macedo, Ricardo; Wesselink, Paul R.

    Introduction: The aims of this study were to evaluate dentin debris removal from the root canal during ultrasonic activation of sodium hypochlorite (2% and 10%), carbonated water, and distilled water and to determine the influence of 3 ultrasonic refreshment/activation cycles of the irrigant by

  18. Study on the Influence of Refreshment/Activation Cycles and Irrigants on Mechanical Cleaning Efficiency During Ultrasonic Activation of the Irrigant

    NARCIS (Netherlands)

    van der Sluis, Lucas W.M.; Vogels, Maikel P.J.M.; Verhaagen, B.; Macedo, Ricardo; Wesselink, Paul R.

    2010-01-01

    Introduction The aims of this study were to evaluate dentin debris removal from the root canal during ultrasonic activation of sodium hypochlorite (2% and 10%), carbonated water, and distilled water and to determine the influence of 3 ultrasonic refreshment/activation cycles of the irrigant by using

  19. Study on the influence of refreshment/activation cycles and irrigants on mechanical cleaning efficiency during ultrasonic activation of the irrigant

    NARCIS (Netherlands)

    van der Sluis, L.W.M.; Vogels, M.P.J.M.; Verhaagen, B.; Macedo, R.; Wesselink, P.R.

    2010-01-01

    Introduction: The aims of this study were to evaluate dentin debris removal from the root canal during ultrasonic activation of sodium hypochlorite (2% and 10%), carbonated water, and distilled water and to determine the influence of 3 ultrasonic refreshment/activation cycles of the irrigant by

  20. Development of fuel cycles with new fuel with 8.9 mm external diameter for VVER-440. Preliminary assessment of operating efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gagarinskiy, Alexey [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2017-09-15

    Since the introduction of VVERs-440, their fuel assemblies are subject to ongoing improvements. Until now, the basic structural parameters of fuel, such as rod diameter of 9.1 mm, have never changed. This paper focuses on computational estimates of basic neutronic parameters of the fuel cycle that involves assemblies consisting of fuel rods with diameter reduced to 8.9 mm.

  1. New Regenerative Cycle for Vapor Compression Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Bergander

    2005-08-29

    The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and

  2. Expansions for Coulomb wave functions

    NARCIS (Netherlands)

    Boersma, J.

    1969-01-01

    In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are

  3. Temporal quadratic expansion nodal Green's function method

    International Nuclear Information System (INIS)

    Liu Cong; Jing Xingqing; Xu Xiaolin

    2000-01-01

    A new approach is presented to efficiently solve the three-dimensional space-time reactor dynamics equation which overcomes the disadvantages of current methods. In the Temporal Quadratic Expansion Nodal Green's Function Method (TQE/NGFM), the Quadratic Expansion Method (QEM) is used for the temporal solution with the Nodal Green's Function Method (NGFM) employed for the spatial solution. Test calculational results using TQE/NGFM show that its time step size can be 5-20 times larger than that of the Fully Implicit Method (FIM) for similar precision. Additionally, the spatial mesh size with NGFM can be nearly 20 times larger than that using the finite difference method. So, TQE/NGFM is proved to be an efficient reactor dynamics analysis method

  4. Multi-objective design and operation of Solid Oxide Fuel Cell (SOFC) Triple Combined-cycle Power Generation systems: Integrating energy efficiency and operational safety

    International Nuclear Information System (INIS)

    Sharifzadeh, Mahdi; Meghdari, Mojtaba; Rashtchian, Davood

    2017-01-01

    Highlights: • Integrating Solid Oxide Fuel Cells with thermal power plants enhance overall energy efficiency. • However, the high degree of process integration in hybrid power plants limits the operating window. • Multi-objective optimization was applied for integrated design and operation. • The Pareto optimal solutions demonstrated strong trade-off between energy efficiency and operational safety. - Abstract: Energy efficiency is one of the main pathways for energy security and environmental protection. In fact, the International Energy Agency asserts that without energy efficiency, 70% of targeted emission reductions are not achievable. Despite this clarity, enhancing the energy efficiency introduce significant challenge toward process operation. The reason is that the methods applied for energy-saving pose the process operation at the intersection of safety constraints. The present research aims at uncovering the trade-off between safe operation and energy efficiency; an optimization framework is developed that ensures process safety and simultaneously optimizes energy-efficiency, quantified in economic terms. The developed optimization framework is demonstrated for a solid oxide fuel cell (SOFC) power generation system. The significance of this industrial application is that SOFC power plants apply a highly degree of process integration resulting in very narrow operating windows. However, they are subject to significant uncertainties in power demand. The results demonstrate a strong trade-off between the competing objectives. It was observed that highly energy-efficient designs feature a very narrow operating window and limited flexibility. For instance, expanding the safe operating window by 100% will incur almost 47% more annualized costs. Establishing such a trade-off is essential for realizing energy-saving.

  5. Radial expansion and multifragmentation

    International Nuclear Information System (INIS)

    Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Kerambrun, A.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Meslin, C.; Nakagawa, T.; Patry, J.P.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    The light systems 36 Ar + 27 Al and 64 Zn + nat Ti were measured at several bombarding energies between ∼ 35 and 95 MeV/nucleon. It was found that the predominant part of the cross section is due to binary collisions. In this paper the focus is placed on the properties of the quasi-projectile nuclei. In the central collisions the excitation energies of the quasi-projectile reach values exceeding largely 10 MeV/nucleon. The slope of the high energy part of the distribution can give only an upper limit of the apparent temperature (the average temperature along the decay chain). The highly excited quasi-projectile may get rapidly fragmented rather than sequentially. The heavy fragments are excited and can emit light particles (n, p, d, t, 3 He, α,...) what perturbs additionally the spectrum of these particles. Concerning the expansion energy, one can determine the average kinetic energies of the product (in the quasi-projectile-framework) and compare with simulation values. To fit the experimental data an additional radial expansion energy is to be considered. The average expansion energy depends slightly on the impact parameter but it increases with E * / A, ranging from 0.4 to 1,2 MeV/nucleon for an excitation energy increasing from 7 to 10.5 MeV/nucleon. This collective radial energy seems to be independent of the fragment mass, what is possibly valid for the case of larger quasi-projectile masses. The origin of the expansion is to be determined. It may be due to a compression in the interaction zone at the initial stage of the collision, which propagates in the quasi-projectile and quasi-target, or else, may be due, simply, to the increase of thermal energy leading to a rapid fragment emission. The sequential de-excitation calculation overestimates light particle emission and consequently heavy residues, particularly, at higher excitation energies. This disagreement indicates that a sequential process can not account for the di-excitation of very hot nuclei

  6. Rethinking expansive learning

    DEFF Research Database (Denmark)

    Kolbæk, Ditte; Lundh Snis, Ulrika

    Abstract: This paper analyses an online community of master’s students taking a course in ICT and organisational learning. The students initiated and facilitated an educational design for organisational learning called Proactive Review in the organisation where they are employed. By using an online...... discussion forum on Google groups, they created new ways of reflecting and learning. We used netnography to select qualitative postings from the online community and expansive learning concepts for data analysis. The findings show how students changed practices of organisational learning...

  7. Load regulating expansion fixture

    International Nuclear Information System (INIS)

    Wagner, L.M.; Strum, M.J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located there between. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig

  8. Research on Wetting-Drying Cycles’ Effect on the Physical and Mechanical Properties of Expansive Soil Improved by OTAC-KCl

    Directory of Open Access Journals (Sweden)

    Bao-tian Wang

    2015-01-01

    Full Text Available Expansive soil experiences periodic swelling and shrinkage during the alternate wet and dry environments, which will result in severe damage to the slope stability. In this study, a promising modifier OTAC-KCl is introduced, which has a good diffusivity and is soluble in water or other solvents easily. Firstly, a reasonable combination of ameliorant 0.3% STAC and 3% KCl is chosen referring to the free swell test. Then, the best curing period, 14 days, is gotten from UCS tests. The effect of wetting and drying cycles on engineering properties of expansive soil improved by OTAC-KCl admixtures after 14-day curing is also studied accordingly. Both treated and untreated expansive soil samples are prepared for the cyclic wetting-drying tests which mainly include cyclic swelling potential and cyclic strength tests. Experimental results show that the swelling potential of expansive soil samples stabilized with OTAC-KCl is suppressed efficiently, and the untreated soil specimens will collapse when immersed in water while the treated specimens keep in good conditions. Moreover, expansive soil samples modified with 0.3% OTAC + 3% KCl show enough durability on the swelling ability, shear strength, and unconfined compressive strength, which means, that both the physical and the mechanical properties of stabilized expansive soil have been improved effectively.

  9. Utilisation of diesel engine waste heat by Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Kölsch, Benedikt; Radulovic, Jovana

    2015-01-01

    In this paper, three different organic liquids were investigated as potential working fluids in an Organic Rankine Cycle. Performance of Methanol, Toluene and Solkatherm SES36 was modelled in an ORC powered by a diesel engine waste heat. The ORC model consists of a preheater, evaporator, superheater, turbine, pump and two condensers. With variable maximum cycle temperatures and high cycle pressures, the thermal efficiency, net power output and overall heat transfer area have been evaluated. Methanol was found to have the best thermal performance, but also required the largest heat transfer area. While Toluene achieved lower thermal efficiency, it showed great work potential at high pressures and relatively low temperatures. Our model identified the risks associated with employing these fluids in an ORC: methanol condensing during the expansion and toluene not sufficiently superheated at the turbine inlet, which can compromise the cycle operation. The best compromise between the size of heat exchanger and thermodynamic performance was found for Methanol ORC at intermediate temperatures and high pressures. Flammability and toxicity, however, remain the obstacles for safe implementation of both fluids in ORC systems. - Highlights: • ORC powered by diesel-engine waste heat was developed. • Methanol, Toluene and Solkatherm were considered as working fluids. • Methanol was selected due to the best overall thermal performance. • Optimal cycle operating parameters and heat exchanger area were evaluated

  10. Thermal expansion of granite rocks

    International Nuclear Information System (INIS)

    Stephansson, O.

    1978-04-01

    The thermal expansion of rocks is strongly controlled by the thermal expansion of the minerals. The theoretical thermal expansion of the Stripa Granite is gound to be 21 . 10 -6 [deg C] -1 at 25 deg C and 38 . 10 -6 [deg C] -1 at 400 deg C. The difference in expansion for the rock forming minerals causes micro cracking at heating. The expansion due to micro cracks is found to be of the same order as the mineral expansion. Most of the micro cracks will close at pressures of the order of 10 - 20 MPa. The thermal expansion of a rock mass including the effect of joints is determined in the pilot heater test in the Stripa Mine

  11. Provincial hydro expansions

    Energy Technology Data Exchange (ETDEWEB)

    Froschauer, K J

    1993-01-01

    A study of the development of five provincial hydroelectric utilities in Canada indicates that power companies and the state invited manufacturers to use hydroelectricity and natural resources in order to diversify provincial economies. These hydro expansions also show that utilities and government designed hydro projects to serve continental requirements; serving both objectives became problematic. It is argued that when the Canadian state and firms such as utilities use hydro expansions to serve both continentalism and industrialization, then at best they foster dependent industrialization and staple processing. At worst, they overbuild the infrastructure to generate provincial surplus energy for continental, rather than national, integration. Hydro developments became subject to state intervention in Canada mainly through the failures of private utilities to provide power for the less-lucrative industrial markets within provincial subregions. Although the state and utilities invited foreign firms to manufacture hydro equipment within the provinces and others to use electricity to diversify production beyond resource processing, such a diversification did not occur. Since 1962, ca 80% of industrial energy was used to semi-process wood-derived products, chemicals, and metals. The idea for a national power network became undermined by interprovincial political-economic factors and since 1963, the federal national/continential power policy prevailed. 187 refs., 6 figs., 52 tabs.

  12. Measuring of tube expansion

    International Nuclear Information System (INIS)

    Vogeleer, J. P.

    1985-01-01

    The expansion of the primary tubes or sleeves of the steam generator of a nuclear reactor plant are measured while the tubes or sleeves are being expanded. A primary tube or sleeve is expanded by high pressure of water which flows through a channel in an expander body. The water is supplied through an elongated conductor and is introduced through a connector on the shank connected to the conductor at its outer end. A wire extends through the mandrel and through the conductor to the end of the connector. At its inner end the wire is connected to a tapered pin which is subject to counteracting forces produced by the pressure of the water. The force on the side where the wire is connected to the conductor is smaller than on the opposite side. The tapered pin is moved in the direction of the higher force and extrudes the wire outwardly of the conductor. The tapered surface of the tapered pin engages transverse captive plungers which are maintained in engagement with the expanding tube or sleeve as they are moved outwardly by the tapered pin. The wire and the connector extend out of the generator and, at its outer end, the wire is connected to an indicator which measures the extent to which the wire is moved by the tapered pin, thus measuring the expansion of the tube or sleeve as it progresses

  13. Studies of Expansive Learning: Foundations, Findings and Future Challenges

    Directory of Open Access Journals (Sweden)

    Yrjö Engeström

    2013-07-01

    Full Text Available The paper examines studies based on the theory of expansive learning, formulated in 1987. In recent years the theory has been used in a wide variety of studies and interventions. The theory builds on foundational ideas put forward by Vygotsky, Leont’ev, Il’enkov, and Davydov, key figures in the Russian school of cultural-historical activity theory. Studies based on the theory are reviewed in six sections: expansive learning as transformation of the object, expansive learning as movement in the zone of proximal development, expansive learning as cycles of learning actions, expansive learning as boundary crossing and network building, expansive learning as distributed and discontinuous movement, and formative interventions.A separate section is devoted to critiques of expansive learning. It is concluded that the ultimate test of learning theories is how they help practitioners to generate learning that grasps pressing issues the humankind is facing. The theory of expansive learning currently expands its analyses both up and down, outward and inward. Moving up and outward, it tackles learning in fields or networks of interconnected activity systems with their partially shared and often contested objects. Moving down and inward, it tackles issues of subjectivity, experiencing, personal sense, emotion, embodiment, identity, and moral commitment.

  14. Kato expansion in quantum canonical perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, Andrey, E-mail: Andrey.Nikolaev@rdtex.ru [Institute of Computing for Physics and Technology, Protvino, Moscow Region, Russia and RDTeX LTD, Moscow (Russian Federation)

    2016-06-15

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  15. Kato expansion in quantum canonical perturbation theory

    International Nuclear Information System (INIS)

    Nikolaev, Andrey

    2016-01-01

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  16. A new six stroke single cylinder diesel engine referring Rankine cycle

    International Nuclear Information System (INIS)

    Chen, Hao; Guo, Qi; Yang, Lu; Liu, Shenghua; Xie, Xuliang; Chen, Zhaoyang; Liu, Zengqiang

    2015-01-01

    Six stroke engine presented by Conklin and Szybist is an effective way to recover energy of exhaust gas by adding a partial exhaust stroke and steam expansion stroke. Characteristics of the engine are analyzed and its disadvantages are pointed out. A new six stroke diesel engine is presented here. It refers rankine cycle inside cylinder. Total exhaust gas is recompressed and at a relatively low back pressure in the fourth stroke water is injected to which maintains liquid phase until the piston moves to the TDC. At c′ 720 °CA (crank angle) the water becomes saturated. An ideal thermodynamics model of exhaust gas compression, water injection and expansion is constructed to investigate this modification. Properties at characteristic points are calculated to determine the increased indicated work. Results show that the work increases with the advance of water injection timing and the quality of water. The cycle is more efficient and the new engine has potential for saving energy. Moreover, it is forecasted that HC and PM emissions may reform with steam in reality and H 2 is produced which will react with NO X . - Highlights: • A new six stroke diesel engine is introduced and a new ideal cycle is constructed. • Increased indicated work of the cycle proves that the cycle is more efficient. • In reality steam may reform with HC and PM and produced H 2 may react with NO X emission. • The engine has the potential for energy saving and emission reducing

  17. Methodology of life cycle cost with risk expenditure for offshore process at conceptual design stage

    International Nuclear Information System (INIS)

    Nam, Kiil; Chang, Daejun; Chang, Kwangpil; Rhee, Taejin; Lee, In-Beum

    2011-01-01

    This study proposed a new LCC (life cycle cost) methodology with the risk expenditure taken into account for comparative evaluation of offshore process options at their conceptual design stage. The risk expenditure consisted of the failure risk expenditure and the accident risk expenditure. The former accounted for the production loss and the maintenance expense due to equipment failures while the latter reflected the asset damage and the fatality worth caused by disastrous accidents such as fire and explosion. It was demonstrated that the new LCC methodology was capable of playing the role of a process selection basis in choosing the best of the liquefaction process options including the power generation systems for a floating LNG (Liquefied natural gas) production facility. Without the risk expenditure, a simple economic comparison apparently favored the mixed refrigerant cycle which had the better efficiency. The new methodology with the risk expenditure, however, indicated that the nitrogen expansion cycle driven by steam turbines should be the optimum choice, mainly due to its better availability and safety. -- Highlights: → The study presented the methodology of the LCC with the risk expenditure for the conceptual design of offshore processes. → The proposed methodology demonstrated the applicability of the liquefaction unit with the power generation system of LNG FPSO. → Without the risk expenditure, a simple economic comparison apparently favored the mixed refrigerant cycle which had the better efficiency. → The new methodology indicated that the nitrogen expansion cycle driven by steam turbines is the optimum choice due to its better availability and safety.

  18. Final technical report. A sodium-cycle based organism with improved membrane resistance aimed at increasing the efficiency of energy biotransformations

    International Nuclear Information System (INIS)

    Lewis, Kim

    2001-01-01

    The aim of the project was to express in E. coli components that would allow a formation of oxidative phosphorylation based on a sodium cycle. This would improve the resistance of cells to organic solvents, detergents and other toxins. The author cloned and expressed the nqr operon FR-om H. influenzae in E. coli. Experiments with membrane vesicles indicated the presence of the functional recombinant sodium pumping NADH dehydrogenase. A gene for a hybrid E. coli/P.modestum ATPase was constructed which will enable one to co-express a sodium ATPsynthase together with a sodium NADH dehydrogenase

  19. Thermal expansion of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))

    1992-12-01

    Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.

  20. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  1. Identity Expansion and Transcendence

    Directory of Open Access Journals (Sweden)

    William Sims Bainbridge

    2014-05-01

    Full Text Available Emerging developments in communications and computing technology may transform the nature of human identity, in the process rendering obsolete the traditional philosophical and scientific frameworks for understanding the nature of individuals and groups.  Progress toward an evaluation of this possibility and an appropriate conceptual basis for analyzing it may be derived from two very different but ultimately connected social movements that promote this radical change. One is the governmentally supported exploration of Converging Technologies, based in the unification of nanoscience, biology, information science and cognitive science (NBIC. The other is the Transhumanist movement, which has been criticized as excessively radical yet is primarily conducted as a dignified intellectual discussion within a new school of philosophy about human enhancement.  Together, NBIC and Transhumanism suggest the immense transformative power of today’s technologies, through which individuals may explore multiple identities by means of online avatars, semi-autonomous intelligent agents, and other identity expansions.

  2. Expansion patterns and parallaxes for planetary nebulae

    Science.gov (United States)

    Schönberner, D.; Balick, B.; Jacob, R.

    2018-02-01

    Aims: We aim to determine individual distances to a small number of rather round, quite regularly shaped planetary nebulae by combining their angular expansion in the plane of the sky with a spectroscopically measured expansion along the line of sight. Methods: We combined up to three epochs of Hubble Space Telescope imaging data and determined the angular proper motions of rim and shell edges and of other features. These results are combined with measured expansion speeds to determine individual distances by assuming that line of sight and sky-plane expansions are equal. We employed 1D radiation-hydrodynamics simulations of nebular evolution to correct for the difference between the spectroscopically measured expansion velocities of rim and shell and of their respective shock fronts. Results: Rim and shell are two independently expanding entities, driven by different physical mechanisms, although their model-based expansion timescales are quite similar. We derive good individual distances for 15 objects, and the main results are as follows: (i) distances derived from rim and shell agree well; (ii) comparison with the statistical distances in the literature gives reasonable agreement; (iii) our distances disagree with those derived by spectroscopic methods; (iv) central-star "plateau" luminosities range from about 2000 L⊙ to well below 10 000 L⊙, with a mean value at about 5000 L⊙, in excellent agreement with other samples of known distance (Galactic bulge, Magellanic Clouds, and K648 in the globular cluster M 15); (v) the central-star mass range is rather restricted: from about 0.53 to about 0.56 M⊙, with a mean value of 0.55 M⊙. Conclusions: The expansion measurements of nebular rim and shell edges confirm the predictions of radiation-hydrodynamics simulations and offer a reliable method for the evaluation of distances to suited objects. Results of this paper are based on observations made with the NASA/ESA Hubble Space Telescope in Cycle 16 (GO11122

  3. Two Quantum Polytropic Cycles

    Science.gov (United States)

    Arias-Hernández, L. A.; Morales-Serrano, A. F.

    2002-11-01

    In this work we follow the Bender et al paper [1] to study the quantum analogues of the Stirling and Ericsson polytropic cycles. In the context of the classical thermodynamics, the Stirling and Ericsson cycles correspond to reversible heat engines with two isothermal processes joined by two polytropic branches which occur in a device called regenerator. If this device is an ideal one, the efficiency of these cycles is the Carnot efficiency. Here, we introduce the quantum analogues of the Stirling and Ericsson cycles, the first one based on a double square potential well with a finite potential barrier, since in this system the tunnel effect could be the analogue to the regeneration classical process, therefore the isochoric quantum branches would really correspond to an internal energy storage, and the last one with an unknown system where the isobaric quantum processes don't induce changes in its quantum state. With these systems the quantum engines have cycles consisting of polytropic and isothermal quantum processes analogues to the corresponding classical processes. We show that in both cases the quantum cycles have an efficiency given by ηCQM = 1 - EC/EH, which is the same expression for the quantum analogue of the Carnot cycle studied by Bender.

  4. Thorium fuel cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, K [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1980-07-01

    Systems analysis of the thorium cycle, a nuclear fuel cycle accomplished by using thorium, is reported in this paper. Following a brief review on the history of the thorium cycle development, analysis is made on the three functions of the thorium cycle; (1) auxiliary system of U-Pu cycle to save uranium consumption, (2) thermal breeder system to exert full capacity of the thorium resource, (3) symbiotic system to utilize special features of /sup 233/U and neutron sources. The effects of the thorium loading in LWR (Light Water Reactor), HWR (Heavy Water Reactor) and HTGR (High Temperature Gas-cooled Reactor) are considered for the function of auxiliary system of U-Pu cycle. Analysis is made to find how much uranium is saved by /sup 233/U recycling and how the decrease in Pu production influences the introduction of FBR (Fast Breeder Reactor). Study on thermal breeder system is carried out in the case of MSBR (Molten Salt Breeder Reactor). Under a certain amount of fissile material supply, the potential system expansion rate of MSBR, which is determined by fissile material balance, is superior to that of FBR because of the smaller specific fissile inventory of MSBR. For symbiotic system, three cases are treated; i) nuclear heat supply system using HTGR, ii) denatured fuel supply system for nonproliferation purpose, and iii) hybrid system utilizing neutron sources other than fission reactor.

  5. STYLE, Steam Cycle Heat Balance for Turbine Blade Design in Marine Operation

    International Nuclear Information System (INIS)

    Love, J.B.; Dines, W.R.

    1970-01-01

    1 - Nature of physical problem solved: The programme carries out iterative steam cycle heat balance calculations for a wide variety of steam cycles including single reheat, live steam reheat and multistage moisture separation. Facilities are also available for including the steam-consuming auxiliaries associated with a marine installation. Though no attempt is made to carry out a detailed turbine blading design the programme is capable of automatically varying the blading efficiency from stage to stage according to local steam volume flow rate, dryness fraction and shaft speed. 2 - Method of solution: 3 - Restrictions on the complexity of the problem: Steam pressures to lie within range 0.2 to 5,000 lb/square inch abs steam temperatures to lie within range 50 to 1600 degrees F. Not more than 40 points per turbine expansion line; Not more than 10 expansion lines; Not more than 15 feed heaters. UNIVAC 1108 version received from FIAT Energia Nucleare, Torino, Italy

  6. Thermal expansion of beryllium oxide

    International Nuclear Information System (INIS)

    Solodukhin, A.V.; Kruzhalov, A.V.; Mazurenko, V.G.; Maslov, V.A.; Medvedev, V.A.; Polupanova, T.I.

    1987-01-01

    Precise measurements of temperature dependence of the coefficient of linear expansion in the 22-320 K temperature range on beryllium oxide monocrystals are conducted. A model of thermal expansion is suggested; the range of temperature dependence minimum of the coefficient of thermal expansion is well described within the frames of this model. The results of the experiment may be used for investigation of thermal stresses in crystals

  7. Performance characteristics of low global warming potential R134a alternative refrigerants in ejector-expansion refrigeration system

    Directory of Open Access Journals (Sweden)

    Mishra Shubham

    2016-12-01

    Full Text Available Performance assessment of ejector-expansion vapor compression refrigeration system with eco-friendly R134a alternative refrigerants (R152a, R1234yf, R600a, R600, R290, R161, R32, and propylene is presented for air-conditioning application. Ejector has been modeled by considering experimental data based correlations of component efficiencies to take care of all irreversibilities. Ejector area ratio has been optimized based on maximum coefficient of performance (COP for typical air-conditioner operating temperatures. Selected refrigerants have been compared based on area ratio, pressure lift ratio, entrainment ratio, COP, COP improvement and volumetric cooling capacity. Effects of normal boiling point and critical point on the performances have been studied as well. Using ejector as an expansion device, maximum improvement in COP is noted in R1234yf (10.1%, which reduces the COP deviation with R134a (4.5% less in basic cycle and 2.5% less in ejector cycle. Hence, R1234yf seems to be best alternative for ejector expansion system due to its mild flammability and comparable volumetric capacity and cooling COP. refrigerant R161 is superior to R134a in terms of both COP and volumetric cooling capacity, although may be restricted for low capacity application due to its flammability.

  8. Performance characteristics of low global warming potential R134a alternative refrigerants in ejector-expansion refrigeration system

    Science.gov (United States)

    Mishra, Shubham; Sarkar, Jahar

    2016-12-01

    Performance assessment of ejector-expansion vapor compression refrigeration system with eco-friendly R134a alternative refrigerants (R152a, R1234yf, R600a, R600, R290, R161, R32, and propylene) is presented for air-conditioning application. Ejector has been modeled by considering experimental data based correlations of component efficiencies to take care of all irreversibilities. Ejector area ratio has been optimized based on maximum coefficient of performance (COP) for typical air-conditioner operating temperatures. Selected refrigerants have been compared based on area ratio, pressure lift ratio, entrainment ratio, COP, COP improvement and volumetric cooling capacity. Effects of normal boiling point and critical point on the performances have been studied as well. Using ejector as an expansion device, maximum improvement in COP is noted in R1234yf (10.1%), which reduces the COP deviation with R134a (4.5% less in basic cycle and 2.5% less in ejector cycle). Hence, R1234yf seems to be best alternative for ejector expansion system due to its mild flammability and comparable volumetric capacity and cooling COP. refrigerant R161 is superior to R134a in terms of both COP and volumetric cooling capacity, although may be restricted for low capacity application due to its flammability.

  9. Optimal expansion of a drinking water infrastructure system with respect to carbon footprint, cost-effectiveness and water demand.

    Science.gov (United States)

    Chang, Ni-Bin; Qi, Cheng; Yang, Y Jeffrey

    2012-11-15

    Urban water infrastructure expansion requires careful long-term planning to reduce the risk from climate change during periods of both economic boom and recession. As part of the adaptation management strategies, capacity expansion in concert with other management alternatives responding to the population dynamics, ecological conservation, and water management policies should be systematically examined to balance the water supply and demand temporally and spatially with different scales. To mitigate the climate change impact, this practical implementation often requires a multiobjective decision analysis that introduces economic efficiencies and carbon-footprint matrices simultaneously. The optimal expansion strategies for a typical water infrastructure system in South Florida demonstrate the essence of the new philosophy. Within our case study, the multiobjective modeling framework uniquely features an integrated evaluation of transboundary surface and groundwater resources and quantitatively assesses the interdependencies among drinking water supply, wastewater reuse, and irrigation water permit transfer as the management options expand throughout varying dimensions. With the aid of a multistage planning methodology over the partitioned time horizon, such a systems analysis has resulted in a full-scale screening and sequencing of multiple competing objectives across a suite of management strategies. These strategies that prioritize 20 options provide a possible expansion schedule over the next 20 years that improve water infrastructure resilience and at low life-cycle costs. The proposed method is transformative to other applications of similar water infrastructure systems elsewhere in the world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Elastic-plastic analysis of tube expansion in tubesheets

    International Nuclear Information System (INIS)

    Kasraie, B.; O'Donnell, W.J.; Porowski, J.S.; Selz, A.

    1983-01-01

    Conditions for expansion of tubes in tubesheets are often determined by the test. The tightness of the joint and pull out force are used as criteria for evaluation of the results. For closely spaced tubes, it is also necessary to control development of the plastic regions in the ligaments surrounding the tube being expanded. High local strains may occur and excessive distortion may result if the expansion of the tube is continued beyond the admissible limits. Elastic-plastic finite element analyses are performed herein in order to establish conditions for rolling of the tubes in tubesheets of low ligament efficiency. Such penetration patterns are often required in the design of tubular reactors for catalytic processes. The model considered includes individual tube expansion in tubesheets with triangular penetration patterns. The effect of prior expansion of the neighboring tubes is also evaluated. Gap elements are used to model the initial clearance of the tube in the hole. Development of the plastic zones and distortion of the ligaments is monitored during radial expansion of the tube diameter. The residual stresses between the tube and the hole surface and the history of gap closing after removal of the expansion tool are determined. The effect of axial extension of the tube on the tube thinning is determined. Tube thinning is often used as a measure of tube expansion in manufacturing processes. For the analyzed ligament efficiency, reliable joints are obtained for a thinning range within 2% to 3%

  11. RTEL1 Inhibits Trinucleotide Repeat Expansions and Fragility

    OpenAIRE

    Aisling Frizzell; Jennifer H.G. Nguyen; Mark I.R. Petalcorin; Katherine D. Turner; Simon J. Boulton; Catherine H. Freudenreich; Robert S. Lahue

    2014-01-01

    SUMMARY Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG·CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vi...

  12. S and H Cycle Engine

    International Nuclear Information System (INIS)

    Strobl, William C.; Holland, Joe P.

    2002-01-01

    Our thirst for energy is increasing at an astounding rate. World population growth is estimated to increase by 40% (to 8.5 billion) by 2050, with annual electrical energy usage estimated increase by 100% (to 25 terawatt-hours). We must find new means and fuels as well as significantly improve the efficiency of current power plants to accommodate this growing electrical energy demand. This demand is also growing in the field of space flight. Present energy and propulsion systems are limited in the amount of power (energy) that can be generated by today's technology. This limits the distance that can be safely traveled by manned and un-manned space systems. Space flight is primarily governed by two factors: time and energy. Increasing energy of space propulsion systems will decrease flight time or allow reaching farther out into space safely for manned exploration of our solar system. For example, a round trip manned mission to Mars would take about 400 days with a NERVA type thermal nuclear rocket. To reduce the 400 days to 80 days would require an increase of energy by a factor of five. We need to develop space propulsion systems with much greater energy capability than we have today to satisfy the expansion of space exploration. The S and H Cycle nuclear engine provides a revolutionary technological approach that can contribute significantly toward solving the World electrical energy and the space travel energy requirements. (authors)

  13. Optimum gas turbine cycle for combined cycle power plant

    International Nuclear Information System (INIS)

    Polyzakis, A.L.; Koroneos, C.; Xydis, G.

    2008-01-01

    The gas turbine based power plant is characterized by its relatively low capital cost compared with the steam power plant. It has environmental advantages and short construction lead time. However, conventional industrial engines have lower efficiencies, especially at part load. One of the technologies adopted nowadays for efficiency improvement is the 'combined cycle'. The combined cycle technology is now well established and offers superior efficiency to any of the competing gas turbine based systems that are likely to be available in the medium term for large scale power generation applications. This paper has as objective the optimization of a combined cycle power plant describing and comparing four different gas turbine cycles: simple cycle, intercooled cycle, reheated cycle and intercooled and reheated cycle. The proposed combined cycle plant would produce 300 MW of power (200 MW from the gas turbine and 100 MW from the steam turbine). The results showed that the reheated gas turbine is the most desirable overall, mainly because of its high turbine exhaust gas temperature and resulting high thermal efficiency of the bottoming steam cycle. The optimal gas turbine (GT) cycle will lead to a more efficient combined cycle power plant (CCPP), and this will result in great savings. The initial approach adopted is to investigate independently the four theoretically possible configurations of the gas plant. On the basis of combining these with a single pressure Rankine cycle, the optimum gas scheme is found. Once the gas turbine is selected, the next step is to investigate the impact of the steam cycle design and parameters on the overall performance of the plant, in order to choose the combined cycle offering the best fit with the objectives of the work as depicted above. Each alterative cycle was studied, aiming to find the best option from the standpoint of overall efficiency, installation and operational costs, maintainability and reliability for a combined power

  14. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  15. Hat cycle dynamic simulation

    International Nuclear Information System (INIS)

    Trucco, A.; Corallo, C.; Pini Prato, A.; Porro, S.

    1999-01-01

    Among the innovative cycle recently proposed in literature, the Humid Air Turbine Cycle - Hat better seems to fulfil the main energy market requirements of today: High efficiency in a large power ranger, low pollution, low specific capital cost. The previous results of an analysis at partial load and transient conditions are here presented, where the Hat plant has been simulated using the original model implemented in LEGO environment [it

  16. Social Life Cycle Assessment: An Introduction

    DEFF Research Database (Denmark)

    Moltesen, Andreas; Bonou, Alexandra; Wangel, Arne

    2018-01-01

    An expansion of the LCA framework has been going on through the development of ‘social life cycle assessment’—S-LCA. The methodology, still in its infancy, has the goal of assessing social impacts related to a product’s life cycle. This chapter introduces S-LCA framework area and the related...

  17. Water-splitting-based, sustainable and efficient H2 production in green algae as achieved by substrate limitation of the Calvin-Benson-Bassham cycle.

    Science.gov (United States)

    Nagy, Valéria; Podmaniczki, Anna; Vidal-Meireles, André; Tengölics, Roland; Kovács, László; Rákhely, Gábor; Scoma, Alberto; Tóth, Szilvia Z

    2018-01-01

    Photobiological H 2 production has the potential of becoming a carbon-free renewable energy source, because upon the combustion of H 2 , only water is produced. The [Fe-Fe]-type hydrogenases of green algae are highly active, although extremely O 2 -sensitive. Sulphur deprivation is a common way to induce H 2 production, which, however, relies substantially on organic substrates and imposes a severe stress effect resulting in the degradation of the photosynthetic apparatus. We report on the establishment of an alternative H 2 production method by green algae that is based on a short anaerobic induction, keeping the Calvin-Benson-Bassham cycle inactive by substrate limitation and preserving hydrogenase activity by applying a simple catalyst to remove the evolved O 2 . Cultures remain photosynthetically active for several days, with the electrons feeding the hydrogenases mostly derived from water. The amount of H 2 produced is higher as compared to the sulphur-deprivation procedure and the process is photoautotrophic. Our protocol demonstrates that it is possible to sustainably use algal cells as whole-cell catalysts for H 2 production, which enables industrial application of algal biohydrogen production.

  18. Scenario modeling potential eco-efficiency gains from a transition to organic agriculture: life cycle perspectives on Canadian canola, corn, soy, and wheat production.

    Science.gov (United States)

    Pelletier, N; Arsenault, N; Tyedmers, P

    2008-12-01

    We used Life Cycle Assessment to scenario model the potential reductions in cumulative energy demand (both fossil and renewable) and global warming, acidifying, and ozone-depleting emissions associated with a hypothetical national transition from conventional to organic production of four major field crops [canola (Brassica rapa), corn (Zea mays), soy (Glycine max), and wheat (Triticum aestivum)] in Canada. Models of these systems were constructed using a combination of census data, published values, and the requirements for organic production described in the Canadian National Organic Standards in order to be broadly representative of the similarities and differences that characterize these disparate production technologies. Our results indicate that organic crop production would consume, on average, 39% as much energy and generate 77% of the global warming emissions, 17% of the ozone-depleting emissions, and 96% of the acidifying emissions associated with current national production of these crops. These differences were almost exclusively due to the differences in fertilizers used in conventional and organic farming and were most strongly influenced by the higher cumulative energy demand and emissions associated with producing conventional nitrogen fertilizers compared to the green manure production used for biological nitrogen fixation in organic agriculture. Overall, we estimate that a total transition to organic production of these crops in Canada would reduce national energy consumption by 0.8%, global warming emissions by 0.6%, and acidifying emissions by 1.0% but have a negligible influence on reducing ozone-depleting emissions.

  19. Renormalization group and Mayer expansions

    International Nuclear Information System (INIS)

    Mack, G.

    1984-02-01

    Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U(1) lattice gauge theory by Goepfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear sigma-model, and elsewhere. (orig.)

  20. Isotropic Negative Thermal Expansion Metamaterials.

    Science.gov (United States)

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  1. Renormalization group and mayer expansions

    International Nuclear Information System (INIS)

    Mack, G.

    1984-01-01

    Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U (1) lattice gauge theory by Gopfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear σ-model, and elsewhere

  2. On summation of perturbation expansions

    International Nuclear Information System (INIS)

    Horzela, A.

    1985-04-01

    The problem of the restoration of physical quantities defined by divergent perturbation expansions is analysed. The Pad'e and Borel summability is proved for alternating perturbation expansions with factorially growing coefficients. The proof is based on the methods of the classical moments theory. 17 refs. (author)

  3. International Business Cycle Accounting

    OpenAIRE

    Keisuke Otsu

    2009-01-01

    In this paper, I extend the business cycle accounting method a la Chari, Kehoe and McGrattan (2007) to a two-country international business cycle model and quantify the effect of the disturbances in relevant markets on the business cycle correlation between Japan and the US over the 1980-2008 period. This paper finds that disturbances in the labor market and production efficiency are important in accounting for the recent increase in the cross-country output correlation. If international fina...

  4. Computing conformational free energy differences in explicit solvent: An efficient thermodynamic cycle using an auxiliary potential and a free energy functional constructed from the end points.

    Science.gov (United States)

    Harris, Robert C; Deng, Nanjie; Levy, Ronald M; Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2017-06-05

    Many biomolecules undergo conformational changes associated with allostery or ligand binding. Observing these changes in computer simulations is difficult if their timescales are long. These calculations can be accelerated by observing the transition on an auxiliary free energy surface with a simpler Hamiltonian and connecting this free energy surface to the target free energy surface with free energy calculations. Here, we show that the free energy legs of the cycle can be replaced with energy representation (ER) density functional approximations. We compute: (1) The conformational free energy changes for alanine dipeptide transitioning from the right-handed free energy basin to the left-handed basin and (2) the free energy difference between the open and closed conformations of β-cyclodextrin, a "host" molecule that serves as a model for molecular recognition in host-guest binding. β-cyclodextrin contains 147 atoms compared to 22 atoms for alanine dipeptide, making β-cyclodextrin a large molecule for which to compute solvation free energies by free energy perturbation or integration methods and the largest system for which the ER method has been compared to exact free energy methods. The ER method replaced the 28 simulations to compute each coupling free energy with two endpoint simulations, reducing the computational time for the alanine dipeptide calculation by about 70% and for the β-cyclodextrin by > 95%. The method works even when the distribution of conformations on the auxiliary free energy surface differs substantially from that on the target free energy surface, although some degree of overlap between the two surfaces is required. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. 2015 Plan. Project 1: methodology and planning process of the Brazilian electric sector expansion

    International Nuclear Information System (INIS)

    1993-10-01

    The Planning Process of Brazilian Electric Sector Expansion, their normative aspects, instruments, main agents and the planning cycles are described. The methodology of expansion planning is shown, with the interactions of several study areas, electric power market and the used computer models. The forecasts of methodology evolution is also presented. (C.G.C.)

  6. The relative contributions of forest growth and areal expansion to forest biomass carbon

    Science.gov (United States)

    P. Li; J. Zhu; H. Hu; Z. Guo; Y. Pan; R. Birdsey; J. Fang

    2016-01-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms...

  7. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1998-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  8. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  9. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  10. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J

    1997-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  11. Evaluación de la eficiencia energética de vehículos pesados en el ciclo // Evaluation of the heavy duty trucks energy efficiency in the modified drive cycle.

    Directory of Open Access Journals (Sweden)

    Ramón Pérez-Gálvez

    2010-01-01

    Full Text Available ResumenEn este trabajo, se presenta la reformulación de un ciclo teórico que consta de los elementosbásicos de un ciclo de viaje real con condiciones prefijadas de movimiento y operación. En lamodificación se tomaron en cuenta los siguientes elementos: frecuencia de rotación mínima enmovimiento estable; eficiencia de la transmisión variable con la velocidad, la carga y la marchaconectada; un nuevo criterio de frecuencia de rotación del motor para el cambio de marchas; elfrenado con el motor embragado y; nuevas expresiones de cuantificación del consumo decombustible. Obteniéndose nuevos modelos matemáticos para la determinación de los indicadoresdel consumo de combustible de vehículos pesados de transmisión mecánica. Se presenta además,un indicador “Coeficiente de Efectividad del Trabajo del Automóvil” (CETA que describe laeficiencia energética durante el periodo de impulso, expresada a través del grado deaprovechamiento de la energía del automóvil para llevar hasta determinada velocidad la masa de lacarga útil.Palabras claves: ciclo de viaje, consumo de combustible, evaluación vehicular, modelos matemáticos._________________________________________________________________AbstractIn this paper, the new formulation of a theoretical drive cycle is presented. It is integrated by stagesof a real drive cycle with the prefix settings of movement and operation. In the cycle modificationthe following approaches are taken account: minimal rotation frequency in stable movement; thetransmission efficiency is variable with the speed, the weight, and the gear ratio; a new rotationfrequency for gear shifting; a motor braking stage and; a group of new equations for the fuelconsumption. New mathematical models were obtained for the fuel consumption indicators of theheavy duty trucks with manual transmission. Furthermore, the indicator Automobile WorkEffectiveness Coefficient is presented. It describes the energy efficiency in the

  12. Alternative ORC bottoming cycles FOR combined cycle power plants

    International Nuclear Information System (INIS)

    Chacartegui, R.; Sanchez, D.; Munoz, J.M.; Sanchez, T.

    2009-01-01

    In this work, low temperature Organic Rankine Cycles are studied as bottoming cycle in medium and large scale combined cycle power plants. The analysis aims to show the interest of using these alternative cycles with high efficiency heavy duty gas turbines, for example recuperative gas turbines with lower gas turbine exhaust temperatures than in conventional combined cycle gas turbines. The following organic fluids have been considered: R113, R245, isobutene, toluene, cyclohexane and isopentane. Competitive results have been obtained for toluene and cyclohexane ORC combined cycles, with reasonably high global efficiencies. The paper is structured in four main parts. A review of combined cycle and ORC cycle technologies is presented, followed by a thermodynamic analysis of combined cycles with commercial gas turbines and ORC low temperature bottoming cycles. Then, a parametric optimization of an ORC combined cycle plant is performed in order to achieve a better integration between these two technologies. Finally, some economic considerations related to the use of ORC in combined cycles are discussed.

  13. Conformal Dimensions via Large Charge Expansion.

    Science.gov (United States)

    Banerjee, Debasish; Chandrasekharan, Shailesh; Orlando, Domenico

    2018-02-09

    We construct an efficient Monte Carlo algorithm that overcomes the severe signal-to-noise ratio problems and helps us to accurately compute the conformal dimensions of large-Q fields at the Wilson-Fisher fixed point in the O(2) universality class. Using it, we verify a recent proposal that conformal dimensions of strongly coupled conformal field theories with a global U(1) charge can be obtained via a series expansion in the inverse charge 1/Q. We find that the conformal dimensions of the lowest operator with a fixed charge Q are almost entirely determined by the first few terms in the series.

  14. Understanding the petrochemical cycle: Part 1

    International Nuclear Information System (INIS)

    Sedriks, W.

    1994-01-01

    Fitness in the hydrocarbon processing industry (HPI) arena involves understanding and coping with business cycles: supply and demand. This becomes increasingly more important as the industry globalizes and matures. Competitive-edge thinking needs to look hard at the forces that influence business cycles. Recognition of potential pitfalls is very important when considering: future capacity expansion, mergers and acquisitions, market departure, plant closure, potential product substitution, etc. Understanding pricing mechanisms and the workings of hockey-stick profitability profiles help HPI operators endure cycle downturns and prepare plants to maximize profits for the next upswing. The paper discusses characteristic trends, cycles in the hydrocarbon processing industry, current conditions, and mitigating cycle effects

  15. Plasma expansion: fundamentals and applications

    International Nuclear Information System (INIS)

    Engeln, R; Mazouffre, S; Vankan, P; Bakker, I; Schram, D C

    2002-01-01

    The study of plasma expansion is interesting from a fundamental point of view as well as from a more applied point of view. We here give a short overview of the way properties like density, velocity and temperature behave in an expanding thermal plasma. Experimental data show that the basic phenomena of plasma expansion are to some extent similar to those of the expansion of a hot neutral gas. From the application point of view, we present first results on the use of an expanding thermal plasma in the plasma-activated catalysis of ammonia, from N 2 -H 2 mixtures

  16. Liquid air fueled open–closed cycle Stirling engine

    International Nuclear Information System (INIS)

    Xu, Weiqing; Wang, Jia; Cai, Maolin; Shi, Yan

    2015-01-01

    Highlights: • Energy of liquid air is divided into cryogenic energy and expansion energy. • Open–closed cycle Stirling mechanism is employed to improve efficiency. • The Schmidt theory is modified to describe temperature variation in cold space. - Abstract: An unconventional Stirling engine is proposed and its theoretical analysis is performed. The engine belongs to a “cryogenic heat engine” that is fueled by cryogenic medium. Conventional “cryogenic heat engine” employs liquid air as pressure source, but disregards its heat-absorbing ability. Therefore, its efficiency can only be improved by increasing vapor pressure, accordingly increasing the demand on pressure resistance and sealing. In the proposed engine, the added Stirling mechanism helps achieve its high efficiency and simplicity by utilizing the heat-absorbing ability of liquid air. On one hand, based on Stirling mechanism, gas in the hot space absorbs heat from atmosphere when expanding; gas in the cold space is cooled down by liquid air when compressed. Taking atmosphere as heat source and liquid air as heat sink, a closed Stirling cycle is formed. On the other hand, an exhaust port is set in the hot space. When expanding in the hot space, the vaporized gas is discharged through the exhaust port. Thus, an open cycle is established. To model and analyze the system, the Schmidt theory is modified to describe temperature variation in the cold space, and irreversible characteristic of regenerator is incorporated in the thermodynamic model. The results obtained from the model show that under the same working pressure, the efficiency of the proposed engine is potentially higher than that of conventional ones and to achieve the same efficiency, the working pressure could be lower with the new mechanism. Its efficiency could be improved by reducing temperature difference between the regenerator and the cold/hot space, increasing the swept volume ratio, decreasing the liquid–gas ratio. To keep

  17. Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector

    International Nuclear Information System (INIS)

    Bai, Tao; Yan, Gang; Yu, Jianlin

    2015-01-01

    In this paper, a modified dual-evaporator CO 2 transcritical refrigeration cycle with two-stage ejector (MDRC) is proposed. In MDRC, the two-stage ejector are employed to recover the expansion work from cycle throttling processes and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analyses. The simulation results for the modified cycle show that two-stage ejector exhibits more effective system performance improvement than the single ejector in CO 2 dual-temperature refrigeration cycle, and the improvements of the maximum system COP (coefficient of performance) and system exergy efficiency could reach 37.61% and 31.9% over those of the conventional dual-evaporator cycle under the given operating conditions. The exergetic analysis for each component at optimum discharge pressure indicates that the gas cooler, compressor, two-stage ejector and expansion valves contribute main portion to the total system exergy destruction, and the exergy destruction caused by the two-stage ejector could amount to 16.91% of the exergy input. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system. - Highlights: • Two-stage ejector is used in dual-evaporator CO 2 transcritical refrigeration cycle. • Energetic and exergetic methods are carried out to analyze the system performance. • The modified cycle could obtain dual-temperature refrigeration simultaneously. • Two-stage ejector could effectively improve system COP and exergy efficiency

  18. The relevance of grid expansion under zonal markets

    International Nuclear Information System (INIS)

    Bertsch, Joachim; Hagspiel, Simeon; Just, Lisa

    2015-01-01

    The European electricity market design is based on zonal markets with uniform prices. Locational price signals within these zones - necessary to ensure long-term efficiency - are not provided. Specifically, if intra-zonal congestion occurs due to missing grid expansion, the market design is revealed as inherently incomplete. This might lead to severe, unwanted distortions of the electricity market, both in the short- and in the long-term. In this paper, we study these distortions with a specific focus on the impact of restricted grid expansion under zonal markets. For this, we use a long term fundamental dispatch and investment model of the European electricity system and gradually restrict the allowed expansion of the transmission grid per decade. We find that the combination of an incomplete market design and restricted grid expansion leads to a misallocation of generation capacities and the inability to transport electricity to where it is needed. Consequences are severe and lead to load curtailment of up to 2-3 %. Moreover, missing grid expansion makes it difficult and costly to reach envisaged energy targets in the power sector. Hence, we argue that in the likely event of restricted grid expansion, either administrative measures or - presumably more efficient - an adaptation of the current market design to include locational signals will become necessary.

  19. The relevance of grid expansion under zonal markets

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, Joachim; Hagspiel, Simeon; Just, Lisa [ewi Energy Research and Scenarios gGmbH, Cologne (Germany); Cologne Univ. (Germany). Dept. of Economics; Brown, Tom [Frankfurt Institute of Advanced Studies (Germany)

    2015-12-15

    The European electricity market design is based on zonal markets with uniform prices. Locational price signals within these zones - necessary to ensure long-term efficiency - are not provided. Specifically, if intra-zonal congestion occurs due to missing grid expansion, the market design is revealed as inherently incomplete. This might lead to severe, unwanted distortions of the electricity market, both in the short- and in the long-term. In this paper, we study these distortions with a specific focus on the impact of restricted grid expansion under zonal markets. For this, we use a long term fundamental dispatch and investment model of the European electricity system and gradually restrict the allowed expansion of the transmission grid per decade. We find that the combination of an incomplete market design and restricted grid expansion leads to a misallocation of generation capacities and the inability to transport electricity to where it is needed. Consequences are severe and lead to load curtailment of up to 2-3 %. Moreover, missing grid expansion makes it difficult and costly to reach envisaged energy targets in the power sector. Hence, we argue that in the likely event of restricted grid expansion, either administrative measures or - presumably more efficient - an adaptation of the current market design to include locational signals will become necessary.

  20. Asymptotic expansions for high-contrast elliptic equations

    KAUST Repository

    Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan

    2014-01-01

    In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.

  1. Asymptotic expansions for high-contrast elliptic equations

    KAUST Repository

    Calo, Victor M.

    2014-03-01

    In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.

  2. Combined-cycle plants

    International Nuclear Information System (INIS)

    Valenti, M.

    1991-01-01

    This paper reports that as tougher emissions standards take hold throughout the industrialized world, manufacturers such as GE, Siemens, Foster Wheeler, and Asea Brown Boveri are designing advanced combined-cycle equipment that offers improved environmental performance without sacrificing power efficiency

  3. Warp drive with zero expansion

    Energy Technology Data Exchange (ETDEWEB)

    Natario, Jose [Department of Mathematics, Instituto Superior Tecnico (Portugal)

    2002-03-21

    It is commonly believed that Alcubierre's warp drive works by contracting space in front of the warp bubble and expanding the space behind it. We show that this contraction/expansion is but a marginal consequence of the choice made by Alcubierre and explicitly construct a similar spacetime where no contraction/expansion occurs. Global and optical properties of warp-drive spacetimes are also discussed.

  4. Expansion lyre-shaped tube

    International Nuclear Information System (INIS)

    Andro, Jean.

    1973-01-01

    The invention relates the expansion lyre-shaped tube portions formed in dudgeoned tubular bundles between two bottom plates. An expansion lyre comprises at least two sets of tubes of unequal lengths coplanar and symmetrical with respect to the main tube axis, with connecting portions between the tubes forming said sets. The invention applies to apparatus such as heat exchangers, heaters, superheaters or breeders [fr

  5. Estimates of expansion time scales

    International Nuclear Information System (INIS)

    Jones, E.M.

    1979-01-01

    Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy. 1 figure

  6. Strategic Complexity and Global Expansion

    DEFF Research Database (Denmark)

    Oladottir, Asta Dis; Hobdari, Bersant; Papanastassiou, Marina

    2012-01-01

    The purpose of this paper is to analyse the determinants of global expansion strategies of newcomer Multinational Corporations (MNCs) by focusing on Iceland, Israel and Ireland. We argue that newcomer MNCs from small open economies pursue complex global expansion strategies (CGES). We distinguish....... The empirical evidence suggests that newcomer MNCs move away from simplistic dualities in the formulation of their strategic choices towards more complex options as a means of maintaining and enhancing their global competitiveness....

  7. Range expansion of heterogeneous populations.

    Science.gov (United States)

    Reiter, Matthias; Rulands, Steffen; Frey, Erwin

    2014-04-11

    Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.

  8. Ammonia-water Rankine cycle

    International Nuclear Information System (INIS)

    Bo Hanliang; Ma Changwen; Wu Shaorong

    1997-01-01

    On characteristics of heating source and cooling source in nuclear heating reactor cooperation, the authors advance a new kind of power cycle in which a multicomponent mixture as the work fluid, ammonia-water Rankine cycle, describe its running principle, and compare it with steam Rankine cycle in the same situation. The result is that: the new kind of power cycle, ammonia-water Rankine cycle has higher electricity efficiency; it suits for the situation of heating source and cooling source which offered by nuclear heating reactor cooperation. For low temperature heating source, it maybe has a widely application

  9. Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle

    Science.gov (United States)

    Weinstein, Leonard

    2004-01-01

    A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel. The original Miller-cycle engine, named after its inventor, was patented in the 1940s and is the basis of engines used in some modern automobiles, but is not widely known. In somewhat oversimplified terms, the main difference between a Miller-cycle engine and a common (Otto-cycle) automobile engine is that the Miller-cycle engine has a longer expansion stroke while retaining the shorter compression stroke. This is accomplished by leaving the intake valve open for part of the compression stroke, whereas in the Otto cycle engine, the intake valve is kept closed during the entire compression stroke. This greater expansion ratio makes it possible to extract more energy from the combustion process without expending more energy for compression. The net result is greater efficiency. In the proposed engine, the regenerative preheating would be effected by running the intake air through a heat exchanger connected to the engine block. The regenerative preheating would offer two advantages: It would ensure reliable autoignition during operation at low ambient temperature and would help to cool the engine, thereby reducing the remainder of the

  10. Rapid-Cycling Bubble-Chamber, details

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Parts of the hydraulic expansion system of the Rapid-Cycling Bubble-Chamber (RCBC). RCBC was the largest of 3 rapid-cycling bubble-chambers (the others were LEBC and HOLEBC), used as target- and vertex-detectors within the European Hybrid Spectrometer (EHS) in the SPS North Area (EHN1). RCBC contained 250 l of liquid hydrogen and was located inside a 3 T superconducting magnet. It was designed for 30 expansions/s (100 times faster than BEBC), the system shown here allowed 50 expansions/s. RCBC operated from 1981 to 1983 for experiments NA21, NA22 and NA23 at a rate of 15 expansions/s, clocking up a total of over 4 million. In the rear, at left, is bearded Lucien Veillet; Augustin Didona is at the right. See also 8001009. The installation of the piston assembly in the RCBC chamber body is shown in the Annual Report 1980, p.65.

  11. The Role of the Process and Design Variables in Improving the Performance of Heat Exchanger Tube Expansion

    Directory of Open Access Journals (Sweden)

    Changwan Han

    2018-05-01

    Full Text Available In the expansion process of a fin-tube heat exchanger, the process variables and shape of the expansion ball affect the deformation of the tube’s inner grooves, the adhesion, and the expansion force. These factors influence the efficiency of heat transfer and the lifetime of the expansion equipment. Therefore, this study analyzed the influential variables of the tube expansion process as well as the expansion ball design through experiments and simulations. A new method was proposed to determine the severity of adhesion in the tube’s inner grooves using the expansion force rate. Expansion experiments with Al tubes show that the expansion force decreases when using a lubricant with high viscosity and when the lubricant remains on the expansion ball for a longer duration. Finite element analysis was also performed to examine the expansion of Cu tubes, which showed that the expansion force was higher when using expansion ball shapes that have higher contact area between the ball and tube surface. The radius of curvature of the expansion ball also influenced the expansion force. However, increasing the ratio of the radial force to the expansion force increased the deformation of the tube’s inner grooves.

  12. Seasonal hydroclimatic impacts of Sun Corridor expansion

    International Nuclear Information System (INIS)

    Georgescu, M; Mahalov, A; Moustaoui, M

    2012-01-01

    Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to rapidly expanding megapolitan areas is necessary in light of the growing global share of urban inhabitants. Based on a suite of ensemble-based, multi-year simulations using the Weather Research and Forecasting (WRF) model, we quantify seasonally varying hydroclimatic impacts of the most rapidly expanding megapolitan area in the US: Arizona’s Sun Corridor, centered upon the Greater Phoenix metropolitan area. Using a scenario-based urban expansion approach that accounts for the full range of Sun Corridor growth uncertainty through 2050, we show that built environment induced warming for the maximum development scenario is greatest during the summer season (regionally averaged warming over AZ exceeds 1 °C). Warming remains significant during the spring and fall seasons (regionally averaged warming over AZ approaches 0.9 °C during both seasons), and is least during the winter season (regionally averaged warming over AZ of 0.5 °C). Impacts from a minimum expansion scenario are reduced, with regionally averaged warming ranging between 0.1 and 0.3 °C for all seasons except winter, when no warming impacts are diagnosed. Integration of highly reflective cool roofs within the built environment, increasingly recognized as a cost-effective option intended to offset the warming influence of urban complexes, reduces urban-induced warming considerably. However, impacts on the hydrologic cycle are aggravated via enhanced evapotranspiration reduction, leading to a 4% total accumulated precipitation decrease relative to the non-adaptive maximum expansion scenario. Our results highlight potentially unintended consequences of this adaptation approach within rapidly expanding megapolitan areas, and emphasize the need for undeniably sustainable development paths that account for

  13. Features of supercritical carbon dioxide Brayton cycle coupled with reactor

    International Nuclear Information System (INIS)

    Duan Chengjie; Wang Jie; Yang Xiaoyong

    2010-01-01

    In order to obtain acceptable cycle efficiency, current helium gas turbine power cycle technology needs high cycle temperature which means that the cycle needs high core-out temperature. The technology has high requirements on reactor structure and fuel elements materials, and also on turbine manufacture. While utilizing CO 2 as cycle working fluid, it can guarantee to lower the cycle temperature and turbo machine Janume but achieve the same cycle efficiency, so as to enhance the safety and economy of reactor. According to the laws of thermodynamics, a calculation model of supercritical CO 2 power cycle was established to analyze the feature, and the decisive parameters of the cycle and also investigate the effect of each parameter on the cycle efficiency in detail were obtained. The results show that supercritical CO 2 power cycle can achieve quite satisfied efficiency at a lower cycle highest temperature than helium cycle, and CO 2 is a promising working fluid. (authors)

  14. Geometry of solar corona expansion and solar wind parameters

    International Nuclear Information System (INIS)

    Krajnev, M.B.

    1980-01-01

    The character of the parameter chanqe of solar wind plasma in the region of the Earth orbit is studied. The main regularities in the parametep behaviour of solar wind (plasma velocity and density) are qualitatively explained in the framework of a model according to which solar corona expansion stronqly differs from radial expansion, that is: the solar wind current lines are focused towards helioequator during the period of low solar activity with gradual transfer to radial expansion during the years of high solar activity. It is shown that the geometry of the solar wind current tubes and its change with the solar activity cycle can not serve an explanation of the observed change of the solar wind parameters

  15. Study on durability for thermal cycle of planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Motoo; Nakata, Kei-ichi; Wakayama, Sin-ichi [Tonen Corp., Saitama (Japan)] [and others

    1996-12-31

    TONEN CORPORATION has developed planar type SOFC since 1986. We demonstrated the output of 1.3 kW in 1991 and 5.1 kW in 1995. Simultaneously we have studied how to raise electric efficiency and reliability utilizing hydrogen and propane as fuel. Durability for thermal cycle is one of the most important problems of planar SOFC to make it more practical. The planar type SOFC is made up of separator, zirconia electrolyte and glass sealant. The thermal expansion of these components are expected to be the same value, however, they still possess small differences. In this situation, a thermal cycle causes a thermal stress due to the difference of the cell components and is often followed by a rupture in cell components, therefore, the analysis of the thermal stress should give us much useful information. The thermal cycle process consists of a heating up and cooling down procedure. Zirconia electrolyte is not bonded to the separator under the condition of the initial heating up procedure, and glass sealant becomes soft or melts and glass seals spaces between the zirconia and separator. The glass sealant becomes harder with the cooling down procedure. Moreover, zirconia is tightly bonded with separator below a temperature which is defined as a constraint temperature and thermal stress also occurs. This indicates that the heating up process relaxes the thermal stress and the cooling down increases it. In this paper, we simulated dependence of the stress on the sealing configuration, thermal expansion of sealant and constraint temperature of sealant glass. Furthermore, we presented SOFC electrical properties after a thermal cycle.

  16. On genus expansion of superpolynomials

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, Andrei, E-mail: mironov@itep.ru [Lebedev Physics Institute, Moscow 119991 (Russian Federation); ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Morozov, Alexei, E-mail: morozov@itep.ru [ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Sleptsov, Alexei, E-mail: sleptsov@itep.ru [ITEP, Moscow 117218 (Russian Federation); Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); KdVI, University of Amsterdam (Netherlands); Smirnov, Andrey, E-mail: asmirnov@math.columbia.edu [ITEP, Moscow 117218 (Russian Federation); Columbia University, Department of Mathematics, New York (United States)

    2014-12-15

    Recently it was shown that the (Ooguri–Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are β-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik's (DAHA-based) approach to the torus knots.

  17. Ring Expansion and Rearrangements of Rhodium(II) Azavinyl Carbenes

    Science.gov (United States)

    Selander, Nicklas; Worrell, Brady T.

    2013-01-01

    An efficient, regioselective and convergent method for the ring expansion and rearrangement of 1-sulfonyl-1,2,3-triazoles under rhodium(II)-catalyzed conditions is described. These denitrogenative reactions form substituted enaminone and olefin-based products, which in the former case can be further functionalized to unique products rendering the sulfonyl triazole traceless. PMID:23161725

  18. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    Niedrig, T.

    1987-01-01

    Nuclear fuel supply is viewed as a buyer's market of assured medium-term stability. Even on a long-term basis, no shortage is envisaged for all conceivable expansion schedules. The conversion and enrichment facilities developed since the mid-seventies have done much to stabilize the market, owing to the fact that one-sided political decisions by the USA can be counteracted efficiently. In view of the uncertainties concerning realistic nuclear waste management strategies, thermal recycling and mixed oxide fuel elements might increase their market share in the future. Capacities are being planned accordingly. (orig.) [de

  19. Efficient molecular density functional theory using generalized spherical harmonics expansions.

    Science.gov (United States)

    Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc

    2017-09-07

    We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ(r,Ω) around the solute is a function of the position r≡(x,y,z) and of the three Euler angles Ω≡(θ,ϕ,ψ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ(r,Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.

  20. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity...... and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...... to simulate glacial cycles accurately. Also, results suggest that non-linear 10 dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles....

  1. Fuel cycles

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1983-05-01

    AECL publications, from the open literature, on fuels and fuel cycles used in CANDU reactors are listed in this bibliography. The accompanying index is by subject. The bibliography will be brought up to date periodically

  2. Fusion blankets for high efficiency power cycles

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Usher, J.L.

    1980-04-01

    Definitions are given of 10 generic blanket types and the specific blanket chosen to be analyzed in detail from each of the 10 types. Dimensions, compositions, energy depositions and breeding ratios (where applicable) are presented for each of the 10 designs. Ultimately, based largely on neutronics and thermal hyraulics results, breeding an nonbreeding blanket options are selected for further design analysis and integration with a suitable power conversion subsystem

  3. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  4. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  5. Regulation of gas infrastructure expansion

    International Nuclear Information System (INIS)

    De Joode, J.

    2012-01-01

    The topic of this dissertation is the regulation of gas infrastructure expansion in the European Union (EU). While the gas market has been liberalised, the gas infrastructure has largely remained in the regulated domain. However, not necessarily all gas infrastructure facilities - such as gas storage facilities, LNG import terminals and certain gas transmission pipelines - need to be regulated, as there may be scope for competition. In practice, the choice of regulation of gas infrastructure expansion varies among different types of gas infrastructure facilities and across EU Member States. Based on a review of economic literature and on a series of in-depth case studies, this study explains these differences in choices of regulation from differences in policy objectives, differences in local circumstances and differences in the intrinsic characteristics of the infrastructure projects. An important conclusion is that there is potential for a larger role for competition in gas infrastructure expansion.

  6. Steam turbine cycle

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1994-01-01

    In a steam turbine cycle, steams exhausted from the turbine are extracted, and they are connected to a steam sucking pipe of a steam injector, and a discharge pipe of the steam injector is connected to an inlet of a water turbine. High pressure discharge water is obtained from low pressure steams by utilizing a pressurizing performance of the steam injector and the water turbine is rotated by the high pressure water to generate electric power. This recover and reutilize discharged heat of the steam turbine effectively, thereby enabling to improve heat efficiency of the steam turbine cycle. (T.M.)

  7. The loop expansion as a divergent-power-series expansion

    International Nuclear Information System (INIS)

    Murai, N.

    1981-01-01

    The loop expansion should be divergent, possibly an asymptotic one, in the Euclidean path integral formulation. This consideration is important in applications of the symmetric and mass-independent renormalization. The [1,1] Pade approximant is calculated in a PHI 4 model. Its classical vacua may be not truely stable for nonzero coupling constant. (author)

  8. RTEL1 Inhibits Trinucleotide Repeat Expansions and Fragility

    Directory of Open Access Journals (Sweden)

    Aisling Frizzell

    2014-03-01

    Full Text Available Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG repeat expansions and fragility, likely by unwinding problematic hairpins.

  9. RTEL1 inhibits trinucleotide repeat expansions and fragility.

    Science.gov (United States)

    Frizzell, Aisling; Nguyen, Jennifer H G; Petalcorin, Mark I R; Turner, Katherine D; Boulton, Simon J; Freudenreich, Catherine H; Lahue, Robert S

    2014-03-13

    Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG) repeat expansions and fragility, likely by unwinding problematic hairpins. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Cosmological expansion and local physics

    International Nuclear Information System (INIS)

    Faraoni, Valerio; Jacques, Audrey

    2007-01-01

    The interplay between cosmological expansion and local attraction in a gravitationally bound system is revisited in various regimes. First, weakly gravitating Newtonian systems are considered, followed by various exact solutions describing a relativistic central object embedded in a Friedmann universe. It is shown that the 'all or nothing' behavior recently discovered (i.e., weakly coupled systems are comoving while strongly coupled ones resist the cosmic expansion) is limited to the de Sitter background. New exact solutions are presented which describe black holes perfectly comoving with a generic Friedmann universe. The possibility of violating cosmic censorship for a black hole approaching the big rip is also discussed

  11. Temperature expansions for magnetic systems

    International Nuclear Information System (INIS)

    Cangemi, D.; Dunne, G.

    1996-01-01

    We derive finite temperature expansions for relativistic fermion systems in the presence of background magnetic fields, and with nonzero chemical potential. We use the imaginary-time formalism for the finite temperature effects, the proper-time method for the background field effects, and zeta function regularization for developing the expansions. We emphasize the essential difference between even and odd dimensions, focusing on 2+1 and 3+1 dimensions. We concentrate on the high temperature limit, but we also discuss the T=0 limit with nonzero chemical potential. Copyright copyright 1996 Academic Press, Inc

  12. Bearing-Mounting Concept Accommodates Thermal Expansion

    Science.gov (United States)

    Nespodzany, Robert; Davis, Toren S.

    1995-01-01

    Pins or splines allow radial expansion without slippage. Design concept for mounting rotary bearing accommodates differential thermal expansion between bearing and any structure(s) to which bearing connected. Prevents buildup of thermal stresses by allowing thermal expansion to occur freely but accommodating expansion in such way not to introduce looseness. Pin-in-slot configuration also maintains concentricity.

  13. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  14. Energy expansion planning by considering electrical and thermal expansion simultaneously

    International Nuclear Information System (INIS)

    Abbasi, Ali Reza; Seifi, Ali Reza

    2014-01-01

    Highlights: • This paper focused on the expansion planning optimization of energy systems. • Employing two form of energy: the expansion of electrical and thermal energies. • The main objective is to minimize the costs. • A new Modified Honey Bee Mating Optimization (MHBMO) algorithm is applied. - Abstract: This study focused on the expansion planning optimization of energy systems employing two forms of energy: the expansion of electrical and thermal energies simultaneously. The main objective of this investigation is confirming network adequacy by adding new equipment to the network, over a given planning horizon. The main objective of the energy expansion planning (EEP) is to minimize the real energy loss, voltage deviation and the total cost of installation equipments. Since the objectives are different and incommensurable, it is difficult to solve the problem by the conventional approaches that may optimize a single objective. So, the meta-heuristic algorithm is applied to this problem. Here, Honey Bee Mating Optimization algorithm (HBMO) as a new evolutionary optimization algorithm is utilized. In order to improve the total ability of HBMO for the global search and exploration, a new modification process is suggested such a way that the algorithm will search the total search space globally. Also, regarding the uncertainties of the new complicated energy systems, in this paper for the first time, the EEP problem is investigated in a stochastic environment by the use of probabilistic load flow technique based on Point Estimate Method (PEM). In order to evaluate the feasibility and effectiveness of the proposed algorithm, two modified test systems are used as case studies

  15. The Thermal Expansion Of Feldspars

    Science.gov (United States)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  16. Decreased Photochemical Efficiency of Photosystem II following Sunlight Exposure of Shade-Grown Leaves of Avocado: Because of, or in Spite of, Two Kinetically Distinct Xanthophyll Cycles?1[W

    Science.gov (United States)

    Jia, Husen; Förster, Britta; Chow, Wah Soon; Pogson, Barry James; Osmond, C. Barry

    2013-01-01

    This study resolved correlations between changes in xanthophyll pigments and photosynthetic properties in attached and detached shade-grown avocado (Persea americana) leaves upon sun exposure. Lutein epoxide (Lx) was deepoxidized to lutein (L), increasing the total pool by ΔL over 5 h, whereas violaxanthin (V) conversion to antheraxanthin (A) and zeaxanthin (Z) ceased after 1 h. During subsequent dark or shade recovery, de novo synthesis of L and Z continued, followed by epoxidation of A and Z but not of L. Light-saturated nonphotochemical quenching (NPQ) was strongly and linearly correlated with decreasing [Lx] and increasing [∆L] but showed a biphasic correlation with declining [V] and increasing [A+Z] separated when V deepoxidation ceased. When considering [ΔL+∆Z], the monophasic linear correlation was restored. Photochemical efficiency of photosystem II (PSII) and photosystem (PSI; deduced from the delivery of electrons to PSI in saturating single-turnover flashes) showed a strong correlation in their continuous decline in sunlight and an increase in NPQ capacity. This decrease was also reflected in the initial reduction of the slope of photosynthetic electron transport versus photon flux density. Generally longer, stronger sun exposures enhanced declines in both slope and maximum photosynthetic electron transport rates as well as photochemical efficiency of PSII and PSII/PSI more severely and prevented full recovery. Interestingly, increased NPQ capacity was accompanied by slower relaxation. This was more prominent in detached leaves with closed stomata, indicating that photorespiratory recycling of CO2 provided little photoprotection to avocado shade leaves. Sun exposure of these shade leaves initiates a continuum of photoprotection, beyond full engagement of the Lx and V cycle in the antenna, but ultimately photoinactivated PSII reaction centers. PMID:23213134

  17. Advanced exergy analyses of an ejector expansion transcritical CO_2 refrigeration system

    International Nuclear Information System (INIS)

    Bai, Tao; Yu, Jianlin; Yan, Gang

    2016-01-01

    Highlights: • Advanced exergy analyses are performed on CO_2 EERC cycle. • Compressor should be improved first, followed by ejector, evaporator and gas cooler. • Interactions among the system components are assessed with advanced exergy analysis. • Real potential for exergy destruction reduction of the system is 43.44%. - Abstract: This paper presents a thermodynamic investigation on an ejector expansion transcritical CO_2 refrigeration system with advanced exergy analysis. By splitting the exergy destruction into endogenous/exogenous and unavoidable/avoidable parts, more valuable information of the interactions among the system components and the components improvement potential is provided. The results indicate that the compressor with largest avoidable endogenous exergy destruction possesses the highest priority of improvement, followed by the ejector, evaporator and gas cooler. The system exergy destruction is dominantly endogenous, and 43.44% of the total exergy destruction can be avoided by improving the system components. The evaporator has a serious impact on the exogenous exergy destruction within the compressor and ejector, and its own exergy destruction is entirely belongs to endogenous part. The effects of the discharge pressure, compressor efficiency and ejector efficiency on the system exergetic performance are discussed. There is an optimal discharge pressure with respect to the minimum endogenous exergy destruction in the compressor. Avoidable endogenous exergy destruction rates of the compressor and ejector are respectively reduced by 93.6% and 81.7% when the corresponding component efficiency varies from 0.5 to 0.9.

  18. Crude oil pipeline expansion summary

    International Nuclear Information System (INIS)

    2005-02-01

    The Canadian Association of Petroleum Producers has been working with producers to address issues associated with the development of new pipeline capacity from western Canada. This document presents an assessment of the need for additional oil pipeline capacity given the changing mix of crude oil types and forecasted supply growth. It is of particular interest to crude oil producers and contributes to current available information for market participants. While detailed, the underlying analysis does not account for all the factors that may come into play when individual market participants make choices about which expansions they may support. The key focus is on the importance of timely expansion. It was emphasized that if pipeline expansions lags the crude supply growth, then the consequences would be both significant and unacceptable. Obstacles to timely expansion are also discussed. The report reviews the production and supply forecasts, the existing crude oil pipeline infrastructure, opportunities for new market development, requirements for new pipeline capacity and tolling options for pipeline development. tabs., figs., 1 appendix

  19. Asymptotic Expansions - Methods and Applications

    International Nuclear Information System (INIS)

    Harlander, R.

    1999-01-01

    Different viewpoints on the asymptotic expansion of Feynman diagrams are reviewed. The relations between the field theoretic and diagrammatic approaches are sketched. The focus is on problems with large masses or large external momenta. Several recent applications also for other limiting cases are touched upon. Finally, the pros and cons of the different approaches are briefly discussed. (author)

  20. Model of clinker capacity expansion

    CSIR Research Space (South Africa)

    Stylianides, T

    1998-10-01

    Full Text Available This paper describes a model which has been applied in practice to determine an optimal plan for clinker capacity expansion. The problem was formulated as an integer linear program aiming to determine the optimal number, size and location of kilns...

  1. The bootstrap and edgeworth expansion

    CERN Document Server

    Hall, Peter

    1992-01-01

    This monograph addresses two quite different topics, in the belief that each can shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. Chapter 1 is about the bootstrap, witih almost no mention of Edgeworth expansion; Chapter 2 is about Edgeworth expansion, with scarcely a word about the bootstrap; and Chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properites of the bootstrap. The book is aimed a a graduate level audience who has some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter (entitled "Details of Mathematical Rogour"), and so a mathematically able reader without knowledge of the rigorous theory of probability will have no trouble understanding the first four-fifths of the book. The book simultaneously fills two gaps in the literature; it provides a very readable graduate level account of t...

  2. On Fourier re-expansions

    OpenAIRE

    Liflyand, E.

    2012-01-01

    We study an extension to Fourier transforms of the old problem on absolute convergence of the re-expansion in the sine (cosine) Fourier series of an absolutely convergent cosine (sine) Fourier series. The results are obtained by revealing certain relations between the Fourier transforms and their Hilbert transforms.

  3. On persistently positively expansive maps

    Directory of Open Access Journals (Sweden)

    Alexander Arbieto

    2010-06-01

    Full Text Available In this paper, we prove that any C¹-persistently positively expansive map is expanding. This improves a result due to Sakai (Sakai 2004.Neste artigo, mostramos que todo mapa C¹-persistentemente positivamente expansivo e expansor. Isto melhora um resultado devido a Sakai (Sakai 2004.

  4. Proposing a novel combined cycle for optimal exergy recovery of liquefied natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Salimpour, M.R.; Zahedi, M.A. [Isfahan University of Technology (Iran, Islamic Republic of). Department of Mechanical Engineering

    2012-08-15

    The effective utilization of the cryogenic exergy associated with liquefied natural gas (LNG) vaporization is important. In this paper, a novel combined power cycle is proposed which utilizes LNG in different ways to enhance the power generation of a power plant. In addition to the direct expansion in the appropriate expander, LNG is used as a low-temperature heat sink for a middle-pressure gas cycle which uses nitrogen as working fluid. Also, LNG is used to cool the inlet air of an open Brayton gas turbine cycle. These measures are accomplished to improve the exergy recovery of LNG. In order to analyze the performance of the system, the influence of several key parameters such as pressure ratio of LNG turbine, ratio of the mass flow rate of LNG to the mass flow rate of air, pressure ratio of different compressors, LNG pressure and inlet pressure of nitrogen compressor, on the thermal efficiency and exergy efficiency of the offered cycle is investigated. Finally, the proposed combined cycle is optimized on the basis of first and second laws of thermodynamics. (orig.)

  5. Comprehensive performance analyses and optimization of the irreversible thermodynamic cycle engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions

    International Nuclear Information System (INIS)

    Gonca, Guven; Sahin, Bahri; Ust, Yasin; Parlak, Adnan

    2015-01-01

    This paper presents comprehensive performance analyses and comparisons for air-standard irreversible thermodynamic cycle engines (TCE) based on the power output, power density, thermal efficiency, maximum dimensionless power output (MP), maximum dimensionless power density (MPD) and maximum thermal efficiency (MEF) criteria. Internal irreversibility of the cycles occurred during the irreversible-adiabatic processes is considered by using isentropic efficiencies of compression and expansion processes. The performances of the cycles are obtained by using engine design parameters such as isentropic temperature ratio of the compression process, pressure ratio, stroke ratio, cut-off ratio, Miller cycle ratio, exhaust temperature ratio, cycle temperature ratio and cycle pressure ratio. The effects of engine design parameters on the maximum and optimal performances are investigated. - Highlights: • Performance analyses are conducted for irreversible thermodynamic cycle engines. • Comprehensive computations are performed. • Maximum and optimum performances of the engines are shown. • The effects of design parameters on performance and power density are examined. • The results obtained may be guidelines to the engine designers

  6. Optimal separable bases and series expansions

    International Nuclear Information System (INIS)

    Poirier, B.

    1997-01-01

    A method is proposed for the efficient calculation of the Green close-quote s functions and eigenstates for quantum systems of two or more dimensions. For a given Hamiltonian, the best possible separable approximation is obtained from the set of all Hilbert-space operators. It is shown that this determination itself, as well as the solution of the resultant approximation, is a problem of reduced dimensionality. Moreover, the approximate eigenstates constitute the optimal separable basis, in the sense of self-consistent field theory. The full solution is obtained from the approximation via iterative expansion. In the time-independent perturbation expansion for instance, all of the first-order energy corrections are zero. In the Green close-quote s function case, we have a distorted-wave Born series with optimized convergence properties. This series may converge even when the usual Born series diverges. Analytical results are presented for an application of the method to the two-dimensional shifted harmonic-oscillator system, in the course of which the quantum tanh 2 potential problem is solved exactly. The universal presence of bound states in the latter is shown to imply long-lived resonances in the former. In a comparison with other theoretical methods, we find that the reaction path Hamiltonian fails to predict such resonances. copyright 1997 The American Physical Society

  7. Novel combined cycle configurations for propane pre-cooled mixed refrigerant (APCI) natural gas liquefaction cycle

    International Nuclear Information System (INIS)

    Mortazavi, Amir; Alabdulkarem, Abdullah; Hwang, Yunho; Radermacher, Reinhard

    2014-01-01

    Highlights: • 10 New LNG plants driver cycle enhancement configurations were developed. • All the 14 enhancement options design variables were optimized to demonstrate their energy saving potentials. • The best driver cycle enhancement option improved the driver cycle energy efficiency by 38%. • The effects of technological advancements on the performances of the enhancement options were studied. - Abstract: A significant amount of energy is required for natural gas liquefaction. Due to the production scale of LNG plants, they consume an intensive amount of energy. Consequently, any enhancement to the energy efficiency of LNG plants will result in a considerable reduction in natural gas consumption and CO 2 emission. Compressor drivers are the main energy consumer in the LNG plants. In this paper, 14 different driver cycle enhancement options were considered. A number of these options have not been proposed for the LNG plants. The new driver cycle development was performed by analyzing and optimizing the design variables of four conventional driver cycle enhancement options. The optimization results were used to develop more efficient cycles through mitigating the active constrains and driver cycle innovations. Based on the current available technologies five of our newly developed driver cycle configurations have higher efficiency than the most efficient existing conventional driver cycle. The best developed driver cycle enhancement option improved the base driver cycle energy efficiency by 38%. The effects of technological advancement on the performances of the all driver cycle enhancement options were also considered

  8. Study of Physical Properties of SiCw/Al Composites During Unloaded Thermal Cycling

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xin-ming; TIAN zhi-gang; CHENG hua; ZHU Xiao-gang; CHEN Wen-li

    2004-01-01

    The thermal expansion coefficient of SiCw/Al composites squeeze cast during unloaded thermal cycling was determined and analyzed. The study had shown that the thermal expansion coefficient of SiCw/Al composites reduced greatly with temperature raising. The thermal expansion coefficient of artificial ageing treatment SiCw/Al composites during unloaded thermal cycling reduced gradually, while the thermal expansion coefficient of squeezing SiCw/Al composites increased gradually. In addition, the thermal expansion coefficient of SiCw/Al composites reduced drastically with fiber fraction increasing.

  9. Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle

    International Nuclear Information System (INIS)

    Zeyghami, Mehdi

    2015-01-01

    Performance of the combined flash-binary geothermal power cycle for geofluid temperatures between 150 and 250 °C is studied. A thermodynamic model is developed, and the suitable binary working fluids for different geofluid temperatures are identified from a list of thirty working fluid candidates, consisting environmental friendly refrigerants and hydrocarbons. The overall system exergy destruction and Vapor Expansion Ratio across the binary cycle turbine are selected as key performance indicators. The results show that for low-temperature heat sources using refrigerants as binary working fluids result in higher overall cycle efficiency and for medium and high-temperature resources, hydrocarbons are more suitable. For combined flash-binary cycle, secondary working fluids; R-152a, Butane and Cis-butane show the best performances at geofluid temperatures 150, 200 and 250 °C respectively. The overall second law efficiency is calculated as high as 0.48, 0.55 and 0.58 for geofluid temperatures equal 150, 200 and 250 °C respectively. The flash separator pressure found to has important effects on cycle operation and performance. Separator pressure dictates the work production share of steam and binary parts of the system. And there is an optimal separator pressure at which overall exergy destruction of the cycle achieves its minimum value. - Highlights: • Performance of the combined flash-binary geothermal cycle is investigated. • Thirty different fluids are screened to find the most suitable ORC working fluid. • Optimum cycle operation conditions presented for geofluids between 150 °C and 250 °C. • Refrigerants are more suitable for the ORC at geothermal sources temperature ≤200 °C. • Hydrocarbons are more suitable for the ORC at geothermal sources temperature >200 °C

  10. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    -, č. 274 (2005), s. 1-26 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : coordination * crises * cycles and fluctuations Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp274.pdf

  11. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...

  12. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    2008-01-01

    Roč. 63, č. 1 (2008), s. 308-327 ISSN 0899-8256 Institutional research plan: CEZ:AV0Z70850503 Keywords : global games * coordination * crises * cycles and fluctuations Subject RIV: AH - Economics Impact factor: 1.333, year: 2008

  13. Sibling cycle piston and valving method

    Science.gov (United States)

    Mitchell, Matthew P. (Inventor); Bauwens, Luc (Inventor)

    1990-01-01

    A double-acting, rotating piston reciprocating in a cylinder with the motion of the piston providing the valving action of the Sibling Cycle through the medium of passages between the piston and cylinder wall. The rotating piston contains regenerators ported to the walls of the piston. The piston fits closely in the cylinder at each end of the cylinder except in areas where the wall of the cylinder is relieved to provide passages between the cylinder wall and the piston leading to the expansion and compression spaces, respectively. The piston reciprocates as it rotates. The cylinder and piston together comprise an integral valve that seqentially opens and closes the ports at the ends of the regenerators alternately allowing them to communicate with the expansion space and compression space and blocking that communication. The relieved passages in the cylinder and the ports in the piston are so arranged that each regenerator is sequentially (1) charged with compressed working gas from the compression space; (2) isolated from both expansion and compression spaces; (3) discharged of working gas into the expansion space; and (4) simultaneously charged with working gas from the expansion space while being discharged of working gas into the compression space, in the manner of the Sibling Cycle. In an alterate embodiment, heat exchangers are external to the cylinder and ports in the cylinder wall are alternately closed by the wall of the piston and opened to the expansion and compression spaces through relieved passages in the wall of the reciprocating, rotating piston.

  14. Life cycle assessment and the resilience of product systems

    DEFF Research Database (Denmark)

    Pizzol, Massimo

    2015-01-01

    Resilience is the capacity of systems to withstand and recover from disturbance, depends on the structure and architecture of a system, and plays a key role for the sustainability of complex systems. Despite its importance, resilience is not explicitly taken into account by studies of life cycle...... assessment (LCA), which main objective is determining the eco-efficiency of a product system with limited focus on its structure. The question is whether a product system which structure is improved or designed to be more resilient will result in being not only inefficient, but also eco-inefficient, when...... assessed by means of LCA. This study proposes a theoretical modelling approach to compare vulnerable and resilient product systems within the framework of LCA, consisting of assessment of disturbance and system expansion. Examples are provided where the theory is made operational. The structure...

  15. Exponential Expansion in Evolutionary Economics

    DEFF Research Database (Denmark)

    Frederiksen, Peter; Jagtfelt, Tue

    2013-01-01

    This article attempts to solve current problems of conceptual fragmentation within the field of evolutionary economics. One of the problems, as noted by a number of observers, is that the field suffers from an assemblage of fragmented and scattered concepts (Boschma and Martin 2010). A solution...... to this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and expanding...... concepts are described in detail. Taken together it provides the rudimentary aspects of an economic system within an analytical perspective. It is argued that the main dynamic processes of the evolutionary perspective can be reduced to these four concepts. The model and concepts are evaluated in the light...

  16. Production expansion continues to accelerate

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Saudi Arabian Oil Co. (Saudi Aramco) is continuing its accelerated Crude Oil Expansion Program initiated in 1989 that aims at achieving a 10 million bpd productive capacity by 1995. In addition to major engineering, construction and renovation work related to production expansion, Saudi Aramco drilling and workover operations have been markedly expanded. Since January 1991, rig activity has doubled. As an indication of aging of Saudi production, projects include modernizing current injection water treatment facilities, installing a new seawater injection plant on the Persian Gulf, installing dewatering facilities in a number of locations and installing a pilot gas lift project. In addition, equipment orders indicate the new discoveries south of Riyadh may also need the assistance of water injection from inception of production

  17. Shrub expansion in SW Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Rasmus Halfdan

    Arctic regions have experienced higher temperatures in recent decades, and the warming trend is projected to continue in the coming years. Arctic ecosystems are considered to be particularly vulnerable to climate change. Expansion of shrubs has been observed widely in tundra areas across the Arctic......, and has a range of ecosystem effects where it occurs. Shrub expansion has to a large extend been attributed to increasing temperatures over the past century, while grazing and human disturbance have received less attention. Alnus viridis ssp. crispa is a common arctic species that contributes...... to increasing shrub cover. Despite this, there is only limited experimental evidence that growth of the species responds to warming. Plant populations in fragmented and isolated locations could face problems adapting to a warming climate due to limited genetic variation and restricted migration from southern...

  18. The exploitation of the physical exergy of liquid natural gas by closed power thermodynamic cycles. An overview

    International Nuclear Information System (INIS)

    Invernizzi, Costante M.; Iora, Paolo

    2016-01-01

    The world trade in LNG (liquefied natural gas) has tripled in the last 15 years and the forecasts are for its further rapid expansion. Although the cryogenic exergy of the LNG could be used in many industrial processes, it is recognized also as a source for power cycles. When using the low temperature capacity of LNG for power production, several thermodynamic cycles can be considered. This paper reports the state-of-the art of the most relevant solutions based on conventional and non-conventional thermodynamic closed cycles. Moreover, a novel metrics framework, suitable for a fairer comparison among the energy recovery performances of the different technologies is proposed. According to the defined indicators the compounds plants with gas turbine and closed Brayton cycles perform really better, with an almost full use of LNG available cold temperature and a fuel consumption with an efficiency better than that of the current combined cycles. The Rankine cycles with organic working fluids (pure fluids or non-azeotropic mixtures) using seawater or heat available at low temperature (for instance at 150 °C) also perform in a very satisfactory way. Real gas Brayton cycles and carbon dioxide condensation cycles work with very good thermal efficiency also at relatively low maximum temperatures (300 ÷ 600 °C) and could have peculiar applications. - Highlights: • A review of systems for the combined re-gasification of LNG and generation of power. • The considered systems are: closed Brayton cycles, condensation cycles, gas turbines. • Definition of new parameters for an energy assessment of the systems? performances. • A comparison among the various systems from the energy point of view.

  19. RELIABILITY OF LENTICULAR EXPANSION COMPENSATORS

    Directory of Open Access Journals (Sweden)

    Gabriel BURLACU,

    2011-11-01

    Full Text Available Axial lenticular compensators are made to take over the longitudinal heat expansion, shock , vibration and noise, made elastic connections for piping systems. In order to have a long life for installations it is necessary that all elements, including lenticular compensators, have a good reliability. This desire can be did by technology of manufactoring and assembly of compensators, the material for lenses and by maintenance.of compensator

  20. Monetary transmission and business cycle asymmetry

    NARCIS (Netherlands)

    Kakes, Jan

    1998-01-01

    This paper investigates asymmetric effects of monetary policy over the business cycle. A two-state Markov Switching Model is employed to model both recessions and expansions. For the United States and Germany, strong evidence is found that monetary policy is more effective in a recession than during

  1. A comparison of advanced heat recovery power cycles in a combined cycle for large ships

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Sigthorsson, Oskar; Haglind, Fredrik

    2014-01-01

    Strong motivation exists within the marine sector to reduce fuel expenses and to comply with ever stricter emission regulations. Heat recovery can address both of these issues. The ORC (organic Rankine cycle), the Kalina cycle and the steam Rankine cycle have received the majority of the focus...... fluids possess high global warming potentials and hazard levels. It is concluded that the ORC has the greatest potential for increasing the fuel efficiency, and the combined cycle offers very high thermal efficiency. While being less efficient, the steam cycle has the advantages of being well proven...

  2. Advanced methodology for generation expansion planning including interconnected systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, M; Yokoyama, R; Yasuda, K [Tokyo Metropolitan Univ. (Japan); Sasaki, H [Hiroshima Univ. (Japan); Ogimoto, K [Electric Power Development Co. Ltd., Tokyo (Japan)

    1994-12-31

    This paper reviews advanced methodology for generation expansion planning including interconnected systems developed in Japan, putting focus on flexibility and efficiency in a practical application. First, criteria for evaluating flexibility of generation planning considering uncertainties are introduced. Secondly, the flexible generation mix problem is formulated as a multi-objective optimization with more than two objective functions. The multi-objective optimization problem is then transformed into a single objective problem by using the weighting method, to obtain the Pareto optimal solution, and solved by a dynamics programming technique. Thirdly, a new approach for electric generation expansion planning of interconnected systems is presented, based on the Benders Decomposition technique. That is, large scale generation problem constituted by the general economic load dispatch problem, and several sub problems which are composed of smaller scale isolated system generation expansion plans. Finally, the generation expansion plan solved by an artificial neural network is presented. In conclusion, the advantages and disadvantages of this method from the viewpoint of flexibility and applicability to practical generation expansion planning are presented. (author) 29 refs., 10 figs., 4 tabs.

  3. The benefits of transmission expansions in the competitive electricity markets

    International Nuclear Information System (INIS)

    Bresesti, Paola; Calisti, Roberto; Cazzol, Maria Vittoria; Gatti, Antonio; Vaiani, Andrea; Vailati, Riccardo; Provenzano, Dario

    2009-01-01

    The paper presents an innovative method for assessing simultaneously technical and economic benefits of transmission expansions. This method takes into account the new needs of the transmission planning process for competitive electricity markets, in which benefits of major transmission expansions include: (a) improved reliability, (b) increased availability of efficient supply and (c) increased competition among suppliers. The fundamental elements of the REliability and MARKet (REMARK) tool, which we implemented based on the aforementioned method, are: a yearly probabilistic simulation of power system operation; use of the non-sequential Monte Carlo method to pick the operational status of the network elements; full network representation; adoption of the simplified direct current model; quantitative assessment of the reliability benefits through the expected energy not supplied index; simulation of the strategic behaviour of suppliers based on a simplified model that correlates the price-cost mark-up to structural market variables (residual supply index and demand); a quantitative assessment of ''economic'' benefits through the calculation of the social welfare index. A test case application of the tool on the IEEE 24-bus reliability test system shows that the method can assess benefits of transmission expansions, in addition to the overall social perspective, for each market zone as well as separately for consumers, producers and transmission system operators. The results emphasize that the effect of transmission expansions in mitigating market power may be significant and that a simple and traditional cost-based approach may lead to a wrong evaluation of benefits given by transmission expansions. (author)

  4. Fuel cycle

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-01-01

    The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.) [de

  5. A comparison of advanced heat recovery power cycles in a combined cycle for large ships

    International Nuclear Information System (INIS)

    Larsen, Ulrik; Sigthorsson, Oskar; Haglind, Fredrik

    2014-01-01

    Strong motivation exists within the marine sector to reduce fuel expenses and to comply with ever stricter emission regulations. Heat recovery can address both of these issues. The ORC (organic Rankine cycle), the Kalina cycle and the steam Rankine cycle have received the majority of the focus in the literature. In the present work we compare these cycles in a combined cycle application with a large marine two-stroke diesel engine. We present an evaluation of the efficiency and the environmental impact, safety concerns and practical aspects of each of the cycles. A previously validated numerical engine model is combined with a turbocharger model and bottoming cycle models written in Matlab. Genetic algorithm optimisation results suggest that the Kalina cycle possess no significant advantages compared to the ORC or the steam cycle. While contributing to very high efficiencies, the organic working fluids possess high global warming potentials and hazard levels. It is concluded that the ORC has the greatest potential for increasing the fuel efficiency, and the combined cycle offers very high thermal efficiency. While being less efficient, the steam cycle has the advantages of being well proven, harmless to the environment as well as being less hazardous in comparison. - Highlights: • We compare steam, ORC (organic Rankine cycle) and Kalina cycles for waste heat recovery in marine engines. • We evaluate the efficiency and important qualitative differences. • The Kalina cycle presents no apparent advantages. • The steam cycle is well known, harmless and has a high efficiency. • The ORC has the highest efficiency but also important drawbacks

  6. A Power Series Expansion and Its Applications

    Science.gov (United States)

    Chen, Hongwei

    2006-01-01

    Using the power series solution of a differential equation and the computation of a parametric integral, two elementary proofs are given for the power series expansion of (arcsin x)[squared], as well as some applications of this expansion.

  7. Evaluation of tank thermal expansion data in CALDEX

    International Nuclear Information System (INIS)

    Suda, S.; Weh, R.

    1991-01-01

    A thermal expansion test involving a large annular input reprocessing tank was carried out as a part of the CALDEX Project at the TEKO test facility in Karlsruhe, FRG. The objective of this test was to investigate thermal expansion properties of the tank and effects on various pressure and level measurement instruments used in the determination of liquid volume. In the thermal expansion test, a weak nitric acid solution was heated internally to a temperature of 60 degrees C by means of steam injection through the sparge ring. After heating, the annular tank took about one hour to thermally equilibrate, and it took another hour for the sparge ring and pulsator pipes to fill before thermal effects could be followed. The temperature at the end of the test, after tank and its contents had cooled undisturbed for fifty hours, was 29.9 degrees C. Thirteen instrument readings were obtained during each measurement cycle of roughly 70 seconds for a total of over 2800 readings per instrument. Thermal expansion effects for the CALDEX annular tank were consistent with that reported for cylindrical tanks. Temperature variations effect each type of probe in a way that depends on the properties of the probe and the characteristics of the measurement system. 3 refs., 4 figs., 3 tabs

  8. A low pressure thermodynamic cycle for electric power generation without mechanical compressor

    International Nuclear Information System (INIS)

    Proto, G.; Lenti, R.

    1996-01-01

    According to the 2 nd thermodynamic law there is no compulsion to have an expansion from high pressure level to atmospheric pressure, the only reason relying upon the minimization of the plant volumetry which is just one of the overall cost parameters. A thermodynamic cycle without rotating machinery does exist in avionic applications like the RAMJET, in which air flowing at supersonic speed is compressed in a convergent duct before being heated in the combustion chamber and then expanded to a much higher MACH number. The concept discussed here, however, is referred to a physical principle of different nature. In fact the inlet air flow is quasi static, while the propelling kinetic energy is the residual energy following the gas combustion, expansion, cooling in Supersonic Flow and ultimately its fluidic compression in a convergent duct. The concept theoretically relies upon the so called 'Simple T 0 change' transformation, according to which, in a Supersonic Flow at constant cross section and without mechanical dissipation, a decrease in the gas stagnation temperature (T 0 ) will turn into an increase of its stagnation pressure. The paper discusses the feasibility of such a process, focusing on a specific conceptual application to a subatmospheric pressure, high temperature Brayton cycle getting to the conclusion that, even with the materials technology limitations, there is the potential for significant improvement of the actual thermodynamic cycle efficiency. (author). 6 figs.,1 tab., 2 refs

  9. Model-Based Analysis of Arabidopsis Leaf Epidermal Cells Reveals Distinct Division and Expansion Patterns for Pavement and Guard Cells1[W][OA

    Science.gov (United States)

    Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T.S.; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven

    2011-01-01

    To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery. PMID:21693673

  10. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B: Application on a Case Study

    Directory of Open Access Journals (Sweden)

    Angelo La Seta

    2016-05-01

    Full Text Available Organic Rankine cycle (ORC power systems have recently emerged as promising solutions for waste heat recovery in low- and medium-size power plants. Their performance and economic feasibility strongly depend on the expander. The design process and efficiency estimation are particularly challenging due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly-loaded stages in supersonic flow regimes. Part A of this two-part paper has presented the implementation and validation of the simulation tool TURAX, which provides the optimal preliminary design of single-stage axial-flow turbines. The authors have also presented a sensitivity analysis on the decision variables affecting the turbine design. Part B of this two-part paper presents the first application of a design method where the thermodynamic cycle optimization is combined with calculations of the maximum expander performance using the mean-line design tool described in part A. The high computational cost of the turbine optimization is tackled by building a model which gives the optimal preliminary design of an axial-flow turbine as a function of the cycle conditions. This allows for estimating the optimal expander performance for each operating condition of interest. The test case is the preliminary design of an organic Rankine cycle turbogenerator to increase the overall energy efficiency of an offshore platform. For an increase in expander pressure ratio from 10 to 35, the results indicate up to 10% point reduction in expander performance. This corresponds to a relative reduction in net power output of 8.3% compared to the case when the turbine efficiency is assumed to be 80%. This work also demonstrates that this approach can support the plant designer

  11. Theoretical Model for the Performance of Liquid Ring Pump Based on the Actual Operating Cycle

    Directory of Open Access Journals (Sweden)

    Si Huang

    2017-01-01

    Full Text Available Liquid ring pump is widely applied in many industry fields due to the advantages of isothermal compression process, simple structure, and liquid-sealing. Based on the actual operating cycle of “suction-compression-discharge-expansion,” a universal theoretical model for performance of liquid ring pump was established in this study, to solve the problem that the theoretical models deviated from the actual performance in operating cycle. With the major geometric parameters and operating conditions of a liquid ring pump, the performance parameters such as the actual capacity for suction and discharge, shaft power, and global efficiency can be conveniently predicted by the proposed theoretical model, without the limitation of empiric range, performance data, or the detailed 3D geometry of pumps. The proposed theoretical model was verified by experimental performances of liquid ring pumps and could provide a feasible tool for the application of liquid ring pump.

  12. Strain expansion-reduction approach

    Science.gov (United States)

    Baqersad, Javad; Bharadwaj, Kedar

    2018-02-01

    Validating numerical models are one of the main aspects of engineering design. However, correlating million degrees of freedom of numerical models to the few degrees of freedom of test models is challenging. Reduction/expansion approaches have been traditionally used to match these degrees of freedom. However, the conventional reduction/expansion approaches are only limited to displacement, velocity or acceleration data. While in many cases only strain data are accessible (e.g. when a structure is monitored using strain-gages), the conventional approaches are not capable of expanding strain data. To bridge this gap, the current paper outlines a reduction/expansion technique to reduce/expand strain data. In the proposed approach, strain mode shapes of a structure are extracted using the finite element method or the digital image correlation technique. The strain mode shapes are used to generate a transformation matrix that can expand the limited set of measurement data. The proposed approach can be used to correlate experimental and analytical strain data. Furthermore, the proposed technique can be used to expand real-time operating data for structural health monitoring (SHM). In order to verify the accuracy of the approach, the proposed technique was used to expand the limited set of real-time operating data in a numerical model of a cantilever beam subjected to various types of excitations. The proposed technique was also applied to expand real-time operating data measured using a few strain gages mounted to an aluminum beam. It was shown that the proposed approach can effectively expand the strain data at limited locations to accurately predict the strain at locations where no sensors were placed.

  13. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  14. Nuclear fuel reprocessing expansion strategies

    International Nuclear Information System (INIS)

    Gallagher, J.M.

    1975-01-01

    A description is given of an effort to apply the techniques of operations research and energy system modeling to the problem of determination of cost-effective strategies for capacity expansion of the domestic nuclear fuel reprocessing industry for the 1975 to 2000 time period. The research also determines cost disadvantages associated with alternative strategies that may be attractive for political, social, or ecological reasons. The sensitivity of results to changes in cost assumptions was investigated at some length. Reactor fuel types covered by the analysis include the Light Water Reactor (LWR), High-Temperature Gas-Cooled Reactor (HTGR), and the Fast Breeder Reactor (FBR)

  15. Thermal expansion of LATGS crystals

    International Nuclear Information System (INIS)

    Kassem, M.E.; Kandil, S.H.; Hamed, A.E.; Stankowska, J.

    1989-04-01

    The thermal expansion of triglycine sulphate crystals doped with L-α alanine (LATGS) has been studied around the phase transition temperature (30-60 deg. C) using thermomechanical analysis TMA. With increasing the content of admixture, the transition temperature (T c ) was shifted towards higher values, while the relative changes in the dimension of the crystals (ΔL/L 0 ) of the studied directions varied both in the para- and ferroelectric phases. The transition width in the case of doped crystals was found to be broad, and this broadening increases with increasing the content of L-α alanine. (author). 12 refs, 3 figs

  16. Contribution of thermal expansion and

    Directory of Open Access Journals (Sweden)

    O.I.Pursky

    2007-01-01

    Full Text Available A theoretical model is developed to describe the experimental results obtained for the isobaric thermal conductivity of rare gas solids (RGS. The isobaric thermal conductivity of RGS has been analysed within Debye approximation with regard to the effect of thermal expansion. The suggested model takes into consideration the fact that thermal conductivity is determined by U-processes while above the phonon mobility edge it is determined by "diffusive" modes migrating randomly from site to site. The mobility edge ω0 is determined from the condition that the phonon mean-free path restricted by the U-processes cannot be smaller than half of the phonon wavelength.

  17. PPARγ ligand production is tightly linked to clonal expansion during initiation of adipocyte differentiation

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Petersen, Rasmus Koefoed; Feddersen, Søren

    2014-01-01

    of differentiation. Concomitant with agonist production, murine fibroblasts undergo two rounds of mitosis referred to as mitotic clonal expansion. Here we show that mouse embryonic fibroblasts deficient in either of two cell cycle inhibitors, the transcription factor p53 or its target gene encoding the cyclin...... cycle inhibitory compounds decreased PPAR ligand production in differentiating 3T3-L1 preadipocytes. Furthermore, these inhibitors abolished the release of arachidonic acid induced by the hormonal cocktail initiating adipogenesis. Collectively, our results suggest that murine fibroblasts require clonal...... expansion for PPAR ligand production at the onset of adipocyte differentiation....

  18. Summary of Expansions, Updates, and Results in GREET 2017 Suite of Models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Benavides, Pahola Thathiana [Argonne National Lab. (ANL), Argonne, IL (United States); Burnham, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Rui [Argonne National Lab. (ANL), Argonne, IL (United States); Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, Dong-Yeon [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, Uisung [Argonne National Lab. (ANL), Argonne, IL (United States); Li, Qianfeng [Argonne National Lab. (ANL), Argonne, IL (United States); Lu, Zifeng [Argonne National Lab. (ANL), Argonne, IL (United States); Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Pingping [Argonne National Lab. (ANL), Argonne, IL (United States); Supekar, Sarang D. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-01

    This report provides a technical summary of the expansions and updates to the 2017 release of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET®) model, including references and links to key technical documents related to these expansions and updates. The GREET 2017 release includes an updated version of the GREET1 (the fuel-cycle GREET model) and GREET2 (the vehicle-cycle GREET model), both in the Microsoft Excel platform and in the GREET.net modeling platform. Figure 1 shows the structure of the GREET Excel modeling platform. The .net platform integrates all GREET modules together seamlessly.

  19. Can snowshoe hares control treeline expansions?

    Science.gov (United States)

    Olnes, Justin; Kielland, Knut; Juday, Glenn P; Mann, Daniel H; Genet, Hélène; Ruess, Roger W

    2017-10-01

    Treelines in Alaska are advancing in elevation and latitude because of climate warming, which is expanding the habitat available for boreal wildlife species, including snowshoe hares (Lepus americanus). Snowshoe hares are already present in tall shrub communities beyond treeline and are the main browser of white spruce (Picea glauca), the dominant tree species at treeline in Alaska. We investigated the processes involved in a "snowshoe hare filter" to white spruce establishment near treeline in Denali National Park, Alaska, USA. We modeled the pattern of spruce establishment from 1970 to 2009 and found that fewer spruce established during periods of high hare abundance. Multiple factors interact to influence browsing of spruce, including the hare cycle, snow depth and the characteristics of surrounding vegetation. Hares are abundant at treeline and may exclude spruce from otherwise optimal establishment sites, particularly floodplain locations with closed shrub canopies. The expansion of white spruce treeline in response to warming climate will be strongly modified by the spatial and temporal dynamics of the snowshoe hare filter. © 2017 by the Ecological Society of America.

  20. Application of Rational Expansion Method for Differential-Difference Equation

    International Nuclear Information System (INIS)

    Wang Qi

    2011-01-01

    In this paper, we applied the rational formal expansion method to construct a series of soliton-like and period-form solutions for nonlinear differential-difference equations. Compared with most existing methods, the proposed method not only recovers some known solutions, but also finds some new and more general solutions. The efficiency of the method can be demonstrated on Toda Lattice and Ablowitz-Ladik Lattice. (general)